List of tables

Table 3.1:	Elevation of gauge plates amsl along the Nyl River floodplain	
	(after Birkhead et al, 2004)	47
Table 3.2:	Stage monitoring records for the Nyl River Floodplain (after	
	Birkhead et al, 2004)	48
Table 3.3:	Rating functions and range of measured stages for the four	
	gauging stations along the Nyl River floodplain (after Birkhead	
	<i>et al</i> , 2004)	54
Table 4.1:	Example of a day's measurements (18 December 2000) for the	
	energy balance method and method of calculation to find the	
	evapotranspiration for a grassy area at the Nylsvley Reserve, after	
	Blight (pers. comm.)	78
Table 4.2:	Evapotranspiration rates found using the energy balance method	
	and Mini pan at the Nylsvley Reserve (Blight, 2001; Blight et al,	
	2001; Blight, 2002a) and the corresponding Symons pan	
	evaporation for the same days at the Donkerpoort Dam S pan	
	(A6E006)	85
Table 4.3:	Evaporation pans considered for determining pan factors using	
	the Nylsvley energy balance evapotranspiration data	88
Table 4.4:	Derivation of the average monthly evapotranspiration rates from	
	pan data for the Donkerpoort Dam station and the periodic energy	
	balance measurements in the grassy area at the Nylsvley Reserve	90
Table 4.5:	Average monthly evapotranspiration rates used in the hydraulic	
	model for inundated areas of the Nylsvlei floodplain	95
Table 5.1:	Results of Fourie and James's (pers. comm.) study using the	
	Guelph Permeameter in June 2000 at the ring infiltrometer sites	
	(site 31 in Figure 5.7) and at the Nylsvley Bridge (Transect 2 in	
	Figure 5.7)	113
Table 5.2:	The dominant soils that make up the soil map units as shown in	
	Figure 5.7 and tested for permeability	115

List of tables

Table 5.3:	Summary of infiltration rates in different soil types measured	
	at the Nylsvley Nature Reserve, during October and November	
	2002 with a Guelph Permeameter	119
Table 6.1:	Water balance for the floodplain from Middelfontein to the	
	Nylsvley Reserve (after Birkhead et al, 2004)	150
Table 6.2:	Manning's resistance values for the floodplain and channel in the	
	Middelfontein reach, from the N1 (cross-section 51) to the	
	Nylsvley Bridge (cross-section 1)	153
Table 7.1:	Monthly IFR flow volumes for the Olifantspruit, for Ecological	
	Management Class C, distribution: Lowveld (Volumes in	
	$m^3 \ge 10^6$)	175
Table 8.1:	Tarboton's qualitative flood classification record (after Morgan,	
	1996; Tarboton, 1989)	189
Table 8.2:	Average maximum areas (for 1973/74-2000/01) inundated for	
	at least 25 continuous days for each reach (km ²)	200
Table 8.3:	Inflows used to calculate inundated areas between 0.1m and	
	0.5m depth using RiverCAD	204