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Abstract

This study investigates the measures of diversithiv ensembles of classifiers. The use of
neural networks is carried out in measuring ensenddlersity by the use of statistical and
ecological methods and to some extent informatimoty. A new way of looking at ensemble
diversity is proposed. This ensemble diversity aletl ensemble structural diversity, for this
study is concerned with the diversity within theusture of the individual classifiers forming an
ensemble and not via the outcomes of the individiegsifiers. Ensemble structural diversity
was also induced within the ensemble by varyingsthectural parameters (learning parameters)
of the artificial machines (classifiers). The imfamce or the use of these measures was judged
by comparing the measure of structural diversitg Hre ensemble generalization performance.
This was done so that comparisons can be made eomotiustness of the idea of structural
diversity and its relationship with ensemble gelm=stion performance. It was found that
diversity could be induced by having ensembles wditfierent structural and implicit (e.g
learning) parameters and that this diversity doisence the predictive ability of the ensemble.
This was concurrent with literature even thoughwititerature ensemble diversity was viewed
from the output as opposed to the structure of itldvidual classifiers. As the structural
diversity increased so did the generalization perémce. However there was a point where
structural diversity decreased the generalizatieriopmance of the ensemble, where from that
point onwards as the structural diversity increases generalization performance decreased.
This makes sense because too much of diversitynniitle ensemble might mean no consensus
is reached at all. The disadvantages of comparingtsaral diversity and the generalization
performance (accuracy) of the ensemble are thaénaemble can be structurally diverse even
though all the classifiers within the ensemble agpnate the same function which means in this
case structural diversity is meaningless in terfrismproving the accuracy of the ensemble. The
use of ensemble structural diversity measures weldping efficient ensembles still remains to
be explored. This study, however, has also shovan dhversity can be measured from the
structural parameters and moreover reducing théraabhsess of diversity by being able to
quantify structural diversity making it possiblert@p a relationship between structural diversity
and accuracy. It was observed that structural diyerdoes improve the accuracy of the

ensemble, however, within a limited region of staual diversity.
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Chapter 1

1 Introduction

Diversity is a well understood social concept, withociety people can be diverse in language,
culture, race, etc, intuitively it could be seerthivi a group of different people but expressing it
mathematically or being able to measure diversityeg a challenge, for it is a complex subject.
Within machine learning context, diversity come$lay when one uses more than one artificial
machine to do a prediction. One of the importany kactors in machine learning is the
generalization performance and diversity is regauateone of the key concepts that contribute to
the effectiveness and efficiency of a committee aofificial machines to have a good
generalization performance. Diversity in general ba seen as a variation or differences within
a group of people or artificial machines, it coblel a combination of factors such as race and
culture within a social context or a combination different outputs of artificial machines.
However, in this dissertation diversity will be seas a variation or differences within the

structural parameters of a committee of artifionlchines.

This dissertation addresses the study of structiredrsity, how one quantifies or measures
structural diversity and what value will this ungganalysis of structural diversity bring to
current knowledge on the generalization performariche ensemble. This intern will allow one
the chance to extract knowledge from structuralediity in relation to the generalization
performance of the ensemble. However in order fuuca the relationship between structural
diversity and the generalization performance, stma¢ diversity needs to be a measurable
quantity. This would add value, for it will make pbssible for proper rules in constructing
committees to be made. Such rules would enabld@mhave committees that can have a better

generalization performance.

Given that diversity is necessary within a commaitbé ANNs for better performance [1-3]. The
need for an induction of diversity within a comraétof ANN can also be justified by the fact

that, without diversity then all the ANN composedthmm a committee will have the same

1



decision boundary, meaning even if one ANN was ubedsame performance as that of the
committee would be observed. The use of a commifeANN is chosen so that different
structural diversity topologies can be created whieould then lead to the goal of this
dissertation. There have been a number of measfrensemble diversity that have been
developed within the machine learning research conity;y such measures will be discussed in

chapter 2.

The measures that have been developed focus ostages called the output stage of the artificial
machines in measuring diversity. This means fomgta if two artificial machines agree on an
outcome then they are considered not diverse bthey had disagreed then they would be
considered diverse. This view of ensemble divetsay brought about a number of mathematical
formulations that have been able to quantify divgras seen from the outcomes (the output
stage). In light of these facts, this dissertatioerefore introduces a new way of viewing and
measuring ensemble diversity. Instead of measwimggpmble diversity from the output stage
(outcomes) of the artificial machines, the learnpayameters (structural parameters) of the
artificial machines are used for quantifying enskrdiversity. This is inspired by the fact that
there is no formal definition of diversity and tfaet that this subject is still left as an openid¢pp
one of Kuncheva’'s and Whitaker’s conclusion was:thathe general motivation for designing
diverse classifiers is correct but the problem ofasuring this diversity and so using it
effectively for building better classifier teamssisll to be solved’[4]. Such machines have
different learning parameters which will be contosly regarded as structural parameters for
the rest of this study. Having the knowledge of tinersity induced and how that diversity
influences the accuracy of the ensemble will batofost importance, for one could use this as a
way of constructing efficient committees of artiic machines. Hence this dissertation is
concerned with the measure of the structural dityexrsf a committee of ANNs (MLP) and
further to indicate that it can be used to imprdbe generalization performance of the
committee. Section 1.1, titled ensemble systeniscudses the advantages of using a committee
of classifiers, requirements for effective and@ént operation of a committee and a background
on research done on measures of ensemble divargitgection 1.2 titled ensemble diversity and
generalization performance, deals with the metha#ten for measuring ensemble structural

diversity and section 1.3 titled, data exploratiengoncerned with exploring the complexity of



the data set used and section 1.4 titled structliradrsity measures, is concerned with the
representation of the classifiers and the struttlixeersity measures conducted and section 1.5

summarizes the outline of the dissertation.

1.1 Ensemble Systems

Ensemble based systems either for regression ssifitation problems deals with combining
the artificial machines as opposed to using onlg amtificial machine to do a prediction.
Ensemble based systems are systems that have éforg bbeen established, perhaps one of the
earliest work done in ensembles is by Darsarathy @neela’s [5] 1979 paper. Hansen and
Salamon [6] showed that the performance of a nengdlhork can be improved by using an
ensemble composed of similar type of the neuravoidt Gordon Brown [7] also showed that
error function in regression problems of an ensenablartificial machines reduces the variance
component of the decomposed error function, regulti a reduced prediction error. It is evident
that a committee of artificial machines could havgreater advantage over the use of only one
artificial machine in terms of the generalizatiogrfprmance [8, 9,10, 1] and further studies are

summarized in Dietterich [11].

Ensemble systems have appeared in literature veittows names such as, multiple classifiers
[12], combination of multiple classifiers [13], dymic classifier selection, classifier fusion, [14-
16], committees of neural networks and consensggeggtion among many others. These
applications differ from each other depending amghocedure that generated the classifiers and
the procedure for combining the individual clagsgi In general there are two approaches
forming ensembles, classifier selection and clessitision. In the former each classifier is
trained to be the best in some certain local af¢heoentire feature space. However in classifier
fusion all the classifiers are trained over tharerieature space and then combined at the end.
In this dissertation both the above mentioned coatidn methods are explored. There are
diverse reasons for using the ensemble based systera is that it is generally better to use an
ensemble of un-optimized classifier parameterseratiian optimizing a particular classifier for
good generalization performance. Hence the usensérable system is to lessen the load on

optimization techniques for constructing strongssifers.



The aggregation or fusion method is done by compirall the trained classifiers to form a
stronger classifier similar to a bagging or boasgtirased approaches. Researchers have shown
large interest into ensemble of artificial machindee training methods and the aggregation
schemes [9, 14, 17]. Studies have shown that tlseaecorrelation between the generalization
performance of the classifiers with the way thecontes of the classifiers are combined [14].
The aggregation schemes have created large integhest compared to ensemble generalization
performance (accuracy) of the ensemble [18, 19]. aygregation scheme is a method of
combining a number of classifiers so as to produemified result, meaning that out of many
classifiers, a strong classifier is made. Stronghis case would imply a classifier that can
generalize better than one classifier. There armuraber of combination schemes such as,
majority vote, averaging, combination of posterpobabilities, etc. The other challenge in
working with ensemble systems is the combinatiothioe scheme, for they also have an effect
in the generalization performance of the ensenidle 17, 20, 21, 13, 22]. In this dissertation the
majority vote combination scheme is used due twitke use and is believed to have some form
of neutrality. A study on the use of other combimatschemes is beyond the scope of this
dissertation. This will then allow more emphasisemsemble diversity and the generalization

performance and would reduce the complexity of shisly.

One of the key concept within ensemble systeméasdiversity of the classifiers within the
ensemble, studies have shown that artificial maeshimithin the ensemble need to be diverse for
the ensemble to be efficient (perform better thannaividual machine) [3, 20, 1, 19]. This is
normally done by combining the individual classsievith different outcome errors. This leads
to the creation of an ensemble composed of classiWhich have different decision boundaries
[1]. However, for this dissertation classifiers hvitifferent structural parameters will be
combined and such an ensemble will be consideredrs. Ensemble systems have led to
research into measures of ensemble diversity wighaim of understanding ensemble diversity
so as to be able to build effective ensembles astiomed. This is assessed by comparing
ensemble diversity measures and generalizatiooimeaince of the ensemble, which could result
in a robust and generic function that relates eb¢emiiversity and generalization performance

(accuracy). This would then assist greatly in thiestruction of efficient and effective ensembles



and hence has inspired the investigation of strattiversity with respect to the generalization

performance as opposed to diversity as seen freroutputs of the individual classifiers.

In this research, many ensemble diversity measaes focused mainly on measuring ensemble
diversity from the outcomes [22-24] (By the outc@memeans the final output made by the
individual classifiers). These measures include,thle’s Q-static for two classifiers, correlation
coefficient p), Kohavi-Wolpert variance (kw), Entropy measuratjEmeasure of difficulty

and Coincident Failure Diversity (CFD) [3]. Resdws have tried to correlate these ensemble
diversity measures with ensemble generalizatiofopeance and not all the measures correlated

well with the generalization performance [1, 18].19

This dissertation proposes a new way of lookingeratemble diversity, whereby instead of
looking at the classifiers at the outcome for maaguensemble diversity one looks at the
structural composition of the classifiers in quiytig ensemble diversity. This is inspired by the

fact that in current literature in ensemble divigraieasures,

1. There has not been one that is officially accefedise in developing ensemble learning
algorithms.
2. Ensemble diversity has no formal definition, whitterefore leaves room for other

exploration in ensemble diversity measures
Ensemble diversity in this context is defined as:

the ensemble that is composed of classifiers witarent structural parameters as opposed to

the one with the same structure.

This of course leads to the consideration of tlieigtion of diversity and the way the classifiers
are trained and how the generalization performaogeasured. The measures used will then be
weighted by comparing them to the generalizatioriopmance of the ensemble. This is called
the validation process. The validation process theh validate or bring about confidence on the
ensemble diversity measure used. It is this vabdaprocess, which forms the link between
diversity measures and the generalization perfoomdhat has geared up challenges within the
diversity measures research community [4, 25]. ddta used to showcase the work done in this

dissertation is the interstate conflict data. Aiamwork of measuring ensemble diversity and



then comparing ensemble diversity with the geneatibn performance of the ensemble was
done, however, using the HIV dataset [26], the methsed is similar to the one conducted in
chapter 4. Section 1.3 will showcase the complexdtthe data which hence necessitates the use
of artificial neural networks. The following seatidooks at the relationship between ensemble

diversity and the generalization performance.

1.2 Ensemble Diversity and Generalization Performance

One of the major challenges in this work is ther@spntation of the artificial machines so as to
implement the diversity measure, since the reptatien influences the mathematics that has to
be implemented in quantifying structural diversignsemble diversity can be induced in a
number of ways such as applying different trainghgprithms (Boosting, Bagging, etc)[1, 27],
and by a committee composed of classifiers of ifie structural parameters. The relationship
between ensemble structural diversity measures tnmghrelate well with the generalization
performance of the ensemble, due to:

1. An ensemble might be composed of classifiers dédiht complexities, which might all
approximate the same output function.

2. Classifiers have a number of inherent parametech #hat if all are not observed the
structural diversity measure might just be meaguan index of structural diversity,
which might not relate well with generalization fsemance.

This means that to reduce the risk of this challenige structural parameters of concern must be
very influential in the generalization performanaethe classifiers. Hence little work will be
done on the consideration of all the structurahpeaters and then more work done on the hidden
nodes as they were noted to be highly influentialthe generalization performance of the
ensemble [28]. Hence this study aims to develogeasure of structural diversity induced on the
ensemble and then evaluate the induced diversitly thie generalization performance of the
ensemble. In this way we would be measuring therabk diversity that has been induced and
then question on how this induced diversity affettts generalization performance of the

ensemble. This ultimately might lead one to thevdedge of how structurally diverse of an



ensemble should be for better generalization artidu this would have quantified the induced
structural diversity of the ensemble. However duéhe use of one dataset, this dissertation will
mainly emphasize the existence of structural dityergithin the ensembles by having a form of
a measure and then extract knowledge to show hdasvdiersity affect the generalization
performance (accuracy) of the ensemble. This \e#lutt in a relationship between structural
diversity and generalization performance (accurbey)g captured. Hence this dissertation does
not necessarily aim to reach a highest accuracg.f@lfowing section explores the data used in
this work.

1.3 Data Exploration

The autocorrelation of the (MID) data has beerigoered to give a better understanding of the
data. This tests if the features of the datasesamsitive to changes due to other features. This
correlation is expressed by the usergfwithin the range of between -1 and 1. Informati®
extracted from the absolute value of r. That mdangr| — 1, the more the variables observed
correlate and if|r| - 0, then there is no correlation. The (+) and theén@)cate a positive and a
negative correlation respectively. The equation dedines the covariance between two variables
can be defined as [29]:

cov(x,y) = 3 BieriCxi — B) O = 7) 0.

Where,y andx are the average values of y and X, respectivelyMams the total number of
samples. The correlation coefficient is the scaleant of the covariance coefficient. By
normalizing the covariance coefficient by the stdddeviations, the correlation coefficient can
be found as:

cov(x,y)

(s(x)s() (1.2)

r(x,y) =

wheres(x) ands(y) are the variances of the variables x and y, rés@dg. The correlation

coefficients of all the variables with each othan ®e seen from table 1.1.



Table 1.1: The correlation coefficients of all tregiables with respect to each other

Ul U2 u3 u4 us U6 u7 us
Ul 1 0.18442 -0.053826 -0.019904 0.034152 0.27659 0.072781 -0.18271
U2 0.18442 1 0.2947 -0.3304 -0.20803 0.10994 -0.32909.01862
U3 = 0.2947 1 -0.68849 -0.55041 0.15076  -0.7846 0.46415
0.053826
u4 - -0.3304 -0.68849 1 0.50322 -0.20625 0.70804 -0.3849
0.019904
U5 0.034152 -0.20803 -0.55041 0.50322 1 -0.20091 0.55319 -0.37879
ueé  0.27659 0.10994 0.15076 -0.20625  -0.20091 1 -04843 -0.04316
U7 0.072781 -0.32909 -0.7846 0.70804  0.55319 -0.094343 1 -0.36835
ug -0.18271 0.01862 0.46415 -0.38495  -0.37879  -0.04316).36835 1

The last column represents the outcome from a thsfinese results show that the data is not
linearly correlated even the correlation betweeanitidividual inputs and outputs are very small.
Hence the use of Computational Intelligence (Cljhods will be considered in this study, since
they are capable of capturing the dynamics of threlmear variables, a background on the tools

used can seen from chapter 2.

1.4 Structural Diversity Measures

Diversity in this context is defined as having ars@mble that is composed of ANN that have
different structural parameters, such structurahpeters include, the number of hidden nodes,
learning rates, activation functions. Three methotdsdicating structural diversity have been
considered.

* Binary representation
The first method looks at giving the artificial nmiwes a unique identity (representation), the
machines are given a certain binary code. Thisgpired from the fact that each individual has a
unique gene structure. Due to this representatistatistical measure was made that quantified
structural diversity. The Kohavi-Wolpert variancees such a representation to quantify
diversity.

* Species representation
The second method adopted the ecological conceptaewing the classifiers as species in

guantifying structural diversity.



» Parameter distribution representation
This method looks at the distributions of the diess weights and biases as an indication of
structural diversity, this was because a comparisas done between ensembles that were
diverse due to a training algorithm and an ensertige had different structural parameters. A
brief introduction of these measures is given ia fibllowing sections. A detailed explanation

and implementation of the mentioned measures witidne in chapter 3, 4 and 5 respectively.

1.4.1 Ecological Measures

The measures employed within population of spaaiesology are to calculate the frequency or
proportion of different species with a certain aréa this context the ANN with different
structural parameter will be treated as differgrécges. In ecology, the use of entropy to count
species is applied. Hence for this study, entromasure will be used to quantify structural
diversity of the ensemble. Three entropy measuiésber employed: the Shannon, Simpson’s
and the Berger Parker entropy measures. The hygsthehind the success of this measure is
that, structural diversity is induced by havingemsemble with different structural parameters
(different species), hence by using entropy measusaee will be measuring the structural

diversity induced, due to the way it was induced.

1.4.2 Kohavi-Wolpert Variance

It has been noted that the structural diversity suea suffer from the representation of the
individual classifiers in such a way that it wolle measured. The Kohavi-Wolpert Variance is a
statistical measure that has been applied on thepimes to measure ensemble diversity [1].
However in this context, it is interpreted diffetlgnlt is used to measure the structural diversity
of the ensemble. It is a variance measure, as #nance increases so does the structural
diversity of the ensemble. The classifiers are theen an identity representing their structure

and this mimics the way gene string representugtstre or state of a cell.



1.4.3 Weights Distributions

In this work, the variances of the distributionsttod individual classifier's weight vector (biases
and the weights) are studied. The work done indhapter is different from other chapters in the
sense that diversity was induced by structure dsuallay a learning algorithm such as Bagging.
Thus by considering the distribution of the weighted biases we can indicate the ensemble
structural diversity. A comparison is then condddietween the non-diverse ensemble and the
diverse ensemble in terms of their generalizatierfigpmance.

1.5 Outline of Dissertation

This study aims to showcase a new approach to drneativersity measures. These measures
are based on the structure of the classifiers ahdhe outcome (error diversity). This view has
introduced the name ensemble structural diverditpwever, to gain insight from these
measures, their significance into the contributtb search for measures of ensemble diversity
so as to build efficient learning algorithms wi# balidated by relating the measures of structural
diversity and generalization performance. The diasen will, therefore, use an MLP and the
interstate conflict data to demonstrate this cohcBpversity measure alone does not pose a
problem, however, when compared to generalizatierfopmance; some measures of error
diversity have produced poor results. Hence thnepraaches are employed in indication
ensemble structural diversity. The experimentalltesconducted are given in a form of papers
that are published and some that have been acd@®&2]. A brief outline of the dissertation is

provided below:

Chapter 2 provides the background on the modeling tools #redapplications of ensemble
methods, different types of error diversity measuwrsed and the importance of the aggregation
methods. A thorough theoretical background on AMMN thhe GA is given. A brief discussion on
the advantage of error diversity measures over dinectural diversity measures is also
introduced.
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Chapter 3 presents the use of ecological methods to quasttifictural diversity. The classifiers

are seen as species and the diversity index meadarazed from entropy are implemented to
guantify the structural diversity. The GA is usexl dhe evaluation function is meant to optimize
the classification accuracy. The diversity indicesund are then compared with the

generalization performance of the ensemble.

Chapter 4 explains the use of the Kohavi-Wolpert varianceuantify structural diversity. The
GA is used, however, in this case to optimize ttractural diversity values from a large
ensemble. The GA searches for 21 classifiers tlmatldvgive a certain structural diversity. In
this section diversity is induced by having an emse with different structural parameters. The
measure of structural diversity is implemented asentoned and then compared with
generalization performance of the ensemble.

Chapter 5 compares a structurally diverse and a non-diverseemble, by observing the
variances of the distribution of the classifier gles. As opposed to chapter 3 and 4, ensemble
diversity in this case is induced by the learningtimd. Hence the structural diversity is

measured from observance of the distributions efhkights.

Chapter 6 summarizes the findings and provides some recordatems for future work.
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Chapter 2

Background on Ensembles and Modelling Tools

2.1 Introduction

An ensemble in this context is a combination ofsifeers. This chapter presents a literature
review on the use of ensembles and their applicatio other areas and the artificial intelligence
tools that have been used to understand the behavicensembles with regard to the
generalization performance. One key component semible construction is the diversity within
the classifiers. This resulted in a number of wagsmeasuring ensemble diversity, however,
focused mainly on one area within the ensemblersityeresearch. The research done on
ensemble diversity has been focused on the decsmge (at the outcomes). However, the
outcomes give the final results. However, in thissdrtation the aim is to measure ensemble
diversity that resulted due to the structural cosipg of the committee and then extract
knowledge on how ensemble structural diversityteslavith the generalization performance.
Atrtificial intelligence tools such as the Genetitgérithms (GAs) will be used to gain such a
relationship. The hypothesis is that an ensemtd¢ ¢bnsists of structurally diverse artificial
machines would produce an ensemble that is compotedachines with different decision
boundaries or an ensemble that has significantoarelation among the classifiers forming the

ensemble.

The remainder of the section is as follows, sec8dhpresents a literature review on ensemble
diversity, and section 2.3 presents a backgroundearal networks and the effect of using
ensembles and section 2.4 presents the backgroutiteoGenetic Algorithms (GA) which are
used extensively in this dissertation to gain tlkéation between structural diversity and

generalization performance.
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2.2 Literature Review

Ensemble of artificial machines has widely beenduger it has been found that they perform
better than the use of a single machine [9, 11,243,33, 34]. This has led to the use of an
ensemble of artificial machines in a variety of laggiions. For example ensembles have been
used for: neural network learning [8], pattern sification [35], predicting HIV protease
cleavage sites in proteins [36], decision makinlg fhta fusion [12], classification of prostate
cancer [37] among others. Ensemble systems have hbge roles in machine learning
applications and still continue to attract researsll1]. It is therefore evident that the effiagn

of ensemble systems on better generalization pedoce out performs that of the use of single
machines. Researchers have developed better lgagngemble algorithms so as to optimize the

generalization performance of ensembles [10, 2133B

There are conditions to the effective operatioreim$embles and one of the key components is
that the individual classifiers be uncorrelated][1] and this means that having an ensemble that
is composed of artificial machines that have déférdecision boundaries. In other words the
ensemble needs to be diverse. This has lead tmbenof algorithms such as bagging, boosting,
learn++ [3, 13, 39, 40] that induce ensemble dit)er§here has been a number of developments
in measures of ensemble diversity with the hopesafig them in constructing more efficient
ensemble learning algorithms among the ones alrdadgloped. This has resulted in a number
of ensemble diversity measures [17, 20, 30, 41jdwver, these measures focus on the outcomes
of the individual classifiers as mentioned. Suchasuees include: pair wise, disagreement and

double fault, entropy, Kohavi-Wolpert variance aneasure of difficulty among many [1, 20].

Kuncheva and Whitaker [4] have found that some rabge diversity measures were highly
correlated with the generalization performance ¢ ensemble [20]. They compared ten
different measures of ensemble diversity and caleduthat the idea of constructing diverse
ensembles was correct, however, the measure ofdissity and then using it to construct
efficient ensemble still remained to be exploredl dhe fact that the concept of ensemble
diversity is not clearly defined [4]. This meanstthhere could be other ways of viewing and

calculating ensemble diversity other than at tlassifier outcomes.
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It has been shown through studies that it is ndy alversity that attributes to efficient
ensembles but the way the artificial machines amlined. This has led to research on
aggregation schemes [9, 13, 14, 42], where sontkeohggregation schemes were found to be
well correlated with particular diversity measurdswever for this study only majority vote will

be considered due to its wide use.

Instead of focusing at the outcomes, one coulddaruthe machine’s structures for measuring
ensemble diversity [30]. One of the base justifara for this work is that, studies have shown
that ensemble generalization performance can beowed by having an ensemble that is
composed of machines with different structural pweters. This study aims to measure
ensemble structural diversity and then assessrédiqiive capabilities by looking at how the
measure correlates with ensemble generalizatiorfonpesince. Computational machines

particularly artificial neural networks and the @Atimization tool will be used.

2.3 Neural Networks (NNs)

The Artificial Neural Network (ANN), is a computatial intelligence tool that can be used to
capture input-output relationships. A feed forwamdural network will be used in this
dissertation also known as the Multilayer Percept(MLP). They mimic biological neural
systems. In figure 2.1, each neuron received indbion from the previous neuron, each of those
signals are then multiplied by a weight value thalts the signal to destination node in that
layer. The weighted inputs are summed and the gakseugh a limiting function resulting in a
scaled output between a certain boundary. The butpa limiter is then shared to all other

neurons in the next layer. This propagation of aigicontinues until the final output node.
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Activation
function

Hidden nodes

Input nodes

Figure 2.1: The MLP structure showing the inputs, layers and the activation function [43].

The artificial NNs are currently being applied ilmast every field in industry, bio-medical,
financial institutes, risk analysis [44-47], comalit monitoring which leads to the prediction of
the life processes, optimization of business, ecinfhanagement, etc [43, 46, 48]. The use of a
committee of artificial NNs has been used for inMimg the generalization performance of
classifiers. ANNs are artificial machines that halve ability to map inputs to the outputs. The
NNs are capable of deriving a function that defiaesomplex linear or non-linear behavior
through their learning process. There are two tydsarning paradigms, which are referred to
as supervised or unsupervised. Supervised leaimingpen the NN is given the outcome of the
input feature, during the training process whilsupervised learning is when it is not given the

outcome of the input feature. For this study suised/learning was conducted.

Inputs are weighted and then summed into the gifiunction before the weighted signals

could be activated to the next layer of neuronsaesbe seen in figure 2.1. The weights are the
most important parameters of the NNs for inducimtglligence within the NNs. Hence this study

will extensively be concerned with inducing divéysiand measuring ensemble structural

diversity. A method of training the NNs that wasidacted in this study was by means of Back-
Propagation (BP). Hence the BP algorithm will alltwe NN to adapt through a process of

minimizing the error between the outputs of the &d the correct data outcome.
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However, the problem occurs when the problem donsitoo complex such that it becomes
even difficult to train one NN so as to produceadj generalizing network (accuracy). This
might result in undesirable optimization techniques the learning parameters of the ANN,
given the fact that even when they are optimizedetomes one machine (ANN) is not capable
of capturing the dynamics of larger problem domd#js This is one of the reasons ensemble
based systems have been recommended to outperf@nuse of one NN regarding their

efficiency and effectiveness. Ensemble based legraigorithms are similar in some way to the
BP algorithm, only that BP operates at a low leseéling with the individual weights that

constitutes the NN. The BP algorithm comparesabput of the NN and that of the correct
outcome for that instance, and then back propadhtegrror into the network and then small
changes are made on the weights in each layerwEight changes are done with the goal of
minimizing the error between the output of the NiNdl dhat of the correct value for that input
value as mentioned. This process is repeated tingtibverall error drops below a pre-defined
threshold. The network is said to have learned soongplex function that can map the inputs to
the outputs. However the network does not learncihraplex function exactly, it will have

approximated the complex function to some degnmeesnisemble based training paradigm, the
training is such that individual NNs can be weightiepending on their performance [1]. This is
the case for Adaboosting among many others. Equ&tié defines the process by which an

input instance propagates to the output [43].

M d
2 1 1 2
Yk = fouter Z W]Ej) finner (Z W](l )xi + Wj(o)) + W}Eo) (2-6)

where f,..er @and finer @re the activation functions at the output layea at the hidden layer

respectively, M is the number of the hidden urdtss the number of input unitw,j(il) andw,g)

€Y

are the weights in the first and second layer retbay, w; andw® are the biases of the first

o ko
and second layer respectively when moving from tiga hidden unif. By having an ensemble
composed of classifiers that have different leayniand limiting parameters (structural

parameters) would imply a structurally diversitysemble. The ensemble is considered
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structurally diverse since it is composed of dgfdr classifiers with different structural

parameters. This is where the concept of structlivarsity stems from.

2.3.1 Variance Reduction

There is no formal definition of ensemble diversitythis study it's been seen as the differences
within the classifier's structural parameters. Huem it appears that many researchers have
looked at measures of diversity from the outcomeshe artificial machines as mentioned.
Diversity, however, is acclaimed to improve the grafization performance. This was shown by
Tumer and Ghosh [43, 49] by bombarding one oitleasures used to quantify the performance
of the artificial machines, the mean square eidtonas decomposed into a bias and a variance
component [50, 51]. See equation (2.7),

MSE=E+D 2.7)

Where: E and D are the variance and bias companegectively. They found that ensemble
diversity reduces the variance component theretlyaiag the overall error of the committee.
Researchers have looked at the outcomes of theidodi ANNs and if these individual
outcomes where different then the ensemble wasdedas diverse. This dissertation, however,
views diversity from the structural point of viemdanot the outcomes which means that one
would be looking at the variations within the stural parameters of the ensemble. Hence an
investigation on the relationship between strudtdnzersity and the MSE is in question. Now it
is well established that the number of hidden nquags a major role in the complexity of the
artificial machines [43]. A measure that looks la t/ariations within the hidden nodes among
the classifiers forming an ensemble as a form pfressing structural diversity of the ensemble
form a big part of this study. Hence diversity wbk induced with a goal of minimizing the

variance component depicted in equation (2.7).
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2.4Genetic Algorithm

Genetic Algorithms are stochastic evolutionary slegorocess that was invented by Holland
(1975) [52]. They are evolutionary models that gpprolutionary biology. They make use of
biological processes such as mutation, naturatsefe reproduction and crossover [52, 53]. The
GA finds the best individual (chromosome) by evahg them via some cost function that
relates the optimization problem with the GA [538his normally occurs through a randomly
generated population of individuals and occurs mumber of generations. The stochastic nature
of the GAs allows them to search through solutitmgome up with a global maximum. See

figure 2.2 for the sequence of the optimizationcpss.

Initialize population

'

—»| Evaluate each chromozome

'

Select the mates

'

Cross-over
text

Mutation

Threshold
convergence

End

Figure 2.2: Flow sequence of the GA [54]
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The algorithm will continue until the approximattdst level has been found or if the maximum
generation cycles are reached. In the implemematiadhe GA, a number of parameters need to
be optimized. These parameters are: initial pofaradize, termination threshold, the mutation
rate and the crossover probability etc. In applymgGAs to the study of structural diversity, the
evaluation function can be the structural diversityhe generalization performance. The idea is
to relate structural diversity and generalizati@enfprmance. If the evaluation function evaluates
the structural diversity, then a measure for stmadtdiversity will be conducted on a chosen
number of classifiers making up an ensemble. The @Auld then search within a number of
classifiers forming a group of them in order tamitthe predefined structural diversity. Such a
committee will then be related to the performaricthe evaluation function is the generalization
performance, then the GAs will look for a definedmber of classifiers that give that
performance as a whole and then a diversity measrébe carried out at the later stage. This
option also allows a relationship between the gdization performance and the structural

diversity to be observed, see figure 2.3.

GA

!

Search for a committee
given a specified number of
classifiers for that
committee that gives:

'

E.g either from: 10 to 80 E.g either from: 0 to 1,
% accuracy diversity range

Figure 2.3: The use of GA in ensemble structunadity

The committee will be given a specified number laksifiers and then the GA would find the
optimal group or combination of the classifiersetther attain a certain ensemble generalization

performance or ensemble structural diversity, asbeaseen from figure 2.3.
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Chapter 3

Ecological Methods to Measure Structural Diversity

and Generalization Performance

3.1 Introduction

This chapter addresses the measure of structuratsity of an ensemble by using ecological
measures. Diversity is induced by varying the stmat parameters of the classifiers [30]. The
three parameters of interest include the activatiorction, number of hidden nodes and the
learning rate. This study aims to find a suitabkasure of structural diversity by using methods
adopted in ecology. The ecological measures aeeefibre, aimed at bringing more knowledge
to how ensemble structural diversity relates wit énsemble accuracy by quantifying structural
diversity in terms of diversity indices. The ecatad methods measure the index of diversity to
guantify species diversity. These diversity indiegs derived from Renyi entropy stemming
from information theory hence these diversity irdidor the rest of this chapter will be referred

to as entropy measures, the derivation can beatesattion 3.3.

The classifiers will be treated as species in thapter and hence quantifying ensemble
structural diversity in terms of diversity indicér example if there are three different species,
two of the same kind and one of another kind, thabwould be taken as three groups of MLP's
of different structural parameters. However, thisdg will only focus on three measures of
diversity indices, Shannon, Simpson and Berger dtatk quantify structural diversity of the
classifiers. Shannon in this chapter will be viewedwvo ways, firstly it will be used to measure
uncertainty as adopted from information theory [&6{ then secondly as a measure of diversity
index as adopted in ecology for species counts. [56F interest on uncertainty is so that

ensemble structural diversity can be viewed incihrext of uncertainty.
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The relationship between the classification acoueaw the entropy measures or diversity index
measures is attained by the use of Genetic algesithsing accuracy as the cost function [30].
This chapter includes a section on the backgro@pecies and the ldentity Structure (IDS),
Renyi entropy, Shannon diversity index, Simpsorediity Index, Berger Parker index, neural
network parameters, Genetic Algorithms (GA), thedelpthe data used, results and discussion

and then lastly the conclusion.

3.2Species and the Identity Structure

The ensemble of classifiers was treated as spaoiggshis was made possible by the ensemble
being composed of different structural parameféhe different structural parameters that were
varied were the: activation function, number ofdd@d nodes and the learning rates. Each
classifier had a unique identity due to the diffeérstructural parameters used for each classifiers
and this identity was called the Identity Struct(iBS), see chapter 4 for the extended

explanation of the IDS.

Activation function
IDS = [Number of hidden nodes
Learning rate

Five learning rates were considered and threeatiiv functions similar to [30]. The number of
hidden nodes was between 7 and 21. It was mader lhrgn the attributes (inputs) so as to have
classifiers that could generalize well and thers ldgan 21 so as to reduce the computational
costs. The learning rates considered were: 0.002, 0.03, 0.04, 0.05 and the activation
functions were: The sigmoid, linear, and the lagisThis chapter is a continuation of [30],
whereby the identity was converted into a binanngt In this chapter there was no need to
convert the identity into a binary string since #r@ropy measure only looks at the machines
which are different. The individual classifiers fing the ensemble were given different
numbers as according to their identity. Definingi@dentity for each machine is necessary so as
to have a unique identity of the classifiers witthie ensemble. This will in turn enable the use of
the uncertainty measure on the ensemble, for ti&ed@n be treated as a symbol representation

representing a particular classifier due to itgjueistructure.
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3.3Renyi Entropy

Renyi entrony [57] is composed of the three measafaliversity mentioned in this chapter as

follows.

H, = DEFD) (4.1)

1-
whereP is the proportion of an item i.

The diversity measures can be found by, Shansoes 1), Simpson’s «— 2) and the Berger
Parker é— ). This means that as alph®&) (approximates the indicated values so does aigerta

measure get approximated (e.g Simpson’s).
3.3.1Shannon Entropy

Shannon Entropy [55] in information theory is péved as the measure of uncertainty. If the
states of any process cause the process aftegrdfions to give a series of ones, then one would
be certain of the next preceding information [33pwever, if the states are diverse then we
become uncertain of the outcome. Having an ensewibtdassifiers which are all the same,
would imply that if one of them were to classifgertain instance of input data, then with high
probability all of them would classify the same eitij alike. However, the more diverse the
ensemble become the more uncertain one is of tbalbwecision of the ensemble. This analogy
was used to relate diversity and uncertainty ia thapter. In information theory, the uncertainty
is seen as bits per symbol [55]. The uncertainty loa partially explained from the following
equation, by using logs by using base 2 which méamsinit of uncertainty is in bits otherwise
with base 10 it is digits [55]. Classifiers withffdrent structural parameters were treated as
different symbols. If the classifiers had the sastracture then they would be taken as the same

symbol.
w; = —log (p;) (4.2)

p = 1/M is the probability that any symbol appears [55vw being the number of symbols,
M is taken as the number of classifiers). By anglaghen taking the classifiers as the symbols,

p is the probability of choosing any classifier wittthe ensemble andis the uncertainty. This
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could be possible since the classifiers were repitesl uniquely by their IDS (each classifier had
a unique identit). From this analogy it means that tends to 0, then it is highly unlikely that
the i classifier will appear meaning that equation (4e2)ds to infinity hence high uncertainty
in that regard [55]. Likewise, if P tends to 1 ththere are high chances that thelassifier will
appear resulting in a reduced uncertainty whennaisgunormalization from 0 to 1. Shannon's
general formula for uncertainty, see Equation (4e3jsts whenx (see section 3.3) tends to 1
[55].

Hy = — XL, Pilog(Py) (4.3)

The maximum of Equation (4.3) occurs when the stnat diversities of the classifiers are
equally likely (technically this would imply equgllikely symbols). This means whéh = 1/M

for all classifiers within the ensemble, substitgtthis into Equation (4.3) will result itgg (M),
which is perceived as species richness in ecol&y. [For this study the Shannon diversity
index was normalized between 0 and 1 by dividingidEgn (4.3) by log (M) the maximum
possible diversity index or entropy. A 1 will imptize largest structural diversity, which when
viewed from the ecological perspective would imphhigh diversity index. A O result would

mean no structural diversity.
3.3.2Simpson’'s Diversity Index

When takingx to 2, the Renyi entropy approximates to [57]:

H, = —log (Z Pl-2> (4.4)

i=1

It is the probability of any two individuals dravet random from a large ecosystem belonging to
different species [58]. The inverse of this expia@sss taken as the biodiversity index, which
means that, increases with the evenness of the distributiorchvis the diversity index in this
case. A 1 will represent more diversity and zerodneersity. The normalization was done by
removing thdog and then by using, 1H, so that as the evenness increases so does thsitgive

index.
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3.3.3Berger Parker Index

The Renyi entropy approximates to equation (4.hegmtakingx to infinity [58]:

1
M, =~ (45)

Wherep;is the probability of choosing a certain classifith a diverse ensembléei,, gives the
equivalent number of equally abundant species wighsame relative abundance as the most
abundant species in the system [58]. The BergekelPandex only considers the relative
dominance of the most popular species, ignoringhallother species. The Berger Parker index
was normalized between 0 and 1 by dividig by 21 the total number of the classifiers within
the ensemble. A 0 implies no diversity and a 1 lyighiverse, this is when the ensemble is
composed of classifiers which have different strtadt parameters, that means no classifiers is

the same with any other classifiers (no repeats).
3.4GA

In this study, the evaluation function is the enskntlassification accuracy, the GA searches for
a group of 21 classifiers that would minimize tlestdunction. That means an ensemble that will
produce the targeted accuracy. The GA searchesghralready trained 120 classifiers evolving

the artificial machines (classifiers) to attain tia@geted accuracy. The evaluation function is
composed of two variables, the ensemble accuragyttentargeted accuraéy,.. Equation 4.7

is the evaluation function. The ensemble was chaséave 21 classifiers, the number was made

odd so that there would not be a tie during voind 21 was chosen arbitrarily.

fea = —(Acc — Tacc)2 (4.7)

Where,f;, is the evaluation/objective functioA¢c is the accuracy of the 21 classifiers dhg.

is the targeted accuracies.

The GA tries to optimize the valuation function.uatjon (4.7) will reach its maximum when the
accuracy of the ensemble is equal to the targetedracy. GA was then optimized by first
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searching the target values which the GA couldiratfBhese were then the targeted accuracy
values for the cost function for the next run. Tiwas done so as to reduce the computational
cost since the search space will be minimized themowords for an example, the algorithm will
search for a list of accuracies, 50 %, 55%, 60%%%®tc from a combination of 21 classifiers
and for each targeted ensemble classification acguan ensemble diversity measure was
undertaken. For each classification accuracy athithere would be a quantified diversity
measured. This would then make it possible forlaiomship between ensemble diversity and

classification to be captured.

3.5The Model

The model describes the use of GA tool in selecBhgut of 120 classifiers so as to provide
knowledge of how the accuracy of the ensemble eglatith the uncertainty of the ensemble.
Figure 4.1 illustrates the use of 120 classifiarattaining an optimal ensemble for classification.
A method of voting is used to aggregate the indiglddecisions of the classifiers within the

ensemble.

Trained 120
ensembles

v

GA

v

Diversity obtained -— 21 optimal ensemble

v

‘ Accuracy ‘

Figure 4.1: The method used to optimize the 21sdiass of the 120 classifiers
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3.6 Ensemble Generalization

The classification accuracy of the ensemble wasirattl by using a method of voting to
aggregate the individual decision of the classfidfor every classification done on the data
sample, the number of correct classification wasnted. Equatior{4.8) is used for calculating

the classification accuracy of the ensembile.

Acc = e 4.8
cc=y5 (4.8)
wheren andN is the number of the correctly classified sampled the total number of the data

samples to be classified, respectively

Classifier outputs from greater or equal to 0.5eheunded to 1 and anything less than 0.5 was

rounded to 0. This was because the outputs fromeheal networks were taken as probabilities.
3.7The Data

The data was normalized to fall between 0 and hat@ equal weight of all the input features by

using equation (4.9).

Xi — Xmin

Xnorm = —————— (4.9)

Xmax — Xmin

where x,,;, and x,,,, are the minimum and maximum values of the attebubf the data

samples observed, respectively.
3.8 Results and Discussion

The entropy measures were calculated on the enseofl®1 classifiers. These measures are
guantified as the diversity indices of the ensesbldese are the results of 11 ensembles (each

ensemble contains 21 classifiers) as were selégtélae GA.
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Berger Parker Diversity Index
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Figure 4.2: The Berger Parker index of diversityaisemble classification accuracy

The Berger Parker measure is in agreement witlaittethat one needs a diverse committee as
opposed to the same type of classifiers withindbmmittee. This can be seen as shown in the
diversity indices of less than 0.34 whereby thegifecation accuracy is less than 37 percent, see
Figure 4.2. As the diversity index increases sosdbe ensemble structural diversity become

more evenly distributed.
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Figure 4.3: The Simpson’s diversity index Vs enskenatassification accuracy
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Figure 4.4: The Shannon diversity index Vs enserolalssification accuracy
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All the diversity measures are concurrent with tierature regarding the diversity of the
committee of classifiers as presented in [3]. TharBon diversity index indicates that at very
low diversity index, the generalization of the enbée is poor, however, as the diversity
increases so does the accuracy. There seems tdilgh aorrelation between the Shannon and
the Simpson's diversity indices in relation to thassification accuracy. The results from the
Simpson's measure shows to be more sensitive todigrsity indices as seen in Figure 4.3.
When considering the Shannon as the uncertaintysuneait can be seen that as the ensemble
becomes more uncertain, its generalization abitityeases. The Shannon diversity index and
the Simpson’s diversity indices have a decreasotgracy after reaching a peak accuracy level,
see Figure 4.3 and 4.4. This indicates that evenmeshe classifiers needs to be limited for good
ensembles. The use of accuracy as a function afddé&tarker diversity measure did not show to
be a good function of Berger Parker measure otttral diversity of the ensemble. This can be
seen in Figure 4.2 for the graph does not showtiimmal properties.

3.9 Conclusion

This chapter presented the use of methods insfited ecology which were derived from
entropy to quantify structural diversity. These afsity measures were then compared to
ensemble classification accuracy. Three measurds/efsity indices were compared and it was
observed that the ensembles accuracy improved eastthctural diversity of the classifiers
increased. The other interesting observation was ¢fi the Shannon diversity index when
interpreted as the uncertainty measure from thernmétion theory. As the uncertainty of the
ensemble increase so did the classification of@hsemble. This implies that having more
information (as defined by Shannon’s measure) & #nsemble might result in poor
generalization ability of the ensemble, hypothdiiyca he method used to compute the results
was computationally expensive due to the use of Biersity indices from 0.82 to 1 were
captured and the Berger Parker measure was notvelsto be a good indicator of diversity
when compared to the generalization performanceuacy), for it did not produce functional

properties (i.e there were still a number of diitgreneasured within the same classification
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accuracy of 70 %). This chapter has also shownBEhtabpy based methods can be used to better

understand the ensemble diversity in particulaeemde structural diversity.
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Chapter 4

Ensemble Structural Diversity Measure and

Generalization performance

4.1 Introduction

This study focuses on what was proposed by Shg@&ly that diversity can be induced by
having an ensemble of classifiers with differergh@ectures. A method of identifying uniquely
the individual classifiers is critical for quantitgely imposing a defined structure for each
classifier. Since the structure of the individulassifiers is the focus of the study, the same data
will be used to train the ensemble as opposed ggibg and boosting methods [3] in sampling
the data for training, this is done so that only #inchitecture parameters of the classifiers would
induce diversity. The Kohavi- Wolpert variance (KYVR] method was used to measure the
structural diversity of the ensemble. The GA wagduso develop a relationship between
structural diversity and ensemble classificatioocuaacy.

There are a number of aggregation schemes suchirmsium, maximum, product, average,
simple majority, weighted majority, Naive Bayes al@tision templates to name a few, see [17]
and [35]. However, for this study the majority #@cheme was used to aggregate the individual
classifiers for a final solution, due to its nelityaand wide use. An ensemble of 60 classifiers
was created randomly and then trained. The GA wad used to select a suitable group of 9

classifiers that would produce a targeted diversigasure as defined by the (KWR).

One of the other goals of this study is to mapr#iationship between structural diversity and
accuracy. This will lead to knowledge of using ttmrect grouping of the classifiers for a
desired accuracy or generalization ability. Thisapter includes a section on the ldentity

structure (IDS), Kohavi-Wolpert Variance Method (IR)V data preprocessing, Genetical
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Algorithms (GA), the model, Implementation, Resultsuture work and then lastly the

conclusion and discussion.

4.2 Identity Structure (IDS)

The Identity Structure (IDS) is derived from takimgo account the parameters that make up an
Artificial Neural Network (ANN). These parametergiude the activation functions, number of
hidden nodes and the learning rate. Other typ#sesoANNs can also be used to achieve the IDS.
A number of artificial machines can therefore bedutor a hybrid ensemble. Depending on how
many different machine types one uses, the fiestpsd, third, etc indexes of the IDS could
stand for a Multi Layered Perceptron (MLP), Radhasis function (RBF), Bayesian radial basis
function (BRBF), etc. That means if the index of¢he IDS is a one, then the artificial machine

would be an MLP for an example.

The IDS therefore demands a form of commonalityveen the artificial machines (activation
function, hidden nodes, etc), because it repregbatblue print for the individual classifiers that
make up the ensemble. However for this study only artificial machine was considered, an
MLP. The IDS can be viewed as:

Machine type
Number of hidden nodes
Activation function
Learning rate

IDS =

The number of hidden nodes is set not to exceeda8@hown by the five bold bits on the ID
below. This conversion makes the ID less complexyvdver the number of bits can be

increased.
ID=[100000010110]

Each of the parameter of the IDS will have to beleated for measuring differences between
the identities of the classifiers. The methods usesleasure diversity are as follows: the Yule’s

Q-static for two classifiers, correlation coeffieigp), Kohavi-Wolpert variance (kw), Entropy
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measure (Ent), measure of difficulty) (and Coincident Failure Diversity (CFD) [3]. These
methods are mainly applied at the outcome of thssdliers and not at the building blocks of the
classifiers (structure) [3]. However the Kohavi-\(eit varianceKWR method can be applied

to measure the structural diversity, which waswéetifrom the variance formulation [51].
4.3 Kohavi-Wolpert Variance

This method is applied in measuring the varianctefoutputs of the classifiers in the ensemble
and it falls under the family of non-pair-wise maas [3]. However, for this study it will be
used to measure the variance of the different idestof the classifiers. That means for this

study:
L(V;) = Ziz1 Dy (3.1)

WhereV}, is a vector of the classifiers, L is the totaimher of classifiers belonging to either the
RBF, MLP, etc family. That means if j = 1, then tlesemble is evaluated on the number of
RBF machines present in the ensembile. can be viewed ad; = [ID], ..., ID];]. Equation

(3.2) defines the overall variance calculationh&f €énsemble.

kwy = 3 215, 1) (L= (%) 3.2)

] = 1,...,N, where N is the number of the identitygraeters (classifier type, complexity, and

activation functions). This will result in the vanice of the ensemble.
4.4 Data Preprocessing

A data sample of 1006 was used for training, 3tipses for validation and 552 for testing. The
total data used was therefore 1875. This datadandeature inputs as mentioned, however the
data was normalized to have equal importance dthallfeatures. The data was normalized to

range between 0 and 1, by using equation (3.4):

x. —_— x .
Xnorm = — (3.4)

Xmax — Xmin
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Wherex,,i, andx,, ., are the minimum and maximum values of the featafélse data samples

observed, respectively.

4.5 Genetic Algorithm

The genetic algorithm makes use of methods inspfreth evolutionary biology such as
crossover, reproduction and natural selection mseE® [52] and such methods can be used to
evaluate certain functions. In this study the eataun function is the diversity measure, the GA
tries to meet certain diversity (KWR) among theesnble of 9 classifiers. The chromosomes are
the indexes for the vector that contains the diassi The GA will then evolve the classifiers for

a specified diversity value. The GA faced diffieedt in attaining the specified diversity. This
was because the diversity measure specified caatlthen attained from the current ensemble of
60 classifiers which were arbitrarily chosen. Teyamt this problem from occurring one would
need to:

* Build the ensemble of 60 classifiers with known KW&ues for any possible combination
of the 9 ensembles.

« Initially run the GA for any KWR values and thereuke set of KWR values that the GA
can approximate.

The second option seems to be much feasible theafirgh option because on the first option it
would mean that there would be no need for the G#e first option further implies that the GA
would be synchronized with the KWR measure. This @cause it was also observed that some
KWR that were obtained via trial and error were abte to be attained empirically by using
equation (3.2), meaning that the GA could not cogeeThe second option was then used for
implementing the GA. The GA was empirically optieuz for an initial population of 20
chromosomes, 28 Generations with a crossover fat®08. The optimization was done by
running the GA with changing initial population eszat a constant number of generations. The
initial population size that gave us the least rewas then taken which in this case is 20. After

this the optimal initial population size was madastant whiles the number of generations were
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varied. The number of generations that gave thetleaor was the taken as the optimal

generations.

4.6 The Model

The model describes the basic flow of the algorifomdeveloping an ensemble of 9 classifiers
from the 60 classifiers, see figure 3.1. The metbbdoting was then applied on the 9 chosen

classifiers for generating the classification aacyrof the ensemble.

Trained 60
Enssemble

i

GA ——

|

9 optimal
Ensemble

Diversity
obtained

Accuracy

Figure 3.1: The mapping process of diversity armieaxcy

4.7 Implementation

A vector of classifiers was created which was cosepoof 60 classifiers. This was because the
more the classifiers there was, the better thecbesgrace for the GA for an optimal solution. All
the classifiers in the vector were trained. The @Wy looked for a solution for an ensemble of 9
classifiers. An odd number for the ensemble wassehosolemnly to avoid a tie when the
method of voting was used. See figure 3.1 for tbe fdiagram for the system. The evaluation
function was composed of two variables, the divgrsieasure and the targeted diversity (T).

This diversity value was incremented from zero . 0The zero would imply no diversity and
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the 0.2 the increased diversity. The 0.2 was useaduse it was observed from the simulations

that the highest diversity was around 0.2024. $eateon (3.5) for the evaluation function used.

foa = —(kwy = Tieyr)? (3.5)

Where: f;,4 is the evaluation functiorkw,. is the particular, diversity of the 9 classifiersd

Tiwr IS the targeted diversity.

The function is parabolic in the negative axistsat the optimal point is achieved when diversity
measured is the same as the targeted diversityGPheas then optimized by first searching the

KWR values which the GA could easily approximate.

4.7.1Vector of Classifiers

The classifiers were created via the normal distidm by creating them arbitrarily, hence the
activation functions, hidden nodes, and the legrnate were chosen arbitrarily. This was so that
the vector contained an ensemble of classifiersldvoat be biased. However a precaution was
taken so that weak classifiers were not creatéthallassifiers had the number of hidden nodes
larger than the number of inputs. The vector alsd tlassifiers that had a classification mean
square error of less than 0.45 on the validatiotas#d. The ensemble of 60 vectors was
optimized by using an ensemble that produced ateyrediversity measure. This diversity
measure is 0.2024. Intuitively this would be aldeptovide the GA with better classifiers that

could generate the required diversity measure (KWR)

4.7.2The Nine Ensemble of Classifiers

The validation dataset was used to select the clamsifiers from the vector of 60 classifiers.
The classifiers were decrypted into a set of bimamnbers as stated before. This binary number

represented the ID of the individual classifiels bits can be seen from the individual columns.

See table 3.2 for only the 9 classifiers.
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Table 3.2: The IDS of the 9 classifiers

@)
=

C2 C3 C4 C5 C6C7 C8 C9
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R O O 0P O O O O O F O B

The maximum diversity given by the ensemble of B@sifiers was 0.2024; hence also the GA
could not find any KWR value beyond this point. FHurther limited the number points that

could be used to map the relationship betweentsitralaiversity and accuracy.

4.8 Results

Figure 3.2 and 3.3 show the results that were folwach using the validation dataset. The
ensemble of 9 classifiers chosen by the GA was tésted on the testing dataset so as to bring

more sense to the results, see table 3.3.
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Figure 3.3: Optimized GA on the same 60 ensemble

Table 3.3: Classification error on the testing data

Kwr Error (Initial Kwr) Errors (OptimizedKwr)
0.11 0.3128 0.2821
0.16 0.2821 0.2749

It can be seen that the results from Figure 3 agdr€ 4 follow the expected trend. The accuracy
increases with increasing diversity. However therea point where the degree of diversity
becomes unfavorable. The accuracy began to drop ait increase in diversity. This is in
alignment with [3], who stated that diversity cather profit the system or it could bring about

poor performance on the classification. It can dsoobserved from the graphs that the data
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points of interest are not to scale. The occurresfca change is not consistent. This could be
attributed to:

* The fact that there was a lot of rounding off valuethe software package (Matlab),

» The other factor is that the ensemble of 60 clessifvas not designed with a linear or

with consistent increments of diversity values.

» The targeted diversity values might not have beessiple to be extracted from the

ensemble and due to that the GA will provide itsaalsolution.

Mean square error was used in all instances ateeenee so as to observe the behavior of the
ensemble classification with the measured changingctural diversity. This error is just a

relative measure between the different ensemblssifiers that were used and these relative
measures on the testing dataset showed that stlictiversity can be used to measure the
potential of improvement on the ensemble of classifsince a relationship was observed

between different structurally diverse ensemblakthrir classification.

4.9 Conclusion and Discussion

The aim of this study was to measure structuramity of the ensemble, that means a measure
on the diversity of the ensemble as seen from ttuetsire of the individual classifiers and not
seen from the outcomes of the individual classfi@nd then to gain some insight on diversity
and accuracy. This is necessary so that knowledgehether diversity can be used to measure
the potential for improvement of an ensemble ofsiféers can be gained. The results show that
there is a relationship between structural diveraimd accuracy. As diversity increases the
generalization ability of the ensemble improved.wdwer it was observed that too much
diversity increased the classification error. Thisidy has also shown that diversity of an
ensemble can be induced by having an ensembleigshadmposed of classifiers that have
different parameters such as activation functiomsnber of hidden nodes and the learning rate,

as was proposed by [28].
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The methods used were computationally expensiveesihey made use of the GA and the
training of 60 classifiers. This study agrees witbst literatures that diversity does improve the
accuracy of the ensemble [3]. This was observeddiyg the testing dataset on the ensemble
that had a low classification error. This study wasited by the bank of classifiers (60
classifiers) that were created arbitrarily. Thisemble had 0.2024 diversity measures which
meant that only small samples could be used tdw#ie relationship between diversity and

accuracy.
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Chapter 5

Investigating Ensemble weight Distributions for

Indicating Structural Diversity

5.1 Introduction

This study analysed the distributions of the weighttors (weights and biases) of the Multi-
Layer Perceptron (MLP) composed within the ensenibl@articular the distribution parameter
of concern is the variance which also leads to kadge of the standard deviation of the weight
vector samples from the mean. This was inspiredhbyfact that the number of hidden nodes
controls the complexity of the Neural Network (NMhich translates to the structure of the
(MLP). Aimed objectives of viewing ensemble divéysin terms of the structure and not the
outcomes is to: broaden the research scope forminhsediversity measures, add new
understanding to ensemble diversity and possitdy ® other measures not focused on the
classifiers’ outcomes to measure ensemble diveasitylead to a unique definition of ensemble

diversity hence robust measures for ensemble diyers

The rest of the chapter attempts to meet thesetlgs. A method of voting was used to fuse or
aggregate the individual classifiers for a finatiden of the ensemble. The interstate conflict
data was used for demonstrating the concept oftstial diversity in this chapter. The sections
on this chapter are organized as follows; the valhg section deals with ensemble diversity

induction, structural diversity, methodology, réswnd discussion as well as the conclusion.
5.2 Ensemble Diversity

Two methods for inducing ensemble diversity of thessifiers are conducted. The first method

uses the bagging algorithm, short for boostrap egggron, and the second method is by using
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classifiers with different number of hidden nodisss method is one of the bases of the concept
of Ensemble Structural Diversity (ESD). Bagging densidered to be one of the earliest
ensemble algorithms and one of the simplest toempht [59]. The bagging algorithm trains the
ensemble of classifiers by exposing the individtlassifiers to a randomly chosen sample from
the training data. These classifiers are normatipwkn as weak or base learners, since they are
trained to have classification accuracies of justve 50% [1]. The classifiers then can learn

different domains of the problem and hence diveisin be induced.

Structural diversity would also imply that the ddiers have variations in the distributions of the
classifier weights. The weight vector samples & MLP are initialized from a Gaussian

distribution and hence it will be expected thatially the weight vector samples have the same
variance and the mean. This would mean that ihésttaining scheme of the ensemble that
greatly influences the distribution parametershaf weight vector samples of the MLP. Hence
using different complexities will also affect theeight vector samples differently and hence a
study on the distribution of the weight vector ntigihed light on how the parameters of the

distributions relate to ensemble generalization.

However, within the ensemble diversity studiess ihot only the measures of diversity that are
of concern but also the aggregation methods. ShippKuncheva [17], among many, have

looked at the relationship between combination wdthand measures of diversity and have
found that certain measures of diversity correlat@t certain aggregation schemes. It was also
noted that the correlation observed had strongrigeey on the data used [17]. This shows the
complexity, of the ensemble diversity studies, whiave also been noted by [60, 42, 3, 61], et
al. This complexity is also expected for the ESDaswges. This implies that developing a good
measure and having a good aggregation scheme doe®mnally go hand in hand. However,

for the sake of proof of concept only the majoxibte scheme is considered due to its wide use.

5.2 Methodology

From error diversity measures, it was found thateidiity reduces the variance in the

decomposition of the error measure [60] and impsosesemble generalization. Two methods
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are used to induce diversity, the first one is gsrtraining algorithm (bagging) and the second
one is having a committee of classifiers with di#f@ number of hidden nodes. Then a measure
of diversity that looks at the variances of thessifier weights vector (weights and biases) is
conducted. This measure is then compared to therairation performance of the ensembles.
Figure 5.1 shows the steps taken for the procesgioned. Only an ensemble containing five
classifiers was used. Five classifiers were onlpsaered so that computational cost was
minimized and the number was made odd so that there no ties during voting process, for the
final decision. The classifiers initially had 8 H&h nodes with a linear activation function.
However, when inducing diversity via the variat@rchitecture of the classifiers, the number of
hidden nodes was varied randomly between 8 anditi4.was so that they were not biased.

Certainty or confidence measures on the individu&tomes of the classifiers were done so that
more knowledge could be gained on the generalizatib the ensembles. The variance of
certainties from the five classifiers will be ugedgive a more precise indication of the diversity
of the ensemble. This means if there is no varidhea the ensemble is highly certain which
means that it could be highly biased. The certsntire measured from the outputs of the
individual classifiers for the outputs of the cifisss are taken as a probability measure.

Normally in a binary classification problem a OBut is treated as a 1.

However, in this chapter a 0.5 output was not imatety rounded off to a 1, since its
confidence measure is a zero, as can be seen fjoatien (5.1). The 0.5 output is taken as
being the same as tossing a coin and thus its inedome would either be a 0 or a 1. The
certainty is symmetrical about the 0.5 output fritra classifier. To illustrate equation (5.1), a
0.9 output from a classifier will have a confiderafe0.8 and a final classification output of 1.
An output of 0.4 will be assigned a confidence & &d would mean a O for the final outcome
(after rounding off). This equation is inspiredrfrehe Dynamically Averaging Networks (DAN)
by Jimenez [62] and it was modified in this chapter
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Figure 5.1: Flow diagram on diversity analysis

C(fx) = 126¢x) — 1 (5.1)

Where,f(x;) is the immediate output from a classifier withubg; before being processed into

binary andC(f(x;)) is the certainty of the processed input datadertain class [31].

Yf(x: )=y C(fi)
S0 = U — (5.2)

where,S is the sum of all the classifiers which won théevior an input data; xy; is the correct
output value from the data and tRe(f) is the normalizing factor. The last step is tacakdte
the variance of th& vector for all the data samples that were coryedthssified. This is the
variance of the distribution of the certainties tbe correctly classified data samples. See
equation (5.2) for the calculation of the certaidistribution of the classifiers that won the vote.
This certainty, says(x;), is the confidence of the overall classifiers fbat particular data
sample. The certainties were normalized betweend0la representing high to low certainties,

respectively. The tests were done on the interstatélict data [63].
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The dataset has 7 features and a binary outputtedr@sents a conflict and a 1 represents peace.
The data was conditioned such that it had appraein&0/50 conflict and peace cases. The
training data was composed of 1006 and 869 fonitrgiand testing, respectively. The data was
normalized between 0 and 1 so as to have same tivgjdbr all the input features. An ensemble
would be considered diverse if it had differentiaaces on the distributions of the weights
vector (weights and biases) between classifierslulti Layered Perceptron (MLP) was used for
all the experimentation. The certainty measuregwenducted on the test dataset where else the

weights vector variance measures, were conductedthg classifiers were trained.

5.3 Results and Discussion

Two methods of inducing diversity have been studikd bagging and parameter change of the
ensemble of classifiers. The structural diversigsvebserved over the two diverse ensembles.
The results on the accuracies do not show anyrdifte between the different ensembles. They
all produced accuracies of approximately 74 %. Heweit is evident from the variances of the
weights vector that the ensemble is diverse. Théamwees on the weight vector due to the
bagging algorithm were still on a close range, Balgle 5.1. This showed that less diversity was

induced on this ensemble which could be due ta#geof strong learners.

However, the variances due to structural divergitilanging of hidden nodes) produced
classifiers that had the vector weight variancgsiicantly different within the committee, see
Table 5.1 on the second column. Intuitively one Moeonclude that this ensemble was more
diverse as compared to the ensemble trained vigilggBut the bagged ensemble produced
better generalization performance as comparedemtier ensembles (diverse ensemble due to
different structural parameters and the no-diversgemble), (see Table 5.2). This might mean
that by observing the vector weights as a measusngemble diversity might not relate well
with the generalization performance of the ensembieés therefore leads to conclude that the
measure of structural diversity in this regardsggnificant when related to the classification

accuracy.

44



The significant weight vector variances on the ende (among the classifiers) with different
number of hidden nodes can be attributed to theotisifferent number of hidden nodes. This
then shows that the use of the weight vector @histions might not be a good method to
correlate diversity and generalization. This is afighe biggest disadvantages of measuring
diversity from the structural point of view. Forenan develop a good measure but then lose out
on using the measure to predict the generalizaperiormance of the ensemble, as noted.
According to these results, see Table 5.1 andvh2n the ensemble is non-diverse then the
variance of the certainties is zero. This meanswthrediverse ensemble is extremely certain and
there is no variation. Intuitively, this made sefmean ensemble that is non-diverse, for it would
be biased. This means that this certainty measweld not be confused with the confidence of

reducing risk in classification.

Table 5.1: Variances of the diverse and non diversembles

Bagged 6°)  Nodes ¢7) Non-Diverse

(o)
0.25915 0.458: 0.2639:
0.30675 0.2311¢ 0.2639:
0.27167 0.2207: 0.2639:
0.2399! 0.1875: 0.2639:
0.2934 0.1666¢ 0.2639:

Table 5.2: Accuracies and variance measures

Acc (Bagged) 74.914

Acc (Nodes) 74.569
Acc(non-diverse) 74.33¢
62(Caiv(f(x)) 0.006414

62(Cnon—div(f(x)) 0

The confidence in this context measured the extemthich the individual classifiers believed to
have been correct not necessary that the clagsficavas correct. This shows how structural
diversity measures can better bring understandinipé classification problems. These results
show that the data used was not complex enouglom@dlassifier would be adequate for this
problem for the ensemble produced approximatelylaingeneralization performance. This is
concurrent with literature that diversity can bb#hharmful or beneficial [38]. Further work can

be done by using different aggregation schemes #énebynamic Average Networks (DAN) for
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understanding the structural variation of the dfeegs. Structural diversity measures could also
be attempted in other artificial machines.

5.4 Conclusion

This chapter presented concepts inspired fromsstal methods and certainty to better
understand the structural diversity of the ensembldifferent assessment of ensemble diversity
has been presented as opposed to looking at tlssifeta outcomes to measure ensemble
diversity. The weight vector of the classifiers hasen assessed for indicating ensemble
diversity. Due to looking at the outcomes and reatlly at the structure, misleading judgments
about the ensemble diversity might be taken andcégyoor correlation judgments on the
generalization of the ensemble and ensemble diyersi

This was observed from having a structurally digeensemble having almost the same
generalization as the non-diverse ensemble. Howdviercould be attributed to the size of the
data and the data used. Certainty or confidenceinae of zero was recorded due to a non-
diverse ensemble which indicated that the non-devensemble was biased. The consideration
of viewing ensemble diversity from structural poafitview (from the learning parameters) adds
more knowledge on the distributions of the vecterghts of the diverse ensembles and hence on
the ensemble diversity research community. Meagueimsemble diversity from the vector of
weights might be meaningful but correlating thisasige with ensemble generalization might
not be meaningful. A formal definition of ensemlliwersity still remains an open discussion.
More work can still be done in changing the numifahe classifiers within a committee and by
using other datasets. Classifiers have a numbegaraimeters depending on the artificial machine

used, which leaves the search for other methodseakuring structural diversity for exploration.
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Chapter 6

Conclusion

6.1 Summary of Findings

The aim of this research was to introduce and ty&te a new way of viewing ensemble
diversity, called the ensemble structural diversitige investigation was conducted by inducing
structural diversity within the ensemble and theepasuring this structural diversity. This
enabled the use of GAs resulting in a relationsiefwveen structural diversity and generalization
performance being captured. Different ensemblectiral diversity measures were conducted,
the ecological measures and the statistical measdieated that as the structural diversity
increased so did the generalization performanceufacy) of the ensemble. However, there was
a point where ensemble structural diversity becamé&vourable, as ensemble structural
diversity increased the generalization performatesreased. However, it was observed that this
point was different for different ensemble struatuliversity measures used and hence further
research on the behaviour of this point were beybedscope of this dissertation. These results
indicate that structural diversity serves as a micdk for use in constructing efficient and
effective ensembles. The first problem that waantered was that of representation, how one
represents the structures that compose the MLPvariables that could be measured, so that an
ensemble of MLPs with different structural parametan be quantified. This was successfully
attained and a good relationship between ensentbletwal diversity and generalization
performance was observed for as the diversity asgé so did the generalization performance of
the ensemble, however, to a certain region of tiversity values. Through the measures
conducted, the classifiers were for the first tiseen as ecological species within the ensemble.
This was done so that ecological methods of meaguriodiversity could be implemented. In
this way, structural diversity was able to be qifeadt and hence could be compared to the

generalization performance of the ensemble. A similork was conducted with the use of a
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different dataset and the results were concurr2@l}, with the work done. Shannon was also
interpreted from the information theory side andswaéso used as the uncertainty measure. This
uncertainty measure was inspired from informatibeoty and was taken as the diversity
measure. The uncertainty in this context meanshiessng on the ensemble indicating a diverse
ensemble. The results indicated that as the umasrtancreased so did the generalization

performance of the ensemble.

The last method for measuring ensemble structuvaksity was by observing the distributions
of the classifiers weight vector (weights and bsds@his was because a comparison was
conducted between the induction of diversity byatire and by a training algorithm (bagging).
This also indicated the existence of ensemble wtraicdiversity which was, however, not that
different from the non-diverse ensemble. This wasalise this measure of ensemble diversity
was mainly concerned with indicating ensemble digrand not specialized to relate ensemble
diversity with generalization performance. In tinggard, it was considered the weakest form
among the other studies conducted of relating ebkendiversity with generalization

performance with the aim of validating the measure.

This research has shown that diversity within theeenble is important even when measured
from the structural parameters and as opposedv® been measured from the outcomes as has
been commonly practiced. Ensemble diversity cambeced via the structural parameters that
constitute the individual classifiers. Furtheroggposed to looking at the outcomes as a means of
measuring ensemble diversity, ensemble diversity lsa measured from the structural view
point. This is achieved by looking at the struckypr@rameters composing the classifiers, hidden
nodes, activation functions and the learning r@teapter 3 and 4 induce ensemble diversity by

structure where else in chapter 5 diversity induzgdtructure and by a learning algorithm.

It was found that the results were concurrent Miigrature on the basis of the necessity of
diversity for efficient ensembles. Even though thigght bring about a good measure of
ensemble diversity, it was found in some instarleasthe measure of structural diversity did not
correlate well with the generalization performaméehe ensemble. This was because one can

have a structurally diverse ensemble where elsthaltlassifiers composed within the ensemble
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approximate the same input to output function. Thiwhere the measure of looking at ensemble
diversity from the outcome outweighs that of beingwed from structure. Hence, the use of
structural diversity with the aim of building efi@nt ensembles is not strongly encouraged even
though it has shown to provide a possibility fonstucting efficient ensembles. This study
showed that diversity can be measured differentty this is due to the fact that it has no formal
definition. Only one dataset was used as a formpro¥ing the concept (structural diversity) by
using different measures. Hence, due to the ladk®fuse of other datasets this research still
remains to be explored and hence no conclusiondcbel done on whether the measures
conducted are robust for all situations and repitasiens of other datasets. However, we can
conclude that structural diversity does exist dredresearch community can begin to revisit their

ensemble diversity measures as a form of assesgngedictive ability of the ensembles.

6.2 Recommendations and Future Work

It is recommended that since diversity has no fombedinition, a hybrid ensemble to ensemble
construction may be used. This means that as ogpms¢he use of parameters to measure
diversity, one would look at the different machirmmstituting the ensemble as a means of
measuring diversity. Future work might entail thee wf other datasets onto this concept of
ensemble structural diversity. There seems to bhreymariables within ensemble systems and all
these variables play a major role in the relatignshetween ensemble diversity and
generalization performance. Ensemble systems ettiailtraining, number of classifiers used to
make up the ensemble, the complexity of the classif(hidden notes, learning rate and
activation function) , the aggregation scheme féinal solution and even the data used to some
certain extent. It is until these parameters ar# reated to one another that a robust generic
measure of ensemble diversity can be developede Musdy on the point where diversity

becomes unfavorable for the generalization of titeemble should be conducted.
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Appendix A
Ensemble Systems

An ensemble system is whereby one uses more thamntificial machine to do a certain task.
However the committee of the classifiers in thiateat need to be diverse so that the system is
not composed of a number of classifiers wherebgnié classifier was used, it could have
performed the same way as the use of a committeetadlack of diversity within the committee.
Diversity can be induced either be by structurdfedint training scheme, different feature
subsets and combination of different classifietse §oal of these different methodologies is so
that the classifiers within the ensemble have dbffie decision boundaries, see figure A.1, which
was taken from Polikar [1]. These classifiers drent combined so as to produce a strong

classifier as compared to the use of one classtes figure A.1, The sum function can either be
a majority, averaging scheme, etc.

Classifier 1— Decision Boundary 1 Classifier 2 — Decision Boundary 2 Classifier 3 — Decision Boundary 3
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Figure Al: Combining classifiers with different a&on boundaries [1].
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A.1 Ensemble diversity measures

The research community has sort to develop ensediNgesity measures. However many of the
researchers have considered diversity measurdseabutcomes and not by structure. At the
outcomes is when one looks at the decision boundérhe individual classifiers and then

compare the variations or the differences thattexgthin the ensemble so as to produce a
guantity. This quantity would be the measured digrof the ensemble. A list of the ensemble

diversity measures that measure diversity fronotiteomes are listed in the following sections.

A.1.1 Measures of Diversity

In order to quantify outcome diversity, several mgas have been defined. These are pair-wise
measures and non pair-wise measures. All these umesasvere taken from Polikar [1],
Kuncheva and Whitaker [4]. Pair-wise measures af@ed between two classifiers.

-Pair wise measures [1, 4],

Table A.1: A matrix showing the relationship betwea a pair of classifiers.
Dy, correct(1) | Dy wrong(0)

Nll NlO
D; correct(1)

N01 NOO
D;wrong(0)

Total N = N11 4 NO1 4 00 4 10

Q Statistics

This diversity measure is used to evaluate the ede@f similarity and dissimilarity in the
outcomes of the classifiers within the ensembleis Theasure of diversity focuses on the

outcome of a pair of classifiers. It is howeveresgml to measure the degree of the agreement
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and disagreement on the outcomes of the ensemplestoe the limitation of the outcomes. For

classifiers i and j the outcome based diversityiven by (A1.1)

_ NUIN00_NO1p10
Qi,f ~ N11N004O01y10

(A1.1)

where:
N11-represents cases where both classifiers correletbgified instances
N°- represents misclassification of instances

NO1- represents cases in whichisclassified an instance whilst clasgieorrectly classified

that particular instance.

The averaged values of Q over all pairs in the mb$eis,

2 —
Qave = _Zflzllz:szl Qi.j (Al1.2)

L(L-1)

» The range of the index varies between -1 and 1.
* The maximum diversity is obtained at 0.
» Classifiers that recognize similar objects havatp@sQ values

» Classifiers that commit errors on different objaetsult in a negative Q

Correlation measure

This measure of diversity looks at the correlabetween two classifiers outputs. This uses table
1 as in Q statistics. The diversity is defined Ayl(3)

NllNOO_NOINIO
- \/(N11+N10)(N00+N01)(N11+N01)(N10+N00)

Dik m3)

* The range of the index varies between -1 and 1

e Maximum diversity is obtained at= 0.
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* Negativep mean classifiers commit errors at different places

» Positivep mean classifiers recognize similar objects colyect

The disagreement measure

This measure is the probability that two class#ieiill disagree. It is the ratio between the
number of observation on which one classifier igexi and the other is incorrect to a total

number of observations.

N01+N10
N114 104004 NO1

Dis; ), = (A.1.4)

» Diversity increases with increasing the disagregmen

The double fault measure

It is defined as the proportion of the cases tlaatehbeen misclassified by both classifiers,
see equation (A.1.5)

NOO
N114N104 004 yO1

DFi,k =

(A.1.5)

» Diversity increases with increasing the doubletfaul

-Non Pair-wise measureq1, 4]
Entropy Measure

This measure makes an assumption that the divesdiighest when half of the classifiers
are correct and the other half is incorrect. Theogry measure is defined as:

N
1 1 _
£ = QTS T o)
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Where:

6; — The classifiers that misclassifies instance
T — The total number of classifiers

N — The total number of data samples

* The entropy diversity measure varies between 0land
* 0 means the classifiers are practically the sardelaneans they are different.

* This means that 0 means lowest diversity and 1 mb@mest diversity.

Kohavi-Wolpert Variance

This measure follows the similar approach to tilsagiieement measure.

1

KW =
NT2

N1 8. (T = 68) (A.1.6)
where:

8; — The classifiers that misclassifies instamnce

T — The total number of classifiers

N — The total number of data samples

KW — The diversity index.

Measure of difficulty

This measure uses the random variable that isetbfis the fraction of classifiers that
misclassifiesc;. The measure of variance is then the varianclkeofandom variable Z, see
equation (A.1.7).

0= =31, (z. — 2)° (A.1.7)
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wherez - is the mean of z., hence is the average fractiatassifiers that misclassifies any
given input.

T — The total number of classifiers
f-diversity index
The generalized diversity

This measure has been proposed by Partridge [G4]défined by:

wherep;- The probability that a random variance exprestiegoroportion of classifiers that
are incorrect.

L- The total number of classifiers

The generalized diversity equation is given by

» GD varies between 0 and 1.
e GD = 0 (minimum diversity whep(2) = p(1))
¢ GD =1 (maximum diversity whem(2) = 0)

The confidence measure

This is similar to GD.
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0,
L
CFD = 1 ZL—i
i=

e Minimum diversity value is 0, when all classifieese always correct or when all the

classifiers are simultaneously either correct ayrvg

* Maximum value is achieved at diversity of 1 whertfa misclassifications are unique, when
at most one classifier will fail on any randomlyosken object.

A.2 Bagging

This is one of the well known training algorithmsat were used in this study [1]. This

algorithm ensures continuous resample of the trgidiata inducing a diverse ensemble. For in
the process weak and strong classifiers are desé)dpking place within the same dataset. Once
the training is done the final decision of the eniske is taken by the use of a majority vote. Here

is the algorithm for the bagging training processalv was also taken from Polikar [1].
I nput:

» Training data S with correct labels € Q = {w,, ..., w_.} representingC classes
» Weak learning algorithm Weak-Learn,

» IntegerT specifying number of iterations

» Percent (or fraction) F to create bootstrappeaitngidata

Dot=1,..,T

1. Take a bootstrapped repliSaby randomly drawind’ percent of.
2. Call Weak-Learn witl; and receive the hypothesis (classifigr)
3. Add h; to the ensembléd;

End

Test: Simple Majority Voting - Given unlabeled instancgs

1. Evaluate ensemblg = {h,, ..., hr} onx
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1, if h, picks class w;

- Lety; = {0, otherwise

be the vote given to clasg by classifierh,.

. Obtain total vote received by each class

T
1/ =z Vejj=1,..,C

t=1

. Choose the class that receives the highest totalasthe final classification
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