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Abstract

The generation and detection of entangled photons is a topic of interest in quantum

communication. With current state-of-the-art methods it is possible to manipulate

any degree of freedom (DoF) of photons, e.g, polarisation, transverse momentum,

orbital angular momentum and energy. Furthermore, it is possible to combine these

DoF to realise hybrid entanglement – entanglement between the DoF of photons. In

this dissertation we focus on hybrid entanglement between photon states of coupled

orbital angular momentum and polarisation.

We engineer hybrid-entanglement using geometric phase control between spa-

tially separated photons produced from spontaneous parametric down conversion.

We present a new type of quantum eraser that does not rely on physical path in-

terference. We show that in principle any other degree of freedom can be used and

demonstrate this effectively through polarisation control.

The use of high dimensional hybrid photon states in quantum communication,

particularly in quantum cryptography, is still in its infancy. Here we tailor photon

states that are coupled in their polarisation and spatial DoF (orbital angular momen-

tum) to realise high dimensional encoding alphabets. We show how photons entangled

in their internal DoF can be generated and deterministically detected. We exploit

them in a demonstration of a high dimensional quantum key distribution protocol

and show that our scheme generates secure keys at high rates.
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Chapter 1

Introduction

Quantum entanglement is a phenomenon that characterises spatially separated quan-

tum systems that cannot be described independently regardless of their separation

distance [1]. Its applications range from quantum computation [2], teleportation [3],

superdense coding [4, 5] to quantum cryptography [6, 7]. Most protocols in quantum

communication manipulate individual degrees of freedom (DoF) of photons. However,

it was recently realised that combining multiple DoF can benefit quantum commu-

nication where the unique qualities of each DoF can be exploited [8]. Remarkably,

this has led to the development of hybrid entangled photon states where spatially

separated systems can be tailored to exhibit entanglement between particles defined

in differing DoF [9]. Analogously, the same non-separability can be observed in single

photons and intense beams between their polarisation and orbital angular momentum

(OAM) DoFs [10]. As such, we are drawn to the implementation of photon states of

combined polarisation and the high dimensional OAM DoF. This raises the possibility

of benefiting from increased dimensionality of encoding alphabets. In this chapter we

review the concept of hybrid entanglement and introduce spin angular momentum

and orbital angular momentum. Furthermore we review an application relevant to

quantum communication, namely quantum key distribution.
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1.1 Quantum entangled states

’Verschränkung’ which translates as entanglement from German to English, was the

term used by Schrödinger when referring to a class of quantum systems with qualities

that had no classical counterparts. The intriguing nature of such systems was first

discovered earlier in 1935 when Einstein, Padolsky and Rosen (EPR) published a pa-

per in which they attempted to expose the incompleteness of the quantum mechanical

description of nature [11]. They realised that a system containing two spatially sep-

arated quantum subsystems with perfectly correlated positions and momenta (EPR

states) could not be described as independent quantum systems. Consequently, this

meant that a measurement on one of the subsystems would instantaneously affect the

outcome of another – a violation of local relativistic causality and realism in classical

mechanics. Furthermore, they suggested that there must exist local hidden variables

that could account for this miraculous and instantaneous random exchange of infor-

mation between the two subsystems, finally concluding that the quantum description

of reality was not complete.

It was in 1964 when Bell showed that quantum entanglement rules out the possibil-

ity of using any local hidden variable theories to describes the correlations manifested

by entangled system. He derived inequalities that constrained the statistical correla-

tions of a two particle system (see derivation in App. A) under the EPR assumptions

[12]. In this approach, he ascribed values to the system prior to measurement with

the aim of predicting the outcomes of the bipartite (two particle) measurements. This

was motivated by the assumption that the two subsystems had a property which they

held in common. Interestingly, he showed that the inequalities could be maximally vi-

olated by a collection quantum systems that admitted maximal correlations – known

as Bell states.

1.1.1 Bell states

An elegant way of representing Bell states is through the Dirac notation [13]. In the

Dirac notation, the corresponding quantum state of a system is represented by a state
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vector that can be mapped onto a 𝑑 dimensional Hilbert space (ℋ𝑑). The vector is

represented as a ket, |·⟩, and has a complex conjugate called the bra ⟨·|. Consider

the collection of eigenstates {|𝑖⟩} spanning ℋ𝑑 and describing a single particle (e.g

a photon). By the superposition principle the quantum state of the particle can be

written as

|𝜓⟩ =
∞∑︁
𝑖=0

𝑎𝑖 |𝑖⟩ , (1.1)

with |𝑎𝑖|2 being the probability of the particle occupying one of the orthonormal states,

|𝑖⟩, with a normalisation condition following
∑︀∞

𝑖=0 |𝑎𝑖|2 = 1. For a compound system

of spatially separated particles A and B belonging to subspaces ℋ𝐴 and ℋ𝐵 with each

subspace spanned by the basis states |𝑖⟩𝐴 and |𝑗⟩𝐵, respectively. The quantum state

of the compound system can be written as

|𝜓⟩ =
∞∑︁

𝑖𝑗=0

𝑎𝑖𝑗 |𝑖⟩𝐴 ⊗ |𝑗⟩𝐵 . (1.2)

Here, |𝑎𝑖𝑗|2 represents the probability of the system being in a product state |𝑖⟩𝐴⊗|𝑗⟩𝐵
( commonly written as |𝑖⟩𝐴 |𝑗⟩𝐵). Equation (1.2) is separable if the total quantum

state can be written as a product of the two sub systems, i.e,

|𝜓⟩ = |𝜑⟩𝐴 ⊗ |𝜙⟩𝐵 , (1.3)

where |𝜑⟩𝐴 =
∑︀∞

𝑖=0 𝑏𝑖 |𝑖⟩𝐴 and |𝜙⟩𝐵 =
∑︀∞

𝑗=0 𝑐𝑗 |𝑗⟩𝐵 represent the states of the in-

dividual subsystems. Conversely, the system in Eq. (1.2) is said to be entangled

if 𝑎𝑖𝑗 ̸= 𝑏𝑖𝑐𝑗. This provides us with a definition of entanglement that depends on

the non-separable superposition of compound quantum states with a condition that

the systems are correlated even when spatially separated. Bell states are a collec-

tion of quantum states with maximal correlations. A well known example is the set

constructed from the qubit logical basis {|0⟩ , |1⟩} taking the form

3



|𝜓⟩±𝐴𝐵 =
1√
2

(|0⟩𝐴 ⊗ |1⟩𝐵 ± |1⟩𝐴 ⊗ |0⟩𝐵), (1.4)

|𝜑⟩±𝐴𝐵 =
1√
2

(|0⟩𝐴 ⊗ |0⟩𝐵 ± |1⟩𝐴 ⊗ |1⟩𝐵). (1.5)

Here A and B denote two spatially separated subsystems. Equation (1.4) and Eq.

(1.5) cannot be written in the form of Eq. (1.3). Moreover, a projection onto of the

eigenstates of subsystem A determines the outcome of subsystem B. For example

according to |𝜓⟩+𝐴𝐵 (Eq. 1.4), when subsystem A is projected onto the state |0⟩, sub-

system B instantaneously collapses into the state |1⟩ due to the entanglement shared

between the two subsystems. The Bell states form a four dimensional orthogonal

basis which has previously been exploited in superdense coding for the transfer of

quantum information [5] using polarisation states.

1.1.2 Density matrix

Another way of presenting quantum states is through a statistical operator called the

density matrix. For pure states, the density matrix takes the following form

𝜌 = |𝜓⟩ ⟨𝜓| , (1.6)

which is idempotent (𝜌2 = 𝜌), has a trace of unity and is positively definite, i.e., that

it has positive eigenvalues. From the density matrix, measures such as the degree of

entanglement and entropy can be obtained, offering alternative ways of determining

if quantum states are entangled or separable and provide an indication of their purity.

We will later explore a technique for reconstructing the quantum state of entangled

photons carrying orbital angular momentum (OAM).

4



1.2 Hybrid entanglement

Photon pairs described by Bell states have been experimentally prepared with single

DoF such as polarisation [14–16], time [17–19] and orbital angular momentum [20–23].

That is, the Bell states given in Eq. (1.4) and Eq. (1.5) can be written in a single

DoF of the photon with each of its eigenstates associated with a state from the logical

basis. However, the two spatially separated photons can each be defined in differing

degrees of freedom resulting in a hybrid entangled system.

The Bell state associated with a hybrid entangled quantum state can be written

in the logical basis |0⟩ , |1⟩ as

|𝜓⟩𝐴𝐵 =
1√
2

(|0𝜎⟩𝐴 |1𝜋⟩𝐵 ± |1𝜎⟩𝐴 |1𝜋⟩𝐵). (1.7)

Here the subscripts 𝜎 and 𝜋 correspond to the DoF of each photon. This system is

maximally entangled and therefore photons A and B are correlated in their respective

DoF. The measurement on one photon determines the outcome of the measurement

in the DoF corresponding to its entangled twin. For example, projecting photon A

onto the state |0𝜎⟩𝐴 in the 𝜎 DoF, collapses photon B onto the state |1𝜋⟩𝐵 in the 𝜋

DoF. The system can be described on the Hilbert space that results from the tensor

product of the individual Hilbert spaces of each photon, ℋ𝜎,2 ⊗ ℋ𝜋,2. Significantly,

systems described by Eq. (1.7) have played a crucial role in the development of quan-

tum eraser experiments wherein the particle-wave duality of photons is investigated

through polarisation-path hybrid entanglement [24–26].

In this dissertation, we wish to explore the hybrid entanglement that can be

generated involving the components of the angular momentum of photons, namely,

spin angular momentum (SAM) and orbital angular momentum (OAM).

1.3 Spin angular momentum

Spin angular momentum (SAM) is associated with the circular polarisation of light.

Photons carrying SAM have an angular momentum of ±~ per photon. The sign

5



Figure 1-1: (a) An illustration of the electric field oscillations for the right (RC) and left (LC)
circular polarisations corresponding to SAM. (b) illustrates the handedness of azimuthal
phase rotations corresponding to the amount of OAM (±ℓ~) per photon where the wavefront
has ℓ twists per wavelength.

depends on the handedness of their spins. The quantum states associated with spins

can be represented by ket vectors, |𝐿⟩ and |𝑅⟩, representing the right circular and

left circular spin eigenstates, respectively. For many photons, SAM corresponds to

the rotation of the electric fields about the beam axis as illustrated in Fig. 1-1(a).

In general, all polarisation states can be described by a two dimensional state-space

(See Fig. 1-2(a)) called the Poincaré sphere [27].

The poles contain the orthogonal circular polarisation eigenstates while the equa-

tor contains the linear polarisation states such as the horizontal |𝐻⟩, vertical |𝑉 ⟩ and

rectilinear diagonal |𝐷⟩ and anti-diagonal |𝐴⟩ states.

Photons encoded in the polarisation DoF allow for qubit manipulations. Qubits

are a quantum measure of information analogous to classical bits in classical infor-

mation theory. Unlike classical bits, qubits can occupy multiple states (bit values)

simultaneously. Significantly, the encoding alphabet, which is restricted to two al-

phabets with qubits, can be increased by considering alternative DoFs such as the

orbital angular momentum.
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Figure 1-2: (a) Poincaré sphere for polarisation DoF and (b) its analogue , the Bloch sphere,
for the OAM DoF in the |ℓ| = 1 subspace. The symbols are described in the text. Any
state on the surface of the sphere can be described using the azimuthal (𝜃) and elevation
angles (𝜒).

1.4 Orbital angular momentum

The orbital angular momentum (OAM) of light is a component of the total angular

momentum that is associated with the transverse spatial profile of photon. Allen et

al. [28] showed that beams propagating with helical phase fronts characterized by an

azimuthal phase variation, 𝑒𝑖ℓ𝜑, carry an angular momentum of ℓ~ per photon, where

ℓ is an integer called the topological or azimuthal charge representing the number of

azimuthal rotations (or spirals) in a single wavelength depending on the direction of

the spiraling phases [29–32] ( See Fig. 1-1(b)). The main feature of these beams is a

vortex that is at the origin of the beam cross-section, having an intensity distribution

that resembles a donut like structure.

The mode function of OAM beams can be found by solving the Helmholtz equation

(∇2 + 𝑘2)𝑢(r) = 0. (1.8)

Here ∇2 is the Laplacian, 𝜕2

𝜕2𝑥
+ 𝜕2

𝜕2𝑦
+ 𝜕2

𝜕2𝑧
in Cartesian coordinates, 𝑘 represents

the magnitude of the wave-vector and 𝑢(r) is the field function.Under the paraxial

approximation (the limit of small beam divergence in the traverse plain) it can be
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Figure 1-3: An example of azimuthal phase variations for topological charges ℓ = 1, 2, 3 for
any spatial mode with an azimuthal transverse profile characterised by 𝑒−ℓ𝜑.

assumed that 𝑢(r) is a slowly varying function of z, i.e., the paraxial inequality [27]

| 𝜕
2

𝜕2𝑧
𝑢((𝑟))| << 𝑘

𝜕

𝜕𝑧
𝑢(r), (1.9)

can be satisfied. Subsequently, Helmholtz equation can be approximated by

(∇2
⊥ + 𝑖𝑘2)𝑢(r) = 0, (1.10)

where ∇2
⊥ represents the transverse part of the Laplacian. The general solutions to

this equation in cylindrical coordinates are

𝑈(𝑟, 𝜑, 𝑧) = 𝑈(𝑟, 𝑧)𝑒𝑖ℓ𝜑. (1.11)

Here 𝑟 and 𝜑 are the azimuthal and radial coordinates, ℓ is the azimuthal charge

and 𝑈(𝑟, 𝑧) is the radial profile of the beam. These solutions have the characteristic

eigenfunction 𝑒𝑖ℓ𝜑 of OAM modes.

The family of modes that take up the description given in Eq. 1.11 include

Laguerre-Gaussian (LG) [28], Ince-Gaussian modes [33] and Bessel-Gaussian (BG)
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Figure 1-4: An illustration of the transverse profile of 𝐿𝐺ℓ,𝑝 modes with varying ℓ azimuthal
and 𝑝 radial indices. The modes are labed in (ℓ, 𝑝) pairs where ℓ increase to the right and
𝑝 increases downwards. As ℓ increase the size of the vortex increases and as 𝑝 increases so
do the the number of concentric rings. For 𝑝 > 0, p+1 concentric rings are observed.

[34] modes. For LG modes the solution is

𝐿𝐺ℓ,𝑝 =

√︃
2|ℓ|+1𝑝!

𝜋(𝑝+ |ℓ|)!
1√︀
𝑤(𝑧)

𝐿𝑝,𝑙

(︂
2𝑟2

𝑤2(𝑧)

)︂(︂√
2

𝑟

𝑤(𝑧)

)︂|ℓ|

𝑒
− −𝑟2

𝑤2(𝑧) (1.12)

×𝑒
−𝑖𝑘 𝑟2𝑧

2(𝑧2
𝑅

+𝑧2) 𝑒𝑖ℓ𝜑)𝑒
−𝑖(2𝑝+|ℓ|+1) tan−1( 𝑧

𝑧𝑅
)
.

Here ℓ, 𝑝 represents the azimuthal and radial indices and 𝐿𝑝,ℓ(𝑥) represents the La-

guerre polynomials. For ℓ > 0 one will observe 𝑝 + 1 concentric rings around the

origin of the beam cross-section with ℓ determining the size of the vortex (see Fig.

1-4). The beam waist, 𝑤(𝑧), is given along the z axis as

𝑤(𝑧) = 𝑤0

√︃
𝑧2 + 𝑧2𝑅
𝑧2𝑅

, (1.13)

with 𝑤0 being the beam waist when 𝑧 = 0, where 𝑧𝑅 is the Rayleigh range which is

defined as the distance where beam cross-section doubles. The cross-section is given

by 𝜋𝑤(0)2

𝜆𝑀2 where 𝜆 is the wavelength of the beam. Here 𝑀2 = 2𝑝+ ℓ+ 1 is called the

beam quality factor and describes the deviation of the beam from an ideal Gaussian

beam having 𝑀2 = 1.
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Figure 1-5: Higher order Poincaré sphere for the subspaces spanned by (a) {|𝑅⟩ , |𝐿⟩}⊗
{|1⟩ |−1⟩} and for (b) spanned by {|𝑅⟩ , |𝐿⟩}⊗ {|−1⟩ |1⟩}.

LG modes (and any other set of OAM modes) can be described on an analogous

state-space to the polarisation Poincaré sphere called the Bloch sphere (see Fig. 1-

2.(b)). The north and south poles are the basis states 𝑒𝑖ℓ𝜑 ∼ |ℓ⟩ and 𝑒−𝑖ℓ𝜑 ∼ |−ℓ⟩

and the superposition states are found on the equator. In general, any point on the

sphere can be written as,

|𝜓ℓ𝜃𝜒⟩ = cos
(︁𝜃

2

)︁
𝑒𝑖𝜒 |ℓ⟩ + sin

(︁𝜃
2

)︁
𝑒−𝑖𝜒 |−ℓ⟩ . (1.14)

Where 𝜃 is the angle measured with respect z axis the sphere and 𝜒 is measured with

respect the xy plane. A unique sphere can be constructed for each ℓ allowing for a

description of the OAM modes on the infinite Hilbert space.

1.5 Hybrid spin-orbit coupled photon states

The family of OAM modes that where considered in Sec. 1.4 have linear polarisation

states throughout the cross section of a beam. One can describe a family of OAM

modes with coupled to polarisation states as a complete set of modes. These modes

can be described on the higher order Poincaré sphere [35] (see Fig. 1-5). This state

space is a tensor product of the polarisation qubit (ℋ2) and the OAM qudit (ℋ𝑑)

spaces , respectively. The resulting Hilbert space is ℋ2⊗ℋ𝑑. Each subspace is a span

of the scalar mode basis {|𝑅⟩ |ℓ⟩ , |𝐿⟩ |−ℓ⟩ , |𝑅⟩ |−ℓ⟩ , |𝐿⟩ |ℓ⟩}.

Two qubit spheres can be constructed from the scalar mode basis where the po-
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Figure 1-6: Examples of vector vortex modes: (a) is known as the radial mode and (b) is
the azimuthal mode while (c) and (d) are the hybrid electric modes.

larisation and OAM handedness are the same (see Fig. 1-5 (a)) and were they are

opposite (see Fig. 1-5 (b)). The poles of the spheres represent orthogonal scalar

modes of circular polarisation states coupled to OAM modes while the equator con-

tains non-separable superpositions states. The non-separable superposition states

take the following form

|𝜓⟩ℓ =
1√
2

(|𝑅⟩ |ℓ⟩ ± |𝐿⟩ |ℓ⟩), (1.15)

resembling a maximally hybrid entangled Bell state with a non-separability in the

OAM and polarisation DoF. Photons described by Eq. (1.15) are called vector modes.

The non-separability of the OAM and polarisation of vector modes has been reported

using a Bell-like inequality with classical (laser) light [36] and at the single photon

level [37, 38]. Similarly, demonstrations involving polarization and momentum DoF

of heralded single photons [39] and with spatial and spin DoF of single neutrons [40]

have been reported. Classically, vector modes represent a class of spatial modes

that have spatially varying polarisation states [41–43] (see Fig. 1-6). They offer the

advantage of increasing the photon encoding alphabet, relevant for high communi-

cation high bandwidth communication. They been exploited in classical for optical

communication [44], more recently for quantum error correction [45], and in quan-

tum cryptography for their rotational invariance [46] allowing for the development of

alignment free quantum channels. Interestingly, their high dimensional characteristic

has not been explored for applications in quantum cryptography which may benefit

from high dimensional encoding alphabets at the single photon level [47,48].
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It is worth noting to the reader that although vector modes share an equivalent

mathematical description as hybrid entangled states, they are not entangled quantum

states as described in Sec. 1.1 (with non-locality). However, we say that the internal

DoF are entangled to emphasize their non-separability. We will present experiments

that exploit each instance (of hybrid entanglement and vector modes) independently,

showing discrepancies between the two physical descriptions.

1.6 Quantum communication

1.6.1 Quantum key distribution

One of the application we wish to explore in quantum communication is quantum key

distribution. Messages exchanged between banks, military intelligence, airlines, etc,

mostly depend on computationally difficult problems to generate encryption keys.

An example of a computationally difficult problem is the factorisation of a number

obtained from multiplying two large prime numbers. This is a method commonly

used to produce secure keys in RSA cryptography. Only a party with knowledge of

the two prime numbers can gain access to encrypted messages [49]. Such methods

are under threat by quantum computers, known to one day perform factorisation

promptly [50]. The solution to this problem is provided by nature through quantum

key distribution.

Quantum key distribution (QKD) belongs to the broader field of quantum cryp-

tography in quantum communications. It harnesses the properties of quantum me-

chanics to solve the problem of securely generating and distributing encryption keys

using single photons. Bennett and Brassard proposed the first prepare and mea-

sure protocol (BB84) [6] and later Ekert, in 1991 developed an entanglement based

protocol (E91) [7].
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Figure 1-7: An illustration of the BB84 prepare and measure protocol. Alice would encode
a photon with one of the polarisation states from their MUB of linear and rectilinear polari-
sation states associated with logical bit values. Bob then selects a measurement orientation
randomly. After N transmissions they reconcile their selections and discard bits that are
not correlated. The remaining bits are to establish the secure key with which information
is encrypted.

1.6.2 The BB84 protocol

In the BB84 protocol, Alice and Bob would randomly choose between two mutu-

ally unbiased bases (MUB) of polarisation states (Fig. 1-7 ) satisfying the following

criterion [51]

| ⟨𝜓𝑖, 𝜑𝑗⟩ |2 =
1

𝑑
(𝑖, 𝑗 = 1..𝑑), (1.16)

where {|𝜓𝑖⟩} and {|𝜑𝑗⟩} are d is the dimensional encoding basis. For polarisation

d=2. Equation (1.16) means that projections between the two bases do not yield

a distinguishable result. If the linear {|𝐻⟩ , |𝑉 ⟩} polarisation basis is selected as a

standard basis then the rectilinear {|𝐷⟩ = 1√
2

(︀
|𝐻⟩ + |𝑉 ⟩

)︀
, |𝐴⟩ = 1√

2

(︀
|𝐻⟩ + |𝑉 ⟩

)︀
}

basis qualifies as an MUB to he linear polarization basis. Alice can encode her

photon with one of the polarisation states (selected at random) and transmit it to

Bob whom randomly selects a measurement orientation between the bases. After N

transmissions, they reconcile the states Alice prepared and the states Bob measured

and discard the ones that do not correlate. The remaining bits form a secure key. At

most 50% of the bits will form the key. Some of the errors introduced into their key
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may result from eavesdropping. Remarkably, quantum mechanics ensures that the

presence of the eavesdropper can be detected and that they cannot obtain enough

information key. This is reflected by the no-cloning theorem.

1.6.3 The no-cloning theorem and eavesdropping

In order to gain knowledge of Alice and Bob’s key they, the eavesdropper has to

determine the basis chosen by Alice during her transmissions or clone the quantum

state of Alice’s transmitted photon and subsequently send an identical copy to Bob.

However, it is impossible to fully clone the quantum state of a quantum system. We

will demonstrate a proof by contradiction.

Suppose that an eavesdropper, Eve, has a machine that can clone the linear po-

larisation states as follows

|𝐻⟩𝐴 |𝛼⟩𝐸 → |𝐻⟩𝐴 |𝐻⟩𝐸 ,

|𝑉 ⟩𝐴 |𝛼⟩𝐸 → |𝑉 ⟩𝐴 |𝑉 ⟩𝐸 , (1.17)

were |𝛼⟩𝐸 is an initial state of Eve’s (E) photon or the ’blank’ state. If Alice’s

photon was prepared in the linear polarsation state upon entering the machine, it

exits with Eve’s photon, the clone, encoded with the same linear polarisation. The

process collapses when Alice sends a superposition of the linear polarisations, i.e, the

diagonal polarisation state (|𝐷⟩). By the linearity of quantum mechanics and Eq.

1.17

|𝐷⟩𝐴 |𝛼⟩𝐸 → 1√
2
|𝐻⟩𝐴 |𝐻⟩𝐸 +

1√
2
|𝑉 ⟩𝐴 |𝑉 ⟩𝐸

)︀
. (1.18)

The transformation in Eq. (1.18) does not produce the state |𝐷⟩𝐴 |𝐷⟩𝐸 and therefore

Eve cannot clone superposition states of Alice’s photons. This also holds for arbitrary

superpositions. In general there are no machines (operators) that can produce a

perfect copy of any arbitrary quantum state. This is called the no-cloning theorem

[52,53].

14



The no-cloning theorem also means that the eavesdropper can introduce errors

into the message from Alice to Bob transmissions that can be detected once Alice

and Bob reconcile their prepared and measured states – a feature that cannot be

found in any classical cryptography techniques. If errors are found in the key they

must all be attributed to Eve [54].

1.6.4 The secure key rate

The secure key rate (R) is a measure of the rate at which Alice and Bob are able

to generate secure keys. The lower bound on the secret key rate for a d-dimensional

basis is given by [55]

𝑅 = log2(𝑑) + 2𝐹 log2(𝐹 ) + 2(1 − 𝐹 ) log2

(︂
1 − 𝐹

𝑑− 1

)︂
, (1.19)

where 𝐹 = 1
𝑛

∑︀𝑛
𝑘 𝐹𝑘 with 𝐹𝑘 being the fidelity of Bob’s measurements in the 𝑘th basis

of 𝑛 MUBs. The error rate of their transmission is 𝑄 = 1−𝐹 (see [56] for description

of 𝑄). Here 𝐹𝑘 is obtained from

𝐹𝑘 =
1

𝑑

𝑑∑︁
𝑖

𝑑∑︁
𝑗

𝑇𝑟
[︀
𝑃𝐵†
𝑘,𝑗𝑈

†
𝑐𝑃

𝐴†
𝑘,𝑖 𝜌𝐴𝑃

𝐴
𝑘,𝑖𝑈𝑐𝑃

𝐵
𝑘,𝑗

]︀
, (1.20)

with 𝜌𝐴 being the initial density matrix of Alice’s single photon, 𝑃𝐴
𝑘,𝑖 and 𝑃𝐵

𝑘,𝑗 being

the projection on the single photon by Alice (prepared) and Bob (measured), respec-

tively, onto a state from the 𝑘th basis and 𝑈𝑐 is a unitary operator characterising

the transformation by the quantum channel. For a near perfect system, the effects of

the environment are minimal and therefore 𝑈𝑐 can be approximated to unity. Since

𝑃𝐵
𝑘,𝑗 and 𝑃𝐵

𝑘,𝑗 are projection operators from the same Hilbert space then 𝐹𝑘 = 1 if the

states within each basis are orthogonal. The key rate, R, now depends on the dimen-

sion of the MUBs. A theoretical plot based on the assumptions above is presented

in Fig. 1-8. The keys rates increases with dimensionality. For polarisation, this sets

the limit to 1 bit per photon. This limitation has raised interest in the development

of protocols that exploit high dimensional (𝑑 > 2) DoF.
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Figure 1-8: Theoretical secure key rate (R) vs encoding basis dimensions (d) assuming a
perfect fidelity of 𝐹 ≈ 1.

The highest dimensions QKD protocols reported to date are d=11 [57], d=7 [58]

and d=4 [56] using traverse momentum and orbital angular momentum of photons.

These schemes exploit a single DoF and it may be interesting to ask whether combin-

ing multiple DoFs, as in hybrid entanglement, could benefit the protocol and increase

the rate at which secure keys are generated. As part of this study we will attempt

to use hybrid photonic states of coupled DoF (polarisation and OAM) to realise high

dimensional quantum key distribution.

Outline

Our work is structured as follows: In chapter 2 we will demonstrate the techniques

used to generate spatial modes that carry orbital angular momentum. We will ex-

plore two techniques based on liquid crystal display technology, namely spatial light

modulaters (SLM) and specially designed geometric phase plates with a spatially vary-

ing optical axes. Significantly, the detection of these modes is crucial for quantum

communication and therefore we will demonstrate projecive measurement techniques

classically with a Fourier lens and at the single photon level using a single mode fiber
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coupled to a single photon detector.

In Chapter 3 we demonstrate a method of generating entangled photons via spon-

taneous parametric down-conversion (SPDC) which enables for the generation of en-

tangled photons pairs from a non-linear crystal. To detect the entangled photons

we implement the projective measurement technique from the previous Chapter 2.

The alignment and characterisation of the experimental set-up will be demonstrated

in a prepare and measure scheme, called back projection, based on a retroactive ar-

gument of quantum entanglement. We show that our non-linear crystal produces

photon pairs that conserve orbital angular momentum and subsequently confirm the

entanglement of the system via a Bell inequality violation. We will evaluate the fi-

delity, linear entropy and concurrence of the SPDC photons by performing a full state

tomography.

In Chapter 4 we employ SPDC to generate the entangled photons and use geo-

metric phase control to establish hybrid entanglement where the polarisation of one

photon is entangled to the OAM of its entangled twin, enabling us to perform the

experiment in delayed measure mode. Will show how the which-way quantum eraser

can be performed with polarisation-OAM entanglement by replacing the idea of tra-

dition physical double slits with the concept of virtual slits defined in the orbital

angular momentum of a photon. Analogous to the traditional which-way experiment

we will show that it is possible to erase the OAM information of a photon through

polarisation control of its entangled twin.

Lastly, in Chapter 5 we will demonstrate the potential of using high dimension

encoding of hybrid photon states for quantum key distribution. We will present a set

of scalar (with separable DoF) and vector modes (with entangled DoF) that establish a

mutual unbiased basis and use the geometric phase control, a technique from Chapter

2, to generate them. We will also present a hybrid (exploiting the coupled DoF)

deterministic detection system that enables us to sort the modes into unique positions

yielding a higher photon efficiency and secure key rates than probabilistic detection

methods.
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Chapter 2

Experimental techniques

Quantum communication with photons depends on the ability to generate and detec-

tion photon states unambiguously. In this chapter, we explore the techniques required

to generate and detect photons with OAM-polarisation coupled DoF. We focus on

techniques that exploit the dynamic and geometric phase of light. These techniques

will become useful in the generating and detecting hybrid photon states in subsequent

chapters.
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2.1 OAM mode generation via dynamic phase

Figure 2-1: (a) An optical element with a uniform birefringence (polarisation dependent
refractive index) imparts a dynamic phase on the extraordinary (e) and ordinary rays (o).
The phase of a beam can be varied by changing the width of the optical element or by varying
the index of refraction (𝑛𝑜,𝑒). If the plate is isotropic, the extraordinary and ordinary
rays experience the same dynamic phase change, e.g. in lenses. (b) Geometric optical
elements have an inhomogeneous anisotropy, owing to the varying optic axis. The optical
axis lies parallel to the extraordinary ray. The optics axis orientation is given by 𝛼(𝑥, 𝑦).
Subsequently, the geometric phase change is proportional to 2𝛼(𝑥, 𝑦)

.

Dynamic phase is a feature found in optical elements that affect the path and

propagation time of light through a variation in the thickness (𝑑) or the refractive

index of a medium (see Fig. 2-1(a)) and this can be exploited to generate OAM modes.

Dynamic phase can be written as

𝛿𝑑 = 2𝜋
(𝑛𝑒 + 𝑛𝑜)𝑑

𝜆
, (2.1)

where 𝜆 is the wavelength of light in a vacuum, 𝑛𝑒 and 𝑛𝑜 are the refractive indexes

that the extraordinary and ordinary rays experience in the medium, respectively.

The extraordinary rays are aligned to the axis where there is rotational invariance

of the refractive index about that axis, also known as the optic axis. In contrast,

the ordinary rays are perpendicular to the optic axis. The dependence of a beams

refractive index on its polarisation is called birefringence. Not all optical elements

exhibit this feature, for example, in lenses the polarisation of a beam is independent of

rotations about any axis and therefore the refractive index is uniform in all directions.
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This is called isotropy.

Figure 2-2: OAMmode generation using spiral-phase plates. A beam with a flat wavefront is
incident on the spiral glass and subsequently gains a helical phase with an OAM proportional
to the depth of the azimuthal step in wavelengths.

Spiral-phase plates are examples of optical elements that can be used to generate

OAM beams through dynamic phase control [59]. These are transparent optical

elements with a spiral depth (𝑑) and a uniform refractive index (see Fig. 2-2). In

spiral-phase plates a beam with a complex field 𝜓(𝑟, 𝑧) and flat wavefront undergoes

a transformation

𝜓′(𝑟, 𝑧) → 𝜓(𝑟, 𝑧)𝑒−𝑖Δℓ𝜑, (2.2)

with ∆ℓ = 𝑛𝑑
𝜆

being the depth of the phase plate in wavelengths and 2𝜋∆ℓ is the

phase difference (equivalent to Eq. (2.1)). The transmitted beam now has a helical

transverse profile and carries an OAM of ∆ℓ~. The spiral-phase plate relies on the

varied depth of the plate to impart OAM on an incident beam. However, the same

phase change can be achieved by fixing the thickness and varying the refractive index

of the material. This can be done with liquid crystal technology that enables phase

information to be encoded on computer controlled displays, called spatial light mod-

ulators (SLM), enabling for the digital control of dynamic phase. SLMs use liquid

crystals (LC), an interface between the liquid and solid matter phase, to modulate

either the amplitude or phase of light. The liquid crystals are sandwiched between

an array (pixels) of electrodes (see Fig. 2-3). The orientation of the crystals is varied

with an applied voltage between the electrodes enabling each pixel’s refractive index
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Figure 2-3: An illustration of an SLM screen that operates in reflective mode. Each
pixel contains liquid crystals (LC), sandwiched between electrodes, glass and a silicon sub-
strate.The addition of a mirror serves to reflect the incident beam once it has interacted
with the LCs. The index of refraction that light sees when interacting with each pixel
depends on the orientation of the LCs. The orientation is controlled by a applied voltage
across the electrodes

.

to be tailored. The resulting phase change is

𝛿𝑑 ∝
2𝜋𝑉 𝐿

𝜆
. (2.3)

Here 𝑉 is the voltage applied across the electrodes and 𝐿 is the depth of each pixel.

The birefringence of LC’s enable for the modulation of horizontally polarised light

(aligned to the slow axis). Since the voltage determines the index of refraction, it

follows that the retardation is varied through voltage control enabling fast variation

of the phase information encoded in each pixel.

We use a Holoeye PLUTO phase-only SLM, designed to modulate the phase of an

incoming beam and not its amplitude. The display of the SLM has a 1920×1080 pixel

resolution where each pixel is 8 𝜇m in size with an 8-bit encoding capacity that can be

addressed with a gray scale image ranged from 0 (black) to 255 (white) corresponding
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to a 0 to 2𝜋 phase shift. The grey levels are associated with the alignment of the

crystals and therefore depend on the applied voltage. The pixels have a 50 Hz refresh

rate. Moreover, it functions in reflective mode (see schematic of the SLM display in

Fig. 2-3).

Vortex (OAM) modes can be generated using SLMs through phase modulation

by encoding the phase-front associated of the desired field onto the SLM. This is

associated with a transmission function

𝑇ℓ(𝜑) = 𝑒𝑖ℓ𝜑, (2.4)

where 𝜑 is the azimuthal coordinate and ℓ is the topological charge of the OAM.

Subsequently, the argument of the transmission function is encoded on the SLM

screen as a gray scale image. To generate the vortex mode, a Gaussian beam would

interact with the hologram and the desired phase fronts would be diffracted into the

first order of the output beam. Unfortunately, not all the incident light interacts with

the hologram. The light that is not modulated (zeroth order) propagates on axis with

the diffracted first order. This causes them to interfere. To retrieve the modulated

light, a periodic grading is added to separate the first and zeroth order which can

then be isolated with a aperture. Now, the transmission function is

𝑇ℓ(𝜑) = 𝑒−𝑖ℓ𝜑+2𝜋 𝑥
𝑡𝑥 . (2.5)

with 𝑡𝑥 being the period of the grating and 𝑥 is the (Cartesian) coordinate. The

diffraction orders will be spread in the horizon of the SLM. Note that any direction

may be chosen for the grating. For example, replacing the 𝑥 coordinate with the 𝑦

coordinate, spreads the orders vertically. A typical generation and detection scheme

is shown in Fig. 2-4. As illustrated, a Gaussian beam (ℓ = 0) with flat wavefronts

is prepared and subsequently interacts with the computer generated hologram phase

only encoded with the argument of the desired transmission function. Interestingly,

due to the reciprocity of light, the reverse operation is true. For example a mode

carrying an azimuthal charge of ℓ = 1 incident on the hologram will be modulated
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Figure 2-4: Mode generation and detection using holograms encoded on an SLM. A Gaussian
beam with a flat wavefront is incident on a phase-only SLM encoded with an azimuthal phase
profile. The output is a donut mode with a helical wavefront. The reciprocal nature of light
allows the reverse operation to serve as a method where the spatial mode is projected onto
a Gaussian mode.

into a Gaussian mode. This is desirable for measuring single photon states as the

modulated photon can be coupled into a single-mode fiber (SMF) which has maximum

transmission when the mode of the photon is Gaussian. Therefore the combination

of the SLM and the SMF perform a projective measurement of the spatial mode of

the incoming photon [60] (to be discussed later).

2.2 OAM mode generation via geometric phase

In the previous section the polarisation of the photons was ignored due to to its

uniformity across the beam. For example an OAM mode generated with an SLM can

be uniformly horizontally polarised since the SLM only modulates the component

of the polarisation that is aligned to the slow axis of them liquid crystals. Thus

the polarisation and OAM are separable and can be treated independently. Vector

vortex modes have non-separable polarisation (spin) and OAM (orbit). Interestingly,

23



Figure 2-5: An illustration of the geometric phase as defined by for a photon traversing
a geometric phase optical element with an optical axis defined by 𝛼𝑥, 𝑦. According to
Berry [70], the geometric phase is equal to half the solid angle enclosed by the loop.

a measurement of the polarisation (spin) determines the outcome of the spatial field

[36, 37]. Earlier methods of generating vector modes relied on axial birefringence

[61–63] or dichroism [64, 65] in intra-cavity bulk devices. Birefringence is a property

of optical materials that is associated with the dependence of polarisation on the

refractive index. The previous generation methods are polarisation selective and

force a laser cavity to oscillate in a desired cylindrically symmetric vector mode. SLMs

have been used for the generation of vector modes by superimposing scalar modes with

orthogonal polarisations in path interferometers [66–68]. With this scheme, the phase

and amplitude can be tailored as desired although phase instability and misalignment

still remain a challenge. It ia possible to generate vector modes with single optical

elements that have a spatially varying optical axis. Their transformation is similar

to that of half-wave plates but with a locally varying birefringence (anisotropy) [69].

2.2.1 Geometric phase

In contrast to dynamic phase, geometric phase or Pancharatnam-Berry phase does

not rely on the optical path of the beam, it depends on the geometric orientation of

the optical axis found in inhomogeneous anisotropic materials. In these materials, the

extraordinary (𝑛𝑒) and ordinary (𝑛𝑜) refractive indices are spatially varying (Fig. 2-

1b). If the orientation of the optic axis is given by a geometrical parameter 𝛼(𝑥, 𝑦),

and assuming a half-wave (𝜆
2
) phase retardation, then the operator associated with
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this optic element is [71],

𝑀
(︀
𝛼(𝑥, 𝑦)

)︀
= 𝑅

(︀
𝛼(𝑥, 𝑦)

)︀
𝐽𝜋𝑅

(︀
− 𝛼(𝑥, 𝑦)

)︀
=

⎡⎣cos(2𝛼(𝑥, 𝑦)) sin(2𝛼(𝑥, 𝑦))

sin(2𝛼(𝑥, 𝑦)) −cos(2𝛼(𝑥, 𝑦))

⎤⎦ (2.6)

where 𝐽𝜋 =

⎡⎣1 1

1 −1

⎤⎦ is the operator associated with a half wave retarder written in

the linear polarisation basis {|𝐻⟩ =

⎡⎣1

0

⎤⎦ , |𝑉 ⟩ =

⎡⎣0

1

⎤⎦} and 𝑅
(︀
𝛼(𝑥, 𝑦)

)︀
is the rotation

operator. This acts as a half-wave (𝜆
2
) plate that performs localised transformations

of the beam’s polarisation. Suppose an input beam has the following field description,

|𝐸in⟩ = 𝐸𝑜 |𝑅⟩ , (2.7)

with |𝑅⟩ = 1√
2
(|𝐻⟩− 𝑖 |𝑉 ⟩) and 𝐸𝑜 being the amplitude. The operator 𝑀(𝑥, 𝑦) acting

on |𝜓in⟩ yields the following output

|𝐸out(𝛼(𝑥, 𝑦))⟩ = 𝐸𝑜𝑀
(︀
𝛼(𝑥, 𝑦)

)︀
|𝑅⟩

= 𝐸𝑜𝑒
−2𝛼(𝑥,𝑦) |𝐿⟩ , (2.8)

where |𝐿⟩ = 1√
2
(|𝐻⟩ + 𝑖 |𝑉 ⟩) is the left circular polarisation state. The spin of the

input field has been inverted and accumulates a phase front proportional to 𝑒−2𝛼(𝑥,𝑦)

that depends on the geometric parameter of the optic axis. Pancharatman showed

that the geometric phase can be calculated from 𝑖 × arg(⟨𝐸in(0)|𝐸out(𝛼(𝑥, 𝑦))⟩). It

follows that the geometric phase for the transformation given by 𝑀(𝑥, 𝑦) is −2𝛼(𝑥, 𝑦)

if the input state is |𝑅⟩ polarisation state. Note that it only depends on the geometric

parameter of the optical element. Similarly for a beam that is prepared in the left

circular polarisation state, |𝐿⟩, the accumulated geometric phase is 2𝛼(𝑥, 𝑦).

In general the geometric phase is given by ∆Φ(𝑥, 𝑦) = ±2𝛼(𝑥, 𝑦), relying on the

handedness of the input polarisation and the geometry of the optic element. Berry
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Figure 2-6: (a) An illustration of the geometry of the spatially varying optic axis for 𝑞-plates
with charges 𝑞 = 0.5 and 𝑞 =1. (b) An illustration of spin-orbit coupling with a 𝑞-plate
that has a 𝑞 = 0.5. Scalar OAM modes with a homogeneous state of polarisation and vector
modes with inhomogeneous states of polarisation can be generated with an incident g.

showed that the phase accumulation is due to a cyclic evolution of the field [70], this is

illustrated in Fig. 2-5. This will become useful in the generation of hybrid-entangled

photon states with using 𝑞-plates for spin-orbit coupling.

2.2.2 𝑞-plates for vector mode generation and detection

Q-plates are geometric phase elements that couple the polarisation (spin) and orbital

angular momentum of light [71]. As a result, hybrid photonic states (photon states

with coupled DOF) have been generated with q-plates and exploited for applications

in quantum communications at the classical and quantum level [10].

The geometry of the 𝑞-plate is given by ∆𝛼(𝜑) = 𝑞𝜑, where 𝑞 characterises the

charge of the plate. Remarkably, the accumulated phase front, 𝑒±𝑖2𝑞𝜑, corresponds

to an OAM eigenstate |±2𝑞⟩ for a field carrying an angular momentum of ±2𝑞~

per photon and depending on the input handedness of the input polarisation. The

transformation of the 𝑞-plate is governed by the following rules

|𝐿⟩ |ℓ⟩ 𝑞-plate−−−→ |𝑅⟩ |ℓ+ 2𝑞⟩ (2.9)

|𝑅⟩ |ℓ⟩ 𝑞-plate−−−→ |𝐿⟩ |ℓ− 2𝑞⟩ , (2.10)
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following the half-wave operator given in where |ℓ⟩ is the initial OAM mode of the

input field. Note the use of Dirac notation (|·⟩spin |·⟩orbit). Here, the incident cir-

cular polarisation is inverted and with an additional OAM of ±2𝑞. For example if

a right circularly polarised Gaussian beam (|𝑅⟩ |ℓ = 0⟩) is incident on the 𝑞-plate ,

the polarisation becomes left handed with an OAM of −2𝑞~ (see Fig. 2-6). This is

called spin to orbit conversion [72] where all the spin of the photon is converted into

orbital angular momentum. This will become useful in generating spin-orbit hybrid

entanglement. Furthermore, this process is useful for generating scalar modes since

the output polarisation is uniform.

To generate vector modes, photons need to be prepared in superposition states of

circular polarised photon states and Gaussian profiles for example in the horizontal

polarisation state 1√
2
(|𝐿⟩ |0⟩ + |𝑅⟩ |0⟩). Applying the transformation of the 𝑞-plate

yields 1√
2
(|𝑅⟩ |𝑚⟩ + |𝐿⟩ |−𝑚⟩) which is a non-separable superposition of OAM and

spin (polarisation) reminiscent of a hybrid entangled state with 𝑚 = 2𝑞. Due to the

reciprocity of light, the reverse process also holds and enables us to use the q-plate to

detect the scalar and vector modes. At this point it is important to note that these

transformations also hold at the single photon level.

Experimental scalar and vector mode generation and detection

We demonstrate the experimental generation of scalar and vector mode sets. Our set

of scalar modes is comprised of orthogonal photon states with circular polaristions

coupled to OAM modes defined in the |ℓ| = ±1 subspaces. Moreover, we selected a

set of orthogonal vector modes that take the form

|𝜓⟩ℓ,𝜃 =
1

2
(|𝑅⟩ |ℓ⟩ + 𝑒𝑖𝜃 |𝐿⟩ |−ℓ⟩), (2.11)

where the OAM is defined in the ℓ = ±1 subspace and 𝜃 is a relative phase which

can be tailored by manipulating the polarisation of the initial beam before interacting

with the 𝑞-plate using a 𝜆
2

wave-plate. We generated the radial mode |𝜓⟩1,0, azimuthal

mode (|𝜓⟩1,𝜋) and the hybrid electric modes |𝜓⟩−1,0 and |𝜓⟩−1,𝜋. In Fig. 2-7 we
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Figure 2-7: (a) The vector and scalar modes are generated using a 𝑞-plate and wave plates
(𝜆/2 and 𝜆/4). We use the 𝜆/4 wave plates to convert between linear and circular polar-
isation states and the 𝜆/2 plates to rotate between desired linear polarisation states. The
generation scheme assumes an input of horizontally polarised light with a Gaussian pro-
file (|𝐻⟩ |0⟩). (b) Generation and detection via modal decomposition where the overlap is
observed in the far-field of the Fourier lens with where the on axis intensity is recorded.
We used a helium-neon (HeNe) laser as a light source and a charge couple device (CCD
camera) as a detector. We use a Fourier lens to perform the overlap by measuring the on
axis intensity in the far-field (focal length of the lens) [60].

present the experimental set-up used to generate and detect scalar and vector modes.

To generate the scalar modes, the wave plates are arranged as illustrated in Fig.

2-7(a). However, to generate the vector modes the 𝜆
4

plates are removed since they

rotate polarisation states from circular and linear and vise-versa.

Table 2.1: Generation of our scalar and vector mode sets from an input horizontally po-
larised Gaussian beam. The wave-plate angles are defined with respect to the fast axis of
each plate.

Mode 𝜆/4(𝛼1) 𝜆/2(𝜃1) 𝑞-plate 𝜆/2(𝜃2)
|𝑅⟩ |ℓ⟩ −𝜋/4 – 0.5 –
|𝐿⟩ |ℓ⟩ −𝜋/4 – 0.5 𝜋/2
|𝑅⟩ |−ℓ⟩ 𝜋/4 – 0.5 𝜋/2
|𝐿⟩ |−ℓ⟩ 𝜋/4 – 0.5 –

|𝜓⟩ℓ,0 – 0 0.5 –

|𝜓⟩ℓ,𝜋 – 𝜋/4 0.5 –

|𝜓⟩−ℓ,0 – 0 0.5 0

|𝜓⟩−ℓ,𝜋 – 𝜋/4 0.5 0
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The set-up in Fig. 2-7(b) is used to prepare and measure the modes sets, we

exploit the reciprocity of light to detect the modes; the plates are re-stacked in the

reverse order to detect the modes. The prescribed orientations of the plates are

presented Table. 2.1. We used a Helium-Neon (HeNe) laser as a light source followed

by the wave plates for generation and detection. After traversing the detection and

generation plates we observe the optical overlap in the far field. This is achieved

by using a Fourier lens. To illustrate this consider the inner product between two

functions

𝑐𝑖 = ⟨𝜓𝑖|Φ⟩

=

∫︁ ∫︁
𝜓*
𝑖 (𝑥, 𝑦)Φ(𝑥, 𝑦)𝑑𝑥𝑑𝑦, (2.12)

where 𝜓𝑖(𝑥, 𝑦) can represent a target mode that we wish to overlap with a field

Φ(𝑥, 𝑦). To perform this inner product optically, a generated field Φ(𝑥, 𝑦) interacts

with an optical element corresponding to the function 𝜓𝑖. The resulting field is

𝐹 (𝑥, 𝑦) = 𝜓𝑖(𝑥, 𝑦) × Φ(𝑥, 𝑦). This field can be Fourier transformed using a Fourier

lens. It follows that

ℱ{𝐹 (𝑥, 𝑦)} =

∫︁ ∫︁
𝜓*
𝑖 (𝑥, 𝑦)Φ(𝑥, 𝑦)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦, (2.13)

where 𝑘𝑥,𝑦 are the transverse spatial frequencies. Experimentally we can only evaluate

the field intensity. We restrict our measurement to the on axis intensity therefore

𝑘𝑥,𝑦 = 0. It follows that Eq. (2.13) takes the form

|ℱ{𝐹 (0, 0)}|2 = |
∫︁ ∫︁

𝜓*
𝑖 (𝑥, 𝑦)Φ(𝑥, 𝑦)𝑑𝑥𝑑𝑦|2, (2.14)

which is the |𝑐𝑖|2, calculated from the inner product in Eq. (2.12). Therefore this

forms a projective measurement for optical fields [60]. For Φ(𝑥, 𝑦) = 𝜓𝑗(𝑥, 𝑦) we

obtain |𝑐𝑖| = 𝛿𝑖,𝑗. This motivates our use of a far-field on axis intensity measurement

to detect the overlap based on the the set-up in Fig. 2-7(b).
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Figure 2-8: Experimental scalar and vector mode decomposition with q-plates. (a) illus-
trates the dependence of the spatial structure of the mode sets by performing polarisation
projections of each generated mode. The scalar modes show no variation of the polarisation
while the vector modes show a dependence of the spatial structure resulting from polarisa-
tion projections. The petals structures are HG modes modes which are superpositions of
oppositely charged OAM modes, |ℓ| = 1 in our case. This confirms the non-separability of
the vector modes. (b) prepare and measure results of the scalar and vector modes presented
in the form of a density matrix. Each channel (in the matrix) represents an overlap between
a prepared and measured mode equivalent to an overlap performed in quantum mechanics.

Experimental results

In Fig. 2-8(a) we show that the spatial structures of the scalar modes are invariant of

the polarisation projection by taking CCD images of the intensities after polarisation

projections and that the vector modes show a variation in their spatial structure when

projected onto linear polarisation states. For the vector modes, linear polarisation

projections yield petals which rotate according to the angle (𝜒 ) of the polariser.

Since a polariser orientated at an angle 𝜒 projects onto the target state |𝜒⟩ = 1
2
(|𝑅⟩+

𝑒𝑖𝜒 |𝐿⟩), the result of the projection is

⟨𝜒|𝜓⟩ℓ,𝜃 =
1√
2

(|1⟩ + 𝑒𝑖(𝜃−𝜒) |−1⟩), (2.15)
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Figure 2-9: Experimental decomposition of the radially polarised mode in-terms of the
vector mode set.

an OAM superposition state of |1⟩ and |−1⟩ with a relative phase that varies with

𝜒. This explains the rotating petal structure observed on the CCD camera when the

polariser is oriented at 𝜒. Rotating the polarisers is therefore equivalent to projecting

the vector mode onto the equator of the Bloch sphere. Projections of this form have

been used to demonstrate the violation of a Bell-like inequality to confirm the non-

separability between the polarisation and OAM DoF of vector vortex modes [36].

The experimental normalised intensities as obtained from the optical inner-product

measurements are presented in Fig. 2-8(b) as a density matrix plots, within each mode

set, showing maximal on axis intensities when the prepared and measured modes cor-

relate. For example when a radially polarised mode (|𝜓⟩1,0) is prepared and the

detection side is oriented to measure a radially polarised mode, a high on axis inten-

sity is observed. However, detection orientations corresponding to the other modes

yield a minimal (≈ 0) on axis intensity (see Fig 2-9). The diagonal matrices in Fig.

2-8(b) show that each set is orthogonal. This is essential in optical communication

and therefore each mode set can be used to encode information.

2.3 Projective measurement for single photon OAM

states

In the previous section we showed that optical inner products can be performed using

𝑞-plates for hybrid photon states with classical light. Now we present a technique for

performing an inner product for spatial modes at the single photon level.
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Figure 2-10: The experimental set up for measuring the OAM content of a vector mode at
the single photon level. The blue arrow corresponds to the alignment of the polarizer and
can be rotated at various angles.

Experimentally, the inner product between the quantum state corresponding to

the measurement apparatus and that of the photon is proportional to photon counts.

We use an avalanche photo-diode (APD) to count the single photons. APDs can be

coupled to single mode fibers (SMF). The SMF collects the light which is fed the

APD. This triggers avalanche currents that are converted into digital signals that can

be processed using a counting card. In our lab we use PerkinElmar single photon

counting modules (SPCM) connected to a 6602X counting card.

We generated the radial mode (|𝜓⟩1,0 see Eq. (2.11)) the 𝑞-plate. To measure the

OAM content, we convert the polarisation of the vector from circular to linear using

a 𝜆
4

wave-plate. This transforms the radial mode,

|𝜓⟩ℓ,0 →
1√
2

(|𝐻⟩ |1⟩ + 𝑖 |𝐿⟩ |−1⟩), (2.16)

where |𝐻⟩ and |𝑉 ⟩ are the linear horizontal and vertical states of polarisation. In

this way, we can select between a pure OAM mode and and superposition of OAM

modes through polarisation control. For example, filtering the |𝐻⟩ polarisation state

collapse the photon onto the |1⟩ state and by filtering a superposition |𝐻⟩ + |𝑉 ⟩, the

photon collapses the photon onto the state |1⟩ + 𝑖 |−1⟩.

We the detect the resulting spatial mode using a SLM coupled to a single mode

fiber (SMF) and APD. This combination served as our projective measurement.

To illustrate how it works, consider the normalised quantum state |𝑓⟩ representing
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a spatial field of prepared photons and a normalised state |𝑔⟩ to be encoded on a

SLM. After modulation with the SLM and coupling the photons into the fiber, the

probability of the photon arriving at the APD is

𝑃 =
1

𝒩

∫︁ ∫︁
𝑔*(𝑥, 𝑦)𝑓(𝑥, 𝑦)𝐺(𝑥, 𝑦)𝑑𝑥𝑑𝑦. (2.17)

Here 𝐺(𝑥, 𝑦) is the Gaussian profile (𝐺(𝑥, 𝑦) = 1
𝑤
√
2𝜋
𝑒

−(𝑥2+𝑦2)

𝑤2 ) if a beam where emerg-

ing from the SMF. Equation (2.17) can be expressed as 𝑃 = ⟨𝑓, 𝑔|𝐺⟩, in this form the

inner product is distorted by the fiber – 𝑃 does not take the form ⟨𝑔|𝑓⟩. Furthermore,

note that the integral is maximal if and only if 𝑔*(𝑥, 𝑦)𝑓(𝑥, 𝑦) = 𝐺(𝑥, 𝑦). This can

be satisfied with OAM modes since they can be modulated into Gaussian modes by

encoding their complex conjugate on the SLM.

Using this measurement technique we probed the mode content of our prepared

photons, by scanning through OAM eigenmodes in the range ℓ = [−5, 5] with an

integration time of 3 sec for photon counting. We normalised the counts by the sum

of all photon counts to conserve probability. We did not subtract the background

counts of the system to demonstrate the effects of noise resulting form dark counts.

Dark counts are registered by the APD in the absence of of light. They are caused

by the thermal emission of electrons and can be reduced by cooling the detectors.

Significantly, increasing the photon flux may help reduce the signal to noise ratio

however this must be done taking care not to saturate the detectors. In Fig. 2-

11(a) we present the OAM spectrum after filtering the polarisation state |𝐻⟩ of Eq.

(2.16), resulting in photons collapsing onto the OAM mode |1⟩. The spectrum shows

a dominant presence of the |1⟩ mode. Similarly, a projection of the polarisation state

onto the superposition state 1√
2
(|𝐻⟩ + |𝑉 ⟩) (by rotating the polariser to 45∘) shows

a maximal transmission of superposition of the |±1⟩ OAM modes as expected. It is

worth noting that the photon counts dropped to half since the SLM only modulates

the horizontal polarisation components of the photons.
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Figure 2-11: Experimental photon counts for modal (OAM) decomposition using an SLM
for horizontal (a) and diagonal (b) polarisation projections of a vector mode.

2.4 Conclusion

In this chapter we have demonstrated the use of dynamic and geometric phase for

generating and detecting the orbital angular momentum of photons. We generated

and detected a set of 4 dimensional scalar and vector modes with 𝑞-plates. The

modes where prepared with intense light from a laser source and detected using and

projective measurement analogous to an inner-product in quantum mechanics. Our

results showed that each mode set is orthogonal. Furthermore, we demonstrated

a projective measurement for single photons using a SLM and a single mode fiber

coupled to a single photon detector. We used a 𝑞-plate and polariser to filter an

OAM state and a superposition, subsequently showing that our digital projective

measurements can reveal the OAM content of single photons. The 𝑞-plate and SLM

will become useful in preparing hybrid entanglement and as a digital spatial mode

detector, respectively.
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Chapter 3

Spontaneous parametric

down-conversion

In this chapter we explore the techniques needed to generate and detect photons en-

tangled in the orbital angular momentum (OAM) degree of freedom (DoF). We make

of use of spontaneous parametric down-conversion (SPDC), a process that occurs in

non-linear crystals, to generate the entangled photon pairs. We detect the entangled

photons with the aid of the digital holographic projective measurement technique

illustrated in Chapter 2. Furthermore, we confirm the entaglement of our system via

a Bell inequality violation and perform a full state tomography.

3.1 Theory and background

SPDC can be used as a source of entangled photon pairs. Burnham and Weinberg [73]

were the first to report the detection of photon pairs at spatially separated detectors

using SPDC. This method was favoured over atomic cascading techniques [14], since

SPDC could constrain the direction of the photon emission making photon collection

easier and more efficient. Significantly, through SPDC, quantum entanglement with

various DoF has been reported, e.g polarisation [16,74–76], time-bin encoding [17–19],

linear momentum [77, 78] and photon orbital angular momentum [20–23], making it

an ideal source for generating photons. The generation of the entangled photons with
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Figure 3-1: An illustration of spontaneous parametric down-conversion in nonlinear crystals.
A high frequency pump (𝑝) photon interacts with a non-linear crystal, characterised by a
second order non-linear susceptibility (𝜒(2)). The crystal spontaneously converts the input
photon into two lower frequency daughter photons (signal (𝑠) and idler (𝑖)) satisfying energy
and momentum conservation laws. The photons are correlated in energy, momentum and
time.

SPDC is associated with the second order parametric processes (to be discussed in the

following section) in non-linear crystals that is characterised by a real second order

susceptibility tensor 𝜒(2). In this process, a high frequency pump (p) photon is spon-

taneously converted into two lower frequency (down-converted) photons with highly

correlated position, the momenta and temporal components governed by conservation

laws known as the phase matching conditions.

3.1.1 Phase matching

In the SPDC process a high frequency pump photon excites polarisation dipoles within

the material resulting in random emissions of photon pairs with lower frequencies

(down-converted), subject to conservation laws. The photons impinging the material

cause the molecules to populate of energy levels (virtual energy levels) permitted by

the uncertainty principle, with a subsequent depopulation from the excited states

back to their original state after a time interval proportional to the energy difference.

The depopulation causes fluorescent scattering of the entangled pair. Since no energy

is dissipated nor transferred by the material onto the photons, the properties of both

the input photon and material are conserved. For an emission of photons pairs, the

following phase matching conditions must be satisfied,

𝜔𝑝 = 𝜔𝑠 + 𝜔𝑖, (3.1)

k𝑝 = k𝑠 + k𝑖, (3.2)
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Figure 3-2: Phase matching conditions for the pump photon (𝑝) and the entangled signal
(𝑠) and idler (𝑖) photons spontaneously emitted by the non-linear crystal. The energy (𝜔)
and momentum (k) are conserved by the process. The Phase matching conditions allow for
the non-collinear and collinear emission of photons.

where 𝜔𝑝, 𝜔𝑠, 𝜔𝑖 and k𝑝,k𝑠k𝑖 are the frequency and wave vectors of the pump pho-

ton and down-converted signal and idler photon pairs, receptively. Accordingly, the

frequency and total momentum of the down-converted photons must add up to that

of the pump photon. Consequently, the total orbital angular momentum of the sys-

tem is also conserved in the process [20] enabling OAM correlations between the

down-converted pair.

The phase matching conditions can produce a collinear or non-collinear system

of photon pairs (see Fig. 3-2). In the collinear system, the entangled photons travel

in the same direction and in the non-collinear system, they move in a divergent

manner. Furthermore, SPDC processes are mainly categorised as Type-0, Type-I and

Type-II. In Type-0, the down-converted photons have the degenerate polarisations

equivalent to that of the pump. Type-I down-converted photon pairs have degenerate

polarisation but orthogonal to the pump photon. On the contrary Type-II produces

photon pairs with orthogonal polarisations. To generate our OAM entagled photons

we have chosen to use type Type-I phase matching.
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3.1.2 SPDC quantum state

For a collinear Gaussian pump, the quantum state of the SPDC output is [79,80]

|𝜓⟩𝑆𝑃𝐷𝐶 =

∫︁
𝑑2𝑞𝑠
2𝜋

𝑑𝑞2𝑖
2𝜋

Φ(q𝑠 − q𝑖)𝑎
†
𝑠(q𝑠)𝑎

†
𝑖 (q𝑖) |0⟩ |0⟩ , (3.3)

where q𝑝, q𝑠 and q𝑖 are the transverse components of the wave-vectors k𝑝, k𝑠 and k𝑖,

respectively. Here 𝑎†𝑠,𝑖(q𝑠,𝑖) are the creation operators, |0⟩ represents a vacuum state

and Φ(q𝑠 − q𝑖) represents the phase matching function written as [80]

Φ(q𝑠 − q𝑖) =

√︃
2𝐿

𝜋2𝑘𝑝
ℰ𝑝(q𝑠 + q𝑖) × sinc

(︁∆𝑘𝐿

2

)︁
× 𝑒−𝑖Δ𝑘𝐿

2 . (3.4)

Here ∆𝑘 = |q𝑠−q𝑖|2
2𝑘𝑝

is the phase mismatch which is zero when perfect phase matching

is achieved. The function ℰ𝑝(q) is the Fourier transform of

𝐸(r) =

√︃
2

𝜋𝑤2
𝑝

𝑒
− 𝑟2

𝑤𝑝 , (3.5)

a Gaussian profile of the pump photons with a beam diameter 𝑤𝑝 at the interface

of the crystal. In principle the spatial mode of the pump beam can be tailored as

desired. We chose a Gaussian beam since this is relevant to our experiment.

The SPDC state, |𝜓⟩𝑆𝑃𝐷𝐶 , in Eq. (3.3) can be decomposed using any complete

orthonormal mode set. Since OAM eigemodes form a complete orthonormal basis

and are cylindrically symmetric, Eq. (3.3) can be decomposed as

|𝜓⟩𝑠𝑝𝑑𝑐 =
∑︁

ℓ𝑠𝑝𝑠ℓ𝑖𝑝𝑖

𝑐ℓ𝑖𝑝𝑖ℓ𝑠𝑝𝑠
|ℓ𝑠, 𝑝𝑠⟩ |ℓ𝑖, 𝑝𝑖⟩ , (3.6)

where ℓ represent the topological charge (OAM) and 𝑝 represents the radial index

of the photon. The state |ℓ, 𝑝⟩ =
∫︀
𝑑2𝑞𝐿𝐺ℓ,𝑝(q)𝑎† |0⟩ is the quantum state upon

quantisation of the Laguerre-Gaussian basis functions 𝐿𝐺ℓ,𝑝(q) written in the spatial
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frequency domain. The probability amplitudes are calculated from

𝑐ℓ𝑖𝑝𝑖ℓ𝑠𝑝𝑠
∝
∫︁
𝑑2𝑞𝑠𝑑

2𝑞𝑖
(︀
𝐿𝐺ℓ𝑠,𝑝𝑠(q𝑠)

)︀*(︀
𝐿𝐺ℓ𝑖,𝑝𝑖(q𝑖)

)︀*
Φ(q𝑠 − q𝑖), (3.7)

where |𝑐ℓ𝑖𝑝𝑖ℓ𝑠𝑝𝑠
| is the probability of finding the signal and idler photons in the state

|ℓ𝑠, 𝑝𝑠⟩ and |ℓ𝑖, 𝑝𝑖⟩, respectively. Note, that the conservation of momentum also con-

ditions the OAM of the systems, therefore

ℓ𝑝 = ℓ𝑠 + ℓ𝑖. (3.8)

Under perfect phase matching conditions, the signal and idler photons have equal

but oppositely charged OAM and therefore ℓ𝑠 = −ℓ𝑖 = ℓ due to the OAM of the

Gaussian pump (ℓ𝑝 = 0). In the collinear system q𝑠−q𝑖 = 0 phase matching function

(Φ) is only described by the pump beam profile ℰ𝑝 . Applying these conditions and

converting to the cylindrical coordinates, Eq. (3.7) becomes

𝑐|ℓ| ∝
∫︁ ∞

0

𝑟𝑑𝑟

∫︁ 2𝜋

0

𝑑𝜑
(︀
𝐿𝐺ℓ𝑠(𝑟, 𝜑)

)︀*(︀
𝐿𝐺ℓ𝑖(𝑟, 𝜑)

)︀*
𝐸(𝑟). (3.9)

Here 𝑟 and 𝜑 represent the radial and azimuthal coordinates respectively. Noting this

and only considering the OAM DoF (𝑝𝑖, 𝑝𝑠 = 0) , Eq. (3.6) can be written in the

following compact form

|𝜓⟩𝑆𝑃𝐷𝐶 =
∑︁
ℓ

𝑐|ℓ| |ℓ⟩𝑠 |−ℓ⟩𝑖 . (3.10)

Here 𝑐|ℓ| is found from Eq. (3.7). We will employ Eq. (3.10) for the description the

quantum state of the SPDC process in the OAM basis. Experimentally, the probabil-

ities, 𝑐|ℓ|, are determined from coincidence counts; a simultaneous detection of photon

pairs at spatially separated detectors. The distributions rely on the characteristics of

the SPDC process (e.g phase matching) and the efficiency of the detection system.

These properties can be studied through a charactrisation of the spiral bandwidth of

the system [81].
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Figure 3-3: Entanglement set-up schematic. An entangled photon pair is produced from
an SPDC source. The photons are spatially separated and OAM states are post-selected
states with the combination of the SLM and single mode fibers (SMF). Simultaneous photon
detections are registered as coincidence counts.

3.1.3 Spiral bandwidth

The OAM probability distributions |𝑐|ℓ||2 rely on the conditions at the source [82] and

the effects of the measuring apparatus [81]. It is important to be able to isolate the

effects of the two contributions for an effective characterisation of an entanglement

system. This can be achieved by using the spiral-bandwidth of the mode distribution.

We associate the spiral band width with the full width half maximum (FWHM) of

the |𝑐|ℓ||2 distribution. In this way the spiral band width is a measure of the number

of modes with strong correlations. This depends on the SPDC generated modes and

the modes that the systems is able to detect.

The generated spiral-bandwidth defines the spectrum of modes that are produced

by the SPDC process. Significantly, this depends on the phase matching conditions

and the waist thus affecting the maximum number of modes that are accessible upon

detection [80,83]. Consequently, this imposes limits on the number of modes that can

be detected by the measurement apparatus.

Experimentally, holographic techniques with SLMs are used to measure spatial

modes from the SPDC source ( See Fig. 3-3 for a schematic.). The conjugate of the

probe OAM modes (|ℓ⟩ and |−ℓ⟩) would be encoded on the spatial light modulator

(SLMs) A and B, respectively.

We modeled the probabilities according to Eq. (3.9) by varying the ratio (𝛾 = 𝑤𝑝

𝑤𝑠,𝑖
)
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Figure 3-4: Simulated coincidence counts (𝐶𝑠,𝑖) vs the OAM modes (ℓ) with a variation of
𝛾, the pump and back projected beam waist ratio, ranging from 1 to 4

.

Figure 3-5: FWHM vs 𝛾. FWHM denotes the full-width-half-maximum of each photon
distribution (number of usable modes) and 𝛾 is ratio of the pump and back-projected beam
waist at the SLM.

of the waists pump (𝑤𝑝) and the LG modes encoded hologram (𝑤𝑠,𝑖) in Fig. 3-4 plotted

as bar graphs and and below as density plots. Significantly, the spiral bandwidth,

which we take as the FWHM of the count distribution increases with the size of the

pump beam waist; clearly observed in Fig. 3-5. That is, more modes become strongly

correlated with the increase in the pump size relative to that of the encoded waist
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Figure 3-6: A simulation of the effect of pump shaping on the measured SPDC OAM
spectrum which can also be predicated by back projection [85]. A pump with the mode
function 𝐿𝐺1,0+𝐿𝐺−1,0 is decomposed in the LG spectrum. The labels ℓ𝑖 and ℓ𝑠 represent
the topological charge (OAM) in the idler and signal photon, respectively

.

of the mode function. This increase comes at the cost of losses in the count rate of

the photons [80, 81]. To characterise the effects of the system on the SPDC state we

adopt Klyshko’s advanced wave model using back-projection [84].

3.1.4 Back-projection

The post selection on the entangled photons performed by the SLMs can be mimicked

using back-projection alignment to characterise the effects of the apparatus on the

SPDC state. The scheme exploits the retrodictive advance wave model proposed

by Klyshko [84]. In the Klyshko picture, the probability of detecting a photon at

detector A and B is equivalent to treating the entanglement system as though a

photon registered at detector detected A travels back in time to the crystal and is

reflect onto the path leading to detector B. This can be used to isolate the effects of the

experimental apparatus from the nonlinear crystal using classical optics by replacing

one of the detectors and the nonlinear crystal with laser and mirror, receptively.

This scheme has proven useful in ghost imaging experiments [86] where the two

photon imaging experiment is simulated using a single photon in the advanced wave

picture. Another interesting application is in quantum state engineering where the

effects of pump shaping on the SPDC state can be investigated with back-projection
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Figure 3-7: (a) Analogy between the angles of a polariser and the orientations of holograms
for OAM superposition states given by Eq. (3.11),for ℓ = 1. (b) An illustration of two SLMs
with holograms similar oriented at angles 𝜃𝐴 and 𝜃𝐵 respectively. Analogous to performing
measurements with polarisers orientated at different angles on entangled photons.

[85]. For example by preparing a pump photon described with a superposition of the

LG modes. e.g 𝐿𝐺1,0 +𝐿𝐺−1,0. This can also be predicted by the general form of Eq.

(3.9). We present the simulated correlations in Fig. 3-6.

We use back-projection to to align and optimise the performance of our experi-

mental system (to be presented in the Experimental section).

3.1.5 Bell inequality violation with OAM

A method developed for locality tests between spatially separated bi-photon systems

is the demonstration of a Bell-like inequaltiy [12] violation. In 1969 Clauser, Horne,

Shimony and Holt (CHSH) formulated an alternative version of the Bell inequali-

ties, relevant for an experimental application [87]. A series of demonstrations soon

followed with reports of convincing evidence of the CHSH-Bell inequality violation

using polarisation entangled photons generated from cascade atomic decays in cal-

cium [88,89], however, it was Aspect et al. [14,15,90] who reported more convincing

evidence of the CHSH-Bell inequality violation. Unfortunately, atomic cascade meth-

ods made photon capturing difficult due to the random emission of photons at full

solid angles. More interest went towards finding more efficient ways of producing

entangled photons. There have been multiple reports of CHSH inequality violation

with polarisation qubits using SPDC. [16, 74–76]. These experiments required corre-
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lated polarisation measurements between superposition states of the two entangled

photons. For example, for circularly polarised entangled photons, this would involve

the use of linear polarisers as analysers. Rotating a polariser from vertical to horizon-

tal is a projections onto superposition states along the equator of the Poincar ´𝑡𝑒𝑥𝑡𝑒

sphere. Just as with polarisation, we measure correlations between superposition

OAM eigenstates for a particular OAM subspace by preparing holograms on SLMs

described by [22]

|𝜃⟩ =
1√
2

(|ℓ⟩ + 𝑒2𝜃 |−ℓ⟩), (3.11)

taking the form of a phase step. The angle 𝜃 describes the rotation of the phase step

which is analogous to the rotation of polarisation states (see Fig. 3-7). To determine

the correlations, consider two photons produced in the from the SPDC state similar

to Eq. (3.10) in arm A and B, entangled in OAM. By post selecting on coincidence

for a particular ℓ (or restricting measurements to a particular ℓ subspace), Eq. (3.10)

becomes

|𝜓⟩𝐴𝐵 =
1√
2

(|ℓ⟩𝐴 |−ℓ⟩𝐵 + |ℓ⟩𝐴 |−ℓ⟩𝐵). (3.12)

Let SLM A and B be placed in the paths of the entangled photons and encoded

with holograms corresponding to Eq. (3.11), respectively. SLM A is encoded with

a hologram |𝜃𝐴⟩ similarly SLM B is encoded with a hologram corresponding to the

state |𝜃𝐵⟩. The probability of observing a coincidence based on the rotation angle

𝑡ℎ𝑒𝑡𝑎 selected in arm A or B is

𝑃 (𝜃𝐴, 𝜃𝐵) = | ⟨𝜃𝐴| ⟨𝜃𝐵|𝜓⟩𝐴𝐵 |2 = cos2(𝜃𝐴 − 𝜃𝐵). (3.13)

The coincidence counts are highest when the detection systems are orientated at 0

and 𝜋 integer multiples relative to each other. During measurements, the angle of one

analyser is usually fixed at some angle (𝜃𝐴) and the other (𝜃𝐵) is rotated while the

coincidence rates are measured. We adopt the CHSH variation of the Bell inequity

given by [87],

𝑆 = |𝐸(𝜃𝐴, 𝜃𝐵) − 𝐸(𝜃𝐴, 𝜃
′
𝐵) + 𝐸(𝜃′𝐴, 𝜃

′
𝐵) + 𝐸(𝜃′𝐴, 𝜃𝐵)| ≤ 2, (3.14)
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where 𝐸(𝜃𝐴, 𝜃𝐵) , is the correlations between the measurements in arm A and B when

the holograms on the SLMs are encoded with holograms corresponding to |𝜃𝐴⟩ and

|𝜃𝐵⟩. S is maximally violated when 𝜃𝐴 = 0, 𝜃𝐵 = 𝜋
8ℓ
, 𝜃′𝐴 = 𝜋

4ℓ
and 𝜃′𝐵 = 3𝜋

8ℓ
.

Experimentally, the correlations can be calculated using the measured coincidence

counts 𝐶(𝜃𝐴, 𝜃𝐵) as follows

𝐸(𝜃𝐴, 𝜃𝐵) =
𝐶(𝜃𝐴, 𝜃𝐵) + 𝐶(𝜃𝐴 + 𝜋

2ℓ
, 𝜃𝐵 + 𝜋

2ℓ
) − 𝐶(𝜃𝐴 + 𝜋

2ℓ
, 𝜃𝐵) − 𝐶(𝜃𝐴, 𝜃𝐵 + 𝜋

2ℓ
)

𝐶(𝜃𝐴, 𝜃𝐵) + 𝐶(𝜃𝐴 + 𝜋
2ℓ
, 𝜃𝐵 + 𝜋

2ℓ
) + 𝐶(𝜃𝐴 + 𝜋

2ℓ
, 𝜃𝐵) + 𝐶(𝜃𝐴, 𝜃𝐵 + 𝜋

2ℓ
)
,

(3.15)

The system is considered to be quantum entangled, if it violates the CHSH Bell’s

inequality (|𝑆| > 2) and bounded above by 2
√

2 [91] . Satisfying these conditions

implies that the two subsystems are non-separable and that they exhibit non-local

interactions and confirm the entanglement of the system [89]. Conversely, the system

is separable.

3.2 Experimental set-up

3.2.1 SPDC characterisation

Here we present the experimental procedure used to characterise the down-converted

field. In our experiment we used a 2 × 2 × 1 mm3 periodically-poled-potassium-

titanyl-phosphate (PPKTP) non-linear crystal as our entangled photon source. The

crystal is designed to achieve quasi-phase-matching by alternating the orientations

of birefringent KTP layers with a period of Λ (see Fig. 3-8(a)). Λ is chosen such

that it counteracts phase mismatching, ∆𝑘, found in the phase-matching term of

Eq. (3.4). Since the birefringence of the KTP crystal varies with temperature, then

∆𝑘 = 𝜔
𝑐
|𝑛𝑠(𝑇,𝜔)−𝑛𝑖(𝑇,𝜔)|

2𝑘𝑝
where 𝑛𝑠,𝑖(𝑇, 𝜔) are the temperature (T) dependent refractive

indexes of the signal and idler photons. Therefore perfect phase matching could only

be achieved at a temperature where the refractive indices are degenerate. Note that

refractive index also depended on the wavelength of the pump photon.

A schematic of the experimental set-up that was used to characterise the down-

converted field is shown in Fig. 3-8(b). We used a Coherent Cube diode laser with
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Figure 3-8: (a) An illustration of periodic-polling in quasi phase-matched crystals. Bire-
fringent crystal domains (layers) are alternated for a crystal with a give length (L). The
period of each successive alternation is given by Λ. b) Experimental set-up used for imag-
ing the down-converted photons from the periodically-poled-potassium-titanyl-phosphate
(PPKTP) crystal. The crystal plane was imaged into a charge coupled device (CCD) using
lenses 𝑓1 = 300 mm and 𝑓2 = 150 mm in a 4f system. The PPKTP crystal was placed on
(c) a heat oven which was regulated with (d) temperature controller for phase matching.

a Gaussian profile, having a nominal wavelength of 405 nm and horizontal polarised.

The birefringence of PPKTP resulted in the down-converted photons having a vertical

state of polarisation – indicative of Type-I phase matching. The laser was focused

onto the PPKTP crystal placed on heat oven shown in Fig. 3-8(c) which we used as

a means of controlling the phase matching conditions of our temperature dependent

crystal. The down-converted field was demagnified from the crystal plane into the

CCD camera which was used to take images of the intensity profiles while the room

kept dark to reduce noise levels. Band-pass filters with a 10 nm bandwidth were used

to filter the 810 nm down-converted photons: one was placed after the crystal and

another at the camera.

A transition of the down-converted light from a non-collinear to a non-collinear

geometry is shown in Fig. 3-9, resulting from an increase in the oven temperature.

The down-converted field is concentrated at the edges with a ring like geometry

when the temperature was set to 43∘𝐶 and converged with increase in temperature

indicating that the wave-vectors of the signal and idler morph from a non-collinear to

a collinear geometry (see Fig. 3-2 for the orientation of the wave-vectors). The areas
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Figure 3-9: Experimental intensity profiles of the down-conversion cone with temperature
change.

with red circles represent the positions where correlated photons are most likely to

be found with their respective geometries (collinear and non-collinear).

3.2.2 Back-projection and down-conversion alignment

Before performing measurements on the down-converted photons the system had to

be aligned was aligned perfectly and then charaterised. To achieve this the method

back projection was. The experiment was performed in non-collinear mode with

the temperature of the crystal maintained at 45∘𝐶. A D-shaped mirror was used to

separate the photons emerging from the down converted cone into arm A (signal) and

arm B (idler), respectively. The system to be prepare is illustrated in Fig. 3-10(a).

However, it was more practical to build the system in back-projection first as in Fig.

3-10(b).

Firstly, a HeNe laser (633 nm) beam was coupled to SMF A for (filtering the

Gaussian mode) and attenuated to avoid saturating the APD. Treating the laser

source as though it were a photon traveling back in time, it was imaged from SMF A

onto SLM A with lenses 𝑓4 (2 mm) and 𝑓3 (500 mm) and then onto the crystal plane

(mirror) with lenses 𝑓2 (1000 mm) and 𝑓1 (300 mm). This marks the path to be taken

by the signal photon. The beam reflecting off the mirror or equivalently, the crystal

plane, was used to replicate the same system leading to detector B, marking the path

of the idler photon. The coupling into detector B was improved and enabling for the

simulation some of the quantum measures using laser light.

Next, the system was prepared for correlation measurements with down-converted

photons by replacing the mirror with the crystal and the HeNe laser with detector
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Figure 3-10: (a)Experimental setup for non-collinear SPDC with the entangled photon pair
separated by a D-shaped mirror (DM). A 405 nm Coherent Cube diode laser was as a pump
photon source (Pump). The emerging signal and idler photons were directed onto paths
leading to detector A and B. We treated the crystal, spatial light modulators (SLM) and
single mode fibers (SMF) as image planes. As such, the plane of the crystal was imaged
onto the SLMs with lenses (𝑓1=300 mm) and 𝑓2=1000 mm) and into the single mode
fibers (SMF) with lenses 𝑓3=500 mm and 𝑓3=2 mm.The 810 nm photons were filtered with
band pass filters (BPF) and collected using SMFs that were coupled to avalanche photon
diodes (APD) in arm A and B. The count between the two detectors were conditioned on
coincidence. Our APDs were Perkin-Elmer single photon counting modules (SPCM) with
a coincidence window of 25 ns. (b) Back projection used to charactorise the system. We
replaced the crystal with a mirror and detector A with a helium-neon (HeNe) laser. The
alignment procedure is detailed in the text.

A. The 810 nm photons were filtered using band pass filters (BPF) (or interference

filters) having a 10 nm bandwidth. The SMF were used to collected once they were

modulated by the SLMs. These were fed into the avalanche photo diodes (APD) in

arm A and B connected in coincidence. The APDs converted each photon into an
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avalanche current using Transistor-Transistor-Logic (TTL) signals that translated the

signals into photon counts with a 6602 PCI/PXI counting card. A gating (grace) time

of 25 ns was set between the detectors. Overlapping photon signals within each gating

event were considered as a coincidence events. The photon counting was performed

over a time interval (5 s), much larger than the gating time.

3.3 Results and discussion

3.3.1 Spiral Bandwidth

We present and compare the results of the spiral bandwidth measurements obtained

from measurements with the experimental set-ups for back-projection Fig. 3-10(b)

and down-conversion Fig. 3-10(a). SLM A and B were used to scan through OAM

modes ranging from ℓ = −10 to ℓ = 10 with each measurement recorded with a 5s

integration time, significantly above the time resolution of the detectors (25 ns).

The results are presented in Fig. 3-11. In Fig. 3-11(a) and Fig. 3-11(b) we present

the phase only decomposition in back-projection and down-conversion, respectively.

That is we encode fork holograms corresponding to the azimuthal phase mode func-

tions, 𝑒𝑖ℓ𝜑. The density plots (matrix plots) are anti-diagonal, showing maximal

counts when ℓ𝑠 + ℓ𝑖 = 0. This is consistent with the conservation of OAM in the

SPDC process [20]. The bar plots are the corresponding anti-diagonal elements of

the matrix plots. These are the experimental probabilities, |𝑐|ℓ|2, corresponding to

Eq. (3.9). The full-width-half-maximum (FWHM) was used as figure of merit for

the number of highly correlated modes (∆ℓ) detectable by the system. The back

projection system enabled for the use of ∆ℓ ≈ 6 modes while in down-conversion we

obtained ∆ℓ ≈ 8 the discrepancies may arise due to the differences in mode quality

after the SLM (SLMs are calibrated for a particular wavelength).

Further, more a decomposition with the LG basis was performed by encoding the

amplitude and phase of each OAM mode and set the radial modes (𝑝) to 0. The results

are presented in Fig. 3-11. The anti-diagonal matrix confirms the OAM conservation,
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Figure 3-11: Experimental and theoretical (points) spiral bandwidth measurements for the
(a) down-converted photons, (b) back-projection beam using a phase only decomposition
(no radial dependence of the mode functions encoded on the SLM) and (c) an LG mode
decomposition of the down-conversion. The matrix plots represent measurements taken for
different OAM states corresponding to ℓ (OAM topological charge), with the diagonal entries
presented in the bar plots. The points in the bar plot represent the theoretical prediction.
It is important to note that in back projection, the counts where collected from detector B
while coincidences between detector A and B where used for the down-conversion. FWHM
denotes the full-width-half-maximum of each photon distribution or the number of highly
correlated modes.

as expected. The distribution of ℓ is maximal for ℓ = 0 also decreases with increasing

OAM. The predicted FWHM is ∆ℓ = 8 and we it ours to be ∆ℓ ≈ 7.

3.3.2 Bell inequality measurement

To show that the PPKTP crystal produces OAM entangled photons, correlated mea-

surements with OAM superposition states in the |ℓ = 1| subspace were taken to

demonstrated a violation of the Bell inequality as described in Sec. 3.1.5. SLM A

was encoded with a phase aperture orientated at an angle 𝜃𝐴 while the another was

encoded on SLM B, and rotated. The phase apertures are illustrated in Fig. 3-7. Re-

member that the phase apertures corresponding to superpositions of OAM described

in Eq. (3.11).
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Figure 3-12: CHSH-Bell analysis of the (a) back projected He-Ne 633 nm laser beam and
(b) 810 nm SPDC source.

The measured correlations for the back projection and down-converted experiment

are presented in Fig. 3-12. It is necessary to point out that the back-projection

results only provide an indication of the maximal observable correlations although it

is performed as a prepare and measure scheme. The sinusoidal behavior is predicted

in Eq. (3.13) from the overlap between the phase apertures (for SLM and B) and the

OAM Bell state. Such correlations are only observed in entangled systems and cannot

be accounted for by local hidden variable theories [22,89]. Note that this implication

holds for the down-converted photons only. We calculated the S parameter using

Eq. (3.14) to confirm the entanglement of photons emitted form the PPKTP crystal.

We obtained 𝑆 = 2.80 ± 0.03 for the back-projected laser beam and 𝑆 = 2.66 ± 0.04

down-converted photons. Therefore these results violate the Bell inequality (𝑆 ≤ 2)

by 20 and 16 standard deviations, respectively. The violation observed in the down-

converted case confirms entanglement in the |ℓ| = 1 OAM subspace. The discrepancy

between the two result may have resulted due to misalignment since placing the

crystal back to the position of the mirror after back-projection requires the system

to be tuned back into the alignment again. For that reason the alignment does not

stay the same.
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3.3.3 Quantum state reconstruction

After confirming that system produces and detects OAM entangled photons that

conserve the OAM of the pump photon, we reconstructed the density matrix in OAM

subspaces, |ℓ| = 1, 2.

The quantum state |𝐴𝐵⟩ (Eq. (3.12) of a system can be represented by a density

matrix, 𝜌𝐴𝐵. In Chapter 2, we noted that 𝜌𝐴𝐵 is given by 𝜌 = |𝜓𝐴𝐵⟩ ⟨𝜓𝐴𝐵|. In the

OAM basis of a two particle system, the state 𝜓𝐴𝐵 belongs to the tensor product of two

Bloch spheres representing the state space of each photon in the entangled pair. The

state-space is spanned by the following basis {|1⟩ |1⟩ , |1⟩ |−1⟩ , |−1⟩ |1⟩ , |−1⟩ |−1⟩} for

a chosen ℓ. The entries of the matrix are given by

𝜌 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐴1,1 𝐴1,2𝑒

𝑖𝜑1,2 𝐴1,3𝑒
𝑖𝜑1,3 𝐴1,4𝑒

𝑖𝜑1,4

𝐴2,1𝑒
𝑖𝜑2,1 𝐴2,2 𝐴2,3𝑒

𝑖𝜑2,3 𝐴2,4𝑒
𝑖𝜑2,4

𝐴3,1𝑒
𝑖𝜑3,1 𝐴3,2𝑒

𝑖𝜑3,2 𝐴3,3 𝐴3,4𝑒
𝑖𝜑3,4

𝐴4,1𝑒
𝑖𝜑4,1 𝐴4,2𝑒

𝜑4,2 𝐴4,3𝑒
𝑖𝜑4,3 𝐴4,4

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.16)

where 𝐴𝑖,𝑗 are the amplitudes and 𝜑𝑖,𝑗 are the phases that make up the 16 matrix

elements. The diagonal elements represent the probability of finding the system in

one of the basis states. The amplitudes and phases can be determined from a set of

measurements in the mutual unbiased basis of angular states given by |𝜃⟩ (Eq. (3.11)).

The measurements comprise projections across the OAM eigenstates |ℓ⟩ , |−ℓ⟩ and the

superposition states |𝜃 = 0⟩ , |𝜃 = 𝜋
4
⟩ , |𝜃 = 𝜋

2
⟩ and |𝜃 = 3𝜋

4
⟩ defined in .

The experimental results are presented in Fig. 3-13 for the ℓ = 1, 2 subspaces.

From these results the density matrix is reconstructed using numerical techniques.

The density matrix elements can be written in terms of the count rates obtained

from measurements. This yields 36 coupled equations. We employ the procedure

used in [92] to calculate the amplitudes and phases of the density matrix elements

defined in Eq. (3.16) through a numerical procedure that predicts the amplitudes
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Figure 3-13: Normalised experimental full state tomography results for the (a) |ℓ| = 1 and
(b) |ℓ| = 2 subspace where each of the holograms were encoded in arm A and B. It is from
these results that the density matrix is computed.

and phases by minimising [93]

𝜒(2) =
𝑁2∑︁
𝑖

(𝐶
(𝑀)
𝑖 − 𝐶

(𝑃 )
𝑖 )2

𝐶
(𝑃 )
𝑖

, (3.17)

where 𝐶
(𝑀)
𝑖 are the coincidence counts from measurements and the 𝐶

(𝑃 )
𝑖 are predicted

from the density matrix. 𝜒(2) is minimised on condition the density matrix yields

positive eigenvalues.

In Fig. 3-14(a) and Fig. 3-14(a) we present the reconstructed real and imaginary

parts of the density matrices for the |ℓ| = 1 and |ℓ| = 2 subspaces, respectively. To

determine how well the matrix obtained from the experiment approximates a target

state, we calculate its fidelity [94]

𝐹 = Tr
(︁√︁√

𝜌𝑡𝜌𝑒
√
𝜌𝑡

)︁2
. (3.18)

Here 𝜌𝑡 is the density matrix representing a target state |𝜓⟩ = 1√
2
(|ℓ⟩𝐴 |−ℓ⟩𝐵 +

|−ℓ⟩𝐴 |ℓ⟩𝐵) and 𝜌𝑒 is the experimentally reconstructed density matrix. If the matrices

are identical then F=1, conversely F=0. We obtained fidelities of 0.92 ± 01 and

0.94 ± 01 for the ℓ = 1 and ℓ = 2 subspaces, respectively. These are close to 1 and

53



Figure 3-14: Experimentally measured real and imaginary parts of the density matrix for
the post-selected (a) |ℓ| = 1 and (b) |ℓ| = 2 subspaces.

hence indicate that the reconstructed quantum states close to a maximally entangled

Bell state.

Next, use a qualitative measure of entanglement, the concurrence [95]

𝒞(𝜌) = max{0, 𝜆1 − 𝜆2 − 𝜆3 − 𝜆4}, (3.19)

to determine the level of entanglement in the system. Here the 𝜆𝑖 represent the

eigenvalues of the matrix 𝜌(𝐴𝜌𝐴) in descending order with 𝐴 = 𝜎2 ⊗ 𝜎2, calculated

from the Pauli operator 𝜎2 =

⎡⎢⎢⎢⎢⎢⎣
0 −𝑖

𝑖 0

⎤⎥⎥⎥⎥⎥⎦. If 𝒞(𝜌) = 1 then 𝜌 represents an entangled

sytem while on the contrary 𝒞(𝜌) = 0 would mean a quantum system represented by

𝜌 is not entangled. Our measured concurrences are 0.88±0.01 and 0.90±0.02 for the

|ℓ| = 1 and |ℓ| = 2 subspaces, respectively. Close the expected result for an entangled

system of photons.

Finally we calculate the linear Entropy (𝐿 = 1
4
(1 − 𝑇𝑟(𝜌))) – a measure of the
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quantum state’s purity [92, 96]. For pure states the linear entropy is 0. In our

experiment we measured entropies of 𝐿 = 0.095 ± 0.003 and 𝐿 = 0.063 ± 0.001 for

the ℓ = 1 and ℓ = 2 subspaces, respectively. Our measured values are close to zero.

We point out that the measured fidelity, concurrence and linear entropy in the |ℓ| =

2 subspace are higher than the |ℓ| = 1. This may have resulted from misalignment or

small temperature fluctuations which may affect the phase matching of the PPKTP

crystal.

3.4 Conclusion

In this chapter we have developed the techniques required to generate and detected

photons entanglement in the OAM DoF. We generated them using SPDC with a PP-

KTP crystal. We have shown that temperature change affects its the phase matching

conditions, enabling the down-converted photons to morph between a non-collinear

and a collinear geometry. For the detection, we used SLMs coupled to single photon

detectors with a SMF to perform projective measurements. Using back-projection, we

assembled and aligned the system and thereafter introduced the down-converted pho-

tons. We measured the OAM spectrum and found that our PPKTP crystal produced

photons pairs that conserved OAM. We tested for local hidden variables via a CHSHS-

Bell inequality experiment and calculated the Bell parameter, S, from measurements

with superpositions of OAM states. We measured 𝑆 = 2.66± 0.04 which violated the

Bell inequality by 16 standard deviations. Such a violation means that the correla-

tions between the entangled pairs cannot be explained by any local hidden variable

theories. Lastly, we performed a tomography of the photon pairs and reconstructed

the system’s density matrix. From density matrix we measured the fidelities, concur-

rences and linear entropies which yielded results indicating that our PPKTP crystal

produced entangled photons that can be described by a pure OAM Bell state. The

confirmation of entanglement is important for the generation of hybrid-entanglement

entangled states in the coupled OAM and polarisation DoFs. It was shown that hy-

brid entanglement can be generated from OAM entanglement [37]. We exploit this
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in the following chapter in a quantum eraser experiment.
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Chapter 4

Quantum eraser using hybrid

entanglement

This work has in published in Ref. [97].

4.1 Introduction

Wave-particle duality is a salient feature of quantum mechanics and has primar-

ily been observed through modern variations of Thomas Young’s double slit experi-

ments [98–102]. When the paths of the double slit are indistinguishable, multi-path

interference results in fringes of high visibility (𝑉 ) in the far-field, which is a charac-

teristic trait of wave-like behavior. Conversely, if the paths are distinguishable (𝐷),

for example, through the use of which-path markers, the fringes disappear (particle

behavior). The physical implications of this are embodied through the principle of

complementarity [103], emphasizing the mutual exclusivity that exists between com-

plimentary observables. The special case of 𝐷 = 0 and 𝑉 = 1 corresponds to a max-

imal observation of interference fringes while that of 𝐷 = 1 and 𝑉 = 0 corresponds

to a full obtainment of the which-path information. Intriguingly, it is permitted to

have partial visibility and partial distinguishability, where the result cannot be ex-

plained exclusively by a wave-like or particle-like interaction [104–107], and this may

quantitatively be expressed through the following inequality: 𝑉 2 + 𝐷2 ≤ 1. Thus,
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gaining knowledge of path information (𝐷 ̸= 0), reduces the visibility of the fringes

(𝑉 < 1). Interestingly, the path information can be erased with a complimentary

projection with respect to the path markers of the double slit, reviving the interfer-

ence fringes. Scully and co-authors [24, 108] proposed such a device, the quantum

eraser, which is now ubiquitous in experimental verifications of the complementarity

principle. For example, in the double slit experiment presented in [25], a polariser

is used to recover the interference pattern that is lost due to path distinguishability

with circular polarisers. By orienting a polariser in a diagonal position, the path in-

formation is erased. Numerous other experiments have been performed with photonic

systems using double slits [9,109], interferometers [26,110–113], and in delayed-choice

measurement schemes [26, 114, 115]. All these experiments have used physical paths

to study the multi-path interference in the context of quantum erasers. Here we gen-

eralise the concept of “path”, showing that it need not be a physical path in the sense

of a route through space but an abstract “path” in any degree of freedom. We employ

orbital angular momentum (OAM) as our “path” and use polarisation as the “which-

path” marker. To test this we create hybrid entanglement between photons carrying

spin and orbital angular momentum and show control of the fringe visibility through

a generalised quantum eraser experiment: the OAM paths marked with polarization

do not lead to interference, while introducing the eraser (polarizer) which projects

the polarization of one of the entangled photons onto a complementary polarisation

basis results in azimuthal fringes with high visibility. We perform this experiment

in both the conventional quantum eraser and delayed-choice schemes, in both cases

showing control of the nature of the photons, from particle (no visibility) to wave (full

visibility). Our experimental results are in very good agreement with theory, offering

a simple approach to illustrate the concept of path in quantum mechanics.
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Figure 4-1: (a) Schematic of a quantum eraser that uses polarization entangled photons
using a physical double slit as reported by Walborn et al. [25] is shown. The two slits
(𝑠1, 𝑠2) are marked with orthogonal horizontal (H) and vertical (V) linear polarizers to
distinguish the two paths. The polarizer (P) in arm A acts as the eraser. (b) The proposed
quantum eraser using geometric phase control to perform OAM-polarization conversion.
The polarization control (P) of photon A sets the OAM interference of photon B. (c) An
example of two independent OAM abstract paths ( |ℓ = 5⟩ and |−5⟩), and their superposi-
tion, |5⟩ + |−5⟩, having 2ℓ azimuthal spatial fringes analogous to path interference fringes
in the double slit experiment.

4.2 Theory

4.2.1 Revisiting the double-slit quantum eraser

It is instructive to revisit the concepts of the traditional quantum eraser experiment,

illustrated in Fig. 4-1 (a), which we do here briefly for the benefit of the reader.

Consider a photon traversing two unmarked slits, which can be represented by the

following coherent superposition

|Φ⟩ =
1√
2

(|𝜓1⟩ + |𝜓2⟩) , (4.1)

where |𝜓1⟩ and |𝜓2⟩ are the non-orthogonal states upon traversing slit 1 and 2 (path

1 and path 2), respectively. The spatial probability distribution of the photon after

the slits is given by | ⟨Φ⟩Φ|2 where the interference pattern, a sign of the photon

travelling through indistinguishable paths, emerges due to the cross terms ⟨𝜓𝑖⟩𝜓𝑗 for

𝑖 ̸= 𝑗. However, the fringes disappear when the paths are marked (distinguishable),

for example, with orthogonal polarizers which, we assume are oriented along the

horizontal (H) and vertical axis (V)

|Φ⟩ =
1√
2

(|𝜓1⟩ |𝐻⟩ + |𝜓2⟩ |𝑉 ⟩) . (4.2)
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Now, the cross terms vanish and | ⟨Φ⟩Φ|2 =
∑︀

𝑖 | ⟨𝜓𝑖⟩𝜓𝑖|2/2. Equation 4.2 represent

a general state of entangled spatial and polarization degrees of freedom of a single

photon. An identical representation can be extended to a two-photon case using

entanglement. To illustrate this, consider the schematic for a system that produces

polarization entangled photons given by the following state,

|Φ⟩𝐴𝐵 =
1√
2

(︀
|𝐻⟩𝐴 |𝑉 ⟩𝐵 + |𝑉 ⟩𝐴 |𝐻⟩𝐵

)︀
, (4.3)

where the subscripts 𝐴 and 𝐵 label the entangled photons. Inserting a double slit

in the path of photon B, with each slit (𝑠1 and 𝑠2) marked with orthogonal linear

polarizers yields

|Φ′⟩𝐴𝐵 =
1√
2

(︀
|𝐻⟩𝐴 |𝑠1⟩𝐵 + |𝑉 ⟩𝐴 |𝑠2⟩𝐵

)︀
. (4.4)

Equation (4.4) is a hybrid entangled state where the polarization of photon A is

entangled with the slit (path) traversed by photon B. For example, measuring the

state |𝐻⟩ for photon A means that photon B traverses through slit 𝑠1, hence no

interference fringes will be observed in the far-field of the double slit since there is path

information in the system. However if photon A is projected onto the complimentary

diagonal basis, {|𝐷⟩ , |𝐴⟩}, where |𝐷⟩ = (|𝐻⟩ + |𝑉 ⟩)/
√

2 and |𝐴⟩ = (|𝐻⟩ − |𝑉 ⟩)/
√

2

are the diagonal and anti-diagonal states respectively, then the following projections

hold

|Φ′⟩𝐴𝐵

𝐷̂𝐴−−→ 1√
2

(︁
|𝐷⟩𝐴

(︀
|𝑠1⟩𝐵 + |𝑠2⟩𝐵

)︀)︁
, (4.5)

|Φ′⟩𝐴𝐵

𝐴𝐴−−→ 1√
2

(︁
|𝐴⟩𝐴

(︀
|𝑠1⟩𝐵 − |𝑠2⟩𝐵

)︀)︁
, (4.6)

where 𝐷̂𝐴 and 𝐴𝐴 are projection operators associated with the states |𝐷⟩ and |𝐴⟩, act-

ing on photon A. Thus the projections of photon A onto complimentary polarization

states collapses photon B into a coherent superposition of the two paths, consequently

recovering the interference pattern. This means that the which-way path information

of photon B has been erased.
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4.2.2 Engineering hybrid OAM-polarisation entanglement for

the OAM based quantum eraser

Now we exchange the notion of path or slit, for that of orbital angular momentum

(OAM). Photons carrying OAM [28,116] have attracted great interest in both classical

and quantum studies [29,31,32]. OAM modes possess a transverse spatial distribution

characterized by an azimuthal phase of 𝑒𝑖ℓ𝜑 such that each photon has an angular mo-

mentum of ±ℓ~ where the integer ℓ represents the twist or helicity of the phase profile.

Since OAM states of differing ℓ are orthogonal, entanglement may be expressed in

this basis where each photon OAM subspace is spanned by ℋ2 = {|ℓ⟩ , |−ℓ⟩}. The

detected distribution (intensity distribution in classical light) of the photons is sym-

metric and uniform in the azimuth for both basis states, each with an azimuthal

helicity in phase of opposite sign. These properties allow OAM mode of opposite

helicity to be treated as two paths, indistinguishable in the intensity domain, so that

one may conceive an OAM quantum eraser as depicted in Fig. 4-1(b).

To create an analogous quantum eraser for OAM we require a hybrid entangled

state of OAM and polarisation. To generate the hybrid entanglement, we consider

type I spontaneous parametric down-conversion (SPDC) as a source of entangled

photons and employ geometric phase control of one of the entangled pairs using

Pancharatnam-Berry phase to execute spin-orbit coupling.

The quantum state of the photon pair produced from a type I SPDC process is

|Ψ⟩ =
∑︁
ℓ

𝑐|ℓ| |ℓ⟩𝐴 |−ℓ⟩𝐵 |𝐻⟩𝐴 |𝐻⟩𝐵 , (4.7)

where |𝑐ℓ|2 is the probability of finding photon 𝐴 and 𝐵 in the state |±ℓ⟩.

The hybrid entanglement between photon A and B is obtained by using geometric

phase control to perform an orbit-to-spin conversion in arm 𝐴 [37,117]. This may be

done by using a 𝑞-plate [10,71], a wave-plate with a locally varying birefringence, that

couples the polarization and OAM DoF of light according to the rules in Eq. (2.9) of

Chapter 2, where |𝐿⟩ and |𝑅⟩ represent the left and right circular polarization states
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and 𝑞 is the charge of the 𝑞-plate. Noting that |𝐻⟩ = (|𝑅⟩ + |𝐿⟩)/
√

2 and applying

the transformation of the 𝑞-plate to photon A transforms Eq. (4.7) to

|Ψ⟩ 𝑄̂𝐴−−→
∑︁
ℓ

𝑐|ℓ|
(︀
|ℓ+ 2𝑞⟩𝐴 |𝑅⟩𝐴

+ |ℓ− 2𝑞⟩𝐴 |𝐿⟩𝐴
)︀
|−ℓ⟩𝐵 |𝐻⟩𝐵 , (4.8)

where 𝑄̂𝐴 is the transformation of the 𝑞-plate. Coupling photon A into a single mode

fiber imposes the condition ℓ = ±2𝑞 on the entangled pair (since the OAM of A and

B must now be zero). Subsequently, the post-selected two-photon state reduces to

|Ψ′⟩𝐴𝐵 =
1√
2

(︀
|𝑅⟩𝐴 |ℓ⟩𝐵 + |𝐿⟩𝐴 |−ℓ⟩𝐵

)︀
, (4.9)

where ℓ = 2𝑞. Equation (4.9) represents a maximally entangled Bell state where the

polarization DoF of photon A is entangled with the OAM degree of freedom of photon

B, as desired.

To obtain the OAM information of photon B, the circular polarization of photon A

is converted to linear polarization using a 𝜆/4 wave plate inserted after the 𝑞-plate

and oriented at 𝜋/4 with respect to the horizontal. Therefore Eq. (4.9) becomes

|𝜓⟩𝐴𝐵 =
1√
2

(︀
|𝐻⟩𝐴 |ℓ⟩𝐵 + 𝑒𝑖𝛿 |𝑉 ⟩𝐴 |−ℓ⟩𝐵

)︀
. (4.10)

Here 𝛿 = 𝜋/2 is a relative phase after the transformation of the 𝜆/4 wave-plate. We

note that the OAM “path” is marked by polarisation. When one path is selected

in this way, no interference appears. However, just as in the double slit case, a

projection of the polarization of photon A onto a complimentary basis state (diagonal

or anti-diagonal) will collapse the state of photon B into a superposition of OAM,

|+ℓ⟩ + 𝑖 |−ℓ⟩, leading to the emergence of azimuthal intensity fringes with angular

frequency proportional to 2|ℓ|. An example for the |ℓ| = 5 subspace is shown in

Fig. 4-1 (c). In this case the OAM “path” information is erased.
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4.2.3 Detection scheme

Suppose the state of the hybrid entangled system is represented by Eq. (4.10). A

polarizer orientated at an angle 𝛼 (with respect to the horizontal) in arm A will

project photon A onto the following target state

|𝛼⟩𝐴 = cos(𝛼) |𝐻⟩𝐴 + sin(𝛼) |𝑉 ⟩𝐴 , (4.11)

thus allowing the “path” to evolve from marked to unmarked by a judicious choice

of 𝛼. Next, the visibility of fringes in arm B needs to be detected, which may easily

be done with scanning detectors (or more expensive camera-based systems). We

instead make use of scanning holograms and a fixed detector as our pattern sensitive

detector [118]. We create sector states from superpositions of OAM with a relative

intermodal phase of 𝜃:

|𝜃⟩𝐵 =
(︀
|ℓ⟩𝐵 + 𝑒𝑖2𝜃 |−ℓ⟩𝐵

)︀
. (4.12)

The phase structure of |𝜃⟩𝐵 is azimuthally periodic, and allows a measurement of the

path (OAM) interference in arm B, analogous to detecting OAM entanglement with

Bell-like measurements [21–23,119]. Thus the fringe pattern (or lack thereof) can be

detected by scanning through 𝜃.

The normalized probability of detection given the two projections is

𝑃 (𝛼, 𝜃) ∝ | ⟨𝜃|𝐵 ⟨𝛼|𝐴 |𝜓⟩𝐴𝐵 |2

=
1

2
(1 + sin(2𝛼) cos(2𝜃 + 𝛿)). (4.13)

𝑃 (𝛼, 𝜃) is synonymous to the coincidence counts of the entangled pair. When the

polarizer is orientated at 𝛼 = 0, which corresponds to the |𝐻⟩ polarization state, the

probability distribution with respect to 𝜃 is a constant since the path is marked. Con-

versely, for 𝛼 = ±𝜋/4 which corresponds to complimentary polarization projections

on |𝐷⟩ or |𝐴⟩, then 𝑃 (𝛼 = ±𝜋/4, 𝜃) ∝ 1 ± cos(𝜃 + 𝛿) and hence the oscillation is

an indication of an interference pattern emerging from a superposition of the OAM

paths of photon B. Therefore the which-path (OAM) information has been erased.

63



Figure 4-2: (a) Experimental setup for the hybrid entanglement based quantum eraser.
The SPDC state was prepared at the plane of the non-linear crystal (PPKTP) and imaged
onto the spatial light modulator (SLM) in arm B. The same imaging system was replicated
in arm A, where the crystal plane was imaged onto the polariser while the OAM to spin
(polarisation) conversion was obtained through the geometric phase control of photon A
using a 𝑞-plate (𝑞=0.5). The imaging system consisted of lenses f1 = 100 mm and f2 = 300
mm. Lenses f3 = 500 mm and f4 = 2 mm were used to couple the photons into single mode
fibers (SMF). Note that the photons passed through 10 nm bandwidth interference filters
(IF) prior to collection. The SMFs were coupled to avalanche photon diodes (APD) which
detected the down-converted photons in coincidence. Furthermore, we performed a delay
measure type eraser by extending arm A by 2.3 m, corresponding to a relative delay time
of 7.66 ns with the polariser placed after the lens f3. (b) Angular phase masks that were
encoded on the SLM and rotated by an angle 𝜃, serving as an azimuthal scanner to detect
the spatial fringes.

The fringe visibility is given by

𝑉 =
𝑃max + 𝑃min

𝑃max + 𝑃min

. (4.14)

Here, 𝑃max and 𝑃min are the maximum and minimum photon probabilities obtained

from the azimuthal scanning, respectively. The theoretical visibility of the interference

fringes with respect to the angle of the polarizer (𝛼) is 𝑉 = | sin(2𝛼)|.

4.3 Experimental set-up

In Fig. 4-2 (a), we present the experimental set-up for our quantum eraser with

polarization-OAM hybrid entangled photons when the path lengths of arm A and arm

B are equal. A periodically poled potassium titanyl phosphate (PPKTP) nonlinear

crystal, cut for type 1 phase matching, was pumped with a 100 mW Coherent Cube

diode laser with a 450 nm nominal wavelength, producing collinear entangled photon
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pairs at a wavelength of 810 nm. Each photon pair was spatially separated in two arms

using a 50/50 beam splitter (BS). The spin-orbit conversion was achieved by inserting

a 𝑞-plate with 𝑞 = 0.5 in arm A, creating polarisation-OAM hybrid entanglement in

the |ℓ| = ±1 subspace. In this arrangement, the state of the system is given by

Eq. (4.9). To mark the states, a 𝜆/4 wave plate with fast axis at 𝜋/4 with respect

to the horizontal direction, as well as a linear polarizer (eraser), were inserted in arm

A. The detection in arm B was performed with binary phase masks shown in Fig.4-

2 (b), encoded on a phase-only spatial light modulator (Holoeye PLUTO) to scan

the spatial distribution of photon B; this was done for 𝛼 = [0, 𝜋/4] while scanning

holograms through 𝜃 = [0, 2𝜋]. Note that the crystal plane was imaged onto the

SLM and polariser which are placed at equivalent positions relative to each other.

The modulated photons were collected with a single mode fiber and measured in

coincidence with a 25 ns gating time between two avalanche photo-diodes (Perkin-

Elmer) that were inserted at the end of arms A and B. In delayed measurement mode

we extended arm A by 2.3 m and moved the polariser nearer to the lens (f3). Thus

the analysis of the spatial fringes occurs before the polarisation projection.

4.4 Results

The OAM path information of photon B was obtained by projecting photon A onto

the states |𝐻⟩ or |𝑉 ⟩. Here we chose |𝐻⟩, by setting the polarizer in arm A to

𝛼 = 0, collapsing the state of photon B to the OAM |ℓ = 1⟩. The results are pre-

sented in Fig. 4-3 (a), confirming that no interference fringes were observed. The

small oscillations are due to imperfections in the polarization filtering of photon A.

The calculated visibility of the interference fringes is 0.04 ± 0.01, in good agreement

with the theoretical value of 0. One can interpret this as photon B carrying a well

defined amount OAM, or equivalently, that the OAM path is marked (distinguished)

and thus visibility is zero. The OAM path information was erased by performing a

complimentary measurement of the polarization of photon A. We set the polarizer

angle to 𝛼 = −𝜋/4, thus selecting the polarization state |𝐴⟩, collapsing the state of
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Figure 4-3: Comparison of theory and experiment for a OAM quantum eraser. (a) In-
terference measurements where the OAM path information of photon B is distinguished
(squares) and erased (circles) by marking the path with a polarisation choice on photon
A. (b) Visibility of interference fringes with a variation of the polariser angle (𝛼) in the
range 0 to 𝜋/4. Similarly, (c) delayed-choice measurement results where the OAM path is
distinguished (squares) and erased (circles), and subsequence measurements of the fringe
visibility (d) with the polariser angle. In all panels experimental data is shown as symbols
with error bars and theoretical calculations as dashed curves. In some frames the error bars
are of similar scale to the symbols.

photon B into a superposition of OAM: |1⟩ − 𝑖 |−1⟩. The coincidence counts from

the azimuthal scanning are presented in Fig.4-3 (a), where interference fringes with

a visibility of 0.92± 0.01 are observed, indicating that the path information has been

erased, and equivalently, the OAM of the photon. The detection probability function

is consistent with the theory of Eq. (4.13).

Next, the polarizer angle was varied in the range 𝛼 = 0 through 𝜋 with subsequent

measurements of the spatial pattern. The visibility of the interference fringes with

respect to the polarizer orientation was calculated from the measured data and is
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presented in Fig. 4-3 (b). The interference fringes are minimal at 𝛼 = 0 and maximal

when 𝛼 = 𝜋/4, as expected. Indeed, the polarizer controls the interference between

the two OAM paths with a visibility proportional to | sin(2𝛼)|, as predicted by the

theory.

Finally, we performed a delayed measurement variation of the quantum eraser by

extending the path length of arm A by 2.3 m, with the experimental results presented

in Fig. 4-3 (c) and (d). The same procedures were used to mark the OAM paths and

to erased the path information. The visibility with respect to the variation of the

polarizer angle was calculated and presented in Fig. 4-3 (d), showing a range from

𝑉 = 0.008 ± 0.01 to 𝑉 = 0.96 ± 0.02, in good agreement with theory.

Complementarity between path information and fringe visibility is essential to

the quantum eraser. By defining the two distinct paths using the OAM DoF, we

have shown that through polarisation-OAM hybrid entanglement, it is possible to

distinguish (𝑉 = 0.04±0.01) and erase (𝑉 = 0.92±0.01) the OAM path information of

a photon through the polarisation control of its entangled twin. Our work is consistent

with previous studies using entanglement and linear momentum of light [25], as well

as with angular fringes observed with weak classical light [113], both of which used

physical paths rather than abstract paths for the path interference. Our delayed-

choice experiment highlights the extent to which information is made available to

an observer through a delayed measurement variation of the quantum eraser, where

the analysis of the fringe pattern occurs before the decision to mark the paths (or

not) is made. Indeed, we distinguished (𝑉 = 0.008 ± 0.01) and erased (𝑉 = 0.96 ±

0.02) the OAM path information, showing that causality does not play a role in the

outcome path interference, which is a non-classical property of quantum mechanics.

The improvement in the visibility of our results is due to the enhanced quality of the

spin-orbit modulation owing to the extension of the distance between detection system

and q-plate: the quality of the OAM mode improves with propagation. Furthermore,

mutual exclusivity between the visibility and path information was demonstrated by

varying the amount of OAM path information present in the system.

Significantly, our scheme shows the important role of hybrid entanglement which
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has been discussed previously as the main aspect of the quantum eraser [9, 26]. Ab-

stracting the path to OAM, with all the versatile tools that come with this choice

of path, may provide the possibility of finding new approaches for studies in quan-

tum information and communication. While we note that in principle any degree of

freedom may be used, OAM is an attractive choice due to the possibility to explore

the impact of dimensionality in such systems, given that it offers an infinitely large

Hilbert space in which to operate. Finally, our scheme contrasts previous reports

that rely primarily on traditional path-phase interferometric methods, overcoming

the sensitivity and complexity of such experiments.

In conclusion, we have shown that the OAM of a photon may be treated as an

abstract path, reminiscent of a slit. Using OAM-polarization hybrid entanglement,

we have shown that, just as in the double slit quantum eraser, the OAM information

of a photon that is marked with orthogonal polarizations can be erased through

the polarization control of a bi-photon twin, both in the conventional scheme and

in a delayed measurement type arrangement. In both schemes the fringe visibility

increases with a reduction in the OAM path information.
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Chapter 5

High-bit-rate quantum key

distribution with entangled

internal degrees of freedom of

photons

Quantum communication over long distances is integral to information security and

has been demonstrated in free space and fibre with two-dimensional polarisation states

of light. Although increased bit rates can be achieved using high-dimensional encoding

with spatial modes of light, the efficient detection of high-dimensional states remains

a challenge to realise the full benefit of the increased state space. Here we exploit the

entanglement between spatial modes and polarization to realise a four-dimensional

quantum key distribution (QKD) protocol based on eigenmodes of free-space and

fibre. We introduce a detection scheme which allows for the detection of all basis

modes in a high-dimensional space deterministically, and demonstrate efficient QKD

at high secure key and sift rates, with the highest capacity-to-dimension reported to

date. This work opens the possibility to increase the dimensionality of the state-space

indefinitely while still maintaining deterministic detection and will be invaluable for

long distance “secure and fast” data transfer.
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5.1 Introduction

The use of polarization encoded qubits has become ubiquitous in quantum communi-

cation protocols with single photons [120–123]. Most notably, they have enabled un-

conditionally secure cryptography protocols through quantum key distribution (QKD)

over appreciable distances [124–126]. With the increasing technological prowess in the

field, faster and efficient key generation together with robustness to third party at-

tacks have become paramount issues to address. A topical approach to overcome

these hurdles is through higher-dimensional QKD: increasing the dimensionality, 𝑑,

of a QKD protocol leads to better security and higher secure key rates, with each

photon carrying up to log2(𝑑) bits of information [47,48].

Employing spatial modes of light, particularly those carrying orbital angular mo-

mentum (OAM), has shown considerable improvements in data transfer of classi-

cal communication systems [127–129]. However, realizing high-dimensional quantum

communication remains challenging. To date, the list of reports on high dimen-

sional QKD with spatial modes is not exhaustive, and include protocols in up to

𝑑 = 7 [56,58].

Photons with complex spatial and polarization structure, commonly known as

vector modes, have been used as information carriers for polarisation encoded qubits

in alignment-free QKD [46, 130], exploiting the fact that vector modes that carry

OAM exhibit rotational symmetry, removing the need to align the detectors in order

to reconcile the encoding and decoding bases, as would be the case in QKD with

only polarization. In these vector modes, the spatial and polarization degrees of

freedom (DoFs) are coupled in a non-separable manner, reminiscent of entanglement

in quantum mechanics. This non-separability can be used to encode information

and has been done so with classical light [131, 132], for example, in mode division

multiplexing [133].

Here we use vector OAM modes (vector vortex modes) to realize four-dimensional

QKD based on the “BB84” protocol [6]. Rather than carrying information encoded in

one DoF, the non-separable state can itself constitute a basis for a higher dimensional
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space that combines two DoFs, namely the spatial and polarisation DoFs. Impor-

tantly, our basis is made from the natural modes of free-space and optical fibre (e.g.,

step-index fibre), thus facilitating long distance transport of information. To fully

benefit from the increased state space, we introduce a new detection scheme that,

deterministically and without dimension dependent sifting loss, can detect all basis

elements in our high-dimensional space. This differs from previous schemes that have

used mode filters as detectors, sifting through the space one mode at a time, thus

removing all benefit of the dimensionality of the space, or have used mode sets that

are not suitable for long distance propagation (see for example ref. [56]) Our approach

combines manipulations of the dynamic and Panchanratnam-Berry phase with static

optical elements and, in principle, allows detection of the basis elements with unit

probability. We demonstrate high-dimensional encoding/decoding in our entangled

space, obtaining a detection fidelity as high as 97%, with a secret key rate of 1.52

bits per photon and quantum error rate of 3%. As a means of comparison to other

protocols, we calculated the capacity-to-dimension ratio and show that our scheme is

more efficient than any other reported to date.

5.2 Methods and Results

5.2.1 High-dimensional encoding

The first QKD demonstrations were performed using the polarisation DoF, namely,

states in the space spanned by left- circular |𝐿⟩ and right-circular polarization |𝑅⟩,

i.e., ℋ𝜎 = span{|𝐿⟩ , |𝑅⟩}, and later using the spatial mode of light as a DoF, e.g.,

space spanned by the OAM modes |ℓ⟩ and |−ℓ⟩, i.e. ℋℓ = span{|ℓ⟩ , |−ℓ⟩}. Using

entangled states in both DoFs allows one to access an even larger state space, i.e.,

ℋ𝜎,ℓ = ℋ𝜎 ⊗ℋℓ, described by the higher-order Poincaré sphere [134,135]. Employing

multiple OAM values the final state space is a direct sum of the subspaces ℋ𝜎,ℓ for

different ℓ:

ℋ𝑀 =
⨁︁
ℓ∈𝑀

ℋ𝜎,ℓ , (5.1)
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Figure 5-1: Vector vortex modes for (a) ℓ = ±1 and (b) ℓ = ±10, with the mutually
unbiased scalar modes also for the (c) ℓ = ±1 and (d) ℓ = ±10 subspaces. The insets show
the azimuthally varying phase profile of the scalar/OAM modes.

where 𝑀 ⊂ N and the direct sum
⨁︀

of vector spaces 𝐴𝑖 is given by
⨁︀

𝑖𝐴𝑖 =

{
∑︀

𝑖 𝛼𝑖 |𝑎𝑖⟩ : |𝑎𝑖⟩ ∈ 𝐴𝑖, 𝛼𝑖 ∈ C}. The dimension of ℋ𝑀 equals the sum of the dimen-

sions of the subspaces ℋ𝜎,ℓ, i.e. 𝑑 = 4𝑁 , with 𝑁 = |Ω| being the number of different

values |ℓ| (subspaces). This opens the way to infinite dimensional encoding using such

entangled states. For example, using only the |ℓ| subspace of OAM (𝑁 = 1) leads to

a four dimensional space spanned by {|ℓ, 𝐿⟩ , |−ℓ, 𝐿⟩ , |ℓ, 𝑅⟩ , |−ℓ, 𝑅⟩}. It is precisely

in this four-dimensional subspace that, here, we define our vector and scalar modes.

Alice randomly prepares photons in modes from two sets: a vector mode set, |𝜓⟩ℓ,𝜃,

and a mutually unbiased scalar mode set, |𝜑⟩ℓ,𝜃, defined as

|𝜓⟩ℓ,𝜃 =
1√
2

(|𝑅⟩ |ℓ⟩ + 𝑒𝑖𝜃 |𝐿⟩ |−ℓ⟩), (5.2)

|𝜑⟩ℓ,𝜃 =
1√
2

(︁
|𝑅⟩ + 𝑒𝑖(𝜃−

𝜋
2 ) |𝐿⟩

)︁
|ℓ⟩ , (5.3)

where each OAM state (|±ℓ⟩) carries ±ℓ~ quanta of OAM, |𝑅⟩ and |𝐿⟩ are, re-

spectively, the right and left circular polarization eigenstates and 𝜃 = 0 or 𝜋 is the

intra-modal phase. For a given |ℓ| OAM subspace, there exist four orthogonal modes
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in both the vector basis (Eq. (5.2)) and its mutually unbiased counterpart (Eq. (5.3)),

such that |⟨𝜓⟩𝜑|2 = 1/𝑑 with 𝑑 = 4. These vector and scalar modes can be generated

by manipulating the dynamic or geometric phase of light [45, 136–138]. Our four

vector modes for QKD are:

|00⟩𝑣 =
1√
2

(|𝑅⟩ |ℓ⟩ + |𝐿⟩ |−ℓ⟩), (5.4)

|01⟩𝑣 =
1√
2

(|𝑅⟩ |ℓ⟩ − |𝐿⟩ |−ℓ⟩), (5.5)

|10⟩𝑣 =
1√
2

(|𝐿⟩ |ℓ⟩ + |𝑅⟩ |−ℓ⟩), (5.6)

|11⟩𝑣 =
1√
2

(|𝐿⟩ |ℓ⟩ − |𝑅⟩ |−ℓ⟩), (5.7)

with corresponding mutually unbiased bases (MUB)

|00⟩𝑠 = |𝐷⟩ |−ℓ⟩ , (5.8)

|01⟩𝑠 = |𝐷⟩ |ℓ⟩ , (5.9)

|10⟩𝑠 = |𝐴⟩ |−ℓ⟩ , (5.10)

|11⟩𝑠 = |𝐴⟩ |ℓ⟩ , (5.11)

where the subscripts 𝑠 and 𝑣 refer to, respectively, the scalar and vector mode basis,

while 𝐷 and 𝐴 are the diagonal and anti-diagonal polarisation states. For the purpose

of demonstration, we use vector and scalar modes in the ℓ = ±1 and ℓ = ±10 OAM

subspaces, shown graphically in Fig. 5-1.

5.2.2 Mode generation

We used 𝑞-plates to couple the polarisation and orbital angular momentum degrees of

freedom through geometric phase control [10,139]. With locally varying birefringence

across a wave plate, the geometric phase imparted by a 𝑞-plate was engineered to

produce transformation given by Eq. (2.9) in Sec. 2.2 The vector modes investigated

here were generated by transforming an input linearly polarized Gaussian mode with

quarter- or half- wave plates and 𝑞 = 1/2 and 𝑞 = 5 plates, producing either separable

73



Figure 5-2: We generate the set of vector and scalar modes using a 𝑞-plate and wave plates
(𝜆/2 and 𝜆/4) stacked and orientated at angles given in Table. 5.1. We use the 𝜆/4
wave plates to convert between linear and circular polarisation states and the 𝜆/2 plates to
rotate between desired linear polarisation states. The generation scheme assumes an input
of horizontally polarised light with a Gaussian profile (|𝐻⟩ |0⟩).

(scalar) non-separable (vector) superpositions of qubit states in Eqs. (5.2) and (5.3).

The generated states and the elements setting are given in Table 5.1.

Table 5.1: Generation of MUBs of vector and scalar modes from an input, horizontally
polarized Gaussian beam. The wave-plate angles are defined with respect to the fast axis
of each plate.

Mode 𝜆/4(𝛼1) 𝜆/2(𝜃1) 𝑞-plate 𝜆/4(𝛼2) 𝜆/2(𝜃2)

|𝜓⟩ℓ,0 – 0 |𝑞| – –

|𝜓⟩ℓ,𝜋 – 𝜋/4 |𝑞| – –

|𝜓⟩−ℓ,0 – – |𝑞| – 0

|𝜓⟩−ℓ,𝜋 – – |𝑞| – 𝜋/4

|𝜑⟩ℓ,0 −𝜋/4 – |𝑞| −𝜋/4 𝜋/4

|𝜑⟩ℓ,𝜋 −𝜋/4 – |𝑞| −𝜋/4 −𝜋/4
|𝜑⟩−ℓ,0 𝜋/4 – |𝑞| 𝜋/4 𝜋/4

|𝜑⟩−ℓ,𝜋 𝜋/4 – |𝑞| 𝜋/4 −𝜋/4

5.2.3 High-dimensional decoding

At the receiver’s end, Bob randomly opts to measure the received photon in either

the scalar or vector basis. The randomness of the choice between the two bases is

implemented here with a 50:50 beam splitter (BS) as shown in Fig. 5-3(a) – due to

the quantum nature of the photon, there is an equal probability that the photon

will be measured in either of the two bases. Prior QKD experiments beyond two-
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Figure 5-3: (a) Bob randomly selects to measure the incoming single photon from Alice
in either the |𝜓⟩ℓ (vector) or |𝜑⟩ℓ (scalar) basis and detects the photon deterministically
with eight detection ports. (b) The |𝜑⟩ℓ scalar analyser first convert linear to circular
polarisation using a quarter-wave plate, then polarisation to path with a polarisation grating
(PG). Subsequently the OAM states are measured using mode sorters (MS1 and MS2) that
map OAM to position. (c) The |𝜓⟩ℓ vector analyser works in analogous fashion, with the
exception that the paths after the PG are interfered on a beam-splitter (BS) before passing
the resulting output from each port to an OAM detector (mode sorter). (d) The input
states prepared by Alice are now unambiguously mapped to detectors in Bob’s measurement
system, allowing all states to be detected with the eight detectors. Classical experimental
data is shown for two examples from the ℓ = ±10 subspace. (e) Experimental confirmation
of Bob’s detection scheme for both |𝜓⟩ℓ and |𝜑⟩ℓ states prepared by Alice, for ℓ = ±1 (blue)
and ℓ = ±10 (red).

dimensions have used filtering based techniques that negate the very benefit of the

increased state space as highlighted in [140]; by filtering for only one mode at a

time, the effective data transfer rate is reduced by a factor 1/𝑑. We introduce a new

scheme to deterministically detect the modes, as detailed in Fig. 5-3 (b) and (c), that

has a number of practical advantages for quantum cryptography. Consider a vector

mode as defined in Eq. (5.2). The sorting of the different vector modes is achieved

through a combination of geometric phase control and multi-path interference. First,

a polarisation grating based on geometric phase acts as a beam splitter for left- and
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right-circularly polarised photons, creating two paths

|Ψ⟩ℓ,𝜃 →
1√
2

(︀
|𝑅⟩𝑎 |ℓ⟩𝑎 + 𝑒𝑖𝜃 |𝐿⟩𝑏 |−ℓ⟩𝑏

)︀
, (5.12)

where the subscript 𝑎 and 𝑏 refer to the polarisation-marked paths.

The photon paths 𝑎 and 𝑏 are interfered at a 50:50 BS, resulting in the following

state after the BS:

|Ψ′⟩ℓ,𝜃 =
1 + 𝑒𝑖(𝛿+𝜃+𝜋

2
)

2
|ℓ⟩𝑐 + 𝑖

1 + 𝑒𝑖(𝛿+𝜃−𝜋
2
)

2
|−ℓ⟩𝑑 , (5.13)

where the subscripts 𝑐 and 𝑑 refer to the output ports of the beam splitter and 𝛿 is

the dynamic phase difference between the two paths. Note that the polarisation of

the two paths is automatically reconciled in each of the output ports of the beam

splitter due to the difference of parity in the number of reflections for each input arm.

Also note that at this point it is not necessary to retain the polarisation kets in the

expression of the photon state since the polarisation information is contained in the

path. In our setup we set 𝛿 = 𝜋/2, reducing the state in Eq. (5.13) to

|Ψ′⟩ℓ,𝜃 =
1 − 𝑒𝑖𝜃

2
|ℓ⟩𝑐 + 𝑖

1 + 𝑒𝑖𝜃

2
|−ℓ⟩𝑑 . (5.14)

The measurement system is completed by passing each of the outputs in 𝑐 and 𝑑

through a mode sorter and collecting the photons using 4 fibres coupled to avalanche

photodiodes. The mode sorters are refractive (lossless) aspheres that map OAM

to position [141–144]. While it is trivial to measure such entangled (non-separable)

vector states at the classical level with many photons [131,133,145], with our approach

each such state is detected with, in principle, unit probability at the single photon

level. For example, consider the modes |00⟩ and |01⟩, where 𝜃 = 0 and 𝜃 = 𝜋,

respectively. The mapping is such that
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|00⟩ → |Ψ′⟩ℓ,0 = 𝑖 |−ℓ⟩𝑑 , (5.15)

|01⟩ → |Ψ′⟩ℓ,𝜋 = − |ℓ⟩𝑐 , (5.16)

where the indices 𝑐 and 𝑑 label the output ports of the BS. Thus, through this path

interference, the vector modes are mapped such that |00⟩ produces a signal in port 𝑑

at position 𝑋ℓ while |01⟩ produces a signal in port 𝑐 at position 𝑋−ℓ. Sample results

for these modes are shown in Fig. 5-3(d) and for all states in the Methods. Thus the

combination of path (𝑐 or 𝑑) and lateral location (𝑋ℓ or 𝑋−ℓ) uniquely determines

the original vector mode.

The scalar mode detector works on an analogous principle but without the need of

the BS to resolve the intermodal phases. The polarisation states are resolved by first

performing a unitary transformation that maps linear to circular basis, and passing

the scalar mode through the polarisation grating. The OAM states are subsequently

sorted using the mode sorters.

5.2.4 Sorting of scalar and vector modes OAM mode

We use a compact phase element to perform a geometric transformation on OAM

modes such that azimuthal phase is mapped to a transverse phase variation, i.e.,

a tilted wavefront. The first optical element of our OAM mode sorter performs a

conformal mapping in the standard Cartesian coordinates, from a position in the

input plane (𝑥, 𝑦) to one in the output plane (𝑢, 𝑣), such that

𝑢 =
𝑑

2𝜋
arctan

(︁𝑦
𝑥

)︁
, (5.17)

𝑣 = − 𝑑

2𝜋
ln

(︃√︀
𝑥2 + 𝑦2

𝑏
,

)︃
(5.18)

where 𝑑 is the aperture size of the free form optics and 𝑏 is a scaling factor that controls

the translation of the transformed beam in the 𝑢 direction of the new coordinate
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Figure 5-4: (a) We use a mode sorter that consists of two refractive optical lenses, OE1
and OE2 which transform the azimuthal phase into a linear phase and mapped onto unique
positions. The input mode unravels after OE1 and a linear phase is retained by OE2. The
phase is then mapped onto a position unique to the azimuthal charge by a Fourier lens. We
use these lenses to map the mode set (|𝜑⟩ , |𝜓⟩) onto positions based on their orbital angular
momentum. Here (b) and (c) are the scalar and vector mode CCD camera images of the
signal (elongated spots) when ℓ = ±1, and (d) and (e) for ℓ = ±10. The detection schemes
corresponding to the scalar and vector analysis are illustrated in Fig. 5-3.

system. The result is that after passing through a second phase-correcting optic and

then a Fourier transforming lens (of focal length 𝑓), the input OAM (ℓ) is mapped

to output positions, 𝑋ℓ, following

𝑋ℓ =
𝜆𝑓ℓ

𝑑
. (5.19)

This conformal mapping of ring to line to point, is shown in Fig. 5-4(a). The

classical result for the vector and scalar detections are shown in Figs. 5-4(b) and (c)

for |ℓ| = 1, and in Figs. 5-4(d) and (e) for |ℓ| = 10. Note that here, we use standard
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Table 5.2: Mode detection paths and respective positions of the spots after the mode sorter

Mode Path Spot position

|𝜓⟩ℓ,0 𝑐 𝑋ℓ

|𝜓⟩ℓ,𝜋 𝑑 𝑋ℓ

|𝜓⟩−ℓ,0 𝑐 𝑋−ℓ

|𝜓⟩−ℓ,𝜋 𝑑 𝑋−ℓ

|𝜑⟩ℓ,0 𝑎 𝑋ℓ

|𝜑⟩ℓ,𝜋 𝑏 𝑋ℓ

|𝜑⟩−ℓ,0 𝑎 𝑋−ℓ

|𝜑⟩−ℓ,𝜋 𝑏 𝑋−ℓ

convex lenses to do the mapping to position, as opposed to cylindrical lenses which

would transform the lines to a point. A summary of the scalar and vector detection

is shown in Table 5.2.

5.2.5 Crosstalk analysis

The crosstalk analysis of the vector (|𝜓⟩) and scalar (|𝜑⟩) modes is represented by

a matrix of detection probabilities for each of the modes sent by Alice (rows) and

measured by Bob (columns). The entries are partitioned into four quadrants: the

diagonal quadrants correspond to the outcomes of measurements in matching bases

while the off-diagonal show the outcomes of measurements in the complementary

bases (see Fig.5-5 (a)).

A graphical illustration of the experimental performance of both the scalar and

vector analysers is shown in Fig. 5-3(e) (the diagonal matrices of Fig. 5-5(c) and (d)),

where modes from the ℓ = ±1 and ℓ = ±10 subsets were measured with high fidelity

(approx. 97%).

5.2.6 High dimensional cryptography

We performed a four-dimensional prepare-and-measure BB84 scheme [6] using mutu-

ally unbiased vector and scalar modes. Our laser source was attenuated with neutral

density filters to nearly 𝜇 = 0.008 photon per pulse. We assembled single mode fiber

couplers at the classically predicted positions of the strips of light. The fibers were
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Figure 5-5: (a) Schematic of the inner product measurements performed between the vector
states |𝜓⟩ℓ,𝜃 and their mutually unbiased counterparts |𝜑⟩ℓ,𝜃. (b) Theoretical scattering
probabilities among the vector and scalar modes following the measurement process of (a).
The experimental results are shown in (c) and (d) for modes in the ℓ = ±1 and ℓ = ±10
subspaces, respectively.

coupled to Perkin-Elmer Single photon counting modules. Alice prepared an initial

state in either the |𝜓⟩ℓ (vector) or |𝜑⟩ℓ (scalar) basis and transmitted it to Bob, who

made his measurements as detailed in the previous section. Through optical projec-

tion onto both the vector and scalar bases as laid out in Fig. 5-5(a), we determined

the crosstalk matrices shown in Fig. 5-5(c) and (d), relating the input and measured

modes within, respectively, the subspaces ℓ = ±1 and ℓ = ±10. The average fi-

delity of detection, measured for modes prepared and detected in identical bases, is

0.965±0.004 while the overlap between modes from MUBs is | ⟨𝜑⟩𝜓|2 = 0.255±0.004,

in good agreement with theory (0.25).

Next, we performed a four dimensional prepare-and-measure BB84 scheme using

mutually unbiased vector and scalar modes. For each mode, Alice and Bob assign the

bit values 00, 01, 10 and 11, as shown in Fig. 5-6(a). During the transmission, Alice

randomly prepares her photon in a vector (scalar) mode state while Bob randomly

measures the photon with either the vector or scalar analyser detailed in Fig. 5-3. At
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Figure 5-6: Alice and Bob agree on bit values for the vector and scalar modes. (b) Alice
sends a random sequence of vector and scalar modes, which Bob randomly measures using
either a vector analyser (VA) or a scalar analyser (SA). Alice and Bob, upon communication
of the encoding and decoding bases through a classical channel, discard bit values for modes
prepared and measured in complementary bases. (c) Shows a simple encryption/decryption
of an image using a 98 bit long key, sifted from a total of 200 transmitted bits.

the end of the transmission, Alice and Bob reconcile the prepare and measure bases

and discard measurements in complementary bases, as described in Fig. 5-6(b). We

performed this transmission using a sequence of 100 modes and retained a sifted key

of 49 spatial modes (98 bits), which was used to encrypt and decrypt a picture as

shown in Fig. 5-6(c).

5.2.7 Security analysis.

From the measured crosstalk matrices in Fig. 5-5(c) and (d), we performed a security

analysis on our QKD scheme in dimensions 𝑑 = 4 for the two OAM subspaces (±1 and

±10). The results of the analysis are summarised in Table 5.3. From the measured

detection fidelity 𝐹 , we computed the mutual information between Alice and Bob in

𝑑-dimensions as follows [48]

𝐼𝐴𝐵 = log2(𝑑) + 𝐹 log2(𝐹 ) + (1 − 𝐹 ) log2

(︂
1 − 𝐹

𝑑− 1

)︂
. (5.20)

The measured 𝐼𝐴𝐵 for 𝑑 = 4 is nearly double (1.7×) that of the maximum achiev-

able with only qubit states (1). Assuming a third party, Eve, uses an ideal quan-
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Table 5.3: Summary of the security analysis on the high dimensional protocol showing the
experimental and theoretical values of the detection fidelity (𝐹 ), mutual information 𝐼𝐴𝐵

between Alice and Bob, Eve’s cloning fidelity (𝐹𝐸) and mutual information with Alice 𝐼𝐴𝐸 ,
as well as the quantum error rate 𝑄 and secret key rate 𝑅.

𝑑 = 4 (ℓ = ±1) 𝑑 = 4 (ℓ = ±10)
Measures experiment experiment ideal

𝐹 0.96 0.97 1.00
𝐼𝐴𝐵 1.69 1.76 2.00
𝐹𝐸 0.44 0.41 0.25
𝐼𝐴𝐸 0.17 0.13 0.00
𝑄 0.04 0.03 0.00
𝑅 1.39 1.52 2.00

tum cloning machine to extract information, the associated cloning fidelity, 𝐹𝐸, in

𝑑-dimensions is given by [48]

𝐹𝐸 =
𝐹

𝑑
+

(𝑑− 1)(1 − 𝐹 )

𝑑
+

2
√︀

(𝑑− 1)𝐹 (1 − 𝐹 )

𝑑
. (5.21)

With increasing dimensions, the four dimensional protocol reduces the efficiency

of Eve’s cloning machine to as low as 0.38 well below the maximum limit in a two-

dimensional protocol (0.5) Thus, increasing the dimensionality of QKD protocols does

indeed have, in addition to higher mutual information capacity, higher robustness to

cloning based attacks.

The mutual information shared between Alice and Bob, conditioned on Bob’s

error – that is, Bob making a wrong measurement is as a result of Eve extracting the

correct information – is computed in 𝑑-dimension as follows [48]

𝐼𝐴𝐸 = log2(𝑑) + (𝐹 + 𝐹𝐸 − 1) log2

(︂
𝐹 + 𝐹𝐸 − 1

𝐹

)︂
+ (1 − 𝐹𝐸) log2

(︂
1 − 𝐹𝐸

(𝑑− 1)𝐹

)︂
.

(5.22)

The consequent measured quantum error rate of 𝑄 = 1 − 𝐹 = 0.04 is well below

the 0.11 and 0.18 bounds for unconditional security against coherent attacks in two

and four dimensions [48], respectively. The lower bound on the secret key rate, given
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by [55]

𝑅 = log2(𝑑) + 2𝐹 log2(𝐹 ) + 2(1 − 𝐹 ) log2

(︂
1 − 𝐹

𝑑− 1

)︂
, (5.23)

yields a value as high as 1.52 bits per photon, well above the Shannon limit of one bit

per photon achievable with qubit states. While the security of the protocol can be

increased with privacy amplification, the measured four-dimensional secret key rate

demonstrates the potential of such entangled modes for high bandwidth quantum

communication.

Deterministic measurement versus filter-based measurement. The above

analysis assumes that the detection schemes can deterministically distinguish all basis

states from each basis. In the case where filters are used to distinguish a single basis

element from all others, the probability to choose the filter that corresponds to the

sent signal state is given by 1/𝑑. As such, using a filter based detection, the sifting

loss grows with the dimension, 𝑑.

The sifting losses can, however, be reduced by using additional DoFs; For exam-

ple, when detecting vector OAM modes, the polarization DoF can be exploited as

a “marker” for the higher dimensional OAM space. This hybrid system allows the

higher dimensional vector mode space to be probed two modes at a time (see App.

B), thus doubling the performance of the pure filter-based technique.

In this work we present a deterministic measurement scheme where all basis modes

are sorted and detected, including the mutually unbiased vector modes using single

photon interference at a beam splitter. Since each mode maps to a unique position

in the spatial domain, such a detection will not suffer from any dimension-dependent

loss. To account for the effect of the detection system on the QKD performance, we

define the effective secret key 𝑅𝐸, given by 𝑅𝐸 = 𝛼𝑅 where 𝛼 is the basis detection

efficiency of the detection scheme. This would represent the bits of information that

is extracted on average, for every photon sent (data transfer rate), and is shown theo-

retically in Fig. 5-7 (a) for the maximum allowable effective key rate, which assumes

perfect Fidelity (𝐹 = 1) and no additional loss, together with experimental data.

Deterministic measurement (𝛼 = 1) outperforms filtering which, coincidentally, does
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Figure 5-7: (a) Effective key rate as a function of dimension shown theoretically (solid
curves) for two measurement approaches, namely, filtering and deterministic detection.
Data points show measurements in the subspaces of ℓ = ±1 and ℓ = ±10 for three di-
mensions (𝑑 = 2,3 and 4). In (b) the efficiency ratio, 𝜂, is plotted theoretically (dashed
line) together with the experimental data (symbols) inferred from (a), highlighting the per-
formance enhancement of deterministic measurement over filter-based measurement. The
theoretical plots are for a Fidelity of 𝐹 = 1.

not show any improvement over the maximum achievable with just two dimensional

polarization states. This is because the gain coefficient for filtering, given by 𝛼 = 1/𝑑,

decays faster than the logarithmic term log2(𝑑) grows. In other words, while higher

dimensions allows more bits per photon, unless the detection is deterministic it takes

many more photons to detect a particular mode from the Hilbert space, so that the

very benefit of the dimensionality is negated in as far as data transfer is concerned.

To test this we built a filter-based measurement scheme for comparison purposes (see

Fig. B-1 in App. B), with the data shown in Fig. 5-7 (a) and (b). A graphical

illustration of the performance enhancement of our scheme over a filter-based scheme
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is shown in Fig. 5-7 (b) where the ratio 𝜂, defined as follows

𝜂 =
𝑅deterministic

𝐸

𝑅filter
𝐸

, (5.24)

is plotted as function of the dimension, clearly showing the superiority of the deter-

ministic detection. For example, we note that while all data points are below the

allowed maximum (due to imperfect Fidelities and non-zero loss in the systems), the

deterministic measurement scheme provides a 3.7× enhancement in performance for

𝑑 = 4, in good agreement with the theoretical value of 4×. In our analysis we have

assumed in both cases that the rest of the measurement system has identical loss,

which may be taken to be zero. While this is adequate for this comparative study, it

is worth noting that experimental limitations do play a role in how QKD protocols

scale with dimension [146].

The effective key rate (𝑅𝐸) we obtained with our new vector OAM basis and its

deterministic measurement exceeds previously reported [56] 𝑑 = 4 laboratory results

by more than 5×, the latter based on scalar OAM modes with a filter measurement

scheme. In order to compare the efficiency of general higher-dimensional protocols

using spatial modes of light, we define the information per photon per dimension as

a figure of merit. Using this, we find that we achieve a value of 0.38, compared to

reported values of 0.17 (𝑑 = 5) [56] and 0.24 (𝑑 = 7) [58], highlighting the efficiency

of our scheme.

5.3 Discussion and conclusion

The prepare-and-measure quantum cryptography scheme we report here realised the

potential of entanglement between spatial modes and polarisation as means to achiev-

ing higher bandwidth optical communication at the single photon level as well as clas-

sically. Our secret key rate of 1.52 bits per photon represents a significant increase in

data transfer rates as compared to QKD with conventional polarisation eigenstates.

An important aspect of our scheme is the deterministic measurement of all higher
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dimensional states, allowing, in principle, unit detection probability by Bob for any

prepared mode by Alice. This makes it possible to increase the dimensionality of

quantum cryptography protocols without compromising on the sifting rate, the frac-

tion of the transmitted bits that constitute the key, unlike with other methods where

the data transfer rate is decreased due to filtering for one mode at a time, thereby

decreasing the detection probability for a given mode by a factor 1/𝑑. We point out

that our scheme would likewise increase the signal-to-noise of classical mode divi-

sion multiplexing communication systems: rather than distribute the signal across 𝑑

modes, each with 1/𝑑 of the signal, we can achieve full signal on each mode with a

factor 𝑑 greater signal-to-noise ratio [147]. A major advantage is that all modes in

our Hilbert space are eigenmodes of free-space and optical fibre, unlike prior QKD

demonstrations with spatial modes, thus facilitating long distance applications out-

side the laboratory environment. Furthermore we anticipate that no benefit will be

derived to Eve (mutual information between Bob/Alice and Eve) from this mode set

when propagated over long distance in free space due to the identical scattering of

vector and scalar OAM modes in turbulence [148].

In conclusion, we have performed efficient high-dimensional QKD using a basis

formed from eigenmodes of free-space and fibre with entangled spatial and polarisation

DoFs. By outlining a new measurement approach for the vector elements in this

basis we were able to show that this QKD approach is capable of realising high-bits

per photon at high sift rates and high data transfer rates, substantially improving

on previously reported results. When combined with real-time error correction [45]

that also exploits properties of this mode set, and the possibility to increase the

dimensionality of the state-space indefinitely while still maintaining unit probability

detection, we foresee that this approach will be invaluable for long distance “secure

and fast” data transfer.
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Chapter 6

Conclusion

Quantum entanglement is a property that describes systems with physical descriptions

that cannot be described independently even when spatially separated by infinite dis-

tances. Although such systems are usually studied in single degree of freedom (DoF),

e.g, the 2-dimensional polarisation, the high dimensional orbital angular momentum

(OAM) or transverse momentum, it is possible to combine such properties to bene-

fit from the individual characteristics of each DOF through hybrid entanglement –

the entanglement between particles defined in differing DoFs. In this dissertation, I

focused on the hybrid entanglement between the polarisation and OAM of light for

novel applications in quantum communication and information.

In Chapter 2, I demonstrated the techniques required to generate and detect spa-

tial modes of light with coupled DoF. To generate the spatial modes I used geometric

phase control with 𝑞-plates and showed that high dimensional photon states of cou-

pled DoFs can be unambiguously detected based on the reciprocity of light. I also

showed that a projective measurement can be constructed using a spatial light modu-

lator (SLM), a single mode fiber (SMF) and a single photon detector. These methods

were crucial for engineering hybrid entanglement and measuring the spatial modes of

entangled photons.

In Chapter 3, I demonstrated the techniques required to generate and detect entan-
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gled photons in the OAM DoF with a periodically-poled-potassium-titanyl-phosphate

(PPKTP) crystal via spontaneous parametric down-conversion (SPDC). I showed

that a variance in temperature of the crystal affects the phase matching conditions

(momentum and energy conservation) and consequently the geometry of the emit-

ted photons. To detect the down-converted photons, I used digital holography based

on the projective measurement technique that was demonstrated in Chapter 2. The

system was assembled and characterised using a back-projection - one of the entan-

gled photons is treated retrodictively and replaced with laser light. Furthermore, I

showed that the PPKTP crystal conserved OAM. Moreover, the entanglement of the

system was confirmed via a Bell-like inequality violation. I also demonstrated a full

state tomography and measured the fidelities, concurrences and linear entropies which

yielded results indicating that the non-linear crystal produced entangled photons that

can be described by a pure OAM maximally entangled Bell state.

In Chapter 4, I used the techniques developed in Chapter 2 and 3 to generate

hybrid entanglement and demonstrated a quantum eraser experiment with orbital

angular momentum. The OAM entangled photons were first prepared from SPDC.

Subsequently, OAM to polarisation conversion of one of the entangled photons was

performed with the aid of the 𝑞-plate allowing the photon’s polarisation to be en-

tangled to the OAM of its twin. I showed that through polarisation-OAM hybrid

entanglement, a quantum eraser experiment can be performed in a delayed measure

scheme where I treat OAM as an analogous path which can be distinguished and

erased.

These results serve as a stepping stone to extending the study of wave-particle

duality to other abstract variables in quantum mechanics. Previously, the study

of particle-wave duality and the complementarity principle was pervasively explored

through path interferometers. However, the scheme I presented introduces a new way

of exploiting hybrid-entanglement to achieve the same result. An avenue to explore

would be to perhaps implement the high dimensionality of OAM modes which could
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expand the abstract paths of the eraser. Its interesting to ask whether multiple OAM

”path” information could also be erased? This could serve as a potential method of

confirming the entanglement of a compound quantum systems. For example, a Bell

analysis becomes more difficult to implement in higher dimensions, but a quantum

eraser procedure may also serve as an entanglement probe which could replace it. Im-

plementing high dimensional (QKD) with entangled photons would benefit from this

analysis in order to confirm the entanglement of the system. Therefore this technique

may be useful in characterising quantum channels that use entangled photons.

In Chapter 5, I demonstrated the advantage of using the non-separable (entangled)

vector modes and their mutually unbiased set of scalar modes, prepared and measured

in Chapter 2, to demonstrate a high dimension QKD BB84 protocol. The high dimen-

sional capabilities of theses spatial modes have not been exploited for quantum key

distribution. Contrary to exploiting the reciprocity of 𝑞-plates, I engineered a system

that resolves the mode sets in position enabling for their unambiguous detection de-

terministically. I showed that the detection scheme outperforms probabilistic sifting

methods which may reduce the detection efficiency of the system and consequently

reduce the key generation rate. The presented scheme has a high photon efficiency as

compared to state-of-art which is desirable for high-rate secure key generation. The

scheme yielded high fidelities, information capacity per photon and high key rates.

It may be necessary, in future, to study the impeding losses which were ignored in

the system. As presented, the scheme makes use of an attenuated lasers source how-

ever, it is known that such sources do-not produce single photons all the time, making

the scheme vulnerable to eavesdropping without detection. Interestingly, there are

alternative protocols that only require random phase weakly coherent photon sources

where unconditional security is still maintained even if the source emits more that

one photon at a time [149]. It may be useful to investigate whether the scheme is

secure against all forms of eavesdropping. The eavesdropping analysis I presented

was based on a simulation which could be analysed better in an actual experiment.
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Such an addition could give a better indication of the actual security of the system.

I emphasise that the main aim of chapter 5 was to demonstrate that spatial modes

of coupled DoF (hybrid photon states) can be used for QKD with the advantage of

high dimensional encoding. However, for a full practical implementation (full charac-

terisation of the photon source and eavesdropping) needs to be considered and I aim

to address this in future work.

In summary I have shown the following:

(1) Through hybrid entanglement, the fundamental wave and particle nature of pho-

tons can be controlled even when abstracting the idea of physical paths to other DOF

making the erasure of the OAM of a photon possible. Having such meticulous control

is essential for quantum communication since the fundamental nature of photons is

exploited for transmitting quantum information.

(2) High dimensional quantum key distribution with hybrid photonic states show a

significant increase in data transfer rates as compared to quantum key distrubition

with conventional polarisation eigenstates. Through hybridised detection schemes,

efficient and deterministic detection systems are easily realisable which may enable

for efficient key generation with spatial modes with high key rates relevant for secure

quantum communication.
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Appendix A

Bell inequality derivation

It was Bell who showed that the quirkiness of quantum entanglement could not be

accounted for by local hidden variable theories [12]. He derived inequalities based on

the EPR assumptions. This places a restriction on a system that satisfies classical

correlations under local hidden variable theories. Clauser, Horne Shimony and Holt

(CHSH) [87] later extended these inequalities, making them useful for experimental

demonstrations in optics.

To derive the inequalities, Bell adopted the EPR assumptions thus assuming the

existence of a hidden variables, 𝜆, with a normalised distribution 𝑝(𝜆) that mediates

maximal correlations between two spatially separated photons,

∫︁
𝑝(𝜆)𝑑𝜆 = 1. (A.1)

Measuring the two subsystems in single DOF, say polarisation, requires that the

polarisation analysers are orientated at 𝛼 and 𝛽, respectively, for each photon which

is treated as individual subsystem. Suppose the outcome of measuring the signal (s)

photon at an orientation 𝛼 (as in Fig. A.1) is 𝐴(𝛼, 𝜆) = 1 for the right (R) circular

polarization and 𝐴(𝛼, 𝜆) = −1 for left (L) circular polarisation states. Similarly, for

the idler (i), we obtain (L, 𝐵(𝛽, 𝜆) = 1) and (R, 𝐵(𝛽, 𝜆) = −1). The expectation
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Figure A-1: An EPR like correlated system where an EPR source sends two particles
that are spatially separated in the paths of the signal (s) and idler (i) where correlated
measurements are performed at each end.

value of polarisation measurements performed on the compound system is given by

𝑃 (𝛼, 𝛽) =

∫︁
𝐴(𝛼, 𝜆)𝐵(𝛽, 𝜆)(𝜆)𝑑𝜆. (A.2)

It follows that

𝑃 (𝛼, 𝛽) − 𝑃 (𝛼, 𝛽′) =

∫︁ (︁
𝐴(𝛼, 𝜆)𝐵(𝛽, 𝜆) − 𝐴(𝛼, 𝜆)𝐵(𝛽, 𝜆)

)︁
𝑝(𝜆)𝑑𝜆. (A.3)

If we define Φ𝛼′,𝛽(𝜆) = 𝐴(𝛼′, 𝜆)𝐵(𝛽′, 𝜆) and manipulate Eq. A.3, we obtain

𝑃 (𝛼, 𝛽) − 𝑃 (𝛼, 𝛽′) =

∫︁ (︁
Φ𝛼,𝛽(𝜆)

(︀
1 ± Φ𝛼′,𝛽′(𝜆)

)︀
(A.4)

− Φ𝛼,𝛽′(𝜆)
(︀
1 ± Φ𝛼′,𝛽(𝜆)

)︀)︁
𝑝(𝜆)𝑑𝜆.

Taking the absolute value of both sides if the equation and applying the triangle

inequality yields,

|𝑃 (𝛼, 𝛽)| − |𝑃 (𝛼, 𝛽′)| ≤
∫︁

|Φ𝛼,𝛽(𝜆)|
(︀
1 ± Φ𝛼′,𝛽′(𝜆)

)︀
𝑝(𝜆)𝑑𝜆 (A.5)

+

∫︁
|Φ𝛼,𝛽′(𝜆)|

(︀
1 ± Φ𝛼′,𝛽(𝜆)

)︀
𝑝(𝜆)𝑑𝜆.

Noting that |𝐴(𝜃, 𝜆)| ≤ 1 and |𝐵(𝜃, 𝜆)| ≤ 1 ∀𝜃, it follows that

|𝑃 (𝛼, 𝛽)| − |𝑃 (𝛼, 𝛽′)| ≤
∫︁ (︀

1 ± Φ𝛼′,𝛽′(𝜆)
)︀
𝑝(𝜆)𝑑𝜆 (A.6)

+

∫︁ (︀
1 ± Φ𝛼′,𝛽(𝜆)

)︀
𝑝(𝜆)𝑑𝜆..
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By Eq. (A.1) it follows that Eq. (A.7) simplifies to

|𝑃 (𝛼, 𝛽) − 𝑃 (𝛼, 𝛽′)| ≤ 2 ± |𝑃 (𝛼′, 𝛽′) + 𝑃 (𝛼′, 𝛽)|. (A.7)

By choosing the equation with ≤ 2 − |𝑃 (𝛼′, 𝛽) + 𝑃 (𝛼′, 𝛽)| on the left hand side, it

holds that

|𝑃 (𝛼, 𝛽) − 𝑃 (𝛼, 𝛽′)| + |𝑃 (𝛼′, 𝛽′) + 𝑃 (𝛼′, 𝛽)| ≤ 2. (A.8)

Using the triangle inequality yields the CHSH/Bell inequality,

|𝑃 (𝛼, 𝛽) − 𝑃 (𝛼, 𝛽′) + 𝑃 (𝛼′, 𝛽′) + 𝑃 (𝛼′, 𝛽)| ≤ 2, (A.9)

where the left hand side represents the correlations between the two subsystems which

is usually denoted as 𝑆. Therefore Eq. (A.9) constrains a correlated system under the

assumption of local hidden variables and independent of the outcome of measurements

on each subsystem (EPR). A violation (𝑆 > 2) would thus prove the entanglement of

the system.
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Appendix B

Detection schemes

To compare deterministic and filter-based detection schemes, consider a state |𝜓ℓ⟩ in

a 𝑑-dimensional Hilbert space ℋ𝑑. We will assume that the states |𝜓ℓ⟩ are eigenstates

of a given observable 𝒪 (e.g., polarization, orbital angular momentum, or any other

degree of freedom of the photon). Suppose Alice prepares her photon in an arbitrary

state |𝜓ℓ⟩. First, consider the case where Bob decides to measure the photons using

a filter based approach; that is, Bob performs a strong measurement or projection

onto the eigenstates of 𝒪: 𝒫ℓ′ = |𝜓ℓ′⟩⟨𝜓ℓ′|. The ideal measurement apparatus to

probe the ℋ𝑑, must produce a unit probability of detection for a given eigenstate |𝜓ℓ⟩

that Alice prepares: 𝒫ℓ′ |𝜓ℓ⟩ = 𝛿ℓ,ℓ′ |𝜓ℓ′⟩. Thus, the operator for the ideal filter based

measurement apparatus takes the form

𝒫 =
∑︁
ℓ′

|𝜓ℓ′⟩⟨𝜓ℓ′|. (B.1)

In dimensions 𝑑 > 2, it is not possible perform the projection 𝒫 with traditional

measuring apparatus such as using digital holograms or a geometric phase plate be-

cause these optical elements modulate the photons such that their transformation

𝒯 = |𝜓⟩⟨𝜓| is described by

|𝜓⟩ =
∑︁
ℓ′′

𝑐ℓ′′ |𝜓ℓ′′⟩ , (B.2)
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Figure B-1: The combination of wave-plates (𝜆4 , 𝜆
2 ), q-plates and 50/50 (BS) and polarisa-

tion (PBS) beam splitters can serve as a detection system. The wave plates can be rotated
at angles shown in Table.5.1.

where |𝑐ℓ′′ |2 is the probability of measuring the state |𝜓ℓ′′⟩. With this approach,

the high-dimensional space needs to be probed one mode at a time. Thus all the 𝑑

detectors will return a positive detection with an average probability of |𝑐ℓ′′ |2 ≤ 1/𝑑.

The filter based detection system used in this study depends on the use of beam

splitters with a combination with 𝑞-plates, wave plates and polarizers. While it

is common practice for the measurement process to be identical to the generation

for reversible processes – as is the case in linear optics – this approach would fail

in measuring high dimensional vector mode spaces. This is because vector modes

within one subset required oppositely charged 𝑞-plates. The best approach to probe

the high dimensional space would require the use of beam splitters as shown in Fig. B-

1, however, at the cost of reducing the detection probability by a factor of 1/2, thus

halving the sift rate and secure key rate; for a key that is 𝑁 -bit long, one would require

sending, on average, 4𝑁 bits. We have tested this by building the system depicted

in Fig. B-1 and performing the same prepare and measure QKD protocol as detailed

in the main text. For a 200 bit transmission we were only able to produce a key

with 25% of the transmitted bits, as compared to 50% using the scheme described

in Fig. 5-3 of Chapter 5. This highlights one of the advantages of a deterministic
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detection system versus the probabilistic (filter-based) system.

Figure B-2: Photon efficiency as a function of dimension for a deterministic and filter-based
measurement scheme.

The advantage of our approach is graphically depicted in Fig. B-2, where we plot,

as a function of the dimension, the photon efficiency of the detection: defined as 1−𝑆

where 𝑆 is the fraction of photons whose information is lost due to measurement ap-

proach. Using a filter based detection, the efficiency of the protocol degrades in higher

dimensions as opposed to our scheme that, in principle, allows operation at maximum

efficiency for high bit rate quantum key distribution. The sifting losses can, however,

be reduced by a factor of 2 with OAM vector modes for example. Using a combination

of geometric phase plates and polarizing beam splitters, the OAM vector mode is first

projected onto OAM then polarization states. The key in using vector modes lies in

the final projection onto polarization states. Because polarization is two-dimensional,

a null detection of one of the eigenstates automatically translates in a positive detec-

tion of the orthogonal eigenstate with unit probability. For demonstration purposes,

consider the following input vector mode:

|𝜓±
ℓ ⟩ =

1√
2

(|ℓ, 𝑅⟩ ± |−ℓ, 𝐿⟩) , (B.3)

where 𝐿 and 𝑅 are the left- and right-circular polarization. By passing such a vector

mode through a 𝑞-plate with topological charge 2𝑞 = |ℓ|, we obtain the following state
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|𝜓′±
ℓ ⟩ =

1√
2
|0⟩ (|𝑅⟩ ± |𝐿⟩) . (B.4)

While and input |𝜓+
ℓ ⟩ results in a horizontally polarized Gaussian mode (ℓ = 0), the

orthogonal vector mode |𝜓−
ℓ ⟩ results in a vertically polarized Gaussian mode. The two

modes can thus be separated using a polarizing beam splitter. The same approach

can be taken for the other two vector modes |𝜓±
−ℓ⟩. Using this principle, it is possible

to probe the hybrid, high-dimensional polarization-OAM space, two modes at the

time. This translates in half the sifting loss of the filtering approach detailed in the

section above.
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[108] M. O. Scully and K. Drühl, “Quantum eraser: A proposed photon correlation

experiment concerning observation and” delayed choice” in quantum mechan-

ics,” Physical Review A, vol. 25, no. 4, p. 2208, 1982.

[109] L. Neves, G. Lima, J. Aguirre, F. Torres-Ruiz, C. Saavedra, and A. Delgado,

“Control of quantum interference in the quantum eraser,” New Journal of

Physics, vol. 11, no. 7, p. 073035, 2009.

[110] P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “Observation of a quantum

eraser: A revival of coherence in a two-photon interference experiment,” Physical

Review A, vol. 45, no. 11, p. 7729, 1992.

[111] T. J. Herzog, P. G. Kwiat, H. Weinfurter, and A. Zeilinger, “Complementarity

and the quantum eraser,” Physical Review Letters, vol. 75, no. 17, p. 3034, 1995.

[112] Y.-H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, “Delayed choice

quantum eraser,” Physical Review Letters, vol. 84, no. 1, p. 1, 2000.

[113] L. Chen, W. Zhang, K. Cai, Y. Zhang, and Q. Qi, “Revisiting the which-way

experiment with twisted light beams,” Optics Letters, vol. 39, no. 20, pp. 5897–

5900, 2014.

[114] X.-s. Ma, J. Kofler, and A. Zeilinger, “Delayed-choice gedanken experiments

and their realizations,” Reviews of Modern Physics, vol. 88, no. 1, p. 015005,

2016.

[115] V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and

J.-F. Roch, “Delayed-choice test of quantum complementarity with interfering

single photons,” Physical Review Letters, vol. 100, no. 22, p. 220402, 2008.

[116] L. Allen, M. Padgett, and M. Babiker, “IV The orbital angular momentum of

light,” Progress in Optics, vol. 39, pp. 291–372, 1999.

110



[117] E. Nagali and F. Sciarrino, “Generation of hybrid polarization-orbital angular

momentum entangled states,” Optics Express, vol. 18, no. 17, pp. 18243–18248,

2010.

[118] A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical

modes with spatial light modulators,” Advances in Optics and Photonics, vol. 8,

no. 2, pp. 200–227, 2016.

[119] R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow,

and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science,

vol. 338, no. 6107, pp. 640–643, 2012.
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