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ABSTRACT 

Background: Recent protocols for the determination of absorbed dose to water in high-energy 

photon and electron beams are based on air ionisation chambers calibrated in terms of absorbed 

dose to water in a 
60
Co gamma ray beam (

60

,

Co

D w
�

). To determine the absorbed dose to water in 

any other high-energy beam (excluding neutrons), the protocols use chamber dependent beam 

quality conversion factors. Such factors are published in different protocols but only for a 

selected number of ionisation chambers used clinically. These beam quality correction factors 

can alternatively be determined experimentally in the user’s beam qualities for each ionisation 

chamber. The measurement of beam quality correction factors (kQ for photons and kq,E for 

electrons) accounts for the actual design of different ionisation chambers. Direct measurement 

in the user’s beams also helps to minimise the uncertainties inherent in the theoretical 

determination of beam quality correction factors based on a unified design. 

Purpose: The purpose of this work was  to determine values of the beam quality correction 

factors in clinical high-energy photon and electron beams for  PTW 30013 and PTW 23333 0.6 

cm
3
 ionisation chambers,  a PTW 31006 ‘Pinpoint’ ionisation chamber, a PTW 31010 0.125 cm

3
 

ionisation chamber, a PTW 23343 Markus and a PTW 34045 Advanced Markus ionisation 

chamber. 

Methods and materials: Siemens Primus linear accelerators were used to generate 6 and 18 

MV photon beams and 5, 6, 7, 9, 12, 14, 15, 18 and 21 MeV electron beams. An Equinox 

Theratron External Beam Therapy System was used to generate the 
60
Co beam used in this 

study.  The ionisation chambers were all cross-calibrated for 

60

,

Co

D w
�

 against the PTW 23333 0.6 

cm
3
 reference ionisation chamber at 5 cm water-equivalent depth in the 

60
Co beam. The field 

size at the reference depth was 10 cm x 10 cm. For the same set-up, the absorbed dose to water 

using the IAEA TRS-398 (IAEA, 2000) was determined using the PTW 23333 0.6 cm
3
 

reference ionisation chamber. The exposure calibration factor (�x) for the PTW 23333 0.6 cm
3
 

reference chamber was then derived by equating the absorbed dose to water calculated from the 

IAEA TRS-398 protocol to the absorbed dose to water calculated from the AAPM TG-21 

(AAPM, 1983) protocol. The cavity-gas calibration factor (�gas) was then determined for the 

PTW 23333 0.6 cm
3 
reference ionisation chamber. The cross-calibrated 

60

,

Co

D w
�

 for each 

cylindrical chamber and the absorbed dose to water due to the PTW 23333 0.6 cm
3
 reference 

ionisation chamber in the 6 MV and 18 MV photon beams were used to determine kQ for each 
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ionisation chamber at the respective photon energies. The plane-parallel and the cylindrical 

ionisation chambers were then cross-calibrated for �gas in the 21 MeV electron beam. The 

absorbed dose to water in the electron beams was then calculated from first principles using the 

AAPM TG-21 worksheets for all of the chambers. The kq,E were then derived for each of the 

ionisation chambers at each of the electron energies. 

Results: The measured kQ values as a function of TPR20,10 (the tissue-phantom ratio in water at 

depths of 20 cm and 10 cm, for a field size of 10 cm x 10 cm and a constant source-chamber 

distance of 100 cm) for the different ionisation chambers and the published IAEA TRS-398 kQ 

values for the PTW 30013 0.6 cm
3 
ionisation chamber are tabulated below:   


ominal 

energy/MV 

TPR20,10 PTW 

23333 

PTW 

31006 

PTW 

31010 

PTW 

30013 

PTW 30013  

(IAEA TRS-398) 

6 0.674 0.991 0.998 0.997 0.993 0.991 

18 0.770 0.973 0.973 0.985 0.973 0.972 

The measured kq,E values as a function of R50 for the electron beam qualities for the different 

ionisation chambers and the published IAEA TRS-398 kq,E values for the PTW 23343 Advanced 

Markus ionisation chamber are tabulated below:   


ominal 

Energy 

(MeV) 

R50/ 

cm 

PTW 

23333 

PTW 

30013 

PTW 

31006 

PTW 

31010 

PTW 

34045 

PTW 

23343 

PTW 23343 

(IAEA 

TRS-398) 

5 2.05 0.890 0.899 1.035 0.877 0.950 0.917 0.925 

6 2.40 0.884 0.890 1.023 0.872 0.946 0.915 0.921 

7 2.75 0.878 0.884 1.022 0.870 0.946 0.917 0.918 

9 3.51 0.868 0.873 1.002 0.862 0.926 0.900 0.913 

12 4.68 0.858 0.859 0.988 0.864 0.912 0.891 0.906 

14 5.28 0.851 0.854 0.978 0.859 0.904 0.885 0.902 

15 5.93 0.851 0.852 0.978 0.851 0.895 0.893 0.899 

18 7.30 0.859 0.861 0.986 0.861 0.893 0.899 0.893 

21 8.23 0.820 0.824 0.932 0.822 0.847 0.850 0.888 

The average observed difference between the measured values and those published in the IAEA 

TRS-398 protocol was 0.2% for the PTW 30013 0.6 cm
3
 in the photon beams and 1.2% for the 

PTW 23343 Markus ionisation chamber in the electron beams.  

Conclusion: Beam quality correction factors for ionisation chambers can be determined 

experimentally or confirmed in an end-user’s beam quality.  
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CHAPTER O
E: I
TRODUCTIO
 

1.1 Introduction 

The International Atomic Energy Agency and the American Association of Physicists in 

Medicine are among the various organisations that have published dosimetry protocols and 

Codes of Practice for the calibration of radiotherapy beams (Pedro & Saiful, 2001). 

Currently an ionisation chamber, calibrated in terms of the absorbed dose to water in a 
60

Co 

gamma ray beam, is used to determine the dose in a medium. The rationale of this trend is 

to deal directly with absorbed dose to water, a quantity which relates closely to 

radiobiological effects in humans and is therefore of interest in the clinic (IAEA, 2000).  

This approach offers the possibility of reducing the uncertainty in dosimetry compared to 

air kerma based formalisms, provides a robust system of primary standards with 

dissemination and allows the use of a simple formalism (IAEA, 2000; Pedro & Saiful, 

2004; Saiful, 2001). The formalism and dosimetry procedures use the absorbed dose to 

water calibration factor of an ionisation chamber at 
60

Co 
( )60

,

Co

D w�
 together with a theoretical 

beam quality conversion factor (
Qk for photons  or kq,E electrons) for the determination of 

absorbed dose to water in other high-energy beams excluding neutrons (IAEA, 2000; 

Saiful, 2001). The absorbed dose to water in a 
60

Co gamma ray beam is therefore an 

international reference standard, which provides global uniformity in radiotherapy 

dosimetry. This study aimed at determining the beam quality correction factors for several 

different ionisation chambers, which could be used in the measurement of absorbed dose to 

water in high-energy photon and electron beams at the Charlotte Maxeke Johannesburg 

Academic Hospital. 

1.2 Background to the problem 

Measurements in radiotherapy dosimetry are either relative or absolute. In absolute 

dosimetry, the physical quantity is measured at the reference point under reference 

conditions to yield the absorbed dose to water at the reference point (European Medical 

Radiation Learning Development, 2001). 

 

It is imperative to determine dose as accurately and precisely as possible in order to deliver 

the prescribed dose to a point or a given volume of interest (AAPM, 1983). There are 



 

 

 2

different parameters that enter into the formalisms for determination of absorbed dose to 

water. These physical quantities need to be studied carefully and accurately in order to 

determine the absorbed dose to water within uncertainties of ±3.5% or better (IAEA, 2000).  

It is known for example, that the relative uncertainty of ionometric determinations of 

absorbed dose to water in reference dosimetry of high-energy photon beams is dominated 

by the uncertainty of the calculated chamber- and energy-dependent correction factors, Qk  

(Achim & Ralf-Peter, 2007). 

 

Many reviewers (Hugo et al., 2002; Podgorsak, 2005; Rogers, 1990)
 
recommend that the 

beam quality correction factors for megavoltage radiotherapy beams are measured directly 

in the user’s beam for each ionisation chamber. Often these factors are calculated 

theoretically from data available in different protocols. It is known that Qk  can be measured 

with a standard uncertainty of less than 0.3% (Achim & Ralf-Peter, 2007; IAEA, 2000; 

Saiful, 2001). 

 

The experimental determination of Qk  and ,q Ek
 
at various beam qualities intrinsically takes 

into account the response of different ionisation chambers. In contrast, the calculated values 

of Qk  ignore chamber-to-chamber variations in response to energy within a given chamber 

type, and its uncertainty is therefore larger than for experimentally determined Qk  values 

(Saiful, 2001). Direct calibration, in terms of absorbed dose to water at each beam quality, 

reduces the total uncertainty of absorbed dose determination in the user’s beam by 1–1.5% 

(Hugo, Wim & Hubert, 1999). This study aimed at determining the beam quality correction 

factors for several different ionisation chambers used for the dosimetry of high-energy 

photon and electron beams at the Charlotte Maxeke Johannesburg Academic hospital. 

1.3 Statement of the problem 

Many reviewers recommend that the beam quality correction factors for radiotherapy 

megavoltage beams are measured directly in the user’s beam for each ionisation chamber. 

Can the beam quality correction factors of different ionisation chambers at different high-

energy photon and electron beams be determined accurately in a clinical set up? 
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1.4 Objectives of the study 

The primary aim of this study is to experimentally determine the Qk  and ,q Ek  factors for 

different ionisation chambers in a range of high-energy photon and electron beams used at 

the Charlotte Maxeke Johannesburg Academic hospital. The specific aims of the study 

were fourfold; 

• Cross-calibrate the PTW 30013 0.6 cm
3
 ionisation chamber,  a PTW 31006 

‘Pinpoint’ ionisation chamber, a PTW 31010 0.125 cm
3
 ionisation chamber, a PTW 

23343 Markus and a PTW 34045 Advanced Markus ionisation chamber against a 

PTW 23333 0.6 cm
3
 reference ionisation chamber which has a traceable calibration. 

• Determine the absorbed dose-to-water  in a range of photon and electron beams 

using IAEA TRS-398 with the PTW 23333 0.6 cm
3
 reference ionisation chamber 

with 
60

,

Co

D w
�  and 

60
Co

k�
calibration factors of proven stability and traceability and 

IAEA TRS-398 published Qk
 and ,q Ek

 
values. 

• Measure the response of the PTW 30013 0.6 cm
3
 ionisation chamber, the PTW 

31006 ‘Pinpoint’ ionisation chamber, and the PTW 31010 0.125 cm
3
 ionisation 

chamber in the photon beams. 

• Measure the response of the PTW 30013 0.6 cm
3
 ionisation chamber, the PTW 

31006 ‘Pinpoint’ ionisation chamber, the PTW 31010 0.125 cm
3
 ionisation 

chamber, the PTW 23343 Markus and the PTW 34045 Advanced Markus ionisation 

chamber in the electron beams. 

• Compare the experimentally determined values of Qk and ,q Ek  with published ones 

for the PTW 30013 0.6 cm
3
 and PTW 23343 Markus ionisation chambers, 

respectively. 

• Derive Qk  and ,q Ek  for the PTW 31010 0.125 cm
3
, PTW 31006 ‘Pinpoint’ and PTW 

34045 Advanced Markus models of ionisation chambers for which published data 

do not exist. 
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CHAPTER TWO:   LITERATURE REVIEW 

2.1 Photon beam dosimetry 

The absorbed dose to water Dw, at a reference depth in a photon beam of quality Q, and in 

the absence of an ionisation chamber is determined from: 

 

               

60

,. . . ,Co

w D w Q iD M � k k= ∏ ………............................................................ (1) 

where  

• M is the charge measured under standard conditions of temperature, pressure and 

humidity. 

• 
60

,

Co

D w�
is the absorbed dose to water calibration factor (in Gy/C) for the ionisation 

chamber in the 
60

Co reference beam. 

• Qk
 is a chamber specific factor which corrects 

60

,

Co

D w�
to the user’s beam quality Q 

(different from the 
60Co  beam). 

• ik∏  is the product of the factors to correct for non-reference conditions in the setup 

and incomplete ion collection efficiency of the ionisation chamber ( Rogers, 1990). 

Factors ki represent a correction for the effect of i-th influence quantity. Such 

correction factors may have to be applied as the calibration coefficient refers, 

strictly speaking, only to reference conditions. By definition, the value of ki is unity 

when  influence quantity i, assumes its reference value (Rogers, 1990).  

The product  

60

, ,. ( )Co Q

D w Q D w� k �=
 is of special interest and is the absorbed dose to water 

calibration factor (in Gy/C) of the ionisation chamber in the beam quality Q. The current 

accepted relative uncertainty of Dw in equation (1) is of the order of 1.5% as determined by 

ionometric methods and the uncertainty in kQ is 1% (Achim & Ralf-Peter, 2007).   
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2.2 Electron beam dosimetry 

According to AAPM TG-51(Almond et al., 1999), the absorbed dose to water in an electron 

beam of quality q,E is given by; 

 

             

60,

, ,. .q E Co

w D w q ED M � k=
................................................................................................ (2) 

where  

• M is the reading of the dosimeter with the point of measurement of the chamber 

positioned at the reference depth under reference conditions and corrected for ion 

recombination, polarity effect, electrometer correction factor and the standard 

environmental conditions of temperature, pressure and relative humidity of the air in 

the ion chamber.  

• 
60

,

Co

D w�
 is the absorbed dose to water calibration factor (in Gy/C) of the ionisation 

chamber in the reference
 60

Co beam. 

• ,q Ek
 is a beam quality conversion factor  for electrons to convert 

60

,

Co

D w�
 to 

,

,

q E

D w�
  for 

an electron beam of quality q,E. 

2.3 Beam quality specification 

Among the difficulties of the kQ and kq,E concept is the need for a unique beam quality 

specification
 
and the possible  variation in the kQ and kq,E values for different chambers of 

the same type (Hugo, Wim & Hubert, 1999). The AAPM TG-21
 
(AAPM, 1983) protocol 

specifies photon beam energy in terms of the energy of the electron beam as it strikes the 

target (the nominal accelerating potential) which is related to the “ionisation ratio”. The 

ionisation ratio is defined as the ratio of the ionisation charge or dose measured at 20 cm 

depth in water to that measured at 10 cm depth for a constant source to detector distance in 

a 10 cm x 10 cm field at the plane of the chamber. The ionisation ratio is the same as the 

TPR20,10  expression used by the IAEA TRS-398 (IAEA, 2000)dosimetry protocol. The 

ionization ratio or TPR20,10 is a measure of the effective beam attenuation coefficient 

through 10 cm of water. TPR20,10 is empirically related to the percentage depth dose, 

through  

 

20,10 20,101.2661 0.0595TPR PDD= −
  …………………………………………………… (5) 
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where PDD20,10  is the ratio of percentage depth doses at 20 cm and 10 cm depths for a field 

size of 10 cm x 10 cm field size defined at the water phantom surface with a source to 

surface distance of 100 cm ( IAEA, 2000; Podgorsak, 2005). 

   

When linear accelerator electron beams strike a phantom or a patient surface at the nominal 

SSD, a spectrum results from the energy spread. This is caused by interactions within the 

air and with the linear accelerator components like the collimators, scattering foil, monitor 

chamber and applicator. The electron beam is therefore degraded and contaminated. The 

quality of clinical electron beams has been specified as Eo, the mean electron energy of the 

incident spectrum striking the phantom surface (Podgorsak, 2005). Eo is empirically 

derived from R50, the depth at which the electron beam depth dose decreases to 50% of its 

maximum value (IAEA, 2000). The reference depth dref, for electron beam calibrations in 

water is expressed as  

 

dref (cm) = 0.6R50 (cm) - 0.1 (cm) …………………………………..…………………….. (6) 

 

The reference depth dref is used clinically because it is known to significantly reduce 

machine to machine deviations in chamber calibration coefficients (Hugo et al., 2002).
 

2.3.1 Photon beam quality specification 

The use of ionisation ratios for the determination of photon beam quality indices provides 

an acceptable accuracy owing to the slow variation with depth of water/air stopping power 

ratios (Podgorsak, 2005) and the assumed constancy of ionisation chamber perturbation 

factors beyond the depth of maximum dose.  

For high-energy beams, TPR20,10 is an insensitive quality specifier. For example a 1% 

change in TPR20,10 for values near 0.8 leads to a 3 MV change in the nominal accelerating 

potential (near 20 MV) and a 0.4% change in the water to air stopping-power ratio. In 

contrast, for values of TPR20,10 near 0.7 a 1% change corresponds to a 0.1% change in 

stopping-power ratio and only 0.5 MV change in the nominal accelerating potential 

(Rogers, 1990).  
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            2.3.2 Electron beam quality specification 

The beam quality index for electron beams is the half-value depth (R50) in water. This is the 

depth in water at which the electron beam depth dose decreases to 50% of its maximum 

value, measured with a constant SSD of 100 cm and a reference field size at the phantom 

surface. Different protocols recommend different field sizes for different mean incident 

electron energies. According to IAEA TRS 398, the field sizes should be at least 10 cm x10 

cm for R50 ≤ 7 g/cm
2
 (Eo ≤ 16 MeV) and at least 20 cm x 20 cm for R50 >7 g/cm

2
 (Eo ≥ 16 

MeV). The AAPM TG-51 recommends the field size to be greater than 20 cm x 20 cm for 

R50 > 8.5 cm, i.e., E > 20 MeV, where Eo and E is the mean energy of an electron beam at 

the phantom surface and at any depth, respectively. Nitschke (1998) recommends a field 

size of at least l2 cm x l2 cm for E0 < 15 MeV or 20 cm x 20 cm for E0 ≥ 15 MeV. A plane 

parallel chamber is recommended for E0 ≤ 10 MeV (AAPM, 1983; IAEA, 1987; AAPM, 

1991, IAEA, 2000) and for all relative dose measurements. 

The use of R50 as the beam quality index is a simplification and a change from specifying 

beam quality in terms of mean electron energy (Eo) of the incident spectrum striking the 

phantom surface.  

One way of determining R50 is to determine the 50% ionization, I50 in a water phantom at 

an SSD of 100 cm from the relative depth-ionization curve. For cylindrical chambers, there 

is a need to correct for gradient effects by shifting the relative depth-ionization curve 

upstream by 0.5 rcav, the radius of the air cavity in a chamber in question. For plane-parallel 

chambers no shift is needed, as the effective point of measurement is at the inside surface 

of the front electrode which is at the point of interest. All the readings must be corrected for 

ion recombination and polarity (IAEA, 2000; Khan, 2003).  

As an alternative the percentage depth dose curve can be determined directly using a good 

quality diode detector. This requires test comparisons with an ionisation chamber in order 

to establish whether the diode is suitable for depth dose measurements or not (Almond et 

al., 1999).  

If a plastic phantom is used for measuring dose, the values of the depths are scaled to water 

equivalent depths (IAEA, 1987; Nitschke, 1998) dw according to  
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                      w pl pld d C=
................................................................................................ (7) 

Cpl is the plastic to water depth scaling factor and the reading in plastic is scaled to the 

equivalent reading in water according to  

                       pl plM M h=
 ………..…………….....………………………...……….. (8) 

where M is the reading when the chamber is used with plastic and hpl is a material 

dependent fluence scaling factor to correct for the differences in electron fluence in plastic 

compared with that in water at the equivalent depth. 

The plastic material should be conductive. However, insulating materials can be used 

provided the problems resulting from charge storage are considered. The effect of charge 

storage can be minimized by using sheets not exceeding 2 cm in thickness (IAEA, 2000). 

2.4 Theoretical expressions for the beam quality correction factors in high energy 

photon and electron beams. 

            2.4.1 Theoretical expression for kQ (photon beams). 

The kQ factor can be calculated using two different methods. The first method applies the 

AAPM TG-51 formalism (Almond et al., 1999). 

                

.................................................................................(9)

o

w

wall repl

air
Q

Q w

wall repl

air
Q

L
p p

k

L
p p

ρ

ρ

  
  
   

=
  
  
   

 

where  

• prepl = pgr.pfl …………..………………………..……………………………. (10) 

pgr  accounts for the fact that the cavity introduced by a cylindrical chamber with its 

centre at the reference depth, samples the electron fluence at a point which is closer 

to the radiation source than the reference depth. pgr depends on the inner radius of 

the cavity of the ionisation chamber (Ma & Nahum, 1995). The cavity correction pfl 

corrects for the perturbation of the electron fluence due to scattering differences 

between the air cavity and the medium (Pedro & Saiful, 2001).  



 

 

 9

• pwall accounts for the differences in the photon mass energy-absorption coefficients 

and the electron stopping powers of the chamber wall material and the medium. If 

the central electrode of a cylindrical ionisation chamber is not air equivalent, a 

correction Pcell, would also need to be made for this lack of equivalence. 

• 

w

air

L

ρ

 
 
   is the mean restricted collision mass stopping power of water to air (AAPM, 

1983). 

 

The second method uses the IAEA TRS-398 formalism (IAEA, 2000; ARPANSA, 2001; 

Achim & Ralf-Peter, 2007): 

               
60 60 60

,

,

( ) ( )
.......................................(11)

( ) ( )

w air Q air Q Q

Q

W air airCo Co Co

S W p
k

S W p

⋅ ⋅
=

⋅ ⋅
 

where, 

• ,( )w air xS
is the Spencer-Attix water to air stopping-power ratio for beam quality x, 

which is the ratio of the mean restricted mass stopping powers of water to air, 

averaged over a complete spectra.  

• airW
 is 33.7 J/C, the mean energy expended in air per ion pair formed. 

• px is the perturbation factor (includes the displacement effect) taking into account 

the deviations from the ideal Bragg-Gray conditions when real ionisation chambers 

are used. 

2.4.2 Theoretical expression for kq,E (electron beams). 

According to Khan (Khan, 2003) the electron beam quality conversion factor kq,E  is given 

as 

              50

, '

, ..................................................(12)q E

q E gr R ecalk P k k= ⋅ ⋅
 

where  

• 
,q E

grP
corrects for the gradient effects at the reference depth when a cylindrical 

chamber is used in an electron beam, and depends on the ionisation gradient at the 

point of measurement (Kubo, Kent & Krithivas, 1986).  

•  kecal is the photon to electron conversion factor (Almond et.al., 1999) defined for a 

given chamber model and is used to convert the absorbed dose to water calibration 
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factor at 
60

Co, 
60

,
Co

D w�
 into ,

ecalq

D w�
 , the absorbed dose to water calibration factor in the 

electron beam of quality qecal, i.e. 

                           
60

, ,
Co ecalq

ecal D w D wk � �=
…………………………………………….... (13) 

• is the electron quality conversion factor used to convert ,
ecalq

D w�
into 

,

,

q E

D w�
for any 

beam quality q,E, i.e. 

50

' ,

, ,
ecalq q E

R D w D wk � �=
………………………………….……… (14) 

where R50 is usually fixed at 7.5 g cm
-2  

for nominal energies 

of 3 MeV to 50 MeV and with field sizes ≥ 10 cm x 10 cm 

(Almond et.al., 1999). 

2.5 Reference conditions of the irradiation geometry for absorbed dose measurements 

using an ionisation chamber in a phantom. 

A water phantom is the reference medium for the absorbed dose  measurements. For 

absolute dose measurements in electron beams with E0 < 10 MeV and for relative dose 

measurements, a plastic phantom may be used but depths and ranges must be converted to 

the water equivalent. There should be a margin of at least 5 cm on all sides of the largest 

field size used at measurement depth, and beyond the maximum depth of measurement. 

The chamber is always used with its effective point of measurement at the reference depth. 

The effective point of measurement for a plane parallel chamber is the inside surface of the 

front electrode (IAEA, 2000). 
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CHAPTER THREE:  MATERIALS A
D METHODS 

3.1 The Charlotte Maxeke Academic Hospital Johannesburg linear accelerator. 

Two Siemens PRIMUS
TM

 linear accelerators (LINACS) were used for the measurements. 

Figure 3.1 shows one of the accelerators used. These linear accelerators can generate 

collimated photon beams with nominal accelerating voltages of 6 and 18 MV and electron 

energies of 5, 6, 7, 9, 12, 14, 15, 18 and 21 MeV. The output rate of the linear accelerator is 

200 MU/min for 6 MV and 300 MU/min for 18 MV and the electron modes. The machine 

delivers 1 Gy/ 100 MU in a 10 cm x 10 cm field size at a point in a 4.4 cm build up of 

perspex phantom, 100 cm from the source focus in the photon beams referenced to the 

PTW 23333 ionisation chamber. For electrons, the machine likewise delivers 1 Gy/ 100 

MU at the central axis depth of maximum dose at 100 cm SSD in a field size defined by a 

10 cm x 10 cm applicator. The applicator is such that there is an air gap of 5 cm between 

the end face and the phantom surface. 

 

 

Figure 3.1: A Siemens PRIMUS linear accelerator used in this study. 
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3.2 The Theratron Equinox External Beam Therapy System.
  

The 
60

Co beam used in this study is produced by a Theratron Equinox
TM

 External Beam 

Therapy System (Figure 3.2). This model is an 80 cm SAD unit.  The therapy source used 

is a sealed capsule.  The head of the machine is shielded with lead. A pneumatic air system 

controls the source drawer, which drives the source from the fully shielded position to the 

fully exposed position. The source drawer is a cavity of approximately 2.8 cm diameter by 

12 cm long, held in place with an end plug and securing clip. The machine is equipped with 

a display monitor, to display beam parameters, primary and secondary timers and system 

messages. The control panel allows for treatment control and monitoring. The source is a 

metallic isotope of 
60

Co, sealed in two stainless steel capsules of approximately 1.5 cm in 

diameter and 3 cm long. The 
60

Co nuclei decay to 
60

Ni with emission of gamma rays of 

energies of 1.17 MeV and 1.33 MeV. The half-life of 
60

Co is 5.26 years.

 

Figure 3.2: The Theratron Equinox
TM

 External Beam Therapy System used in this study. 
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3.3 Ionisation chambers 

Four cylindrical and two parallel plate ionisation chambers were used in this study. The 

PTW cylindrical chambers were of the type PTW 23333 0.6 cm
3
, 30013 0.6 cm

3
, 31006 

‘Pinpoint’ and PTW 31010 0.125 cm
3
, and the PTW plane-parallel chambers were of the 

type PTW 23343 Markus and 34045 Advanced Markus. The PTW 23333 0.6 cm
3
 is the 

reference ionisation chamber of Charlotte Maxeke Johannesburg Hospital. The PTW 23333 

0.6 cm
3
 is of proven stability with a drift of only 0.3% between 1997 and 2005. A track 

record of its absorbed dose to water calibration factors over the years is presented in Table 

3.1. The uncertainty budget for its �x and �gas   is shown in Table 3.2. 

Table 3.1: The calibration factor history of the PTW 23333 reference ionisation chamber. 

Calibration Date 
                            

60

,

Co

D w�
 

Stated uncertainty 

Feb –1992 0.516 Gy/V, 10.122 nF (= 5.098 E+07 Gy/C) 5.0% 

Oct-1997 5.182 E+07 Gy/C 2.2% 

Oct-2005 5.198 E+07 Gy/C 2.2% 

 

Table 3.2: The uncertainty budget of �x and �gas of the ionisation chambers used in this 

study. 

U
CERTAI
TY BUDGET FOR x�
 

Contributing components      Uncertainty 

Dw from IAEATRS-398 -1.1% 

Backscatter  +1.5% 

Fmed -1.5 % 

In-air measurement +1.5% 

Uncertainty  ( )2 2 2 21.1 1.5 1.5 1.5 2.8%+ + + =  

U
CERTAI
TY BUDGET FOR gas�
 

Contributing components      Uncertainty 

�x 2.8% 

W/e  0.2% 

Uncertainty  ( )2 2
2.8 0.2 2.8%+ =  
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The PTW 30013 0.6 cm
3
 model was selected for this work because of its geometric 

equivalence to the PTW 23333 0.6 cm
3
, its proven stability, and because it was 

representative of a series of over seven ionisation chambers used for the daily calibration of 

the teletherapy machines at the facility. The PTW 31006 ‘Pinpoint’ and PTW 31010 0.125 

cm
3
 ionisation chambers are often employed in relative dosimetry measurements in high 

dose gradient regions of clinical beams, e.g. the penumbra and small field beam dosimetry. 

The PTW 31006 is recommended for stereotactic field measurements in radiation therapy. 

 

The PTW 23343 Markus and PTW 34045 Advanced Markus plane- parallel ionisation 

chambers are used for absolute and relative dosimetry in high-energy electron beams. The 

Markus chamber has a volume of 0.055 cm
3
 and the Advanced Markus has a volume of 

0.02 cm
3
. The Advanced Markus is marketed as a perturbation-free version of the Markus 

chamber.  

The plane-parallel chambers have nominal useful ranges of energies of 2 MeV to 45 MeV. 

The nominal useful range for the cylindrical chambers is
 
from 

60
Co to 50 MV for photons 

and from 10 to 45 MeV for electrons.  The 31010 0.125 cm
3
 exceptionally covers a useful 

range of 66 keV to 50 MeV for electron beams. The description of the wall, build up caps 

and the various dimensions for the six ionisation chambers are shown in Table 3.3. Figure 

3.3 shows the apparatus used for this study. The measurement volumes of all the above 

chambers are vented, fully guarded and suitable for use in solid state phantoms. 
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Table 3.3:  The characteristics of the different ionisation chambers types used in this study. 
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The electrode separation and the guard ring width for the PTW 23343 Markus are 2.00 mm 

and 0.2 mm respectively. The electrode separation and the guard ring width for the PTW 

34045 Advanced Markus are 1.00 mm and 2.0 mm respectively.  
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Figure 3.3: Photographs of the ionisation chambers used in this study. (a) The PTW 23333 

0.6 cm³ chamber/ PTW 30013 0.6 cm³ chamber, (b) The PTW 31010 0.125 cm³ chamber 

(c) The PTW 31006 ‘Pinpoint’ 0.015 cm³ chamber (d) The PTW 34045 0.02 cm³ Advanced 

Markus chamber/ PTW 23343 0.055 cm
3
 Markus chamber.   

 (a)  (b) 

 

(c) 
 (d) 
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3.4 Perspex phantom 

The exposure readings in all the photon and electron measurements were taken in solid 

perspex sheet phantoms. The perspex media was preferred to water because set-ups are 

more reproducible especially with respect to depth and the reference chamber used in this 

study was not waterproof. The perspex phantoms were of dimensions 30 cm x 30 cm x 30 

cm and in thermodynamic equilibrium with the treatment rooms.  

3.5 Other materials used 

The electrometer used was a PTW Unidos E T10008 (see Figure 3.4) capable of positive 

and negative polarity settings over a range of 0 to 400 V in intervals of 50 V. For in air 

dosimetric methods, a retort stand was used to hold the chamber firmly at the measurement 

point.  

 

 

 

 

 

 

 

 

 

 

                                Figure 3.4: The PTW T10008 Unidose E Electrometer 

 

3.6 The cross-calibration of ionisation chamber in photon and electron beams. 

Except for the PTW 23343 Markus ionisation chamber, the absorbed dose to water 

60

,

Co

D w�
 

calibration factors for all the other ionisation chambers were available from the PTW 

standards dosimetry laboratory in Germany. All the

60

,

Co

D w�
, �x and �k calibration factors for 

the different ionization chambers were independently cross-calibrated in the 
60

Co beam 

against the calibrated PTW 23333 0.6 cm
3
 reference ionisation chamber. �gas for the plane 

parallel chambers was derived from the cross-calibration at 21 MeV against the reference 
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ionisation chamber. The recommendations of the AAPM TG-21 and IAEA TRS-398 

protocols were followed for the cross-calibration procedures.  

3.6.1 Cross-calibration of the 

60

,

Co

D w�
for ionisation chambers in 

60
Co beam. 

The absorbed dose to water calibration factors for any ionisation chamber Y, under test 

against a reference ionisation chamber ref, is given by 

        

60 60

, ,

( )
( ) .( )

( )

refCo Co

D w Y D w ref

Y

M
� �

M
=

………………………………………………….…… (15) 

Where (M)ref and (M)Y are the electrometer readings for an ionisation chamber in the 
60

Co 

beam for the reference and the chamber under test, respectively.  

 

3.6.2 Cross-calibration of the 
60

Co exposure calibration factor �x’s. 

 

The 
60

Co exposure calibration factor �x for the PTW 23333 0.6 cm
3
was calculated using  

                    

398
21

21

( )
( )

( )

w IAEATRS
x AAPMTG

eq AAPMTG

D
�

MfA BSF

−
−

−

=
 …………………………..……….. (16) 

Where Dw is as given in equation (1); f is 0.967 cGy/R, the dose to water per roentgen of 

exposure; Aeq is 0.989, a factor that accounts for attenuation and scattering in a small mass 

of water of 0.5 cm radius at the reference depth; BSF  is the 0.5 cm depth tissue air ratio; 

and M (nC) is the electrometer reading for 10 cm x 10 cm field size, normalized to 20
o
C 

temperature and a pressure of one standard atmosphere and corrected for timer errors in 

accordance with the IAEA TRS-398 formalism i.e. 

                   
. . . .raw

TP pol elec s

M
M k k k k

t τ
=

+   …………………………..……..………...….… (17) 

where rawM
the uncorrected reading, τ is is the timer error, kTP is temperature pressure 

correction factor, kelec is the electrometer calibration correction factor and ks is the 

recombination correction factor. 
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3.6.3 Cross-calibration of the �gas for plane-parallel chambers in electron beams. 

The plane-parallel chambers were cross-calibrated against the PTW 23333 0.6 cm
3
 

reference ionisation chamber whose replacement correction (Prep) was 0.994 at 21 MeV, the 

highest electron energy available at the department. The AAPM TG-21 formalism was used 

i.e.                         

( )
( )

( )

cylin

gas ion replp p

gas p p

ion

M� P P
�

MP

−
−

=
……………………………………………………….…. (18) 

where M is the response of the chamber in question at dmax, p-p and cylin refer to the plane-

parallel and cylindrical chambers respectively. 

3.7 The absorbed dose measurement in megavoltage photon beams. 

The charge readings at a point in the perspex phantom were measured with ionization 

chambers with the center of the sensitive volume placed at 4.4 cm depth, the water 

equivalent reference depth as used for calibration of the ionisation chambers in the 
60

Co 

beams i.e. 5 cm of water. The centers of the chambers were aligned with the isocentre of 

the treatment machine. The dose was referenced to the PTW 23333 0.6 cm
3
 ionisation 

chamber using its 
60

Co absorbed dose to water calibration factor

60

,

Co

D w�
. The dose to water at 

the reference depth with the chamber removed was calculated using equation (1).  

The chambers and the perspex phantom were allowed to equilibrate with the ambient air 

temperature. With the PTW 23333 0.6 cm
3
 reference chamber connected to the 

electrometer and the machine in the beam off mode, the leakage at the positive polarity of 

the electrometer was -0.023 nC (with medium range settings, 12.0 nA) for 732.0 seconds. 

Charge readings were taken for 100 monitor units. The measurements were repeated three 

times at each polarity of each ionization chamber. The mean value of the readings was then 

calculated. Throughout the study, the absolute value of the polarising voltages was 

maintained at either +400V, -400V or +200 V. The readings were corrected for the standard 

environmental conditions of temperature and pressure, ion recombination and polarity 

effects but the humidity corrections were not considered. The resultant corrected charge 

reading and the known absorbed dose rate to the water under reference conditions were 

used to derive the calibration factor for each cylindrical ionization chamber ,

Q

D w�
. The 

measurement of absorbed dose to water requires a beam quality specifier TPR20,10. The 
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beam quality specifier TPR20,10  for the two photon energies (6 MV and 18 MV) was 0.674 

and 0.770, respectively.  

3.8 The absorbed dose measurement in electron beams. 

The charge readings for 100 monitor units in a perspex phantom were measured with the 

centre of the sensitive volume of the ionization chambers placed at the depth of maximum 

dose, at a constant source to surface distance of 100 cm, in a 10 cm x 10 cm field size. The 

chambers and the perspex phantom were allowed to equilibrate with the ambient air 

temperature. The chambers were first cross-calibrated for �gas against the cylindrical 

reference ionisation chamber at 21 MeV using equation (18). 

The measurements were repeated three times at each polarity of the ionization chamber. 

The mean value of the readings was then calculated. Throughout the study, the absolute 

value of the polarising voltages was maintained at either +400V, -400V or +200 V. The 

readings were corrected for the standard environmental conditions of temperature and 

pressure, ion recombination and polarity effects. Humidity corrections were not considered. 

Equation (2) was used for the determination of absorbed dose to water. Table 3.4 shows the 

beam characteristics used for the measurement and calculation process. 

Table 3.4:  The beam characteristics for the clinical electron beams and the mean restricted 

collision mass stopping power of perspex to air used in this study. 

Energy  

(MeV) 

R50    

/(cm) 

Eo  

/(MeV) 

dmax  

/(cm) 

Rp 

/ cm 

Edmax perspex

air

L
ρ

− 
 
   

5 2.05 4.77 1.17 2.5 2.60 1.038 

6 2.40 5.58 1.38 3.0 3.04 1.028 

7 2.75 6.41 1.59 3.5 3.50 1.020 

9 3.51 8.18 2.03 4.5 4.46 1.006 

12 4.68 10.90 2.66 6.0 6.15 0.988 

14 5.28 12.31 2.89 7.0 7.31 0.977 

15 5.93 13.83 2.64 7.5 9.77 0.968 

18 7.30 17.01 2.03 9.0 13.91 0.947 

21 8.23 19.19 1.40 11.5 18.51 0.939 

R50 is extracted from the commissioning data at Charlotte Maxeke Johannesburg Academic Hospital for the 

Siemens Primus linear accelerators.  
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3.9 Determination of beam quality correction factors  

The photon beam quality correction factors were determined according to equation (1) in 

which the dose measured by PTW 23333 ionisation chamber was used as the reference 

dose. The corrected average measured charge readings and the absorbed dose to water 

calibration factor from the cross-calibration process in the 
60

Co were used for calculation 

i.e. 

( )
( )

60

,

..........................................................................................................(19)
( )

Q

w ref

Q Q CoY

Y D w Y

D
k

M �
=

 

Where Q denotes the quality of the beam in which the chambers ref and Y were used for 

beam quality correction measurements. 

The electron beam quality correction factors (kq,E) were determined as the ratio of the 

absorbed dose to water calibration factors in the electron beam and the reference 
60

Co beam 

for that particular chamber Y (Hubert, Hugo & Wim, 1999, Achim & Ralf-Peter, 2007, 

González-Castaño et.al.,2009). 

60

,

,

,

,

( )
.......................................................................................................................(20)

( )

q E

D w Y

q E Co

D w Y

�
k
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The absorbed dose to water calibration factors in the electron beam 
,

,( )q E

D w Y�
 is determined 

as the ratio of the absorbed dose to water measured by the PTW 23333 reference ionisation 

chamber to the absorbed dose to water measured by the chamber  Y under test. 
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where 

60

,( )Co

D w Y�
 in equation (20) is obtained from the result of the cross-calibration in 

equation (15). 
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CHAPTER FOUR: RESULTS A
D DISCUSSIO
S 

4.1 The results of the cross-calibration of the ionisation chambers. 

Measurements in all the photon beams were performed with the ionisation chambers using 

the PTW 23333 first, followed by the PTW 30013 0.6 cm
3
, the PTW 31006 ‘Pinpoint’, the 

PTW 31010 0.125 cm
3
, and then the PTW 23333 0.6 cm

3
 again. The experiment with each 

ionisation chamber was repeated on three occasions and a mean value then calculated. The 

maximum deviation observed between any three measurements taken with all ionisation 

chambers was ± 0.01 nC. The experiment was carried out in May 2009 and July 2009 and 

no significant difference between the measurements was observed. As expected the 
60

Co 

energy does not change and so any deviations would thus be attributed to the dosimetric 

apparatus’ drift. It was observed that the dosimetric apparatus showed no significant drift 

during the time of the study.  

Table 4.1 shows the results of the measured 

60

,

Co

D w�
 from the cross-calibration against the 

PTW 23333 0.6 cm
3
 reference chamber. Also shown are the 

60

,

Co

D w�
values obtained from the 

PTW standards laboratory for each chamber.   

 

Table 4.1: The absorbed dose to water calibration factors for the ionization chambers used 

in this study. 

Chamber  

Model 
Measured 

60

,

Co

D w�
Gy/C  

(cross-calibration) 

60

,

Co

D w�
Gy/C  

(PTW Certificate) 

         (±2.2%) 

Deviation  

(%)  

PTW 23333 0.6 cm
3
 Reference 5.198E+09 (Oct.2005) - 

PTW 30013 0.6 cm
3
 5.311E+07 ± 2.3% 5.315E+07 (Aug.2005) 0.1 

PTW 31006 ‘Pinpoint’ 2.528E+09 ± 2.7% 2.500E+09 (Jan.2000) 1.1 

PTW 31010 0.125 cm
3
 3.034E+08 ± 3.3% 3.040E+08 (Jun.2006) 0.2 

PTW 23343 Markus 5.385E+08 ± 2.8% Not available - 

PTW 34045 Advanced 

Markus 

1.293E+09 ± 3.3% 1.360E+09 (Aug.2005) 5.2 

 

The 
60

Co exposure calibration factor, �x for the PTW 23333 0.6 cm
3
 reference ionisation 

chamber was 5.408E+09 R/C. This value compares well with 5.353 E+09 R/C, the value 
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calculated in 1998 at the same facility. The air-kerma calibration factor �k for PTW 23333 

0.6 cm
3
 was 4.754E+07 Gy/C. This calibration factor was then used in the cross-calibration 

of other ionisation chambers in air and is shown in Table 4.2.   

Table 4.2: The results of �x and �gas calibration factors for the ionization chambers used.  

Chamber  �x / R/C �gas / Gy/C 

PTW 23333 0.6 cm
3
 5.408E +09 4.513 E +07 

PTW 30013 0.6 cm
3
 5.473E+09 4.614 E +07 

PTW 31006 ‘Pinpoint’ 2.636E+11 2.256 E +09 

PTW 31010 0.125 cm
3
 3.124E+10 2.625 E +08 

 

The in-air measurements were taken for 0.5 minute irradiations in a 
60

Co beam, at 80 cm 

source to chamber distance in a 10 cm x 10 cm field size, with the 
60

Co build-up cap and 

using the T10008 electrometer. The polarity correction factor and recombination correction 

factor for the reference ionisation chamber was 0.999 and 1.002, respectively.  

The cross-calibration to determine �gas of the plane-parallel chambers from �gas of the 

PTW 23333 0.6 cm
3
 ionisation chamber was done at 21 MeV, the highest electron energy 

available in phantom. The replacement correction factor for PTW 23333 0.6 cm
3
 reference 

ionisation chamber is 0.994 at 21 MeV. The results of the �gas cross-calibration process 

were 4.97E+08 Gy/C, and 1.19E+09 Gy/C for PTW 23343 Markus and PTW 34045 

Advanced Markus ionisation chamber, respectively. 

4.2 Measurement results in 6 MV and 18 MV photon beams 

The dose to water to within 2.2%  at the point of measurement was 0.9289 Gy per 100 

monitor units and 0.9864 Gy per monitor units at 6 MV and 18 MV respectively as 

measured with the   PTW 23333 0.6 cm
3
 reference ionisation chamber according to the 

IAEA TRS-398 (IAEA, 2000) protocol. The kQ derived as a function of TPR20,10 for the 

various ionisation chambers are shown in Table 4.3. A plot of the measured and published 

values of kQ as a function of TPR20,10 for the various ionisation chambers is shown in Figure 

4.1. The kQ results obtained for the PTW 30013 0.6 cm
3
 ionisation chamber compare well 

with the IAEA TRS-398 data. 
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Table 4.3: The measured kQ as a function of TPR20,10 of the various ionisation chambers 

used in this study. 

Chamber First experiment (May 2009) Second experiment (July 2009) 

 0.674 0.770 0.674 0.770 

PTW 23333 (±0.0090) 0.9893 0.9714 0.9908 0.9725 

PTW 30013 (±0.0100) 0.9918 0.9721 0.9933 0.9732 

PTW 31006 (±0.0070) 0.9961 0.9835 0.9976 0.9846 

PTW 31010 (±0.0120) 0.9951 0.9720 0.9966 0.9731 

 

 

 

Figure 4.1: A plot of kQ values from this work for PTW 23333 0.6 cm
3
, PTW 30013 0.6 

cm
3
, PTW 31006 ‘Pinpoint’ and PTW 31010 0.125 cm

3
 and those published in the IAEA 

TRS-398 for PTW 23333 0.6 cm
3
 and PTW 30013 0.6 cm

3
 as a function of TPR20,10. 
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4.3 Measurement results in the electron beam qualities. 

For the electron beams, the doses were measured with the reference point of each of the 

chambers at the reference depth in a perspex phantom using a 10 cm x 10 cm applicator and 

an SSD of 100 cm. The measured electron doses are as summarized in Table 4.4.  

Table 4.4. Summary of the doses in Gy per 100 monitor units at dmax using each of the 

ionization chambers. 


ominal 

Energy 

(MeV) 

R50/ 

cm 

PTW 

23333 

0.6 cm3 

PTW 

30013 

0.6 cm3 

PTW 

31006 

Pinpoint 

PTW 

31010 

0.125 cm3 

PTW 

23343 

Markus 

PTW 

34045 

Advanced 

Markus 

5 2.05 0.980 0.970 0.999 0.996 1.030 0.985 

6 2.40 0.983 0.976 1.005 0.996 1.030 0.983 

7 2.75 0.971 0.965 0.988 0.981 1.010 0.963 

9 3.51 0.973 0.968 0.996 0.980 1.010 0.971 

12 4.68 0.965 0.965 0.987 0.958 0.996 0.962 

14 5.28 0.954 0.952 0.977 0.945 0.981 0.949 

15 5.93 0.955 0.954 0.973 0.948 0.962 0.950 

18 7.30 0.934 0.931 0.944 0.928 0.936 0.932 

21 8.23 0.975 0.971 0.992 0.970 0.981 0.974 

 

The unrestricted stopping power ratio of water to air is 1.033 and the replacement 

correction factors used for the determination of dose for the various ionisation chambers are 

shown in Table 4.5. The values of the replacement correction factors for the PTW 23333 

0.6 cm
3
 and PTW 30013 0.6 cm

3
 as reported by Khan (2003) are also included.  
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Table 4.5: The replacement correction factors for the cylindrical ionisation chambers at 

each electron beam quality and the replacement correction factors published by Khan 

(2003) for the PTW 23333 0.6 cm
3
, as used for the absorbed dose determination in the 

electron beams. 

R50/ 

cm 

PTW 30013 

0.6 cm
3
 

PTW 23333 (Khan) 

0.6 cm
3
 

PTW 31006 

‘Pinpoint’ 

PTW 31010 

0.125 cm
3
 

2.05 0.957 0.958 0.984 0.961 

2.40 0.959 0.960 0.984 0.962 

2.75 0.960 0.962 0.985 0.964 

3.51 0.963 0.965 0.987 0.967 

4.68 0.969 0.974 0.989 0.972 

5.28 0.972 0.979 0.991 0.975 

5.93 0.981 0.982 0.995 0.977 

7.30 0.989 0.991 0.996 0.990 

8.23 0.994 0.993 0.997 0.994 

 

Overall, the average deviation of the measured doses with all the chambers from the dose 

measured with the PTW 23333 0.6 cm
3
 was 0.8%.  The maximum deviation from the PTW 

23333 0.6 cm
3
 dose was 5% as measured with the PTW 23343 Markus electron chamber at 

the electron energies of 5 MeV and 6 MeV.  

On the other hand, the PTW 34045 Advanced Markus dose measurements agree with the 

PTW 23333 0.6 cm
3
 dose measurements to within 0.8-1.0%. The PTW 34045 Advanced 

Markus has a smaller volume compared to either the PTW 23333 0.6 cm
3 

or the PTW 

23343 Markus. The PTW 34045 Advanced Markus therefore perturbs the water medium 

less and the electron fluence may be taken to be closer to unity. Furthermore the PTW 

34045 Advanced Markus has a better spatial resolution than the PTW 23333 0.6 cm
3
. Since 

the results of the PTW 23343 Markus and the PTW 34045 Advanced Markus do not 

compare well with the results of the PTW 23333 0.6 cm
3
, it could be confirmed that 

cylindrical chambers should not be used to measure the dose to water in electron beams of 

Eo ≤ 10 MeV (AAPM, 1983; IAEA, 1987; AAPM, 1991; IAEA, 2000). 
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The measured doses were used to derive the absorbed dose to water calibration factors for 

the electron beams. These absorbed dose to water calibration factors 
,

,

q E

D w�
 (shown in Table 

4.6) were in turn used to determine the kq,E for each of the ionisation chambers at each 

electron energy. The kq,E obtained as a function of R50 for the cylindrical chambers and for 

the parallel plate chambers are shown in Table 4.7 and Figure 4.2. It can be noted that the 

kq,E value for PTW 31006 ‘Pinpoint’ whose replacement correction factor is small, is very 

close to unity. 

Table 4.6: The calculated 
,

,

q E

D w�
 x 10

7
 Gy/C at each electron energy for the various 

ionisation chambers.  

R50 

/ cm 

PTW 23333 

0.6 cm3 

PTW 30013 

0.6 cm3 

PTW 31006 

Pinpoint 

PTW 31010 

0.125 cm3 

PTW 23343 

Markus 

PTW 34045 

Advanced Markus 

2.05 4.63 4.78 233 26.6 49.4 123 

2.40 4.60 4.73 231 26.5 49.3 122 

2.75 4.56 4.70 230 26.4 49.4 122 

3.51 4.52 4.64 226 26.2 48.5 120 

4.68 4.46 4.56 223 26.2 48.0 118 

5.28 4.43 4.54 220 26.1 47.7 117 

5.93 4.43 4.53 220 25.8 48.1 116 

7.30 4.46 4.58 222 26.1 48.4 115 

8.23 4.26 4.37 210 24.9 45.8 110 
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Table 4.7: The results of the kq,E values determined as a function of R50 for the various 

ionisation chambers. 

R50 

(cm) 

PTW 23333 

±0.007 

PTW 30013 

±0.008 

PTW 31006 

±0.010 

PTW 31010 

±0.005 

PTW 23343 

±0.011 

PTW 34045 

±0.007 

2.05 0.891 0.900 1.036 0.877 0.917 0.951 

2.40 0.884 0.891 1.024 0.873 0.916 0.946 

2.75 0.878 0.884 1.022 0.870 0.918 0.947 

3.51 0.869 0.873 1.003 0.862 0.901 0.927 

4.68 0.859 0.859 0.989 0.865 0.892 0.913 

5.28 0.852 0.854 0.978 0.860 0.885 0.905 

5.93 0.852 0.853 0.978 0.851 0.894 0.895 

7.30 0.859 0.862 0.987 0.862 0.899 0.893 

8.23 0.820 0.824 0.932 0.822 0.850 0.847 

 

 

 

 Figure 4.2: A plot of kq,E as a function of R50 for the plane-parallel and the cylindrical 

ionisation chambers. 
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CHAPTER FIVE: CO
CLUSIO
S A
D RECOMME
DATIO
S 

Cross-calibrations of 

60

,D w

Co�
 and x�

 for the PTW 30013 0.6 cm
3
 ionisation chamber,  the 

PTW 31006 ‘Pinpoint’ ionisation chamber, the PTW 31010 0.125 cm
3
 ionisation chamber, 

the PTW 23343 Markus and the PTW 34045 Advanced Markus ionisation chamber against 

the PTW 23333 0.6 cm
3
 reference ionisation chamber were performed. The cross-

calibration factors compare well with those on their respective chamber certificates. These 

cross-calibration factors have been obtained using the existing international dosimetry 

protocols, they are therefore traceable to standard dosimetry laboratories and they can be 

applied in the routine and periodical quality assurance programmes of Charlotte Maxeke 

Johannesburg Academic Hospital radiation clinics, with confidence.  

The beam quality correction factors for the PTW 30013 0.6 cm
3
 ionisation chamber in 

photon beams with TPR20,10 of  0.674 and 0.770 were determined with an accuracy of 

0.2%, compared to the IAEA TRS-398 published values. 

The beam quality correction factors for the PTW 23343 Markus ionisation chamber in a 

range of electron beam qualities of R50 of 2.05 cm to 8.23 cm (4.77 MeV≤ Eo ≤19.19 MeV) 

were determined with an accuracy of 1.2%, compared to the IAEA TRS-398 published 

values. Since the uncertainties are systematically low and not significant, this study 

establishes that any of the ionization chamber types used in this study could be used as  

reference chambers for clinical dosimetry.  Although different centers may have different 

beam designs and measuring methods, the kQ values for the chambers used in this study can 

be applied to other beams of the same beam quality.  

The overall deviation of 5% in the results of the PTW 23343 Markus and the PTW 34045 

Advanced Markus from the results of the PTW 23333 0.6 cm
3
 confirms that cylindrical 

chambers should not be used to measure the dose to water in electron beams of Eo ≤ 9 

MeV. Cylindrical chambers, however, can be used for less precise daily quality control 

checks of electron beams of Eo ≤ 9 MeV where compliance to a range of dose or dose rates 

only is to be confirmed.  

The beam quality correction factors kQ and kq,E for the PTW 31010 0.125 cm
3
, 31006 

‘Pinpoint’ and 34045 Advanced Markus models of ionisation chambers for which no 

published data exist, were determined with reasonable accuracy. The electron beam quality 

correction factors were determined at a dose-rate of 300 MU/ min. They could also be 
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tested at higher-energy electron dose rates, i.e. 900 MU/min for the Siemens PRIMUS
TM

 

LINACS.  

This work is one of the few studies which demonstrates clearly the ability to determine 

beam quality correction factors in a clinical setting. Cross-calibrations were performed of 

the absorbed dose to water calibration factors of the Markus, the ‘PinPoint’ and the 

Advanced Markus ionisation chambers (M’ule, 2008). The kq,E  values determined for the 

Advanced Markus ionisation chamber will provide improved accuracy in dosimetry with 

this chamber since the error previously introduced by using published or extrapolated kq,E  

values for the Markus ionisation chamber is now eliminated. The ‘PinPoint’ ionisation 

chamber can also be used for absolute dosimetry since the beam quality correction factors 

are now determined for the beam qualities available at the Charlotte Maxeke Johannesburg 

Academic Hospital.  

Although the results of this study are clinically accurate, a Monte Carlo Simulation Code 

could be resourced to test the validity of their statistical uncertainties.  
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