CONVERSATIONAL INTELLIGENCE AFTER STROKE: A DRUG TRIAL

Tali Frankel

A dissertation submitted to the Faculty of Humanities, School of Human and Community Development, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of Doctor of Philosophy

August, 2008

DEDICATION

Most of the ten participants who agreed to take part in this study expressed a desire to feel useful again, to be heard and to stop being invisible. I dedicate this research to them for their bravery and for their optimism. The challenges they experience; their confrontations every day with the things they have lost; are not translatable into words.

'That's the trouble with being in a caring profession when you can't be in it anymore you feel, "Oh well. Now what do I do?" and I keep trying to comfort myself or say, "Well you can still be an example to people how to- how to handle yourself in a positive man- manner. Even after a stroke. And you'll be an example to your family and your grandchildren too". Oh I would love to be useful again' (*Felicity*)

DECLARATION

I, Tali Frankel, declare that this dissertation is my own unaided work,

except for technical assistance as detailed in the Acknowledgements;

that I am responsible for the text of this study and all conclusions reached;

and that no part of this dissertation has been submitted for a degree at any other university.

Tali Frankel

Date

ACKNOWLEDGEMENTS

I would like to express my enduring gratitude to the following people and institutions for their invaluable assistance and who have made this experience enlightening, inspiring, reassuring and filled with companionship.

- Professor Claire Penn: My supervisor, for sharing her commanding knowledge of this field and all matters related; for her creativity and insightfulness which provided a clear vision; for being supportive and enthusiastic when I most needed encouragement; and for always anticipating excellence. I have learned so much.
- Dr David Saffer: The study's consulting neurologist, for his never-ending supply of generosity of time and spirit; for being my advocate in initially driving this project. His involvement ensured that my participants were all in safe and caring hands – they could not have been better looked after by anyone.
- Digby Ormond-Brown: The study's consulting neuro-psychologist, for endless patient hours creating and refining the assessment battery; for assistance with administration and interpretation of the data in the pilot phase; and for always being welcoming, even at unsociable hours.
- Peter Fridjhon: Expert statistician and research designer, for his sound advice, lively debate and for all his support during the many years he has watched my development as a clinician/researcher. Thank you so much for nurturing that process and encouraging critical thought.
- Dr. Beulah Sonnenberg, Avril Cummins and Jennifer Watermeyer: The external raters, for their very valuable time and the care with which they assessed and analysed their data. Their input made a significant contribution to this study.

Mike Greyling: Statistician, for his competent and efficient handling of the statistical material.

UCB Pharma and in particular Dr. Pieta Serfontein, for his support and assistance with mobilising this project and promoting it to all the right people, in the right places at the right times. The financial aid from UCB was much appreciated.

The following institutions awarded scholarships, for which I am and will always be deeply grateful:

Deutscher Akademischer Austausch Dienst

National Research Foundation Prestigious Award

University of the Witwatersrand

- Faculty Research Committee Grant
- Local Merit Award
- University Postgraduate Merit Award

The ten stroke participants, their families, friends and caregivers for allowing me into their homes and lives and for allowing me to tell their stories.

The non-neurologically impaired volunteers, for their good will, enthusiasm and time.

- To our community of special friends, for their genuine warmth and support of me; for always showing interest and imparting the encouragement so desperately needed in an undertaking like this, and for commiserating with Darryl and keeping him company during many long, lonely hours.
- My beloved parents, Michael and Leonie Rootshtain, and treasured siblings, my sister Ayelet and brothers Uriel, Raphi and Gavi, for everything - always. For giving me the belief in my capacity to accomplish good in this world, for engendering commitment and determination, for all the love that has sustained and will always nourish me. A special thank you to mom for loving me enough to actually read this with your sharp eye and red pen.
- My husband Darryl and children Dani and Amit, words will never be enough. I cherish you every day; you are my exceptional gifts and blessings. Thank you for allowing me to do this, thank you for holding my hand at the start, for urging me on through the initial bumps, for your shared indignation at the potholes, for providing a constant stream of sustenance – both emotional and gastronomic - when resources were low, for pushing from behind when I felt ready to drop out and for cheering when I crossed the finish line.

LIST OF RELATED WORK

This research has generated interest in a number of related but not directly relevant topics. Some of this work has been prepared for publication and is accordingly listed below. Where applicable this research is mentioned or elaborated on within the body of the thesis. My thanks go to fellow clinicians and researchers who collaborated on these projects.

- Frankel, T. & Penn, C. (2007). Perseveration and conversation in TBI: Response to pharmacological intervention. *Aphasiology*, 21 (10/11), 1039–1078.
- Frankel, T., Penn, C., & Ormond-Brown, D. (2007). Executive Dysfunction as an explanatory basis for conversation symptoms of aphasia: A pilot study. *Aphasiology*, 21 (6,7,8), 814–828.
- Penn, C., Frankel, T., Watermeyer, J. & Müller, M. (accepted). Informed Consent and Aphasia: Evidence of Pitfalls in the Process. *Aphasiology*
- Penn, C., Frankel, T., Watermeyer, J. & Russell, N. (accepted). Executive function and conversational strategies in bilingual aphasia. *Aphasiology*

ABSTRACT

Background: Conversation is the archetypal mode of communication. As a process it draws on numerous skills, and predispositions, adapting to dynamic contexts and coordinated in highly sophisticated ways for successful interaction. The combination of these abilities with contextual variables coalesces uniquely to represent what this research proposes to be *conversational intelligence*. It is argued here that high levels of *conversational intelligence* rest to a large degree on executive functions (EF) which are steadily becoming more widely acknowledged and researched within the communication domain. The impairment of EF in neurologically injured individuals has significant, though as yet undisclosed, repercussions for recovery, response to therapy and ability to integrate communication skills in every day interactions to support conversational success. This study incorporates some new approaches to the study of communication disorders following stroke, including conversation, executive functions and the possibility of pharmacological intervention.

Aims: The aims of this study were to describe in detail the language, executive function and conversational characteristics of ten individuals who had experienced strokes and to examine the relationships among these three areas of functioning. In addition, this research investigated the response of these ten participants to pharmacological therapy on a one month trial of Leviteracetam (LEV).

Methods and Procedures: Ten individuals who had suffered single incident strokes were recruited from local community and rehabilitation facility referrals. All ten participated in a four stage randomised, double blind investigation including baseline, active, placebo and withdrawal phases. At each stage participants underwent testing on an EF battery and were recorded having conversations with familiar interlocutors. In addition, significant others completed a rating scale assessing affective features and behaviours and language testing was conducted at the baseline phase using the WAB. The language and EF data were scored and the conversations subjected to Conversation Analysis. For each participant, profiles were created and assessed for interrelationships between the executive characteristics and conversational features representative of each executive construct. Repeated measures analysis of variance was conducted on EF data for the four phases of the study to determine significant pharmacological effects.

Outcomes and Results: The majority of the sample presented with significant EF deficits across most areas assessed. Two participants presented with essentially intact profiles which were not explained in terms of types of aphasia or site of lesion. Language results proved to be inconsistently associated with EF deficits, but conversational features reflected underlying executive strengths or deficits with greater consistency. Two participants experienced amelioration (though not statistically significant) of interference control during the active phase, with observable improvements in conversational skill. One participant demonstrated improved conversation without a change in EF scores. The response to LEV is evaluated with reference to potential alternatives.

Conclusions: The existence of EF deficits in individuals with stroke is demonstrated. Furthermore, the impact of these impairments is considerable and observable during naturally occurring conversations, suggesting the centrality of the EF contribution to conversational intelligence. The lack of association between formal language test scores and EF impairments argues for the inclusion of more authentic assessment approaches for stroke patients. The data is explored in terms of specific consequences of different lesion sites on EF and communication and briefly addresses bilingualism as a potential variable in explaining some of the variations in the data. Pharmacotherapy is addressed as an important focus of future research protocols. Implications for assessment and treatment are discussed as well as proposals for future study.

CONTENTS

Dedication	ii
Declaration	iii
Acknowledgements	iv
List of related work	vi
Abstract	vii
List of tables	xvi
List of figures	xviii
Appendix	xix
A note on anonymity	XX

CHAPTER ONE

INTRODUCTION

1.1	PRELIMINARY PERSPECTIVES	1
1.2	OUTLINE OF THE FOLLOWING CHAPTERS	5

CHAPTER TWO

STROKE AND RELATED COMMUNICATION DISORDERS

2.1	THE SOUTH AFRICAN CONTEXT	7
2.1.1	Mortality of stroke	8
2.1.2	Prevalence of stroke	9
2.1.3	Stroke incidence and case fatality	9
2.1.4	Stroke types and subtypes in South Africa	10
2.1.5	Stroke risk factors in South Africa	12
2.2	MECHANISMS OF STROKE	13
2.3	MECHANISMS OF RECOVERY IN STROKE	14
2.3.1	Recovery of the penumbra	15
2.3.2	Transfer of lost function to the homotopic cortex in the right cerebral hemisphere	15
2.3.3	Adoption of strategies that circumvent the lost function	16
2.4	FACTORS AFFECTING RECOVERY	17
2.4.1	Language variables	17

2.4.2	Cognitive variables	18
2.4.3	Biographical variables	18
2.4.4	Medical variables	19
2.4.5	Social variables	20
2.5	COMMUNICATION DISORDERS FOLLOWING STROKE	20
2.5.1	Aphasia	20
2.5.2	Right Hemisphere disorder	24
2.6	TREATMENT OF COMMUNICATION DISORDERS FOLLOWING STROKE	26
2.6.1	Historical approaches to the treatment of aphasia and disorders related to RHD	26
2.6.1.1	Broca's aphasia	27
2.6.1.2	Wernicke's aphasia	28
2.6.1.3	Conduction aphasia	28
2.6.1.4	Transcortical aphasias	29
2.6.1.5	Anomic aphasia	30
2.6.1.6	Global aphasia	30
2.6.1.7	Right Hemisphere Disorders	31
2.6.2	Modern approaches to the treatment of communication difficulties	32
2.6.3	Conversation and Conversational Analysis (CA)	34
2.6.3.1	Conversation as prototype of language use	34
2.6.3.2	Research utilising CA as a methodology in relation to communication disorders	34
2.6.3.3	The study of conversation provides an assessment of language in context	36
2.6.3.4	CA provides access to nonverbal as well as verbal means of communication	38
2.6.3.5	Conversation reflects a psychosocial process of defining the self in relation to others	39
2.6.3.6	Conversation is sensitive to underlying neural and neuropsychological factors	40
2.6.3.7	Results of formal language testing do not anticipate conversational performance	41
2.6.3.8	CA allows for the differentiation between "normal" and aphasic discourse	41
2.6.3.9	SUMMARY OF CONVERSATION ISSUES	42
2.6.4	Pharmacological treatment of stroke	42
2.6.4.1	Dopamine	43
2.6.4.2	Norepinephrine	44
2.6.4.3	Amphetamines	44
2.6.4.4	Serotonin	45
2.6.4.5	Acetylcholine	46

2.6.4.6 Gamma-aminobutyric Acid (GABA)	47
2.6.4.7 SUMMARY OF PHARMACOLOGICAL TREATMENT OF STROKE	47
2.7 CONCLUDING COMMENTS	48

CHAPTER THREE

EXECUTIVE FUNCTION

3.1	DEFINITIONS	49
3.2	EXECUTIVE FUNCTIONS AND CONVERSATIONAL INTELLIGENCE	50
3.2.	ANATOMY OF EXECUTIVE FUNCTIONS	53
3.2.1	The significance of the Prefrontal Cortex (PFC)	53
3.2.2	Neuroanatomy of the PFC	53
3.2.3	Neurochemistry of the PFC	55
3.2.3.1	Dopamine	56
3.2.3.2	2 Norepinephrine	59
3.2.3.3	3 Serotonin	60
3.2.3.4	Acetylcholine	60
3.3	EXECUTIVE FUNCTIONS AND AGEING	61
3.4	THEORIES OF EXECUTIVE FUNCTION	63
3.4.1	Pribram: Feedback system	64
3.4.2	Teuber - Corollary discharge	64
3.4.3.	Luria	65
3.4.4	Damasio – Anatomical-Functional Model	66
3.4.5	Fuster - Temporal integration of behaviour	67
3.4.6	Shallice – Information processing model	67
3.4.7	Stuss and Benson – Behavioural / anatomical approach	68
3.4.8	Barkley – A Hybrid Neuropsychological Model of Executive Functions	69
3.5	SUMMARY AND CONCLUDING COMMENTS	71

CHAPTER FOUR

EXECUTIVE DYSFUNCTION IN NEUROGENIC COMMUNICATION DISORDERS

4.1.	EXECUTIVE DYSFUNCTION AND VASCULAR DISEASE	73
4.1.1	Executive dysfunction and aphasia	75
4.1.1.1	Attention deficits in aphasia	76
4.1.1.2	Working memory deficits in aphasia	78
4.1.1.3	Regulation of affect deficits in aphasia	79
4.1.1.4	Problem solving deficits in aphasia	80
4.1.1.5	Flexibility deficits in aphasia	81
4.1.1.6	Summary of executive function deficits in aphasia	82
4.1.2	Executive dysfunction in Right Hemisphere Disorder (RHD)	82
4.1.2.1	Attention deficits in RHD	83
4.1.2.2	Working memory deficits in RHD	83
4.1.2.3	Regulation of affect deficits in RHD	84
4.1.2.4	Problem solving deficits in RHD	84
4.1.2.5	Flexibility deficits in RHD	85
4.1.2.6	Summary of executive function deficits in RHD	85
4.2	EXECUTIVE DYSFUNCTION IN TRAUMATIC BRAIN INJURY (TBI)	85
4.2.1	Attention deficits in TBI	86
4.2.2	Working memory deficits in TBI	87
4.2.3	Regulation of affect deficits in TBI	88
4.2.4	Problem solving deficits in TBI	88
4.2.5	Flexibility deficits in TBI	89
4.2.6	Summary of executive function deficits in TBI	90
4.3	EXECUTIVE DYSFUNCTION IN DEMENTIA	90
4.3.1	Attention deficits in dementia	92
4.3.2	Working memory deficits in dementia	92
4.3.3	Regulation of affect deficits in dementia	93
4.3.4	Problem solving deficits in dementia	93
4.3.5	Flexibility deficits in dementia	93

4.4	EXECUTIVE DYSFUNCTION IN MULTIPLE SCLEROSIS (MS)	94
4.4.1	Attention and working memory deficits in MS	94
4.4.2	Regulation of affect deficits in MS	95
4.4.3	Problem solving deficits in MS	95
4.4.4	Flexibility deficits in MS	95
4.5	EXECUTIVE DYSFUNCTION IN INFLAMMATORY DISEASES / HIV/AIDS	95
4.6	EXECUTIVE DYSFUNCTION IN TUMOURS	96
4.7	EXECUTIVE DYSFUNCTION IN PSYCHOSIS	97
4.8	GAPS AND CHALLENGES	97
4.9	PHARMACOLOGICAL TREATMENT OF EXECUTIVE DYSFUNCTION	101
4.9.1	Catecholamines	101
4.9.1.1	Dopamine	101
4.9.1.2	Amphetamines	104
4.9.1.3	Norepinephrine	104
4.9.2	Serotonin	106
4.9.3	Acetylcholine	106
4.9.4	GABA	108
4.10	LEVITERACETAM (LEV) (KEPPRA)	109
4.11	SUMMARY – THE NEXT STEP	111

CHAPTER FIVE METHODOLOGY

5.1	AIMS OF THE STUDY	113
5.2	DESIGN OF THE STUDY	113
5.3	PHASES OF THE STUDY	115
5.3.1	Compiling the executive battery	115
5.3.2	Piloting the executive battery	116
5.3.3	Ethical considerations	116
5.3.4	Preparation of the drug	118
5.3.5	Initial Neurological Assessment	119
5.3.6	Testing	119
5.3.7	Data Analysis	120
5.4	PARTICIPANTS	121
5.4.1	Selection criteria for stroke participants	121
5.4.1.1	Inclusion Criteria	122
5.4.1.2	Exclusion Criteria:	123
5.4.2	Selection criteria for non-stroke participants	123
5.4.2.1	Controlling for use of the non-dominant hand	124
5.4.3	Participant characteristics	127
5.5	PROCEDURES	127
5.5.1	Data Collection	127
5.5.1.1	Language Data	127
5.5.1.2	Executive Functioning Data	128
5.5.1.3	Conversational Data	128
5.6	THE RESEARCH BATTERY	128
5.6.1	Test to Assess Language Functioning	128
5.6.2	Tests to Assess Executive Functioning	129
5.6.3	Data Analysis	129
5.6.3.1	Analysis of language and executive data	129
5.6.3.2	Conversation analysis	130
5.6.4	Data confirmability	131

CHAPTER SIX

RESULTS AND DISCUSSION

6.1	SUMMARY OF THE FINDINGS	139
6.2.	DESCRIPTIVE PHASE OF THE STUDY	140
6.2.1	Language Results	140
6.2.2	EF and co-occurring communication deficits	143
6.2.2.1	Behavioural inhibition	143
6.2.2.2	Interference control	146
6.2.2.3	Interference control - summary	159
6.2.2.4	Response inhibition	160
6.2.2.5	Response inhibition – summary	168
6.2.2.6	Working memory	168
6.2.2.7	Working memory – summary	181
6.2.2.8	Regulation of affect	183
6.2.2.9	Regulation of affect - summary	188
6.2.2.10 Internalization of speech		188
6.2.2.1	Internalization of speech – summary	194
6.2.2.12 Reconstitution 19		194
6.2.2.13	3 Reconstitution – summary	202
6.2.3	Results with reference to aphasia type	203
6.2.3.1	Aphasia type - summary	206
6.2.4.	Results with reference to site of lesion	207
6.2.4.1	Site of lesion - summary	212
6.2.5	The impact of bilingualism on executive functions	212
6.3	EXPERIMENTAL PHASE OF THE STUDY	213
6.3.1	Statistical results	213
6.3.2	Qualitative assessment of executive functioning results	213
6.3.3	Conversational results	214
6.3.4	Summary of drug effects	220

CHAPTER SEVEN

GENERAL DISCUSSION AND CONCLUSIONS

7.1	SUMMARY OF THE INVESTIGATION	222
7.1.1	The primary investigation	222
7.1.2	The secondary investigations	223
7.2	GENERAL FINDINGS	223
7.2.1	Descriptive phase	223
7.2.2	Experimental phase	225
7.2.3	Control study	227
7.2.4	Confirmability of the data	227
7.3	METHODOLOGICAL ISSUES	227
7.3.1	Language testing	227
7.3.2	Ecological validity and EF testing	228
7.3.2	Task sensitivity and specificity	229
7.3.3	Confirming authenticity of the conversational findings	236
7.4	IMPLICATIONS OF THE STUDY	238
7.4.1	Clinical implications	238
7.4.2	Research implications	241
7.5	CONCLUDING COMMENTS	242

REFERENCE LIST

REFERENCES

244

APPENDIX

LIST OF TABLES

Table 2.1:	Comparison of pathological stroke types and subtypes from hospital-based Studies	11
Table 2.2:	Major aphasic stroke syndromes	21
Table 2.3:	Aphasia syndromes and related sites of lesion	23
Table 4.1:	Neurological disorders associated with executive dysfunction	74
Table 5.1:	Randomization of Participant Placebo and Active Phases	119
Table 5.2:	Communication Partners for Participants throughout experimental study	120
Table 5.3:	Participant characteristics	125
Table 5.4:	Constructs and Tests of the Executive Functioning Battery	130
Table 5.5:	Comparison of judgments regarding turn-taking	136
Table 5.6:	Comparison of judgments regarding topic management	137
Table 5.7:	Comparison of judgments regarding repair	138
Table 6.1:	Language, Praxis and Construction scores from the WAB	141
Table 6.2:	Aphasia syndromes	142
Table 6.3:	Tests of Behavioral Inhibition	144
Table 6.4:	Inconsistencies in the relationship between interference control and repetition	148
Table 6.5:	Presence of distractibility in conversation with poor interference control	151
Table 6.6:	Perseveration in spontaneous speech and performance on Trail Making	159
Table 6.7:	Presence of perseveration during naming and performance on Trail Making	160
Table 6.8:	Evidence of poor inhibition and perseveration on Trail Making and the WCST	162
Table 6.9:	Tests of working memory	168
Table 6.10:	Performance on working memory tests	169
Table 6.11:	Features of spontaneous speech associated with working memory and performance on working memory tests.	171
Table 6.12:	Ranked comprehension scores and performance on working memory tests	173
Table 6.13:	Test of regulation of affect	183
Table 6.14:	Tests of internalization of speech	187
Table 6.15:	Results of planning tests and associations with conversational features	189
Table 6.16:	Tests of reconstitution	194
Table 6.17:	Summary of EF results and conversational skills for all ten participants, grouped according to type of aphasia	204

Table 6.18:	Profiles of disorders of EF in neurogenic communication disorders	208
Table 6.19:	Neurological sites involved with aspects of EF	210
Table 6.20:	Sites of lesion for the ten participants	211
Table 6.21:	Number of observations of impaired EF in conversation	215
Table 7.1	Useful EF tests and their associations with conversational features	236

APPENDIX TABLES

Table A.1:	Executive functioning battery	287
Table J.1:	t-tests for Trails A	308
Table J.2:	t-tests for Trails B	308
Table J.3:	t-tests for complex figures (copy)	308
Table J.4:	t-tests for complex figures (recall)	308
Table J.5:	t-tests for five point test	308
Table J.6:	t-tests for design fluency	308
Table L:1	Quantitative and qualitative constructs of reliability	310
Table N.1:	Results of digits forward	313
Table N.2:	Results of the Stroop colour-word interference test	313
Table N3:	Results of trail making	314
Table N.4:	Results of self ordered pointing test	314
Table N.5:	Results of complex figures copy task	315
Table N.6:	Results of complex figures recall task	315
Table N.7:	Results of Wisconsin card sorting test in terms of categories sorted	316
Table N.8:	Results of Wisconsin card sorting test in terms of number of errors	316
Table N.9:	Results of Wisconsin card sorting test in terms of perseverative responses	317
Table N.10:	Results of digits backwards	317
Table N.11:	Results of regulation of affect	318
Table N.12:	Results of tower of London test	318
Table N.13:	Results of Raven's progressive matrices	319
Table N.14:	Results of five point test	319
Table N.15:	Results of design fluency	320
Table O.1:	ANOVA for digits forward	321
Table O.2:	ANOVA for Stroop word colour interference test	321
Table O.3:	ANOVA for trail making	321

xviii

APPENDIX TABLES CONT...

Table O.4:	ANOVA for the self ordered pointing test	322
Table O.5:	ANOVA for recall of complex figures	322
Table O.6:	ANOVA for WCST in terms of categories sorted	322
Table O.7:	ANOVA for WCST in terms of errors	322
Table O.8:	ANOVA for WCST in terms of perseveration	323
Table O.9:	ANOVA for Digits backwards	323
Table O.10a:	ANOVA for Tower of London	323
Table O.10b:	Post Hoc analysis for source of variance Baseline vs. Phases, 1,2 and withdrawal	323
Table O.11:	ANOVA for Raven's progressive matrices	324
Table O.12:	ANOVA for five point test	324
Table O.13:	ANOVA for design fluency	324

LIST OF FIGURES

Figure 2.1:	The appearance of necrosis and apoptosis	14
Figure 2.2:	Major lobes of the brain with location of important language areas	23
Figure 3.1:	Lateral and medial views of the frontal lobes and prefrontal cortex	54
Figure 3.2:	Neurochemical transmission in the PFC	56
Figure 3.3:	Barkley's model of behavioural inhibition and executive functions	70
Figure 4.1:	The chemical structure of LEV and its metabolite LO57	110
Figure 6.1:	Schematic representation of areas involved in cognitive control	207
Figure 7.1:	Disordered features of conversation relative to EF deficiciency	226

APPENDIX

Appendix A:	Executive functioning battery	287
Appendix B:	Participant and caregiver information sheet	292
Appendix C:	Participant consent form	298
Appendix D:	Participant consent form for the use of video recordings	304
Appendix E:	Caregiver assent form	306
Appendix F:	Caregiver assent form for the use of video recordings	308
Appendix G:	Participant data control sheet	310
Appendix H:	Control group information sheet	311
Appendix I:	Control group consent form	314
Appendix J:	Control matched t-tests	316
Appendix K:	Conversation Analysis Transcription Conventions	317
Appendix L:	Quantitative and qualitative constructs of reliability	318
Appendix M:	Instruction sheet for raters for conversational data analysis triangulation	319
Appendix N:	Results of the executive testing	321
Appendix O:	ANOVA Repeated measures analysis of variance for the EF battery tests	329

A NOTE ON ANONYMITY

When the participants were approached about taking part in this study, they were told that their identities would be protected and that they were entitled to anonymity. Two stated that they would be happy to choose pseudonyms for the purposes of the presentation of the results. One stated that it made no difference one way or the other. The other seven not only said that they would have no reservations about their own names being used but specifically requested that they be named. When asked why, they unanimously said that their strokes have to a greater or lesser extent effectively removed them from the public eye. They have been transformed into people who inhabit private and unarticulated lives despite the fact that they want to be heard, want to be "useful" and want "a voice". The participants have reserved the right to claim ownership of their contributions. Eight of them are therefore deliberately named: Cecil, Felicity, Grace, Jeannette, John, Mel, Margaret and Tumi. Jane* and Paul* chose instead to be identified by pseudonyms.

In the conversational transcripts, all participants are identified by their initials. When the researcher is the interlocutor, she is represented by the letter R. Friends, family members or spouses are also identified by initials and are acknowledged in the text.