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Xylitol is an alternative sweetener to sucrose, glucose and fructose, and is available under a number 
of brands in South Africa. Carbon stable isotope values (δ13C) of a selection of commercially available 
xylitol products (n=28) were analysed and compared with sugar samples (n=29). Sugarcane (C4) and 
beet sugar (C3) derived sugar samples aligned with published values of source, although two samples 
that indicated a sugarcane origin suggested a beet sugar origin. Control corn-derived samples defined 
a stepwise xylose to xylitol discrimination of +0.7‰. The distinction between C3- and C4-derived xylitol 
was less clear with three samples difficult to define (range = -14.8 to -17.1‰). The values for a suite 
of xylitol samples (-22.3‰ to -19.7‰; n=8) that aligned closely with a suspected C3-derived xylose, 
were ~8‰ more positive than known birch isotope values. Some xylitol samples may thus represent 
(1) a mixture of C3- and C4-derived products, (2) derivation from a CAM species source or (3) different 
processing techniques in which the discrimination values of xylose from corn, and xylose from birch, 
may differ because of the respective chemical processing techniques. No samples that claimed a birch 
bark origin were within the range of samples suggested to be corn derived (i.e. -13.0‰ to -9.7‰, 
n=16). We suggest that the threshold values provided are relatively robust for defining the origins of 
xylitol and sugar, and can be used in determining the authenticity and claims of suppliers and producers.

Significance:
•	 Stable isotope (δ13C) profiles of commercially available xylitol and sugar products in South Africa will 

enable the determination of authenticity.

Introduction
Sucrose or ‘table sugar’, together with its disaccharide constituents – fructose and glucose – are important in the 
global economy as the major sweeteners of food and beverages.1-5 The intake of free sugars modifies both energy 
intake and body weight, and has been shown to be harmful by fuelling the development of obesity.1-3 Added sugars 
in processed foods and beverages are linked to the development of diabetes, obesity and metabolic syndrome.6,7 
A positive behavioural response to these health risks, especially healthy eating and increased physical activity is 
important.2,8-10 The intake of alternative sweeteners (artificial and non-nutritive) may reduce these health risks9,11 
and consequently the alternative sweetener market has increased in recent times5,12.

Xylitol (D-erythro-pentitol), a reduced-calorie sweetener, is a five-carbon sugar alcohol or polyol (C5H12O5), also 
known as wood or birch sugar10,13, that occurs naturally in small quantities in a variety of plants9,14-16, fruits and 
vegetables4,17-19 and is even produced in the human body10. It has been used as a sweetening agent in food since 
the 1960s20,21, in chewing gums, mints, sweets and toothpaste and also as a sugar substitute in confectionery and 
drinks4,18. Evidence suggests that it may prevent dental caries15, ear and upper respiratory tract infections4,18, the 
development of obesity22, and can be safely consumed by sufferers of diabetes type I and II, as it has the capacity 
to stabilise blood sugar levels4,22. In comparison with other alternative sweeteners, xylitol is similar in sweetness to 
sucrose with a lower calorie content (2.4 vs 4.0 cal/g).16,22

On an industrial scale, xylitol is currently produced by chemical reduction of xylose (D-xylose), traditionally derived 
from the bark of birch trees (Betula pendula) and other hardwoods.4,23,24 More recently, corncobs (Zea mays)25, 
sugarcane bagasse, and wheat, sorghum and rice straw26-28 have been used as sources of xylose; in China, 
xylitol production from corncob reached 50  000 tons in 200825,29. Production from corncob is favoured as it 
is less expensive than production from birch.30 Alternative methodologies to produce xylitol utilise yeasts (e.g. 
Candida sp.), bacteria and fungi.4,17,31,32 The annual demand for xylitol is over 100 000 tons worldwide, with a 
selling price of USD4–5/kg and an economic value of up to USD537 million per year.4,25,33 Asia produces 50% of 
the world’s total xylitol, with the balance produced in Europe, the USA and Australia.25 The largest producer of xylitol 
in the world has production plants in Finland, the USA and China.25,34

Food adulteration (or fraud) occurs when external substances are added to a food product and it is economically 
motivated when added or substituted (with lower-valued ones) to increase a product’s value or to reduce production 
costs.35-38 This has the overall negative effect of raising health concerns, reducing consumer confidence, and 
decreasing the sale of authentic products.36 Stable isotope analysis is one method to identify food adulteration, 
where the botanical origin, geographical origin, and specific farming regime or production system of a product can 
potentially be determined.35,36,38 Stable isotope analysis has been successfully utilised to detect the adulteration 
of honey with cheaper sugars37,39-41 and olive oil with pomace oil42, and CO2 in apple cider (C3) with a C4 carbon 
isotope value may suggest the incorporation of C4 sugars43.

The fundamental variation in the ratios of stable carbon isotopes in terrestrial food webs stems from differences 
in the photosynthetic pathways of plants.44-48 The majority of plants utilise the Calvin cycle (C3) and have tissues 
with a mean δ13C value of approximately -26.5‰. The δ13C values of plants relying upon the Hatch-Slack pathway 
(C4) – mainly tropical grasses including maize (corn), millet and sugarcane – are much higher, with a mean stable 
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isotope value of approximately -12.5‰. Plants utilising a third pathway, 
crassulacean acid metabolism (CAM), present intermediate δ13C values 
ranging from -27‰ to -12‰.49 The 13C/12C isotope ratio can thus be 
used to identify a product’s botanical origin.38

In South Africa, xylitol is available from local retailers, supermarkets and 
health stores, with a number of brands available to the public. Xylitol is one 
of the more recent alternatives to sugar (sucrose, fructose, glucose) and 
claims on the origins of products vary, from those indicating a birch bark 
or corn origin, to those for which the source is unknown or not disclosed. 
The aim of this study was to isotopically profile xylitol products available 
in South Africa, in an attempt to define their likely origin: from C3 (e.g. 
birch bark) or C4 (e.g. corn) plants. For comparison, we analysed sugar 
samples that were expected to reflect distinct origins from either sugarcane 
Saccharum spp. (C4) or sugar beet Beta vulgaris (C3). By doing so we 
attempt to present a critical assessment of these commercially available 
sweeteners that adds to consumer transparency and the integrity of food 
products currently available on the South African market.

Materials and methods
Samples
Samples of xylitol products (n=28; including duplicates for two brands) 
available in South Africa were purchased from various retailers (January 
2015 – November 2016), mostly in the Gauteng Province. Information 
was collected from each product regarding (1) country of origin and 
(2) claimed source (if disclosed). Of the 28 samples, 10 disclosed the 
source on the packaging. Anonymity of the selected brands is assured 
through assigned control numbers to each sample. In all instances we 
assumed products to be 100% xylitol, as indicated by the packaging.

To understand the relationship between xylose and xylitol we sourced two 
laboratory xylose samples, a sample of xylose from a Chinese supplier 
and derived xylitol (from the supplier of one of the brands for which 
we sourced repeat samples). To understand the likely source species 
we compared them to published isotope values of corn and birch – the 
two most common sources of xylitol. In addition, we measured the 
carbon isotope value of a birch bark and a birch leaf sample collected 
on the University of the Witwatersrand east campus (in Johannesburg) 
in December 2016.

We obtained additional sugar (fructose, glucose and sucrose) samples 
as controls (n=29) because South African table sugar (sucrose) is 
mainly derived from sugarcane (C4) and European sugar from sugar beet 
(C3). Some of these samples also included laboratory samples (n=8), 
of which three samples were indicated to be derived from Agave (a CAM 
photosynthesiser) and two samples were indicated to be derived from 
coconut, Cocos nucifera.

To assess the likely mixing of xylitol from different sources, in which the 
different sources may contain different size xylitol crystals, we selected 
three samples (X1, X3, X7) and separated them into >500 μm or <500 μm 
constituents (Labotec™, Star Screens, Booysens, Johannesburg, South 
Africa, sieve conforms to SABS197-ISO9002 specifications) for stable 
isotope analysis. A 28–33 g amount of each sample was separated into 
the different constituent size classes and prepared for isotope analysis.

Sample preparation for δ13C analyses
Duplicate subsamples (0.4–0.5 mg) of all xylitol, xylose and sugar 
samples were weighed into tin cups (pre-cleaned in toluene) for analysis. 
For every four samples we weighed a gelatine (Merck) laboratory 
working standard (0.2, 0.4, 0.6 mg). Standards were of variable mass 
in order to determine if there was any sample size effect. The samples 
were combusted at 1020 °C on an EA1112 Elemental Analyser coupled 
to a DeltaV Plus stable light isotope mass spectrometer by a Conflo 
IV interface (all equipment supplied by Thermo Scientific, Bremen, 
Germany). These analyses were performed in the Mammal Research 
Institute stable light isotope laboratory at the University of Pretoria. 
Precision on the standard analyses was 0.11‰ and no sample size 
effect was noted. The stable isotopic values are expressed in delta (δ) 
notation in parts per thousand (per mille, ‰), relative to the international 
standard Vienna PeeDee belemnite (VPDB).

Results
The δ13C values of the 28 branded xylitol samples ranged from -26.5‰ 
to -9.7‰ (Figure 1). The xylitol sample (X33) sourced from a Chinese 
supplier was 0.7‰ more positive than the xylose (Xy33=-11.5‰) 
from which it was derived (Figure 1). Fourteen xylitol values were more 
positive than the corn average of -12.4‰48,50-53 (within 2.7‰), and two 
xylitol values were more negative but within 0.6‰.The two laboratory 
xylose samples had δ13C values (-21.5‰ and -22.3‰) concomitant 
with eight xylitol samples (-22.3‰ to -19.7‰) (Figure 1). Three xylitol 
samples (-13.7‰, -15.2‰, -17.1‰) appeared unassociated with either 
of these apparent endpoints and a single xylitol sample (X14=-26.5‰) 
was 2.0‰ more positive than the mean birch isotope value (-28.5‰)54-58 
derived from the literature (Figure 1). The locally sampled birch bark and 
leaves measured -27.0‰ and -25.5‰, respectively. Seven samples 
(X14,X11=-20.4‰, X27=-20.2‰, X28=-20.0‰, X26=-19.9‰, 
X15=-15.2‰, X5=-13.7‰) had birch bark as the origin indicated on 
the package; with X26–X28 being the samples sourced from Finland. 
The packages of three xylitol samples indicated that they were corncob 
derived (X29=-11.0‰, X20=-10.7‰, X30=-10.5‰). For the three 
samples tested (X1, X3, X7), the isotope values of the different separated 
particle size classes (< or >500 μm) were similar (Table 1).

The sugar samples were clearly separated into two clusters: those C4 
derived (range: -13.1‰ to -10.0‰, n=18; cf. mean literature cane 
value of -12.7‰41,48), and those C3 derived (range: -27.0‰ to -23.5‰, 
n=6; cf. mean sugar beet value of -25.6‰41,59). Three of the four C3 
commercially available sugar samples were sourced from Europe (one 
from the UK and two from Finland), i.e. they were of sugar beet origin. 
Two of the C3 samples were indicated to be sugarcane derived (laboratory 
sucrose sample S24=-23.5‰ and fructose sample S15=-25.3‰). 
The samples that indicated an Agave origin (CAM) had a range of values 
(-26.3‰, -25.9‰, -20.3‰), and the two samples (S17 and S29) 
indicating a coconut blossom origin had contrasting values (-25.8‰ 
and -16.1‰, respectively; Figure 1).

Discussion
The hexose sugars sampled in this study suggest that stable isotope 
analysis is able to clearly define the origin of C3- and C4-derived sugars, 
with δ13C values ranging from 27.0‰ to -23.5‰ and -13.1‰ to 
-10.0‰, respectively. These values in turn align, respectively, with the 
published δ13C values for sugarcane and beet sugar. Sugars derived 
from Agave (a CAM photosynthesiser) yielded expected intermediate 
isotope values, but this finding does not affect the analysis, as CAM 
plants are not routinely used for xylitol production.

The xylitol isotope values are less clear. Because the chemical processes 
involved in the production of xylitol may vary, and are more complex 
than those for sugar production, we cannot be sure that stable isotopes 
unambiguously link source and product. In one of the manufacturing 
processes, xylose in hemicellulosic hydrolysate fractions is converted 
to xylitol by a chemical catalytic reaction,24 but other processes may be 
used and it is unclear if different chemical processes are the reason for 
the range of values observed. If the processing method is discounted, 
then the variation in isotope signatures in commercially available xylitol 
in South Africa may indicate many different sources.

To understand the isotopic relationship between xylitol and its precursor, 
namely xylose, we sourced xylose and the derivative xylitol from a 
Chinese manufacturer (and the supplier of one of the brands sampled). 
In this assessment, we found very little difference between the two 
samples (xylitol ‰ = xylose + 0.7 ‰), suggesting that 14 samples, 
with δ13C values ranging from -13.0‰ to -9.7‰, are most likely derived 
from corn (or some other C4 plant). In support of this conclusion is 
a mean corn value of -12.4‰ reported in the literature. If this δ13C 
discrimination from xylose to xylitol is minimal for C4-derived xylitol, it is 
difficult to align the group of eight xylitol samples (-22.3‰ to -19.7‰) 
to a C3 origin if the mean published birch (-28.5‰) and the local birch 
(mean=-26.3‰) values are significantly more negative than the xylitol 
samples claimed to be derived from birch. 
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Table 1:	 δ13C values of different xylitol granule size components 
(>500 μm and <500 μm), with proportions (%) of each size 
category indicated

Sample
Combined >500 μm <500 μm

δ13CVPDB (‰) % δ13CVPDB (‰) % δ13CVPDB (‰)

X1 -20.3 54.7 -19.9 45.3 -19.8

X3 -13.3 91.0 -12.8 9.0 -12.4

X7 -10.7 95.9 -10.8 4.1 -10.8

However, two forms of evidence suggest that these samples are birch 
authentic; first, three of the samples (within 0.3‰ of each other) are 
from Finland and we suggest that we are less likely to observe any 
adulteration in the country in which this process was developed, and 
second, two xylose values (albeit laboratory samples) that are similar to 
these samples lend support to the fact that they may be pure C3 derived (in 
the same way that we recognise a close isotopic link between C4 xylose 
and the derived xylitol in the factory control). The different discrimination 
values between xylose (and xylitol) and the plants from which they are 
thought to be derived, i.e. C3 or C4, may be a consequence of different 
chemical processes, and this remains to be investigated further. If not, 
then an entire suite of available C3 xylitol products may be consistently 
adulterated with C4 xylitol.

Only one sample (X14) was within 2.0‰ of the published values for 
birch. This sample warranted further investigation and for this and a 
number of other products, contact with the supplier was made to obtain 
further insight on their products. It was ascertained that xylitol in the 
product X5 was supplied by the packager of X15. Also, X15’s supplier 
supplied the xylitol in X14, but further communication revealed that X14 
had been withdrawn from the market because of suspected mistrust with 
X15. Because X14 was ‘suspicious’, one of us (C.S.) tasted it. The lack 
of a subtle cooling effect in the mouth (a characteristic of xylitol)5 and 
an aftertaste reminiscent of other sweeteners (e.g. stevia) added basis 
to the idea that we were dealing with a likely adulterated food product. 
Analysing the contents of all samples is beyond the scope of this study, 
but given this outcome, it is an investigation that should be undertaken. 

Two brands are represented more than once (Figure 1), and in each case 
the within-product isotope values are different; which may be explained 
by a change in supplier.

To test the possibility that sample contents may comprise mixed 
origins we analysed samples separated by size (< or >500 μm; n=3 
samples). For each (although the proportions of each size class were 
different between products), we found no difference in the isotope values 
of the two fractions. This analysis included one sample for which the 
source (C3 or C4) was not clear. This finding suggests, at least at this 
scale, that the sample was not derived from separate sources. 

In 36% (n=10) of xylitol samples, the country of origin was not disclosed 
on the packaging, and information regarding the origin and source 
was sometimes vague, e.g. ‘fibrous parts of plant’, or lacking. The 
South African Foodstuffs, Cosmetics and Disinfectants Act (Act no. 54 
of 1972), which includes regulations on the labelling and advertising of 
foods (Government Gazette No 37695, May 2014), prescribes numerous 
requirements that do not appear on a number of the products. These 
inconsistencies, in what appear to be standard labelling requirements, 
may result in consumers being mis- or uninformed regarding the products 
they are purchasing. Xylitol available in South Africa is not produced 
locally but, to the best of our knowledge, imported. In China, the waste 
biomass available after preparing corncobs (C4) for the food industry 
provides a substrate for xylitol production25,29, yet negative perceptions 
regarding the source (and country) of certain products may persist for 
consumers. In the USA, hydrosylate from birch trees (C3) is utilised as a 
substrate for xylitol production25 and it is also potentially produced from 
other hardwood (C3) species26. Even though xylitol produced from birch 
may appeal to a discerning market, although it may be more expensive, 
there is no other major difference between birch-sourced and corn-
sourced xylitol. Therefore, both information that is provided and a lack of 
information, can be misleading for the consumer.

Xylitol is traded all over the world. South Africa is simply one example of 
an importer vulnerable to adulteration and/or misinformation originating 
at either the source or locally; making this work of both national and 
international relevance. The carbon isotope data prima facie suggest 
that most xylitol samples represent origins suggesting either a C3 or 
a C4 source. For four samples, we question a single C3 or C4 source 
(intermediate isotope values; X8, X15, X5), or authenticity as xylitol 
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Figure 1:	 The δ13C values of 29 xylitol, 3 xylose and 29 sugar samples. See Supplementary tables 1 and 2 for isotope values of samples presented in the 
figure, and values and references for calculated mean endpoint values for xylitol and sugar.
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(X14). However, other reasons may explain these findings, including 
that: (1) the samples represent both C3 and C4 origins (mixture of 
different products; although this was not apparent in the three samples 
for which we measured the isotope value of different size granules), (2) 
different processing techniques result in fractionation processes that 
result in isotope values of the product not aligned with the source (we 
suggest that this is unlikely because the wide range of isotope values 
obtained would then suggest many processing techniques), (3) the 
isotope values of the samples do align with the source, but it is rather the 
source that (for whatever reason) does not have a clearly distinguishable 
C3 or C4 signature, (4) these intermediate products represent xylitol with 
a CAM origin (although in no sample was this disclosed, and we are not 
aware of any xylitol derived from a CAM species), or (5) adulteration 
with non-xylitol additives (e.g. flow agents, other artificial sweeteners 
like stevia or erythritol) affected the final δ13C of the marketed product. 
Because marketers are not obliged to disclose the origins or methods 
of processing, the intention is thus not to challenge the authenticity of 
those marketing these products, but rather to challenge the information 
(or lack thereof) in the marketing process. Stable isotope analyses may 
be a suitable method to distinguish the origin of commercially available 
xylitol, especially when this is not clearly stated on the packaging or 
label. This study thus provides information that may be used to profile 
C3- or C4-derived sugar and xylitol products, and to lay a foundation 
for further investigations regarding these products in the food market. 
However, a priori information may be required regarding chemical 
processes that present source-product variation in isotope signatures, 
before conclusive origins (i.e. C3 or C4) can be defined, and before any 
isotope interpretation can be applied in a forensic assessment.
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