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Abstract

Piped water is used to remove hydration heat from concrete blocks during construction.

In this paper we develop an approximate model for this process. The problem reduces

to solving a one-dimensional heat equation in the concrete, coupled with a first order

differential equation for the water temperature. Numerical results are presented and the

effect of varying model parameters shown. An analytical solution is also provided for

a steady-state constant heat generation model. This helps highlight the dependence on

certain parameters and can therefore provide an aid in the design of cooling systems.

Introduction

Large concrete structures are usually made sequentially in a series of blocks. After each

block is poured it must be left to cool and shrink for a period depending on its size,
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but typically for around one week, before the next block is poured. The reason for the

delay is that the mixture of cement and water, which constitute the binding agent of

the concrete, results in a series of hydration reactions that generate heat. The chemical

reaction can lead to temperature rises in excess of 50K and it can take a number of

years before the concrete cools to the ambient temperature. Prior to construction of the

Hoover dam engineers at the US Bureau of Reclamation estimated that if the dam were

built in a single continuous pour the concrete would require 125 years to cool to the

ambient temperature and that the resulting stresses would have caused the dam to crack

and fail [1]. This highlights the main problem of the heat generation, that of thermal

stress, which can then lead to cracking, leakage and resultant structural weakening. The

development of thermal stresses in hydrating concrete has been extensively discussed by

Springenschmid [2]. Neville [3] points out that high temperatures lead to porous, weak

concrete. Lawrence [4] states that temperatures greater than 70◦C lead to microcracks.

In order to limit the maximum thermal stresses, it is therefore necessary, during the

construction process, to remove as much of the heat of hydration as possible, particularly

before the next concrete block is poured. As construction time is usually an important

consideration, it is essential to carry out the heat removal as quickly as possible.

There are a number of ways of minimising the temperature development in large

concrete structures. One of the more effective methods, particularly for very large con-

struction such as concrete dam walls, is to introduce an interconnected pipe network into

the concrete during construction. Chilled water is then circulated through this pipe sys-

tem until it is deemed sufficient energy has been removed from the concrete, see [5] for

example. When designing the pipe system, engineers have to make five major decisions:

1) the type of pipe to use (metal, plastic, wall thickness, etc);

2) the diameter of the water pipe;

3) the spacing between pipes;
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4) the temperature of the inlet water;

5) the flow rate of the water.

The first two decisions are based on economics, construction methodology and the

need to avoid displacing so much concrete by the empty pipe that the strength of the

structure is compromised. The third decision will be based on efficiency of heat removal

and, effectively, how tolerant the project time-lines are of delays caused by the process of

heat removal from the concrete. Heat removal not only reduces thermal stresses, it also

shortens the time that the contractor has to wait for construction joints to be grouted. If

this is done while the internal concrete temperature is significantly greater than ambient,

the grouted joints will open upon subsequent cooling of the concrete.

Decisions 4 and 5 are the only adjustable parameters during the operation of the

cooling system and therefore allow for some error in the design decisions taken regarding

parameters 1 to 3. In determining these parameters, engineers rely on empirically devel-

oped design codes such as ACI 207.4R-05 [6]. In large measure, these approaches suffer

the weakness of not being able to account for differing construction conditions, differing

cement types and differing thermal characteristics of concrete making materials.

In the operation of an internal water cooling system, contractors would typically

monitor the inlet and outlet water temperatures to assess the quantum of heat being

removed. This then allows the inlet temperature and/or flow rate to be adjusted in

response to changes in the measured temperature of the concrete.

In the following work we develop a model of a simplified pipe network with the in-

tention of providing a rational approach to the design, management and operation of

an internal concrete cooling system. We assume that the network consists of a series of

straight pipes, separated by a distance 2R. Heat transfer occurs at the pipe walls from

the concrete to the water. As the water travels along a pipe it becomes hotter. So, if the
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second pipe is downstream of the first then the heat transfer into the first pipe will be

greater than into the second. Between the pipes there will be a point where the temper-

ature gradient is zero. Provided the temperature difference is not too great this will be

close to the mid-point. For simplicity we will therefore take the boundary condition that

the temperature gradient is zero at the mid-point between pipes. It is important to note

that this simplification will not qualitatively affect the results presented later which show

the actual mechanisms for heat removal.

Governing equations

The problem configuration is shown in Figure 1. Water flows through a pipe of radius a,

which is encased in a cylindrical sleeve of concrete, of radius R. The concrete temperature

is denoted by T ′, the water temperature by θ′ (primes denote dimensional variables), the

flow rate is Q. The problem is governed by heat equations in the concrete and water:

ρccc
∂T ′

∂t′
= κc∇

2T ′ + q′ (1)

ρwcw

(

∂θ′

∂t′
+ u′ · ∇θ′

)

= κw∇
2θ′ , (2)

where q′ is the rate of heat production per unit volume in the concrete, and (ρc, cc, κc),

(ρw, cw, κw) are the density, specific heat and conductivity of concrete and water respec-

tively.

While acting to change the temperature of the concrete system, as an exothermic

chemical reaction, the rate of heat production q′ is itself temperature and time dependent.

Ballim and Graham [7] have shown that the way to deal with this time-temperature duality

is to express the rate of heat evolution in terms of an Arrhenius maturity. This form of the

heat rate can then be expressed on a time basis by monitoring and adjusting for the rate

of change of maturity. However, for the purposes of this present analysis, the complexity

of dealing with a maturity form of the heat rate expression was excluded. The reason
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for this is that we intend to demonstrate an analytical approach to understanding heat

exchange in a cooling pipe system for mass concrete structures. The maturity expression

of the heat rate function can be added as a second level of complexity for the actual

analysis in a real concrete structure.

A typical form for q′ for cement is shown in Figure 2. Initially there is a rapid increase

to the maximum of around 1200 W/m3 after around 10 hours. This is followed by an

exponential decay. After around 80 hours the heat production is not measurable, but

does not actually reach zero for a much longer period. From this graph it is clear that the

temperature increase can be significant, particularly during the early stages of the drying

process, when the heat production is very high, q′ ∼ 103W/m3 . In the following analysis

we will approximate q′ by the following relation

q′ = q′m
t′

t′m
e−(t′2−(t′

m
)2)/(2(t′

m
)2) , (3)

where q′m is the maximum value of q′, which occurs at time t′m. Since we eventually solve

the problem numerically the approximation to q′ can be made more accurate without

increasing the solution difficulty. However, the exact choice of q′ will not affect the main

results.

The heat equation in the water may be simplified significantly on obvious physical

grounds. The water flow is turbulent provided the Reynolds number Re = 2Ua/ν > 2300.

Typical values for the pipe radius and velocity are a = 2.5cm, U = 10cm/s, the kinematic

viscosity of water ν = 10−6m2/s (see Table 1) and so Re ∼ 5000 and the flow is well into

the turbulent regime. One consequence of this is that the water will be well mixed and

therefore the temperature will be independent of the radial co-ordinate (except perhaps for

in a narrow boundary layer near the pipe wall). If we write θ
′

as the average temperature

at a given z′ co-ordinate then

θ
′

= θ
′

(z, t) =
2

a2

∫ a

0
θ′(r′, z′, t′)r dr .
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Further, the average radial velocity must be zero and the mean flow is in the z′-direction,

u′ = (0, w). Since the fluid is incompressible we can state w = Q/πa2 is constant. Under

these conditions the heat equation in the water can be integrated to give

πa2ρwcw





∂θ
′

∂t′
+

Q

πa2

∂θ
′

∂z′



 = 2πκw



a
∂θ′

∂r′

∣

∣

∣

∣

∣

r′=a

+
a2

2

∂2θ
′

∂z′2



 . (4)

At the boundary between the water and the concrete a cooling condition applies

κw
∂θ′

∂r′

∣

∣

∣

∣

∣

r′=a

= H
(

T ′|r=a − θ
′
)

(5)

The heat transfer coefficient H is an approximate value

H = 2πκp
a

s
+ Hwp , (6)

where κp is the the thermal conductivity of the pipe, s the pipe thickness, and Hwp the

heat transfer coefficient of water on the pipe, see [9, p111] for example. Finally we may

write the governing equation in the form




∂θ
′

∂t′
+

Q

πa2

∂θ
′

∂z′



 =
2H

ρwcwa
(T ′|r=a − θ

′

) . (7)

Comparing equation (7) with the full heat equation (2) we see that the convective terms

have been simplified by the removal of the radial velocity component, while w is con-

stant and given in terms of the flux. The diffusive terms have been replaced by a

term proportional to the temperature jump across the pipe wall. Pre-empting the non-

dimensionalisation of the following section we neglect the diffusion term in the z direction

which has a typical magnitude O(10−9) less than the terms retained in (7). This derivation

is discussed in more detail in [8].

Necessary boundary conditions for the problem are as follows. At z = 0 the water

enters at a known temperature θ0. At the pipe wall, r′ = a, the concrete loses heat to the

pipe,

κc
∂T ′

∂r′
= H(T ′ − θ

′

) .
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At the edge of the domain, r′ = R, symmetry requires

∂T ′

∂r′
= 0 .

Initially the concrete is assumed to be at a constant temperature T ′

0 and the water tem-

perature is set to θ
′

0 everywhere.

Non-dimensional analysis

We now non-dimensionalize equations (1, 7) using the scales

r′ = Rr z′ = Zz t′ = τt T ′ = T ′

0 + ∆T T θ
′

= T0 + ∆T θ q′ = q′mq,

where ∆T is a typical increase in temperature within the concrete (above the initial

temperature) and Z, τ are the length and time scales for significant temperature variations

in the pipe; ∆T, τ, Z are yet to be determined. The heat equation in the concrete becomes

ρccc∆T

τ

∂T

∂t
= κc∆T

(

1

R2

1

r

∂

∂r

(

r
∂T

∂r

)

+
1

Z2

∂2T

∂z2

)

+ q′mq . (8)

Anticipating the fact that radial diffusion is the dominant method for heat transferral in

the concrete we rearrange this to

ρcccR
2

τκc

∂T

∂t
=

1

r

∂

∂r

(

r
∂T

∂r

)

+
R2

Z2

∂2T

∂z2
+

q′mR2

κc∆T
q . (9)

In the water we expect energy to be carried along with the fluid and so rearrange equation

(7) accordingly to give

πa2Z

Qτ

∂θ

∂t
+

∂θ

∂z
=

2πaHZ

ρwcwQ
(T |r=ǫ − θ) , (10)

where ǫ = a/R ≪ 1.

There are three unknown scales in equations (9, 10), the length-scale Z, the time-

scale τ and the temperature scale ∆T . Clearly the temperature rise is driven by heat

production in the concrete, so we choose

∆T =
q′mR2

κc

. (11)
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In the water the temperature rise is due to forced convection at the boundary, so we

choose

Z =
ρwcwQ

2πaH
. (12)

The time derivatives indicate two distinct time scales. In the concrete

τ = τc =
ρcccR

2

κc
, (13)

and in the water

τ = τw =
πa2Z

Q
. (14)

A third time-scale appears due to the heat production τ = τh = t′m.

Substituting typical values, as given in Table 1, into the expressions for the tempera-

ture scale and length-scale indicates ∆T ∼ 54.7K, Z ∼ 10.69m. The temperature scale is

of the order of increase observed in practice. The time-scale for significant changes in the

concrete temperature is τc ∼ 9.4 × 104s ∼ 26 hours. The time-scale τh = t′m ∼ 3.6 × 104s

= 10 hours. Evidently, for effective heat removal we should expect τc ∼ τh. Finally,

the flow time-scale τw ∼ 104.9s, τw ≪ τh, τc. The different time-scales indicate different

possible perspectives. The movement of heat within the concrete takes of the order of

hours whereas the time taken for a water particle to travel through the system is of the

order of a minute. Consequently a water particle will not notice the heat movement or

production within the concrete, merely that the concrete is hotter than the water and

hence is a source of energy. The concrete on the other hand is only affected by the water

since the supply is being continuously renewed and this occurs over a sufficiently long

time-scale (much greater than τw) for significant hydration heat to be removed. Since our

interest lies in the removal of heat from the concrete we will focus on the time-scale τc.

The model for temperature variation in the water on the time-scale τw is discussed in [8].
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In the following section we solve the governing equations

∂T

∂t
=

1

r

∂

∂r

(

r
∂T

∂r

)

+
t

tm
e−(t2−t2

m
)/(2t2

m
) (15)

∂θ

∂z
=

(

T |r=ǫ − θ
)

. (16)

The time tm is non-dimensional, tm = 10 × 3600/τc ≈ 0.38.

The non-dimensional boundary conditions for these equations are: at the water con-

crete interface, r = ǫ,

∂T

∂r
= H(T − θ) , (17)

where H = HR/κc; at r = 1

∂T

∂r
= 0 ; (18)

at z = 0 the water temperature θ = θ
′

0 = (θ0 − T ′

0)/∆T . The initial condition for the

concrete is T = 0.

The coefficient H in equation (17) can be quite large, O(100), indicating that a

better scaling would be to take R = κc/H ≪ 1. If we choose this scale then the governing

equations retain the same terms. The time and temperature scales do change and the

coefficient in (17) becomes H = 1. However, we choose to take the natural scale, where

R is the radius of the concrete sleeve. This means that our results may exhibit high

gradients in the temperature near r = ǫ but means that we do not have to carry out

calculations over a large r domain or re-scale for an outer region away from r = ǫ. This

will be discussed later.

The non-dimensional governing equations involve a number of parameters: the scaled

time at which the temperature is maximum, tm, the ratio of the pipe radius to the pipe

spacing, ǫ, the heat transfer coefficient, H , and the initial temperature, θ0. The length

of the pipe ze defines the computational domain in the z direction and can also vary.
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For a given type of concrete certain physical parameters may be easily changed, thus

affecting the non-dimensional parameters. The most important parameter appears to be

the pipe spacing. Changing this changes the time-scale τc and so tm, ǫ and H all change,

the temperature scale ∆T also changes and this affects θ0. The pipe radius, a, affects ǫ

and the length-scale Z. The flow rate Q also affects Z. The heat transfer coefficient H

affects H and Z. Finally, the initial temperatures affect θ0. Consequently there are many

possibilities for improving the heat removal from the concrete.

In the following section we investigate a simplified model involving steady-state heat

flow with a constant heat source. This allows us to obtain an analytical solution which

then shows explicitly how the heat removal depends on the problem parameters. Given

the large number of problem parameters this will give us a much clearer indication of

the relative effect of the parameters than a numerical solution. In the numerical section

we verify certain conclusions of the analytical model but show that it does not present a

complete picture of the process.

Steady-state solution for constant heat generation

In general we can only solve the system of equations numerically but then the number

of parameters in the governing equations makes it difficult to carry out a full parametric

study. So, in order to better understand the role of the various physical parameters and

to make analytical progress we now introduce an approximate form of (15), where the

source term is taken as constant. Effectively this means we are working on a time-scale,

τ , such that τw ≪ τ ≪ τh. While this approximation is quite restrictive in the time for

which it is valid, the driving mechanisms are the same as for the full problem. Hence

information gained from this analysis will be relevant to the full time-dependent problem.
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To further simplify the problem we examine the steady-state

0 =
1

r

∂

∂r

(

r
∂T

∂r

)

+ 1 . (19)

This is coupled to the energy equation in the water (16).

Equation (19) integrates to

T = −
r2

4
+ A log r + B . (20)

Applying boundary conditions (17, 18) gives

T =
ǫ2 − r2

4
+

1

2ǫH

(

1 − ǫ2
)

+
1

2
log

r

ǫ
+ θ . (21)

So the concrete temperature depends explicitly on the water temperature. The term ǫH

indicates a possible problem with the scaling. However, H ≫ 1, and in general 2ǫH ≫ 1,

so that this term does not dominate the equation. In fact it will only play a significant

role when r ≈ ǫ. This apparent problem arises due to choosing the length-scale as the

concrete radius, as discussed previously. It may be remedied by taking the length-scale

from the boundary condition at r = ǫ. This choice then requires re-scaling the equations

as we move away from r = ǫ and so we stick with the simpler and more natural choice of

R. Further, as will be seen from the subsequent results this choice still leads to accurate

results.

Equation (21) allows us to determine T (ǫ, z) which is required in (16). The tempera-

ture in the water turns out to be

θ =
1

2ǫH

(

1 − ǫ2
)

z + θ0 . (22)

Again the term involving 1/ǫ does not cause a problem due to the size of H .

Equations (21, 22) indicate that in the steady state the temperature in the concrete

and water depends solely on the non-dimensional groupings ǫ, H , θ0. If we convert equa-

tions (21, 22) back to dimensional variables the dependence on the physical parameters
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becomes clear:

θ
′

= θ
′

0 +
πq′mR2

ρwcwQ

(

1 −
a2

R2

)

z′ , (23)

T ′ = θ
′

+ q′m

(

a2 − r
′2

4κc

+
R2

2aH

(

1 −
a2

R2

)

+
R2

2κc

ln
r′

a

)

. (24)

The water temperature depends on the initial temperature, pipe spacing and flux,

and to a much lesser extent on the pipe radius (since a2 ≪ R2). The dependence on

the initial temperature θ
′

0 shows that a decrease in initial temperature simply acts to

decrease the water temperature by the same amount (in agreement with our subsequent

numerical results). The heat transfer coefficient has no effect on the water temperature

(we will see later that this result is misleading). The concrete temperature does involve

H , however only in the term that we highlighted as being small unless r′ ≈ a. Using

the values given in Table 1, at r′ = R increasing H by a factor 10 results in a negligible

increase in the maximum temperature. Reducing it by a factor of 10, so H = 50, we

find a change of around 7%. However, at r′ = a, increasing H by a factor of 10 results

in a temperature increase of the order 20%. Decreasing H by a factor 10 the maximum

temperature doubles. So we see that varying H has a significant effect near r′ = a, but in

general the effect becomes insignificant as we move away from this point. Of course this

does not hold for all H . If H = 0 then the effect can be seen everywhere, since there is

no mechanism for heat removal. From equation (24) we can estimate the H value above

which we expect little change in the solutions away from r′ = a. The two other terms

within the bracket are both of the order R2/κc. For these terms to dominate over H

(when r′ is not close to a) requires H ≫ κc/(2a). With the parameter values in Table 1

this gives H ≫ 27.4. Our numerical calculations agree with this estimate.

We can confirm the water temperature equation through a simple energy balance.

At any given z′ the energy change in the water from the inlet must balance the energy
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generated within the concrete

V q′m = Qρwcw(θ
′

− θ
′

0)

where V = π(R2 − a2)z′ is the volume of the concrete sleeve. Rearranging this expression

leads to equation (23).

Numerical solution

We solve equations (15, 16) numerically in the following manner.

1. At the first z data point, z = z1 = 0, we impose the boundary condition θ = θ0 and

use MATLAB routine pdepe to solve the system (15), (17), (18) with θ replaced by

θ0 in (17). We also impose the initial temperature T = 0, everywhere.

2. We now determine the water temperature at the next data point, z = z2, by in-

tegrating (16) explicitly. The concrete temperature at the pipe wall, T (ǫ, z1, t), is

required in (16). This is taken from the solution of the previous step.

3. We now solve (15) again but at z = z2. The value of θ = θ(z2, t) in the boundary

condition (17) comes from step 2.

4. Steps 2 and 3 are repeated, with z incremented each time, until we reach the end

of the pipe at z = ze.

In the following solutions the parameter values are as given in Table 1 unless otherwise

specified. The initial water temperature is 5◦C and the initial concrete temperature is

25◦C, making θ0 = −0.36. As we vary the parameter values the scales change and this

makes it difficult to compare the solutions. For this reason all the following graphs are

presented with dimensional axes.
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Figures 3, 4 show the temperature variation with time in the concrete at r′ = R and

r′ = a and at z′ = 0, 10, 20m. In Figure 3 a) the temperature at r′ = R initially rises

rapidly, reaching a peak at around t′ = 26.6 hours. This is caused by the heat generation

(which reaches a maximum after 10 hours) but, since this excess heat cannot be removed

immediately, the concrete temperature continues to rise well after the heat generation has

peaked. As t′ increases the heat generation decreases and so its effect also decreases. The

maximum temperatures for both cases must obviously occur at the end of the pipe where

r′ = R. When R = 0.5m the maximum temperature T ≈ 55.6◦C, with R = 0.25m the

maximum temperature is close to 41.1◦C. Increasing R not only has a significant effect

on the maximum temperature but the time taken to reach the equilibrium also takes

much longer. If we wish the concrete temperature to be the same as the initial water

temperature then with R = 0.25m this takes around 140 hours: with R = 0.5m the

temperatures are still well above 20◦ after 170 hours.

At the pipe wall the behaviour is qualitatively different to at r′ = R, as seen on Figure

4. Initially the temperature decreases as the water removes heat from the concrete.

However, as the heat production within the concrete increases and heat diffuses from

the regions away from the pipe wall, the concrete starts to heat up again. The peak

temperature due to heat generation in both cases is much lower than at r′ = R, it also

occurs slightly earlier (at t ≈ 23 hours).

Except for in the vicinity of z = 0, where θ
′

= θ
′

0 for all time, the water temperature

is similar to that of the concrete temperature at r′ = a. This may be seen by comparing

Figure 5 with Figure 4. The water temperature is everywhere slightly lower than the

concrete temperature. Decreasing the pipe spacing to R = 0.25m, as shown on Figure

5b), slightly lowers the secondary temperature peaks, but the main effect is to significantly

reduce the time taken for heat removal.
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The results presented in Figures 3–5 all show that reducing R reduces the maximum

temperatures and also the time taken to reach equilibrium. The steady-state solutions

(23), (24) both indicate a decrease related to R2 but obviously cannot provide the time

taken to reach this state. However, the decrease in time is an obvious effect shown by the

time scale τc, which is proportional to R2.

Figure 6 shows the effect of increasing H to 5000. We do not show the temperature

profile in the concrete at r′ = a since it is difficult to distinguish it from the water

temperature, except for at z′ = 0 where the concrete temperature remains slightly above

the water temperature (with a maximum of 5.5◦C) for about 30 hours. If we compare Fig

6a) with the corresponding graph for H = 500, Figure 3a), then we can see some unusual

features. Firstly, the increase in H has only a slight effect on the maximum temperature,

but it is in fact an increase to 56.8◦C after 28.2 hours (as opposed to 55.8◦C after 27.2

hours). In general both the temperature at z = 10 and 20m remains above that for

the lower heat transfer coefficient and the temperature reduction therefore takes longer.

There are two reasons for this counter-intuitive behaviour. Firstly, concrete is a relatively

poor conductor so, despite the improved heat removal at the pipe wall the heat generated

at r′ = R only diffuses slowly towards the pipe. This results in the slight variation in the

peak temperature. Secondly, the improved heat transfer results in the water being heated

more rapidly near the pipe entrance. If we compare Figures 6b) and 5a) then we can

see that with the greater value of H the water temperature is much higher. The energy

transferred at the pipe is given by H(T ′

r′=a − θ
′

). In Figure 7 we show the difference

T ′

r′=a − θ
′

for H = 5000, 500. At t′ = 0 there is a spike due to the initial conditions,

where the difference is T ′

0 − θ
′

0 = 20◦C. When H = 5000 the difference is very small apart

from at the two small peaks at (t′, T ′

r′=a − θ
′

) = (16,3.5) and (32,2.4). For large times the

difference is around 0.1. When H = 500, in general, the difference is much greater and,

in particular, for large times the difference remains around 1◦C. So, the increase in H is
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offset by a decrease in the temperature jump, leading to the counter-intuitive result that

improving heat transfer between the concrete and water can actually slow down the heat

removal. Of course there is a limit to this behaviour, in that allowing H → 0 results in

no heat removal and so the temperature will never decrease. However, this is an extreme

case, at typical values of H improvement in the heat transfer, through reducing the pipe

wall thickness or using a better conducting material will have little effect. In fact, in

almost all our calculations the temperature at r = 1 takes a similar form and so in the

next two examples we will only quote the peak temperature.

The steady-state solution of § indicated that the heat transfer coefficient has no effect

on the water temperature. Comparison of Figures 5a), 6b) shows that this is incorrect.

The problem arises as a result of studying the steady-state: all the energy generated in

the concrete has to be removed by the water, independent of H . However, if we compare

the temperatures for t′ > 100 hours then it is clear that H has little effect for large times.

The steady-state analysis also indicated that changing a has little effect on the water

temperature. If we compare Figures 8b) and 5a) which have a = 0.05, 0.025 respectively

we can see that for small times there is a significant effect. With a larger value of a

the water temperature is higher. At large times the temperature change is negligible

(verifying the analytical conclusion for the steady state). So, although an increase in

the pipe radius provides a greater surface area between the water and pipe (or concrete)

the energy transfer is less. The concrete temperature at r′ = a, shown in Figure 8a), is

also higher at small times than the corresponding temperature shown in Figure 4a). The

maximum temperature at r′ = R is around 55.5◦C.

In Figure 9 the effect of decreasing the flux is shown. At r′ = R the maximum

temperature is approximately 56◦C, equilibrium is reached some time after 170 hours, as

opposed to around 65 hours, shown in Figure 3a). Comparing the temperatures in the

concrete at r′ = a and in the water we see a similar effect when reducing Q to increasing
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a. In the concrete the temperature initially shows a small rise. The secondary peak is

higher, reaching 21◦C after 28.5 hours as opposed to 14.6◦C after 23 hours. The water also

shows higher temperatures and a slower decrease to equilibrium. In this case the results

are intuitive and agree with the steady state solution that shows the water temperature

(and hence the concrete temperature) depends on Q−1. The similarity to changing a can

be inferred from the length scale Z ∼ Q/a This also indicates that any increase in the flux

is equivalent to an increase in the pipe length. This has been confirmed numerically and

consequently we do not show results with a different pipe length ze. Further, the results

presented at z′ = 10m are the results that would occur with ze = 10m, so effectively we

have already shown a number of results for a shorter pipe.

In the introduction we mentioned that only two parameters may be adjusted once

the pipe is in place, these were the flux and the inlet temperature. We will not present

results for changing the inlet temperature. Looking at the non-dimensional parameters

we see that θ
′

0 only appears in the temperature θ0 and consequently the effect of changing

the inlet temperature is merely to shift the temperature curves down a corresponding

amount. Except for near t′ = 0, this has been confirmed by our numerical calculations.

Finally, Lawrence [4] states that the temperature should be kept below 70◦C. In Figure

10 we show the maximum temperature plotted against R and also the time at which

this is reached. From Figure 10a) it is clear that under these conditions the concrete

temperature tends towards an asymptote of around 59.5◦C, well below the critical 70◦C

mark. Presumably this is an indication that these are sensible operating conditions. The

time taken to reach the maximum increases monotonically with R and consequently the

time taken to reach equilibrium will also increase.
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Conclusions

The primary issue for an engineer building a large concrete structure is to reduce the

maximum temperature in the concrete to an acceptable level and within a reasonable

time, while also maintaining structural integrity. As discussed in the introduction this

leads to five choices.

1/ The type of water pipe to use – the pipe material affects the heat transfer coeffi-

cient H and the associated non-dimensional grouping H . Our analytical model shows

that above a certain value, H ≫ κc/(2a), increasing H will have little effect on the heat

removal, except for in the immediate vicinity of the pipe wall. The lack of dependence on

H is confirmed by our numerical results.

Provided the condition is satisfied the heat transfer properties of the pipe are largely

irrelevant. Further, our numerical results show that increasing the heat transfer may,

counter-intuitively, act to reduce heat removal near the end of the pipe.

2/ The diameter of the pipe – if we keep the flux constant, but increase the pipe diameter

then heat removal is slightly less efficient. The water temperature increases more rapidly

with a wider pipe and therefore, as with increasing H , the energy removal can be reduced.

3/ The spacing between the pipes – this is clearly the most important parameter. The

order of magnitude of temperature variation in the concrete ∆T = q′mR2/κc. For a given

concrete q′m and κc are fixed and so R is the only variable. Since the temperature scale

depends on R2 a moderate change in R can have a large effect on ∆T . The time-scale for

the process τc = ρcccR
2/κc also depends on R2, so increasing R has a significant effect on

the time taken for the concrete to cool down.
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4/ The temperature of the inlet water – according to the analytical model a change

of x degrees in the inlet water temperature will result in a change of x degrees in the

water temperature along the pipe as well as in the concrete at the pipe wall. The change

away from the wall will be less than x. Our numerical calculations show that this is ap-

proximately correct. Consequently, the inlet temperature does have an effect on concrete

and water temperatures, but this effect is relatively small.

5/ The flow rate of the water – this has a significant effect on the water and concrete

temperature. In our calculations, halving the flux increased the maximum water temper-

ature by a factor close to 2, the maximum concrete temperature at r′ = R by 10◦C and

at r′ = a by 20◦C. The flux appears in a single non-dimensional grouping, namely the

length-scale Z ∝ Q. Therefore changing the flux by a factor x is equivalent to lengthening

the pipe by the same factor. For this reason we did not present results for varying pipe

lengths. Further, the results presented at z′ = 10m are the results that would occur with

ze = 10m, so effectively we presented a number of results for a shorter pipe.

Comparison of our steady state analytical model and numerical results confirms many

of the findings of the analytical model. In particular, in the water the important param-

eters are the heat generation q′m, the pipe spacing R and the flux Q. The pipe diameter

plays a relatively small role. The concrete temperature depends primarily on the water

temperature, q′m and R. The thermal conductivity κc and H have a lesser effect. The

numerical solution shows that the pipe diameter affects the temperature profile for small

times.

This simplified model of heat transfer in a concrete slab has at least two obvious defi-

ciencies. Firstly, we neglect edge effects such as convective cooling at the edges of the slab,

19

Journal of Engineering Mechanics. Submitted February 22, 2008; accepted March 25, 2009; 
       posted ahead of print March 27, 2009. doi:10.1061/(ASCE)EM.1943-7889.0000046

Copyright 2009 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

z′ = 0, ze. However, the daily temperature variation should only be felt approximately

20cm into the concrete (this is determined by setting τc = 24 × 3600s in τc = ρcccR
2/κc

to find R ≈ 24cm). Our analysis is therefore justified provided we limit it to a region

more than 20cm from the block ends. Secondly, we have imposed a symmetry condition

at r′ = R, where R is half of the spacing between pipes. In reality the second pipe would

not be at the same temperature and so, although the temperature gradient must be zero

somewhere between pipes, it is unlikely to be at R. Provided the second pipe is not too

much hotter than the first, the error from this will be small. Further, it will not have

a qualitative effect on our results (the same is true of the first problem). Perhaps more

to the point, it will not affect our conclusions as to what are the important parameters

governing the heat removal, which, of course, is the aim of this exercise.
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ρc 2350 kg/m3 cc 880 J/kg ◦C
ρw 1000 kg/m3 cw 4200 J/kg ◦C
κc 1.37 W/m ◦C R 0.25 m
q′m 1200 W/m3 H 500 W/m2 ◦C
Q 2× 10−4 m3/s a 0.025 m
κw 0.59 kg/m3 z′e 20 m

Table 1: Parameter values
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Figure 2: Typical adiabatic heat rate data and approximation given by equation (3)
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Figure 3: Typical temperature profiles in the concrete at r′ = R, z′ = 0 (dotted line), 10
(dashed line), 20 (solid line) m and a) R = 0.5m, b) R = 0.25m
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Figure 4: Typical temperature profiles in the concrete at r′ = a, z′ = 0, 10, 20m and a)
R = 0.5m, b) R = 0.25m
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Figure 5: Typical temperature profiles in the water at z′ = 0, 10, 20m and a) R = 0.5m,
b) R = 0.25m
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Figure 6: Typical temperature profiles in the concrete at z′ = 0, 10, 20m with H = 5000
and a) r′ = R b) r′ = a
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Figure 8: Typical temperature profiles at z′ = 0, 10, 20m with a = 0.05m in a) concrete
at r′ = a b) water
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Figure 9: Typical temperature profiles at z′ = 0, 10, 20m with Q = 10−4 in a) concrete at
r′ = a b) water
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