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Figure 3.6: Flat sag inclined cable

to A2 = (mglcos(6)/H)/(HL./EA). Perkins and Mote[1987] demonstrated
that the loss of symmetry of the profile of an inclined cable, leads to frequency

P v rPrAQQ_AYAar

veering as opposed to coalescence in the proximity of a modal cross-over.

In the context of mine hoist systems, the cable tension is sufficiently high such
that the assumption of a flat sag cable profile symmetrical with respect to the

span 18 reasonable®. Mankowski[1982] introduced this approximation by treat-

ing the catenary as being horizontally supported, symmetric with respect to
the mid-span, and correcting the gravitational constant to gcos(6). Although
the equations derived account correctly for the i et rihire
tion in the catenary, this approximation will be introduced, and consequently
the system analysed is presented in figure 3.7.

Considering the equations of static equilibrium of the catenary, the variation
of tension along the cable due to its self weight is negligible, and the cable
tension and curvature are constant. Thus P*,s =~ 0, ¢ is constant and I; = 0
and [, ~ 1. Equation 3.4 is trivial, whilst equation 3.5 results in a description
of the equilibrium curvature where g has been corrected to gcos(#). Applying

these approximations to equations 3.4,3.5 results in:

Pi(s) = P

81n typical mine hoist systems, 0.01 < €< 0.05, 2% <2



68

X
NS N
O\%/,@@
lgUUb\t‘}
4
>
M
Figure 3.7: Mine hoist model
_ pA'gcost
k= Pi — pAi(c)?

Equations 3.6-3.8 define the static tension distribution in the rope, which give:

P(l.) = P' = Mg+ pA((¢)" + L]

Thus the equilibrium curvature of the catenary is determined by:

_ pAtcost
® =My oA,

The equilibrium profile is defined by:

z = —x(1 — x)

0| -

(9)/H). x = x/l; z represents the perpendicular distance

where z = z/(mgl*cos(0)/H); %
between the profile and the chord, z represents the distance along the chord

between the drum and sheave.
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The equations of motion are simplified further by treating u = O(v?) = O(w?),
and retaining terms up to O(v®), O(w®), and terms to O(v?), O(w?) which have

curvature & as a coefficient®. Thus the tions o i

the mine hoist system are defined as:

Uy + 2c£uty, — Ciﬂ{v,¢ + 2civ,, + ciﬁu} + cft{l +us— Ko} =

(€ = € Ytipn + €1 {U,50,00 + W,sW,05 — KV} (3.9)
Ve + 260y, — CR{uy — ko) + v, + Ku} =
2 3 1,
L I =v2v —wiv VW W
2 L2 — 2w 3.10
—Kke{ {VV,5s — U, + KV + Y~ -z—w',} (3.10)
; i 2 i?
Wyt + 26 W + Cyw,s = (¢ — € )W,est
2 3 2 1 2 }
cl {(ulgw”)” + §w,,w,u + é.v,’w"’s + w”v"’v"”
—KC}‘{’UU),“ + w,gv,g} (3-11)

~[A'Ed)), = [M(iz + ¢)]e — pA'c'ig

where ¢; = p,cu=.' , ; )
speed respectively. ¢,ci represent the transport velocity and acceleration of

the rope respectively.

. . Lo 1 — 17 2 2\
9The same equations result if the strain measure Is deiined as: € =4, =KV + 3(v, + w})
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and the arc length co-ordinate s is replaced by the cord length co-ordinate z.
The displacements in the cartesian plane u.,v., w. may be found by applying
a transformation of axes u, = u + z,v,v, = v,— 2z, U, W, = W'°.

3.4 Conclusion

This chapter has developed the equations of motion applicable to the mine
hoist system. However, further development is required to account for the exci-
tation mechanism. In this regard, the excitation can be defined broadly as com-

isi i i i e to the acceleration/deceleration
profile employed to accelerate the system to, or decelerate the system from the
nominal winding velocity, and periodic boundary excitation at the drum due
to the coil cross-over mechanism. The latter excitation comprises of periodic
pulses normal, transverse and tangential to the drum radius. Once the rope

has traversed the full drum width, a layer change occurs, which induces a sig-
nificant axial and radial pulse to the rope at the drum end. Following the layer
change, the traverse direction of the rope changes, and consequently the lateral
component of the periodic excitation due to the coil cross-over profile changes
phase by 180°. To complicate matters further, during the wind the system
parameters are changing due to the decreasing or increasing length of the sus-

pended vertical cable. Thus both the system parameters and the excitation
i 1 introduces a substantial complication

cdmiatles o

are siricily nomn-s . L
to a purely theoretical analysisof the system. Mankowski[1982] appreciated
that a theoretical analysis of the system, which accounted for the complex
excitation induced by the coil cross-over, as well as the nonlinear nature of the
system would lead to a situation intractable to analysis, and thus proposed a
numerical analysis of the system. Although ultimately a numerical simulation
of the system would be essential, in the current study where the equations of

~ AT tha ctatinanary natiira Af
vau uua.].y 1aALUul<T Ul

motion have been developed, it is possible to examine the s
the system to stationary periodic excitation at the drum, prior to a numerical
simulation. Achieving desirable stationary system characteristics would ex-

_ tend the current linear design approach, thus providing an initial selection of

10The equations of motion could have been derived to reflect displacements in a cartesi.a.n
reference frame directly ( Luogno et al [1984)), however_ it was decidgd to use a L;agranglgn
reference, since it results in a more concise presentation for 'ths genel:ai ec-luat':lon‘s.. The sPr?.ln
measure applied by Luogno et al[1984], ¢ = s +y,zV,s + 37, can be obtained by applying
the co-ordinate transformations uc = u + 2z, v = v — 2zu to the. equivalent strain measure
e=u, —kv+ %v:", in the Lagrangian reference frame, and ordering terms appropriately.
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system parameters for assessment in a numerical simulation. Since the excita-
tion definltlon 1s dependent on whether a statlonary or nonstationary analysis
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Stationary Analysis of the
Mine Hoist System

The purpose of this study is to identify conditions leading to, or promoting the
cccurrence of rope whip on mine hoist systems. Although the analysis of the

occurrence oi rope willp 0L I1ALC 11DIsh =)

large non-linear motion the system may present a challenging problem, it is not
the initial focus of this study. Ideally, the analysis of the system should evolve
in a consistent manner, supporting further more complex studies. This phi-
losophy has been applied, where the current analysis of the mine hoist system
consists of two phases. This chapter considers the first phase, which examines
r of the system in the absence of rope curvature and

J 111 111 L1k

the steady state behaviou
transport velocity. The rationa ase Zrows the approa
sented by Dimitriou and Whillier[1973], where the linear natural frequencies
of the system were examined as a function of the shaft depth. Dimitriou and
Whillier[1973] proposed their quasi-static linear analysis to identify regions
where primary external resonance of the system could be expected. This anal-

ysis did not provide information regarding the severity of the interaction of the

anro f\‘F the system f'“n_

longitudinal and lateral modes, and hence the signiﬁcmmr of ystem tun-
ing. Since the lateral excitation induced by'tl}e Lebus coiling motion is more
significant than the longitudinal excitation, it is usual to attempt to avoid lat-
eral catenary resonance, whilst neglecting the longitudinal system behaviour.

CA Qi viwvwaz J AR

This strategy is often not successful, particularly with respect to deep shafts.
In fact it would be unusual to find a mine hoist system in practice, where pri-

at some stage during the

q nnt occur

i 11 cvreter doe
mary external resonance of the system does not occu

ascending or descending cycle. ough . :
e systems exhibit more severe behaviour than others. This supports the

som
2+ the overall system tuning may be an important feature influencing

natian th 1
LIUUVIVILL Viitey vaass & 7 == 52

jour. is i inent observation, since it is possible for
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the lateral catenary motion to induce autoparametric system response due to
the non-linear coupling between the lateral and longitudinal modes. Dimitriou
and Whillipr”073] discussed this possibilit

ocpr] that
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served lateral motion of the vertical section of the rope. Although the results
presented by Dimitriou and Whillier[1973] provide a basis for a qualitative
discussion, in practice they are only useful to define conditions of primary
external resonance of the system. In order for an analysis to be practical, a
quantitative analysis, accounting for the degree of excitation, damping, and

a5 R SN . Uy

the system tuning is required.
In the context of Industry, such an analysis should present the results in an
unambiguous and simple manner. Ideally the analysis should identify regions
of avoidance regarding the system parameters, rather than presenting the de-
sign engineer with a thorough non-linear steady state solution of the modal

n mAan_nariadisa  Tlooo i I

10, 1 S NI I SRS PSSty BOh I I ~dia T: - ~
ampiituaes, wnicih may o€ miiti-vaiuea and €ven non-peridaic. vin€ar ay-

namic characteristics of a system are generally well understood by graduate
engineers, however this is not the case with regard to non-linear studies. It is
for this reason that the concept of avoidance of non-linear interaction is pro-
posed as a basis for assessing the dynamic behaviour of the system. Thus the
method presented considers the avoidance of significant non-linear behaviour
as a criterion for designing a mine hoist system. This criterion is based on the
formulation of a datum steady state soiution. The datum solution is chosen

as the linear solution in the absence of primary external resonance.

R aginneof non nea nteraction. where the esponse will deviate from the da-
tum solution due to non-linear effects are identified by considering the stability
of the motion in the context of the non-linear equations of motion. The linear
stability analysis is defined by considering the stability of a system of equations

with periodic coefficients, and consequently regions of avoidance are identified
by constructing a stability chart which is synonymous with the Strutt stability

chart. This represents the first phase of the analysis, where system param-
eters satisfying this criterion are selected. The non-stationary nature of the
system, as well as transient excitation induced during a layer change requires
a more advanced analysis. Chapter 5 presents a complete non-linear numer-
ical simulation of the system, which accounts for the non-stationary system

characteristics, transient excitations, rope curvature and winding velocity.
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4.1 The Steady State Analysis

ors of ootion af the sys aloped I i L

considered in the ahuence of catenary curvature and axial transport velocity.
Initially, the latera] stability of the catenary was investigated under the infu-
ence of stationary petiodic axial excitation. In thiy case the trivial conditicn
bfs,4) = wis,{) =0 for the lateral motion represents a possible solution, where
non-trivial lateral motion results as a cansequence of dynamic instability, By
spplying the trivial condition, t{s, 1] = w(s, t) = 0, to the equations of mo-
bion, an independent linear wave equation describes the forced sleady slate
lungitudinal system response, This equation can be solved in clozed form,
{lonversely the non-linear Interal equations of motion represent variational
cquations, which describe the stabtlity of the trivial stale of the lateral modes
v amall disturbances. Since the longitudinal steady state response may be de-

o .. . - ' R T T N [ — T nH
fined in closed form, terms which couple the lateral variational equations to the

lengitudinal motion may e eliminated by ptution: itly
the linear stability of the lateral variational modes is described by a set of Hill
type squstions with periodic cocficients. This analysis is presented in detail i
Appendix B, where a perturbation teehnique and a harmonic balance method
are applied to define regians of linear ingtability of the trivial lateral motion
of Lhe catenary to smail disturbances. The stability analysis cenfirms that
the lateral stability of the trivial state of the catenary is disrupted when can-
ditiona of simple and additive combination parametric resonance arise. Such
conditions are related to the proximity of the axial excitation frequency to 1
conditi : ; i of the parametric excita-
tion, which is governed by the steady state longitudinal motion. Although the
longitudinal excitation is srnall, this motion is amplified at longitudinal reso-

nance. cnhancing regions of lateral instability. Consequenily narrew regions

of parametric instability may result when the system i3 tuned to a2 condition

of longitudinal resonance, even when the system i not closely tuned to a

parametric resonance, The amplitude of the forced longitudinal response is

-enztive to dissipation, and consequently these regions are quickly eroded by
the inclusien of longitudinal damping.

Sinre the external longitudinal excitation of the system 13 small in compari-
won to the Jaleral excitation, the longitudinal response induced by the forced

lateral motion ia significant. Accounting for the lateral motion enhances the

autoparametric nature of the system, whereby Jateral catenary motion causes

forced longitudinal system respoflie, Autppacametric respanse is enhanced
when the syslem tunes to an internal resorance, for instance where a longi-

4 dinal moede is tuned to twice the {reguency of the lateral made. in such

a case, lateral motion may induce significant longitudinal reponee. In addi-
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tion, due to the coupling between the lateral and longibudinal motien, regiones
of srcondary tescnance may arise when the excitation Lunes to sdditive and
difference combinations of the Jongitudinai and jaieral modes.

43 the mosl significant excitation toe the system ovcurz axially, and in the
out-of-plane lateral direction parallet to the winder drum aurface, in-plane
excitation and comsequently in-plane response due to the drum cxcitation is
sssumed neghgibde. In the absence of eatenary curvabure direet excitation of
lateral in-plane motion, due to curvature coupling with the longitud}nal tro-
tion does mot arise. Products coupling the in-plane and longitudinal motion
exist in the in-plane cquation of motion, thuiz the in-plane modes are paramet-
ricaliy excited, and consequentty non-trivial cesponse arises through instability
or bifurcation. Thus the firear steady state cub-of-plane response due to lon-
gitudinal and lateral out-of-plane excitalion forma the basis for constructing a

datum solution. Three dimensional motion, or rope whip fellawed by further
intermopdal energy exchanges between the longitudinal and latera]l modes i3

initiated as a consequance of bifurcation of the planar steady state motion,

E‘!.ﬂd e im0 Lhee uh-:u’l}l' ctate r]aLum

___h — 13 0 11
] 0L IT] LILES HLCAMR sLalc Ua

Longitudinal and Jateral damping is acc : Late
solution. The partivular form of the damping model arsurscd is of significance,
particularly with regard to the lengitudinal responac. Ii_i the past, l]nd.u.qt.ry
has assumed that a relative proportional viscous damping mechanism' ap-
plied to the longitudinal dissipaticn. Rudimentary tests perlformt!ld by industry
(Thomas et &l [L987], Greenway[L1989]) approximate the dimensionless modal

damping ratio of the fundamental longitudinal mode al == 2 — 3% of critical.

Further experimenta] tests were performed at Elanduwrand Gold Mine { Constan-

con [1002)1 in an attempl to determine an approprigte damping nechaniam,

b Aosoiled diarugsion reearding the longitudinal damping estinalés extracted

I UG Dy PR ) S Rt =] = . . .
nted iy Appendix GG, These results in:

rOIm , .
dicate that the first mode is more highly damped than higher modes, a result
whicl is inconsistent with a relative proportional viscous damping mechanism.
A general proportional damping model” appears 16 Chalaclerlas wie wngiah-
ualg?:l?ﬂuipatim characteristics of the mine hoist rope adequately. This model is
applied for convenience, and is not considertd to represent the true nature of

; PR T H ingr Leristics of
the damping mechanisin, With regzed Lo the lateral damping characleriatics o

a rmine hojst rope Mankowgki[lgﬂﬁ] prescrits dissipation [actors extracted from
' k4Tt oa- .
- laboratory experiment. Based on Mankowski's dissipatien factors, it appears

lll LA FBE-~

15 ralptive proporbicnel dRITEATE CELARISTE TR
terimtice Lo be disttibuted in & monper which ia propor
the rope, .

a,:L gutnc:;l g;if?;;;:ﬂnsru:;ﬁaﬂmpmpmﬁmd ta hoth 1lie atiffress aod mess
LeTImbIch TO

tional Lo the slilness propertiea of

proporiisa of the rope.



Fii

that a.r_'rud}'naxnic drag may represent a moarn Eigniﬁcan.t lateral damping effect
thau the inherent properties of the hoist vope. This iy discussed fucther in
Appendix H. In the context of the statimary steady state analysis, a propor-

tional lateral damping mechanism will e assumed, where the damping in the
fundamental mode ia of the order of (.053% of critical.

4,2 The Linear Datum Solution

[n order to pursue Lhe strategy prepoacd, il 1s necessary to formulate the datum
sglution to provide a basis for Lhe stability analysis, and the comparative study

of the system tuning. [n the absence of axial transport velocily and catenary
curvature, the undamped non-linear eguations of maotian for the catenary, as

L L . ]
developed 10 chapter J, reduce Lo

My = C] U oo + C{ Ut + w.lw.n} |:4. ]:l
I J 1 1 2
V= TV au + & {{u.aﬂ.l},i -+ Eu,ﬂ’.u + Ewlqv.u + i-'.:w.:w,u} {'i?]

9 . 1. - )
>y = Fur P I o j“ u,w J.LI + Ew:‘-w.-ﬂ + ‘_—‘li';l!."‘p + wljv"v’”} {4'31
1 1 F4 4

where ¢, T represents the longitudinal and a'%'-llffﬂl wave speed fL‘EPE_Eti‘v’&!H- The
three dimensional motion of the catenary is dBE‘ICI:'lbI-Ed IJ_'!r the displacernents
w(s L}, via,t), wis,t) which represent the longitudinal, in-plene lateral and
cut-of-plans lateral motion respectively. In thle abgence of m-plane lateral
excitation, a trivial solution is assumed f?r "]:_le 'ﬂ'Flaﬂzlztff.fl d;'ilplf'llﬂ‘ﬂ'llmf-»
‘o, U{S.i} — {. Since the III,:E:ETE_T?EH::;H Aggume rivial, the an-plane

dldCalusyy &bl s

.
o ol aoas Thus tha annatinnae of
- _bul & LN Ea R ‘Hu“vlv&-g - A

aquation of motion may be od ot s atuge. Thie the Sqarions o
motion describing the planar redponse ,

lateral and axial heundary excitation reduce to:

U = efu,, + C{W.J“’."} (4.4]
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The solution of equations (4.4),(4.5) leads to the definition of the non-linear
planar steady state response of the system. A consistent non-linear analysis
would address these equations by approximating the solution via a harmonic
balance or alternative method. Although this was an attractive analytical
route to follow, it is important to consider the significance of such complexity
in terms of a practical industrial solution, and particularly in the context of
defining a simple design criterion. It is for this reason, that a linearised solution

AT R2222:2 a o111

to equations (4.4),(4.5) is sought, which reflects single valued response and
provides a datum for approximating the degree of non-linear interaction which

could be expected.

Primary external resonance of the catenary represents a principal consideration
assessment of the mine hoist system. In general such a condition is
_ However in these regions it would be advantageous to assess the
system parameters, so that further non-linear coupling could be minimised.
From a practical perspective it is accepted that mine hoist ropes will reflect
dynamic behaviour, thus at this stage the knowledge of the steady state non-
linear amplitude is of secondary importance with regard to the achievement of
the best possible condition of tuning to minimise or avoid such behaviour.

in the

=
=

Secondary conditions of resonance have not received attention in the context of
the mine hoist system. Here the linear solution approximates a possible branch
of the non-linear motion. Secondary resonance arises when this solution branch
is unstable, and the response is attracted to an alternative dynamic state.
In the context of this discussion, a linearised form of equations (4.4),(4.5) is

proposed for the datum solution as:

—~
!.p.
(=}

N

Ut = Czu,gg + C{w,aw,u}

(4.7)

Wt = CW,es

ations reflect the coupling between the lateral and longitudinal mo-

These equ v ; : Sl
e motion provides direct excitation to the

tion, where the lateral steady stat
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longitudinal system. Retaining the non-linear lateral coupling term in the
longitudinal equation of motion is consistent with the ordering uo(w?). Con-

: itudi onse on the lateral motion -
is discarded, since if uo(w?), then the quadratic term (u,v),s o(w®). This im-
plies that the lateral motion is small, and hence excludes the condition of
primary external resonance of the catenary. Away from regions of primary

external resonance of the catenary, the cubic term w?w,, may be neglected.
Thus the datum solution proposed is valid for identifying regions of secondary
resonance, however due to the neglect of cubic terms, it is not valid close
to a condition of primary external resonance. However, it is the boundary of
stability which is sought, which may be close to, but not exactly tuned to a con-
dition of primary external resonance. Since the solution essentially describes
the lower branch of the response on either side of the resonant condition, it
cannot predict regions of subcritical stability, where a higher amplitude stable

solution branch may exist, which may be reached th.I'OL.lgh 1r%1t1al .condlt}ons

ue to transient Iorces. > :
where non-linear interaction is likely, and even under conditions of primary

external resonance of the catenary, the datum solution will rgﬂect_the compli-
_ anceof the longitudinal to lateral tuning, and it is proposed that the exponent

of growth associated with the unstable datum solution in this region provides
a comparative basis for assessment. Thus the stability analysis of the datum

rexion of instabilitv as well ag the
y as v e

solution requires both the definition of the region of instability as well as th
exponent of growth. This is a normal consequence of the stability technique
chosen to examine the stability of the datum solution to small disturbances.

In conclusion, the datum solution is defined to provide a basis for a compara-
tive agsessment of the system tuning with regard to system parax.neters, and is

alition Since the
NI A Viw . AN illAAVw™ Viivw

mnnr atondyv atate
v i '

1ot intended to represent the global non-liucfu steady sta
datum solution is valid in the absence ol prim : ’
of secondary resonance may be identified .conﬁdently. In light -of the non-
stationary nature of the system, an extensxv.e stufiy of the IIOI'.l-hne'ar plax}ar
stationary motion would be counter producpve, since a numerical sur.mla,tlon

s emphasised that the datum solution was

d ultimately be required. It i . .
:Iglrlrllar;v motinted to illustrate the existence of secondary resonance condi-

tions. which are less obvious to a designer. It is expected that further research
will r,eﬁne the datum solution, to account for primary external resonance of the

catenary. Appendix J presents a further discussion of the stationary steady

havi in the context of _linear studies presented in the literature
state behaviour in the context of non-uLe I ’

and with regard to the existence of secondary and internal resonance condi-
+:one which are defined via the method of multiple scales. Appendices C_,D,E
. tbe closed form datum solution in the presence of general proportional

d ing, and axial and lateral out-of-plane boundary exc1tat19n a:t the winder
d::lnll) dgu,e to the first two harmonics of the Lebus groove excitation.
’
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4.3 Stability of the Daium Seolution

The steady state planar response, which is referred to as the datum solution,

and represents the closed form continuous solution Lo equatiane (4.6),(4.7], 1s
et daras] ;_r‘._ the sontexl nf the noh.linear i_-qll;u Linng {'.L;LL{‘I“E} ol htbion of the

CRHISHEEI S 16 bals L0 AS DI Lo Sal e

perturbations around the steady state datum sclution. This i3 represeated by:

ufa,1) = wWa, )+ upfa.i)
v{a,t) T3, t]
w{.i,t} = E[-‘ﬂ.t:l-{-u'ﬂ{-i,i} (1.8}

N

where W t), T(s,t), W(s, ¢} represent small variations in the longitudinal,
in-plane lateral and out-of-plene lateral motion with _I‘{!BFEEL to the steady
tL[.:L.hn datum solution Un(&-g}- 90[35”1 t!-'ﬂ{ﬂ_.t:l- Substituting equalivhs {'iE]

ito equations (4.4),{4.5}, and considering the hormogeaeas? cormpenent of the
linearined equations leads to':

(14 CE{a =0y )+nls~1; 30 = # WL LY ERYR i N P S R PR R L

i, o5
o = ripat 2T, + E{(Tarala t E[w’?.i’.-}.x} {1.10]

P
Ty = mliet Ei?a.u 4+ {(Tua)et {w, Bahs+ E{wiw.: 1o} f4.11}

{ = [}pAR? n= M{pA

ntg the catenary length, wiilst & reprosents the total cable

where {; represe on (4.9} is defined over the entire Jength of he

lepgth. The |ongitudinal eqquati

N on-Homogensous tFins 67184 lm
' tod b the peglecl T - |
m—mtre:e;::ﬁ::ur::‘l‘l steady siate |ateral motion 8. BWEY from regiond of primary =xternal
Ea;ezm resnanes, boa residue i conpiderad imall andlas u:g!_x!gd.

of tha non-linear iems in the datum solution. In

. : T Lh& shaave,
i :hdi]::uﬂéeﬂs:;ﬂ:: Functions, Thus the equations (4.93,4.10,4.11] repreaent the
r

overall aystem eguations Father thar just thost pertsining to the catanacy.
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rope 0 < s < [, whilst the lateral equations (4.10),(4.11) are defined only over
the catenary length 0 < s < /5.

A orditnary 43
tU Oldillaly Uuill

]

The variational equations of motion may be reduce f
form by applying a normal mode expansion for the continuous variables ie.

@ =3 i(s)pi(t)

(1) (4.12)

42 Y e I
10118 Ol Lule

t
linear system. These are defined in Appendix C, D. Performing the orthog-

w

P
{143 + Pernl ) + [m i+ 3P0 () =0 (419
n=
{}" = (i g, 74)
4 ( 0 0 Uww (9, 20) ]
3" [P(nf)] = 0 V,.(Qt, 201, 301, 4Qt) 0
~ [ Waw (S, 201) 0 Www (2, 2, 3, 4Qt) J

Where [Ag] represents an initial stress matrix which represents the cha

the variational natural frequencies due to a change in the average dynamic
catenary. [Ag] is defined in Appendix F.3.

nge in

..
tension in the

The parametric coupling matrix [P(th)] and its constituent submatrices are
defined in Appendix (F). It is pertinent to note that although modal trun-
i 4

variationa = fon

occur with respect to the variational equations of motion, due to

cation ma _ € mot i ‘
the application of the normal mode expansion, the datum s

.
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as a continuous solution and is not truncated. Periodic components in the
parametric coupling matrix are generated up to the fourth harmonic of the

CDUS 9 9. ~QVE (] Sl d d - 0 ne 11 andg econd nparmon
of the Lebus groove excitation. The parametric excitation matrix contains
submatrices coupling the longitudinal and lateral modes. It is well established
that regions of simple parametric resonance are dependent on the diagonal
terms in the parametric excitation matrix ( Hsu[1963]). Conversely regions of
combination parametric resonance are dependent on the off diagonal terms.

Thug simnle narametric resonance does not arise with regard to the lonesitudi.
YV Aavaa AL VU Vi L\.’Llal‘luul

A SAUD UrALa AT prles QALAT VALV AUSWALIGIALVT RRVLS VY QLT

nal modes alone. However, since the submatrices [Uyy|, {Wy.] exist, regions of
combination parametric resonance arise with respect to the longitudinal and
lateral out-of-plane modes. Since the submatrices (U], [Wuw] are not iden-
tical, it is possible that both additive and difference regions of combination
resonance may arise, depending on the system parameters. Since the sub-

matricoe [V 1 [T/ 1 are cummetric. both simnle and additive comhination
Mairices |vyyj, |VWww) &€ SYINIMELNc, dDOLI SINPIc alld addillve comoinaiion

parametric re
modes.

4.3.1 Stability of the Variational Equations

The criterion proposed as a design strategy for the mine hoist system amounts
to an examination of the stability of the datum solution to small disturbances.
The stability of the motion is dependent on the stability of equation (4.13).
Linear systems with periodic coefficients have received much attention in the
literature. A general discussion regarding parametric excitation is presented in
Appendix K. A number of techniques can be applied to define the boundary
of stability, for instance direct numerical integration combined with Floquet
theory, perturbation techniques and the harmonic balance method. The first
e, whilst the second is limited to the existence of small

o .
ie numaricallv \ntpnmv
40 2iWAiilivA IUMLLJ ALV wasa

excitation and requires special attention for a.noma.lou? conditions of tuning
(Hsu[1963]). Since a general approach is requirf:d which is capal')le of provid.ing
a stability chart regardless of the state of tu'r}m'g, 2r‘tl'{e amp]:thude (?f exgltaj
tion, a harmonic balance technique was applied. lakahashi{1931b] described
an algorithm for determining regions of simple and coml.nnatxon parametric
ed system. This technique was applied in

resonance of a parametrically excit :

is study.
sented in Appendix K.

The method is based on assuming an harmonic expansion for the response in
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the form:

{y(®)} = e’“{%bo + i(ansin nfit + b,cos nlt)} (4.14)

n=1

Direct substitution of the assumed expansion (4.14) into equation (4.13), and
applying the harmonic balance method leads to a relationship defining the re-
sponse of the system in terms of the exponent A, and the coefficients b,, a,,, b,,.
Takahashi[1981b] demonstrated that this relationship could be formulated con-
veniently in matrix form. As a result, the method reduces to an eigenvalue

Tha gtahility of tha svygtarm 1g thite danandant
4 11T Svauillvy U1 vul Syoutllil 1o viuS U€penaeny

extraction for the exponent A.
on Re(A) < 0. In regions of instability, the exponent Re()) reflects the initial
exponential rate of growth of a disturbance away from the steady state solu-

tion. This exponent is extracted as a normal consequence of the solution, and

is valuable in terms of the comparative study, since it is applied to assess the
severity of a region of instability.

4.3.2 Experimental Validation

The method proposed to examine the stability of the steady state lateral mo-
tion of the catenary was confirmed experimentally. An experiment was con-
ducted on a laboratory model of the mine hoist system. A photographic il-
lustration of the experimental model is presented in figure 4.1. The model
comprises of a guitar string, a pulley and a dead weight. The guitar string

— passes from a steel slider at one end, over a pulley wheel to a dead weight at
the other end. An electro-dynamic shaker was applied to excite a single fre-
quency sinusoidal lateral motion in the catenary®. The model was constructed
so as to enable easy adjustment of the catenary length, and hence tuning of
the lateral natural frequencies. It was found that the longitudinal system ex-

hibited a single natural frequency in the test bandwidth, which could be tuned

to some degree by changing the mass of the dead weight®. The free length
L0 SOITIC QTEITT by Vaikiinisso ] ; g
between the pulley and dead weight was kept as short as possible to prevent

lateral parametric excitation of this section’. The parameters of the model

bk control was not applied to the shaker, the motion of the slider

B .yr P
“dince position Ilccuvaln Visy ‘ \ :
. he system response did not affect the excitation wave form.

i tain that ¢ _
was monitored 1o as°8rtR 1] well beyond the the test bandwidth of 0-100Hz. The

8 igher longitudinal modes fe _
The hnghef_, f,_.a, occurred at approximately 20Hz, whilst the second occurred at =

first iorlgit‘udinm moaé OCCuliict
1
1

1. 11

"7';3:,'“ a longer free length was accommodated, at certain tuning conditions, violent
interactions between the catenary and free length section were e\(ident. This presents an
hich is currently being considered.

s i o oandition of practical importance w
lllbc[cﬂhlll& CUILIUIVIViE Vva
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Table 4.1: Laboratory model parameters
Parameter 1 2 3
Catenary Length I.(m) 0.479 0.485 0.790
Dead Weight M (kg) 1.95 1.45 1.9
Pulley Inertia J (kgm?) [ 1.56 x 1075 | 1.56 X 10~° [ 1.56 X 10~°
Linear String Density m (kg/m) | 0.00745 0.00745 0.0268
Longitudinal Wave Speed ¢ (m/s) 1512.6 1512.6 845
Longitudinal Damping Factor | ¢ (%) 0.2 0.2 0.8
Lateral Damping Factor ¢ (%) 0.125 0.125 0.35

were accurately measured, and are tabulated in table
g 1 and ]
1

parameter to measure was the longitudinal and
factors were approximated by impulsively exciting the system-an

the modal bandwidth of each mode.

Figure 4.1: Laboratory model of the mine hoist system

The lateral amplitude of the exciia i i i ;

with an LVDT. The motion of the catenary in the lateral in- and out-of-

plane direction was monitored with proximity probes. Since the range of the
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Table 4.2: Tuning conditions of the laboratory model
Case | w w1 Resonance Condition
1 20.34 Hz | 52.890 Hz | Q ~ &, Q2 ~ @,

Q~w+u_)1~7323Hz

O~ 2(&)1 +w2) 2w3 ~ 79.33H=2
QN&)},Qqug

Qrw+w ~67.5H=

Q= (@) +w,;) ~ 67.5H2

3 16.55 Hz | 16.69 Hz Q~61,Q~52,Q~63

O~ (w+w)~w; ~ 16.62H 2
~w+w1~w2~3324Hz
Nxw+ W~ W3~ 50Hz

IND
N>
IND
3]
N

>
(4]
=
N

[
b

iO

proximity probes was limited to £0.5mm, they were positioned close to the
pulley wheel where the lateral amplitudes remained small. The motion of the

dead mass was monitored with a piezo crystal accelerometer. The transducer
signals were analysed continuously by constructing the autospectra of each
transducer signal on a Genrad 2515 analyser.

The purpose of the experiment was to confirm the existence of secondary re-
gions of resonance related to combination parametric resonance of the out-of-
plane lateral and longitudinal modes, as well as additive combination paramet-
ric resonance involving either the in-plane or out-of-plane lateral modes only.

Three cases of system tuning were considered as presented in table 4.2, where

0, w, w; represent the excitation frequency, and the longitudinal and lateral
natural frequency respectively.

resonance involving the longltudlnal and ﬁrst lateral mode is distinct from
other combination resonances involving the lateral modes only. The second
case considers the condition where a region of combination resonance involv-
ing the longitudinal and first lateral mode overlaps with the second region of

combination resonance of the first and second lateral modes, as well as the

second region of primary resonance of the third lateral mode etc. The third

case considers the condition where the longitudinal and first lateral mode are
closely tuned to one another. In this case, regions of combination parametric

resonance occur simultaneously with conditions of primary external resonance
of the lateral modes. The second and third cases coincide with a condition

of internal resonance ie. 20; = w, @; = w, as defined by the perturbation

i 3 2 I S L
analysis presented in Appendix J .
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The boundary of stability of the planar steady state motion was determined
experimentally by adjusting the excitation frequency, and then increasing the

~mnlitiide 1inti] the response reflected 5 ciidden orawilh tn 414
IMIPIILUAC Ulltil uil€ IS5pUnse ICUCCiCd a4 Suaden growin 1mn tne mo-
1

excitation
tion. This condition was examined by viewing the signals from the proximity
probes as a Lissajous plot on an oscilloscope. It was clearly evident that once
a region of instability was entered, the steady state forced response was dis-
rupted, indicating a change in the nature of the motion. In the first case,
the boundary of stability associated with the longitudinal and lateral combi-
nation resonance resulted in unstable planar motion, which remained planar®.
However, the combination resonance relating to the lateral modes only ie.
0= %(wl +,) & %wa -+ - was characterised by non-planar motion®. In regions
close to primary external resonance of the lateral modes ie.{) = @;, the bound-

f ctahilitv wae characterised bv a srowth of the in-nlane motion. leadine
f a growth ol the in-plane motion, leading

suquLAUJ YV Liila QUYL ASTAR MY

ary N
(hl‘y .

o non-planar whirling motion.

+

With regard to the second and third case, the boundary of stability was charac-
terised by planar and non-planar motion. With regard to the third case, it was
found that since the natural frequency of the longitudinal mode was slightly

thot ~AFf +tho firet latera] maode. the left hand side of an unstable
M JivaAaw v w

4 113URET, v alav aaduas

lower than that of the first
region of instability was characterised by a combination resonance involving

the lateral and longitudinal modes; On this boundary, the planar steady state
motion became unstable and initially remained planar. The right hand side
of an unstable region was characterised by a growth of the in-plane motion

immediately leading to non-planar motion.

n all cases, 10r a large enou y = =

served. It was also evident that once this motion had evolved, it was difficult
to detune the resonance by simply increasing or decreasing the excitation fre-

nency
C1acys

a
quciacy

The stability chart of the steady state motion constructed from the experimen-
tal model was compared with the stability chart obtained via the analytical
technique proposed in this chapter. The variational equations were truncated
to account for a single longitudinal mode, and three in and out-of-plane lateral

~des The harmonic balance method was applied to determine these regions,

ITIOUES., 1117 liaiinviaiis LG22 LAe 22

where a five term harmonic expansion was employed. The accuracy of the
stability chart was verified via direct numerical simulation of the variational
equations. The experimental and analytical stability charts pertaining to the

80n the boundary of stability, the autospectra of the longitudinal and lateral response
indicated dominant response close to the natural frequencies related to the longitudinal and
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laboratory model are presented in figure 4.2 for the three cases considered.
The expenmental results are indicated in ﬁgure 4.2 by a +, whilst shaded

PR 41 T -_11-- PR [P RIS, S . SR
nglUIlb lllulLd.bC l:LlC a.ua,ly ica 11y UCtCIlIl 111 C ch OI1S.

Figure 4.3 illustrates typical stable and unstable motion observed during the
experiment. The photographs were obtained by strobing the catenary at a
slightly lower frequency than the excitation frequency, and using a time ex-
posure to photograph the motion. These photographic slides illustrate the
stable/unstable motion of the catenary on the boundary of stability for the
third case of tuning. In this case, the excitation frequency and amplitude were
such that the system passed from stable to unstable motion through the left
hand boundary of the second and third region of primary external resonance.

Generally, the experimentally determined boundary of stability correlates well
with the analytically determined regions of instability. Since the datum so-
lution is representative of the steady state motion away from conditions of

primary external resonance, the boundary of stability associated with regions
close to primary external resonance are approximate. However, since the condi-

oo avtarnal resonance is contained within the region of instability
blOIl UL PIiIflary CAvCiiial 1ToUiaiiLy 3 5 D11y,

and since the lateral damping factor is small and consequently the modal band-
width is small, reasonable accuracy was achieved even for this condition. With
regard to the first case of tuning, the second region of combmatlon parametric
resonance related to the lateral modes ie. Q = (@ + @) = 1w indicates
stiffening behaviour, as predicted by the analytical solution. It was difficult to
excite this region, since more precise tuning was requlred and consequently
it was not easy to tune the sys
thus identify the boundary precisely. It is also important to recognise that
although the laboratory model i is representative of the mine hoist system, the
at the pulley end. It is proposed that
this contributes to the higher degree of stiffening predicted analytically for the
region, in comparison to the experlmental results; also as discussed in chapter
5, the application of a normal mode technique contributes to stiffer behaviour.
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4,4 The Kloof Mine Hoist System

e rtability analysis : :
Mipe haist system. As discussed in chapter L, this system experienced severe
rope whip during the ascending cycle. Dimitrion and Whilliet|18T3] analysed
this system by examining the quasi-static description of the system charac-
teristics, Although this ia a useful approach te identily potential regions of
primary external resonance, il fails to account for the physical system param-
eters such as damping, the level of excitation end the potential influence of
lateral to Jongitudinal tuming. The Klool Mine linist system parameters ap-
plied in the analysis are presented in table 4.4, Figure 44(&,b) presenta the
linear dynamic characteristics of the system during the deacending and ascend-
ing cycle respectively. The horizental lines in figure 1.4(a,b] represent. the firsl
and second harmonic of the Lebus excitation frequencies, st & constant nomi-
nal winding speed of 15 m/s'®. The vertical lincs reflech bhe Iayer changs-over
locations. It i evident in Agure 4.4(b] that during the ascending eyele the
second lateral mode of the catenary is rescnant at approxirnately 700m, Thes

occurs mnnultanecusly with the second longitudinal mode. Prior to this con-

dition at approximately 900m, the fourth longitudinal mode is tuned to twice
the second lateral catenary mode and hence a condition of internal resunance

ariaes.

I'he stability chart of the steady state solution was constructed as a function of

shaflt depth and the nominal winding velecity, whilst the cxeitation amplitude
T 2 I s L

DUN PIdrye FENPTICL] Y

af the winder drumi, 29 geleffmiped i = otLe - :
held conataat. The purpase of this chart is to teflect regions of avoidance of
likely non-linear interaction, and hepce to determine a viable winding apeed
; o arameters. Oaly two regions of instability were evident
on the ascending cycle, and Lhese were related to direct external resonance
of the third and second lateral catenary modes, at th.e beginning and end of
the wind respectively. The eigenvalue exponents g‘g@:;@igd with these regions
&id not reflect any local maximum, of apgcia.l_ condition of tunim_; ‘between the
iateral and longitudinal system. Figure 4.5 |I]u‘atrat the Ella.llllllt.!." chart for
thes ascending cyclel?, The region of instability is related Lo primary external

d fourth catenary modes. Although the steady

resonance of the second 20 o .
utate or datum solution accounts for conditions away from primaty external

I winding spesd uEI_:f. ta the drutn surfece speed, conseouenty the rope speed

: mber of rope [ayers incréasa. . -
m‘:l'l;n;rma:li::hin;mentu «he dafinition and ealculation of ¢he Lebua groove exclbations.

{2 o oL bad resion of the chark zepresents 80 unstable solusion, wheee tha eigenvalue of
i ne SOAaUtd itpeve T o P . L i :
. han gero, The contoues on the shaded region represent Lhe magnitude

;ﬁ:ﬂ onent A cintoor lines reprosant &0
2 £Xp -
expohent al 0.01,.1,1,10 50,100

‘fhe moximum exponent (8 110, whilst the ©
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resonance of the catenary, it is cleatly evident from the cigenvalue plot that
a mgnificant region of interaction is predicted close to 15m/fs, which spans
oo nataly N o from B30m-T80m. Thi repion i3 characterisec
E.I'.IPT[]HI.IIIE'I.-E.I._‘[ JULT BLE LEWLFhdl WELFLFELET 1 iFidmLm [

. ' P 404 Y R . Mha nrlid Toman e Bhic et
ITLbeTAack oD Of WO cODCRIoOnSs O [EIRNAnCT, L IG JuUFiliL TRILES AL Lille Tigaie
vations conditions of resonance. The solid lin= n:prr.“SEl‘l‘LEd by ﬂbj reflects the
additive combination resonance of the second calenary and second longitadinal
mode. Fven though the second catenary mode (3 Tesonant away From this

indin aedd the nigenunlug plot reflects that the severity of Lhe Luning drops.
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In order to accentuate regions of acﬁﬂnfa‘ufy resdlianice, b similar stability chas
wasg congtructed for the a.gc.gnding Ao dtﬂﬁenﬂ:mg“r;}'r.'_lcs,_ﬂ_nere E?E Vii'.rmmru?
velaocily was maintained at 15 mfa, whilat the ammphitude ot the excitation and
herce of the steady state motion was increased proportionately. These charts

AL TR ¥ RE— e =I5

ﬁmmﬁﬁﬁmmmmwru the nominal Lebus

groove excitation is amplified by a-factor of ¢ Secondaty regions of tesopance
are evident in these figures. "mwﬁwwt&mwﬂmi
he required to activate such regiona. With regara to LW
Mne 4 B. the region at 250m is refated to a condifion ot parametoc
inati t lateral and longitudinal modes, which tune
to the first harmonic of the Lebus excitation frequency. The regicn ta the right
of the primary resonance {#= 9D0m) tegion is related to rescoance of the fourth
longitudinal tode, combined with the internal resonance between vfhg ttnu.“h
lemgitudinal and second lateral modes. The n:lenclemimg cycle ::x[.]h,ta wimslar
cegiona of secondary resonance. The t.wclr mest significant regiong are related
ta primary externsl resonance of the third lateral catenary mode (&= 300m)
anet of the second lateral mode towards the end G.E the wind (== li’ﬂﬂm]: The
latter condition js larger and mere important s it spana a greater section of
tha wind. Thia is confirmed by the simulation results presented in Chapter 3.

| -l
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Frequency (Hz)

Frequency (Hz)

Depth (m)

ure 4.4: Kloof Mine: Linear dynamic characteristics.
b) Ascending cycle

Lebus groove excitation frequency

Longitudinal natural frequencies

_ T.ateral natural frequencies
Lateéras fiavuias IT%




Table 4.3: Kloof Mine - Syster
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J Sheave Inertia. 15200 kgm
M Skip Mass. 7920 kg
MO Skip Pay-load. 9664 kg

m Linear Rope density 8.4 kg/m
\% Nominal Winding Speed. 15 m/s

De Depth of wind. 2100m

Lc Catenary Length. 74.95 m

E Effective Youngs Modulus of the rope. 1.1EM1

Ax Effective steel area of the rope. 0.001028m?2
B8 Cross over arc. 0.2rad -
Dd Drum Diameter. 4.28 m

Ds Sheave Diameter. 4.26 m

Dr Rope Diameter. 0.048 m
La General proportional damping parameter | 0.159
po(s2) | General proportlonal damping parameter | 10.49s;

¢1 Lateral proportional modal damping ratio | 0.05%

Velocity (m/s)

Depth (m)

a) 2QLgbua =wy + w2
) QLebus = W2
C) QLebus = W4

Figure 4.5: Stability chart of the steady state datum solution - Ascending
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4.5 Conclusion

linear interaction is likely. The analysis was validated experimentally and then
applied to examine the Kloof Mine hoist system characteristics. Satisfactory
correlation was achieved with respect to the laboratory experiment. In the
context of a hoisting system, the analysis would provide a preliminary assess-

ment of the hoist characteristics. It is important to emphasise that the sta-
tionary steady state analysis was intended to compliment the linear approach
proposed by Dimitriou and Whillier{1973]. It is limited in that it does not ac-
count for the non-stationary behaviour of the system, nor does it account for

the transient excitation introduced during the acceleration/deceleration phases

vail LA %

or during layer change-overs. In effect, the mine hoist system does not achieve
steady state; the effect of the winding velocity is to attenuate and delay the
resonant condition. The transient excitations introduced at the layer change,
may also significantly influence tne .
of layer changes is pertinent, since the phase of the out-of-plane lateral ex-
st baroo by 180° after a layer change. This mechanism can be used

CVIVCAUIVLE LiileiipySrsr =y
t amplitudes from developing further. In

to advantage to precipitate resonan
terms of the stationary analysis of the Kloof Mine hoist system, the analysis

serves to confirm to some degree the observation of Dimitriou and Whillier
that the lateral motion may induce significant longitudinal interaction at ap-
proximately 700m. It is evident from the stability (figure 4.5) plot that this
occurs in the vicinity of 15m/s. Hopefully such information would draw at-

tention to this  condition of tuning, and such a condition would be avoided.

For realistic stationary excitation levels calculated from the drum geometry,

significant regions of secondary resonance as observed in the laboratory exper-
4 -ttt L VU & PR, ot crrhatantially

. | ] t ariSe on the Kloof mine hOiSt SySteI‘ﬂ. HUWCVCL, at suostanviaiiy

larger excitation levels such regions may be entered, as is evident in figures
4.6, 4.7. During a winding cycle, the dynamic response never reaches steady
sidual response due to the non-stationary nature

state, and consequently the resid :
of the system may activate regions of secondary resonance. In light of these
additional features of the system, a numerical simulation is necessary as a final

validation of the system design. Such a simulation is presented in the following

VALINAUVIVIL Va Ve Vy

chapter.




Chapter 5

Nonlinear Numerical
Simulation

Chapter 4 presented a stability analysis of the steady state out-of-plane datum
solution. The stability of this motion was investigated as a criterion to identify
system parameters which reduced the nonlinear coupling between the lateral
and longitudinal motion. The analysis confirmed the existence of simple and
additive combination parametric resonances of the lateral modes, as well as the
possibility of parametric resonance involving additive and difference combina-
tions of the longitudinal and lateral modes. A further discussion regarding the

Appendix J, where the existence of these

steady state motion is presented in
nfirmed by applying the method of mul-

regions of secondary resonance is co
perturbation analysis also 1 enti iti I i ‘
resonance. Although an appreciation of the steady state stability of the system
may be useful for identifying regions of potential nonlinear interaction, the sys-
tem ;s non-stationary, and steady state motion is never attained. In addition
the Lebus excitation at the drum was idealised in the stability analysis as a two
term Fourier expansion of the groove profile. In reality the Lebus groove pro-
file induces strong pulses at each coil cross-over. Thus modelling the geometry
of the cross-over region accurately is essential. For this reason, a numerical
simulation capable of approximating the real tin}e response of the system is
developed. Since such an analysis i8 intended to simulate the behaviour of the

system as realistically as possible, nonlinear terms consistent with the strain

definition. as well as cable curvature and cable transport velocity are included

—in the analysis.
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rough three phases. Firstly the nonlinear partlal dif-

1vad in antar VUara ~rnncidan mL

1ved in Cia PveT 0 af€ COIisiae ].Cu LIICIcaILCI
oped. In the early stages o

this study, the normal mode method was applied to transform the partial

differential equations of motion to ordinary differential form. An extensive

simulation based on this approach was developed. The numerical simulation

This chapter progresses t

farential aaguatiane o n
vvvvv AVALMA \.\.lu.u\u\IAu: ASZ AP S S AV,

failed to correlate with measurements extracted from the laboratory model of
the system. This exercise demonstrated the limitations of a nonlinear normal
mode approach, and resuited in the development of a quasi-static model for
the catenary section. Finally a nonlinear simulation of the Kloof Mine hoist
system, based on a quasi-static model which includes catenary curvature and
transport velocity, is presented. The numerical simulation predicts dynamic

Rt o Al iy P

interactions on the up-wmd, leading to rope whip, as observed by Dimitriou
and Whillier[1973], whilst negligible interaction occurs on the down-wind.

5.1 Nonlinear Equations of Motion

5.1.1 Simplifications Applied in the Modelling Process

The nonlinear equations of motion were developed by applying Hamilton'’s
principle. In developing these equa.tlons, the Lagrangian strain in the axial

direction of the rope was defined as:”

coz ie amall the catenarv is treated as a symmetric
v vAaCQLURS &3 & Sy 112i0uiil

Since the catenary curvature is smaii, the
horizontally supported cable with constant curvature, where the equilibrium

curvature is defined as:

__ mgcos()
"TTH

f inclination of the catenary and H is the equi-

where @ refers to the angle o —4
< K <

librium tension. Typically the curvature will vary between 1 x 10

1 x 1073,

strain is: € = u, —KvV+ %((“- —””)2“””3‘*‘("- +'W)2),

1 on for the .
Since the correct expressi 1 in-plane and out-of-plane motion

uO(v?), O(w?), kO(u), where u, v, w represent axial, latera

respecn lvely



