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 Abstract – This investigation explores a comparative study of 
both the linear and kernel implementations of three of the most 
popular Appearance-based Face Recognition projection classes. 
These are Principal Component Analysis (PCA), Linear Dis-
criminant Analysis (LDA) and Independent Component Analysis 
(ICA). The experimental procedure provides a platform of equal 
working conditions and examines algorithms in the categories of 
expression, illumination, occlusion and temporal delay. The re-
sults are then evaluated based on a sequential combination of 
assessment tools that facilitate both intuitive and statistical deci-
siveness among the intra and inter-class comparisons. In a bid to 
boost the overall efficiency and accuracy levels of the identifica-
tion system, the ‘best’ categorical algorithms are then incorpo-
rated into a hybrid methodology, where the advantageous effects 
of fusion strategies are considered.  
 
 Index Terms – CMS, Hybrid, McNemar, Rank, Subspace 
 

I.  INTRODUCTION 

 A human face is an extremely complex, dynamic and 
deformable object with features that can vary considerably and 
rapidly over time. Skin coverage offers a non-uniform material 
that is often difficult to model [2] and that can change in re-
sponse to the effects of emotion, temperature, reflectance 
properties and perspiration levels, thus creating a large variety 
and variability within the configurations of facial expression. 
Another avenue includes temporal changes by measure of 
growth, facial hair, effects on the skin due to aging and skin 
colour changes attributed to ultraviolet exposure. A further 
complexity is introduced by artefact related changes such as 
change due to injury and fashion-related issues such as cos-
metics, jewellery and hairstyles [2].  
 
Much of the world’s best commercial systems provide real 
time solutions for face detection, image registration, and im-
age matching [5]. Most of these algorithms find their niche in 
sophisticated security systems for governments, corporations 
and research institutes. Although the details of most of these 
systems are confidential [5], many of the computer vision sys-
tems reported in literature still employ the popular appear-
ance-based paradigm for object recognition [6]. Appearance-
based analysis, which is one of the oldest approaches, is still 
said to give the most promising results [4]. Among the most 
popular publicly available subspace approaches are the classes 
of Principal Component Analysis (PCA), Independent Com-
ponent Analysis (ICA) and Linear Discriminant Analysis 
(LDA). Originally implemented in a linear fashion, these 
methods may differ in the way the basis vectors Y and trans-
formation matrix W are defined, but they share the common 

approach in which facial representation is extracted, such that 
Y=WT X  (where X is the matrix of input images). 
 
When looking at the performance of all these algorithms, it is 
interesting to note the often ‘contradictory’ and confusing 
claims that have been made in the literature. Bartlett et al. [12] 
and Liu et al. [13], for example, claim that ICA outperforms 
PCA, while Baek et al. [14] claim that PCA is better. 
Moghaddam [15] states that there is no significant difference. 
Beveridge et al. [16] claim that in their tests LDA performed 
uniformly worse than PCA, Martinez [6] states that LDA is 
better for some tasks, and Belhumeur et al. [17] and Navarrete 
et al. [18] claim that LDA outperforms PCA. While all these 
claims may in fact hold a good degree of truth, one should 
bear in mind that there were differing control factors surround-
ing each conclusion i.e. the actual task statement, the subspace 
distance metrics, dimensionality retention and the non-
standardized database choices etc [5,12]. All these conclusions 
have contributed to much debate and confusion over the years, 
particularly for an individual who is new to the field of facial 
recognition (FR) and subspace methodologies and who seeks a 
good comparative understanding of the available techniques. 
 
Very rarely are all the classes compared in the same investiga-
tion and almost never are all of their implementations consid-
ered. This research serves to provide a platform of equal con-
ditions upon which the popular appearance-based subspace 
techniques can be fairly and properly benchmarked. In doing 
so one hopes to realize an independent comparative study that 
will greatly contribute to previous literary works. This investi-
gation will compare the appearance-based methodologies of 
PCA, LDA and ICA in both linear and kernel projections. 
Also both ICA architectures I and II [12,20] as well as both 
the InfoMax and FastICA implementations will be reviewed. 
The four most popular and widely used distance measures of 
L1 (City Block), L2 (Euclidean), Cosine and Mahalanobis 
have been chosen as the comparative classification metrics. 
The performance effects of illumination, expression, occlusion 
and time variations are provided by the AR Database [27] and 
will be compared across all the techniques to conclusively 
yield the ‘best’ algorithm in each category. 
 
While it may also be true that a robust classifier could be de-
signed to effectively handle any one of the performance influ-
encing factors, it is extremely difficult for an appearance-
based technique to robustly deal with all the influencing varia-
tions [19]. Each individual classifier has a different sensitivity 
to different changes in facial variation and as was reported by 
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Phillips et al [20], appearance-based methods show different 
levels of performance for different subsets of images. In their 
analysis of ICA and PCA, Bartlett et al [12] also reported that 
when incorrect classifications were made, it was very rare that 
the algorithms assigned the same incorrect identity class. The 
above findings strongly suggest that different classifiers con-
tribute differently and hence offer complementary information 
about the classification task. A fusion scheme involving the 
different face classifiers, which integrates multiple sources of 
evidence is therefore more likely to yield an overall improve-
ment in both the efficiency and accuracy of the identification 
system. And while this may not solve the problem regarding 
influencing factors, it will definitely alleviate the impact they 
have on performance levels. It is for this reason that this inves-
tigation will also propose a hybrid formulation that combines 
the ‘best’ algorithm from each category. Following Kittler’s 
theoretical framework on combining classifiers [21], the tech-
niques will be combined at the matching score level using the 
sum rule strategy. The hybrid will of course be compared to 
component classifiers to provide a better overall understanding 
into appearance based subspace methodologies and their per-
formance within the face recognition environment.  
 

II.  BACKGROUND 

 A two dimensional image, �(x,y) of size m (rows) by n 
(columns) pixels can generally be represented by concatenat-
ing the raster ordered values to create a vector in an N dimen-
sional image space  (RN=m x n ). This image space, however, 
constitutes a rather high-dimensional space and recognition 
therein would be deemed computationally infeasible [14,72]. 
If, however, an image of an object (say a face) is considered to 
be a point in the image space, then a set of M facial images 
can be represented as a set of points (samples of probability 
distribution) in the same confined subspace [7].  
 
Theoretically it is common to model this subspace as a lower-
dimensional principle manifold, embedded in a higher dimen-
sional image space [14,72], wherein the intrinsic dimensional-
ity is determined by the number of degrees of freedom within 
the face space. Gong et al [32] has shown that this intrinsic 
dimensionality, despite the variations in pose, expression and 
lighting, is very much smaller than that of the image space. 
The goal of subspace analysis is thus to determine the value of 
this dimensionality and thereafter extract the principle modes 
of the underlying manifold, while retaining as much informa-
tion (energy) from the original images as possible [4]. By do-
ing this, subspace methodologies ensure that computational 
efficiency and hence the successful viability of face recogni-
tion algorithms can be achieved [31].  
 
A. Principal Component Analysis 

 The Principal Component Analysis (PCA) procedure fol-
lows the description by Pentland and Turk as described in 
[33]. Given an s-dimensional vector representation of each 
face in a training set of M images, PCA tends to find a t-
dimensional subspace whose basis vectors correspond to the 
maximum variance direction in the original image space. This 
new subspace is normally lower dimensional (t << s). All im-
ages of known faces are projected onto the face space to find 

sets of weights that describe the contribution of each vector. 
To identify an unknown image, that image is projected onto 
the face space as well to obtain its set of weights. By compar-
ing a set of weights for the unknown face to sets of weights of 
known faces, the face can be identified. If the image elements 
are considered as random variables, the PCA basis vectors are 
defined as eigenvectors of the scatter matrix S defined as: 
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where � is the mean of all images in the training set (the mean 
face) and xi is the ith image with its columns concatenated in a 
vector. The projection matrix WPCA is composed of t eigenvec-
tors corresponding to t largest eigenvalues, thus creating a t-
dimensional face space. 
 
B. Independent Component Analysis 

 PCA considered image elements as random variables with 
Gaussian distribution and minimized second-order statistics. 
Clearly, for any non-Gaussian distribution, largest variances 
would not correspond to PCA basis vectors. Independent 
Component Analysis (ICA) [12] minimizes both second-order 
and higher-order dependencies in the input data and attempts 
to find the basis along which the data (when projected onto 
them) are – statistically independent. Bartlett et al. [12] pro-
vided two architectures of ICA for face recognition task: Ar-
chitecture I (ICA1) - statistically independent basis images 
and Architecture II (ICA2) - factorial code representation. 
These architectures are used in combination with the two cur-
rently popular implementations of ICA in the form of Bell and 
Sejnowski’s InfoMax algorithm [34] and Hyvarinen’s FastICA 
approach [35]. 
 
C. Linear Discriminant Analysis 

 Linear Discriminant Analysis (LDA) [17] finds the vec-
tors in the underlying space that best discriminate among 
classes. For all samples of all classes the between-class scatter 
matrix SB and the within-class scatter matrix SW are defined 
by: 
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where Ni is the number of training samples in class i, c is the 
number of distinct classes, �i is the mean vector of samples 
belonging to class i and Xi represents the set of samples be-
longing to class i with xm being the mth image of that class. SW 
represents the scatter of features around the mean of each face 
class and SB represents the scatter of features around the over-
all mean for all face classes.  
 
The goal is to maximize SB while minimizing SW, in other 
words, maximize the ratio det|SB| /det|SW|. This ratio is maxi-
mized when the column vectors of the projection matrix 
(WLDA) are the eigenvectors of SW

-1
�  SB. In order to prevent SW 

from becoming singular, PCA is used as a preprocessing step 
and the final transformation is thus Wopt

T = WLDA
T WPCA

T. 



D. Kernel Methods 

 Variations in face images due to viewpoint, illumination 
and expression changes have been proven to be highly com-
plex and nonlinear in nature [14, 48] and it has been observed 
that variations between face images of the same person due to 
illumination and pose are almost always greater than image 
variations between the different persons [8]. From a classifica-
tion viewpoint linear approaches, which only describe infor-
mation based on second order statistics [1], are therefore said 
to be suboptimal in terms of accurate data representation.  
Complete pattern variation is said to be captured within the 
non-linear relations between neighbouring (three or more) 
pixels [1, 50]. These relationships are represented in terms of 
higher order statistics that are crucial in fully representing 
complex patterns [24].  
 
First introduced by Aizerman et al [25], the ‘kernel trick’ was 
used to map the input space to, by means of a nonlinear func-
tion expressed as dot products, to a convenient feature space 
(Hilbert space) in which the input data is nonlinearly related 
[1]. It was not until recently that Schölkopf et al [9] extended 
the classical PCA algorithm to Kernel Principal Component 
Analysis (KPCA) that was shown to be able to extract non-
linear features and in doing so provide better recognition re-
sults than PCA [17,50]. KPCA, as with PCA, simply captures 
variance information and although being nonlinear, it may not 
necessarily be suitable for discriminatory purposes [17].  Mika 
et al [11] and Baudat and Anouar [26], then proposed Kernel 
Linear Discriminant Analysis (KLDA), whose results are 
claimed to be superior to that of PCA, LDA, ICA and KPCA 
[7]. Kernel ICA was also introduced by Bach and Jordan [10] 
in support of constrained theories they proposed regarding the 
estimation of Gram matrices in Cholesky Decomposition. The 
algorithm employs gradient decent optimisation approach and 
was designed to operate using low-rank results. Its computa-
tional demand is said to increase cubically with dimensional-
ity, thereby currently deeming it infeasible for application in 
face recognition [10] and therefore placing its evaluation be-
yond the scope of this investigation. 
 

E. Hybrid Methods 

 In classifier fusion, the outputs of individual classifiers 
are combined by a second classifier according to a pre-defined 
combination rule. Classifier combination can essentially be 
implemented at three levels [23]: Fusion at the a) Feature Ex-
traction level b) Confidence or Matching score level and        
c) Decision level. 
 
The use of classifier fusion has produced many combination 
techniques over the years. One popular approach has been the 
idea of bagging [29], which manipulates the training-data with 
sub-sampling. Another common algorithm, boosting [30], also 
manipulates the training data, but with emphasis on the train-
ing of samples that are difficult to classify. Recently, probabil-
ity-based strategies have become popular in pattern recogni-
tion; Kittler et al [21] provided a theoretical framework for 
combining various base classifiers. They reviewed several 
common strategies, which included the product rule, sum rule, 
max rule, min rule and median rule. The experimental results 

showed that the best performances were obtained when using 
the sum and median rules. Ross and Jain [23] also showed that 
when the error introduced by each classier, due to problems in 
acquisition and feature extraction processes, is unknown, the 
errors in estimating the posteriori probabilities become very 
large and hence it is better to directly combine individual 
scores. 
 
In combining these scores, however, it is common that one 
may experience one or more of the following problems [23]:  

- Non-homogenous score types, whereby different methods 
are employed in obtaining these values such as distances 
and similarity measures (example L1 and Cosine). 

- The score ranges may be entirely different e.g. [0, 100] or 
[0, 1000]. 

- The score distributions may be entirely different. 
 
An important part of the fusion process is therefore score 
normalisation, whereby the scores obtained from multiple 
frameworks are modified and transformed into a domain of 
common scale and range before combining them [49,69]. 
Popular normalisation schemes includes the approaches of 
MinMax, Decimal Scaling, Z-score, Median, Tanh Estimators 
and Double Sigmoid Functions [23]. Each approach may of 
course perform better given a certain type of data, but in gen-
eral the schemes of MinMax and Z-score approaches were 
found to be the most robust and efficient [23]. 
 

III. IMPLEMENTATION 

 In refining the nature of the tasks being evaluated one 
established five main areas of focus [3]: Viewing Angle, Illu-
mination, Expression, Occlusion and Time Delay. The AR 
Database [27] provided the most efficient publicly available 
source of subject samples, which overlapped most of the de-
sired categories and effectively facilitated testing. The data-
base contains over 3000 images of 135 individuals. The sub-
jects were recorded over two sessions with a two week inter-
val between shoots. During each session 13 images per subject 
under varying conditions, 1 neutral and 3 per variant of ex-
pression, illumination and occlusion (with lighting changes).   
 
Each image was resized to dimensions of (125 x 165 x 3) and 
pre-processed using the traditional procedure depicted in fig-
ure 1. The pre-processed database formulated a baseline sys-
tem [5], which was then divided into gallery and probe sets. 
110 subjects (55 males and 55 females) were randomly se-
lected and since it is desirable to have no overlap between the 
training and testing images, subject images were divided as 
follows: the Training Set comprised of the neutral expressions 
of both the 1st and 2nd sessions. This offered all the necessary 
facial and temporal information and effectively facilitated a 
realistic investigation of geometrical changes for a small sized 
training set i.e. expression, illumination and occlusion over 
time given that few training samples may be available. 
 
The Test Set was divided into four categories: Expression, 
Illumination, Upper Occlusion and Lower Occlusion. Each 
test set contained 6 images per class/subject (3 per session, 
660 images in total per category). In order to achieve a good 
degree of confidence in the results, each probe set was further 



subdivided into 10 probe sets comprising 2 random images per 
subject. Although temporal changes are inherently considered 
in each category due to the session 1 and 2 images, it was also 
decided to directly compare the effects of time only. A further 
Time probe set was created, using only the neutral images i.e. 
images from the 2nd session are tested against the neutral im-
ages from the 1st session.  
 

  
Figure 1     Depiction of Pre-processing Procedure 

 

Training each algorithm followed the procedure in figure 2, 
whereby all the training images are arranged into a column-
wise input matrix and sequentially projected into the subspace 
to yield the projection database. Before any projection or test-
ing could begin, however, one needed to obtain a region of 
dimensional optimality for each algorithm i.e. subspace di-
mensionality selection. Within this paper this region has been 
defined as a ‘Region of constant differentiability, between the 
similarity measures, which offers comparable accuracies 
amongst the different algorithms while simultaneously con-
tributing toward effective algorithmic generalisation and 
computational efficiency’. Having no closed form expression 
to explicitly determine this region, one adopted the FERET 
heuristic that suggests selecting 40% of the dimensionality 
would retain approximately 96% of the energy spectrum (sig-
nal information) [5,12,32]. This was applied to the AR Data-
base where it was found that optimal dimensional retention for 
PCA and ICA lied between 116 – 199 and between 72 – 74 for 
LDA. 
 
The testing procedure, using the nearest neighbor approach, 
facilitates each probe image to be classified with a class label, 
the results of which are then put forth to the evaluation phase, 
where the comparative assessment will be based on the com-
binatorial results of three successive tools. Firstly the binomial 
cumulative probability of correct class assignment will be pre-
sented in traditional tabular format. This will be followed by 
the FERET testing protocol using Cumulative Match Scores 
(CMS) curves [22], offering intuitive insight into which algo-
rithm performance throughout the rank spectrum. Finally sta-
tistical measures are also applied in the form of McNemar’s 
Hypothesis Protocol [28] that offers the practical insight per-
taining to what point does the difference in performance re-
sults actually become significant. 
 
Bearing in mind the still, significant image space, N = 20 625, 
one would like to boost computational efficiency as effec-
tively as possible. Upon initial investigation, in terms of com-
putational resource and time demand, the classical algorithms 

of PCA and LDA were found to handle this image space very 
poorly. Further research revealed works by Baudat [26] and 
Franc [68], which proved that Kernel implementations em-
ploying linear functions (1st degree polynomials) can effi-
ciently handle larger input dimensionality and are equivalent 
to the classical implementations of PCA and LDA. It was 
therefore decided, in an effort to significantly reduce the com-
putational load, that the kernel implementations of KPCA and 
KDA (GDA) will be used to compare both the linear and non-
linear projections variants. Looking at the class of ICA, the 
Kernel implementation is not yet feasible for large input 
spaces; the results will therefore be evaluated demonstrating 
the algorithms of InfoMax and FastICA in combination with 
both Architectures I and II.    
 
Upon establishing the ‘best’ projection-metric combinations 
for each evaluation category, these approaches will then be 
combined to realize a fusion strategy that will effectively 
demonstrate the advantageous results of hybrid formulations. 
Ross and Jain [23] reported their conclusive findings which 
indicate that the approach of classification before fusion actu-
ally performs poorer than the confidence score level. 
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Figure 2     Generic Training Model 

 

The matching score level was found to offer the best tradeoffs 
in terms of information content and ease of fusion [23]. It was 
therefore selected as the most appropriate level of fusion for 
this particular application. The similarity measures from the 
relevant metric of each algorithm will be taken as inputs to the 
combinational classifier. Normalisation of the differing metric 
measures are performed employing the MinMax scheme, 
shown below, resulting in a common range of [0 100]. 
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In combining the different metric measures, the weighted sum 
rule is selected as the fusion rule. Despite its simplicity, the 
sum rule often outperforms other combination schemes [29, 
49] and because of its linear model it is proven to be more 
tolerant to noise signals. The combined matching score will be 
calculated as follows: 
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The weights associated with each classifier’s matching score 
are defined by a confidence function to represent the relative 
contribution of each classifier. This paper proposes two meth-
ods that establish these weight values: 
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Method 1: This approach is an intuitive generalisation, 
whereby the weightings are defined as per class perform-
ance level in each of the five relevant evaluation categories. 
If LDA, for example, performs well in the categories of Ex-
pression and Time Delay, it will obtain two fifths or 40% of 
the weighting; similarly if FA1 outperformed the other al-
gorithms in both occlusion categories it will also receive 
40% of the weighting; with the remaining 20% going to the 
algorithm performing best in the category of illumination.  
 

Method 2: Recognition accuracy of each component classifier 
is directly related the confidence one has in its abilities, one 
can generate a confidence function as a weighting function. 
Letting ri be the recognition accuracy of each classifier, the 
sum of recognition accuracies is given by:  
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where q is the number of classifiers being combined. The as-
sociated weightings are then given by: 
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Once the hybrid matching score has been calculated, final 
classification and evaluation is performed. 
 

IV. RESULTS AND ANALYSIS 

 Using the described methodology the relative perform-
ance levels of the three most popular classes of appearance 
based subspace methodologies i.e. PCA, LDA and ICA were 
investigated. In conjunction with the assessment process one 
also sort to find the best metric combination that offered the 
best task specific advantage. One first considered the rank-1 
performances of each algorithm and confirmed their perform-
ance in accordance with the highest CMS metric curves that 
offered the highest accuracy levels across the rank spectrum; 
this either confirmed the rank-1 choices or revealed a metric 
that offered a better overall performance. 
 
Having found the best projection-metric combination for each 
algorithm, one then wanted to establish the ‘best’ algorithm 
within each subspace class. Although the respective CMS 
curves offered a meaningful and sometimes very convincing 
indication of superiority order, it was felt that a deeper analy-
sis would offer greater performance distinction. This was ac-
complished by employing McNemar’s Hypothesis Protocol 
that aided one in making a decision that is not only intuitively 
correct but statistically sound as well. This combinatorial ap-
proach offered much more significant insight into the relative 
performance of each variant within the classes and also 
brought forth the best alternative that one could or should con-
sider for inter-class comparisons.   
 
The inter-class assessments, rank-1 results shown in table 1, 
were carried out in much the same fashion as the intra-class 
tests.  The CMS curves were used as the primary tool for ob-
taining an intuitive indication as to which class performed 
better and this was either confirmed regionally or nullified by 
the findings of McNemar’s evaluation. The CMS charts, Deci-
sion Graphs and Confidence Probabilities were then cohe-

sively used in revealing any significant, task specific, advan-
tage that one class may offer over the next class.  
   
In the class of PCA, the following was categorically found: 
 

Expression: There is no statistical difference between any of 
the variants, so given the non-rigidity of the facial object, 
one would still expect a similar performance from the linear 
and non-linear implementations. The CMS curves do, how-
ever, indicate that it is the polynomial variant that offers the 
slight advantage in recognition rate. Based only on this in-
tuitive deduction, the greater confidence is placed in the 
polynomial approach. Considering the metric combinations, 
one found that the best rank-1 results were obtained with the 
L1 measure and the best overall performance is offered by 
the L2 measure followed by cosine. 

 

Illumination: The polynomial approach offered the best CMS 
accuracy levels, particularly in early ranks, where it was 
found to be statistically superior in ranks 1 and 2. The L1 
measure was found to offer both the best rank-1 and overall 
performance that was closely followed by the L2 metric. 

 

Lower Occlusion: These results were by far the lowest 
achieved and in some ways can even be considered as coin-
cidental. Performance conclusions were reached simply on 
available evidence but one should leave room for further in-
vestigation. From current results, the linear and RBF im-
plementations offered the best performance, with no statisti-
cal difference between the two. The CMS curves suggest 
that early rank advantage is given by the linear variant, 
while the RBF algorithm claims supremacy after rank-30. 
The Mahalanobis measure, surprisingly, offered the best 
metric results for this measure and was closely followed by 
the City-Block (L1) similarity measure. 

 

Upper Occlusion: The polynomial variant again found intui-
tive and statistical superiority across most of the rank spec-
trum. The best results were found by employing the L1 
measure at rank-1 and the Euclidean (L2), followed by the 
Cosine metrics for overall performance. 

 

Time Delay: The polynomial algorithm, combined with the L1 
metric, once again found early rank supremacy. 

 

On average one could recommend that the best PCA perform-
ance levels are offered by the Polynomial algorithm in combi-
nation with the metrics of L1, followed by L2.  
 
In the class of LDA, the results were as follows: 
 

Expression: Both non-linear variants of RBF and Polynomial 
offered equal statistical advantage over the linear approach. 
The CMS curves were indicative of marginal polynomial 
superiority and it was therefore selected for inter-class 
evaluation. The best metric results were reached using the 
Mahalanobis (Mah) measure, followed by cosine and 
Euclidean. 

 

Illumination: The non-linear approaches again show early rank 
supremacy with the polynomial approach being statistically 
better than RBF at ranks 1 and 2. The Mahalanobis distance 
measure was also the best metric measure, followed by L2. 



Lower Occlusion: The linear variant, without question, offered 
the best statistical and intuitive results across the spectrum. 
This conclusion, however, should be considered while also 
bearing in mind that the performance levels of appearance 
based methods are extremely sensitive to occlusion, specifi-
cally lower facial concealment. The best metric was again 
found to be the Mahalanobis measure, followed by cosine. 

 

Upper Occlusion: The best performance was without a doubt 
offered by the polynomial approach in combination with the 
Mahalanobis metric.    

 

Time Delay: There exists no statistical difference between any 
of the variants when it pertains to temporal face identifica-
tion. CMS intuition does, however, suggest the marginally 
better performance being offered by the polynomial algo-
rithm. Again the Mahalanobis measure offers the best re-
sults, followed by the cosine metric. 

 

Overall one could suggest that better performance levels were 
obtained by the non-linear variants, specifically the Polyno-
mial approach in combination with the Mahalanobis similarity 
measure. 
 
In the class of ICA: 
 

Expression: There was no statistical difference found between 
any of the ICA variants. Architecture II, in both the In-
foMax and FastICA implementations, offered the best CMS 
advantage and FA2 was selected solely on the fact that Fas-
tICA is computationally less costly than the InfoMax alter-
native. The best combinational metric was provided by the 
Cosine (Cos) measure. 

 

Illumination: Again there was no statistical difference be-
tween any of the algorithms and FA1 is selected purely on 
CMS intuition as the alternative that offers the most prom-
ising recognition rates.  

 

Lower Occlusion: Architecture I was found to achieve the best 
statistical and intuitive early rank results. There was no 
clear distinction between the FastICA and InfoMax imple-
mentation, and again the FastICA variant was selected due 
to computational advantage.  

 

Upper Occlusion:  The FastICA variants were found to per-
form much better than their InfoMax counterparts, with Ar-
chitecture I reigning supremely and providing distinct rank 
2 and 3 superiority over Architecture II.  

 

Time Delay: Statistically, there was no significant difference 
between any of the approaches. FA1 was however, again se-
lected for inter-class evaluations based only on intuitive 
CMS performance. Cosine, once again offers the best metric 
results. 

 

An overview of the ICA class shows that in the categories of 
expression, illumination and time delay, there is no significant 
statistical difference between any of the architectures and the 
choice of employing either the InfoMax or FastICA imple-
mentations does not affect the overall performance rankings. 
In the case of Occlusion, however, Architecture I proved the 
most successful, reiterating the advantage that spatially local-
ised vectors can offer over global (overlapping) feature vec-

tors. In selecting the best metric combination for ICA, the Co-
sine measure was without a doubt the best distance measure in 
all categories. 

Table 1 Inter-class Rank-1 results 

 
In performing the Inter-class assessments the results were as 
follows: 
 

Expression: LDA and ICA came out as the top classes, but 
only being superior to PCA at rank-1; other than that there 
was no statistical difference between any of the classes. In-
tuitively one could claim that PCA offers the best CMS re-
sult, followed by LDA and lastly ICA, however, this intui-
tion would fall short of true performance conclusions, which 
in this case is similar for all the classes.  

 
Illumination: LDA and ICA both claim statistical superiority 

over PCA for the first 7 ranks; ICA however, outperforms 
LDA for the first 3 ranks leading one to the conclusion that 
ICA is the best class to apply for the task of illumination 
changes 

 

Lower Occlusion: While LDA may have outperformed PCA 
for the first 40 ranks, it was ICA (Arch I) that reigned statis-
tically and intuitively supreme throughout the rank spec-
trum. 

 

Upper Occlusion: ICA (Arch I) again performed the best 
amongst the three classes. PCA in this category, however, 
was found to statistically outclass LDA in both early and 
late rank evaluations. 

 

IInntteerr--ccllaassss  RRaannkk  11  RReessuullttss  CCMMSS  RReessuullttss  
                                
                            L1                L2              Cos            Mah 

 

Highest       
Curve 

 

Same 
rank1 

EXPRESSION       
   

PCA – Poly  

LDA – Poly  

ICA – FA2 

 

79.73% 

82.18% 

70.14% 

 

77.32% 

81.77% 

72.46% 

 

77.55% 

81.96% 

80.05% 

 

77.46% 

83.25% 

72.46% 

 

L2 

Mah 

Cos 

 

No 

Yes 

Yes 

ILLUMINATION       
    

PCA – Poly  

LDA – Poly  

ICA – FA1 

 

57.09% 

71.18% 

71.46% 

 

52.86% 

72.50% 

74.59% 

 

52.46% 

70.86% 

84.14% 

 

55.52% 

75.18% 

74.59% 

 

L1 

Mah 

Cos 

 

Yes 

Yes 

Yes 

LOWER OCC.       

 

PCA – Linear  

LDA – Linear   

ICA – FA1  
 

 

2.91% 

14.96% 

9.50% 

 

3.96% 

14.96% 

10.18% 

 

3.77% 

16.46% 

27.86% 

 

7.23% 

9.77% 

10.18% 

 

Mah 

Cos 

Cos 

 

Yes 

Yes 

Yes 

UPPER OCC.       

 

PCA – Poly       

LDA – Poly  

ICA – FA1 
 

 

31.46% 

22.91% 

34.36% 

 

32.59% 

21.36% 

31.36% 

 

28.96% 

21.32% 

51.59% 

 

29.82% 

27.91% 

31.36% 

 

L2 

Mah 

Cos 

 

Yes 

Yes 

Yes 

TIME DELAY       
 

PCA – Poly   

LDA – Poly  

ICA – FA1  

 

78.18% 

90.00% 

87.27% 

 

74.55% 

88.18% 

85.46% 

 

73.64% 

86.36% 

90.00% 

 

80.00% 

90.91% 

85.46% 

 

L1 

Mah 

Cos 

 

No 

Yes 

Yes 



Time Delay: Both LDA and ICA outperformed PCA for the 
first ten ranks. There was no statistical difference between 

these two classes; however, intuitive analysis would suggest 
that it is LDA that offers the best performance. 
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Figure 3     Example of McNemar’s Test for the top 3 inter-class algorithms – Upper Occlusion 

Column 1: PCA Poly(L2) vs LDA Poly(Mah), Column 2: PCA Poly(L2) vs ICA FA1(Cos), Column 3: LDA Poly(Mah) vs ICA FA1(Cos) 
 
In summing up the class results, while it is true that the spe-
cific nature of the task may greatly influence the performance 
level of any algorithm, on average one could confidently rec-
ommend that the class of ICA is perhaps the most flexible and 
widely adaptable subspace methodology that could be applied, 
followed by the classes of LDA (non-linear) and PCA (non-
linear), respectively. 
 
Two classes of subspace methods stood out, those being the 
classes of ICA and LDA. The hybrid formulation will thus 
seek to combine and exploit the powerful data representation 
of ICA and the unique class discriminality of LDA. Of course 
the best projection-metric combination from each class is se-
lected so as to develop the most advantageous hybrid perform-
ance available. In the LDA class, the polynomial approach in 
combination with the Mahalanobis similarity measure was 
selected. In the class of ICA, in the categories of Expression, 
Illumination and Time delay, it was observed that there were 
no statistical differences between any of the variants, however 
FA2 (Cosine) did seem intuitively better in the category of 
Expression and FA1 (Cosine) did come out very strong in the 

categories of Illumination and Time delay; also in the occlu-
sion categories FA1 was clearly the superior algorithm. It was 
therefore decided to combine both ICA architectures, Arch I 
and II, using the computationally more efficient FastICA im-
plementation. By incorporating both architectures, one hoped 
to harness the advantages offered by both spatially localised 
and global independent components.   
 
Looking at table 2 and figure 4, one observes that the Hybrid 
algorithm performs exceptionally well, having the best overall 
recognition rate performance in four out of the five categories; 
only in the category of Time Delay did LDA perform better, 
but only by a tiny magnitude. 
 
Comparing the Hybrid weighting approaches, although very 
different, both methods performed very well, with method 1 
finding superior claim in the categories of Expression and Il-
lumination and method 2 being the better performer in the 
Occlusion categories. Both performed equally well in the cate-
gory of Time Delay. Statistically there is no significant differ-
ence between the results of either approach.   



Turning to McNemar’s analyses, the categorical results were 
as follows: 
 

Expression: Statistically there is absolutely no significant dif-
ference between the Hybrid results and any of the constitu-
ent algorithms. The only advantage that is offered by the 
Hybrid formulation, over the ICA algorithms, is the mar-
ginal superiority in CMS accuracy levels. 

 

Illumination: Comparing the Hybrid and ICA algorithms, one 
again finds no statistical difference between the algorithms. 
When comparing the results to LDA however, one finds that 
the Hybrid offers a CMS advantage for the first 15 ranks 
and is statistically superior for the first 4 ranks.  

 

Lower Occlusion: Again there is no significant difference be-
tween the Hybrid and ICA results, but the higher CMS 
curve and low p-values between ranks 1-9 and 20-40 do in-
dicate a higher confidence in the Hybrid performance. 
When comparing the results to LDA, as one would expect, 

the Hybrid formulation displays 100% confidence in statis-
tical superiority throughout the rank spectrum. 

 

Upper Occlusion: The results mimic those found in lower oc-
clusion, whereby no significant difference exists between 
the Hybrid and ICA algorithms and the Hybrid approach of-
fers complete statistical and intuitive superiority over LDA. 

 

Time Delay: Statistically there is no difference between any of 
the algorithms. The Hybrid approach only offers a small 
early rank accuracy level advantage over the ICA constitu-
ents.  

 
In summary, this investigation has proposed an integration 
scheme, which combines the output matching scores of the 
best categorical subspace methodologies. The experimental 
results, although not vastly superior are nonetheless very en-
couraging and highlight the fact that combinational strategies 
can in general lead to more accurate face recognition levels 
than those achieved by individual classifiers. 
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Table 2     Rank-1 Comparative Hybrid Results 
 

0 10 20 30 40 50 60

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Hyb rid Cum ulative Prob ab i l i ty o f Rank s - ExpressionHyb rid  Cum ulative Prob ab i l i ty o f Rank s - ExpressionHyb rid  Cum ulative Prob ab i l i ty o f Rank s - ExpressionHyb rid  Cum ulative Prob ab i l i ty o f Rank s - Expression

R
ec

og
 R

at
e

Class/Rank

Hybrid
ICA FA1
ICA FA2
LDA Poly

 
0 10 20 30 40 50 60

0.75

0.8

0.85

0.9

0.95

1
Hyb rid Cum ulative  Prob a b i l i ty o f Rank s -  I l lum i nationHyb rid  Cum ulative  Prob a b i l i ty o f Rank s -  I l lum i nationHyb rid  Cum ulative  Prob a b i l i ty o f Rank s -  I l lum i nationHyb rid  Cum ulative  Prob a b i l i ty o f Rank s -  I l lum i nation

R
ec

og
 R

at
e

Class/Rank

Hybrid
ICA FA1
ICA FA2
LDA Poly

 
0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hyb rid Cum ul ative Prob ab i l i ty o f Rank s - L ower OcclusionHyb rid  Cum ul ative Prob ab i l i ty o f Rank s - L ower OcclusionHyb rid  Cum ul ative Prob ab i l i ty o f Rank s - L ower OcclusionHyb rid  Cum ul ative Prob ab i l i ty o f Rank s - L ower Occlusion

R
ec

og
 R

at
e

Class/Rank

Hybrid
ICA FA1
ICA FA2
LDA Poly

 
                                         (a)                                                                                 (b)                                                                                  (c)                                                                                                    

0 10 20 30 40 50 60

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hyb rid  Cum ulative Prob ab i l i ty o f Ra nk s -  Upper OcclusionHyb rid  Cum ulative Prob ab i l i ty o f Ra nk s -  Upper OcclusionHyb rid  Cum ulative Prob ab i l i ty o f Ra nk s -  Upper OcclusionHyb rid  Cum ulative Prob ab i l i ty o f Ra nk s -  Upper Occlusion

R
ec

og
 R

at
e

Class/Rank

Hybrid
ICA FA1
ICA FA2
LDA Poly

 
0 10 20 30 40 50 60

0.88

0.9

0.92

0.94

0.96

0.98

1
Hyb rid Cum ulative  Prob a b i l i ty o f Rank s -  Tim e DelayHyb rid  Cum ulative  Prob a b i l i ty o f Rank s -  Tim e DelayHyb rid  Cum ulative  Prob a b i l i ty o f Rank s -  Tim e DelayHyb rid  Cum ulative  Prob a b i l i ty o f Rank s -  Tim e Delay

R
ec

og
 R

at
e

Class/Rank

Hybrid
ICA FA1
ICA FA2
LDA Poly

 
      (d)                                                                               (e) 

Figure 4    Hybrid CMS Charts 
(a) Expression (b) Illumination (c) Lower Occlusion (d) Upper Occlusion (e) Time Delay 

 



V.  CONCLUSION 

This research investigation presented a comparative study of 
three of the most popular appearance-based face recognition 
projection classes, PCA, LDA and ICA along with the four 
most widely accepted similarity measures of City Block (L1), 
Euclidean (L2), Cosine and the Mahalanobis metrics. Al-
though comparisons between these classes can become fairly 
complex given the different task natures, the algorithm archi-
tectures and the distance metrics that must be taken into ac-
count, an important aspect of this study was the completely 
equal working conditions that were provided in order to facili-
tate fair and proper comparative levels of evaluation. In doing 
so, one was able to realise an independent study that evaluated 
the linear and kernel variants of the respective classes and 
provided both intuitive and statistical evidence into their com-
parative standings. This work significantly contributes to prior 
literary findings, either by verifying previous results, offering 
further insight into why certain conclusions were made or by 
providing a better understanding as to why certain claims 
should be disputed and under which conditions they may hold 
true. By firstly exploring previous literature with respect to 
each other and secondly by relating the important findings of 
this paper to previous works one is able to meet the primary 
objective in providing an amateur, in the field of face recogni-
tion, with a good understanding of publicly available subspace 
techniques. 
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