
Quality Impact of Configuration

and Customisation on

Configurable Software

Geoffrey Lydall

A dissertation submitted to the Faculty of Engineering and the Built Environment,

University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for

the degree of Master of Science in Engineering.

Johannesburg, September 2018

i

Declaration

I declare that this dissertation is my own, unaided work, except where otherwise

acknowledged. It is being submitted for the degree of Master of Science in Engineering

to the University of the Witwatersrand, Johannesburg. It has not been submitted

before for any degree or examination to any other university.

Signed this day of 20

Geoffrey Lydall

ii

Abstract

A case study is performed on a weighbridge application which allows for configurations

and customer-specific modifications. A literature review includes topics of software

quality, software customisation, and ontology. The effects of the customisations

and modifications are evaluated for the structural and functional quality of the

system, and the configuration architecture assessed for its success in accommodating

configuration and customisation from a quality perspective. A statistical model is

defined to estimate how the number of defects may change with modifications to

a system. The structural quality is measured using the Maintainability Index and

Overview Pyramids. The functional quality is assessed using defect data recorded

in the task tracking software Jira and the revision history stored using the version

control software Git. The amount of modification is measured using the number of

rules defined per customer. The results indicate that structural quality is unaffected

by the modifications, and that the functional quality is reduced as more customisation

rules are defined indicating a partial success of the architecture.

iii

To Joslin. . .

iv

Acknowledgements

I would like to thank the many people for their support and assistance in this study

without whom it would not have been possible.

To my wife, Joslin, who has always been there for me and been generous with her

unfailing love, support, understanding and encouragement.

To my supervisor, Dr Levitt, for his guidance, feedback, patience and encouragement.

To Marian for her selfless editing and advice.

To my family for their support encouragement.

To Basil, Garrick, and Bernice for their time, assistance, and advice.

Last but not least, I would like to thank the software product vendor that generously

supplied the material for the study.

v

Contents

Declaration i

Abstract ii

Dedication iii

Acknowledgements iv

Contents v

List of Figures x

List of Tables xi

Nomenclature xii

1 Introduction 1

1.1 Overview of the Dissertation . 2

1.2 Previous and Related Work . 3

1.2.1 Customising Software . 3

1.2.2 Software as a Service . 4

1.2.3 Ontology . 7

vi

1.2.4 Conclusion . 7

2 Quality 8

2.1 Defining Quality . 8

2.2 Quality Metrics . 11

2.2.1 Structural Quality Metrics . 12

2.2.2 Functional Quality Metrics 13

2.3 Conclusion . 14

3 Research Question 15

3.1 Aim and motivation . 16

3.2 Scope . 16

3.3 Theoretical Change Defect Model . 17

3.3.1 Models in Literature . 17

3.3.2 Statistical Model . 18

3.3.3 Analysis . 19

3.3.4 Pareto Principle . 20

3.3.5 Internal versus External Quality Effects 22

3.4 Conclusion . 23

4 Methodology 24

4.1 Approach . 24

4.2 Description of Weighbridge Application 25

4.3 Customer Selection . 27

vii

4.3.1 C1 - Out the box . 27

4.3.2 C2 - Heavy Customisations 28

4.3.3 C3 - Domain Modified . 28

4.4 Measuring Customisation and Quality 29

4.4.1 Measurements . 29

4.5 Determining Quality from the Metrics 30

4.6 Determining the Success of the Architecture 31

4.7 Conclusion . 32

5 Sizing Customisations 33

5.1 Nature of Customisations . 33

5.2 How the Application is Customised 34

5.3 Measuring the Customisations . 36

5.4 Conclusion . 37

6 Code Metrics 40

6.1 Acquiring Metrics . 40

6.2 Maintainability Index . 41

6.2.1 Halstead Volume . 42

6.2.2 Visual Studio Implementation 44

6.2.3 Generated Code . 44

6.3 Overview Pyramid . 46

6.3.1 Example . 47

6.4 Tool Verification . 47

viii

6.4.1 Notes on Metrics . 47

6.5 Application Specific Metrics . 49

6.6 Roslyn and Mono.Cecil . 49

6.7 Conclusion . 49

7 Bug and Issue Analysis 51

7.1 Git . 51

7.2 Jira . 52

7.3 Conclusion . 52

8 Results 53

8.1 Bugs and Commits . 53

8.2 Bugs Logged Per Customer . 54

8.3 Measure of Rules and Customisations 54

8.4 Rules Versus Bugs . 54

8.5 Analysis . 55

8.5.1 Size Comparison . 56

8.5.2 Quality Comparisons . 56

8.5.3 Correlations . 58

8.6 Research Questions . 59

8.6.1 R1 - Structural Quality . 59

8.6.2 R2 - Functional Quality . 60

8.6.3 R3 - Architectural Success . 60

8.7 Threats to Validity . 61

ix

8.8 Conclusion . 61

9 Conclusion 63

9.1 Future Work . 64

A Technical Detail of Calculation of Code Metrics 71

A.1 Introduction . 71

A.2 FxCop . 71

A.3 Mono.Cecil . 72

A.3.1 Calculating the CALLS Metric 72

A.3.2 Calculating the ANDC Metric 73

A.3.3 Calculating the AHH . 73

A.4 Sample Program . 73

A.5 Conclusion . 76

B Matlab Code for Hypothetical Model 78

B.1 Introduction . 78

B.2 Program Listing . 78

B.3 Conclusion . 79

C Overview Pyramid Outputs 80

C.1 Introduction . 80

C.2 Listing of overview Pyramids . 80

C.3 Conclusion . 88

x

List of Figures

1.1 Illustrative cost estimates for the four SaaS models outlined by Sun. 6

3.1 Classes of trial outcomes. 19

3.2 A probability tree that describes the proposed model. 20

3.3 Plots of the model of probability of defect vs n for varying values of D

and k for N = 100. 21

5.1 The Model - View - View-model pattern 33

5.2 Pseudo class diagram illustrating the structure of configurations . . 38

5.3 Illustration of how configurations relate to the configuration of the

application. Individual pieces of XML represent actual configurations,

however this view shows an abridged configuration for brevity. . . . 39

6.1 An example overview pyramid annotated with the maintainability

index and the source assembly name. 47

8.1 Plot illustrating a correlation between rules and bugs with inverse

correlation against plug-in lines of plug-in code. Note that the multi-

pliers are provided in order that they can be plotted in a range that

is comparable with the rest of the metrics. 56

8.2 Summary of metrics for each customer 57

A.1 Class diagram for the sample program 77

xi

List of Tables

3.1 Components for the probability tree in figure 3.2. 18

6.1 Symbols for maintainability index in equation 6.1 42

6.2 Comparison of tool and manual counts of metrics for the test case. . 48

8.1 Label and description of customers for the case study 53

8.2 Bug counts per customer . 54

8.3 Counts collected for rules per customer. The LOC refers to the LOC

for plug-in assemblies. 54

8.4 Table of comparison of size by area as a total across all customers in

the case study. 57

8.5 Table of comparison of maintainability index averaged over the cus-

tomers under study. 57

8.6 Table of comparison complexity rating counts per assembly across all

customers under study (from the overview pyramids) by area for all

metrics. 58

8.7 Spearman’s Rank Correlations for gathered metrics 59

xii

Nomenclature

CC Cyclomatic Complexity

CIL Common Intermediate Language

CRUD Create Read Update Delete

CSV Comma Separated Value

ERP Enterprise Resource Planning

GQM Goal Question Metric

HV Halstead Volume

IT Information Technology

LOC Lines of Code

MI Maintainability Index

NOC Number of Classes

NOM Number of Methods

NOP Number of Packages

MVVM Model - View - View-model

OO Object Oriented

SaaS Software as a Service

SIG Software Improvement Group

SME Small and Medium Enterprises

SMM SIG Maintainability Model

UI User Interface

xiii

UML Unified Modelling Language

VS Visual Studio

XML eXtensible Mark-up Language

1

Chapter 1

Introduction

Software projects carry a notorious reputation of being late and over budget [1].

Methodologies and processes such as Agile Software Development, PSP, SCRUM,

RUP, CMMI and SEMAT aim to improve the quality of the software development

process, while formal software design principles such as SOLID, Design Patterns [2],

and continuous improvements in software technologies and language developments aim

to improve the structural quality of software. However, despite these developments,

projects are still late and exhibit quality problems.

Software quality is regarded as consisting of three principle dimensions: Process,

Structural, and Functional quality [3]. Even if a project is well built using sound

process and methodology, this is no guarantee that the functional quality (as perceived

by the user) of the project will be of a high standard. Component based software

technologies could be leveraged to overcome these quality problems and help control

cost in software projects [4]. Software vendors will be able to specialise in specific

software components and economic viability of these specialisations realised through

reuse volumes.

In order to explore reuse of software components from a quality perspective, a

case study is proposed to investigate the effects that customisations have on the

quality of specialised off the shelf software. Should quality be negatively impacted

by the customisation of the product, it may further inform build vs buy decisions for

organisations which use specialised software. For example, if customising software

significantly reduces the functional quality, then organisations may be better off

building the specific software.

An understanding of quality from a manufacturing and services perspective is explored

- considering that software has aspects of both a good and a service. Metrics for

Chapter 1 — Introduction 2

software quality and size of customisation are explored for a comparison of quality

against the extent of customisation. A descriptive statistical model is presented that

suggests a mechanism how functional quality is affected by customisation.

The application in the case study is a weighbridge application which is described in

Chapter 4.2.

1.1 Overview of the Dissertation

This section provides an overview of the dissertation and describes what work is

covered in which chapter. The literature for the study is largely covered in the

chapters for which the literature is relevant.

Chapter 1 introduces the study and covers previous and related work including

software quality, software as a service, and ontology.

Chapter 2 provides a more in depth discussion on software quality. The chapter

defines software quality and presents metrics for the measurement of software quality.

Chapter 3 presents the research questions for the study, the scope of the study, the

aim and motivation of the study, and a statistical model for the purpose of reasoning

about expected outcomes of the research questions.

Chapter 4 presents the research methodology. This chapter introduces the application

and customers under study, describes how quality will be measured, and what kind

of data will be gathered to answer the research questions.

Chapter 5 provides details about the manner in which the application is customised

and how the size of a modification or customisation is determined.

Chapter 6 provides details about how code quality metrics are acquired using a

combination of existing tools and software written to augment the existing tools.

The Maintainability Index is covered, including how its calculation in Visual Studio

and how generated code can be excluded from the calculations. Details are provided

on the Overview Pyramid and how the additional metrics not provided by Visual

Studio are calculated in order to produce it.

Chapter 7 provides details about the functional quality is measured using defect data

stored in the task tracking and revision control for the software under study. The

Chapter 1 — Introduction 3

software Git and Jira are also described.

Chapter 8 presents the results of the study and an analysis of those results. The

research questions are answered and threats to the validity of the study are discussed.

Chapter 9 presents the conclusion of the dissertation. A brief summary of the findings

are presented and future work is proposed.

1.2 Previous and Related Work

The work outlined in chapter 2 is considered, as well as some additional studies

indicated below.

1.2.1 Customising Software

Enterprise Resource Planning (ERP) systems and Software as a Service (SaaS)

provide areas where academic studies contain related work.

Some literature on implementing ERP systems in organisations is considered, noting

some challenges that ERP implementations may present.

ERP systems have been adopted in business and are at times customised to meet

the specific needs of a customer in the workplace [5]. Light’s work discusses the

maintenance implications of various changes to an ERP system for both the customer

and the vendor. Some of the challenges include a customisation for one customer

which actually competes with the customisations for another customer, and also

points out fragility in the upgrade path of customisations. This work, however, does

not quantify the effects of these customisations for either the customer or the vendor.

Light’s work offers insight into the types of changes that had been applied to the

ERP system for the customers as well provide a qualitative overview of what can be

expected. Light noted the following types of changes in customising the software (in

order of potential for required maintenance, high to low):

• Change functionality

• Add functionality

• Process automation

Chapter 1 — Introduction 4

• Amend reports/displays

• New report

Light’s work provides an example of the kinds of work to be expected from the

Weighbridge Software for this study. The software is described in Chapter 4.2.

Also considered, is the methodology presented by Guido [6], which assesses the

feasibility of ERP implementation strategies. This study provides a formal under-

standing of the business context in which a system is going to operate. Specific

mentions include the alignment of the ERP system to business. Guido’s work has also

been applied to numerous studies, one of which is Kumar’s work [7] that concludes

customisation beyond 30% adds considerable risk to the project. The work outlines

customisations as “any modifications or extensions that change how the out-of-box

ERP system works”. Kumar’s conclusion stems from an analysis of error counts in

modules of the system and recommendations from the system vendor.

1.2.2 Software as a Service

Software as a Service (SaaS) is a relatively new concept in which a software vendor

provides a system to a customer through an on-line channel, often using some

form of tenancy architecture. This channel of delivery typically offers more limited

customisations than a traditional vendor software deployment, although this is then

touted as an area of cost saving. What is significant about this, is the notion that

businesses may be willing to adapt their business model to be better aligned to what

the vendor offers in order to realise a cost saving; competitive advantage; or process

efficiency [8]. The vendor can also deliver further value to their customers through

analyses of the usage patterns of their software [9][10].

Xin’s work [8] proposes nine hypotheses with regards to adoption factors for SaaS:

H1 Clients with a higher degree of desired customization for a given software

application are less likely to adopt the SaaS model than the on-premises model.

H2 Clients with higher demand volume uncertainty for a given software application

are more likely to adopt the SaaS model than the on-premises model.

H3 Clients with higher demand uncertainty for client-specific functionality for a

given software application are less likely to adopt the SaaS model than the

on-premises model.

Chapter 1 — Introduction 5

H4 Demand uncertainty for client-specific functionality moderates the relationship

between the degree of desired customization and client’s propensity to adopt

the SaaS model for a given application.

H5 Clients with a large number users for a given software application are less likely

to adopt the SaaS model than the on-premises model.

H6 Clients with more extensive internal IT capabilities are less likely to adopt the

SaaS model for a given application than the on-premises model.

H7 Clients with high cost of capital are more likely to adopt the SaaS model than

the on-premises model.

H8 Clients that are more receptive to peer organizations’ influence in their IT

decision making are more likely to adopt the SaaS model.

H9 Clients with more mature1 enterprise IT architecture are more likely to adopt

the SaaS model.

These hypotheses highlight that fewer customisation options for customers are

typically detractors from using SaaS, but also state that organisations “more receptive

to peer organisation’s influence in their IT decision making” are more likely to adopt

a SaaS model in order to mimic successful behaviours or to compensate for a poor

IT capability. This implies that organisations may adopt a business model provided

by a third party which is considered already successful. Xin also cites the cost of

capital as another motive in adopting SaaS. Xin’s work has been later considered

in Seethamraju’s work [11] which highlights the advantages of Small and Medium

Enterprises (SMEs) sacrificing control and adopting SaaS systems. These advantages

are realised by the relatively ad hoc processes and small scales of SMEs compared

with larger organisations, where the change process is simpler; the product is cheaper;

and the customer’s requirements do not include integration concerns.

Seethamraju’s work also contrasts SaaS and on premise ERP solutions for organisa-

tions. The work states that whilst ERP offers more customisation, it also typically

undermines the practices of the ERP system, and highlights the advantages in terms

of cost and process efficiency that SMEs may gain by using SaaS over on premise

ERP.

Sun’s work [9] describes four different cost models for SaaS vendors that include

varying degrees of customisation by the vendor with corresponding cost implications.

1In this context, mature refers to the organisation’s ability to organise logic, data, and infrastruc-

ture.

Chapter 1 — Introduction 6

The four models plotted in Figure 1.1 are summarised below as:

A Native Design

B Smooth Evolvement

C Pulse Evolvement

D Failure Management

Figure 1.1: Illustrative cost estimates for the four SaaS models outlined by Sun.

The Native Design model is an upfront specification and development effort and

minimal expenses through the rest of the product. Smooth Evolvement is an on-going

design and development model with a levelling out of costs with increasing tenants.

Pulse Evolvement is a model where feature development is applied in pulses - similar

to successive Native Design models with increasing tenants. The Failure Management

model is like the Smooth Evolvement model except that the cost increase accelerates

with an increased number of tenants.

Sun’s work suggests that the most successful vendor models are the Native Design

and Pulse Evolvement models - both of which have infrequent changes that are

dependent on extensive product design and analysis across a range of tenants, and

therefore constitutes a shared process model for customers.

Chapter 1 — Introduction 7

1.2.3 Ontology

The concept of ontology is a separate, but related concept to this study. The principle

of ontology is to provide a conceptual model for systems in an integrated way that

can be communicated and understood in an unambiguous way [12].

There is a large body of knowledge that relates to ontology and Software and

Knowledge Engineering. [13, 14, 15, 16].

Such studies with respect to ontology are related because it is implied by the

hypothesis that the software product itself forms a standard model, or ontology,

for the domain in which the software is specialised in. This then explains why

specialised software products could realise benefits in terms of Component Based

Software Engineering and as well as quality improvements in software. These benefits

originate from the deep expertise of the engineers that produce this software since

the understanding is ideally deep and complete.

This study is framed within a context of ontology as it applies to engineering practices

and quality in software.

1.2.4 Conclusion

A context for study has been introduced as quality in software engineering and an

outline of the dissertation has been presented.

A review of previous and related works has been presented, including software as a

service, customisation of ERP systems, and ontology.

8

Chapter 2

Quality

This chapter discusses the definition of software quality. The definition is drawn from

a number of different sources in literature. Much work has been done to describe a

range of metrics that describe the software’s maintainability.

The quality definition is discussed from a range of perspectives, including the three

aspects of internal, external, and functional quality; and the quality framework

defined in ISO9126. The final definition also draws from more traditional definitions

used in manufacturing and services.

Also discussed is the notion of defect as a measure of quality.

2.1 Defining Quality

The definition of quality in the scope of software engineering needs to be understood

in order to understand what is being proposed to be measured.

This definition begins with an understanding of software quality as defined by

David Chappel [3]. His paper outlines three aspects of software quality: Functional;

Structural; and Process.

• Functional: The quality as would be perceived by the user - e.g. performance,

defects, ease of use.

• Structural: The quality as would be perceived by developers - e.g. maintain-

ability, testability, security.

Chapter 2 — Quality 9

• Process: The quality of the project as would be perceived by a project manager

or sponsor - milestones, budgets, repeatability.

Functional and structural quality can also be thought of as Steve McConnell’s external

and internal quality, respectively [17].

Within this framework, it can be understood that popular processes or techniques

such as PSP/TSP, Scrum, Kanban, RUP, CMMI and SEMAT target process quality

[18]; testing (user and internal) can target functional quality through the detection

and removal of bugs and functional verification; and unit tests and other code quality

metrics can target the structural quality.

ISO 9126 [19] is a standard that defines a set of quality characteristics and sub

characteristics for software systems. These characteristics are:

• Functionality

– Suitability

– Accuracy

– Interoperability

– Security

– Functionality compliance

• Reliability

– Maturity

– Fault tolerance

– Recoverability

– Reliability compliance

• Usability

– Understandability

– Learnability

– Operability

– Attractiveness

– Usability compliance

• Efficiency

Chapter 2 — Quality 10

– Time behaviour

– Resource utilization

– Efficiency compliance

• Maintainability

– Analysability

– Changeability

– Stability

– Testability

– Maintainability compliance

• Portability

– Adaptability

– Installability

– Co-existence

– Replaceability

– Portability compliance

As can be seen, the standard is broad and covers more than the technical aspects of

software, including more human factors such as usability and functionality.

Hegedűs’ [20] work provides a summary of quality metrics from a source code

perspective, and refers back to ISO 9126, mentioning that it provides a framework

within which to conduct further research into software quality. The work covers:

• Existing maintainability models.

• A probabilistic maintainability model and its validation.

• A maintainability model for C#.

• Implementation and evaluation of developed tools and models.

The work highlights that most software quality research has a principle focus on the

maintainability sub characteristics of ISO 9126 as these are of immediate interest

due to the effect of maintainability on the cost of change. Although the source code

itself is key to maintainability, ISO 9126 does not prescribe any specific source code

metrics.

Chapter 2 — Quality 11

Of the functional quality sub characteristics, in Hegedűs’ model only the Performance

Rules and Security Rules (each written and tested as FxCop rules) are cited as quality

“measures”. Although these are considered as functional quality measures in Hegedűs’

model, they provide little insight into the user’s overall quality experience - the

considered definition of functional quality. More information on FxCop can be found

in Appendix A.2.

There are no direct means of measuring functional quality. A deeper definition of

quality must first be considered from a manufacturing and services perspective [21].

In this regard:

• Goods can be considered in the dimensions of: Performance; Features; Re-

liability; Durability; Conformance; Serviceability; Aesthetics; and Perceived

Quality.

• Services can be considered in the dimensions of: Reliability; Tangibles; Re-

sponsiveness; Assurance; and Empathy.

• Software can be regarded as both a good and a service, thus taking on aspects

of both of the above. Many of these dimensions are difficult to objectively

measure, however, their absence can be easily measured.

Functional quality can be inferred from the absence of defect, and defect can be

measured. Freimut’s work [22] considers approaches for measuring defect for the

purposes of quality improvement strategies. His work provides a process to track

defect introduction and detection for the purposes of establishing a quality assurance

baseline.

Kuan’s [23] work focuses on a quality comparison of the open and closed source

systems from an economics perspective. Kuan’s work directly measures defect rates

in order to develop a Cox Hazard Model [24]. The results then provide an indication

of the kind of hazard each system presents to its prospective users and therefore

infers a level of quality.

2.2 Quality Metrics

This section explores some of the quality metrics discussed in literature.

Chapter 2 — Quality 12

There is much work in software engineering that relates the areas of component

based engineering and quality. Ravichandran’s [4] work discusses a decision making

strategy for reuse. Ravichandran specifically refers to the concepts of domain and

contextual distance. These distances refer to differences in the application domain

and environment respectively. These are quantified in terms of the effort required

to close the distances. Ravichandran refers to Shepperd’s estimation by analogy,

however, any effort estimation tool could theoretically be used. Estimation by

analogy is an estimation technique based on experience where the work to be done is

compared with the effort required to complete previous work [25] - similar to story

points in Scrum [26]. Furthermore, the domain and contextual distances can be

retrospectively known if the actual effort expended is measured.

Pantazopolous [27] suggests bug count as a “real-time” measure of quality. Kuan’s

[23] work also refers to bug counts as a measure. Bug count histories can be useful in

identifying problematic areas of the code base. These bug counts can be determined

either from bug tracking systems or from check-in histories. Khomh’s work [28] also

uses bug count on Mozilla Firefox releases as a measure of quality, along with uptime

of the application.

It is then concluded that whilst the functional quality may be difficult to measure,

the absence of quality is relatively simple to measure and can suffice as a measure of

quality.

Another measure of quality is the effort required in maintaining software in operation

- in particular the measure of effort for client support. Even if the effort is coarsely-

grained against the customer for whom the effort is spent, this can still be useful as

customisations can also be associated with a single customer.

2.2.1 Structural Quality Metrics

Some candidates for a unified structural quality model include the Maintainability

Index [29, 30], or the Software Improvement Group (SIG) Maintainability Model

[31, 32]. Sjoeberg’s [33] work compares a number of Maintainability Models and

concludes that such metrics are a poor predictor of maintainability and suggests

that sophisticated metrics are overrated and instead advocates for the use of simpler

metrics such as file and class size.

Bijlsma’s work [34] investigates whether increased internal quality leads to faster

Chapter 2 — Quality 13

resolution time of issues for open source projects. In his work, Bijlsma tested hypo-

theses using a Spearman’s Rank Correlation, stating that the maintainability ratings

and issue resolution time do not follow a normal distribution. The Spearman’s Rank

Correlation correlates rising and falling trends instead of the actual measurements.

Bijlsma used the SIG Maintainability Model in his work.

Nugroho’s work [35] looks at the cost of repair and interest on technical debt using

the SIG Maintainability Model, proposing the use of Software Maintainability as a

measure of technical debt. Nugroho’s work quantifies technical debt as the cost of

correcting a shortfall in measured maintainability.

Lanza [36] introduces the Overview Pyramid which proposes the presentation of

software metrics in a way that allows a collection of metrics to be presented in

a “report”. These reports present a collection of measures in three areas, namely:

Size & Complexity; Coupling; and Inheritance. These areas all present ratios of

metrics and Lanza’s work also includes a set of benchmarked normal ranges for these

measures. This work is useful for comparing and contextualising structural qualities

of assemblies. More information on the Overview Pyramid can be found in Section

6.3. Given that Lanza’s work allows for a comparison and focuses on simple size

metrics (as per Sjoeberg’s conclusion [33]), this makes his work a preferred candidate

for measuring structural quality.

2.2.2 Functional Quality Metrics

Although the proposed measure of functional quality, or absence thereof, is number

of bugs, it is also considered that there are other measures presented in literature.

Note that none of these approaches are a direct measurement of quality, but are

rather a means of attempting to determine a measure of fitness for purpose.

Potential metrics for measuring quality include Goal Question Metrics (GQM)[37, 38],

which is a scheme for providing a measure of functional usefulness or fit for purpose

metrics. Hall’s work [39] furthers this approach and there are even some recent

refinements to this approach such as those presented by Kelemen [40]. Kelemen’s

work proposes the term Measurement Based Software Quality Assurance Framework.

At the core of these approaches is quantifying how fit for purpose a system is. These

approaches may be useful in assessing the value of software customisations, however,

would also require a survey involving persons who use the systems being measured.

Function point analysis is also considered as a method of measuring functional change.

Chapter 2 — Quality 14

A Function Point [41, 42] is a single unit of functionality in a business system, such

as an input, output, search, etc. Klusener’s work [43] investigates the measurement

of function points from source code, particularly in the case of extension projects.

2.3 Conclusion

Quality in software is introduced and defined as a multi-faceted concept with aspects

of both a product and a service and is constituted in different forms from internal

and external (or structural and functional) perspectives.

Recognised quality standards specifications are presented as well as other work in

literature that explore the measurement of software quality. Multiple measures exist

for both structural and functional quality, including the Maintainability Index for

structural quality and bug count for functional quality.

This chapter also considers the question of quantifying the size of changes to software.

15

Chapter 3

Research Question

The study is hypothesised on the idea that software customisation or modification

negatively impacts the quality of software as measurable through an increased number

of bugs.

Software vendors may choose to use a configurable architecture designed to accom-

modate such customisations or modifications as requested by customers. One such

mechanism is using a dependency injection framework [44] that can be configured

to override the original class types used at runtime with types defined in custom

assemblies. In this way, all customers share a common basic functionality and the

software is polymorphically extended with new behaviours that fulfil the new business

requirements. A specific description of such an approach is discussed in Chapter 4.2.

Within this context, three research questions are identified for study:

R1 Given a system that is designed for configurability through depend-

ency injection to accommodate customisation, how does the struc-

tural quality of these customisations compare with the rest of the

system?

R2 Given a system that is designed for configurability through depend-

ency injection to accommodate customisation, what effect does im-

plementing these customisations have on the functional quality as

perceived by the user?

R3 Within the context of R1 and R2, how successful is the architecture

in supporting the changes required by different customers?

While it follows that the more software is customised, the more effort is required

Chapter 3 — Research Question 16

to implement the customisations; the focus of these questions is rather on the

quality effects. These customisations are applied from two principle mechanisms:

Configurations, and Plug-ins.

Answers to the research questions may provide insight into how successful software

customisation architectures are at accommodating the specific business needs of

customers from a quality perspective.

3.1 Aim and motivation

This study is motivated by a desire for better quality in software as inspired by

quality innovations in the manufacturing space.

The aim is to contribute towards a methodology that provides better data to inform

business of a decision to build or buy when implementing a software solution. The

term build or buy specifically refers to the decision of whether to develop a bespoke

software solution or to use an off the shelf product.

Software is customised for a variety of reasons, some of which include mismatches

between business requirements and the functionality provided by the software. It is

hypothesised that these customisations can lead to problems of reduced functional

quality problems and increased cost of maintenance.

If a model exists that can estimate the quality impact and therefore ultimately a cost

component due to the quality impacts of customisation, more optimised software

plans can be developed.

3.2 Scope

This study is limited to the scope of using existing software metrics for quantifying

the customisations made to a software product and the effect that these changes

have on the quality of the software as measured by code metrics.

This study will not be investigating concerns related to the customisations such as:

1. Why the software was chosen.

2. Why the business wants the customisations done.

Chapter 3 — Research Question 17

3. Why a specification for customisations is poor.

4. Why the business processes have the requirements that they do.

Such concerns are important in quality, however, of interest is only the presence or

absence of a quality problem, as opposed to how the quality problem occurred.

This is because the aim is to determine whether customising software reduces

quality or not, rather than how the customisations came to be. This is then further

rationalised by the notion of being able to inform decisions of whether to build or

buy when it comes to implementing software solutions.

3.3 Theoretical Change Defect Model

In order to reason about the outcomes of the study, a model must be developed.

The model begins with the consideration that a user will perceive poor quality when

there are defects in the system, and that those defects are introduced through the

customisation process. This process can be modelled statistically.

It must be noted that this model is not intended as a predictive model, but rather as

a descriptive model in order to understand the problem space of the perceived quality

of the system by the user. The model uses four variables to calculate a probability

for a defect being precipitated by making changes to a system. The four variables

are tabulated in Table 3.1. A statistical model diagram is illustrated in Figure 3.2

and some sample plots for the model are illustrated in Figure 3.3.

3.3.1 Models in Literature

Included in literature are two specific areas of work that are related to defect

prediction. These models use empirical data and sophisticated statistical models to

predict how many defects exist in a software system.

Fenton and Neil provide a critique of various defect prediction approaches [45],

including regression models developed using size and complexity measures; testing

data; process data; and combinations of these. Fenton and Neil favour the use

of Bayesian networks [46] that use data collected from across the entire software

development life cycle in order to predict defects.

Chapter 3 — Research Question 18

Nagappan’s work [47] presents a density defect regression model to predict the

number of defects produced from a given amount of code churn for a system under

development. The work is the product of a case study of a single large system for an

industrial organisation, and concludes that code churn can be used to predict defect,

even in individual binaries.

3.3.2 Statistical Model

Table 3.1: Components for the probability tree in figure 3.2.

Symbol Description

n Count of modified units (features)

N Count of all units (features)

k Probability of introducing an error in a unit

D Probability of a dependency relationship between one unit and another

The model referred to in this section is for a hypothetical system which has features

that a user may interact with. A feature in this system constitutes the base unit of

“size” in the model.

A trial in the case of the statistical model is defined as a single interaction of a user in

the system. In this trial, the user will interact with a single feature in a system made

of a number of features. For simplicity, it will be assumed that the feature selection

follows a uniform distribution. The total number of features in the system shall

thus be defined as N . It is known then that in the customisation process, some of

those features will have been modified which will therefore be defined as n modified

features. This is somewhat analogous to the code churn of binaries in Nagappan’s

work [47].

Next, it is considered that there is a chance that a modified unit in the system

has a defect. For simplicity, a uniform distribution of defects will also be assumed.

The probability of defect will be defined by k. Literature [17, 48] indicates that

a reasonable range for this value is approximately 0.05 to 0.1 for an experienced

developer.

This model, however, is naive and does not consider the interactions between units

in the system. The simplest extension to this model is to model a dependency of

one unit on another unit in the system. This dependency then implies that a defect

in the dependency will also be experienced in the dependant. This dependency can

Chapter 3 — Research Question 19

also be modelled statistically, again assuming a uniform distribution for the purposes

of simplicity. This probability of dependency is defined as D. The effects of this

addition can be understood by exploring varying values of D.

The above model therefore has 6 classes of trial outcomes indicated in Figure 3.1.

Given the above mentioned definitions, a model can be represented using a probability

tree in Figure 3.2. The probability of a “defect” outcome for the trial is the sum of

all defect outcome leaf nodes of the tree which have been labelled as 1 through 6.

The symbol definitions for the model are tabulated in Table 3.1.

(a) No defects (independent) (b) No defects (dependent)

(e) Defect in feature (dependent)(d) Defect in dependency

User
Feature

Interaction

(trial)
Defect\Perceived

defect

Dependency

Legend

(c) Defect in feature (independent)

(f) Defect in feature and dependency

Figure 3.1: Classes of trial outcomes.

The plots for the model in figure 3.3 are produced using the functions in listing B.1.

3.3.3 Analysis

An analysis of the plots in Figure 3.3 indicates a hypothetical degradation of quality

as might be perceived by a user given an increased probability of a defective unit in

a trial.

First, and most intuitively, modifying more units results in an increased probability

of the trial resulting in a defect in proportion with k.

Chapter 3 — Research Question 20

Figure 3.2: A probability tree that describes the proposed model.

Variations on D show that increased dependencies add an exponential factor to the

degradation of quality. This is for a model where each unit has up to only one

dependency, and so can be considered as a lower bound.

3.3.4 Pareto Principle

The Pareto Principle [49], also known as the 80/20 principle is a term coined in the

early twentieth century from an observation in the late nineteenth century that 80%

of land in Italy was owned by 20% of the people. Statistically, the principle follows a

power law that can be modelled using a Pareto distribution.

This pattern has been noted in many different fields, including software engineering

where, for example, 80% of software bugs typically come from 20% of the code.

This may make for a more realistic statistical modelling for the model in section

3.3.2. In the context of this model, the Pareto Principle would imply that 80% of

dependencies are fulfilled by 20% of all units that are dependencies, and that 80% of

the defects are present in only 20% of the units.

This would have a biasing effect that would add additional branches in the probability

Chapter 3 — Research Question 21

Figure 3.3: Plots of the model of probability of defect vs n for varying values of D

and k for N = 100.

tree with probabilities of 0.8 and 0.2 (for example). These branches would occur

specifically before dependency and defect nodes in figure 3.2. The tree of nodes below

the new “Pareto” nodes would be duplicated across each side of the new branches.

Although adding a bias using a Pareto distribution may be more realistic, it would

not change the key characteristic of the model since the bias is independent of n

(the number of units changed). The exponential factor resulting from variations in

D (probability of dependency) would still be present due to its dependency on n.

Therefore it can be concluded that applying the Pareto Principle to the model is not

necessary.

Chapter 3 — Research Question 22

3.3.5 Internal versus External Quality Effects

This study proposes that the internal quality remains relatively consistent whilst the

external quality degrades with customisation.

Referring back to an understanding of the internal and external quality definitions in

Section 2, it is reiterated that the internal, or structural quality is the quality as may

be experienced by the developer of the software. This means the technical qualities of

the code such as size, class coupling, cohesion, complexity, and the SOLID principles.

The external or functional quality refers to the quality as may be experienced by the

user. This means qualities such as correctness of function, ease of use and so on.

The model presented in Section 3.3 indicates a model for defect introduction following

an assumption that a defect is almost unavoidable using a statistical model formulated

using defect data in literature [50]. Thus it is necessary to account for why the

internal quality may remain relatively constant, but the external quality reduces.

It is considered that functional quality is reduced conceptually by a few main causes:

1. Poor specification leading to incorrect function

2. Poor conceptual understanding of the domain leading to incorrect function

3. Unforeseen side-effects leading to logical errors

Whilst the structural quality is reduced by way of:

1. Violation of object oriented and software design principles

2. Inadequate code review for correcting poor design.

It can be argued that a strong knowledge of design skills (enhanced by developer

training) and a strong code review practice means that the two causes mentioned

above are addressed by the software process of the team. This process, however, will

not be as effective at picking up logical errors from side effects (although these may

be reduced by way of better structural quality), and is unlikely to be very effective in

mitigating analysis related errors as none of the code review personnel are customers

with insight into the intended function.

The implication is that a skilled team of software developers is not as effective at

ensuring functional quality as it would be for structural quality.

Chapter 3 — Research Question 23

Given that a customisation task results in new analysis work, opportunities for poor

specification, or poor understanding are introduced. Furthermore, in the case of

accommodating a customisation by way of a configurable component, teams are

creating opportunities for logical errors from unforeseen side effects to be introduced.

Thus it is concluded that a hypothesis proposing that modifications to a system

resulting in reduced functional quality whilst leaving structural quality relatively

unaffected is not an unreasonable one. This does not consider the effects of other

concerns such as technical debt.

3.4 Conclusion

The research questions have been stated, the aim and motivation, and the scope of

the study have been presented.

A statistical model has been presented to explore hypothetical outcomes of the

research. Using the model, internal and external quality effects of change on the

software are also explored. It is hypothesized that structural quality will remain

consistent, but functional quality will reduce at an increasing rate with an increased

number of changes to the system.

24

Chapter 4

Methodology

This chapter discusses the methodology used in the study.

A description of the case study approach is provided, leading into specific goals for

data collection to inform the research question. The weighbridge application under

study is described as well as its configuration architecture; how the configuration

will be examined and quantified; how quality will be inferred from the measured

quantities; and how the research questions will ultimately be answered.

4.1 Approach

The study takes the form of a case study of a weighbridge application which is

deployed to numerous customers in varying industries. The case study will be guided

by literature from Fenton and Fleeger [37] as well as Easterbrook [51].

From Fleeger, it is appreciated that case studies are difficult to control and reproduce,

however, the choice of a case study is validated by the notion that the software has

been produced outside of the control of this study.

Given the work from Easterbrook, the research question is of a causal nature, and that

the case study is to be used in an exploratory manner to investigate the phenomena of

what effect modification of software has on its internal and external quality attributes.

Both Fleeger and Easterbrook validate the notion that specific, purposeful samples

are taken as opposed to random sampling.

In this case, the customers selected in the case study have been selected for the

Chapter 4 — Methodology 25

nature of their modifications and the developers’ perception of the customers. The

customers are described in more detail in Chapter 4.3.

To answer the research questions, the case study aims to determine:

1. How many bugs have been logged per customer?

2. What is different about the software deployed for each customer?

3. By how much does the software configuration and customisation differ between

each customer?

4. How is the amount to which these customers differ relate to the number of

bugs introduced for these customers?

5. How do the number of issues raised against that customer relate to other code

metrics?

The number of bugs logged per customer will be used as the measure of quality for

the software as experienced by the customer. As discussed in Chapter 2, measures for

functional quality are somewhat difficult to find, although defect counts or densities

have been used as a measure of quality.

One potential source of error in this methodology is that it assumes that the same

process is applied by all customers when a defect is encountered. For example, the

willingness to log a defect, or ability to identify or describe a defect for each customer

may not be the same.

Given the aim of the study, in order to determine how the amount of customisation

relates to the number of bugs introduced, a mechanism for measuring an amount of

change is required. In order to determine a mechanism to measure the amount of

change, an understanding of how the software is changed is first required.

Answering these specific questions may provide insight into the answers to the

research questions for the study - specifically, gauging the success of a configuration

architecture.

4.2 Description of Weighbridge Application

The weighbridge application is designed to manage the weigh-in and weigh-out of

freight in order to verify that the load of a shipment that was dispatched matches

Chapter 4 — Methodology 26

the load received at the destination. A major component of the product offering

is integration into existing Enterprise Resource Planning (ERP) systems. These

integrations will not be considered in the scope of this study due to poor access to

data for the integrations.

A shipment is the central concern of the application domain which is contained

within a dispatch transaction. The dispatch transaction contains link information to

periphery concerns such as the vehicles participating in the shipment, vehicle drivers,

description and mass of the payload. Other examples of information that can be

tracked includes legislative compliance information, unique identifiers, and custom

fields that can be configured to store arbitrary data.

The application has been in operation for several years in the mining and agricultural

industries, and recently road ordinance (checking for overweight vehicles). The

application is in its third major revision since its initial release. The application is

written in C# and uses Microsoft SQL Server for data persistence. Revision control

was previously managed by SVN [52], however, this has been migrated to Git. A full

revision history is available.

As of its third revision (the revision under study), the application is designed to

accommodate a series of customisations by way of features that can be configured.

The configurable features include enabling and disabling visual controls; specifying

validation rules; and custom commands on actions (eg, do “x” on save). In order

to allow further customisation, such as custom commands on save, the application

features an architecture that can dynamically load plug-in libraries, as specified by

configuration files. These files are defined per customer. Some kinds of configurations

simply specify options for built-in components, whilst other configurations use code

injection using a compiled plug-in assembly. Configuration options that are “built-in”

are referred to as core configurations, whilst the configurations that are sourced from

plug-ins are referred to as customised configurations.

The plug-in architecture, however, does provide direct persistence for custom data

where required, but this is instead accommodated through the use of data bags and

generic data fields that can be used by a custom plug-in if required. Should generic

data fields not be sufficient to accommodate the requirement, then the model is

formally extended to accommodate the new requirement. One such requirement is

from a road ordinance customer which introduced the need for an account which is

linked to the shipment. This requirement was accommodated by creating formal

concern in the domain model for accounts, to which shipments can be linked. The

Chapter 4 — Methodology 27

notion of a shipment in the original application also changed from meaning a weigh-out

and weigh-in to a single weigh-in.

4.3 Customer Selection

Of the available customers for the product, three specific customers have been selected

for the case, prior to analysis. These customers have been selected based on the

following criteria:

• Using a recent version of the software

• Degree of customisation

The recent version of the software is a criterion selected in order to ensure that an

appropriate comparison is being made between the customers.

The degree of customisation is chosen in order to provide three different samples all

of which have different levels of customisation. The target levels include:

1. Out the box (Little or no customisation)

2. Heavy Customisations

3. Domain Modified

4.3.1 C1 - Out the box

The out the box customer is one with little or no customisation and wishes to use the

product “out the box” with at most a configuration of the built in feature controls.

This then implies that any “custom” code for this customer should then lie mostly

within the realm of configuration.

In this case it is Customer C1.

It is expected that this customer has the highest functional quality (i.e. Fewest bugs).

This customer operates in the agricultural sector and deals with shipments of

agricultural produce.

Chapter 4 — Methodology 28

4.3.2 C2 - Heavy Customisations

A customer with heavy customisations or integrations is one where the changes

include a specific addition or change of features. These changes are presented with a

higher number of rules defined for the customer than for C1, and includes plug-in

code specified in the configuration.

In this case it is Customer C2.

It is expected that this customer presents a moderate degradation in functional

quality (i.e. moderate number of bugs).

This customer operates in the mining sector and deals with shipments of ores.

4.3.3 C3 - Domain Modified

A customer which constitutes having a domain modified means that the customer’s

requirements introduce a change to the software which the original domain or design

could not accommodate. These changes are therefore accommodated by introducing

new domain concepts into the software that can be configured - in other words, this

falls outside the realm of the configuration architecture.

In this case, it is customer C3. The customer in question requires a different process

compared with the process originally intended by the software.

The originally intended software process is for a truck, loaded with goods to weigh-

out from a location with a specific mass, and for the same truck to weigh-in at

a destination and for the masses to be compared and checked that they match.

Customer C3 is a roads development agency that changes this model because it only

requires that all trucks to only ever weigh-in. Furthermore, in the original model,

a single vehicle’s data life cycle is limited to a single shipment, whereas customer

C3 requires that the truck be added to a running account to which charges can be

levied and tracked.

It is expected that this customer will have the most severe degradation of functional

quality (most number of bugs).

This customer operates a national road network and uses the software to record and

assist with the enforcement of compliance with vehicle weight limits.

Chapter 4 — Methodology 29

4.4 Measuring Customisation and Quality

The amount of customisation can be quantified on a number of dimensions, including

the number of defined configurations for the customer (both core and customised), as

well as “how much” code (and other corresponding code metrics) have been written

for any customisations.

Given that each customer’s installation is customised by way of configuration files,

the amount of customisation can be measured by the number of configured items for

the customer. These can also further be classified by way of a built-in option, and

custom plug-in.

4.4.1 Measurements

Measurements can be sourced from a variety of artefacts. The potentially relevant

sources of information for this work include:

• Design documents - Business Requirements Specifications, UML diagrams

• Source code

• Configuration Files

• Revision history

• Database schemas

The database schemas offer little interest since if a change to the database schema in

the system is required, then the concern will be formally adopted into the application,

effectively making such code new core code.

Whilst the design documents may seem useful, a focus on the metric extraction from

the code and configuration files is preferred. This is because the configuration files are

XML formatted which is easier to parse and analyse than the free text specification

documents. The configuration files also use very specific and consistent terms (since

they configure the application) which make natural grouping categories for analysis.

Thus the data sources of interest used in the study are the source code; configuration

files; and revision history, and the following measurements are extracted from these

sources:

Chapter 4 — Methodology 30

• Source Code

– Maintainability Index - per module

– Overview Pyramid - per module

∗ Lines of code

∗ Cyclomatic Complexity

∗ Count of Packages

∗ Count of Classes

∗ Count of Methods

∗ Count of Calls to other Classes

∗ Count of Fanout

∗ Average Depth of Inheritance

∗ Average Hierarchy Height

• Configuration Files

– Count of total rules

– Count of rules configured to use custom code

– Count of core configurations unique to customer

– Count of customised configurations

• Jira

– Count of issues per customer

More detail on these metrics can be found in Chapter 6.

4.5 Determining Quality from the Metrics

The quality will be determined in two dimensions: A measured set of code metrics;

and the measured number of defects. This allows the determination of structural

quality (from code metrics) and functional quality (from defects).

The extraction of established code metrics such as the Maintainability Index (MI)

or the SIG Maintainability Model will provide an objective measure of how the

internal, structural quality of the application has changed. An MI measurement

can be performed using Microsoft Visual Studio [53], which is significant as the

application is written using .NET technologies and thus making MI the preferred

Chapter 4 — Methodology 31

metric. The MI measurement will be captured for both modifications and additions

allowing for a further comparison of the effect of each on quality. In other words, it

can then be determined whether the nature of a change (addition or modification)

has any impact on structural quality.

Quality impacts may also be inferred by changes to the code model which violate

software engineering principles such as SOLID [54, 55]. For example, introducing new

concerns to a class would violate both Single Responsibility and the Open/Closed

Principle. Violations of the Liskov Substitutability principle are an indication of

possible unexpected behaviours at runtime. This, however, can only be inspected

manually.

Such changes are in principle precipitated by the need to make a feature built into

the application configurable. This is because a customer will request a specific

change that may not yet be accommodated by some form of configuration, and

therefore changes must be made to provide a configuration that will accommodate

the customer’s needs.

4.6 Determining the Success of the Architecture

A configurable architecture aims to reduce the effort in accommodating the customer’s

requirements, whilst still delivering a high level of functional quality to users.

Given the quality metrics for both functional and structural quality, the data can be

used to make an assessment regarding the success of the architecture from a quality

perspective.

A success or failure is then determined by comparing the resulting qualities for

varying degrees of customisation. For both structural and functional quality, the

architecture can be considered a success if they are unaffected by the customisation.

In the case of structural quality, a successful architecture then means that the

architecture is able to provide space with-in the software to accommodate changes

without compromising the maintainability of the software.

In the case of functional quality, a successful architecture then means that developers

have enough freedom to effect functional change in the software to meet the business

requirements. This means that the architecture does not impede the development

team’s ability to correctly express custom business requirements or business rules,

Chapter 4 — Methodology 32

and that the team is able to do so without introducing unintended side effects.

4.7 Conclusion

The methodology of the study is presented. The study takes the form of a case study

of a weighbridge application. A description of the application and its architecture is

provided and the three classes of customer for study are provided.

The three classes of customer include an out the box customer, heavily modified

customer, and domain modified customer.

Customisation and quality are measured using metrics calculated from the source

code and configuration files. Source code is used to calculate the Maintainability

Index and Overview Pyramid measurements and the configurations are used to count

the number of customisations and configurations.

The success or failure of the architecture is determined by comparing the resulting

quality as measured for each of the customers.

33

Chapter 5

Sizing Customisations

This chapter describes the way in which customisations are implemented in the

application as well as how these are then sized so that they can be compared.

Sizing the customisations for each customer will allow the customisations to be

reasoned with in a quantified way.

5.1 Nature of Customisations

The application supports a diversity of customisations ranging from branding and

UI label changes to custom process definitions, validations, and behaviours.

Such configurable behaviours are facilitated by the dependency injection [56] and

the Model - View - View-model (MVVM) [57] pattern used, illustrated in Figure 5.1.

ModelView Viewmodel

+ Update

Read+
+ Viewmodel Data

+ UI Events

+ Property Changed Events

+ Model Changed Events

Figure 5.1: The Model - View - View-model pattern

The technical details of how customisations are implemented and provided is described

in Chapter 5.2.

From Figure 5.1 the view, view-model and model are all fully fledged objects. The

view publishes UI events down to the view-model, and reads data and property

Chapter 5 — Sizing Customisations 34

updates from the view-model - which may include data such as the label text for a

control; event bindings for buttons; or validation rules; etc.

The view-model serves as an intermediary between the model and the view and is

principally responsible for the orchestration of, or translating concerns between the

view and the model. The view-model may also contain UI logic be managed by the

view alone such as calculated properties or event handlers.

The model is typically the application domain but can be any data source.

An application which uses dependency injection can perform a runtime binding

between the view, view-model and model and also use a factory method pattern to

source these objects for binding. Using a factory method means that the construction

of the objects can be controlled dynamically and thus provides the architecture for

configuration.

5.2 How the Application is Customised

The application is customised for each customer by specifying configurations for the

application. Configurations are specified in XML files. The configuration files contain

a collection of rule contexts that are identified by a key in order that the application

modules can identify the appropriate rule contexts to configure the module. The rule

contexts can contain a view-model ; a view ; model ; and other rule contexts. The rule

context itself is a container for a module’s configuration and a single rule context

counts as a rule.

The view-model configuration can contain settings whose value will override a default

value defined within the view-model in the module. The type and assembly name

is used to resolve which property the configuration will be assigned to within the

module. View-Models can also contain injectable strategies (or commands which will

also be referred to as strategies) that define the behaviour of particular UI events

(e.g. Save). Strategies are the means by which customer-specific plug-in code is

injected into the customer’s specific runtime, although there are also core behaviours

which are common to multiple customers (which can be thought of as the default

behaviour). All custom strategies for a customer are distributed in a single assembly.

The view configuration can contain control settings, whose value will override a

default defined setting for a visual control in the UI. Similar to the view-model, the

Chapter 5 — Sizing Customisations 35

type and assembly name is used to resolve the type to be configured.

Model objects do not contain configurations.

The structure of the configurations is outlined in Figure 5.2 and an example shown

in Listing 5.1. Figure 5.3 illustrates how the configuration files are more concretely

realised into a configured application, specifically as a view.

Listing 5.1: Sample Configuration XML

1 <?xml version=” 1 .0 ” encoding=”utf−8”?>
2 <c on f i gu r a t i on>

3 <c on f i g S e c t i o n s>

4 <s e c t i o n name=” ru l eContextSec t i on ” . . . />

5 </ c on f i g S e c t i o n s>

6 <ru l eContextSec t i on>

7 <ru l eContexts>

8 <ru leContext key=”Backdated” type=” . . . ” category=”Shipment”>

9 <ru l eContexts>

10 . . .

11 <viewmodel name=” . . . ” assemblyName=” . . . ” />

12 <model name=” . . . ” assemblyName=” . . . ” />

13 </ ru leContext>

14 </ ru leContexts>

15 <viewmodel name=” . . . ” assemblyName=” . . . ”>

16 <conta ine r>

17 <r e g i s t e r type=” . . . ” mapTo=” . . . ”>

18 <property name=”CanSaveStrateg ies ”>

19 <array>

20 <dependency type=” . . . ” />

21 . . .

22 </ array>

23 </ property>

24 <property name=”BeforeSaveCommands”>

25 . . .

26 </ property>

27 <property name=”AfterSaveCommands”>

28 . . .

29 </ property>

30 </ r e g i s t e r>

31 </ conta ine r>

32 </viewmodel>

33 <model name=” . . . ” assemblyName=” . . . ” contextKey=” . . . ” />

34 </ ru leContext>

35 </ ru leContexts>

36 </ ru l eContextSec t i on>

37 </ c on f i g u r a t i on>

In summary, the application is customised for a customer by defining rules which

can:

• Set configurable options within the application

Chapter 5 — Sizing Customisations 36

• Inject custom code that will be executed on specific actions

5.3 Measuring the Customisations

Given how the application is customised, the amount of customisation can be

measured by:

• Counting the number of rules

• Counting the number of settings and control settings

• Counting the number of core and plug-in strategies

• Measuring the size (LOC) of the client’s plug-in assembly

The above measurements are performed by parsing the configuration XML into a C#

program and performing some aggregates on the data and loading the data in Excel

as a Comma Separated Value (CSV) file. This is performed by producing matching

C# classes which the XML configurations are deserialised into using the standard

.Net Framework deserialisers. This is different from how configurations are typically

read into .Net applications using the application configuration components of the

framework.

The number of rules is determined by counting the number of rule context objects.

The number of settings and control settings are determined by summing the total

number of settings and control settings, grouped by the type name of the view-model.

The strategies are extracted by counting the number of dependency elements per

customer, including the source assembly per strategy. This data was then augmented

using Microsoft Excel to check whether the assembly refers to the customer or not,

indicating whether it is a core or a plug-in strategy.

The LOC for each customisation is taken using the LOC code metric from the plug-in

assembly. The plug-in assembly is determined from type references in the XML

configuration - for example, in Listing 5.1, the type attribute for the dependency

node.

These measurements therefore provide a measurement of the size of the customisations

for the customer.

Chapter 5 — Sizing Customisations 37

5.4 Conclusion

Technical details of the customisation using configuration and dependency injection

are provided.

The size of the customisation is determined through a combination of counts including

the number of rule, settings, plug-ins, and lines of code in custom plug-ins.

Chapter 5 — Sizing Customisations 38

Configuration

RuleContext

ViewModel

View

Setting

ControlSetting

Strategy

*

1
0..*

0..*

0..*

1

Model1

Figure 5.2: Pseudo class diagram illustrating the structure of configurations

Chapter 5 — Sizing Customisations 39

Body

Submit
<register type="Core.Shipment.Api" mapTo="….Behaviours.WeighOutSaver">

<property name="CanSaveStrategies">

<array>

<dependency type="Core.Strategies.CountryLegalWeightLimitCanSaveStrategy" />

</array>

</property>

<property name="BeforeSaveCommands">

<array>

<dependency type="Core.Behaviours.StampShipmentCommand" />

<dependency type="Core.Behaviours.CreateOrUpdateTicketInformationCommand" />

<dependency type="ACME.Configuration.Commands.CompleteShipmentBeforeSaveCommand" />

</array>

</property>

<property name="AfterSaveCommands">

<array>

<dependency type="Core.Shipment.Behaviours.PrintTicketCommand" />

</array>

</property>

</register>

Horse<viewmodel name=Core.ViewModels.RoadTransportDetailsViewModel">

<settings>

<setting key="AllowDriversWithExpiredLicence" value="False" />

<setting key="IsEnabled" value="True" />

</settings>

</viewmodel>

<view>

<controlSetting name="Horse" isEnabled="false" type="Core.ConfigurableControl" />

<controlSetting name="Body" isEnabled="true" type="Core.ConfigurableControl" />

<controlSetting name="CustomField1" label="Permit" type="Core.Configuration.TextControl" />

</view>

<model contextKey="RoadInventoryTransfer_WeighOut" validationConfigSource="Core_WeighOut.validation" />

<ruleContext key="Weigh Out" type="Core.Shipment.Configuration.ShipmentRuleContext">

</ruleContext>

...

...

...

Custom validation

Custom Pre-Save Actions

Custom Post-Save Actions

Code-behind settings

Permit

Field settings

Shipment

Figure 5.3: Illustration of how configurations relate to the configuration of the

application. Individual pieces of XML represent actual configurations, however this

view shows an abridged configuration for brevity.

40

Chapter 6

Code Metrics

This chapter discusses the code metrics used in the study. Code metrics are a selected

mechanism for assessing the internal quality of a system.

The collection and calculation of metrics is discussed, including the use of Visual

Studio tooling, and implementation of other metric tools, such as the recalculation

of the maintainability index and overview pyramids.

6.1 Acquiring Metrics

Some of the desired metrics can be acquired using Visual Studio tooling. In particular,

the FxCop [58, 59] metrics calculator was used on the relevant assemblies in order

to produce XML files which contain metrics for the assembly. FxCop will produce

the following metrics at varying levels of detail (Assembly; Namespace; Type/Class;

Member/Method):

1. Maintainability Index

2. Cyclomatic Complexity

3. Class Coupling

4. Lines of Code

5. Depth of Inheritance

See A.2 for more information on FxCop.

Chapter 6 — Code Metrics 41

The lines of code and Depth of Inheritance measures are self-describing.

The cyclomatic complexity is best described as the number of branches in a program,

including method calls.

The class coupling metric refers to the number of classes that the unit under measure

collaborates with. In other words, the number of distinctly referenced classes in the

code. Both class and interface types constitute a coupling.

The Maintainability Index metric (discussed in detail in 6.2) provides an indication

of how maintainable an application is.

Additional metrics can be calculated using code analysis tools as discussed for

producing the Overview Pyramids.

6.2 Maintainability Index

Of note is that the Maintainability Index as produced by Visual Studio is not identical

to the SEI promoted index introduced by Oman and Hagemeister in 1992 but has 2

minor differences [60]. The first is that Oman and Hagemeisters’ original index had

a range of 0 to 171 [61]. The Visual Studio Team has normalised this metric to 0 to

100. Secondly, the original index also included a factor for the number of comments

in the code [29], but this is not included in the Visual Studio Metric.

The index itself is the result of a study performed by Oman and Hagemeister which

involved a regression analysis on several software systems written in C and Pascal.

A range of metrics were gathered for each system, and a maintainability survey

conducted on these systems. Their regression analyses were verified against six other

software systems not included in the original eight systems which produced the

model. The intention of the work was to determine which software metrics are good

predictors of maintainability.

The study presented a one, four and five metric polynomial model (a metric per

term) for predicting maintainability. These regression models were assessed for their

accuracy in predicting maintainability under a wide range of conditions, aiming to

ensure that an excess of one of the factors results in an over or under prediction

of maintainability. Oman and Hagemeister modified their 4 metric polynomial

in the Coleman paper [29] to instead use the average Halstead volume over the

average Halstead Effort, citing “that the volume is a non-decreasing function with

Chapter 6 — Code Metrics 42

concatenation”. Thus the paper defines maintainability as:

MI = 171 (6.1)

− 5.2× ln(HV)

− 0.23× CC

− 16.2× ln(LOC)

+ (50× sin(
√

2.46× COM))

The symbols as in equation 6.1 are as follows:

Table 6.1: Symbols for maintainability index in equation 6.1

Symbol Explanation

HV Halstead’s Volume

CC Cyclomatic Complexity

LOC Average LOC per Module

COM Average comments per LOC

6.2.1 Halstead Volume

The Halstead Volume is not used directly in this study, but is instead used as part

of the Maintainability Index.

The Halstead Volume is one of a set of metrics introduced by Howard Halstead in

1977 [62] and is the product of the Program Length and the logarithm of the Program

Vocabulary, which are functions of the number of operands and operators.

Loosely speaking operands are variables and constants whilst operators are everything

else.

If a program such as in Listing 6.1 is considered, the operators include elements

such as () / begin..end, >, <, and, if..then..end, else, =, and the new lines

terminating each statement. The operands are then a, b, 3, 5 and 1.

Halstead’s definition of program vocabulary (η) is the sum of the distinct operators

and operands which is:

Chapter 6 — Code Metrics 43

Listing 6.1: Sample Ruby program for Halstead metrics

1 i f (a > 3) and (a < 5)

2 then

3 begin

4 b = 5

5 end

6 else

7 b = 1

8 end

η = 9 + 4 = 13 (6.2)

The definition for the program length(N) is the sum of the total occurrences of each

operator and operand, which is:

N = 11 + 7 = 18 (6.3)

And thus the program volume is defined as:

V = Nlog2η = 67 (6.4)

A base two logarithm of the vocabulary is taken since this is the minimum number

of bits needed to uniquely identify each identifiable concern in the program. This

number, multiplied by the program length then provides a language independent

view of the size of a program.

Given Equation 6.4, the Halstead volume will increase linearly with the length of the

program and logarithmically with each new concept introduced.

In summary, the Halstead Volume provides a measure of the size of the program

independent of language and character set.

Chapter 6 — Code Metrics 44

6.2.2 Visual Studio Implementation

Oman and Hagermeister’s 1994 report [61] indicated that the percentage of lines

which were comments had a bearing on the maintainability of the system, thus raising

questions regarding the validity of the Visual Studio maintainability index metric.

Within the scope of this study, however, it is not the absolute maintainability, but

the relative maintainability which is of interest. Questions have also been raised

with respect to the ranges which Visual Studio defines as “Red”, “Yello” and “Green”

and what these categories mean. A Microsoft blog post [63] indicates that the red

and yellow categories are set low in order to filter out noise for automated build

tools so that only units with a clear maintainability problem are detected - as such

the category information for the maintainability index need not be captured for the

purposes of this study.

One motivation for excluding comments from the metric could be the in-line XML

Code Doc in C# (that lives in the code files) which would create an unusually large

number of comments per LOC creating an apparent increase in code maintainability

as created by documentation rather than comments.

The Visual Studio definition of the maintainability index is:

MIvs = MAX

[
0,
(
171 (6.5)

− 5.2× ln(HV)

− 0.23× CC

− 16.2× ln(LOC))
× 100

171

]

The MAX function will limit maintainability to a minimum of zero. Whilst this is

possible given the definition of the maintainability index, it is relatively meaningless

as the program is already so large and/or complex that it will not be maintainable.

6.2.3 Generated Code

The weighbridge application makes use of a code generator to provide domain classes

and basic architectural concerns such as: object relational mapping; and service

Chapter 6 — Code Metrics 45

contracts. This means that a significant portion of the Create, Read, Update, and

Delete functions (CRUD) are managed by the generated code for both server and

client side of the application.

In order to prevent the generated code from skewing the results of the customised code

(which have no generated components other than are common to the application),

these should be filtered out. In order to filter these components out, the aggregated

roll up metrics must be recalculated from the type member level metric data.

Cyclomatic Complexity, Class Coupling and Lines of Code are all simply additive, and

the aggregated depth of inheritance is the maximum value of all its child measures.

The Maintainability Index, however, is not only dependent on logarithms of the lines

of code and Halstead volume, but is also computed using average values at aggregated

levels, and so has a non-linear, and therefore non-additive, result based on those

measures. Whilst the Lines of Code and Cyclomatic Complexity are already available,

the Halstead Volume is not. However, the Halstead volume can be recovered from

the Maintainability Index using the Cyclomatic Complexity and Lines of Code:

HV = eMI′ (6.6)

where

MI ′ =
171− 0.23× CC − (16.2× ln(LOC))− 1.71×MI

5.2

Although Visual Studio uses a non-linear MAX function, in practice this has no

effect unless the Maintainability Index is less than zero - which is very unusual and

does not occur in the dataset for the current case study.

The formula in equation 6.6 can be verified by using the calculated Halstead Volume

to recover the identical Maintainability Index using equation 6.5 - at both base and

aggregated levels.

Thus the aggregated Maintainability index can be recalculated excluding specific

type members from the assembly.

In order to determine which type member records to exclude from the metric data,

each record indicates the source file from which it is compiled. Since all generated code

for the application lives under the generated directory in each project, generated

code can be excluded by means of filtering all members who’s source file contains

Chapter 6 — Code Metrics 46

generated.

6.3 Overview Pyramid

One of the problems with most of the metrics gathered using Visual Studio is that

they require some method of normalisation in order to make a judgement with regards

to the quality of the customisations compared with the core product.

The Maintainability Index is a standalone metric and can be used comparatively.

However, more information can be gleaned using the other metrics of the code. By

using the Overview Pyramid [36] from Lanza’s work on Object Oriented metrics,

not only can a normalised view of the code quality be created which can then be

compared, but also judgements can be made regarding the quality of that code

according to the meaningful thresholds defined in his work.

The Overview Pyramid uses normalised ratios of raw metrics to provide a comparative

view of the object-oriented metrics. The Pyramid has three sections:

• Size and Structural complexity

• Coupling

• Inheritance

The coupling metrics require the number of operation calls and the number of called

classes (FANOUT). The FANOUT is an available metric given the coupling metric from

Visual Studio, however, the number of CALLS is not available, and thus the coupling

metrics cannot be computed unless additional steps are taken to acquire this metric.

This can be done by means of using tools that provide code analysis, such as Roslyn

or Mono.Cecil [64] to interrogate either the source or compiled CIL. This can be

used to produce the required metric and augment the given metric set.

The inheritance metrics require the inheritance depth details which can be acquired

using a similar technique to the CALLS metric, and once again, augment the meas-

urement set.

This then provides all the data necessary to produce an Overview Pyramid for each

assembly and compare quality.

Chapter 6 — Code Metrics 47

Assembly Name: Client.Module.Maintenance.Vehicle.dll
Maintainability Index: 89
 ANDC 0.77
 AHH 0.70
 2.33 NOP 6
 15.86 NOC 14
 2.11 NOM 222 NOM 2.01
 0.66 LOC 468447 CALLS 0.41
CYCLO 307183 FANOUT

Figure 6.1: An example overview pyramid annotated with the maintainability index

and the source assembly name.

6.3.1 Example

An example overview pyramid is illustrated in Figure 6.1.

The pyramid has been produced using a C# program that outputs the calculated met-

rics to console for inspection. The pyramids are annotated with the maintainability

index and assembly name for convenience.

6.4 Tool Verification

In order to verify that the custom written tool’s metrics are correct, a test is performed

against a case that is small enough to be verified manually and the results compared

against those collected by the tool.

The sample program is contained in appendix A.

A table showing a comparison between the manually and tool collected metrics from

a sample application are contained in table 6.2.

6.4.1 Notes on Metrics

Visual studio will count an interface as a class when determining the number of classes.

This is because the metrics tool uses the compiled CIL to perform the measurements

on, and an interface is internally represented as a class. These interfaces then have a

cyclomatic complexity of 1 per method since each method represents a branch in

Chapter 6 — Code Metrics 48

code. Other language features such as getters, setters, and default constructors will

also introduce a cyclomatic complexity of 1 per feature instance.

The class coupling metric (FANOUT) counts all references, inheritances, and type

checks on fields. Type checks on properties, however, will not result in an increased

coupling because the calling method is decoupled from the actual type by the getter

method. Inheritances are counted because the constructor must also make a call

to the constructor of the base class. This does not happen for interfaces because

interfaces do not have constructors. Each getter or setter will also indicate a coupling

of one if it is of another type. Visual Studio will also indicate a point of coupling

for library types (e.g., System.Console). However, the coupling is rolled up in a

namespace or module according to the number of unique classes in that scope, which

means that the tool must use the total sum of coupling for each class. An interesting

issue was also found where the FxCop tool was giving the correct numbers, but

Visual Studio itself sometimes came short.

Lines of code is (contrary to what it may seem) a non trivial measurement. This

is not a measure of the absolute lines of code, but rather a measure of the size of

code that lives inside methods, i.e. ignoring class definitions, declarations and other

language “features”. Specifically, Visual Studio will perform an estimated count of

the number of lines of code based on the compiled CIL. Although this will then not

include things like class definitions or declarations, it will, however, include “invisible”

code such as default constructors and initialisers. Thus it is difficult to accurately

size what the Visual Studio lines of code should be, however, consistent sizing is

what is most important. The supplied measure was counted by examining the CIL

Table 6.2: Comparison of tool and manual counts of metrics for the test case.

Metric Manual Tool VS or Custom

Cyclomatic Complexity 21 21 VS

Number of classes 8 8 VS

Number of packages 2 2 VS

Number of methods 18 18 VS

Lines of codea 26 29 VS

Avg hierarchy height 0.50 0.50 Custom

Avg dependant classes 0.33 0.33 Custom

Fanout 10 10 VS(coupling)

Calls 9 9 Custom

aDiscrepancy is explained in Chapter 6.4.1

Chapter 6 — Code Metrics 49

in IlSpy [65] and counting the number of call or newobj instructions, as well as an

extra count per looping construct.

6.5 Application Specific Metrics

The application under study also has its own set of metrics that can be measured.

These include the following:

• How many rules are defined

• How many strategies are defined

• How many times a piece of custom code is used to define a behaviour

Strategies refer to the strategy pattern [2] which essentially describes a behaviour that

is injectable through an interface. These strategies are used to react to particular

events in the application, such as saving a shipment.

6.6 Roslyn and Mono.Cecil

Both Roslyn and Mono.Cecil provide the ability to perform an analysis on code

and gather metrics.

The two technologies are different, however, both can provide an abstract syntax

tree from the code for analysis. Roslyn produces a tree from C# source code, and

Mono.Cecil produces the tree from compiled CIL.

Mono.Cecil is used in this study as it is a technology of familiarity. Although

this only allows for analysis of the CIL instead of the actual source code, the key

structures under measure are equivalent.

6.7 Conclusion

The Overview Pyramid and extraction of code metrics from the application is

presented. Metrics are extracted using a combination of Visual Studio and custom

tooling.

Chapter 6 — Code Metrics 50

The custom tooling aims to augment the Visual Studio provided metrics in order to

provide Overview Pyramids. The custom tooling is developed using Mono.Cecil to

inspect compiled IL.

Details of the computation of the Maintainability Index including specifics of the

Visual Studio implementation is presented and a technique for removing specific

modules from an aggregate Maintainability Index is provided.

51

Chapter 7

Bug and Issue Analysis

Using the data stored in the Git [66] version control history and a Jira [67] database,

it is possible to collect bug and task data for the application. This data includes

useful information such as:

• The type of issue (Task, Bug)

• Issue Number

• Summary and description

• Date that the task was captured

• The specific customer for whom this issue is relevant to

• Severity of the issue

An analysis of the data provides insights into the functional quality of the system

- that is, the quality of the functioning of the product as may be perceived by the

users.

The data collected spans from November 2015 to April 2017. This provides approx-

imately 16 months of operational data for the product.

7.1 Git

Git is a version control system which allows developers to store a code base and track

changes between the revisions to the code base. These change sets are accompanied

by log entries that are used to describe what the purpose of the changes are. Git

Chapter 7 — Bug and Issue Analysis 52

effectively allows one to travel back in time against the source code, or to search

through the changes that have been applied to it.

Change sets that fix bugs can be found by searching for the bug issue numbers in

the git log. Git can provide a summary report indicating which files (and therefore

classes) were changed, as well as indicating the number of lines added or removed in

the change to that file. This is useful for sizing the change sets. This is similar to an

approach used by Zhang [68] to extract defect counts from open source project which

do not have a bug tracking database. Note, these lines are not directly comparable

to the IL lines, although are close enough.

7.2 Jira

Jira is a software engineering tool from Atlassian which provides functions such as

bug tracking and task management.

The project team uses Jira to assist with planning and tracking the work performed

for development work and bug fixes. When a bug is logged in Jira, a note is made

against a corresponding customer for whom the issue is relevant for. Code commits

that fix bugs logged in Jira reference the issue number for the bug, thus making

commits for bugs resolvable against the bug by searching the Git log history.

Jira allows a Comma Separated Value (CSV) formatted download of the data for

analysis. The analysis of the data can be performed using Microsoft Excel Pivot

tables to aggregate data. This facilitates the measurement of count of bugs by

customer, for example.

7.3 Conclusion

A bug and issue analysis is performed using the data contained in the bug tracking

software Jira and the version control software Git. The Jira data is exported to CSV

format and bug issue types filtered out. Bugs are sourced from Git using the commit

history log and where possible correlated to Jira using the issue tracking number in

the commit message.

53

Chapter 8

Results

The metrics show a somewhat unexpected result that in retrospect is also an intuitive

one.

Results show how the increasing number of bugs in the system are correlated with

the increasing number of rules defined for the customer. Results are also interpreted

in the context of the research questions and some findings made that inform the

conclusion.

A label and description for each customer is indicated in Table 8.1.

Table 8.1: Label and description of customers for the case study

Customer Label Description

C1 Out the Box

C2 Heavy Configuration

C3 Domain Modified

8.1 Bugs and Commits

An analysis of the commit and bug data shows a strong correlation, however, given

that commits were selected for analysis because they were commits for bug fixes, this

is not useful.

Typically a single bug, and occasionally two bugs were fixed in a single commit.

Chapter 8 — Results 54

8.2 Bugs Logged Per Customer

The measure of bugs logged per customer was sourced from the Jira data. The

number of issues per customer is shown in Table 8.2 and Figure 8.2.

Table 8.2: Bug counts per customer

Customer Bug Count

C1 38

C2 123

C3 25

8.3 Measure of Rules and Customisations

The customisation size measures are shown in Figure 8.2. The numbers measured

are listed in Table 8.3

Table 8.3: Counts collected for rules per customer. The LOC refers to the LOC for

plug-in assemblies.

Customer Plug-ins Rules LOC Controls Settings Strategies

C1 2 385 1572 164 253 16

C2 28 642 205 492 516 115

C3 31 362 3587 198 522 44

The LOC in Table 8.3 for C2 is seemingly low since the rules defined refer mostly

to code that is part of the core application as opposed to code in a custom as-

sembly. Specifically, although the rules defined are specific to the customer, the code

implementing those rules is not.

8.4 Rules Versus Bugs

In an analysis of the initial three cases, a strong correlation between the number of

rules and bugs is presented whilst the Maintainability Index seems to be relatively

unaffected by the number of rules added, as illustrated in Figure 8.1.

Chapter 8 — Results 55

Given the data, adding more rules appears to cause more bugs in the system.

However, correlating the number of bugs to the quantity of code in the custom

configurations presents with an inverse correlation. This initially seems surprising

since the hypothesis is that more custom code leads to more bugs due to a chance of

introducing an error.

In order to understand the observed results in the context of the hypothesis, it is

observed that more custom configurations result in fewer bugs. Inspecting the files

which are modified in order to resolve the bugs shows that the files updated are in

the core configurations and not the custom configurations. A drawn conclusion is

that writing code to specifically accommodate a rule for only that customer results

in fewer bugs than would otherwise be introduced had a core configuration been

introduced.

Another interesting result is that C3 has the lowest number of bugs, although it was

expected that C3 would have the highest number of bugs. C1 has fewer bugs than

C2 as expected. The expectations were driven by the degree of changes made for

each customer, and C3’s changes include a change to the system domain.

The data also presents a very high correlation between the number of bugs and

number of commits, however, this is expected because these commits were allocated

against the customer using bug issue number. Thus by virtue of this methodology,

bugs cause commits.

Referring back to the theoretical model plotted in Figure 3.3, it was expected that

the negative effects on quality would have an exponential component, although in

the results plotted in Figure 8.1 they indicate an apparent linear relationship with

number of rules changed - which would be analogous to the number of changed

units in the theoretical model. This can be explained by having a low D value in

practice, suggesting that there is a low dependency between rules in the system. This

is validated by noting the system’s decoupled module design. Individual strategies

are specific to modules and are not shared between modules.

8.5 Analysis

This section covers an analysis that attempts to glean insight from the recorded

metrics.

Chapter 8 — Results 56

0

500

1000

1500

2000

2500

3000

3500

4000

0

20

40

60

80

100

120

140

350 400 450 500 550 600 650

LO
C

B
u

gs
/M

I

Rules

Plots against Count of Rules

Bugs

MI

LOC

C3 C2C1

Figure 8.1: Plot illustrating a correlation between rules and bugs with inverse

correlation against plug-in lines of plug-in code. Note that the multipliers are

provided in order that they can be plotted in a range that is comparable with the

rest of the metrics.

The quality of code is compared in three areas, namely:

• Core: The configurable module code

• Plug-in: The plug-in strategy code

• Other: Other assemblies in the application

The gathered metrics are summarised by customer in Figure 8.2.

8.5.1 Size Comparison

A comparison of sizes for the different areas is indicated in Table 8.4. The amount of

module (core) and plug-in code is surprisingly high, however, this also suggests that

a lot of effort has been put into making the application configurable.

8.5.2 Quality Comparisons

Considering the code metrics outlined, it is noted that the maintainability index is

relatively constant across all three areas, although slightly lower for plug-ins in Table

Chapter 8 — Results 57

0

100

200

300

400

500

600

700

Customer 1 Customer 2 Customer 3

C
o

u
n

t
/

Sc
o

re

Metrics for Customers

Controls Plugins(x10) LOC(/100) Rules Bugs(x5) MI(x2) Settings Strategies

Figure 8.2: Summary of metrics for each customer

Table 8.4: Table of comparison of size by area as a total across all customers in the

case study.

Area LOC Assembly Count

Core 11,790 32

Plug-in 20,092 28

Other 60,586 43

8.5.

Table 8.5: Table of comparison of maintainability index averaged over the customers

under study.

Area MI

Core 90

Plug-in 81

Other 91

The next quality metric of interest is the cyclomatic complexity of the code. Using

Lanza’s overview pyramid, the number of modules in each rating is counted for each

area, shown in Table 8.6. Notably, most code falls in the High category, however,

only about 64% of plug-in assemblies are rated at that complexity.

The plug-in code includes modules that have longer methods that have higher levels

of fanout per call and more calls per method when compared with other areas.

Chapter 8 — Results 58

A listing of overview pyramids can be found in Appendix C.

Table 8.6: Table of comparison complexity rating counts per assembly across all

customers under study (from the overview pyramids) by area for all metrics.

Area High Medium Low

Cyclomatic Complexity Per LOC

Core 32 0 0

Plug-in 18 1 9

Other 43 0 0

LOC Per Method

Core - - 32

Plug-in 7 3 18

Other - - 43

Calls Per Method

Core 8 9 15

Plug-in 16 - 12

Other 2 4 37

Fanout Per Call

Core 2 8 22

Plug-in 9 1 18

Other 16 1 26

8.5.3 Correlations

The metrics are correlated by customer. As discussed in Chapter 2.2.1, a Spearman

rank correlation is used to perform the correlations as defects are not normally

distributed, as per Bijlsma’s work [34]. It is noted that the Spearman rank correlation

correlates increasing and decreasing rank trends and not the metrics themselves.

Given that there are only three samples, (and the ranks are therefore 1, 2 and 3) it

is expected then that correlations will be rounded to factors of 50%.

The most significant correlation results are:

• An increase in rules strongly correlates with an increase in bugs.

• An increase in the amount of customer-specific code has a strong correlation

with a decrease in the number of bugs - suggesting that customer-specific code

is more successful at correctly accommodating customer business needs.

Chapter 8 — Results 59

Table 8.7: Spearman’s Rank Correlations for gathered metrics

Bugs Rules Plug-ins MI LOC Controls Settings

Rules 100% - - - - - -

Plug-ins -50% -50% - - - - -

MI 50% 50% 50% - - - -

LOC -100% -100% 50% -50% - - -

Controls 50% 50% 50% 100% -50% - -

Settings -50% -50% 100% 50% 50% 50% -

Strategies 50% 50% 50% 100% -50% 100% 50%

• An increase in the amount of customer-specific code also correlates strongly with

a decrease in the number of rules - suggesting that changes are accommodated

using either code or rules.

A more detailed analysis is discussed in the results for the research questions.

8.6 Research Questions

Given the collected data the research questions can now be considered within the

context of the results. Final assessments are presented in the conclusion.

8.6.1 R1 - Structural Quality

The structural quality effects are measured using the Maintainability Index and

remains relatively unaffected by the amount of customisation across the three cus-

tomers.

It is noted however that the structural quality of plug-in code is of a marginally lower

level than for the rest of the system as can be seen in Table 8.5. Given that the

complexity of the plug-in code is lower as seen in Table 8.6, it can be inferred that

the decreased maintainability index is caused by a combination of longer methods

and higher fanout and calls which would result in an increased Halstead Volume,

and reduce maintainability (see Chapter 6.2).

Chapter 8 — Results 60

8.6.2 R2 - Functional Quality

The functional quality effects are in particular considered with respect to the manner

in which the customisations have been implemented.

Results indicate that defect counts are lower in cases where fewer rules are defined

and more customer-specific code is implemented, than for cases where more rules are

defined and less customer-specific code.

Of note is that the plug-in code is typically of lower complexity than core code (see

Table 8.6). This may explain why a larger amount of customer-specific code correlates

strongly with fewer bugs raised. An argument can be made hypothesising that the

increased complexity of the core code is a product of an attempt to accommodate

multiple cases through configuration.

The increased fanout and calls per method may be the result of orchestration work

being done in the plug-in code which needs to interact with multiple areas of the

system.

8.6.3 R3 - Architectural Success

The quality results are mixed.

Structural quality indicates that the structural quality is relatively unaffected by the

customisation.

Functional quality data indicates that the functional quality is decreased with an

increased number of defined rules. The quality reduction also inversely correlates

with the amount of customer-specific code.

Results suggest that better functional quality is achieved by writing customer-specific

code rather than providing a system with configurable modules. The architecture is

successful in that it allows for this customer-specific code to be injected, but is not

successful in that the quality is reduced as more configurable modules are consumed

for a customer.

It is concluded that customers may have experienced better quality had all customer-

specific needs been met with customer-specific code, rather than providing configur-

able modules that are configured for that customer.

Chapter 8 — Results 61

As indicated in the review of the functional quality effects analysis, this may arise

out of an increased complexity in providing configurable modules.

8.7 Threats to Validity

A number of threats to validity [51] are identified.

The largest threat to validity is an external threat, presented by a case study consisting

of a single product across only three customers. The data presented for these cases

may not represent a general population of customers and software systems.

An internal threat to validity is that the full nature of variability between customers

cannot be completely known. For example, quality is measured by defect and thus

assumes that defects are logged to each customer using an equivalent process. This

can only be known through greater engagement with the software life-cycle, including

the vendor and customer staff. This may also be offset by including more cases in

the study.

Another potential internal threat to validity is that the collected data treats all

counts uniformly. For example, all rules and bugs are treated equally. Specifically,

the given correlations are for general cases rather than delving further into more

detailed categories which may assist in compensating for variability in the rules and

bugs.

8.8 Conclusion

Correlations in the case study and the answers to the research questions are presented.

Structural quality as measured by the maintainability index is consistent at 90 and

91 for the shared code (core and other) and is slightly reduced for custom plug-ins

at 81. The Maintainability Index is unaffected by the number of rules defined. It is

therefore concluded that structural quality is not affected by the customisation.

The functional quality as measured by defect count is negatively affected by increased

configuration. Increased bug count is correlated with increased rules and with

decreased custom plug-in code.

Chapter 8 — Results 62

The architecture is successful in providing a high maintainability index for customised

code, however, it is unsuccessful in maintaining a high functional quality through

configuration.

63

Chapter 9

Conclusion

A case study has been performed on software designed with a configurable architecture.

The cases under study include three customers of the software, each with a varying

amount of customisation and configuration.

Quality was measured along two dimensions, namely structural (internal) quality,

and functional (external) quality. The internal quality was measured using the

maintainability index, as well as size and complexity measures from Lanza’s Overview

Pyramid. The external quality was measured as a quality reduction through the

number of bugs.

The number of bugs was measured by counting the number of bugs per customer

logged in the bug tracking system and referenced in the source control logs.

The amount of customisation was measured by measuring the number of configured

elements and the size of custom code.

Key findings for the research questions are:

R1 - Structural quality effects: The structural quality has been found to be

relatively unaffected by the number of defined rules. Customer-specific source code

also retains a comparable level of structural quality when compared with other

customers and the original source code., albeit slightly reduced.

R2 - Functional quality effects: The functional quality appears to decrease with

an increased number of defined rules, and increase with an increase in the amount of

customer-specific code.

Chapter 9 — Conclusion 64

R3 - Success of the architecture: The architecture is regarded as only being par-

tially successful as structural quality remains resilient against the use of configurable

modules and plug-ins. In terms of functional quality, the architecture appears to be

less successful for cases of using configurable modules to be shared among customers,

with the number of bugs increasing with the number of defined configurations (rules).

9.1 Future Work

Whilst the above set of measurements would appear to support the hypothesis. It

is noted however that the customers selected were selected in order to satisfy the

criteria outlined for Customers C1, C2 and C3.

Thus it suggests that a further investigation into the nature of the results for the

additional customers, or to extend the study to other projects. Suggestions include

open-source projects which have a high degree of configurability and where developers

are diligent in the tracking of bugs in some form of bug or task tracking software.

65

Bibliography

[1] K. E. Emam and A. G. Koru, “A replicated survey of IT software project

failures,” IEEE Software, vol. 25, no. 5, pp. 84–90, 2008.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Abstraction

and reuse of object-oriented design. Springer, 1993.

[3] D. Chappell, “The three aspects of software quality.” http://davidchappell.

com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.

0-Chappell.pdf, 2011. Accessed: 17 September 2017.

[4] T. Ravichandran and M. A. Rothenberger, “Software reuse strategies and

component markets,” Communications of the ACM, vol. 46, no. 8, pp. 109–114,

2003.

[5] B. Light, “The maintenance implications of the customization of ERP software,”

Journal of software maintenance and evolution: research and practice, vol. 13,

no. 6, pp. 415–429, 2001.

[6] C. Guido and R. Pierluigi, “A methodological proposal to assess the feasibility

of ERP systems implementation strategies,” in Hawaii International Conference

on System Sciences, Proceedings of the 41st Annual, pp. 401–401, IEEE, 2008.

[7] M. V. Kumar, A. Suresh, and P. Prashanth, “Analyzing the quality issues in

ERP implementation: a case study,” in Emerging Trends in Engineering and

Technology (ICETET), 2009 2nd International Conference on, pp. 759–764,

IEEE, 2009.

[8] M. Xin and N. Levina, “Software-as-a-service model: Elaborating client-side

adoption factors,” in Proceedings of the 29th International Conference on In-

formation Systems, Paris, France, Dec. 2008.

[9] W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su, “Software as a service:

Configuration and customization perspectives,” in Congress on Services Part II,

2008. SERVICES-2. IEEE, pp. 18–25, IEEE, 2008.

http://davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
http://davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf
http://davidchappell.com/writing/white_papers/The_Three_Aspects_of_Software_Quality_v1.0-Chappell.pdf

BIBLIOGRAPHY 66

[10] A. Dubey and D. Wagle, “Delivering software as a service,” The McKinsey

Quarterly, vol. 6, no. 2007, p. 2007, 2007.

[11] R. Seethamraju, “Adoption of software as a service (saas) enterprise resource

planning (ERP) systems in small and medium sized enterprises (SMEs),” In-

formation systems frontiers, vol. 17, no. 3, pp. 475–492, 2015.

[12] A. B. Benevides, “An ontologically well-founded framework for modelling busi-

ness organizations, processes and services.,” in ICBO, Citeseer, 2012.

[13] H.-J. Happel and S. Seedorf, “Applications of ontologies in software engineering,”

in Proc. of Workshop on Sematic Web Enabled Software Engineering”(SWESE)

on the ISWC, pp. 5–9, Citeseer, 2006.

[14] M. M. Al-Debei and D. Avison, “Developing a unified framework of the business

model concept,” European Journal of Information Systems, vol. 19, no. 3,

pp. 359–376, 2010.

[15] T. R. Gruber et al., “A translation approach to portable ontology specifications,”

Knowledge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[16] T. R. Gruber, “The role of common ontology in achieving sharable, reusable

knowledge bases,” KR, vol. 91, pp. 601–602, 1991.

[17] S. McConnell, Code complete. Microsoft press, 2004.

[18] H. V. Vliet, Software Engineering - Principles and Practice. John Wiley & Sons

Ltd, third ed., 2008.

[19] ISO, ISQS, “ISO/IEC 25010. 2011,” Systems and software engineering—Systems

and software Quality Requirements and Evaluation (SQuaRE)—System and

software quality models, 2011.

[20] R. Ferenc, P. Hegedűs, and T. Gyimóthy, “Software product quality models,” in

Evolving Software Systems, pp. 65–100, Springer, 2014.

[21] M. Davis and J. Heineke, Operations Management: Integrating manufacturing

and services. McGraw-Hill/Irwin, fifth ed., 2005.

[22] B. Freimut, C. Denger, and M. Ketterer, “An industrial case study of imple-

menting and validating defect classification for process improvement and quality

management,” in Software Metrics, 2005. 11th IEEE International Symposium,

pp. 10–pp, IEEE, 2005.

BIBLIOGRAPHY 67

[23] J. Kuan, “Open source software as lead user’s make or buy decision: a study of

open and closed source quality,” Stanford Institute for Economic Policy Research,

Stanford University, 2002.

[24] D. R. Cox and D. Oakes, Analysis of survival data, vol. 21. CRC Press, 1984.

[25] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort estimation using analogy,”

in Proceedings of the 18th international conference on Software engineering,

pp. 170–178, IEEE Computer Society, 1996.

[26] E. Coelho and A. Basu, “Effort estimation in agile software development using

story points,” International Journal of Applied Information Systems (IJAIS),

vol. 3, no. 7, 2012.

[27] R. Singham and D. H. Steinberg, The ThoughtWorks R© Anthology: Essays on

Software Technology and Innovation. Pragmatic Bookshelf, 2008.

[28] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases improve

software quality?: an empirical case study of Mozilla Firefox,” in Proceedings of

the 9th IEEE Working Conference on Mining Software Repositories, pp. 179–188,

IEEE Press, 2012.

[29] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to evaluate

software system maintainability,” Computer, vol. 27, no. 8, pp. 44–49, 1994.

[30] K. D. Welker, “The software maintainability index revisited,” CrossTalk, vol. 14,

pp. 18–21, 2001.

[31] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measuring

maintainability,” in Quality of Information and Communications Technology,

2007. QUATIC 2007. 6th International Conference on the, pp. 30–39, IEEE,

2007.

[32] R. Baggen, J. P. Correia, K. Schill, and J. Visser, “Standardized code quality

benchmarking for improving software maintainability,” Software Quality Journal,

vol. 20, no. 2, pp. 287–307, 2012.

[33] D. I. Sjøberg, B. Anda, and A. Mockus, “Questioning software maintenance met-

rics: a comparative case study,” in Proceedings of the ACM-IEEE international

symposium on Empirical software engineering and measurement, pp. 107–110,

ACM, 2012.

[34] D. Bijlsma, M. A. Ferreira, B. Luijten, and J. Visser, “Faster issue resolution

with higher technical quality of software,” Software quality journal, vol. 20, no. 2,

pp. 265–285, 2012.

BIBLIOGRAPHY 68

[35] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical debt

and interest,” in Proceedings of the 2nd Workshop on Managing Technical Debt,

pp. 1–8, ACM, 2011.

[36] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using software

metrics to characterize, evaluate, and improve the design of object-oriented

systems. Springer Science & Business Media, 2007.

[37] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical

Approach: Brooks. Cole, 1998.

[38] V. R. Basili and H. D. Rombach, “The tame project: Towards improvement-

oriented software environments,” Software Engineering, IEEE Transactions on,

vol. 14, no. 6, pp. 758–773, 1988.

[39] T. Hall and N. Fenton, “Implementing effective software metrics programs,”

IEEE software, no. 2, pp. 55–65, 1997.

[40] Z. D. Kelemen, G. Bényász, and Z. Badinka, “A measurement based software

quality framework,” arXiv preprint arXiv:1408.3253, 2014.

[41] A. J. Albrecht, “Measuring application development productivity,” in Proc. of

the Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83–92,

1979.

[42] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code, and

development effort prediction: a software science validation,” IEEE transactions

on software engineering, no. 6, pp. 639–648, 1983.

[43] S. Klusener, “Source code based function point analysis for enhancement pro-

jects,” in 2013 IEEE International Conference on Software Maintenance, pp. 373–

373, IEEE Computer Society, 2003.

[44] E. Razina and D. S. Janzen, “Effects of dependency injection on maintainabil-

ity,” in Proceedings of the 11th IASTED International Conference on Software

Engineering and Applications: Cambridge, MA, p. 7, 2007.

[45] N. E. Fenton and M. Neil, “A critique of software defect prediction models,”

IEEE Transactions on software engineering, vol. 25, no. 5, pp. 675–689, 1999.

[46] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, and R. Mishra,

“Predicting software defects in varying development lifecycles using Bayesian

nets,” Information and Software Technology, vol. 49, no. 1, pp. 32–43, 2007.

BIBLIOGRAPHY 69

[47] N. Nagappan and T. Ball, “Use of relative code churn measures to predict

system defect density,” in Software Engineering, 2005. ICSE 2005. Proceedings.

27th International Conference on, pp. 284–292, IEEE, 2005.

[48] W. Hayes and J. W. Over, “The personal software process (PSPSM): An

empirical study of the impact of PSP on individual engineers.,” tech. rep., DTIC

Document, 1997.

[49] M. Iqbal and M. Rizwan, “Application of 80/20 rule in software engineer-

ing waterfall model,” in Information and Communication Technologies, 2009.

ICICT’09. International Conference on, pp. 223–228, IEEE, 2009.

[50] W. S. Humphries, PSP: A self-improvement Process for Software Engineers.

Addison-Wesley, first ed., 2005.

[51] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical

methods for software engineering research,” Guide to advanced empirical software

engineering, pp. 285–311, 2008.

[52] Apache Software Foundation, “ApacheTM subversion R©.” https://subversion.

apache.org/, Jan. 2018.

[53] Microsoft Corporation, “Visual Studio 2013.” https://visualstudio.

microsoft.com/, Jan. 2018. Version 12.

[54] R. C. Martin, “Principles of OOD.” http://butunclebob.com/ArticleS.

UncleBob.PrinciplesOfOod. Accessed: 29 October 2015.

[55] R. C. Martin, Clean code: a handbook of agile software craftsmanship. Pearson

Education, 2009.

[56] M. Fowler, “Inversion of control containers and the dependency in-

jection pattern.” https://martinfowler.com/articles/injection.html#

ServiceLocatorVsDependencyInjection, Jan. 2004.

[57] J. Smith, “The Model-View-ViewModel (MVVM) design pattern for WPF,”

MSDN Magazine.[Online] February, 2009.

[58] J. Kresowaty, “FxCop and code analysis: Writing your own custom rules,” 2008.

[59] Microsoft Contributors, “FxCop - What’s new in Visual Studio

2013.” https://blogs.msdn.microsoft.com/devops/2013/07/03/

what-is-new-in-code-analysis-for-visual-studio-2013/, Jan. 2018.

Version 12.021005.1.

https://subversion.apache.org/
https://subversion.apache.org/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://martinfowler.com/articles/injection.html#ServiceLocatorVsDependencyInjection
https://martinfowler.com/articles/injection.html#ServiceLocatorVsDependencyInjection
https://blogs.msdn.microsoft.com/devops/2013/07/03/what-is-new-in-code-analysis-for-visual-studio-2013/
https://blogs.msdn.microsoft.com/devops/2013/07/03/what-is-new-in-code-analysis-for-visual-studio-2013/

BIBLIOGRAPHY 70

[60] A. van Deursen, “Think twice before using the “main-

tainability index”.” https://avandeursen.com/2014/08/29/

think-twice-before-using-the-maintainability-index/, Aug. 2014.

Accessed: 17 September 2017.

[61] P. Oman and J. Hagemeister, “Construction and testing of polynomials predict-

ing software maintainability,” Journal of Systems and Software, vol. 24, no. 3,

pp. 251–266, 1994.

[62] M. H. Halstead, Elements of software science, vol. 7. Elsevier New York, 1977.

[63] Microsft Contributors, “Maintainability index range and mean-

ing.” https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/

maintainability-index-range-and-meaning/, Nov. 2007. Accessed: 17

September 2017.

[64] Mono Project, “Mono.Cecil.” https://www.mono-project.com/docs/tools+

libraries/libraries/Mono.Cecil/, Jan. 2018. Version 0.9.6.0.

[65] Open Source Contributors, “IlSpy - .Net decompiler.” http://www.ilspy.net/,

Jan. 2018.

[66] Open Source Contributors, “Git.” https://git-scm.com/, Jan. 2018.

[67] Atlassian Pty Ltd (ABN 53 102 443 916), “Jira — issue & project tracking

software.” https://www.atlassian.com/software/jira, Jan. 2018.

[68] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a universal

defect prediction model,” in Proceedings of the 11th Working Conference on

Mining Software Repositories, pp. 182–191, ACM, 2014.

https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/
https://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/
http://www.ilspy.net/
https://git-scm.com/
https://www.atlassian.com/software/jira

71

Appendix A

Technical Detail of Calculation of

Code Metrics

A.1 Introduction

There are a variety of options with regards to the collection of metrics from the

source code. This appendix covers the technical details of how the metrics for the

study are gathered.

Some metrics are provided by FxCop which ships with Microsoft Visual Studio and

supplementary metrics have been calculated with a custom tool using the C# code

inspection library Mono.Cecil. The supplementary metrics are used to complete the

Overview Pyramid.

A sample program is also provided in order to verify that the metric calculations are

correct.

A.2 FxCop

FxCop is a tool provided by Microsoft which can be used on build servers to perform

arbitrary code inspections on builds. Microsoft provides a set of packaged FxCop

rules which produce code metrics (packaged as metrics.exe). In particular, it can

calculate the following metrics for your code:

1. Maintainability Index

Appendix A — Technical Detail of Calculation of Code Metrics 72

2. Cyclomatic Complexity

3. Class Coupling

4. Lines of Code

5. Depth of Inheritance

These metrics are also aggregated and available at the following levels:

1. Target (Assembly)

2. Module

3. Namespace

4. Type

5. Member

The metrics are output as XML and can be easily parsed using an XML library for

further augmentation, filtering, or aggregation.

A.3 Mono.Cecil

Mono.Cecil is a library for inspecting and modifying .NET assemblies. Of particular

interest are the functions that allow the inspection of the byte code. These inspections

can tell you for example if a type is a class, interface or enum; or allow you to

examine each instruction in a method body, including whether the instruction is a

method call, the name of the method and the class it belongs to.

A.3.1 Calculating the CALLS Metric

The CALLS metric is the distinct number of calls to other classes per method. Using

Mono.Cecil, each body of each type’s methods can be interrogated and calls to other

classes add to a set. The total length of this set can then be stored in a map keyed

by the interrogated method’s full name. This then allows for the required metric of

the number of operation calls to be measured.

Appendix A — Technical Detail of Calculation of Code Metrics 73

A.3.2 Calculating the ANDC Metric

The ANDC metric is the average number of derived classes measure. This can be

measured again using Mono.Cecil to interrogate each type that is not an interface

or enum. For each type, the base class is recursively iterated until the base class

System.Object is found, and a map of counts keyed by full class name is incremented

for the matching key (if missing, the key is added). The final metric is then calculated

by summing the values of the map and dividing by the number of class types.

A.3.3 Calculating the AHH

The AHH metric is the average hierarchy height measure. This can be measured

alongside the ANDC metric, by tracking the depth of recursion, and storing that

number in a map, keyed by the last non ”System.Object” type name. If the map

already contains a value for the type name, then the larger of the two values is stored.

The final metric is then calculated by taking the sum of the values in the map and

dividing that number by the number of values in the map.

A.4 Sample Program

The sample program does nothing useful and instead provides a collection of rela-

tionships between classes and methods that is small enough to be able to perform

manual counts against. A class diagram for the application can be seen in figure A.1.

1 //AnInterface . cs :

2 us ing System ;

3 us ing System . Co l l e c t i o n s . Generic ;

4 us ing System . Linq ;

5 us ing System . Text ;

6 us ing System . Threading . Tasks ;

7

8 namespace Appl i ca t ion

9 {
10 public interface AnInter face

11 {
12 void DoSomethingElse () ;

13 }
14 }
15

16 //FooBase . cs :

17 us ing System ;

18 us ing System . Co l l e c t i o n s . Generic ;

19 us ing System . Linq ;

Appendix A — Technical Detail of Calculation of Code Metrics 74

20 us ing System . Text ;

21 us ing System . Threading . Tasks ;

22

23 namespace Appl i ca t ion

24 {
25 public class FooBase

26 {
27 }
28 }
29

30 //Program . cs :

31 us ing System ;

32 us ing System . Co l l e c t i o n s . Generic ;

33 us ing System . Linq ;

34 us ing System . Text ;

35 us ing System . Threading . Tasks ;

36 us ing Appl i ca t ion . AnotherNamespace ;

37

38 namespace Appl i ca t ion

39 {
40 class Program

41 {
42 stat ic void Main(s t r i n g [] a rgs)

43 {
44 var baz = new Baz () ;

45 var bar = new Bar () ;

46 var foo = new Foo (bar , baz) ;

47

48 f oo . FoosTheBars () ;

49 }
50 }
51 }
52

53 //UnusedInter face . cs :

54 us ing System ;

55 us ing System . Co l l e c t i o n s . Generic ;

56 us ing System . Linq ;

57 us ing System . Text ;

58 us ing System . Threading . Tasks ;

59

60 namespace Appl i ca t ion

61 {
62 public interface UnusedInter face

63 {
64 void DoSomething () ;

65 }
66 }
67

68 //AnotherNamespace/AnotherBar . cs :

69 us ing System ;

70 us ing System . Co l l e c t i o n s . Generic ;

71 us ing System . Linq ;

72 us ing System . Text ;

73 us ing System . Threading . Tasks ;

74

Appendix A — Technical Detail of Calculation of Code Metrics 75

75 namespace Appl i ca t ion . AnotherNamespace

76 {
77 class AnotherBar : Bar

78 {
79 }
80 }
81

82 //AnotherNamespace/Bar . cs :

83 us ing System ;

84 us ing System . Co l l e c t i o n s . Generic ;

85 us ing System . Text ;

86

87 namespace Appl i ca t ion . AnotherNamespace

88 {
89 public class Bar

90 {
91 private int num = 0 ;

92

93 public int FooTheBar ()

94 {
95 return num++;

96 }
97 }
98 }
99

100 //AnotherNamespace/Baz . cs :

101 us ing System ;

102 us ing System . Co l l e c t i o n s . Generic ;

103 us ing System . Text ;

104

105 namespace Appl i ca t ion . AnotherNamespace

106 {
107 public class Baz

108 {
109 public void UseTheFoo (int sum)

110 {
111 int mod = 0 ;

112

113 for (int i = 0 ; i < 10 ; i++)

114 {
115 mod += sum % i ;

116 }
117

118 Console . WriteLine (mod) ;

119 }
120 }
121 }
122

123 //AnotherNamespace/Foo . cs :

124 us ing System ;

125 us ing System . Co l l e c t i o n s . Generic ;

126 us ing System . Text ;

127

128 namespace Appl i ca t ion . AnotherNamespace

129 {

Appendix A — Technical Detail of Calculation of Code Metrics 76

130 public class Foo : FooBase , AnInter face

131 {
132 public Bar Bar { get ; s e t ; }
133 public Baz Baz { get ; s e t ; }
134 bool i sBarFlag = fa l se ;

135

136 public Foo (Bar bar , Baz baz)

137 {
138 Bar = bar ;

139 Baz = baz ;

140 }
141

142 public void FoosTheBars ()

143 {
144 int sum = 0 ;

145 while (sum <= 10)

146 {
147 sum = Bar . FooTheBar () ;

148 }
149

150 Baz . UseTheFoo (sum) ;

151 }
152

153 public void DoSomethingElse ()

154 {
155 i f (Bar i s Bar)

156 {
157 i sBarFlag = true ;

158 }
159 }
160

161 public void AnotherMethod ()

162 {
163

164 }
165 }
166 }

A.5 Conclusion

Technical details of the code metric calculations are presented. Metrics provided by

FxCop are supplemented with the output of a custom program built using Mono.Cecil.

Calculations have been validated with a sample program which is small enough to be

able to perform the measurements by hand. The sample program has been designed

to provide a variety of cases fit measurements such as Average Number of Derived

Classes, Average Hierarchy Height, and Calls.

Appendix A — Technical Detail of Calculation of Code Metrics 77

Application

AnotherNamespace

FooBase

AnInterface

Bar

Foo

Baz

AnotherBar
UnusedInterface

Program

Figure A.1: Class diagram for the sample program

78

Appendix B

Matlab Code for Hypothetical Model

B.1 Introduction

A Matlab program has been produced to explore and produce plots of the hypothetical

defect model presented in chapter 3.

The program provides a combined function that can be evaluated for all parameters

of the model.

B.2 Program Listing

The program listing that provides a function implementing the model is presented

below:

Listing B.1: Matlab functions for the probabilistic model

>>function y=p1 (n ,N,D, k) ;

y=(n . /N).∗(1−D) . ∗ k ; end ;

>>function y=p2 (n ,N,D, k) ;

y=(n . /N) . ∗D.∗(1−k) . ∗ (n . /N) . ∗ k ; end ;

>>function y=p3 (n ,N,D, k) ;

y=(n . /N) . ∗D. ∗ (k) . ∗ ((N−n) . /N) . ∗ k ; end ;

>>function y=p4 (n ,N,D, k) ;

y=(n/N) . ∗D.∗ k . ∗ (n . /N).∗(1−k) ; end ;

>>function y=p5 (n ,N,D, k) ;

y=(n . /N) . ∗D.∗ k . ∗ (n . /N) . ∗ k ; end ;

Appendix B — Matlab Code for Hypothetical Model 79

>>function y=p6 (n ,N,D, k) ;

y=((N−n) . /N) . ∗D. ∗ (n . /N) . ∗ k ; end ;

>>function y = p(n ,N,D, k) ;

y=p1 (n ,N,D, k)+

p2 (n ,N,D, k)+

p3 (n ,N,D, k)+

p4 (n ,N,D, k)+

p5 (n ,N,D, k)+

p6 (n ,N,D, k) ;

end ;

B.3 Conclusion

A program listing is presented that provides a Matlab function for the model presented

in Chapter 3.

80

Appendix C

Overview Pyramid Outputs

C.1 Introduction

The overview pyramids have been produced using a C# program as previously

discussed in chapter 6.

This appendix provides a listing of output Overview Pyramids

C.2 Listing of overview Pyramids

The listing of Overview Pyramids follows:

Assembly Name: Client.Module.Maintenance.Supplier.dll
Maintainability Index: 91
 ANDC 0.85
 AHH 0.80
 2.33 NOP 6
 7.43 NOC 14
 2.19 NOM 104 NOM 2.07
 0.59 LOC 228215 CALLS 0.60
CYCLO 135129 FANOUT

Appendix C — Overview Pyramid Outputs 81

Assembly Name: Client.Module.Maintenance.Consignment.dll
Maintainability Index: 90
 ANDC 0.77
 AHH 0.70
 2.33 NOP 6
 8.43 NOC 14
 2.42 NOM 118 NOM 2.70
 0.58 LOC 285319 CALLS 0.50
CYCLO 165160 FANOUT
--

Assembly Name: Client.Module.Maintenance.VehicleConfiguration.dll
Maintainability Index: 91
 ANDC 0.79
 AHH 0.64
 4.00 NOP 7
 8.25 NOC 28
 2.53 NOM 231 NOM 2.46
 0.57 LOC 584569 CALLS 0.34
CYCLO 334194 FANOUT
--

Assembly Name: Client.Module.Maintenance.OrderGroup.dll
Maintainability Index: 88
 ANDC 0.75
 AHH 0.67
 2.83 NOP 6
 7.53 NOC 17
 2.61 NOM 128 NOM 2.91
 0.57 LOC 334373 CALLS 0.45
CYCLO 191167 FANOUT
--

Assembly Name: Client.Module.Reports.dll
Maintainability Index: 88
 ANDC 0.89
 AHH 0.27
 3.81 NOP 32
 3.35 NOC 122
 2.71 NOM 409 NOM 4.03
 0.62 LOC 11091648 CALLS 0.20
CYCLO 692328 FANOUT
--

Assembly Name: Client.Module.VideoFeedSnapshot.dll
Maintainability Index: 83
 ANDC 0.22
 AHH 0.22
 1.20 NOP 5
 3.33 NOC 6
 3.65 NOM 20 NOM 5.40
 0.45 LOC 73108 CALLS 0.51
CYCLO 3355 FANOUT
--

Appendix C — Overview Pyramid Outputs 82

Assembly Name: Client.Site.Interfaces.dll
Maintainability Index: 100
 ANDC 1.00
 AHH 1.00
 7.00 NOP 3
 1.81 NOC 21
 0.21 NOM 38 NOM 0.21
 4.75 LOC 88 CALLS 4.63
CYCLO 3837 FANOUT
--

Assembly Name: Client.Module.Maintenance.Sku.dll
Maintainability Index: 89
 ANDC 0.85
 AHH 0.78
 2.57 NOP 7
 7.61 NOC 18
 2.72 NOM 137 NOM 2.43
 0.53 LOC 372333 CALLS 0.46
CYCLO 197154 FANOUT
--

Assembly Name: Client.Module.Menu.dll
Maintainability Index: 87
 ANDC 0.69
 AHH 0.67
 3.00 NOP 5
 3.47 NOC 15
 3.62 NOM 52 NOM 4.29
 0.51 LOC 188223 CALLS 0.48
CYCLO 95108 FANOUT
--

Assembly Name: Client.Module.Maintenance.Vehicle.dll
Maintainability Index: 89
 ANDC 0.77
 AHH 0.70
 2.33 NOP 6
 15.86 NOC 14
 2.11 NOM 222 NOM 2.01
 0.66 LOC 468447 CALLS 0.41
CYCLO 307183 FANOUT
--

Assembly Name: Client.Module.Maintenance.DeviceCentral.dll
Maintainability Index: 83
 ANDC 0.78
 AHH 0.72
 5.00 NOP 8
 6.30 NOC 40
 3.17 NOM 252 NOM 4.02
 0.50 LOC 8001012 CALLS 0.24
CYCLO 399247 FANOUT
--

Appendix C — Overview Pyramid Outputs 83

Assembly Name: Client.User.Interfaces.dll
Maintainability Index: 100
 ANDC 1.00
 AHH 1.00
 5.33 NOP 3
 3.19 NOC 16
 0.12 NOM 51 NOM 0.12
 8.50 LOC 66 CALLS 5.83
CYCLO 5135 FANOUT
--

Assembly Name: Client.Module.Maintenance.Driver.dll
Maintainability Index: 90
 ANDC 0.91
 AHH 0.88
 2.33 NOP 6
 11.00 NOC 14
 2.10 NOM 154 NOM 1.97
 0.62 LOC 323304 CALLS 0.49
CYCLO 199150 FANOUT
--

Assembly Name: Client.OtherMaintenance.Interfaces.dll
Maintainability Index: 100
 ANDC 1.00
 AHH 1.00
 1.67 NOP 3
 1.40 NOC 5
 0.29 NOM 7 NOM 0.29
 3.50 LOC 22 CALLS 12.50
CYCLO 725 FANOUT
--

Assembly Name: Client.Module.Maintenance.UserGroup.dll
Maintainability Index: 89
 ANDC 0.69
 AHH 0.38
 4.55 NOP 11
 6.02 NOC 50
 2.81 NOM 301 NOM 2.99
 0.63 LOC 846900 CALLS 0.26
CYCLO 535232 FANOUT
--

Assembly Name: Client.Module.Camera.dll
Maintainability Index: 89
 ANDC 0.67
 AHH 0.57
 2.30 NOP 10
 5.00 NOC 23
 2.77 NOM 115 NOM 2.50
 0.53 LOC 319287 CALLS 0.41
CYCLO 168119 FANOUT
--

Appendix C — Overview Pyramid Outputs 84

Assembly Name: Client.Module.Maintenance.LegalWeightLimit.dll
Maintainability Index: 91
 ANDC 0.91
 AHH 0.88
 2.33 NOP 6
 8.07 NOC 14
 2.14 NOM 113 NOM 2.05
 0.60 LOC 242232 CALLS 0.59
CYCLO 144138 FANOUT
--

Assembly Name: Client.Erp.Interfaces.dll
Maintainability Index: 100
 ANDC 1.00
 AHH 1.00
 11.25 NOP 4
 2.16 NOC 45
 0.18 NOM 97 NOM 0.18
 5.71 LOC 1717 CALLS 3.18
CYCLO 9754 FANOUT
--

Assembly Name: Client.Module.Maintenance.Category.dll
Maintainability Index: 90
 ANDC 0.83
 AHH 0.78
 2.33 NOP 6
 8.14 NOC 14
 2.18 NOM 114 NOM 2.05
 0.60 LOC 249234 CALLS 0.58
CYCLO 150136 FANOUT
--

Assembly Name: Client.Module.Maintenance.Haulier.dll
Maintainability Index: 91
 ANDC 0.91
 AHH 0.88
 2.33 NOP 6
 7.64 NOC 14
 2.14 NOM 107 NOM 2.02
 0.61 LOC 229216 CALLS 0.63
CYCLO 140135 FANOUT
--

Assembly Name: Client.Module.Maintenance.OrderRestrictionGroup.dll
Maintainability Index: 91
 ANDC 0.83
 AHH 0.78
 2.33 NOP 6
 6.86 NOC 14
 2.54 NOM 96 NOM 2.59
 0.57 LOC 244249 CALLS 0.55
CYCLO 138138 FANOUT
--

Appendix C — Overview Pyramid Outputs 85

Assembly Name: Client.Module.Maintenance.OrderRestriction.dll
Maintainability Index: 91
 ANDC 0.91
 AHH 0.88
 2.33 NOP 6
 6.93 NOC 14
 2.22 NOM 97 NOM 2.06
 0.59 LOC 215200 CALLS 0.64
CYCLO 126127 FANOUT
--

Assembly Name: Client.Module.Maintenance.Site.dll
Maintainability Index: 90
 ANDC 0.83
 AHH 0.78
 2.33 NOP 6
 7.71 NOC 14
 2.24 NOM 108 NOM 2.18
 0.59 LOC 242235 CALLS 0.59
CYCLO 142138 FANOUT
--

Assembly Name: Client.Module.Maintenance.User.dll
Maintainability Index: 88
 ANDC 0.82
 AHH 0.75
 3.00 NOP 7
 9.52 NOC 21
 2.37 NOM 200 NOM 2.58
 0.59 LOC 474516 CALLS 0.35
CYCLO 278181 FANOUT
--

Assembly Name: Client.Module.Conflicts.MasterData.dll
Maintainability Index: 88
 ANDC 0.31
 AHH 0.31
 2.56 NOP 9
 6.43 NOC 23
 3.20 NOM 148 NOM 4.07
 0.56 LOC 474603 CALLS 0.33
CYCLO 267196 FANOUT
--

Assembly Name: Client.Module.Maintenance.Order.dll
Maintainability Index: 90
 ANDC 0.59
 AHH 0.45
 2.46 NOP 13
 8.81 NOC 32
 2.31 NOM 282 NOM 2.30
 0.60 LOC 652649 CALLS 0.34
CYCLO 394219 FANOUT
--

Appendix C — Overview Pyramid Outputs 86

Assembly Name: Client.Module.AboutScreen.dll
Maintainability Index: 93
 ANDC 1.00
 AHH 1.00
 1.67 NOP 3
 3.80 NOC 5
 1.84 NOM 19 NOM 1.42
 0.69 LOC 3527 CALLS 1.19
CYCLO 2432 FANOUT
--

Assembly Name: Client.Module.Maintenance.Wagon.dll
Maintainability Index: 92
 ANDC 0.91
 AHH 0.88
 2.33 NOP 6
 7.79 NOC 14
 2.11 NOM 109 NOM 1.86
 0.61 LOC 230203 CALLS 0.64
CYCLO 141129 FANOUT
--

Assembly Name: Client.Module.Maintenance.Customer.dll
Maintainability Index: 91
 ANDC 0.85
 AHH 0.80
 2.33 NOP 6
 7.43 NOC 14
 2.19 NOM 104 NOM 2.07
 0.59 LOC 228215 CALLS 0.60
CYCLO 135129 FANOUT
--

Assembly Name: Client.Module.Maintenance.Location.dll
Maintainability Index: 91
 ANDC 0.91
 AHH 0.88
 2.33 NOP 6
 6.50 NOC 14
 2.31 NOM 91 NOM 2.19
 0.57 LOC 210199 CALLS 0.64
CYCLO 120128 FANOUT
--

Assembly Name: Client.Transport.Interfaces.dll
Maintainability Index: 100
 ANDC 1.00
 AHH 1.00
 13.33 NOP 3
 2.38 NOC 40
 0.17 NOM 95 NOM 0.17
 5.94 LOC 1616 CALLS 3.19
CYCLO 9551 FANOUT
--

Appendix C — Overview Pyramid Outputs 87

Assembly Name: Client.Module.SplashScreen.dll
Maintainability Index: 86
 ANDC 0.40
 AHH 0.40
 1.33 NOP 3
 6.00 NOC 4
 2.29 NOM 24 NOM 2.83
 0.65 LOC 5568 CALLS 0.50
CYCLO 3634 FANOUT
--

Assembly Name: Client.Module.Security.dll
Maintainability Index: 87
 ANDC 0.61
 AHH 0.50
 4.18 NOP 11
 5.43 NOC 46
 2.82 NOM 250 NOM 3.29
 0.58 LOC 706822 CALLS 0.27
CYCLO 407218 FANOUT
--

Assembly Name: Client.Module.Maintenance.Container.dll
Maintainability Index: 91
 ANDC 0.91
 AHH 0.88
 2.33 NOP 6
 6.93 NOC 14
 2.27 NOM 97 NOM 2.15
 0.57 LOC 220209 CALLS 0.63
CYCLO 126132 FANOUT
--

Assembly Name: Client.Module.AdminFunctions.dll
Maintainability Index: 91
 ANDC 0.72
 AHH 0.40
 4.90 NOP 10
 5.73 NOC 49
 2.45 NOM 281 NOM 2.46
 0.61 LOC 689692 CALLS 0.29
CYCLO 422201 FANOUT
--

Assembly Name: Client.Module.DeviceTesting.dll
Maintainability Index: 90
 ANDC 0.81
 AHH 0.67
 4.83 NOP 6
 6.14 NOC 29
 2.41 NOM 178 NOM 2.33
 0.56 LOC 429415 CALLS 0.38
CYCLO 241156 FANOUT
--

Appendix C — Overview Pyramid Outputs 88

C.3 Conclusion

A listing of Overview Pyramids has been presented.

	 Quality Impact of Configuration and Customisation on Configurable Software
	Declaration
	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Overview of the Dissertation
	1.2 Previous and Related Work
	1.2.1 Customising Software
	1.2.2 Software as a Service
	1.2.3 Ontology
	1.2.4 Conclusion

	2 Quality
	2.1 Defining Quality
	2.2 Quality Metrics
	2.2.1 Structural Quality Metrics
	2.2.2 Functional Quality Metrics

	2.3 Conclusion

	3 Research Question
	3.1 Aim and motivation
	3.2 Scope
	3.3 Theoretical Change Defect Model
	3.3.1 Models in Literature
	3.3.2 Statistical Model
	3.3.3 Analysis
	3.3.4 Pareto Principle
	3.3.5 Internal versus External Quality Effects

	3.4 Conclusion

	4 Methodology
	4.1 Approach
	4.2 Description of Weighbridge Application
	4.3 Customer Selection
	4.3.1 C1 - Out the box
	4.3.2 C2 - Heavy Customisations
	4.3.3 C3 - Domain Modified

	4.4 Measuring Customisation and Quality
	4.4.1 Measurements

	4.5 Determining Quality from the Metrics
	4.6 Determining the Success of the Architecture
	4.7 Conclusion

	5 Sizing Customisations
	5.1 Nature of Customisations
	5.2 How the Application is Customised
	5.3 Measuring the Customisations
	5.4 Conclusion

	6 Code Metrics
	6.1 Acquiring Metrics
	6.2 Maintainability Index
	6.2.1 Halstead Volume
	6.2.2 Visual Studio Implementation
	6.2.3 Generated Code

	6.3 Overview Pyramid
	6.3.1 Example

	6.4 Tool Verification
	6.4.1 Notes on Metrics

	6.5 Application Specific Metrics
	6.6 Roslyn and Mono.Cecil
	6.7 Conclusion

	7 Bug and Issue Analysis
	7.1 Git
	7.2 Jira
	7.3 Conclusion

	8 Results
	8.1 Bugs and Commits
	8.2 Bugs Logged Per Customer
	8.3 Measure of Rules and Customisations
	8.4 Rules Versus Bugs
	8.5 Analysis
	8.5.1 Size Comparison
	8.5.2 Quality Comparisons
	8.5.3 Correlations

	8.6 Research Questions
	8.6.1 R1 - Structural Quality
	8.6.2 R2 - Functional Quality
	8.6.3 R3 - Architectural Success

	8.7 Threats to Validity
	8.8 Conclusion

	9 Conclusion
	9.1 Future Work

	A Technical Detail of Calculation of Code Metrics
	A.1 Introduction
	A.2 FxCop
	A.3 Mono.Cecil
	A.3.1 Calculating the CALLS Metric
	A.3.2 Calculating the ANDC Metric
	A.3.3 Calculating the AHH

	A.4 Sample Program
	A.5 Conclusion

	B Matlab Code for Hypothetical Model
	B.1 Introduction
	B.2 Program Listing
	B.3 Conclusion

	C Overview Pyramid Outputs
	C.1 Introduction
	C.2 Listing of overview Pyramids
	C.3 Conclusion

