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Abstract

This dissertation proposes an approach to solving hard combinatorial problems in massively
parallel architectures using parallel metaheuristics.

Combinatorial problems are common in many scientific fields. Scientific progress is con-
strained by the fact that, even using state of the art algorithms, solving hard combinatorial
problems can take days or weeks. This is the case with the Label Switching Problem (LSP)
in the field of Bioinformatics.

In this field, prior work to solve the LSP has resulted in the program CLUMPP (CLUster
Matching and Permutation Program). CLUMPP focuses solely on the use of a sequential,
classical heuristic, and has had success in smaller low complexity problems.

By contrast this dissertation proposes the Parallel Solvers model for the acceleration of
hard combinatorial problems. This model draws on the commonalities evident in algorithms
and strategies in metaheuristics.

After investigating the effectiveness of the mechanisms apparent in the Parallel Solvers
model with regards to the LSP, the author developed DePermute, an algorithm which can be
used to solve the LSP significantly faster. Results were generated from time based testing of
simulated data, as well as data freely available on the Internet as part of various projects.

An investigation into the effectiveness of DePermute was carried out on a CPU (Central
Processing Unit) based computer. The time based testing was carried out on a CPU based
computer and on a Graphics Processing Unit (GPU) attached to a CPU host computer. The
dissertation also proposes the design of an Field Programmable Gate Arrays (FGPA) based
implementation of DePermute.

Using Parallel Solvers, in the DePermute algorithm, the time taken for population group
sizes, K, ranging from K = 5 to 20 was improved by up to two orders of magnitude using the
GPU implementation and aggressive settings for CLUMPP. The CPU implementation, while
slower than the GPU implementation still outperforms CLUMPP, using aggressive settings,
marginally and usually with better quality. In addition it outperforms CLUMPP by at least
an order of magnitude when CLUMPP is set to use higher quality settings.

Combinatorial problems can be very difficult. Parallel Solvers has been effective in the
field of Bioinformatics in solving the LSP. This dissertation proposes that it might assist in
the reasoning and design of algorithms in other fields.
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Chapter 1

Introduction

Since its inception, the field of computing has undergone rates of change which are unparal-
leled in other scientific or industrial fields [12]. It was only in the 1930s that Gödel and Turing
formalised the ideas of the limits of computability, leading ultimately to the formulation of
an abstract computer (the Turing Machine). The Turing Machine is thought to be the first
model for a computer which is capable of performing any computation that can be described
by an algorithm. It catalysed arguments as to the limits of what can be computed, and as to
the limits of the human mind [12].

During the 1940s digital computers became a practical reality. Since then the use of
computers has evolved from the realms of pure thought and mathematics to (among others
fields) the realms of business and social interaction. This has enabled the acceleration of large
scientific computations in a period of time which would otherwise have been almost impossible.
The field of computing is constantly evolving. This has lead to a myriad of demands on the
capabilities of computing technology. Computer architects have historically responded by
developing faster computers with ever smaller transistors. This enabled architects to include
more transistors in more elaborate designs.

For decades this approach met the need for increasing speed in terms of the trend described
by Moore’s Law. Recently, this came to an abrupt halt due to a limiting feature which has
come to be known as the “power wall.” [2] Since the advent of the power wall computer
architects have been forced to adopt parallel technologies to accelerate computer hardware.
However, reliance on historic technologies and methodologies has not prepared the field for the
relevant shift in paradigm which is needed in order to take advantage of parallel computing
technology. A unique opportunity now exists to re-imagine the paradigm of computation and
researchers are working hard to try and discover effective ways of addressing these changes [2].
The research in this dissertation was catalysed by this fundamental problem and how it affects
the solving of combinatorial problems.

This dissertation is concerned with massively parallel computation and its application
to combinatorial problems. In particular this dissertation investigates the applicability of
massively parallel computation to solving combinatorial problems. Massively parallel compu-
tation is a particularly interesting component of the research because it has previously been
considered less effective in the context of solving combinatorial problems.

1
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NP-Hard combinatorial problems present a particularly interesting set of challenges – in
particular:

• There are no known polynomial time algorithms to compute the optimal solution to
many combinatorial problems.

• NP-Hard combinatorial problems occur often in nature and, due to their complexity,
limit progress.

We are often forced to search for approximate solutions to NP-Hard combinatorial prob-
lems due to the limitations of modern computing hardware and the time frames we require
for their computation. Of these algorithms the literature has established three categories of
algorithm based on the class of heuristic which they employ. These are:

• classic heuristics;

• metaheuristics;

• hyperheuristics;

Algorithms based on classic heuristics have well established limitations which often lead to
sub-optimal solutions. Meta and Hyperheuristics are both designed to address the shortcom-
ings of classic heuristics. Metaheuristics can be considered master strategies for heuristics.
Instead of constructing a solution iteratively, metaheuristics search through a space of con-
structed solutions. By contrast, hyperheuristics attempt to dynamically adapt the heuristic
to a particular instance of a problem. This research focuses on metaheuristics for solving
combinatorial problems.

Two models for metaheuristic algorithms are:

• trajectory-based metaheuristics;

• population-based metaheuristics;

We propose a generalised model for a parallel metaheuristic algorithm. The model relies
on common attributes from both trajectory and population-based metaheuristics and offers
a perspective which has previously been missed, i.e. metaheuristics stem from the same fun-
damental ideas and the classification of trajectory versus population-based metaheuristics
hinges on the degree to which certain strategies are employed. The model is parameterised
on these strategies and this research illustrates how the parameters can be adjusted to derive
well known metaheuristic based algorithms.

Another important driving factor of this research is its application to the development
of an algorithm to solve Label Switching Problem (LSP) quickly. This problem is found in
population structure studies.

In a population structure study the researcher is interested in discovering the structure
of genetic inheritance in a population. This can be established by comparing samples of the
DNA which are known to vary among members of the same species. Using a model of these
differences for an ancestral group we estimate a likely composition of percentage inheritance
from a number of population groups for an individual with unknown ancestry.

Consider the scenario where a particular run of a population structure study establishes
that a particular person is likely to have had inherited 40% of their alleles from one particular



3

ancestral group, 30% from another population group and 30% from a third group. However,
due to the stochastic nature of the experiment we find that upon running the experiment a
second time the values could have changed slightly. For instance, on the second run, we could
find that the same individual is reported to have likely inherited 28%, 32% and 40% from
the first, second and third groups respectively. Two problems arise with this data. The first
problem is that the values change on subsequent runs of the experiment. It would make sense
to take the average across the two runs. However, the second problem is that the order of the
values has been shuffled in a seemingly random fashion, which prohibits us from doing so.

The random shuffling is a result of the program which is used in the experiment not being
able to maintain a consistent ordering for these quantities across multiple runs. We call this
shuffling “relabelling.” This gives rise to the Label Switching Problem (LSP) – the problem
being how to compute a consistent relabelling of the columns so that the quantities refer to
the same population groups across multiple runs of the program.

The current state of the art software is a program called CLUMPP [24]. CLUMPP uses
a classic heuristic based algorithm to solve the LSP. As a result the software suffers from the
same problems as many algorithms based on classic heuristics – it often finds a sub-optimal
solution.

An additional complication arises due to the complexity of the problem itself. The LSP
is a computationally complex problem and it can take a long time to compute a solution
of satisfactory quality even using an approximation algorithm such as that which CLUMPP
employs. The field of population structure studies would benefit from a faster program to
solve the label switching problem.

To that end I present DePermute. DePermute is an algorithm based on our generalised
model of metaheuristic algorithms and is designed to be amenable to acceleration by massive
parallelism. Three implementations of DePermute are presented for a CPU, a GPU and an
FGPA hybrid based computer. We present the results of testing the CPU and GPU based
implementations on randomly generated data sets and on a data set extracted from various
population structure study project’s data.

The structure of this dissertation is as follows.
In Chapter 2 introductory material is presented. The chapter provides a grounding for

the reader who is not familiar with important concepts from computer science via a short
introduction to the algorithms and hardware which are used in subsequent sections of the
dissertation. The chapter begins by formalising the concept of a combinatorial problem as it
is used in this dissertation and then describes how any combinatorial problem can be solved
given an adequate problem description and a method for generating every possible solution
to the problem.

The chapter then describes how simple approaches to solving the problem fall short and the
mechanisms which approximation algorithms use in an attempt to overcome these problems.
In particular the chapter explores the difference between algorithms which provide a guarantee
of finding the global optimum and the three classes of heuristic based algorithms which do
not make the same guarantee.

Chapter 2 concludes with an introduction to the Label Switching Problem. The reader is
introduced to the concept of population structure studies and in particular a model driven
approach to determining population structure. Finally, an example of one of the complications
which leads to the Label Switching Problem is presented.

In Chapter 3 the literature regarding the use of metaheuristics in the design of algorithms
to solve combinatorial problems is surveyed. This research supports a central tenet of this
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dissertation – that there exist commonalities between metaheuristics especially with regards
to parallelisation which have not yet been identified.

Chapter 3 begins by identifying the classes of parallelism usually used to solve combinato-
rial problems using parallel computing hardware. We contrast the three classes of parallelism
against the realities of parallel computation – the limits on speedup which may be achieved in
practise and the bottlenecks which have been documented in many programs used in scientific
computation.

Then a survey of the literature regarding the implementations of algorithms to solve
combinatorial problems is presented. Chapter 3 concludes by narrowing the scope of the
survey to the label switching problem and how it is solved with the current state of the art
software. We conclude that a faster application would greatly aid scientific progress in the
field because it would allow for larger instances of the LSP to be solved in a reasonable amount
of time.

Chapter 4 serves two purposes.

1. it presents the author’s work on amalgamating the commonalities between metaheuristic
algorithms into a model the author has named the “Parallel Solvers” model;

2. it presents the DePermute algorithm – which the author has developed (based on the
parallel solvers model) to solve the LSP;

Chapter 5 continues by testing the soundness of heuristics developed for the DePermute
algorithm in Chapter 4. This chapter presents the premise that the efficacy of a heuristic can
be determined by measuring its effect on the algorithm’s rate of convergence on a solution of
suitable quality without consideration of the time taken for iterations.

In Chapter 6 and Chapter 7 the efficacy of the algorithm is determined in a practical
setting.

Chapter 6 presents three implementations of the algorithm for the purposes of testing and
in order to establish whether the algorithm is effective under practical testing circumstances:

• DePermute is implemented on a:

– CPU based computer;
– GPU based computer;

• The design of an FGPA based hybrid computer implementation is also provided.

Chapter 6 presents a testing procedure which has been designed to determine how effective
the implementations are when presented with randomly generated data and data from a
typical data set. Following which Chapter 7 presents the results of testing.

Chapter 8 concludes the dissertation.



Chapter 2

Background

This chapter provides two things to the reader. Firstly, a brief technical introduction to the
reader who may not be acquainted with the fundamentals of computer science which the rest
of the document depends on.

If the reader is unfamiliar with the GPU or FGPA device architectures then the author
recommends examining the final section of this chapter for a primer on those topics.

Secondly, this chapter introduces the Label Switching Problem (LSP) and population
structure studies. This section is important throughout the document because it describes
the problem which is solved by three implementations of the new algorithm which this work
presents.

2.1 Combinatorial Problems

2.1.1 Computational Complexity

Although the difficulty of any problem is intrinsic to the problem itself, an inadequate for-
mulation of the problem can result in ineffective, long running algorithms. For instance it is
possible to solve an easy problem using a formulation which makes the problem seem difficult.
To illustrate this fact consider the following:

Example 2.1.1

The sorting problem.
Given a list of numbers in arbitrary order, produce an ordered list of those num-
bers.
A trivial solution to the problem could be to inspect every possible permutation
of the numbers and accept the ordering which is sorted. Since there are n! distinct
permutations of n distinct numbers one could be lead to the belief that the sorting
problem has complexity O(n!). However, this would only be a result of a poorly
formulated approach to the problem.

In practice the number of trial solutions which need to be inspected before finding the
optimal solution is likely to be less than n! because there is only one way to arrange the

5
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numbers such that the last rearrangement is the last trial. Accordingly there is a 1
n! chance of

the last ordering inspected being correct and (trivially) a 1− 1
n! chance of the solution being

encountered before the last arrangement.
We are not certain whether many problems which appear to be difficult may be solved

in polynomial time under an alternate formulation. There are still open questions about the
complexity of various problems. It is in fact proven that if a polynomial time transformation
of a problem in the complexity class NP-Complete to a polynomial time problem exists, then
all problems in NP-Complete may be solved in polynomial time.

Importantly there exists no known algorithm to find the optimal solution to any NP-
Hard problem in polynomial time. Therefore NP-Hard problems require that all solutions are
inspected in order to guarantee that a solution is globally optimal.

“P is equal to NP” is one of the greatest problems facing the field of computer science and
has inspired a great deal of research. The question remains unanswered. This work asserts
that the computation of solutions to difficult problems in a realistic time frame requires a
compromise.

For convenience, and in subsequent sections, NP-Hard combinatorial problems are referred
to simply as combinatorial problems.

2.1.2 Combinatorial Problem Frameworks

In order to compute the optimal solution for any combinatorial problem a definition of a solu-
tion, a means of evaluating a solution’s merit and an objective (minimisation or maximisation)
is required.

We define a solution as a description of valid arrangements of symbols (the solution struc-
ture) where valid arrangements exist under a given set of rules (the solution rules) and the
solution definition is denoted the letter S.

We denote the means of evaluating the merit of a solution F and note that semantically
F behaves as a function mapping all solutions to numbers in R (the real numbers). If one
enumerates all solutions to a problem and selects the solution for which the merit (evaluated
by F ) is closest to a desired value then one will have found the optimal solution. This
algorithm is often referred to as the brute force algorithm because it does not use elegant
means of reducing the problem complexity.

When formulating algorithms to solve combinatorial problems, it is useful to view the set
of solutions as forming a search space which can be examined to discover the optimal solution.

The search space model makes it easier for search algorithms to be specified and reasoned
about in human terms. For example one can visualise the well known Branch and Bound
algorithm with a heat map representing the search space. The algorithm can be thought to
be erasing cold parts of the search space if we determine that those parts will not contain the
optimal solution1.

2.2 Algorithms
Two broad categories of algorithm are used to solve combinatorial problems:

1. those which are guaranteed to find the globally optimal solution (exact algorithms);
1A process known as bounding the search space
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Listing 2.1: The universal algorithm to solve any combinatorial problem

1 let start be an arbitrary solution under S

3 best <− start

bestF <− F (start)

5 x <− G (start)

7 while x != start:

f <− F (x)

9 if f < bestF:

bestF <− f

11 best <− x

x <− G (x)

2. those which attempt to find the globally optimal solution (approximation algorithms);

The following sections illustrate that exact algorithms have limited application in combi-
natorial optimisation because in the worst case their running time is prohibitively large even
when intelligent means are used to reduce the running time of these algorithms.

2.2.1 Exact Algorithms

The simplest exact algorithm used to solve a combinatorial problem is the brute force algo-
rithm. This algorithm is sometimes appropriate for small problem sizes because the overheads
and complexity of implementing more elaborate algorithms might outweigh the simplicity of
the brute force algorithm.

We highlight two popular alternative algorithmic models for specifying exact algorithms.

Branch and Bound

The advantage of a branch and bound algorithm is that it limits the bounds of the search
space. If large portions of the search space are bounded then branch and bound is likely to
inspect fewer solutions than the brute force algorithm.

In the worst case, branch and bound will still evaluate every solution. This can occur if
the solutions differ by a very small margin. In these situations, the overhead of computing
partitions and evaluating bounds results in a longer execution time

Branch and bound computes at most O(n) divisions of the search space, where n is the
number of solutions in the initial search space. For each iteration branch and bound must
also compute h for each partition in the list. If the asymptotic complexity of h is defined
to be constant (say, C) and the asymptotic complexity of F is defined as K then we have a
worst case complexity for branch and bound of O(Cn+Kn).

Dynamic Programming

Dynamic programming uses caching to avoid computation.
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Algorithm

Begin by defining three entities:

• a search space S;

• an n-way partition function (which produces n distinct partitions of a given
search space);

• a function h which produces a lower and upper bound of the effectiveness of
a partition;

Initialise a singleton queue containing the original search space. The algorithm
proceeds by dequeuing the next element in the queue and partitioning that element
n-ways. All n elements are added to the queue after h is calculated for each sub
partition.

In addition the algorithm keeps track of the lowest upper bound estimate of all
partitions. If any element to be enqueued has a lower bound greater than the
highest upper bound estimate, then that partition cannot contain a better solution
than those elements already in the queue. We then remove the partition from the
search.

By continuing this process the queue will eventually contain only one partition –
the optimal solution.
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Listing 2.2: Pseudo code to compute the nth Fibonacci number

let cache be an arbitrarily sized array with every element initialised to 0

2

fib n:

4 if n == 0 or n == 1

1

6 else

if cache[n] == 0

8 cache[n] = fib (n − 1) + fib (n − 2)

cache[n]

Consider the nth Fibonacci number problem: Given a number n compute the number
which appears nth in the sequence of Fibonnacci numbers. A Fibonnacci number may be
defined recursively as given in Equation 2.3.

fib0 = 1 (2.1)
fib1 = 1 (2.2)
fibn = fib(n − 1) + fib(n − 2) (2.3)

This formulation requires exponentially many calls of the fib function before it will termi-
nate, because for each evaluation of fib the lower terms are re-evaluated several times. Thus,
for larger n the program will have excessive running time.

It is more efficient to use the arguments to the function as the key in a symbol table. The
table thus acts as a mapping of the arguments of a function to its result, and provided that
the arguments have been entered into the table beforehand, the problem of recomputing the
body of a function is avoided.

Listing 2.2 illustrates an implementation of the fib function using dynamic programming.
A dynamic programming formulation of an algorithm can be used to solve the well known

Travelling Salesman Problem (TSP).

Example 2.2.1

The Travelling Salesman Problem:

Given a graph representing a collection of cities, and the available roads between
them compute the optimal ordering of cities so as to minimise the round trip
distance, where no city may be visited twice2 [17].

There are n! many ways of arranging the n cities if there are connections between
all cities. The performance of the brute force algorithm to solve the TSP is n!.

Held et al. present a recursive formulation of the TSP where the starting position
is fixed as follows [22].

2The second constraint is not necessary, but avoids one having to consider the problem of negative cycles
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Let C(S, l) be the cost of starting at one city, visiting all cities in the set of cities
S and then terminating at l and axy be the cost of a path between cities x and y.
A piecewise definition for C is defined in Equation 2.5.

C(i, i) = a1i (i = 1) (2.4)
C(S, i) = argmin

s−i
(C(S − i,m) + ami) (otherwise) (2.5)

This recursive formulation enables dynamic programming to be used to formulate a more
time efficient algorithm to solve the TSP. However the reduction in running time is not
adequate for large problems. It has been shown that an algorithm to solve the TSP formulated
using dynamic programming will execute in time proportional to O(n22n−3) and will require
Ω(n2n−1) units of storage [22].

Similarly the running time of many exact algorithms is excessive when handling larger
problem sizes. An alternative approach is needed to handle larger problem sizes in practical
time constraints.

2.2.2 Approximation Algorithms

The reliable, fast, approximating computation of solutions to difficult combinatorial problems
relies on the use of heuristics. A heuristic can be thought of as a rule of thumb which guides
the way in which we explore a search space, or construct a solution, so that we are more likely
to arrive at the optimal solution sooner.

For instance when addressing the TSP, a person could make the reasonable assumption
that starting at one city arbitrarily and subsequently always taking the shortest path to any
city that has not yet been visited (until all cities are visited) will result in a short tour. The
selection of the city closest to the current node is termed a heuristic known as the Nearest
Neighbour Joining heuristic.

This is an example of a greedy heuristic, so called because of the short-sighted nature of
the algorithm’s selection criteria. In the classification system presented by Crainic et al., the
Nearest Neighbour heuristics are termed classical heuristics [13].

Algorithms designed using the Nearest Neighbour heuristic usually exhibit polynomial
running time For example consider the Nearest Neighbour algorithm to solve the TSP. Be-
ginning at one city arbitrarily the shortest path to another city is selected and that city is
removed from the set S. This process continues until all cities have been visited.

In Equation 2.7 the change is reflected by a minor modification to the recurrence relation
for the exact solution. Note that one is no longer required to compute C multiple time for
each decision made.

C(i, i) = a1i (i = 1) (2.6)
C(S, i) = argmin

ami

(C(S − i,m) + ami) (otherwise) (2.7)

The new complexity is therefore O(n2). To see this note that:

• At each call of C one must select the minimum from the set of distances to other cities
in S.
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• One must make this selection once for each city added3.

It is noted in [13] that classical heuristics often result in sub-optimal solutions. This is
because the process is halted immediately upon finding a local minimum, and because the
methods used to counteract this effect (including random starting positions, multiple starting
positions and combinations of classic heuristics) fail to satisfactory counteract becoming stuck.

2.3 Metaheuristics
Metaheuristics specify master strategies for searching neighbourhoods which contain better
solutions according to set criteria.

Crainic et al. specify a six stage model for a metaheuristic:

1. Initialisation – selection of initial candidates and neighbourhoods;

2. Neighbourhood Specification – a specification of an area in the search space;

3. Search Trajectory – a mechanism for moving from one neighbourhood to another;

4. Candidate Selection – selection of solutions within a neighbourhood;

5. Acceptance Criteria – a measure of the effectiveness of a solution;

6. Stopping Criteria – the criteria to stop the search;

2.3.1 Metaheuristic Models

The intention of this research is to discover differences and commonalities in these algorithms.
To this end the discussion turns to two metaheuristic models.

Simulated Annealing

Simulated annealing is a metaheuristic algorithmic model inspired by the similarities between
the statistical mechanics of large multivariate systems and combinatorial optimisation, both
of which are large multivariate discrete systems with many degrees of freedom [46].

Simulated annealing mimics the process of annealing whereby a material under study is
melted and then cooled to discrete temperature levels and held for a time to allow for thermal
equilibrium to be reached [46]. Annealing has enabled scientists to examine the behaviour of
materials at low temperatures [46].

Algorithmically the process is simulated as a stochastic system [46]:

1. A random solution to the problem is generated.

2. The temperature of the system is initialised.

3. A random change to the solution is enacted.

4. If the change is positive it is accepted, otherwise:
3A more accurate bound can be established by

∑n
i=1 i = 0.5(n2+n) – a so called upper triangular comparison
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Listing 2.3: A genetic algorithm

1 s <− P random solutions in S

sNext <− []

3

while bestFitness > cutOff:

5 f <− map F s # Evaluate fitness

for each index i in s:

7 indiv1 <− randomSolutionBiased s f

indiv2 <− randomSolutionBiased s f

9 sNext[i] <− cross indiv1 indiv2

bestFitness <− max f

A random number in (0, 1) is generated.

If the random number is less than e
−δ
T then the change is accepted (where δ is the

change in the objective function and T is the current temperature of the system).
If not then the change is rejected.

5. The temperature is reduced to the next level on the annealing schedule.

6. If the temperature is sufficiently low then the process is terminated.

7. If not then the process is repeated from point 3.

Genetic Algorithm

The genetic algorithm is a biologically inspired algorithmic model and is one of many so
called evolutionary algorithms. Biological systems can be thought of as undergoing continual
optimisation from one generation to the next, a process facilitated, in part, by the way genetic
material is combined from parents during the formation of offspring.

If one assumes that those who are suited to an environment survive and produce offspring,
then a combination of the genetic material of those who survive will comprise the genomes
of offspring, and there is a chance that the random combination of two effective genomes will
result in a more effective genome.

Algorithmically one requires at the very least, a reformulation of S, so that it can be
thought of as a genetic string, as well as a method of evaluating the survive-ability (or fitness)
of solutions (this is simply F ). Using these two constructs a genetic algorithm may be devised
as follows in Listing 2.3.

Genetic algorithms use various operations such as crossover and mutation. Crossover is
the primary example of a genetic operator. It is the process whereby a child is added to
the population by the random combination of its parents’ genomes. One can incorporate
additional genetic operators in order to more closely approximate the actual process in an
attempt to improve the robustness of the process.

A practical genetic algorithm usually uses an operator known as mutation in order to
improve the robustness of the search. The operator works as follows. For every offspring in
the next generation, there is a chance that one of the symbols in the string will be randomly
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mutated by randomly changing it to another valid symbol. Without the mutation operator,
or a similar operator, genetic strings would be constrained as to what symbols are allowed to
occur in each position by the symbols which occur in those positions in the initial population.

Figure 2.1 illustrates the symbols which can be found in each position in a genetic string
if there is no mutation.

Figure 2.1: Allowed symbols per solution row without mutation given a starting population

2.4 Practical Computation

Progress in the field of combinatorial optimisation is measured as the ability to solve larger
problem sizes than are currently possible.

Accelerating computation is primarily achieved by developing more powerful algorithms
because algorithms define the amount of work which must be accomplished by the computer
and this determines how long the computer must spend executing a task.

Alternatively, programmers look to more powerful computational hardware for progress.
It is generally accepted that programmers used to wait until more powerful computational
hardware became available with time as it was widely understood that programs would run
faster on newer hardware. Recently, however, hardware engineers have begun to discover the
physical limitations of the technology that had previously enjoyed incremental improvements.
This limitation is known as the power wall and it puts an abrupt halt to the widely held asser-
tion that software need not change in order to reap the benefits of increasing computational
power [2].
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It is now widely accepted that in order to achieve higher computational throughput, par-
allelism must be incorporated into processor design. The change has, however been somewhat
superficial and computer architects have opted for the simple approach of replicating the core
of the modern sequential processor to create multi-core machines.

In order to accelerate sequential processing these sequential processors require complex
optimisations such as a large cache, pipelining and out of order execution. Such optimisations
are expensive in terms of transistor real estate and can in some instances be comparable or
larger in size than the functional units on the chips.

2.4.1 Parallel Model Classification

Flynn’s Taxonomy is a useful model for classifying and reasoning about the style of execution
adopted by various parallel computer architectures [52]. This model makes a high level
distinction between execution models in two dimensions, namely:

1. whether the computer can process one or many instructions at a time;

2. whether the computer can process one or many units of data at the same time [52];

These two dimensions represent the two types of parallelism used in practical program-
ming, namely pipelining (or task parallelism) and work division (or data parallelism) [52].
Figure 2.2 illustrates the relationship between the classes of parallelism in Flynn’s taxon-
omy [52].

• If a computer can process multiple instructions at a time, it is said to have Multiple
Instruction streams (MI).

• If a computer can only process one instruction at a time it is said to have a Single
Instruction stream (SI).

• If a computer can process multiple units of data at a time it is said to have Multiple
Data streams (MD).

• If a computer can only process one unit of data at a time it is said to have a Single
Data stream (SD).

Flynn’s taxonomy does not accurately describe all parallel machines. For example consider
the experimental systolic array computers of the pre 2000s [52]. In a systolic computer the
inputs of Processing Elements (PEs) are connected to the outputs of other PEs and the PEs
are arranged in a grid so that data propagates through the grid one unit per cycle until it
reaches its terminus. When data has propagated through the entire grid it will have been
processed.

Such a computer has both MI and MD streams. However the instructions in each unit
are fixed and the model of a stream of instructions no longer conveys the reality [52].

Therefore Flynn’s Taxonomy is complete for the class of all processors in which the notion
of a stream of instructions and a stream of data is applicable.
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Figure 2.2: Illustration of the relationship between the classes of parallelism in Flynn’s Tax-
onomy
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2.4.2 Computer Architectures

CPU Architecture

The modern computer Central Processing Unit (CPU) has evolved through a long history of
research, backward compatibility and cost constraints [45]. A brief history of these issues is
presented [45].

Early computers of the 1960s and 1970s were limited by the high cost of memory, by the
latency of fetching from memory and by the limits of the speed of local memory technolo-
gies. The Complex Instruction Set (CISC) architecture used by these early machines was
an attempt to expose opportunities to combine many simpler instructions into one, so as to
offset the cost of fetching the next instruction from main memory. (Instructions were stored
in main memory because fast local memory was not yet in use.)

When the pitfalls of the CISC architecture became evident, there was a movement toward
simpler instruction sets. This lead to both the MIPS and RISC architectures. These archi-
tectures were motivated by the fact that in a large instruction set, a small percentage of the
instructions are ever in use. For example, in the CISC architecture of the early x86 processor,
only ten of the instructions accounted for 95% of the SPECint92 benchmark [45].

Using a simpler set of instructions allowed the designers of RISC based computers to
focus on effective optimisations – such as fewer instruction cycles per instruction decode,
pipelining and hardware control. However, these architectures relied on optimising compilers
and required a fast memory hierarchy.

Modern multi-core processors (which shall be referred to as commodity CPUs in subse-
quent sections) amalgamate many of the design principles, lessons learnt and legacy of their
ancestors [44]. Modern processors are not based on RISC and have instead remained CISC
because of legacy constraints. This has resulted in inefficiencies in transistor usage.

Multi-core commodity machines are MIMD. When each core is operating independently
this architecture can be used to gain near linear speedup. However, most algorithms require
some degree of cooperation between threads.

Cooperation is facilitated by communication, for which there are two major strategies:

• Uniform Memory Architecture (UMA) is a tightly coupled model for cooperating in
which processors communicate by sharing memory [44].

• Non-Uniform Memory Architecture (NUMA) uses message passing and distinct images
of memory to form a loosely coupled model.

In the design of computer architectures a significant challenge is how consistency is en-
forced between the memory for different PEs in the same processor. In a modern processor
a completely consistent view is achieved through the use of snooping protocols [44]. Whilst
these protocols simplify the task of writing correct programs, they are costly and make parallel
programs with concurrent access to the same page unfeasible[32].

For these reasons modern processors often have a cluttered design [2], and the power
barrier has afforded industry a unique opportunity to explore alternative computer designs
and architectures.
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GPU Architecture

The Graphics Processing Unit (GPU) is inspired by the execution patterns of modern graph-
ical applications, including transforms, filters and other image processing algorithms.

Image processing algorithms often operate on a large number of units of data, usually
in floating point format, arranged in matrix-like structures in memory. For example, the
application of a blur filter to an image4.

Two design aspects of modern GPUs have resulted from the bulk application of uniform
operations to many units of data. Firstly, modern GPUs have a relaxed memory hierarchy
allowing for the mutation of shared pages of memory without cache thrashing [23]. Secondly
they comprise hundreds of simple units which all apply a simple instruction to different units
of data [23].

GPU programming requires careful attention to how threads interact. An effective model
for GPU programming is to use a basis in SIMD for understanding how the GPU executes
instructions. There are three widely accepted principles of effective GPU programming:

• using an effective threading scheme which allows for threads to carry out as much work
as possible independently;

• using a coalesced memory access pattern to bundle requests into single transactions;

• minimising communication, primarily between the host and the GPU, but also between
the SMs and between SMs and higher levels of the memory hierarchy;

The use of these principles in an implementation is dependent on the algorithm. Therefore
the level of success achieved in speeding up an application using a GPU is inextricably linked
to the algorithm which is being implemented.

A GPU Architecture

The discussion will now turn to the NVIDIA Kepler GPU implementation of the GPU archi-
tecture.

A Kepler GPU consists of hundreds and even up to thousands of processing elements [42].
PEs are arranged into groups called Streaming Multiprocessors (SMs). Each SM contains a
single instruction decoder. Therefore, each PE must execute the same instruction at any given
time step. A Kepler GPU consists of fifteen SMs, a shared L2 cache, six memory controllers,
a hardware thread handling engine, and a PCI express interface to a host computer [42].

Figure 2.3 illustrates the layout of the NVIDIA Kepler architecture.
GPUs are typically packaged as expansion cards which interface to a host computer. The

host computer controls the execution of small performance critical pieces of code, suitable for
the GPU, termed kernels [41]. When the host computer schedules new work to be carried out
by the GPU, it specifies a configuration for thousands of threads, called a grid, to execute
small units of work on the data.

Grids are multidimensional structures which allow threads to determine where their op-
eration ought to be applied. Grids are allowed to contain more threads than can execute
simultaneously on a GPU. The GPU therefore breaks grids down into sub-groups termed

4A blur filter is a simple operation which can be applied to each cell in a matrix representation of an image
independently.
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warps where the threads in each warp are executed in parallel, but the warps themselves are
executed sequentially [41].

The grid programming model is very restrictive. It may seem that it does not allow for
conditional expressions because of the lack of multiple instruction decoders per SM. However,
NVIDIA and other GPU designers have relaxed this condition by allowing warps to be further
broken into sub-groups which may executed different instructions should threads diverge [23].
This affords the programmer the flexibility of being able to specify some programs which
require branching at the cost of context switching between groups of threads [23].

Field Programmable Gate Arrays (FPGAs)

The FGPA is a device which allows one to implement arbitrary digital logic circuits using
a loadable description file. The file is initially programmed in an Hardware Description
Language (HDL) and then translated to a machine readable file by a process which is similar
to compilation. In this process code is interpreted and an optimised configuration of the
FGPA is generated.

The core elements of an FGPA are lookup tables (LUTs) and programmable interconnects.
An FGPA contains many LUTs arranged in a two dimensional array across the chip. In
between the LUTs are programmable interconnects and on the outer edges of an FGPA chip
are I/O blocks.

A LUT consists of an AND plane and an OR plane of logic [19]. Inputs to a LUT are
arranged such that any input can be configured to connect to any one of the AND gates
and the outputs of the AND gates are arranged such that any output may be configured to
connect to any OR gate in the OR plane. A LUT may be used to describe any two level logic
circuit.

The FGPA contains an array of LUTs with programmable connections between allowing
the user to describe more complex digital circuits. The re-configurable nature of the FGPA
results in overheads in time due to making interconnections between LUTs and between the
planes in LUTs. In addition it is very difficult to determine the optimal translation of code
and distribution of small units of logic to LUTs. Therefore FPGAs typically run at lower
clock rates in order to accommodate for longer logic paths.

For this reason FPGAs are difficult to use. In addition the integration of an FGPA into
a conventional computing environment often proves challenging and the overhead of commu-
nication between a host computer and an FGPA over say USB can outstrip any advantage
initially envisaged in using an FGPA.

FPGA Hybrid Computer

The Convey Computer HC series computer is a “hybrid” computer [5]. It comprises a com-
modity computer with two CPU sockets and a co-processor board which houses four high
performance FPGAs with their own memory subsystem. This enables the user to specify
hardware to extend the architecture of the computer [5]. Figure 2.4 illustrates the layout of
the Convey Hybrid computer architecture.

The design philosophy is to integrate the extensions to the host architecture in a way
which is opaque to the programmer [9]. The hybrid computer achieves this by providing
supporting hardware. This is used as an adaptor between custom logic and the host machine
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and custom compilers. These interleave instructions destined for the host computer and the
co-processor in a single stream [9].

The programmer wishing to accelerate an application is advised to profile the application
to determine which parts of the code constitute a computational bottleneck [9]. It is then
suggested that the programmer use his understanding of the code to determine whether it
would be amenable to an implementation in hardware. The design and implementation of
suitable hardware is left to the programmer to undertake in Register Transfer Level (RTL)
code [9].

RTL code uses a custom compilation process which integrates the user’s hardware descrip-
tion with the standard interfaces to provided blocks. The resulting bit files are packaged into
archives called “personalities” [9]. A personality can be swapped in at run time, using the
Convey-provided libraries. This allows for integration of the personality with host binaries [9].

The co-processor board also houses eight memory controllers each capable of handling
an instruction per clock cycle [10]. These controllers are optimised for random access in
memory making them substantially faster at processing tree and graph like data structures
than conventional DRAM memory controllers [10].

A program designed for the Convey HC computer is a combination of a commodity x86
program and instructions bound for application specific hardware. According to Flynn’s
Taxonomy, the FGPA hybrid computer falls under a potentially mixed or unclassified parallel
class. However to the user, the system will appear to be MIMD because the host computer
is still driven by a commodity processor.

2.5 A Combinatorial Problem in Bioinformatics
Up until this point the discussion has focused on providing a grounding in the algorithmic
and architectural principles which are relevant to this dissertation. The discussion now turns
toward a practical combinatorial problem which will be solved later in this dissertation. The
problem is one of the central focuses of this dissertation and it originates from the field of
bioinformatics.

Bioinformatics is a field of science which makes use of computer aided experimentation
in genetic data. Computational methods have been used to infer the characteristics of a
wide variety of biological systems. For example, Genome Wide Association Studies (GWAS)
correlate genetic variation with phenotypical variation. The most commonly used variation
for this type of study is known as a Single Nucleotide Polymorphism5 (SNP) [16].

Many of these methods rely on statistical models of genetic markers [16]. The quantity,
arrangement and presence of SNPs is used to compute the likelihood of their implication in
phenotypes. This is done by comparing relevant statistics between individuals who do and
do not present the phenotype [16].

2.5.1 Population Structure

Population structure is a term used in genetics. It refers to the hereditary composition of the
individuals in a population. Population structure is a measure of the composition of ancestral
groups which an individual was likely to have inherited genetic material from and the amount
inherited from each group.

5Single bases distributed through a genome which are known to vary among members of the same species
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Population structure studies are an important part of engineering GWAS studies among
other things. If one is unaware of the underlying structure of a population then one may
be mislead in making conclusions about whether a phenotype is associated with a particular
genotype. For example, we may be interested in a particular disease and, in trying to discover
its genotypical cause, sample a proportion of test subjects who are known to have the disease
along with test subjects who are known to be healthy. From these samples we can use
statistical testing to determine how likely it is that particular differences in the genomes of
the two groups are culprits for the disease. However, the differences between the two groups
may be the result of other effects.

Population structure introduces commonalities between the genomes of population groups.
If a particular population has a prevalent occurrence of a particular SNP and all samples
exhibiting the phenotype were taken from that group then we may be lead to believe that
the SNP is implicated somehow in the manifestation of the phenotype we are studying. In
actuality the SNP may or may not be the cause of the phenotype, but our analyses may be
confounded by a lack of understanding its origin.

Understanding population structure is also important in formulating a better understand-
ing of the history of species and migratory patterns throughout history. That information in
itself is an important part of understanding the history of mankind and the biological context
of nature.

Determining population structure isn’t trivial. Many computer programs have been writ-
ten to solve the problem. Various techniques and optimisations have been employed for
improved performance of the software in some instances and in order to employ different
approaches to estimation in others.

This dissertation will pay particular attention to the widely used and acknowledged pro-
gram called ADMIXTURE. ADMIXTURE is a software tool which implements a model based
algorithm to estimate the stratification of individuals in a population structure study [1]. Be-
cause of the stochastic nature of the ADMIXTURE algorithm (and other tools like it) it is
common practice to average multiple result sets generated by the program. Averaging multiple
ADMIXTURE result sets, although seemingly trivial, manifests a very difficult computational
problem called the Label Switching Problem (LSP).

The state of the art program for solving the LSP is CLUMPP [24]. The CLUMPP
algorithm employs a greedy heuristic which is fast, but in order to improve the quality of
the search it conducts CLUMPP must run from multiple random starting points. This is a
problem because, as Crainic et al. argue, multiple starting point classic heuristic algorithms
are not immune to becoming trapped in local optima [13]. Furthermore even on aggressive
settings CLUMPP can perform slowly.

2.5.2 The Problem Which the Model Based Approach Solves

One way of conducting a population structure study is to estimate which ancestral groups the
alleles present in each individual originated from. For each individual we produce an estimate
of the composition of proportions of genetic material which that individual is likely to have
inherited from each of K ancestral groups.

In a population structure study one must either determine, or be supplied with, the number
of ancestral groups from which the individuals could have inherited alleles. A discussion of
the trade offs between the two approaches is now provided. Suffice to say that there are
trade offs and that the model based approach has important applications and presents with
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the LSP. We therefore consider the case in which the number of groups is supplied to the
experiment.

Example 2.5.1

For a given individual (0.2, 0.4, 0.4) means that the individual is likely to have
20% of his/her alleles inherited from population group 0, 40% of his/her alleles
inherited from population group 1 and a 40% of his/her alleles inherited from
population group 2.

The model adopted by ADMIXTURE postulates that there are K ancestral groups in a
population where there are a number SNPs sampled from each individual [1]. The model hy-
pothesises that each individual’s genome (and therefore each individual’s collection of SNPs)
is formed by the random union of its parents SNPs. It then uses this assumption to formulate
the problem in terms of maximum likelihood [1].

ADMIXTURE uses a block relaxation optimisation approach to resolve the likelihoods of
individuals belonging to particular population groups [1]. This approach is stochastic and the
results generated by ADMIXTURE vary.

2.5.3 The Problem Which the Model Based Approach Creates

A mean result can be established by running ADMIXTURE multiple times and calculating
x̄ = 1

n

∑n−1
i=0 samplei. This resolves the problem of varying results in the output of ADMIX-

TURE. However, there is a more pressing problem which prevents one from simply averaging
results. The problem is illustrated by way of example.

Consider the experiment where K = 3. A result set for a given individual could be
(0.01, 0.4, 0.59) in the first run of ADMIXTURE, (0.43, 0.56, 0.01) in the second run and
(0.48, 0.48, 0.04) in the third run. The re-ordering of results in each of the three runs of the
program does not mean that the underlying meaning of the results has changed. Each time
the program was run it arbitrarily labelled the first quantity as column zero, the second as
column one and the third as column two. The program assigns labels arbitrarily since the
labelling doesn’t impact the meaning of the results.

It is important to note that, not only are the results varied, but that the order of the
numbers in each result set clearly correspond to a different ancestral population group in each
run of the ADMIXTURE program. (How else could this individual be 1% population group
zero in run one and then 43% population group zero in a subsequent run?) Unfortunately
there is no way of forcing a consistent ordering of population group for each run of the
ADMIXTURE program.

The ADMIXTURE program creates matrices in which each row corresponds to a result
set for an individual. i.e. the first row corresponds to individual zero, and the second column
denotes the proportion of his/her alleles which was inherited from population group one.
Continuing on; the second row corresponds to individual one, the third to individual two and
so on. This dissertation adopts the name “Q-matrix” for these matrices because this is the
name which the ADMIXTURE program uses for them.
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2.5.4 The Label Switching Problem

The Label Switching Problem (LSP) arises when the label corresponding to an experimentally
determined quantity changes from one iteration of an experiment to the next.

Definition

The LSP:

Given K labels in a population structure experiment which is run R times, then
the LSP is to compute an ordering O = {O0, O1, ..., OR−1} for each of R runs such
that the nth element in Oi shares a consistent label with the nth element in Oj

where j, i← 0 . . . R− 1 and j 6= i.

There are K! candidates for the permutation of K labels which represents a consistent
relabelling. We denote each of the K symbols 0 . . .K−1, we denote a particular arrangement
the letter O and finally label all possible permutations O0 . . . OK!−1. In this arrangement O0

is the permutation (0, 1 . . . k − 1).
Note that we can select any permutation of symbols in each of the runs. For example,

consider the problem where we have generated 4 result sets. If we decide to reorder the
symbols in run 0 according to the permutation O1, then the symbols for the first run will take
on the second permutation, i.e. 1, 0, 1 . . . k−1. Subsequently we reorder run 1 to permutation
O2, run 2 to permutation O0; and run 3 to permutation O1. This arrangement can be
abbreviated to (O1, O2, O0, O1). (O1, O2, O0, O1) is distinct from (O0, O2, O0, O1) – note the
difference in the first permutation. Note that one can keep run 0 fixed at O0 ((O0, O1) is the
same as (O1, O0)). Therefore there are

∏R−1
i=1 K! = K!R−1 arrangements of the complete set

of labels.
An example of two Q-matrices (which could have resulted from two runs of ADMIXTURE)

is illustrated in Figure 2.5. In the example; the first two matrices are said to have permutation
O0 because the order of their columns has not been altered after having run ADMIXTURE.
The second two matrices are permuted versions of the first two, shown in ordering O1. 0.2 0.5 0.3

0.7 0.2 0.1

0.3 0.2 0.5


 0.5 0.3 0.2

0.2 0.1 0.7

0.2 0.5 0.3


(a) 0.5 0.2 0.3

0.2 0.7 0.1

0.2 0.3 0.5


 0.3 0.5 0.2

0.1 0.2 0.7

0.5 0.2 0.3


(b)

Figure 2.5: Example of the LSP problem for R = 2. Here the first two matrices are the
original result, i.e.(O0, O0) and the second two matrices have been permuted to (O1, O1)
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Jakobsson et al. propose that Q-matrices are likely to have a consistent labelling when
the average similarity of columns which share symbols is maximised and propose that the
Frobenius norm can be used to construct a suitable measure for similarity [24]. The Frobe-
nius norm is defined as the square root of the sum of the euclidean distances between each
corresponding column in two matrices [18].

With the objective function in mind one might restate the LSP in population structure
studies as the computation of an ordering of columns for each Q-matrix which maximises the
similarity of all pairs of columns in all Q-matrices.

In this chapter the problem has been introduced and a discussion of the fundamental the-
ory of algorithms for solving combinatorial problems has been presented. The Label Switching
Problem is an important combinatorial problem. The problem in itself is complex and a thor-
ough treatment of it in an algorithmic sense is instructive from a theoretical perspective. The
LSP in the context of population structure studies is also important in a practical sense. A
faster program is required for solving the LSP and a fast program requires that an efficient
algorithm be employed and that the program be designed for appropriate hardware.
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Chapter 3

Parallel Metaheuristics and Solving
the LSP

The implementation of programs to solve scientific problems often requires heroic effort in
programming powerful computers to carry out calculations. The sciences, by their nature, are
concerned with complex intellectual problems. Research into complex intellectual problems
ought not to mandate that the researcher learns how to program super computers; therefore
a collaborative effort, involving those invested in understanding computational problems and
those who are invested in understanding nature, has gone into trying to understand how
scientific programs can benefit from parallelism.

This chapter investigates parallel metaheuristic based algorithms and models in the con-
text of available literature. It pays particular attention to implementations which have been
undertaken on massively parallel computers. In undertaking this survey of the literature the
chapter achieves two important goals:

• the discovery of successful approaches to parallelising metaheuristics for combinatorial
problems;

• the identification of commonalities among these algorithms and approaches;

Finally, the chapter presents the literature relating to solving the Label Switching Problem
(LSP). In particular it explains the approach adopted by the CLUMPP program, highlighting
the computational characteristics of the algorithm employed by CLUMPP and the heuristics
employed by the algorithm. This chapter is used in later chapters of this dissertation as the
basis of an algorithm to solve the LSP.

3.1 Algorithms and Models
This dissertation is interested in a particular class of combinatorial problems which often re-
quire fast problem solvers in a practical setting. There are two important strategies which this
dissertation employs. Firstly, parallelism and secondly the use of approximation algorithms.

27
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Consider the parallelisation of metaheuristic algorithms. Crainic et al. highlight three
parallelisation strategies which can be used to classify most parallel strategies for metaheuris-
tics [13]. These classifications are:

1. “fine grained”;

The fine grained class of parallelisation includes strategies which seek to find paralleli-
sation in the steps of the algorithm, either by analysing data dependencies and building
pipelines or by finding opportunities for the parallel computation of small independent
units of data [13].

2. “problem partitioning”;

The problem partitioning class of parallelisation describes algorithms which partition
the problem arguments into smaller problems, computes sub-problems in parallel and
then recombines the derived solutions of the sub-problems [13].

3. “cooperative parallelism”;

The cooperative parallelism class of parallelisation describes a strategy whereby multiple
instances of the program are launched [13]. This class has been described as “multiple
concurrent walks.” Within this class two sub-classes exist: one for those algorithms
which communicate and one for those which don’t [13].

The three classifications are used to reason about prior work in the field.

3.1.1 Parallel Computation

First let us establish the boundaries of what is possible in terms of the acceleration of programs
via parallelism. In this discussion an abstract model of a parallel computer is employed. The
model is based on an abstract model of a sequential computer.

The Random Access Machine (RAM) is an abstract computer which can be used in the
design of sequential algorithms. The RAM computer is defined as having a single processing
element and an infinite memory in which every unit of memory can be accessed in a constant
period of time. This model allows the designer to abstract themselves from the practicalities
of hardware and to focus on the details of computation in an algorithm.

The generalisation of the RAM to a parallel machine is known as the Parallel Random
Access Machine (PRAM) [26]. This machine extends the RAM model with infinitely many
PEs all of which have constant time access to a shared memory bank [26]. The model also
assumes that PEs operate in lock step1 [26]. The model also encapsulates the semantics of
concurrent operations on memory, with classifications for exclusive writing and concurrent
writing. These can be used by the theoretician to build assumptions about the behaviour of
operations.

A PRAM computer is capable of improving on the asymptotic running of particular algo-
rithms, [26]; a short example is provided for convenience.

1Instructions are synchronised across all PEs
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Example 3.1.1

The Sum Reduction Problem:
Given a list of numbers, produce the sum of the list of numbers.
The trivial solution to the problem is an O(n) reduction of the list into a sum,
through iteration, with an accumulator. Using a PRAM computer we can assign
a PE to every odd index in the list. The numbers may be summed by selecting
pairs in the list, summing them and then inserting those pairs into a new list. This
process may be repeated until the list contains a single element. This element will
be the sum of all other elements. This algorithm runs in time proportional to
O(lgn).

How is the complexity of an algorithm altered by practical multi-processor machines? If
the number of processing elements is constant, then note that parallelism can at best improve
the running time of an algorithm by a scalar factor, that is, a constant number of PEs cannot
affect the asymptotic complexity of an algorithm. Therefore, when the number of PEs is
constant the asymptotic complexity of the parallel prefix sum algorithm is unchanged.

Show 1. Consider a machine with p PEs. It can perform addition on at most 2p elements in
parallel at a time. The number of additions which occur in parallel in the first pass is equal
to (n

2
)

p . Subsequently, (n
4
)

p additions can occur in parallel and subsequently half of those etc.
Expression 3.2 formalises the resulting series.

log2 n∑
i=2

(ni )

p
(3.1)

=
1

p

log2 n∑
i=2

n

i
(3.2)

As n increases in Expression 3.2 the degree to which the expression is scaled by 1
p is

unchanged. Therefore; the asymptotic running time of parallel reduction is unchanged if p is
constant.

This is an important result because it illustrates that the best which one can hope to
achieve in a parallelisation is a faster running program and not an improvement in complexity.
However, the PRAM has still been used as a means of designing effective parallel algorithms.

Dehne et al. used the PRAM as an abstract machine to design and test algorithms for
the GPU [14]. They found that there were several non-trivial modifications required in order
for the algorithms to perform satisfactorily on a GPU architecture. In addition to the well-
established attributes of effective programs for GPUs (coalesced reads, minimal branching
etc.) Dehne et al. noted that there are other differences between the PRAM and the GPU.
Importantly, the PRAM model assumes that the PEs operate in lock step [14]. This is not
the case on a GPU, therefore PRAM algorithms implemented on GPUs require the careful
placement of thread synchronisation statements in order to maintain state invariants.
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3.1.2 Computational Bottlenecks

Other researchers have made insightful discoveries when investigating the principles which are
common to parallelism in computers. One such field of research is the automated discovery
of bottlenecks in scientific applications and how best to leverage parallelism to achieve faster
speeds.

Meswani et al. highlight that most bottlenecks in scientific applications can be described
by one of six idioms [37]. Table 3.1 lists those idioms along with pseudo code which describes
the concept which they encapsulate.

Table 3.1: Table of idioms in scientific computing identified by Meswanin et al. [37]

Idiom Name Pseudo Code

Transpose A[i][j] = A[j][i]

Reduction sum+ = A[i]

Stream A[i] = B[i]

Stencil A[i] = B[i− 1] +B[i+ 1]

Gather A[i] = B[C[i]]

Scatter A[C[i]] = B[i]

The idioms listed in Table 3.1 are illustrated in Figure 3.1 for clarity. Note that the idioms
(a-f) are listed in the same order as they appear in Table 3.1.

A
B

B

(a)

+ + +
(b)

A

B

(c)

A

B
+

(d)

1 2 0 3

A

C

B
(e)

1 2 0 3

A

C

B
(f)

Figure 3.1: An illustration of the idioms of scientific computing as per Meswani et al.

Meswani et al. also present a series of tests to illustrate what memory bandwidth can
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be achieved when executing each of the identified idioms on a commodity CPU system, an
NVIDIA GPU and a Convey hybrid computer [37]. It was found that without taking into
account the cost of transferring data to either of the co-processors, the co-processors both
achieved higher memory bandwidth than the CPU for all idioms at most data sizes [37].

The GPU and FGPA hybrid computer achieved comparable results in most benchmarks,
with the GPU outperforming the FGPA for Transpose and the FGPA outperforming the GPU
for Scatter and Gather [37]. However, when the cost of transferring data, in terms of time, is
taken into account both the GPU and the FGPA hybrid computer fail to outperform a CPU
in a Scatter/Gather based benchmark [37]. Contrastingly, Carrington et al. adopted a more
focused approach and paid specific attention to the Gather and Scatter idioms with the aim
of developing a model as a means of:

• providing the programmer with knowledge of the whereabouts and presence of bottle-
necks prior to searching [6];

• providing an estimate of the expected speedup that one can achieve when using a co-
processor to accelerate computation for a particular program [6];

Carrington et al. were able to predict the performance of scientific applications accelerated
using coprocessors using their model to within 10% [6]. In a case study it was found that
an application designed using their model achieved speedups of up to 20% [6]. Although this
result validates their model for approximating the speedup achieved using their model the
result is very poor.

Carrington et al. ascribe the poor performance to the bottleneck in transferring data from
the host computer to the coprocessor. The flaw in their methodology is that in simply migrat-
ing data to a device just in time for computation one creates significant overheads. Instead
of directly mapping identifiable units of computation one might, for instance, restructure a
computation such that there is less data transfer and the computation affords more opportu-
nities for parallelisation. This alternative strategy might result in an algorithm which is less
efficient on a CPU, but is more amenable to parallelisation on a GPU or other such device.

3.2 Practical Implementations
The discussion thus far has been general; it has elucidated commonalities between parallel
metaheuristic algorithms and the principles of parallel computation. The discussion now
turns to the implementations of parallel algorithms for combinatorial problems available in
the literature and pays particular attention to those solved using massively parallel hardware.
This section provides a basis upon which commonalities in approaches can be identified, thus
allowing one to take better advantage of parallelism in computers.

3.2.1 Parallel Metaheuristics

Parallelism for metaheuristics has been researched since the early 1990s [33]. One early
example is presented by Logar et al.; they propose a massively parallel implementation of a
genetic algorithm using the MasPar computer. The authors were concerned primarily with
the distribution of work and with how the semantics of the sequential genetic algorithm could
be maintained in a massively parallel environment [33].
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Logar et al. decided on what has become known as an “island” model to support work
division in a genetic algorithm. Under this model a distinct run of the algorithm is performed
on each PE. The semantics of the sequential algorithm are maintained by communicating
sequences (members of the population) between PEs as a best attempt at maintaining a
conglomerate population [33].

According to Crainic et al. the island model for a parallel genetic algorithm is a type
three class (cooperative parallelism) of parallel metaheuristic, because it employs multiple
cooperating runs [13]. The island model is the inspiration for many other genetic algorithms.
In [26] the island model is used in the specification of a genetic algorithm for a Unix computer
network and is extended to include the notion of trade agreements for optimal exchange of
genetic material between islands [26].

Similar ideas are apparent in, and not limited to, the work of Jaros, Lazarove et al. and
Borovska [3, 25, 31]. In most cases the island algorithmic model is successfully applied to
achieve near linear speedups.

Borovska et al. present a more general solution to combinatorial problems in the form
of a library for solving combinatorial problems using various parallel metaheuristics named
PARMETAOPT [3]. A grid of suggested algorithms and parallel strategies is presented
for a near complete listing of combinatorial problems [3]. The parallel strategies include:
Master-Slave, Synchronous Iterations, Single Process Multiple Data, and Multiple Indepen-
dent Runs [3]. PARMETAOPT conglomerates years of research into parallel metaheuristics
for combinatorial problems. It can be considered a summary of best practices for solving
combinatorial problems using parallel metaheuristics.

3.2.2 GPU Based Implementations

Interest in GPUs as a compute platform became widespread when vendors began supporting
general compute programming for their devices. It has previously been commonly held that
GPUs are ineffective at executing programs which involve irregular branching and irregular
memory access patterns. This has lead to a commonly held idea – that GPUs are ineffective
at running contemporary metaheuristic algorithms.

The research community has challenged the preconceptions of how effectively GPUs can
accelerate metaheuristic based programs. In many instances this research has resulted in GPU
based implementations which have outperformed their CPU based counterparts [14, 20, 23,
27]. A brief survey of research into GPU based implementations of metaheuristic algorithms
is now presented.

Implementations of “Exact” Algorithms

Suri et al. design and implement a GPU algorithm for the exact solution to the multiple
choice knapsack problem (a well known combinatorial problem) using a parallel dynamic
programming algorithm [49]. Lalami et al.define the knapsack problem as follows in the next
definition:

Although highly effective for smaller problems, dynamic programming doesn’t scale well
for large NP-Hard problem sizes in general because of large cache sizes and even larger con-
stant factors. Another GPU implementation of an exact algorithm is presented by Lalami
et al. in the form of a parallel branch and bound algorithm. However their algorithm is also
not suitable for large problem sizes [30]. Given the failures of both algorithms to provide
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Definition
Given items Xi, profit pi ∈ N∗

+ and weight wi ∈ N∗
+, where i ∈ 1, . . . , n, and a

knapsack with capacity c ∈ N∗
+, find Kmax, where:

Kmax = argmax i
n∑

i=1

pixi (3.3)

(3.4)

Such that Kmax cannot exceed the capacity of the knapsack c. i.e.
∑

i=1 n < c.

satisfactory scaling, it is apparent that an approximation algorithm is favourable for solving
more general sizes of combinatorial problems.

Implementations of Population Based Metaheuristics

Population metaheuristic models are inherently parallel because the generation and evaluation
of each individual in a population can be carried out in parallel.

Most work on GPU implementations of metaheuristics has primarily focused on so-called
“population metaheuristics;” these are: Genetic Algorithms, Scatter Search and other biolog-
ically and sociologically inspired algorithms. The commonality in all of these heuristics is that
they generate a collection of solutions on each iteration using the previous collection operated
over by naturally inspired optimisation mechanisms. Therefore a population metaheuristic
is any metaheuristic which actively computes and stores multiple solutions to a problem on
each iteration.

Luong et al. propose that there are three models for parallel execution of the genetic
algorithm [34]:

1. the parallel evaluation of the population;

The first strategy is a class one (fine grained) parallel metaheuristic according to [13].

2. the parallel evaluation of solutions;

The second is another example of a class one (fine grained) parallelisation.

3. the island model;

The third is a class three (cooperative parallelism) parallelisation.

What follows is a (non-exhaustive) list of the implementations of population metaheuristic
algorithms on GPUs available in the literature. The number and variety of implementations
illustrate the diversity of approaches which are available from existing algorithms. A detailed
description of each implementation is outside of the scope of this document. The examples
are presented as a context for subsequent chapters.

Examples of type one parallelisation are found in the works of Zhu et al. and Krömer et
al. [29, 55]. Zhu et al. use a parallel evolutionary strategy algorithm, which only differs from
a genetic algorithm in that individuals possess collections of genetic information. Krömer
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et al. use a simple Differential Evolution algorithm which naturally lends itself to the GPU
compute environment.

The works of Jaros et al., and Mirsoleimani et al. illustrate the effectiveness of practical
island based approaches to population metaheuristics for GPUs [25, 39].

Jaros et al. propose an implementation which uses multiple GPUs, one for each island,
and assigns warps to collections of individuals. They cite various prior attempts which have
used other assignment schemes limited either by the size of the individual or by the size of
grids and or SMs on the device [25]. Jaros et al. reason that their approach is effective because
it is scalable and it avoids thread divergence.

Mirsoleimani et al. propose a cell-based approach to a memetic algorithm [39]. A memetic
algorithm combines a metaheuristic with a classic heuristic in a hybrid heuristic model. Mir-
soleimani et al. combine a genetic algorithm and a variable neighbour search algorithm. Al-
though the authors note that the so called cell model (in essence an island model with many
small islands) for genetic algorithms would be effective for the GPU, the cell model doesn’t
integrate with the combined heuristic effectively [39].

Implementations of Trajectory-Based Metaheuristics

Metaheuristics which primarily alter the trajectory of a search through neighbourhoods have
come to be referred to as trajectory-based heuristics. Melab et al. elucidate three models of
parallelism applied to trajectory-based heuristics [36]:

1. multiple runs of the entire algorithm in parallel with no cooperation;

a type three parallelisation (cooperative parallelism with no communication);

2. evaluation of solutions in a neighbourhood in parallel;

a type one parallelisation (fine grained);

3. evaluation of a single solution in parallel;

a type one parallelisation (fine grained);

Melab et al. extend a trajectory-based metaheuristics framework to allow for computation
to occur on a GPU and reason that evaluating neighbourhoods in parallel is the most general
model for parallelism in trajectory-based metaheuristics [36]. Melab et al. noticed that the
amount of parallelism available in the evaluation of a single solution is entirely based on the
problem being solved and is therefore clearly not general. Melab et al. don’t use multiple
parallel runs because that strategy serves to increase robustness (because we may select the
best solution after many runs) and their goal is speedup [36].

Delévacq et al. propose a parallel model for Iterated Local Search (ILS) in which threads
work on independent solutions but share members of a neighbourhood during neighbourhood
evaluation [15]. The model was implemented on an NVIDIA Fermi GPU and achieved up to
a six times speedup.

The speedup achieved by Delévacq et al. is disappointing, because it is complicated and
difficult to implement an algorithm on a GPU and the GPU promises far greater peak perfor-
mance figures. Unfortunately results similar to those achieved by Delévacq et al. are common
amongst the articles surveyed.
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Perhaps an alternative strategy for GPU based implementations of metaheuristics could
be more successful. Perhaps the GPU is not amenable to the acceleration of trajectory-based
metaheuristic algorithms. It is evident from this brief survey of the literature relating to GPUs
in metaheuristics that the island model, communication and mapping of work to threads, SMs
and grids are common motifs in the development of effective algorithms for implementation
on a GPU.

3.2.3 FPGA Implementations

Field Programmable Gate Arrays (FPGAs) offer significant potential for hardware accelera-
tion and could result in significant improvements in accelerating programs to solve combina-
torial problems. However, FPGAs are notoriously difficult to program [50]. This difficulty
is embodied by the fundamental shift in the way one must reason about the semantics of
expressions when developing projects in a Hardware Description Language (HDL).

For example two statements in a computer programming language usually execute one
after the other, however when implemented on an FGPA the two assignments will happen at
precisely the same moment in time. These semantics allow the developer to make assumptions
about synchronisation which aren’t possible in a software development environment; however
the semantics of HDL are also more complex and subtle.
There are three common strategies for accelerating computation using an FPGA:

1. avoiding overheads which exist in high level programming languages;

2. creating deep functional pipelines which overlap stages of computation – an instance of
task parallelism;

3. replicating functional pipelines so that many units of data can be processed in parallel
– an instance of data parallelism;

The Convey Computer HC-1 is an hybrid computer designed to allow the user to accelerate
a program written in an high level language by offloading bottlenecks to a bank of FPGAs.
Little research has been carried out on the Convey Computer in comparison to the GPU.
This may be because software programmers are not suitably trained to use the machine and
because it is less well known.

Uliana et al. argue that even though this platform has been developed with the explicit
intent of making it more approachable to the developer it remains very difficult for the novice
FGPA developer and they suggest that a visual approach using a block level design method-
ology may be more appropriate [50].

Previous work on the Convey computer includes that of Steinfadt et al. who use a dynamic
programming formulation of the Smith Waterman algorithm to implement a systolic array on
a Convey computer [48]. This is a successful technique because it is massively parallel and
the simplicity of each cell in a systolic array lends itself to being replicated many times over.

In another instance Meyer et al. show how the Convey vector personality (instruction
set) can be used in conjunction with the Convey OpenMP extensions to accelerate vector
operations in normal applications [38]. Meyer et al. show that their strategy can result in a
competitive speedup over an 8-core optimised version designed for a CPU [38]. In the opinion
of Meyer et al., despite the fact that the framework allows for the application to be developed
by a novice, the speedup achieved is insufficient to warrant the expense of the computer.
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Walton et al. implement a parallel Scatter Search algorithm on a Xilinx Virtex 5 chip [51].
In the study a high level synthesis tool, called Handel-C, was used to compile programs written
in the C programming language into HDL for synthesis [51]. In order to test both the efficacy
of the FGPA based implementation and that of Handel-C all possible selections of the 12
optimisations which it offers as extensions to C were tested. The results reflect that the
FGPA outperforms a CPU based implementation by up to 24×. However these results are
somewhat dated because the CPU used in the test was a Core 2 Duo [51].

From the literature surveyed it is evident that what is gained in ease of programming
with high level languages and commodity computers is lost when using highly specialised
compute devices, and that the effort in programming specialised devices, whilst sometimes
heroic, usually results in excellent performance figures.

It can be concluded from this survey, that the barrier to learning HDL and FGPA inte-
gration is a stumbling block for researchers.

3.3 The Current Approach to Solving the LSP

The number of solutions to the LSP is prohibitive. There are K!R−1 solutions, therefore the
brute force algorithm is only effective for small K and R and becomes impractical as the
number of ancestral groups K and runs R increase.

A pragmatic approach to solving the LSP is to construct a solution by setting parts of the
solution iteratively until a complete solution is constructed. This formulation – iteratively
constructing a solution – is a classic heuristic. The general strategy for this heuristic is as
follows. First arbitrarily select an ordering for the first run and then select orderings for
subsequent runs which minimise the objective function for the partial solution.

This strategy significantly reduces the number of solutions explored, thus making the
problem more computationally feasible. An algorithm which uses this strategy is said to be
“greedy” because the algorithm applies the criterion of what would give the greatest immediate
benefit, a short-sighted practise which tends to lead to sub-optimal solutions.

3.3.1 A Greedy Algorithm Formulation

Nordburg et al. published the first greedy algorithm for the LSP. It begins by selecting a
Q-matrix (see Section 2.5.3) at random and shuffles it [40]. It then selects another matrix
and computes the minimum cost permutation of that matrix to the first matrix and fixes it to
that permutation. The algorithm continues to iteratively select matrices which haven’t been
fixed and computes the minimum cost in relation to the last fixed matrix [40].

Subsequently to Nordburg et al. the problem was investigated in greater depth by Jakob-
sson et al. [24]. Two greedy algorithms are proposed. These algorithms are implemented in
the program CLUMPP.

Jakobsson et al. begin by defining a collection of orderings (the solution to the LSP) as
a solution matrix, where the value at each index in each row corresponds to the index of
a column, and where the symbol at the corresponding index in subsequent rows are to be
interpreted as having the same label [24].

The first algorithm is called Greedy. Much like the algorithm in [40], the first algorithm
does not permute each of R runs with respect to each other. Instead it begins by selecting a
starting permutation Oinitial arbitrarily (usually at random) which constitutes the first row
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a partial solution matrix. For R− 1 iterations, the algorithm iteratively evaluates the cost of
the partial solution with each of the K! orderings for the next ordering added and selects the
ordering for which the cost of the partial solution is minimised [24].

The second algorithm is called Large-K Greedy. It extends the concept of the first algo-
rithm by selecting a random ordering for the first row of the matrix [24]. Then it constructs
an ordering per run by iteratively adding the symbol to a partial row which minimises the
cost of the column it is added to. This procedure is repeated iteratively until R− 1 orderings
have been constructed [24].

Greedy computes the objective function for K! orderings per row thus computing the
objective function (at least partially) K!(R − 1) times [24]. Large-K Greedy computes a
symbol to add into each of the remaining positions in each row [24]. This is an upper triangular
computation (like selection sort) thus resulting in K(K−1)

2 R (at least partial) fitness function
evaluations [24].

3.3.2 A Fitness Function for the LSP

Jakobbsson et al. use the Frobenius norm to formulate a fitness function for computing greedy
selections in both Greedy and Large-K-Greedy [24]. The Frobenius norm is defined in terms
of the dimensions of Q-matrices in Equation 3.5, where C is the number of rows in the matrix
(number of individuals in a population structure study) and K is the number of columns in
the matrix (number of population groups in the study) [18].

||A−B||F =

√√√√ k∑
j=1

C∑
i=1

(a2ij + b2ij − 2aijbij) (3.5)

It is important to note that the selection of the minimisation of the distance between
columns in result sets is a mathematical approximation of what may be correct in an ontolog-
ical sense. One may perform further biological experiments, or use other means, to elucidate
an understanding of what is correct biologically, but the minimisation of the Frobenius norm
as a heuristic might not result in the same answer. Experimentation by heuristics allows one
to gain useful insights into data and thus helps one to establish a better idea of what the
ontological truth is.

Using the Frobenius norm Jakobsson et al. define two similarity measures, G and G′, given
in Equations 3.6 & 3.7, where WK is a K×C matrix with all values set to 1

K . Equation 3.6 is
designed to highlight instances where there is pronounced population structure in one of the
matrices, i.e. when the values in a solution matrix are not evenly distributed per K entries in
a row [24]. This formulation is effective because each row in a Q-matrix must sum to one2.

G(A,B) = 1− ||A−B||F
||A−Wk||F ||B −Wk||F

(3.6)

Jakobsson et al. provide an alternate formulation in which similarity falls in [0, 1] using
the normalisation constant

√
2C [24].

G′(A,B) = 1− ||A−B||F√
2C

(3.7)

2By definition one cannot have inherited more genetic material from the sample than was sampled.
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The Frobenius norm has complexity O(KC), from Equation 3.5. Equation 3.6 has com-
plexity O(3KC) = O(KC) and Equation 3.7 has complexity O(KC), i.e. Equation 3.6 has the
same asymptotic complexity as its counterpart, but it has a lower constant factor. Jakobsson
et al. show through empirical tests that the two similarity measures lead to different solutions
using their algorithms, but that their properties are very similar [24].

Finally Jakobsson et al. define the fitness function as the average pairwise similarity be-
tween all matrices when permuted by the solution matrix [24]. The fitness function is defined
in Equation 3.8 (where {Q} is the set of permuted output matrices) and has complexity
O(KCR(R− 1)) [24]. The factor R(R− 1) is as a result of the upper triangle comparison in
Equation 3.8.

f({Q}) = 2

R(R− 1)

R−1∑
i=0

R∑
j=i+1

G(Qi, Qj) (3.8)

As a measure to avoid becoming stuck in sub-optimal solutions, the user instructs CLUMPP
to begin the search from a number of random starting positions. This is because a greedy
search heuristic, starting from different partial solutions, will likely result in different solu-
tions. The best of the resulting solutions is then selected.

Metaheuristic based algorithms are designed to solve the problem of becoming stuck. This
dissertation asserts, as a central tenet, that metaheuristics are suitable for acceleration by
massive parallelism, thus metaheuristic based algorithms are poised to address the limitations
of the state of the art approach to solving the LSP.



Chapter 4

The Parallel Solvers Model

4.1 Introduction
This dissertation presents Parallel Solvers, an abstract model of computation which amalga-
mates the commonalities of parallel computation for metaheuristic-based algorithms. This
chapter establishes a fundamental principle of Parallel Solvers and of this dissertation: that
the trajectory and population classes of metaheuristic algorithm can be derived from the same
algorithmic model. The relationship between the two lies in the amount of local (trajectory)
versus collaborative (population) search which metaheuristic operations employ. It is also
established that there are two primary methods of exploration which can be employed by
local and collaborative metaheuristic algorithms:

• exploration by Diversification:

Diversification is the process whereby solutions which are not currently under consider-
ation are generated. This results in a more diverse body of solutions to be considered.
Diversification acts to explore more of the search space. This mechanism of exploration
attempts to avoid the problem of becoming stuck.

• exploration by Refinement:

Refinement aims to improve on the best solution found. This process can be thought of
as whittling down the body of solutions under consideration and is therefore destructive.
Without a Refinement step a metaheuristic is simply a haphazard inspection of a search
space in which we hope to find the optimal solution. In practice it is unlikely that a
high quality solution can be found without some form of Refinement.

Diversification and refinement are established ideas from literature. This chapter proposes
that the operators can be used to form the basis of a general model of metaheuristic algorithm
and that they are therefore fundamentally important to the fields of metaheuristic algorithms
and combinatorial optimisation.

4.1.1 Trajectory-Based Metaheuristics Under a New Light

The defining feature of a trajectory metaheuristic is that it considers a single solution. The
solution moves through the search space on a trajectory which is modified by a local search
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heuristic of some kind. The local searches at each point act as a diversification step because
they introduce new solutions which were not originally considered. All solutions under eval-
uation will undergo some form of selection, which is usually weighted toward improvement in
quality, and subsequently will update the current solution, thus refining the search.

4.1.2 Population-Based Metaheuristics Under a New Light

In a population-based metaheuristic there are two diversification processes. First a popula-
tion of solutions is constructed by a stochastic process. The first process introduces a large
number of solutions which were previously not under consideration by the algorithm. Sec-
ondly population-based metaheuristics often employ a process whereby solutions are randomly
perturbed as the algorithm progresses.

Refinement in a population-based metaheuristic is implemented by operators such as se-
lection, combination, preservation or elimination. Algorithm designers employ a combination
of these operators in order to refine the average quality of solutions in the population. Intu-
itively the operators can be thought of as attempting to generate new solutions which combine
the positive attributes of effective solutions.

4.1.3 A General Metaheuristic Model

We now examine and contrast the implementations of population-based metaheuristics to
those of trajectory-based metaheuristics in terms of their counterparts in each class of algo-
rithm.

There is no initial Diversification step in a trajectory-based metaheuristic and beyond
the first step of the algorithm a trajectory-based metaheuristic doesn’t store and operate on
more than one solution across iterations. A trajectory-based metaheuristic may therefore be
thought of as a population-based metaheuristic in which the population size is one.

A population-based metaheuristic randomly perturbs solutions during the search which
it conducts (mutation is an example of a change which this class of algorithm makes). The
process of randomly altering members of a population can be thought of as multiple distinct
trajectory-based searches. For example, mutation in a population-based metaheuristic may
be thought of as multiple small neighbourhood searches from each member of the population.

The mechanisms by which Diversification and Refinement occur in both population and
trajectory-based metaheuristics are distinct. Two sub classes of Diversification and Refine-
ment are introduced to address this distinction.

4.1.4 Class One Operators

I define the first class of operators as those which are derived from trajectory-based algorithms.
Listing 4.1 will be referred to as “trajectory Refinement.”

The counterpart of trajectory Refinement is given in Listing 4.2 and will be referred to as
“trajectory Diversification.”

4.1.5 Class Two Operators

Trajectory-based operators also have counterparts in class two population-based operators.
Listing 4.3 will be referred to as “population Diversification.”
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Listing 4.1: Trajectory Refinement Operator

// given:

2 // f(s) A fitness function

// chi A probability mass function

4 // s The `current' solution in the search

// S A set of solutions

6 // CDF A function which produces the \gls{CDF} of a collection of solutions

8 cdf <− CDF(f, S)

rnd <− sampleRandomNumber (chi)

10 s <− binarySearch (cdf, rnd)

Listing 4.2: Trajectory Diversification Operator

// given:

2 // chi A probability mass function

// l The number of solutions to sample

4 // s A solution

// f A function which produces a solution with a

6 // random change from the given solution

8 neighbours <− [s]

10 for i <− 1..l

neighbours <− neighbours + f(s, chi)

Listing 4.3: Population Diversification Operator

1 // given:

// P The size of the initial population

3 // chi A probability mass function

// f A function which produces a solution at random

5

initialPopulation <− []

7

for i <− 1..P

9 initialPopulation <− initialPopulation + f(chi)
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Listing 4.4: Population Refinement Operator

1 // given:

// S A set of solutions

3 // n The number of solutions to generate

// chi A probability mass function

5 // combine A function which generates a new solution

// via a combination of two solutions, or maintains a solution

7

nextGeneration <− []

9

for l <− 1..n

11 nextGeneration <− nextGeneration + combine(S, chi, f)

Listing 4.4 will be referred to as “population Refinement.”

4.1.6 A Universal Sequential Metaheuristic Model

Having established the fundamental means by which metaheuristic algorithms perform searches,
the discussion now moves to the creation of a general model which encapsulates the principles
of the two classes of metaheuristic algorithm.

Population-based operators are trivial in a population of one solution. The only rational
definition of these mechanisms is the identity function, i.e. combination, elitism and other
population-based mechanisms can be defined as identity for the unit population. Therefore,
a trajectory-based metaheuristic can be thought of as a population-based metaheuristic with
a unit population.

Using the definitions on class one and two operators from Equations 4.1, 4.4, 4.2 and 4.2,
a universal algorithmic model for a metaheuristic is defined by combining these operators in
Listing 4.5.

The model is general enough to encapsulate most of the ideas presented by the algorithms
investigated in Chapter 3.

Example 4.1.1

Genetic Algorithm Example:
Consider the genetic algorithmic model. We can supply the universal algorithm
with F as the uniformly distributed probability distribution function, g as the
identity function and set l equal to one. diversifyt along with refinet can be defined
as a random perturbation to a solution. refinep can be defined as selection followed
by combination. Finally diversifyp can be defined as the random generation of a
population of P solutions.

Example 4.1.2

Simulated Annealing Example:
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Listing 4.5: The universal algorithmic model for a metaheuristic algorithm

1 given: S // A solution definition

P // The size of the initial population

3 l // The number of solutions to sample in a neighbourhood

F() // A probability mass function (potentially skewed)

5 U() // A uniformly distributed probability mass function

f() // A fitness function

7 g() // Another fitness function

9 // Initial diversification

Solutions <− diversify_p (S, P, U)

11

// Iteration

13 while there exists no solution of acceptable fitness:

Solutions <− refine_p (f, U, Solutions)

15 for solution in Solutions:

Neighbours <− diversify_t (S, U, l, solution)

17 solution <− refine_t (g, F, Neighbours)

Consider the simulated annealing algorithm. The model nearly captures all ideas
in simulated annealing. If P is set to 1, F is defined as the Boltzmann distribu-
tion and l is defined as the number of neighbours to consider then the resulting
algorithm is very similar to simulated annealing.
Simulated annealing requires that the energy cost of evaluating neighbours is
exported statically by the neighbourhood evaluation process so as to evaluate
when thermal equilibrium is reached [46]. At the point where thermal equilibrium
is reached F is altered by advancing the temperature to the next state in the
annealing schedule.
The model doesn’t support the principle of static data as such because there is no
means of exporting static data and reading it at a later stage. The model could be
extended to include a scratch space, but this is somewhat unsatisfactory because
it breaks the mathematical purity of the model.

The pivotal difference in the formulation of both the Genetic and Simulated Annealing
algorithms is that the population-based metaheuristic has P > 1 and the trajectory-based
metaheuristic has l > 1. A trajectory-based metaheuristic algorithm is therefore the coun-
terpart of a population-based metaheuristic in terms of the degree to which the algorithm
maintains solutions across iterations versus inspecting neighbours.

We note that a practical (and interesting) algorithm might result by setting both P and
l to be > 1.

4.1.7 Information Sharing in Parallel Metaheuristics

Previously, type three parallelisation (cooperative parallelism) was defined as a scheme in
which concurrent instances of a metaheuristic are spawned which may or may not communi-
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cate [13]. It was argued that cooperative parallelism allowed for a more complete search to
be undertaken [13]. Chapter 3 presents research which argues that cooperative parallelism is
limited in its application because it is not suitable for a trajectory-based metaheuristic. We
can infer from this argument that the researchers believe the sharing of information to be a
detail with respect to implementation rather than algorithm.

The mechanism which sharing promotes is a convergence on what has been identified as a
promising area of the search space. This requires that an entity is capable of communicating
one or more promising solutions and of adapting its own search upon receiving information
from other entities.

In a population-based metaheuristic, integration of this information is trivial. One can
simply integrate solutions from one or many of the instances of the search into other instances.
A trajectory-based metaheuristic presents a greater challenge. A proposed method is, as the
receiver, to include communicated solutions into the next neighbourhood search and, as a
communicator (which all instances are), to communicate a selection of solutions, which came
under inspection at some point in the search, to the other solvers.

There are potential mechanisms for communication in both population and trajectory-
based metaheuristics. This highlights the possibility of a more general treatment of informa-
tion sharing in the context of parallel metaheuristic algorithms.

4.1.8 Parallel Strategies for Metaheuristics

The “island model” is a common motif in the specification of parallel strategies for population-
based metaheuristics. The island model is a mechanism of sharing the information in meta-
heuristics and is mostly applied to population-based metaheuristics. Distinct populations are
modelled as “islands” (concurrent instances of the search) and individuals can travel between
islands by ships with limited passengers.

The literature indicates that the island model has been used to provide satisfactory
speedup and improvements to solution quality [25, 39, 33, 26]. In cases where this model
was implemented on a GPU, data parallelism was also leveraged within islands to accelerate
the rate at which steps were carried out [33]. The use of data parallelism is a somewhat
confounding factor, because it is not possible to determine whether the successes found in the
literature were a result of the communication step in the island model or were a result of the
improved rate at which iterations could be carried out.

The island model also bears a similarity to the granularity and the hierarchical nature
of modern computers. Although originally used on coarse grained architectures (such as
networked computers) the memory hierarchy of a modern computer, especially in a massively
parallel computer, has similarities to the island model. On a high level a computer has slower
memory and communication busses between processing elements – or in the case of the GPU
– between SMs. Therefore, a coarsely grained division is suitable. On a low level, there is fast
local memory (suitable for sharing data in the case of the GPU) which is suitable for tightly
coupled finely grained operations.

An effective algorithm can lead to programs which execute a low number of iterations be-
fore converging on a suitable answer. This results in a shorter running time for the algorithm,
an attribute we refer to as the speedup due to convergence. An effective algorithm can also
lead to programs which execute iterations more quickly due to data parallelism, an attribute
we will refer to as the speedup achievable by parallelism.
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Convergence

If the number of iterations which a “single island” algorithm executes before finding a suitable
solution is denoted as n, and the number of iterations which a “multi-island” algorithm makes
before finding a suitable solution is denoted as N , then the algorithm can be said to have
been sped-up by an amount proportional to n

N .

Parallelism

If a computation can be decomposed into discrete steps such that there is no data dependency
between the steps in each unit, then one can perform each sub-computation in parallel. The
speedup we can achieve in this instance is a factor of the number of processing units available
and is limited by Amdahl’s law – speedup achievable through parallelism is limited by the
proportion of a program which must be sequential [32].

If a program can execute fewer iterations and each iteration is executed in a shorter amount
of time, then we are guaranteed to achieve a speedup. Therefore a suitable combination of
the two strategies is a sound strategy for parallelising an algorithm.

4.1.9 Geometric Division of Problems Solvable by Metaheuristics

Often the most convenient and effective method for developing a parallel algorithm is to simply
divide the problem into partitions, and to compute partitions in parallel. This partitioning
scheme is referred to as geometric partitioning in this dissertation because of the parallels
it draws with geometric divisions in a mathematical sense. If a problem is amenable to this
strategy it is often referred to as embarrassingly parallel.

A geometric partitioning scheme has not been investigated in the context of population-
based metaheuristic algorithms. It is unclear whether a geometric partitioning scheme would
result in a speedup in the processing time for a metaheuristic. Simply dividing the search
space into partitions won’t necessarily result in a speedup, because a metaheuristic search is
non deterministic by nature. It might be the case that the algorithm is in fact more efficient
when the search space has not been divided. Finally it might be the case that experiments
designed to determine and contrast the efficiency of either approach aren’t repeatable. This is
because of the unpredictable way in which metaheuristics-based algorithms conduct searches.

My intuition is that a partitioning scheme would assist an island model algorithm to per-
form a more comprehensive search, because each island would be constrained to a particular
division for a time, thus ensuring that areas are not immediately overlooked, but still allowing
for islands to converge on promising areas of the search space.

4.2 Specification of the Parallel Solvers Model
The Parallel Solvers model is a parallel extension of the universal model for metaheuristic algo-
rithms. The goal of the model is to incorporate effective strategies in parallel metaheuristics,
thus being general enough to enable it to describe most parallel metaheuristic algorithms.

This section explores cooperation accelerated by low level parallelism in the hope of elu-
cidating a robust model for the development of algorithms which are suitable for parallelism
– especially in a massively parallel sense.

The remainder of this chapter is structured as follows:
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• details regarding changes to the algorithm are presented;

• finally the model itself is presented;

4.2.1 Details of the Parallel Solvers Model

Parallel Solvers are modelled on a grid search with cooperation as an abstract heuristic. The
work of an entity searching in its allotted region is modelled by a local search carried out
by a metaheuristic based algorithm. The local search starts in such a way that none of the
solutions it considers are outside of a partition in the search space. This can be facilitated by
applying rules to the random generation of solutions during initial Diversification.

To avoid heavy overheads, as there may be when restricting Diversification, strict partition
rules can be relaxed so that Diversification is allowed to escape a partition but still tries to
stay in its scope (example to follow). Correct communications, guarantees on convergence
and predictable behaviour are assured by way of a contract which a parallel solver must
implement.

The contract can be described by 4 simple rules. Given a parameter n:

1. A solver must keep track of the n best solutions encountered thus far.

2. A solver must be able to communicate the best solutions it has kept track of.

3. A solver must be able to incorporate n solutions into its search.

4. A solver must produce solutions which are monotonically increasing in fitness.

The first three rules constitute a simple cooperative contract without specifying the topol-
ogy of the communication channel. The fourth rule is a result of the first rule, i.e. if the solver
is capable of tracking the best solutions found thus far then the solutions which it produces
will naturally never decay in quality. This need not constrain the solver to local optima,
because the best solutions encountered can be stored in a separate buffer which doesn’t play
a role in the execution of local searches.

4.2.2 A Universal Model for Parallel Metaheuristics

The discussion now moves to the extensions which Parallel Solvers make to the universal
model. The first addition to the model is a communications channel. The channel is modelled
as a stream so that the details of the implementation (synchronicity, topology etc.) are left
to the designer.

Listing 4.6 defines an extended universal model – Parallel Solvers. C, n and i are new pa-
rameters, i.e. they were not present in the sequential model. C controls the number of solvers
to use in the search. n defines the number of solutions to be communicated between solvers. i
indicates the degree of trajectory (denoted by a subscript “t” in listings) or population-based
(denoted by a subscript “p” in listings) search which is to be undertaken by the metaheuristic.

i defines the number of solutions which ought to be integrated to the neighbourhood search,
e.g. for a pure population-based metaheuristic i should be set to 0, i.e. all communicated
solutions are incorporated to the local population. For a pure trajectory-based metaheuristic
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Listing 4.6: The algorithmic model of parallel solvers

1 given: S // A solution definition

P // The size of the initial population

3 l // The number of solutions to sample in a neighbourhood

F() // A probability mass function (potentially skewed)

5 U() // A uniformly distributed probability mass function

f() // A fitness function

7 g() // A secondary fitness function

C // The number of solvers to spawn

9 n // The number of solutions to communicate

i // The number of solutions to integrate into the neighbourhood search

11 comm // A communications stream

13 // Determine partitions of the search space

S_subs <− partition (S, C, f)

15

par:

17 // Determine location in grid

id <− solverID

19

// Determine initial search space

21 S_sub <− S_subs[id]

23 // Initial diversification

Solutions <− diversify_p (S_sub, P, U)

25 Best <− {}

27 // Iteration

while there exists no solution of acceptable fitness:

29 Solutions <− refine_p (f, U, Solutions)

if terminate? comm

31 comm << terminate

terminate

33 comm >> Communicated

// Replace last Solutions with (n−i) communicated solutions from

Communicated

35 Solutions[−(n−i)::] <− Communicated[0:(n−i)]
for solution in Solutions:

37 // S_sub can be replaced with S to relax scope requirement

Neighbours <− diversify_t (S_sub, U, l, solution)

39 // Add the remaining communicated

Neighbours <− Neighbours + Communicated[(n−i):n]
41 solution <− refine_t (g, F, Neighbours)

if updateBest? (Best, Solutions)

43 best <− updateBest (Best, Solutions)

comm << Best

45 comm << terminate
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i should be set to n so that all communicated solutions are incorporated to the neighbourhood
search1.

Notable programmatic additions to the model include:

• the addition of a partition step:

The partition step is abstract allowing the designer to decide on an appropriate method
for partitioning. A proposed method is to use a branch and bound based algorithm
which halts when enough partitions have been created. In doing so, areas of the search
space which contain low quality solutions could be avoided by removing them from the
search early on.

• the par construct for parallel execution:

Par is used in the model to represent a portion of the algorithm which can be executed
with asynchronous concurrent semantics.

• communications constructs:

The C++ style stream operator is used to represent the sending and receiving of data
from the communications channel comm. comm >> variable represents a value being
received from the channel and stored in a variable. comm << value represents a value
being sent over the channel. The comm entity resolves topology, serialisation and any
other requirements for communication opaquely so that the focus can remain on the
algorithm itself.

• an extra termination condition:

Finally an extra termination condition is added, that is, when any solver flags that
the search should terminate then terminate this solver as well. This occurs when any
solver finds a solution with sufficient quality, thus escaping and flagging terminate to
the communications channel.

This section concludes by presenting two examples of how the Parallel Solvers model can
be used to design a parallel genetic algorithm and a parallel simulated annealing algorithm.

Example 4.2.1

Genetic algorithm:
A parallel genetic algorithm can be specified using the Parallel Solvers model
by setting P to a value greater than one. The parameters which are shared
with the sequential model remain unchanged for the specification of the parallel
counterpart. n can be set to a value less than P so that only a portion of the
population is communicated. i is set to zero so that none of the received solutions
are integrated into a neighbourhood search.
The generation of solutions within a sub-space can be time consuming. Therefore,
the condition that solvers stay in their search space can be relaxed for the diversifyt

1Just as is the case in the sequential model, there exist opportunities to hybridise the use of class one and
two operators.
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step of the algorithm. This decision affords the designer of an algorithm with the
choice of whether to allow the searchers to escape their division.

Example 4.2.2

Simulated annealing:

A parallel simulated annealing algorithm can be specified using the Parallel Solvers
model by setting P to one. The temperature must again be statically exported
(breaking from the model) and the parameters which are shared with the sequen-
tial model can remain the same.

i is set to n so that all communicated solutions are included in the neighbourhood
search, i.e. when evaluating states the algorithm first takes the communicated
solutions under consideration – instead of randomly generating every neighbour
solution.

4.3 The DePermute Algorithm

DePermute is one of the major contributions of this dissertation. It is a parallel metaheuristic
based on the parallel solvers model. DePermute implements a genetic algorithmic approach
using parallel solvers. It emphasises the use of class two metaheuristic operators (popula-
tion diversification and refinement). DePermute, generates an initial population at random
and subsequently refines it using a combination of crossover, elitism and parallel coopera-
tion. DePermute introduces diversification on a per iteration basis using the mutation and
recombination operators.

One of the key principles of the algorithm is its focus on data parallelism – which it
supports by way of class two operators. DePermute’s focus on data parallelism introduces
opportunities for a trivial division of work among PEs. The GPU model of computation
supports this strategy well because it emphasises the application of operations across batches
of data with little branching. By employing this strategy, DePermute trades memory efficiency
for more opportunities to use data parallelism.

A potential pitfall of this approach is its reliance on initial diversification in generating
sufficient entropy from which a solution is derived. Note that the word “entropy” is used
in this dissertation to describe a property of chaotic systems which results in unpredictable
behaviour. If insufficient entropy is present in the initial diversification step then the algorithm
will never find the optimal solution. This point was illustrated in Figure 2.1 and it was
concluded that there is a permitted set of symbols per position in a “genetic sequence” given
an initial population.

There are two mechanisms which can be used to combat this effect. The first of these is the
generation of very large initial populations in an attempt to increase the likelihood that every
symbol may occupy each position in the genetic sequence. However, the complexity of the
LSP is prohibitively large, requiring many more solutions than could be stored to guarantee
this condition.

The LSP is prohibitively complex and the number of symbols which could occupy a posi-
tion in the sequence for the LSP has a factorial relationship with the number of population
groups (K). This would require that a computer have sufficient memory to store a population
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which grows in a factorial relationship to K and that the computer generates the solutions
to occupy that memory – which in itself is problematic in terms of time.

Mutation and recombination allow for the chance that new symbols are generated after
initial diversification, thus one may initiate the algorithm with a smaller population size whilst
still allowing for the possibility of finding the optimal solution. It is important to note that no
guarantee can be made for the optimality of the solution which is generated, but that without
iterative diversification – and assuming that the population size is not at least K! in size –
one cannot guarantee that the optimal solution can be derived from the initial population.

DePermute also employs elitism and parallel cooperation as measures to improve on the
iterative application refinement to solutions. Parallel cooperation is implemented by over-
writing the least promising solutions of one solvers solution set and elitism ensures that a
solution sets local best solution increases monotonically in optimality.

The following sections first provide an abstract description of DePermute and then intro-
duce concrete details of the algorithm. This includes the introduction of a preprocessing step
designed specifically for the LSP in the context of population structure studies which aims to
reduce the complexity of the problem before beginning.

4.3.1 Algorithmic Model

Parallel solvers require the specification of:

• a metaheuristic search algorithm for performing local searches;

• the definition of a communications channel;

• a search space definition which supports partitioning;

Using the parallel solvers model, the l and i parameters are set to 0 and the S and n
parameters are set to non-zero values in order to create a parallel genetic algorithm. This
model leads to trivial parallelism in both the Refinement and Diversification operations.
Figure 4.1 illustrates a high level view of the resulting algorithm. Details regarding the
algorithm follow.

Metaheuristic Specification

There are two mechanisms of Diversification in a genetic algorithm – both are embarrassingly
parallel. The first is the creation of an initial population and the second is the mutation of
members of the population.

Initial Diversification is, in essence, the generation of thousands of random numbers.
Random numbers can be generated by many random number generating threads in a program
and used together provided that the random number generators are not correlated.

Mutation is a simplified trajectory search mechanism which involves the same fundamen-
tal operation as the generation of the initial population. Mutation proceeds as follows in
Listing 4.7. Also note that the specification breaks from the general model of trajectory
Diversification for convenience.

For population-based Refinement, the elitism and crossover operators are selected. To
implement these requires a four stage process. Given the count of elitist selections E and
population size P we proceed as described by Listing 4.8.
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Figure 4.1: Illustration of the parallel genetic algorithm using the parallel solvers model.
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Listing 4.7: Algorithm to perform mutation

1 // given:

// − knuthShuffle () // A method which shuffles the given array

3 // resulting in an arbitrary permutation of

// the array

5

for solution in population (except elite):

7 if (randomFloat(0, 1) < mutationRate)

row <− randomInt(0, R − 1)

9 knuthShuffle (solution[row])

Listing 4.8: Algorithm to perform crossover

1 fitnesses <− map F currentGeneration

sortByFitness ( currentGeneration, fitnesses )

3 cdf <− cdf ( fitnesses )

5 nextGeneration[0:E] <− currentGeneration[0:E]

7 for l <− E..P

x <− randomInRange [0, 1]

9 indivOne <− mapToCDF x currentGeneration

indivTwo <− currentGeneration[randomInRange[0, P)]

11 crossPoint <− randomInRange [0, R − 1]

nextGeneration[l][0:crossPoint] <− indivOne[0:crossPoint]

13 nextGeneration[l][crossPoint:R] <− indivTwo[crossPoint:R]
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Note that there is a distinction between the common mode of operation for Population
Refinement and the selected mode. Implementations found in the literature specify that
two solutions should be sampled under the CDF, however Listing 4.8 reflects that only one
solution is selected under the CDF while the other is selected completely at random.

Early experimentation suggested that the selection of two solutions under the CDF forced
early convergence and as a result the search often became trapped in local minima. When one
of the solutions is selected randomly, the convergence to the global minimum often occurred
in markedly fewer iterations because the search was less prone to becoming stuck.

A buffer of the n best solutions is maintained without any modification to the algorithm
because the sorting and elitism routines maintain a list of the best solutions at the head of
the population. So long as n is less than E no extra storage or work is required in order to
maintain the n best solutions.

Communications Channel

Two attributes are fundamental to the specification of a communications channel:

• how the topology of communications is structured, i.e. where connections exist between
entities and what the direction of the connection is;

• how the flow of control is implemented, i.e. what is the protocol under which the solvers
will communicate;

All-to-all communication has been described as desirable (e.g. [33]) but this may not be
the case. Firstly, the communication of all solutions might cause solvers to converge on a
small area of the search space too quickly, thus potentially conducting too sparse a search of
their initial search space. Secondly, the overheads in such a communication scheme could be
too great to warrant the benefits.

DePermute uses a simple neighbour based communication scheme. The communications
channel therefore operates by making the population of each solver available to each other.
An alternate description of the network is a ring bus topology where each solver sends a
message to its neighbour at each instance of communication.

Search Space Definition

We define the R×K matrix as the search space. The empty matrix contains all solutions to
the LSP. The matrix can have partial solutions entered into it to partition the search space,
therefore the partition with an entire solution entered is the unit search space, i.e. a single
solution. When entering values into the matrix the following two rules must be observed:

1. Only the symbols in [0 . . .K − 1] can be entered.

2. A symbol already in a row cannot be reentered.

Solution Alignment
Jakobsson et al. define a solution as a collection of symbols in a matrix [24]. The rows of

the matrix correspond to the result sets for model based population structure programs. The
vertical arrangement of symbols in this format implies that the columns which the symbols
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Figure 4.2: A general solution to the LSP in matrix format

represent are intended to have the same label. An illustration of a general solution matrix is
depicted in Figure 4.2.

Each row of the solution matrix is an arrangement of symbols which align to symbols in
other rows. Suppose that there exists a single solution, optimal, which is computed using
the brute force algorithm for the LSP. Then, for the purposes of further analysis, a correct
alignment is defined as follows.

Definition
Given a Q-matrix, Q. For each row Qn (n ∈ [0, .., R−1]) symbol Qn,i is considered
correct if it’s paring with the symbol in row m, Qm,i, is determined to be a
pairing of symbols which exists in the optimal solution. Where m ∈ [0, .., R − 1],
i ∈ [0, ..,K − 1] and m 6= n.

This does not reflect the reality of what the Frobenius Norm heuristic would consider a
“correct” alignment. Two columns can be considered correctly aligned (in the sense of the
Frobenius Norm heuristic) if the distance between them is minimised, but there may exist
another column in the same row as the second column’s row which has the same distance
from the first column. One may be able to distinguish which (between the competing align-
ments) is correct using biological evidence. However, in a mathematical sense the two are
indistinguishable. It might also be the case that the correct pairing isn’t that which has the
lowest distance from a mathematical standpoint, because in certain circumstances a better
alignment could be made if a poorer alignment is selected for one of the pairings.

Since the distinction from a mathematical standpoint is arbitrary, the alignment which
is in the optimal solution (as found by the brute force algorithm) is defined as the optimal
alignment.
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Search Space Partitioning

There are two requirements for a search space partitioning scheme to be suitable for the
algorithm:

1. The partitions which it creates must be distinct.

2. The un-partitioned search space must contain all possible solutions to the problem.

We define a partitioning algorithm for the search space as follows:

Definition

Given a search space, in matrix format, locate any row of the search space which
contains empty positions. If there are x empty slots in a row of the solution
matrix then the search space can be partitioned x times by inserting each of the
remaining symbols into the first empty slot (subsequently it may be partitioned
x − 1 times by inserting each of the remaining symbols into the next slot of the
same row.)

Note that each of the resulting partitions create solutions which are distinct from the
solutions created by other partitions, because in all other partitions the symbol in the position
which was set cannot be that same symbol.

Also note that continuing to partition a single row of the solution matrix by this process
results in K! partitions of the search space each with a complete first row. Continuing to
partition each subsequent row results in K! more partitions for each of the original partitions.

By the same argument, continued partitioning will ultimately result in K!R−1 partitions,
each containing a single solution to the problem. In addition, because each partition must be
distinct, and because there are K!R−1 solutions to the LSP, the partitioning scheme does not
ignore any solutions to the LSP.

4.3.2 Concrete Algorithmic Description of DePermute

In Section 4.3.1 DePermute is described on a high level in terms of the metaheuristic, com-
munications channel and solution partitioning scheme it employs. The discussion now moves
toward a more thorough treatment of the algorithm with the goal of elucidating the finer
details of heuristics and discussing computational complexity.

Block Alignments Heuristic

The objective of the LSP in the context of population structure studies is to compute a
consistent relabelling of columns in the result set of multiple runs of a model based population
structure program. Upon closer examination of the Q-matrices which result from model based
population structure programs it is apparent that there are trivial cases of the LSP.

Recall that the entries in the rows of Q-matrices correspond to probabilities and must
therefore sum to one. If the value in index one of row one is x then the subsequent values
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must be divided from the remaining 1 − x. Furthermore, if x is very high, say for example
0.7, then the remaining values must be divided from 0.3. The highest value that a subsequent
symbol can take on is therefore less than or equal to 0.3 in this instance.

In this instance it is likely that the individual whose matrix contains this value is not very
admixed with the other population groups in the study. It may be deduced that this individual
has a similar value in every other matrix in some column. I have named the arrangement of
symbols by this method a “block alignment.” Figure 4.3 illustrates the process of finding a
block alignment in a collection of matrices.

One can be fairly certain that if x is sufficiently high and, for the same individual, there
exists a value close to x in all other runs then the columns in which those values occur ought
to have the same label. Block alignments can fill in a column of the solution matrix for each
instance which is found.

The rules for selecting a block alignment are as follows. If a value x exists in an Q-matrix
A which is greater than σ then for each other Q-matrix there must exist a value y in the same
row as x which is within ±δ of x in order for the columns in which x and the y values exist
to be block aligned. Listing 4.9 delineates the algorithm for selecting block alignments in R,
m×K Q-matrices.

Based on the bounds of the loops it would appear that the worst case running time for
this algorithm is O(MRK2). However, if the physical constraints of the data are taken into
account then it becomes apparent that this cannot be the case. This is true because a value
of σ greater than 50% renders it impossible to find more than one possible alignment in a row
of the first Q-matrix, because all other values must be divided between the remaining < 50%.
Taking this into account the worst case running time becomes O(M(K +RK)) because one
can find and check at most one potential hit per row of the first Q-matrix.

For each block alignment a column is added to and fixed in the solution. Therefore, the
width of the solution matrix K is (in effect) reduced by one for each alignment. If x block
alignments are made then the complexity of the problem to be solved by parallel solvers
becomes O(K − x)!R−1, thus significantly reducing the complexity of the problem.

Branch and Bound

The partitioning process is implemented with a Branch and Bound algorithm. The intention
of the algorithm is to avoid partitions of the search space which contain poor quality solutions
prior to starting the iterative stage of the algorithm. An outline for the Branch and Bound
algorithm is as follows:

• Construct a queue of partitions; initially with the complete search space as the sole
element.

• while the queue length is less than the desired number of partitions:

– Pop from the queue.
– Partition the popped search space as many ways as the first non-fixed symbol

allows.
– Enqueue each sub-partition.
– Estimate the upper and lower bound fitness for each partition in the queue.
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Listing 4.9: Algorithm for selecting block alignments

1 // Given: matrices (the set of Q matrices)

3 solution <− []

// For each index in the first Q−matrix
5 for j <− 0..m − 1

for i <− 0..K − 1

7 // High value found?

if matrices[0][j][i] > sigma

9 alignment <− []

// For each index in each row of every other Q−matrix
11 for k <− 1..R − 1

aligned <− false

13 attempted <− false

for l <− 0..K − 1

15 // Value in other matrix which works?

attempted <− true

17 if matrices[k][j][l] > (matrices[0][j][i] − delta) and

matrices[k][j][l] < (matrices[0][j][d] + delta)

19 alignment <− alignment + [l] // i.e. append the inner

loop variable, 'l'

aligned <− true

21 break

// One of the other matrices didn't have a similar value?

23 if not aligned and attempted

alignment <− []

25 break

// Check whether alignment can be added to the solution

27 if alignment != []

canAlign <− true

29 for k <− 0..K − 1

for l <− 0..R − 1

31 if solution[l][k] == alignment[l]

canAlign <− false

33 if canAlign

solution <− solution + alignment
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– If there exists any partition whose lower bound estimate is higher then every other
upper bound, then remove that partition from the set.

It is difficult to provide accurate bounds on the complexity of this algorithm. Instead it
will be parameterised abstractly, in terms of the cost of finding the next element to partition,
making K partitions and estimating bounds. Estimating bounds on a partial solution is
depicted in Figure 4.4 and is achieved as follows:

1. The cost of columns which have been entirely filled in is evaluated.

2. The cost of partially filled columns is evaluated twice in order to establish an upper and
a lower bound of the cost of the partition:

(a) by iteratively entering the remaining elements which would result in the lowest
increase in cost (i.e.the “best greedy selections”);

(b) by iteratively entering the remaining elements which would result in the highest
increase in cost (i.e.the “worst greedy selections”);

Suppose that the complexity of finding the next element to partition is O(G(n)) and that
the complexity of evaluating a columns fitness is O(F (n)). Finally, at most dlogk ne partitions
must be made to make at least n partitions of the search space. Therefore, the complexity of
the Branch and Bound algorithm is O(G(n)nF (n) logk n).

Parallel Solvers Detail

The parallel solvers algorithm presented in Section 4.3.1 is abstract because it doesn’t eluci-
date details regarding the algorithm, for instance how fitness is computed, or how fitnesses
and solutions are sorted. In this section a more thorough treatment of the algorithm is pre-
sented in terms of operations such as fitness evaluation. The following algorithms will be
presented:

A. Fitness Evaluation;

B. Sorting;

C. Cumulative Distribution Function Creation;

D. Crossover;

E. Mutation;

F. Recombination (an experimental extension);

A. Fitness Evaluation
We define two fitness functions:

1. the average pairwise euclidean distance between all Q-matrix pairs;

2. the average pairwise euclidean distance between the first Q-matrix and all subsequent
matrices;
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Figure 4.4: Illustration of the greedy cost algorithm (the depicted insertion is one of two
needed to compute the lower bound)
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Listing 4.10: Algorithm to build the cache of column distances

for l <− 0..R − 2

2 for L <− l + 1..R − 1

for ll <− 0..W − 1

4 for LL <− 0..W − 1

distance <− 0

6 for lll <− 0..MD

distance <− distance + ( matrices[l][ll][lll] −
8 matrices[L][LL][lll] )^2

cache[l][L][ll][LL] <− distance

Listing 4.11: Algorithm to compute the fitness of a solution

1 for i <− 0..C

fitness <− 0

3 for j <− 0..W − 1

for k <− 0..D − 1

5 for l <− k + 1..DEPTH − 1

fitness <− fitness + retrieveFromCache ( i, j, k, l )

7 fitnesses[i] <− fitness

The second fitness function is an approximation of the first and can be used in instances
where the problem size is very large to find a reasonable approximation of the answer. The
equations for these functions are given as follows.

Facc =

∑R−2
i=0

∑R−1
j=i+1 Fnorm(Mi,Mj)

0.5R(R− 1)
(4.1)

Fapp =

∑R−1
i=1 Fnorm(M0,Mi)

R− 1
(4.2)

To compute the average pairwise Frobenius norm requires that the sum of the euclidean
distances between columns in each pairing of Q-Matrices be computed for a given arrangement
– as described by a solution.

We note that computing the distance between columns every time a fitness is evaluated
is cumbersome. Therefore, a cache is built up with the distance between all possible pairings
of all columns in different matrices. Cache construction is achieved by the algorithm given in
Listing 4.10. Note that the square root is omitted in the algorithm because the square root
in the Frobenius norm is taken after the sum of the squares of differences between column
values.

We define the algorithm for computing the fitness of a solution using four nested loops.
This algorithm corresponds to the first fitness function, the second can be implemented by
setting l to 0 and removing the outermost loop.
B. Fitness Sorting

Sorting is achieved by a comparison based sorting algorithm with running time propor-
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Listing 4.12: Algorithm to compute the CDF

1 acc <− 0

for l <− 0..P

3 acc <− acc + fitnesses[l]

cdf[l] <− acc

5

for l <− 0..P

7 cdf[l] <− cdf[l] / acc

tional to O(n log2 n). In practice a custom version of the algorithm is required because the
standard C++ implementation cannot be used to sort key-value pairs in two separate buffers.
The “bottom up” merge sort algorithm was chosen because it appeared to be inherently par-
allel; however the use of a faster algorithm, such as radix sort or quick sort, would have been
better in practice because the CPU implementation does not leverage parallelism in sorting.
It was decided that the use of the simpler “bottom up” merge sort algorithm was acceptable
because the complexity of sorting is much smaller than that of other steps in the algorithm.
C. Communications

Once the solutions have been sorted, they are communicated. Communication is a simple
copy operation with running time proportional to O(nRK) where the parameters n, R and K
are a result of the number of solutions communicated and the bounds of the solutions matrix.
D. Cumulative Distribution Function Computation

Computation of a Cumulative Distribution Function (CDF) is achieved by a two-pass
algorithm which first runs a scanning sum across the fitness values and then normalises the
resulting buffer with the last value of the scanning sum. This algorithm is illustrated in
Listing 4.12
E. Crossover

The algorithm for crossover is as follows. First E solutions are copied into the next
generation. Then for the remaining indices a random number in [0, 1] is generated and a
binary search is conducted on the CDF in order to find the solution whose fitness contributed
to the CDF reaching that value. A second solution is picked at a random index in [0, P − 1]
where P is the population size.

A random integer x is selected in [0, R−1] and used as the crossing point between solutions.
To cross the solutions, the rows up to x are copied from the first solution into a new solution
in the next generation and the rows including and subsequent to x are copied from the second
solution into a new solution in the next generation. Figure 4.5 illustrates the process of
selecting two solutions and then crossing them to create a “child” solution.

Listing 4.13 illustrates the algorithm for performing crossover on the population. This
algorithm has time complexity of O(EKR + (P − E)(log2 P + KR)) = O(PKR + (P −
E) log2 P ).
F. Mutation

Solution mutation is presented in Section 4.3.1 this algorithm has worst case complexity
of O((P −E)R), i.e. when every solution in the population is mutated. (P −E) results from
performing mutation on every non-elite solution and the R factor results from the complexity
of the Knuth Shuffle [28].
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Listing 4.13: Algorithm to carry out crossover

1 for l <− 0..E − 1

nextGeneration[l] <− copySolution ( population[l] )

3 for l <− E..P − 1

solution1 <− binarySearch ( random [0, 1], cdf, population )

5 solution2 <− population[random[0, P]]

crossingPoint <− random [0, D)

7 for l <− 0..crossingPoint

for L <− 0..K

9 nextGeneration[l][L] <− solution1[l][L]

for l <− crossingPoint..D

11 for L <− 0..K

nextGeneration[l][L] <− solution1[l][L]

Listing 4.14: Algorithm to recombine a portion of the population

for l <− E..E + C − 1 // The first `C' individuals in the population after the

elite

2 crossingPoint <− randomInt ( 0, R − 1 )

for L <− 0..K

4 for ll <− 0..crossingPoint

nextGeneration[l][L][ll] <− population[l][L][K − crossingPoint + ll]

6 for ll <− 0..R − crossingPoint

nextGeneration[l][crossingPoint + ll] <− population[l][L][ll]

G. Recombination
Recombination is an experimental extension to the algorithm. It is inspired by the process

of recombination in nature. Recombination in DePermute is a simplified model of the mech-
anism found in nature and in the context of combinatorial optimisation it can be described
as continued population-based diversification.

The algorithm proceeds as in Listing 4.14. For each individual after the elitist section of
the population and up to the recombine count; swap a portion of the solution from the top
with its bottom portion, where the swap position is a random number in [0, R − 1]. This
procedure has complexity O(CRK) (C for the count of recombined individuals, RK for the
complexity of copying a solution).

There are two desired effects of this operation on the population of solutions. The first
desired effect is a more diverse population. This results in the expansion of the search and
potentially in the escape of local optima. Secondly the per row aggregate content – the set
of orderings which exist on a per row basis across all solutions – of the set of solutions is
changed.

If there are K! orderings of rows then for it to be possible that every permutation of the
symbols exist on the same row across all solutions then at least K! solutions are required.
This number is prohibitively large and doesn’t guarantee that all orderings are randomly
generated. If an ordering in the optimal solution for any given row is not generated in initial
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diversification on the same row in some solution, and there is no iterative diversification, then
it becomes impossible to find the optimal solution.

In practice one relies on mutation to, per chance, mutate a row and have that mutation be
selected for. However, the desired ordering might exist in another solution in the population
already. If a portion of the population is recombined then we allow for the chance of the
correct symbol in the wrong row to move into the correct row. In a subsequent section, this
intuition is tested to determine the effect of the operator.
Overview of the Steps Involved in the Genetic Algorithm

It’s worth noting that DePermute bears close resemblance to a standard genetic algo-
rithm. The similarities are as a direct consequence of a bias towards the degree of population
diversification which has been selected for. Notable dissimilarities lie in the algorithms use
of a custom model for the search space (discussed further in a subsequent section) and in the
way it communicates without blocking. DePermute also implements recombination and could
have modified the behaviour of mutation.

Recombination doesn’t exist in a traditional genetic algorithm and represents a further
opportunity for population diversification to occur. In a traditional genetic algorithm the only
operator on the population scale is crossover. Crossover is an inherently destructive operator
as it reduces the diversity of the population on which it operates. Recombination ought to
provide the opposite effect by presenting the algorithm with more candidates to select from.

DePermute uses a simplified version of trajectory diversification. The Parallel Solvers
model allows for trajectory diversification and had it been implemented in DePermute then
it would have modified the way that Mutation occurs. i.e.mutation could have been imple-
mented (with diversification in mind) by constructing n mutated copies of a given solution.
Trajectory refinement then selects a solution from the generated candidates to replace the
original solution.

4.3.3 Data Structures

The discussion now focuses on the data structures which are processed by DePermute with
particular focus on their memory footprint and on their limitations. There are four data
structures used by DePermute, they are:

• the solution structure;

• a special space and time efficient division structure termed the “Leaf Root Tree”;

• the sub-space search structure;

• the column distance cache (which is discussed further in Chapter 6);

Solution Structure

Three representations of a solution data structure have been devised. These are presented in
increasing levels of space efficiency and decreasing levels of time efficiency.
Structure One

The first representation of a solution is the matrix representation defined in Section 4.3.1.
The matrix representation requires memory proportional to O(KR) and has access time pro-
portional to O(1). The matrix representation is convenient for fast fitness function evaluation
and is human readable.
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Listing 4.15: Algorithm to compute the nth permutation of a collection of symbols

1 // Given: n (an integer corresponding to the position of a permutation

// in an ordered arrangement of all permutations)

3 // g() (A function which generates the `next' permutation of a sequence

of symbols)

5

nthPermutation <− symbols

7 for l <− 0..n − 1

nthPermutation <− g nthPermutation

Structure Two
The second representation of a solution is a solution as an ordered collection of integers.

Each integer in the collection corresponds to the position of a permutation of symbols in
an ordered arrangement of all permutations, e.g. the number zero corresponds to the 0th

permutation of the symbols in a row of Structure One. This representation is space efficient,
requiring only O(R) storage. However, in order to access the symbols in a row, one must
generate the permutation corresponding to that row’s integer.

This can be achieved by enumerating permutations and then selecting the nth permu-
tation. This algorithm executes in time proportional to O(K!) and requires an additional
O(K) to temporarily store the corresponding permutation. According to Stirling’s approx-
imation K! ≈ (ke )

k
√
2πk = O(kk−

1
2 e−k), thus the algorithm completes in time proportional

to O(kk−
1
2 e−k) [47]. The algorithm for determining the nth lexicographical permutation of a

given set of symbols is given in Listing 4.15.
Structure Three

The third representation of a solution is a solution as an integer. The integer represents
the position of the solution in an ordered arrangement of all solutions. This representation is
the most space efficient, requiring only O(1) storage, but requires the most work to extract
the ordering of columns.

An ordering for solutions can be established by arbitrarily defining solution zero as the
solution containing ordering zero for all rows. The next solution has ordering one in the
first row of the solution matrix and ordering zero in subsequent rows. One can define in-
crementation for solutions as proceeding to the next ordering for the zeroth row and if that
row becomes the zero permutation again, recursively incrementing the subsequent row by the
same method and so forth.

The solution can be thought of as a number with factorial base because K! increments
are made to the first row of a solution matrix to overflow the next row.

A linear time algorithm (O(R)) can be used to convert the integer representation into a
collection of orderings. The algorithm proceeds as illustrated in Listing 4.16.

After the transformation in Listing 4.16 the solution will be in the format of Structure
Two and can be converted to the matrix representation in O(RK) time.
Analysis of Efficiency

Having proposed three data structures which could be used to represent a solution, the
following sections examine those data structures in terms of the trade offs they make between
time and memory. Importantly, the choice is contextualised in terms of the algorithmic steps
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Listing 4.16: Algorithm to transform representation 3 to representation 2

Given: R & k

2 n // A number to convert

4 orderings <− []

divider <− K!^(R − 1)

6

for l <− 0..R

8 orderings <− [n mod divider] + orderings

n <− n div divider

10 divider <− divider / K!

involved in DePermute.
Mutation

Firstly the choice is evaluated against the mutation algorithm.
The mutation of solutions in the second format is trivial and can be achieved by replacing

an integer at a random position with a random integer in [0,K!). In the case of the third
representation, the integer must first be converted into the second representation, mutated
according to the mutation scheme for the second representation, and then converted back into
an integer. In the case of the third representation, a row must be selected at random and
then the Knuth Shuffle2 used to mutate that row to a random row.

The second representation is the most efficient saving a factor of O(K) in time and O(K)
in space over the first representation. The third representation saves a factor of O(RK) in
space over the first representation, R over the second and runs in the same time as the first
representation – O(K).
Fitness Evaluation

Secondly the choice is evaluated against the fitness evaluation algorithm.
The evaluation of the fitness of a solution requires that that the solution be in the format of

Structure One. Structure Two requires O(K!) for conversion to Structure One and Structure
Three requires O(K!K) for the conversion to Structure Two and then to Structure One.

The only advantage which the structures Two and Three present over Structure One is
that only one solution needs to be converted at a time. Therefore, the Structure Two requires
only O(PK + RK) storage and Structure Three requires only O(P + RK) storage, whereas
Structure One requires O(PRK) storage.
Crossover

Finally the choice is evaluated against the crossover algorithm.
Crossover for Structure Two is trivial and may be achieved by copying an integer per

row in each corresponding solution into the new solution. This operation saves O(K) over
Structure One because there’s no need to copy the elements in each row of the matrix as is
the case with Structure One. The third representation requires an O(K) transform to the
second representation and then back again after carrying out the crossover operation.
Summary

Structures Two and Three save memory proportional to O(K) and O(KR). Structure Two
2The Knuth Shuffle is a simple and fast algorithm to produce a fair, random permutation of a list
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is the most time efficient for mutation and crossover saving a factor proportional to O(K),
however it results in a cost of O(K!) for fitness evaluation. Due to the extra overhead of
computing Structure One from Structure Two, only Structure One is suitable for DePermute.

Leaf Root Tree

The partitioning scheme outlined in Section 4.3.1 is not time efficient. It is desirable to
achieve both time and space efficiency while maintaining the semantics of the partitioning
scheme.

This dissertation presents the Leaf Root Tree (LRT) data structure for this purpose. The
data structure is an efficient representation of what parts of a solution are fixed.

Recall that two symbols were said to be aligned if they appear in the same column in the
solution matrix representation of a solution. Instead of inserting elements into empty entries
in the rows in a matrix to generate new alignments, the LRT interprets the symbols as nodes
in a graph and connects every node in one row to all nodes on the next row.

One column, as it is formulated in the matrix representation, can be constructed by taking
a path from a node which hasn’t yet been visited on the top of the graph, to the bottom of
the graph, marking nodes as visited as they are passed and never passing through a node
which has already been visited. In order to support the creation of entire solutions, a special
node is added at the bottom and at the top of the graph which has the following properties:

• Special nodes are never marked as visited.

• The special node at the top connects to all nodes on the top row of the graph.

• The node on the bottom connects to the node on the top.

• All nodes on the last row connect to the node on the bottom.

• When a special node is visited it is not appended to the solution matrix.

A full solution can be constructed from an LRT by continuing to visit nodes until no
available paths remain. A representation of the LRT which only indicates which paths remain
is used in practice because the information about how the tree was traversed is intrinsic to
the solution matrix constructed by the LRT.

The data structure which stores only the remaining paths can be represented as a matrix
of binary values, in which nodes which have been visited are zeros and those which have not
are ones. This leads to a space efficient representation of the paths remaining in an LRT as a
collection of words. For example, if K = 3 and R = 5 then the paths in an un-searched LRT
can be represented by a buffer of length 5 with all entries set to 23− 1. As nodes in the LRT
are visited they’re bits are unset. As an LRT is searched more of the bits will be unset until
its representation is a buffer of zeros. An LRT representing an entire traversal of the tree,
yielding a complete solution, along with its corresponding binary representation is illustrated
in Figure 4.6 for K = 4, R = 3.

An LRT is space and time efficient in the computation of random solutions within a
partition of the search space. Recall from previous sections that generating a random solution
in a solution matrix would involve searching for remaining options. This process is O(KR);
however one can identify the rows of a binary encoded LRT which contain un-visited nodes
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Figure 4.6: Illustration of a K = 4, R = 3 LRT and its corresponding binary representation.
Note that because all the nodes have been visited its binary representation has all bits unset.

by checking that the integer on that row is greater than zero. Therefore searching for a row
with an option to take is O(R).

To take a path at random, one can generate a random number i in [0,K − 1] and select
the index of the ith set bit in the LRT as the next node in a path (marking that bit off).
Continuing to do so will result in a complete solution. Therefore the LRT representation
allows for solutions to be generated in matrix format in time proportional to O(KR).

Sub Search Space

The binary encoding of an LRT is an efficient method of indicating what selections are avail-
able; however a partition of the search space requires that partial paths are taken. The partial
LRT accomplishes this purpose. A partial LRT behaves in the same way as a conventional
LRT but it is used to encode a partial path in the search space.

The partial LRT is explained by way of example. For K = 4 and R = 3, suppose that a
search space is partitioned twice. These partitions are illustrated by graph LRTs in Figure 4.7.

The LRT illustrates the nodes which can still be taken but it cannot express a partial
path. An alternative representation of the searching process is to indicate the path which
has been taken thus far and the nodes which are still available. If this representation of the
search is used in conjunction with a partial solution in matrix form then we may express
partial paths as well as which paths are still available. This LRT is called a “partial LRT.”
Figure 4.8 illustrates the partial LRTs which correspond to the second partition of the an
LRT (as illustrated in Figure 4.7).

Finally, if any columns are completed during the partitioning process then the column is
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1 0 0 0

1 0 0 0

1 1 1 1

1 0 0 0

0 1 0 0

1 1 1 1

1 0 0 0

0 0 0 1

1 1 1 1

1 0 0 0
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Figure 4.8: The partial LRTs corresponding to the LRTs in the first partition of Figure 4.7.
Note that instead of un-setting only one bit in the first row, we now set only the bits corre-
sponding with the terminals of the edge which was traversed.
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added to a partial solution. The pairing of a partial solution with a partial LRT is considered a
sub-search space. A sub-search space in which two columns have been completed is illustrated
in Figure 4.9.

Figure 4.9: A sub search space in which two columns have been completed. The partial
solution indicates the paths which have been taken while the partial LRT indicates those
which may be taken next.

A sub-partition is faster to partition than a solution matrix on its own because one can
search for a row with options remaining in it by checking whether the integer on that row of
the partial LRT is a power of two. If it is a power of two then the selection is fixed and there
aren’t any options on that row. The complexity of performing this search is O(R) whereas
for the solution matrix it is O(KR) because it must inspect every symbol entry to determine
whether it is empty.



Chapter 5

Testing the Convergence Rates of
Heuristics

5.1 Motivation

A heuristic is often employed to shorten the path which a program takes on its route to the
solution. In this way heuristics can be thought of as rules of thumb which a program uses to
make a problem more tractable. Heuristics can be implemented in a mathematical sense as
equations which simplify the problem or in the logic of an algorithm by making assumptions
about which decision is best.

This section presents experiments to determine how effective the heuristics employed by
DePermute are in reducing the number of iterations which the algorithm makes before it finds
a solution of suitable quality.

In reality the number of iterations taken to reach a suitable solution cannot be the only
qualifier of a good heuristic, because a very complex heuristic may indeed reduce the number
of iterations taken only to greatly increase the amount of time which is required to compute
each iteration. The picture is completed in Chapter 6 which uses time as the dependent
variable.

It’s important to note that the approach to testing adopted in this chapter does not
respect the structure of real data sets. Instead it attempts to establish characteristics of
the heuristics employed when supplied with entirely random data. This approach does not
address the effectiveness of heuristics when supplied with real data. It was decided that this
line of thought was outside the scope of this dissertation.

In this chapter convergence rate is measured in terms of the number of iterations De-
Permute makes before discovering a solution of sufficient quality. This testing methodology
emphasises the efficacy of heuristics in the absence of running time. This is both impor-
tant and relevant because program running time is dependent on many (often uncontrollable)
variables.

Experiments designed to measure running time are sometimes unrepeatable, because in-
sufficient detail of the experimental procedure has been documented. In addition; extraneous
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effects such as the hardware which can be afforded, the competency of the researcher in soft-
ware development and the time constraints on the project might lead to false conclusions.
Therefore a robust, simple, simulation of DePermute is used in this chapter. In the absence
of a parallel computer one can investigate the number of iterations which are required on
average to compute satisfactory solutions to problems of varying complexities.

An investigation of this kind does not reflect the running time of an implementation of
the algorithm, but it could help develop a more accurate model of the running time.

5.2 Test Design – Abstract Simulation
This section seeks to establish the effect of heuristics on convergence rates. This is achieved
by simulating random input data sets to the LSP and tuning the DePermute program so that
only one particular heuristic is active at a time. Several repeats of each experiment are run
and the average number of iterations is measured in each instance.

5.2.1 Generation of Random Data Sets

An important aspect of the testing process is how problems are randomly generated. In
practice, there are many effects which may occur in data sets extracted from test subjects. It
may be difficult to simulate some of these effects or impractical in terms how long it would
take to truly simulate certain effects.

The most important aspect of data in actual experimentation is that there would almost
certainly be underlying structure, signifying the genetic heritage of an individual in the study.
Structure in the data is significant from an algorithmic perspective because it affects the
running time of a data driven algorithm, i.e. an algorithm which is able to identify structure
and adapt a search so that it may terminate earlier would take advantage of structure, whereas
algorithms which do not employ this principle would not be impacted by underlying structure.

The testing process will not simulate structure in the data in the interest of discovering
the bounds of the computational characteristics of the algorithm. This methodology will
establish a practical upper bound on the convergence rate. The lower bound, being as it is
data driven, is near one iteration of the algorithm.

The process which is employed in this chapter – and throughout this dissertation – for
random data set generation is as follows:

1. Generate a random Q-matrix of an appropriate size, and then:

Repeat the following M times (fixed to 100 for the following experiments experi-
ment):

(a) Sample K random numbers in (0, 1) under a uniform distribution (i.i.d.).
(b) Normalise the random numbers.
(c) Append the random numbers to the prototype matrix.

2. Copy the prototype matrix R times.

3. For each value in the matrix add a random real number x, where x ∈ (0, n).

4. Normalise the rows of each matrix again.

5. Perform a Knuth Shuffle on the columns of each matrix.
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5.2.2 Population Diversification

In terms of the DePermute algorithm exploration is dependant on the initial Diversification
process. Initial Diversification in a population-based metaheuristic creates a so-called “pri-
mordial pool” of genetic material from which the optimal solution can be found by some
combination of the initial components.

It is pertinent to ask how fast the algorithm converges as a function of the initial population
size. In order to isolate this effect all other sources of Diversification are disabled because
these effects serve the same purpose as initial Diversification – which is to explore a greater
amount of the search space. In an effort to keep the experiment simple, only crossover is used
in terms of Refinement of solutions.

At small population sizes there may not be sufficient aggregate row content across solutions
for the correct solution to be formed as a combination of initial solutions. Therefore, one would
expect the number of iterations to tend towards infinity as the population size decreases.
Likewise it is expected that there be a single iteration of the program when population size
exceeds the number of possible solutions.

Expected Mathematical Relationship
The convergence rate has an hyperbolic relationship to the initial population size.

Experiment 1 (see below) is designed to test the response of the algorithm to varying
population sizes.

Experiment 1
Population Diversification Experiment:

1. Generate n random problems for increasing problem sizes (K,R).

2. Disable sub space division, block alignments, elitism and mutation.

3. Run DePermute three times for each problem, and for each population size
interval value.

4. Average the number of iterations taken by the algorithm to reach at least
0.01 fitness (a near perfect solution).

Results

The results confirm our expectation that the rate of convergence on an high quality solution
has an hyperbolic relationship to the initial population size used in the algorithm. In all
instances of the experiment any incrementation of the population size becomes ineffectual
after a certain point. Increments after this point yield insignificant decreases in the number
of iterations to achieve an high quality solution.

5.2.3 Mutation (Trajectory Diversification)

Mutation is designed to expand the scope of the search the algorithm during iterations. This
is achieved by randomly perturbing solutions so that the aggregate row content of solutions
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in a population is changed. One relies on the positive changes being selected for, because
the change will result in a greater fitness and an increase in likelihood for selection. Mu-
tation is therefore important in allowing for realistically sized populations to conduct more
comprehensive searches.

This section intends to discover what the effect of mutation is on the convergence rate of
DePermute. An initial intuition is that with no mutation the convergence rate will be lower
for smaller populations, and that some value of mutation will result in the greatest net gain
in convergence rate, but that a very high mutation rate will harm the convergence rate by
destroying high quality solutions.

Expected Mathematical Relationship
Convergence rate has a parabolic relationship to mutation rate.

Experiment 2 (see below) is designed to test the response of the algorithm to varying
mutation rates.

Experiment 2
Trajectory Diversification Experiment:

1. Generate n random problems for increasing problem sizes.

2. Use the results generated by Experiment 1 to determine a suitable population
size for use in each run.

3. Disable sub-space division, block alignments and elitism.

4. Run DePermute three times for each problem, and once for each of five values
of mutation from an evenly spaced interval from 0.0 to 1.0.

5. Average the number of iterations taken by the algorithm to reach at least
0.01 fitness (a near perfect solution).

Results

The results indicate that the rate of convergence on a high quality solution is not described
by a parabolic function, as was expected. Instead the results illustrate that the number of
iterations to find a high quality solution is usually increased by a higher mutation rate. It
is concluded that mutation is not a mechanism for increasing convergence rate and ought
instead to be used in lieu of sufficient memory – to increase population size – in order to
ensure that the entire search space is search-able.

5.2.4 Elitism (Population Refinement)

Elitism is designed to behave as a ratchet, in that it doesn’t allow for the top E members of
the population to deteriorate, thus the quality of the best solution is monotonically increasing.

Given our intuition of elitism it is pertinent to ask what the actual effect on convergence
rates is. It is trivial to note that when all members of the population are elite the population
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will never change and will therefore never improve. When there is no elitism there is a risk
that the high quality solutions are destroyed during crossover.

Expected Mathematical Relationship
The convergence rate is positively affected by small elitism values and adversely
affected by larger elitism values.

Experiment 3 is designed to test the response of the algorithm to varying elitism rates.

Experiment 3
Population Refinement Experiment:

1. Generate n random problems for increasing problems sizes.

2. Use the results generated by Experiment 1 to determine a suitable population
size.

3. Disable sub-space division, mutation, and block alignment.

4. Run DePermute three times for each problem and once for each of five evenly
spaced intervals of increasing percentages of the population in the elite.

5. Average the number of iterations taken by the algorithm to reach at least
0.01 fitness (a near perfect solution).

Results

The results indicate that the expected relationship holds for small K and R but that it does
not for larger K and R. Note that, much like mutation, elitism is a practical measure – which
has shown effectiveness during ad hoc tests – but in these tests doesn’t actually improve the
rate of convergence on an high quality solution.

5.2.5 Sub Space Division

The partitioning scheme is designed to force a more thorough search by preventing sub-
populations from moving away from areas of the search space prematurely.

Initial Diversification generates random solutions which exist at points distributed through-
out the entire search space. Subsequent Refinement operations reduce the amount of the
search space being covered and bring the solutions in the population closer to the solutions
which lie near optima. Intuitively one can argue that this process is prone to ignoring sections
of the search space early.

It is therefore pertinent to ask whether constructing more partitions does indeed have a
positive effect on the convergence rate. In order to maintain fairness in the testing procedure,
the total number of solutions is kept constant, i.e. each sub-population generates a fraction
of the total population in solutions.

Experiment 4 is designed to test the response of the DePermute algorithm to varying the
number of partitions which the search space is divided into.
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Experiment 4
Sub Space Division Experiment:

1. Generate n random problems for increasing problem sizes.

2. Use the results generated in the previous experiments for each problem size
to fix the population size, elitist proportion and mutation rate.

3. Disable communication and block alignments.

4. Run DePermute three times for each problem and once with 1 partition, K
partitions and K2 partitions.

5. Average the number of iterations taken by the algorithm to reach at least
0.01 fitness (a near perfect solution).

Results

The results are noisy and a general trend cannot be established. Therefore, it is concluded that
no relationship between the degree to which the search space is divided and the convergence
rate of the algorithm is apparent for randomly generated data at the given problem sizes. It
is further noted that the degree of division was altered in isolation of any communication and
it should not come as a surprise that the effect is without a general trend. Division alone is
simply running the same experiment multiple times with a smaller population and halting
early in the case that one instance of the algorithm finds a solution of sufficiently high quality.

5.2.6 Communication

Sub-partitions of the search space are confined to their own partition for the duration of a
run of the program. However, there can be some partitions of the search space, which after
a few iterations, could be crossed off with a fair degree of certainty that moving elsewhere
would be more promising.

In addition a more thorough search of a promising area, by multiple search entities, might
be more likely to find a good answer than one on its own. Communication of the n best
solutions is used as an abstract heuristic to support this strategy for searching. If n is equal
to the population count in a solver then the searchers will converge faster on an area, whereas
if n is zero, the search entities will remain in their partitions.

Expected Mathematical Relationship
Communication has a similar effect to that of mutation in that it is ineffective
at a value of zero, effective at some point greater than zero and then tapers off,
reducing the efficacy of the search as the search entities converge on an area too
quickly.

Experiment 5 is designed to test the response of the algorithm to varying degrees of
population communication.
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Experiment 5
Communication Test:

1. Generate n random problems for increasing problem sizes.

2. Use the results generated in the previous experiments for each problem size
to fix the population size, elitist proportion, mutation rate and number of
divisions.

3. Run DePermute three times for each problem and once for each of 10 uni-
formly increasing percentages of the population communicated up to 100%.

4. Average the number of iterations taken by the algorithm to reach at least
0.01 fitness (a near perfect solution).

Results

The results are varied. In some instances there is a significant decrease in the number of
iterations to achieve a solution of sufficiently high quality and in others there is a clear
increase in the number of iterations. Furthermore, in some instances there is no clear trend
what so ever. Therefore, it is concluded that without further experimentation and research
one cannot establish any relationship between the percentage communication and the rate of
convergence on a sufficiently high quality solution.

5.2.7 Block Alignment

Block alignments, if they exist, reduce the problem complexity dramatically. It is not as
important to know how the convergence rate changes as a function of the number of block
alignments as it is to know how likely block alignments are found.

Expected Mathematical Relationship
If the number of population groups (columns in the solution) K is low then it is
reasonable to expect it to be more likely that a block alignment is found because
there are fewer columns to divide one by. In addition increasing M ought to in-
crease the likelihood of finding a block alignment because there are more members
in the study and therefore more chances for one to be biased heavily towards one
population group.

Experiment 6 is designed to establish how likely it is to find a block alignment in different
problem sizes.

Results

The test results indicate the effectiveness of the block alignments algorithm in a worst case
situation. In a practical setting it is entirely likely that marker individuals exist in a population
– who belong entirely to one particular population group. In fact we expect to find many
block alignments in nature, because of real structure in the data. Each marker individual
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Experiment 6
Block Alignments Test:

1. Generate five sets of n random problems for increasing problem sizes.

2. Run the block alignments stage of DePermute on each of these problems
recording the number of block alignments found in each instance.

3. Average the number of alignments found for each problem size.
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could potentially result in another block alignment. In a randomly generated data set using
a uniformly distributed PRNG one would expect for the individuals belongingness to be
distributed evenly across population groups. Therefore we expect for a low number of block
alignments to be found.

The results indicate a clear relationship between the size of K and the number of block
alignments. At low values of K a block alignment is found on each run of the experiment
on average. At larger values of K the values in Q matrices are more evenly distributed and
block alignments become rarer.

We note that there is no clear relationship between the value of R and the number of
block alignments found.

5.2.8 Critical Discussion of Testing Procedure

Exhaustiveness of Testing

The testing procedure adopted in this chapter is not exhaustive. The question as to how the
heuristics affect each other is left open. In testing each heuristic we have adopted a greedy
optimisation technique by finding optimal values in isolation and keeping them fixed as we
find them. For instance, it is possible that the use of finely tuned population sizes reduces the
impact of other heuristics used in the genetic algorithm. Furthermore it might be found that
the function of convergence rate with respect to the degree of use of a particular heuristic is
dependent on the combination of heuristics. i.e. the selection of parameters for DePermute
could in itself be a complicated optimisation problem.

Generation of Random Input Data

The second shortcoming of this chapter is the use of entirely random data. In adopting this
testing procedure we have elected to ignore the structure which would be present in real
data. Alternatively, one could generate data which would more closely mimic the reality of
how values are distributed in Q-matrices. e.g. one could randomly select population groups
from which an individual was descended and bias their entries in a Q-matrix towards those
population groups. Continuing in this way, for other simulated individuals, one could generate
the first matrix. Subsequent matrices could be generated using the same biases which were
originally generated.

By adopting a random data generation technique which respects the attributes of real
data sets one could potentially arrive at conclusions which are more relevant to researchers
from a practical perspective. What has instead been discovered is of more theoretical than
of practical importance. The use of entirely random data is a worst case input. For random
inputs it’s likely that the solutions to the problem are very similar. With sufficient testing by
this methodology one would be able to validate the computational bounds of the algorithm
in the average case.



Chapter 6

Practical Testing

This chapter focuses on the implementations of the DePermute algorithm on a CPU, GPU
and FGPA driven computer. The discussion for each prototype is organised into four sections:

1. software design;

2. implementation of algorithm;

3. data structures;

4. optimisations;

C++ is used to implement all host code. It is a flexible language and is well supported
for both the GPU and FGPA hybrid computer based implementations. In the case of the
GPU based prototype the OpenCL programming language is used due to the availability of
equipment at the time of specifying the project. Finally, a combination of Verilog HDL and
the x86 assembly language is used to implement the FGPA hybrid computer prototype.

6.1 CPU Based Prototype
The CPU based implementation of the DePermute algorithm was developed for two purposes:

• to be used in convergence based testing;

• to provide a baseline against which CLUMPP is compared and against which the mas-
sively parallel versions of DePermute may also be compared;

6.1.1 Software Design

The program was designed using a procedural decomposition strategy. A top-down design
approach resulted in fifteen modules. Broadly, these modules can be organised into host
code which is responsible for user interaction, search space division and distance caching, and
kernel code which performs the iterative computation. This distinction mirrors the structure
of programs designed for host/co-processor computers, thus increasing the relative ease of
porting the CPU prototype to other platforms.
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Figure 6.1 describes the interface to and relationship between the fifteen modules which
comprise the program. More abstract modules are arranged toward the top of the diagram and
more primitive modules toward the bottom. Note that modules responsible for the i) block
alignments ii) Branch and Bound ii) and genetic algorithm have been marked on the diagram.

All other code was implemented using standard libraries and the majority of the imple-
mentation was undertaken using standard expressions and control structures. Finally, note
that the C++ version 11 language is used because it supports the use of lambda abstraction
and type inference (among other features) which was used in non-kernel code for convenience
and ease of expression.

6.1.2 Implementation of the DePermute Algorithm

Preprocessing

The code base for preprocessing steps in the DePermute algorithm (including both block
alignments and cache computation) is shared across all versions of the program. This is be-
cause preprocessing steps are computed once, have low overheads and because it is convenient
to implement them in a conventional development environment.

The algorithm to compute the distance cache is a four level nested loop. The algorithm
computes and stores the distances corresponding to ADMIXTURE columns according to the
following scheme. Compute the distance from each column in Q-matrix i, to each subsequent
Q-matrix j (i.e. j always starts from matrix i+ 1) from each column index m in matrix i to
each column index n in matrix j.

The algorithm to compute block alignments is implemented as a simple two-level nested
loop through the first Q-matrix. In the instance that a potential hit is encountered then that
value is set to the first index in a backtrack array. Next it is determined whether or not the
column corresponding to the potential hit has already been marked in the LRT. If it has not
then it proceeds to confirm the alignment and find the columns which align.

For each other matrix in the same row a value within a small delta of the potential hit
value is searched for. If such a value is not found then the loop escapes and the algorithm
continues searching on the next row of the Q-matrix. After traversing all other matrices,
provided that the columns which align were determined, the backtrack array is appended
to the search space and the process continues searching on the subsequent row of the first
Q-matrix.

Branch and bound is implemented using two vectors of “parent” data structures – “cur-
rent” and “children.” See Section 6.1.3 for a description of the parent data type. Initially
the current vector contains the parent which corresponds to the un-partitioned search space.
For each parent in the current vector a collection of up to K parents are added to the next
vector – corresponding to as many partitions of the corresponding parent. Parents are filtered
from the queue according to the bounding algorithm discussed in Section 6.1.3. The process
continues while the size of the current vector is less than the number of partitions which were
requested.

Parallel Solvers

The discussion will follow the chronological order of operations in the genetic algorithm im-
plementation as illustrated in Figures 6.2 and 6.3. Figures 6.2 and 6.3 depict the CPU based
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implementation of the algorithm at a high level and can be read in a similar way to a flow
chart.

First the program generates a starting population using the depicted three step process.
Next the fitness of each solution is evaluated using the lookups defined by the position of
arrows which loop through positions in the matrix on the left side. The entire population is
sorted on fitness in the next part of the figure, following which termination of the program is
flagged to all threads if a solution of sufficiently low fitness value is found. The next part of
the figure depicts both the communication of the highest quality solutions to neighbours and
the selection of two solutions to perform crossover on. Finally mutation is depicted as the
selection of a random number which, if sufficiently low, triggers a Knuth shuffle on a random
row of the current solution matrix.

Details In previous sections an overview of the process described by Figures 6.2 & 6.3
was presented. The discussion now moves to a more detailed description of the important
aspects highlighted in the diagram.

First a buffer of buffers of solutions is populated. This structure acts as the amalgamation
of all populations and duplicates as the method for communication between solvers.

Population seeding works in constant space. First a copy of the original search space is
constructed. The copy can then be mutated while the original is used as a template for the
generation of further random solutions. Then random nodes from those remaining in the LRT
are added to the partial solution and crossed off from the LRT until no more nodes remain
in the LRT. This simple algorithm is analogous to Knuth Shuffling and therefore constructs
fair, uniformly distributed random solutions.

Fitness calculation is the first step of the iterative procedure. It is carried out by a four
level nested loop, first iterating over all solutions, then over each column, and within each
column from each index i to each subsequent index j fetching the cached distances computed
for the column values at i and j corresponding to the rows they are in and summing these to
a running total – see Section 6.1.3 for a description of how values are retrieved. In the case of
the fast fitness function (see Equation 4.2) the index i is set to zero so that only the first row
of each column is compared to each subsequent row. Finally the average is taken by dividing
by the total number of lookups.

Next the population is sorted on fitness. Sorting is accomplished using a simple bottom
up merge sort. A custom sort was required to sort key value pairs which were in separate
buffers, bottom up merge sort was selected for its simplicity. In addition O(n lgn) is much
smaller than the complexity of fitness evaluation, therefore any major improvements to this
routine wouldn’t change the overall running time by a significant amount.

From the sorted population it is possible to compute whether a solution is within the cut-
off threshold. If such a solution exists, then it is copied into a shared buffer and the thread
which found the solution then terminates. If a solution within the cut off is not found then
each thread inspects the shared buffer to determine whether another thread found a solution,
if a solution is found there, then that thread also exits.

Once the population has been sorted, solutions can be communicated. Solutions are copied
into the lower end of their neighbouring solver’s buffer. In order to make this protocol robust
it would be required that threads synchronise once per iteration, but synchronisation can
incur severe overhead penalties.

The communication protocol for the CPU prototype is not completely robust. One solver
could write into its neighbour’s buffer before its neighbour’s buffer is sorted, thus risking over-
writing the best solutions in that buffer. Furthermore note that the neighbour buffer might
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Figure 6.2: Outline of the DePermute algorithm for the CPU – part 1 of 2.
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not contain the current generation because crossover writes into a scratch buffer and when
an iteration completes the scratch population buffer is swapped for the current population
buffer.

It was decided that the performance benefits of asynchronous operation are more valuable
than the benefits of complete robustness. Finally, note that mechanisms have been established
in the fitness function to punish invalid solutions in order to recover from erroneous behaviour
and make it unlikely that such solutions are selected for.

The Cumulative Distribution Function (CDF) is evaluated by a simple two-pass loop. On
the first iteration an accumulator is set to zero. The sum of the accumulator and the next
element is then added to each index. By the end of the first pass the accumulator has the
value of the sum of all fitnesses. Each element can be divided by the accumulator in a second
pass so as to normalise the values.

Elitism is bundled into the crossover operation, whereby the top solutions are copied into
a “next generation” buffer. Following which, the crossover step continues using the selection
of two solutions by the following process:

• A random number is generated and the solution in the CDF corresponding to the
random number is selected.

• A solution is selected at random.

Selection under CDF is accomplished by binary search (since a CDF is strictly increasing).
An iterative implementation of binary search is selected for this purpose. Following the
selection of two solutions a solution in the next generation is constructed by copying a portion
from the top of the first solution and a portion from the bottom of the second solution into
the next solution. The proportion of the copy is determined by random selection of a row in
the solution matrix. This strategy is often referred to as single point crossover.

If recombination is enabled then the procedure is undertaken during the crossover stage
of the algorithm. Recombination simply computes a random recombination point in a select
few solutions and swaps the top portion of the solution with the bottom portion.

Mutation is undertaken by a simple loop through all solutions in the population. A
random number is generated to determine whether the solution ought to be mutated. If that
solution is selected for mutation then a row is selected at random and shuffled.

At the end of an iteration the current generation pointer is swapped for the next generation
pointer and the process repeats itself.

6.1.3 Data Structures

Preprocessing

There is an inherent trade off in the choice of storage scheme for Q-matrices when computing
block alignments when compared to the process for computing the distance cache. Distance
cache computation iterates through the columns in ADMIXTURE matrices to compute Fnorm

between all pairs of columns. The block alignments algorithm iterates through all the elements
of the first matrix and, if it finds a hit, all the elements of the same row in all other matrices.

The former procedure is best supported by a column major format of the matrices because
the columns can be completely or partially stored in cache pages. The latter is best supported
by a row major format of the matrices for the same reason.
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The relative frequency of row versus column-traversals is used to decide which format
is most effective. In the case of computing the cache, it can be seen that the entire cache
must be computed regardless of the structure in the data. It can be shown that there is a
maximum of one block alignment corresponding to each row (provided that the threshold for
the heuristic is greater than 50% the remaining values can’t be flagged because they must
be < 50%) therefore we are guaranteed to make fewer row traversals than we are column
traversals. According to this reasoning it is clear that the admixture matrices ought to be
stored in column major format.

An alternative approach to selecting a matrix format on the basis of the most frequent way
it is traversed is to instead transform between formats so that the matrix is always in the most
appropriate format for a particular stage of the algorithm. The cost of this transformation
across all matrices is linear in the number of elements stored. The complexity is therefore
equal, in asymptotic complexity, to the cost of the block alignments algorithm itself. Testing
whether this approach would provide a speedup which would warrant its use is outside of the
scope of this dissertation 1.

The “parent” data structure is used to abstract the details associated with memory man-
agement when storing search space data structures in the C++ vector container. The data
structure contains a Leaf Root Tree and a Solution and provides methods to copy itself, con-
struct itself and free its own memory. This allows for the correct use of the standard vector
library without memory leaks.

The selection of a representation for the LRT data structure involves a time/space trade
off. Marking a node as taken requires one bit. This information can be represented by a
buffer of boolean values, however the native representation for a boolean value is eight bits
wide. This representation is wasteful. We can instead decide to represent a boolean value
buffer using a collection of bytes and write into the bit corresponding to the index requested.
However this involves overhead in computing the byte in which the bit resides and the bits
index within the byte.

Instead a collection of paths taken using is represented by an integer. This restricts the
total number of paths to either 32 or 64, depending on compiler and platform architecture, but
eliminates the need to compute the byte in which the bit resides. The latter representation is
space efficient and time efficient, but is limited in problem size. However, a population study
with more than 32 population groups has not been found in the literature, therefore a 32 bit
integer should be sufficient in most applications. Finally, we define the LRT as a buffer of
integers, to represent the nodes on each row.

The column distance cache is represented by a flat array which is indexed in four dimen-
sions. The function for indexing the cache follows from the four level nested loop which builds
it, and is given in Equation 6.1, where K and R are the dimensionality of the solution and i
and j are the column indices of columns in admixture matrices n and m respectively.

−(K2i(i− 2R+ 1))

2
+ (j − i− 1)K2 +mK + n; (6.1)

Two alternative representations are also analysed elucidating the penalty in storage which
each incurs.

A high dimensional matrix could have been used for the representation. However, column
distance is commutative, therefore the cache need only represent the distance of columns

1My intuition is that it would indeed be more effective than selecting one format.
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corresponding to values which occupy a higher row in the solution to those which are on
subsequent rows.

A flat C++ style matrix is not capable of having different lengths of sub arrays and would
therefore use memory proportional to Equation 6.2 instead of Equation 6.3.

K−1∑
i=0

R−1∑
j=0

R−2∑
k=0

1 = KR(R− 1) (6.2)

K∑
i=0

R−1∑
j=0

R−2∑
k=j+1

1 =
R(K + 1)(R− 3)

2
(6.3)

If instead pointers are used to store different length arrays for subsequent rows in the
cache then we pay the price of storing the pointers. Inspection of the storage requirement in
Equation 6.3 shows that only the inner-most dimension contains arrays which have shorter
lengths (note the increasing starting values of the sum variable k). Therefore a pointer based
representation would waste space proportional to Equation 6.4.

K∑
i=0

R−1∑
j=0

1 = R(K + 1) (6.4)

Finally, the rows in a pointer based representation are likely not to be local to each
other in memory, because the rows are dynamically allocated. Therefore the pointer based
representation could make poor use of the CPU cache.

Parallel Solvers

A solution is represented in column major format, as a collection of paths through the LRT,
where a path through the LRT is a column of the solution matrix.

Instead of using a flat array representation a collection of pointers to paths is used. In-
dexing the latter structure requires two pointer look ups in addition to a read operation for
the corresponding index. The alternative flat array representation involves a multiplication,
addition and then a pointer look up.

The former representation can lead to bad spatial properties for cache paging, but is easier
to implement and it is difficult to predict whether the performance cost is negligible or not.

A population of solutions is represented using a buffer of pointers to solutions. This allows
for two threads to modify spatially local solutions without changing the population buffer,
thus minimising cache thrashing from cache snooping protocols.

Additionally the solutions can be sorted without copying solutions during swaps by instead
swapping pointer values. In this instance the pointer to a solution is used in the same way as
one would a position key.

Finally consider the structure of data used to represent the communications channel. Each
solver thread has direct access to the initial population data structure of the other threads
by a buffer of pointers to each solver’s initial population. This supports communication by
writing into a solver’s neighbouring buffer. A thread can determine which population to write
into by adding one, modulo the number of solvers, to its thread ID and dereferencing that
pointer to access its neighbouring population.
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6.1.4 Optimisations

Parallel Solvers

Allowing each thread to construct its own resources (which other threads cannot access or
mutate) is important in avoiding cache thrashing, because multiple writes to spatially local
data by multiple processors would incur costs in the cache snooping protocol of the CPU.

A master procedure spawns a C++11 thread for each of the search space divisions provided
to it (as parent data structures from the Branch and Bound process). C++11 threads are
implementation specific. For project testing the GCC is used, thus the POSIX thread library
is used as the underlying implementation.

Each thread acts on its own population and does not synchronise to other threads. Aside
from the population, each thread owns a buffer of floating point values corresponding to
fitness values, along with a scratch buffer for temporary storage, a buffer of floating point
values corresponding to the CDF and a scratch buffer containing solutions which acts as
the subsequent generation of solutions. The lack of synchronisation leads to race conditions
in the writing of solutions into neighbouring populations. This could cause populations to
become corrupted with invalid solutions; however the fitness evaluation step provides a simple
mechanism to penalise any solutions which are invalid. The high penalty for corruption makes
it very likely that corrupted solutions are removed from the population during selection.

Each thread also constructs four random number generators, three for performing crossover
and one for performing mutation. Note that three random numbers must be generated for
each crossover (one for each solution and one for the crossover point).

If one pseudo-random number generator (PRNG) is used for crossover and one for muta-
tion then the period of the PRNG for crossover would expire up to three times faster than
the PRNG for mutation because three numbers are generated for each crossover operation
and on average one number is generated for a mutation operation. An alternative would be
to use a single PRNG for all numbers, but its period would expire four times faster than the
use of four separate generators. In addition, if one PRNG is consumed by multiple sources
there is no guarantee that the sequence of numbers which each source receives has the same
properties as it would had it had a dedicated PRNG. i.e.if a PRNG algorithm guarantees that
it generates numbers with an even distribution then there is no guarantee that the same will
hold when only accepting every nth number which it generates. The decision was taken to
use multiple distinct generators in order to support longer running times and because of the
requirement that there is sufficient entropy for a stochastic search to be conducted.

All implementations of the DePermute algorithm use the “xorshift PRNG” algorithm. The
xorshift PRNG algorithm has a long period and is well distributed [4, 35]. It is also arguably
faster than the well known “Mersenne Twister” PRNG algorithm [4, 35]. It is implemented
as listed in Listing 6.1. Note that the state of the random generator xs is seeded with “true”
random data (implemented on UNIX style systems by reading from /dev/random) before use.

Ad hoc testing during development of the program also showed that the use of a single
PRNG resulted in unsatisfactory behaviour of the program. The population quickly became
stratified at various local minima early on in the search when a single PRNG was used
throughout the program. Stratification was not observed when multiple PRNGs were used in
the program. An explanation of this phenomenon is outside of the scope of this dissertation,
but a possible explanation is that the phenomenon relates to the random numbers becoming
correlated when there is insufficient entropy in their generation.
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Listing 6.1: XORshift PRNG algorithm as used in all implementations of DePermute.

// Given:

2 // l % A pointer into the state of the PRNG

// SEED_LENGTH % The length of the seed buffer (note that this impacts the

period of the PRNG)

4 // xs % The state of the PRNG

6

al = (l + 1) % SEED_LENGTH;

8 a = xs[al];

a ^= a << 15;

10 a ^= (a >> 14);

12 bl = (l + 2) % SEED_LENGTH;

b = xs[bl];

14 b ^= b << 12;

b ^= (b >> 17);

16

xs[l] = a + b;

6.2 GPU Prototype
The GPU based implementation of the DePermute tests the efficacy of the algorithm in a mas-
sively parallel context. The GPU has arguably become the most ubiquitous massively parallel
device available to the general consumer and to the specialist. Therefore, it is pertinent to
ask how effective the algorithm is on this device.

6.2.1 Software Design

For the most part the host code for the GPU prototype is shared with the CPU prototype. A
great deal of code is added in the setup and initialisation of the OpenCL compute environment.
This involves the creation of:

• objects which manage communication with the device;

• buffers to communicate search spaces to the device for initial population generation;

• buffers which only exist on the device to store populations, fitnesses etc.;

• kernel objects and source files for execution on the device;

In order to save time when the program is run multiple times, kernel sources, which are
compiled at run time, can be cached by the OpenCL implementation. The co-processor code
is arranged into a module per step in the genetic algorithm. These include modules for each
of the following steps:

• initial population generation;
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• fitness evaluation;

• sorting;

• communication;

• cdf computation;

• crossover;

• mutation;

After compiling each of these modules and executing the population generation kernel, the
main program enters a loop in which each kernel is called in turn to form a single iteration.
The same rules of escaping and cut off iterations apply to this process as do the CPU and
FGPA hybrid computer implementations.

Another change to the structure of the host program is the addition of objects which build
options for the program. These parse user option selections into macro definitions. When
each kernel is compiled constants and calculated quantities throughout the kernel are injected
as macros.

Figure 6.4 illustrates the relationship between the modules present in the GPU based
implementation of DePermute.

OpenCL does not support C-style modularity as it cannot perform linking. In order to
circumvent this limitation, separate files are included by preprocessing directives and must be
programmed as though there is one file (the file which includes the module). Therefore, care
was taken not to pollute the name space, and to disallow dependency cycles among modules,
because both of these issues result in compile time errors.

6.2.2 Implementation of the DePermute Algorithm

Parallel Solvers

The discussion will follow the chronological order of operations in the GPU implementation
of the genetic algorithm as illustrated in Figures 6.5 & 6.6. Figures 6.5 & 6.6 can be read
in the same way as Figures 6.2 & 6.3, except that some of the steps have been referenced
instead of being included in the figures.

In Figure 6.5, a starting population is generated in parallel with threads. This is depicted
by circles, which represent threads, and solid arrows indicating the location where the threads
perform their work. Dashed arrows indicate where the threads move to on the next iteration.
The next part of the figure indicates how the order array is initialised at the start of each
iteration using an effective GPU style parallelisation of the task. The next part of the figure
depicts the process for evaluating fitnesses, which is two-part:

1. The values in each solution matrix are transformed to values corresponding to partial
fitnesses.

2. Each solution matrix is interpreted as an array and summed in parallel.
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Population Generation
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Continued in Part 2...
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Figure 6.5: Illustration of the implementation of the DePermute algorithm for the GPU –
part 1 of 2.
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Figure 6.6: Illustration of the implementation of the DePermute algorithm for the GPU –
part 2 of 2.
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Listing 6.2: Sequential initialisation of a path on the CPU based prototype

1 for ( unsigned int l = 0; l < R; ++l )

path[l] = −1;

Listing 6.3: Parallel initialisation of a path on the GPU based prototype

for ( unsigned int l = offset; l < R; l += incrementer )

2 path[l] = −1

Figure 6.6 depicts the creation of a CDF using a parallel prefix sum with two stages.
Population Generation

A parameter of the GPU population seeding kernel is the number of seeds which are
processed in parallel. This is computed as the highest power of two below the number of
solutions which can fit in GPU local memory, i.e. the memory shared between PEs in an SM.

Threads are divided between each of the local solutions and perform the same loops as
are used in seeding the CPU version of the program – except that threads stencil themselves
across the indices considered by the loop. For instance, consider the CPU method to initialise
a path given in Listing 6.2 and contrast it with the GPU version given in Listing 6.3
Init. Order

In the GPU version of the program each thread computes an offset within its group as
its “local id” by dividing its id by the number of parallel solutions being computed. For the
most part the GPU implementation contains nothing more than trivial parallelism, as was
the case in the seeding process.
Fitness Evaluation

Fitness calculation is arranged into two stages:

• The symbols in each solution are set to a partial fitness corresponding to the inner-most
loop of the CPU based implementation.

this is undertaken on a row-by-row basis, i.e. threads are blocked from continuing to
the next row while a row is being computed;

• The values stored in the solution are summed using a parallel reduction.

the parallel reduction is O(log2(KR)) whereas the computation of partial sums is
O(R(R−1)

2 K);

Parallel reduction is not significantly faster than the CPU version because the sums in the
CPU version can be computed as columns are completed, however it does allow for fast ag-
gregation of results. A thread is used for each of K columns per row. The resulting algorithm
is bounded by O(R(R−1)

2 ), provided that there are at least K threads. This computation can
however become bound by memory because the primary unit of computation in the algorithm
is a memory read.
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Sort on Fitness
The structure of solutions on the GPU is different from that used on the CPU because

OpenCL does not support dynamic memory allocation. In lieu of the language features
needed to implement pointer based sorting, a key array is constructed. The key array stores
the current ordering of solutions in the population.

At the start of each iteration of the GPU prototype, the key array needs to be reinitialised
to indicate that it is referring to the next generation. Solutions are labelled 0 . . . (population size−
1). A sorting algorithm on a GPU need be designed for parallelism. Sequential sorting al-
gorithms (such as quick sort and merge sort) exhibit data dependencies which would force a
GPU based implementation to serialise much of the algorithm. A comparison based sorting
algorithm which is suitable for this purpose is the bitonic sort algorithm [54].

The implementation of Bitonic sort used in the GPU prototype as well as the details of
the algorithm are discussed in Appendix F.
CDF Computation

GPU DePermute computes the CDF using a parallel prefix sum algorithm. The algorithm
works in two stages. First a block of the most fitness values as can be copied to local memory
are copied into local memory. The parallel prefix sum for each block is then calculated using
a standard parallel prefix sum algorithm [11].

To compensate for the fact that a number of blocks could have been computed prior to
the current block, at any point in the algorithm, the sum of the values in the current block
is always stored in the zeroth index of the block when work on the current block is complete.

Further details on the implementation of the algorithm may be found in Appendix F.
Crossover and Mutation

Mutation and crossover are embarrassingly parallel, i.e. all computations are independent
of each other. Once again threads are stencilled across the population and perform the
crossover and mutation algorithms sequentially on their allotted indices.

6.2.3 Data Structures

Parallel Solvers

The OpenCL compute platform does not support all the features of the C and C++ languages.
In particular OpenCL does not support pointers and dynamic memory allocation. Therefore,
the matrix structures used to represent solutions in prior sections must be altered.

The entire population for the GPU prototype is allocated as one contiguous array. An
indexing scheme for the array is given in Equation 6.7.

indexPop(i) = populations[i ∗K ∗R ∗ P ] (6.5)
indexSol(i) = population[i ∗K ∗R] (6.6)
indexVal(i) = population[i/(K ∗R) + i%(K ∗R)] (6.7)

Indexing this data structure for particular values can become costly on a GPU because
integer division and the modulo operator have been known to take an order of magnitude, or
more, longer than ordinary operators.
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6.2.4 Optimisations

Parallel Solvers

GPU kernels are compiled during execution of the host program. This has allowed for a
simple, powerful optimisation to be implemented on the GPU prototype. All parameters are
defined via compile time macros supplied by the host program to the OpenCL compiler. This
allows for the compiler to compute many of the simple offsets and constants, which depend
on user input, throughout the GPU program prior to run time. The work allocation scheme
can also be tuned to match the requirements of algorithms. This is because the thread count
can also be supplied to the program prior to run time.

There are a number of assumptions which limit the number of threads. For instance there
cannot be too many or too few threads and in the case of computing fitness; there cannot be
fewer threads than K. Otherwise, the maximum number of threads is limited by the number
of parallel threads which the device can support.

6.3 FPGA Hybrid Computer Prototype

The FGPA hybrid computer-based implementation of DePermute tests the efficacy of the
algorithm in the context of FPGAs for their ability to cut through paradigms and provide
very low level control of synchronisation in a parallel context where a CPU or GPU simply
cannot provide the same implements.

6.3.1 Software Design

The design philosophy for DePermute on the FGPA hybrid computer is significantly different
from that of the GPU and the CPU prototype. Instead of implementing all parts of the
program (which might work effectively on the co-processor) a hot spot in the original program
is identified and targeted for acceleration with application specific hardware. This results in
two major changes to the CPU-based prototype:

• The part of the prototype designated to compute the hot spot will be offloaded to the
compute device.

The hot spot is replaced with all the necessary supporting library calls etc. to connect
the host code to the co-processor.

• Secondly, a change to data structures to support custom hardware is required. This
change is discussed further in Section 6.3.3.

One can implement a System on a Chip (SoC) to compute an entire program using custom
hardware. However, the scope of such an undertaking is significant and some sub-routines
could run faster on a conventional computer than on the FPGA. Instead, the computational
bottle-neck is implemented on the compute device. For this purpose, the fitness function has
been selected for acceleration. The decision is based on both empirical evidence from early
testing and on analytical evidence which suggests that the complexity of the operation is
significantly higher than that of others.
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The software model of the FGPA hybrid implementation is illustrated in Figure 6.7. Note
that it is very similar to the CPU-based prototype with the exception of the fitness evaluation
stage which includes an assembly snippet, to call the custom instruction, and dependencies
on the Convey Computer third party libraries. The two changes are highlighted in red and
green respectively.

Custom hardware evaluates fitnesses over multiple clock cycles. To maintain robust op-
eration a decision was taken to use a mutex in order to serialise access of the co-processor.
This introduces minimal overhead because the mutex must only be acquired once per fitness
evaluation for the entire population.

Every time a solver needs its population fitness to be evaluated it copies its population
to the co-processor and provides a pointer to the hosts location for fitnesses corresponding to
this solver. The co-processor processes the solutions and discards them afterwards. Finally,
fitnesses are communicated back to the host computer as they are computed by the co-
processor.

In order to interleave Convey specific instructions with x86 instructions, a change to the
compilation framework is required. The Convey computer provides a custom packaged version
of the GCC for this purpose. However, the compiler version is 4.5 – which is significantly out
of date with respect to the GCC used for the CPU and GPU implementations. This change
requires that the use of lambda abstraction, type inference and standard threading libraries
be replaced with older equivalents.

Functions which made use of lambda abstraction are re-implemented using simpler fea-
tures; types were made to be explicit throughout the entire program; and the pthread library
was used explicitly to replace the standard C++ threading library.

6.3.2 Implementation of the DePermute Algorithm

The Convey hybrid computer provides three distinct advantages over a conventional computer:

• the memory bandwidth is much higher than that of a conventional computer and it is
optimised for random access;

• The development of custom hardware can reduce overheads in computation and allow
for the combination of sequential operations in deep functional pipelines.

• it provides a massively parallel driven computation by allowing for functional pipelines
to be replicated many times over;

System Interface and Overview

In undertaking a Convey-based design the developer is required to supply supporting hardware
to connect the personality specific logic to Convey provided logic. Convey provided logic is
responsible for, and abstracts the details of communicating with the host system, distributing
instructions to the Application Engines, a few simple scalar instructions, and making memory
reads and writes to co-processor memory.

The functionality of the system is divided into four major blocks, illustrated on the right
side of Figure 6.8. The blocks on the left side of the diagram are responsible for interfacing
with Convey provided logic. These are:
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• an instruction decoder;

• a register bank;

• an adaptor to abstract over the interface to the logic responsible for evaluating fitness
values;

The behaviour of the instruction decoder is trivial and is modelled according to the guide-
lines outlined in the Convey reference manual [10].

The Convey Reference manual allows for the definition of up to 64 general purpose registers
which can be addressed and written to using provided extensions to the x86 language. In the
design of the hybrid computer prototype a register bank block is designed as an abstraction
over reading and writing to the registers. The interface to the register bank includes:

• a clock signal;

• a reset signal;

• read and write ports;

• a write data port;

• a port which points to all the registers;

• external ports for communicating return data which assembly instructions expect;

The Functional Unit Adaptor is responsible for extracting the signals which Functional
Units expect from the general purpose registers. In addition it monitors the state of the
controller in functional units to determine whether they have finished computing fitness values.

The state of the computation (i.e. whether functional units are currently computing fit-
nesses or not) is communicated to the Convey supporting logic via the “stall” and “idle”
signals. Where stall halts the host program (for synchronous behaviour) and idle indicates
that the custom logic is not currently performing any computation.

Functional Unit Design

The Finite State Machine (FSM) abstraction is used to abstract over the details of operation
for evaluating fitnesses. This is a powerful abstraction because it describes, for every possible
state that the machine can hold, an appropriate state change and external actions. The
functionality of fitness evaluation is decomposed into three modules:

• The controller; which is responsible for implementing the four level nested loop of fitness
evaluation.

• The memory controller; which is responsible for the reading of cached values, solutions,
and for the writing of fitness values.

• The “index pipeline;” which is responsible for computing the indices of cached distance
values.

The last two modules make use of the FSM abstraction in their design.
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Controller

The operation of the controller block is described by the FSM in Figure 6.9.
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Figure 6.9: State diagram for the Controller FSM

Note that non-standard means were used to illustrate the behaviour of the FSM for the
controller (and that in subsequent cases similar nomenclature is used to describe FSMs).

The semantics of state bubbles and transitions remain as they usually are. However,
and as the legend indicates, there are three parts to each state bubble. The first two are
conventional, being the name of a state and its “Moore type” outputs (i.e. outputs which
occur when states are arrived at).

The third part of the state bubble is the internal state change associated with that state.
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This part of the bubble models changes to variables. This feature isn’t necessary to describe
the behaviour of the system, because a variable can be modelled by a different state for each
value it could take on. However, the use of states to represent values for variables would lead
to an exponential explosion in the number of states in the FSM.

A reset occurs at the start of operation (when the custom instruction is called) sending the
machine into the Idle state. Once the machine receives the DONE signal it moves into the
ReadColumn state. During the ReadColumn state, a column of a solution matrix is loaded
from the co-processor device memory into the FGPA chip for fast access.

This is achieved by asserting the memory controller CTRL and ADV_SOL signals, thus
selecting solution reading as the memory controller behaviour and advancing the solution
pointer respectively. The controller continues reading column values until it is signalled that
the column has ended by the memory controller through the COL_END signal. Subsequently
the controller blocks while waiting for all column values requested to arrive back from the
memory controller in the FlushColumn state.

A simple state is then entered which starts the cache index generating pipeline. The
PipeInit state prevents the machine from loading invalid pipe read values into the pipeline.

After a single cycle, a two state loop is entered. One state, PipeProcCol, loads values
corresponding to column comparisons into the index generating pipeline. It does so using two
loop variables, row and row2, where row2 corresponds to the inner-most loop in the fitness
evaluation routine and row corresponds to the second inner-most loop. row and row2 are
used to index the loaded column to retrieve corresponding symbols in the solution matrix.
row, row2 and their corresponding symbols along with the constants W and K are sufficient
to generate a cache index.

Simultaneously the controller adds the current cache value loaded from the memory con-
troller to a running total. This value is accumulated regardless of whether or not one has
arrived back, because there is no performance penalty in doing so. (Addition is commutative
and the memory controller returns zero when a value has not yet arrived back.)

When the value of row2 reaches D− 1 the inner-most loop terminates (conceptually) and
the state changes to PipeProcNext. PipeProcNext advances the row variable and sets row2
to row + 1 – as the second most inner loop would have done in the software model. It also
makes the next cache value request to the index generating pipeline and adds the retrieved
cache value to the running total.

Once the value of row reaches D − 2 the outer most loop terminates (conceptually) and
the state of the machine changes to WarmDown. During WarmDown, the machine waits for
all cache values to arrive back from memory. The controller is made aware of whether there
are fitness values not yet returned by the FIT_REM signal from the memory controller.

At the point when the fitnesses have all returned, the machine enters one of two states.
If the memory controller flags that an entire solution has been read then the machine moves
to the WriteFit state, where it requests for the current fitness to be written and resets the
fitness value. Otherwise it continues to process the next column from the ReadColumn state.

If all solutions have been read, as flagged by the DONE signal, then the machine returns
to the Idle state.

Memory Controller

The Memory Controller consists of four sub blocks. Namely:
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• the Memory Adaptor;

• the Solution Loader;

• the Cache Loader;

• the Fitness Writer;

Whilst only one block can drive a signal to the Convey memory controller, three sub-
blocks inside the Memory Controller block require access to the Convey memory controller.
The Memory Adaptor is responsible for providing a switched interface to the Convey memory
controller to each of the other three sub blocks. This is accomplished using a multiplexer.
The order of precedence for each type of operation (which the memory controller serves) is
as follows:

• If ADV_FIT is asserted, then the write interface is switched to the Fitness Writer.

• If the CTRL signal is asserted and ADV_FIT is not, then the Solution Loader is
selected.

• Finally, in the case of neither signal being asserted, the Cache Loader is selected.

The arrangement of the four blocks in the MemoryController is illustrated in Figure 6.10.
The operation of reading and writing to the Convey memory controller is abstracted by

two FSMs – the Abstract Reader and the Abstract Writer FSM. The FSMs provide asyn-
chronous reading and writing and a simplified interface for the SolutionLoader, CacheLoader
and FitnessWriter to use. The two FSMs are illustrated in Figures 6.11 & 6.12. Note that
the FSMs are described using the same nomenclature as the FSM for the Controller.

The operation of these FSMs is simple:

• Remain idle until a request is made.

• When a request is made, make the write/read by moving to the Write/Read state only
if the Convey memory controller can process another request (flagged by mc_rq_stall).

• Otherwise move to halt and stay in the halt state while the Convey memory controller
is busy.

The AbstractReader FSM also contains a queue of identifiers for requests being made so
that the Controller can interpret the results out of order.

In addition to these FSMs the abstract writer and reader contain a queue which stores
the requests made by the Controller. This allows for the machine to occupy the Halt state
without missing any requests. When a write is made, the machine “pops” the value off of
the top of the queue and continues attempting to make writes until the queue is empty – as
flagged by EMPTY.

The Solution Loader extends the functionality of the abstract reader by adding two coun-
ters. A counter for which row is being read in a column and a counter for the column being
processed in the solution. The counters allow for the SolutionLoader to flag column and
solution end states to the Controller. The arrangement of counters and FSM blocks for the
Solution Loader is illustrated in Figure 6.13.
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Figure 6.11: State diagram for the Abstract Reader FSM
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Figure 6.12: State diagram for the Abstract Writer FSM

The Cache Loader extends the functionality of the abstract reader by ensuring that it
always returns a zero value when there is no return from the Convey memory controller. The
arrangement of the Cache Loader FSM and conditioning block are illustrated in Figure 6.14.

Finally the Fitness Writer extends the functionality of the Abstract Writer by keeping
track of the current position of the pointer into fitness values and incrementing it whenever
a request is made. The arrangement of the Fitness Writer FSM and supporting logic is
illustrated in Figure 6.15.

Index Pipeline

The computation of indices in the cache involves 7multiplications, 3 subtractions, 4 additions,
1 division and 1 negation – all of which are integer operations.

The propagation delay which this arithmetic incurs has been found, by experimentation,
to be too large to fit in a single cycle of the FPGA. To counteract this effect (without
incurring large performance penalties) the steps involved in the arithmetic were analysed for
data dependencies. Groups of operations which have data dependencies are arranged into five
stages in a pipeline. This reduces the number of cycles needed to compute an index to 5 from
16.

In addition, registers can be added between each of the stages in the computation so
that as stage 0 finishes for the first request the next request can begin stage 0 and so forth
for the other stages in the pipeline. In doing so the pipeline can handle up to five requests
simultaneously. After a warm up period of five clock cycles, a request is finished after each
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clock cycle until all requests have been processed. Overall 16n is reduced to 5+n clock cycles
to process every element.

6.3.3 Data Structures

It is simpler and more efficient for a Functional Unit’s Memory Controller to read values from
device memory in column major format. However we would prefer for there to be minimal
changes made to the CPU-based prototype in order to reduce required work in porting between
the two formats.

Therefore the Solution data structure is left as it is for the CPU version, and the Solution
is constructed in a different way. Solutions and populations are allocated as one continuous
block, as they are in the GPU prototype. Subsequently, the FGPA host program constructs
solutions in its format by extracting pointers to the starts of columns, solutions and popula-
tions and using them in the same format as was used in the CPU prototype.

The combination of the two data structure implementations is less efficient in space, but
requires the least changes to the existing code base while supporting fast traversal on the
hybrid computer.

6.4 Test Objectives
In [21] research was conducted into experimental practices in computer science. The research
investigates whether a number of published scientific experiments involving computer based
testing are in fact robust. It was found that there are many instances of inadequate detail in
testing procedures in the literature and that in some instances this had led to claims which
were tenuous at best and in many instances were incorrect [21].

The stated goal of this testing procedure is to provide a fair comparison between all
programs. Considerable care has been taken in the formulation of the testing procedures in
order to avoid the pitfalls of flawed testing procedures found in the literature. The protocol
followed is as follows:

• The details of the model of computer used are stated.

• A description of the build tools (including compiler, flags, and operating system) are
provided.

• Data sets used in the testing procedure are provided.

• A discussion about solution quality in circumstances where heuristics may produce
different solutions is provided.

Finally it is suggested that multiple machines are used in the testing procedure so as to
illustrate the difference in computational characteristics across platforms [21].

6.5 Time Based Testing Procedure
The discussion highlights the particular programs being tested, how the programs were com-
piled for the testing procedure, data sets which the programs were run on and the exact
procedure for executing the program.
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A script was written for all testing procedures which automates each procedure. The
scripts are written in the Bash programming language and use programs written in Python
and Haskell for various tasks. These scripts are available in Appendix C. For the Windows
operating system, the git bash executable was used to execute bash scripts. Note that the
versions of all programs used is listed in Appendix D.

6.5.1 Programs Under Test

The following three programs are selected for time based comparative testing:

1. the CLUMPP program;

2. the CPU based prototype for the DePermute algorithm;

3. the GPU based prototype for the DePermute algorithm;

The CLUMPP program is packaged with three algorithms. A full enumeration algorithm,
which we have elected to not test, a greedy algorithm termed Greedy and a very greedy
algorithm termed Large K greedy. In the results section Greedy is referred to as Accurate
CLUMPP and Large K Greedy is referred to as Fast CLUMPP. Table 6.1 lists the parameters
used for Accurate and Fast CLUMPP respectively (the remaining parameters are problem
specific or irrelevant for testing purposes):

Parameter Value

Accurate CLUMPP

Weight (W) 1

Similarity Statistic (S) 2

Datatype 1

Repeats 1000

Method (M) 2

Fast CLUMPP

Weight (W) 1

Similarity Statistic (S) 2

Datatype 1

Repeats 1000

Method (M) 1

Table 6.1: Table of parameters used for Accurate and Fast CLUMPP

Two parameters have the greatest impact on the performance of CLUMPP. These are:
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• selection of algorithm;

• repeats;

The repeats parameter controls the number of runs which the program makes, from ran-
dom starting positions. This parameter has a direct impact on CLUMPP’s performance.
One would expect the running time of the program to be linearly proportional to the repeats
parameter. It also impacts the quality of solution found.

In their paper, Jakobsson et al.describe how the quality of solution is greatly impacted
by the number of repeats [24]. It was found that by varying the parameter between 100 and
30000 a difference in quality of approximately 0.01 was observed. This difference is significant
because it could equate to several misalignments in solutions.

This dissertation is also interested in the running time of the program and a selection of
appropriate quality must be balanced by performance in order to draw a fair comparison.
One thousand repeats was chosen for this experiment because it ought to yield acceptable
quality in solution while still being an order of magnitude faster than the upper bound on
repeats which was tested by Jakobsson et al.. It’s important to note that a lower number of
repeats might result in a more competitive result, but that this would come at the cost of
quality in solution.

6.5.2 Test Platforms

A sample of different computer platforms was used to run tests. In this way it was hoped
that biases which a computer might have toward the over represented computations in either
program were mitigated to some extent.

Overviews of the test platforms are listed below:2

• System A:

– Intel Xeon E2-2670;
– 2.6GHz-3.3GHz;
– 20MB Cache;
– 8 vCPU cores;
– 15GB RAM;
– NVIDIA Grid K520 Graphics Card;

• System B:

– AMD FX9370;
– 4.4GHz;
– 8 Phyiscal Cores;
– 8MB L3 Cache;
– 16GB RAM;
– NVIDIA Geforce GTX960;

2Refer to Appendix E for greater detail.
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• System C:

– E5-2620;

– 2.1GHz;

– 15MB Cache;

– 32 GB RAM;

6.5.3 Program Compilation

Each program is recompiled with appropriate settings for the platform it is run on. The
following compilers were used to compile binaries:

• MS Visual C++ 2013 Community Edition v12.0.31101.00;

• NVIDIA CUDA Toolkit v7.1 & v6.9;

• GCC Version 4.8;

• OpenCL Version 2.0;

Compilation for the CPU based prototype uses the following flags in GCC.

• -O2

Compilation for the CPU Based prototype uses the following flags in MS VC++.

• /Ox

• /Ob2

• /Oi

• /Ot

• /Oy

• /GT

• /GL

No additional flags are supplied to the OpenCL compiler because it has safe optimisations
enabled by default.



6.6. RANDOM DATA SET GENERATION 121

6.5.4 Data Sets

Two categories of data set are selected for testing:

• randomly generated data;

Three problem sizes are considered in testing procedures. In all instances there are
five hundred individuals involved in a hypothetical population structure study. R is set
to 20, as is common practise, and K is set to even intervals from 10 to 20. Finally,
to simulate varying results in Q-matrices, a noise level of 0.01

K is introduced (refer to
Section 6.6 for a complete description of the implementation of noise in data sets.)

• real data set;

The real data set aggregated from various population structure studies. More detail
can be found in Section 6.7

– The sample contains 500 individuals .
– The ADMIXTURE program was run 50 times for each value of K from 2 to eleven.

6.5.5 Methods of Testing

The testing procedure is automated by a series of BASH scripts which are listed in Appendix C.
For random data based testing the procedure was as follows. Given a file describing the
parameters, K, R, M etc. for the desired problems to test:

1. Generate a series of randomised data sets as described by the procedure given in Sec-
tion 6.6.

2. For each value of K and for a predefined number of repeats, run the program under test
and log the time taken using the time command.

A similar process is used for real data set based testing with a difference to step number
one:

1. Copy test data from a central location to a scratch space and format it into the required
format.

2. remains the same as in the randomly generated data testing procedure;

The experiments on real data sets were repeated twice and the experiments on random
data sets were repeated three times. In each case the average of the running times and quality
was recorded.

6.6 Random Data Set Generation
A program was written to generate simulated random Q-matrices. The program generates
random Q matrices as inputs for the experiment. In Chapter 5 a methodology for the gen-
eration of random Q-matrices was established. The method is used again in this chapter.
Another overview of the process is presented for convenience:
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1. Generate a random Q-matrix of an appropriate size, and then:

Repeat the following M times (fixed to 100 for the following experiments experi-
ment):

(a) Sample K random numbers in (0, 1) under a uniform distribution (i.i.d.).
(b) Normalise the random numbers.
(c) Append the random numbers to the prototype matrix.

2. Copy the prototype matrix R times.

3. For each value in the matrix add a random real number x, where x ∈ (0, n).

4. Normalise the rows of each matrix again.

5. Perform a Knuth Shuffle on the columns of each matrix.

Chapter 5 intended to establish computational characteristics of DePermute in terms of
the heuristics used and the number of iterations taken by the algorithm. This chapter adopts
a more practical approach by establishing the running time of DePermute and CLUMPP run
on randomly generated data and data sampled from test subjects.

The method of random problem generation does not simulate population structure. Ran-
domly generated data sets are intended as a fair measure of how DePermute and CLUMPP
perform given data which doesn’t show structure. Data without obvious structure presents a
challenge to algorithms and allows us to establish the performance of algorithms under worst
case conditions. Tests using randomly generated data and data sampled from test subjects al-
lows for comparisons to be drawn between the performance of the algorithms when confronted
with difficult data and data – which one is more likely to encounter in practise.

6.7 Practical Data Set Acquisition
A data set was assembled from various projects by Scott Hazelhurst. The data set includes
samples from the Thousand Genomes Project, Human Genome Diversity Project, the Sin-
gapore Sequencing Malay Project, Southern African Human Genome Project and a research
project into the diversity of Black Southern Africans [7, 43, 53, 8]. The data includes the
values of SNPs and phenotypical information sampled from 500 individuals. The subjects of
the data set originate from a total of 40 suspected population groups and one of the individ-
uals has an unknown population group. The population groups from which the samples were
acquired are listed in Appendix B.

The ADMIXTURE program was run 50 times on the data set for each value of K from
2 to 11. The results were recorded in files stored in separate directories. The data in each
directory is aggregated into a single file by concatenating the files for each corresponding
problem size. The data is then broken down into a series of matrix files for processing by
DePermute and also transformed into a format suitable for CLUMPP.

Test data was persisted to a revision control system along with the scripts used for running
CLUMPP and DePermute so that the testing environment could be replicated exactly across
all testing platforms. The process also accommodated for minor changes in testing scripts to
be redeployed faster.



Chapter 7

Results

This chapter presents all results generated during the testing procedure described in Chap-
ter 6. The results are organised into sections corresponding to the machine on which the tests
were conducted (i.e. Systems A, B and C) and then into sub-sections according to the type
of data used in the experiment, that is, each section contains a sub-section for the results
achieved when running the program for randomly generated data and then for the real data
set. Also note that the quality results of systems B and C appear in Appendix A because
quality is much less a function of the platform running the experiment.

Detailed results are preceded by a summary section which includes two summary graphics.
The summary is based on the results achieved on system A because that result set is the most
complete of the three result sets. Further remarks are given at the start of the section on the
results generated by system A and differences are noted at the start of the sections on results
for systems C and B.

7.1 Summary of Results

The average running time and quality of result for the experiments run on real data is sum-
marised in figures Figures 7.1 & 7.2 respectively.

The first figure indicates the relative time taken by each program with respect to the
longest running time – averaged across all problem sizes. Note that the running times in-
dicated do not reflect actual experimental results. On the figure, experimental results are
aggregated and scaled to fit on the 12 hours of a clock face – for illustrative purposes. i.e. the
ratio of running times between CLUMPP and CPU-DePermute, and then between CLUMPP
and GPU-DePermute was computed for each problem size and averaged respectively. Finally
the averaged ratios were scaled by a factor of twelve so that the longest running program ap-
pears as twelve hours and the other programs under test each appear as times within twelve
hours.

The graphic indicates that, for experiments presented, if the CLUMPP program is run
using the Large K-Greedy algorithm and its average running time is scaled to equal twelve
hours then the CPU and GPU versions of the DePermute will have running times of 37.47
minutes and 1.25 minutes respectively.

The second figure indicates the relative quality which each program achieves. The centre
of the target represents the solution with zero average distance between all matrices (i.e. the

123
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Figure 7.1: Graphical summary of the time based testing results achieved by CLUMPP and
DePermute



7.1. SUMMARY OF RESULTS 125

0

K  = 2

K  = 11
K  = 2

K  = 11

K  = 2

K  = 11

K  = 11

K  = 2

CPU-DePermute

GPU-DePermute

Fast CLUMPP

Accurate CLUMPP

4

6

8

10

4

6

8
104

6

8

10

4

6

8
10

Note: DePermute and CLUMPP use different measures of accuracy.

0.30.150.010.02

Comparison of Average Accuracy of Solution 
using DePermute and CLUMPP

for Various K-Values

Did not finish

Results indicate varying 
accuracy some highly accurate 
and some inaccurate

Results Indicate varied 
accuracy

No difference in accuracy to 
Fast CLUMPP

Results highly accurate

Figure 7.2: Graphical summary of the quality of results achieved by CLUMPP and DePermute



126 CHAPTER 7. RESULTS

“perfect” solution). It is important to note that:

• There are differences in the measure of the quality of a solution between CLUMPP and
DePermute.

– The function used as a heuristic to measure quality is marginally different.
– DePermute denotes a quality of zero as perfect.
– CLUMPP denotes a quality of one as perfect.
– In the graphic the CLUMPP quality has been altered such that a quality of zero

is denoted as perfect:
* QD = 1−QC

Where:
* QD is the Quality as indicated on the diagram.
* QC is the original Quality printed to the user when using the CLUMPP pro-
gram.

• The perfect solution may not exist for a given data set.

A Note on the Data

The data set for the K = 11 problem size was not complete. Only 41 runs of ADMIXTURE
were present. It is worth keeping this in mind when perusing the results, because the K = 11
run completes in less time than the K = 10 run across the board. The K = 11 result cannot
be compared (fairly) to the other results.

Observations

Note that CLUMPP finds solutions of a highly consistent quality across multiple runs for the
same problem. In addition, note that no difference in quality was recorded between the high
accuracy heuristic settings for CLUMPP when compared with the faster heuristic. Finally,
note that the opposite is true of DePermute, i.e. DePermute usually finds slightly different
solutions across multiple runs of the same problem. This may be caused by one of two effects:

1. There are multiple solutions to the problem with sufficiently high quality which are
found on different trials by DePermute.

2. A classic heuristic can easily find the same solution on multiple trials due to the deter-
ministic nature of the search it conducts.

DePermute is faster than CLUMPP in most cases. DePermute has also been shown to
be capable of computing the solution to much larger problems in a reasonable time frame
without compromising on the quality of solution found.

DePermute uses significantly more memory than CLUMPP, because DePermute actively
trades memory efficiency for more opportunities to employ data parallelism. DePermute
requires memory proportional toK and R (as a product with P ) to support initial populations
large enough to converge on a high quality solution fast. In practice, we find that CLUMPP
requires memory in the order of megabytes and that DePermute requires memory in the order
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of tens of gigabytes in order to process the larger problems in the test data sets used in these
experiments.

Both the CLUMPP and DePermute programs can can be tuned to produce lower quality
results in a shorter amount of time. Smaller LSP problems (K ≈ 5) can be run by DePermute
on personal computers with equivalent quality to that which was produced in the experimental
process outlined by this chapter. Larger problems ought to be run on high power clusters and
on graphics cards with sufficient specifications. It’s reasonable to assume that the researcher
who is interested in larger LSP problems will likely have access to sufficient hardware (and
time) to deal with larger problems.

The quality of results generated by DePermute and CLUMPP vary to a very small de-
gree. It is not clear whether the variance in quality of solution generated by DePermute
is unfavourable or whether the solutions it generates are closer to the ontologically correct
solution.

The real data set contained problems with a relatively low complexity where the solution
was often found in a very short time frame – the complexity of the problem was often reduced
through block alignments. For instance in the case ofK = 2, 4, 6&8 a high quality solution was
found entirely by block alignment1. This result confirms that the block alignments algorithm
is a valuable component of DePermute. It also hints that real data may not be complex in
many instances and the real challenge may instead lie in the selection of an appropriate value
of K.

7.2 System A
The results produced by system A were highly consistent, i.e. little to no fluctuation was
measured between subsequent runs of the programs.

System A comprised a high performance CPU and GPU, sufficient memory and an SSD.
This minimised the penalty for reads from persistent memory and gives a fair platform for
both CLUMPP and DePermute to be run and compared.

7.2.1 Randomly Generated Data

We note that the performance of CPU-DePermute and the faster configuration for CLUMPP
are comparable. CPU-DePermute achieved a lower time for the smallest of the random
problem sizes, but performed slower than CLUMPP for all others. Also note that GPU-
DePermute completed its tasks in up to two orders of magnitude less time than the faster
setting for CLUMPP. Note when viewing Figure 7.6 that the vertical axis is a logarithmic
scale.

The quality of result achieved by CLUMPP is consistent across all problem sizes (note
that a result closer to zero is better for DePermute, but that a result closer to one is better
for CLUMPP). The quality of result achieved by DePermute varies for each problem and is
greater for GPU-DePermute than for CPU-DePermute.

We note that further analysis of the quality of result in a biological context would serve
as a better grounds for comparison between the three programs under test. In this context
the result achieved by the GPU version of DePermute in contrast to the CPU version is

1It is curious that block alignments are found on multiples of two although no explanation for this anomaly
is presented.
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emphasised. It is hypothesised that result owes itself to a greater degree of exploration
happening on the GPU through parallelism than on the CPU (which must sequence some of
the searches when there are too few cores to execute searches simultaneously).

Table 7.1: Table of Time per group size (K) for randomly generated data testing of CPU-
DePermute, GPU-DePermute and CLUMPP run on system A

K CPU-DePermute (seconds) GPU-DePermute (seconds) CLUMPP (seconds)

10 62.89 12.30 95.81

15 419.97 2.46 210.42

20 1106.11 3.72 371.14

Table 7.2: Table of Quality per group size (K) for randomly generated data testing of CPU-
DePermute, GPU-DePermute and CLUMPP run on system A

K CPU-Depermute GPU-Depermute CLUMPP

10 9.98E−03 2.41E−03 9.99E−01

15 1.06E−02 4.71E−04 9.99E−01

20 9.33E−03 3.66E−04 9.99E−01

7.2.2 Real Data

The results for testing using real data are dramatically different to those achieved using
randomly generated data. Note two important differences to the randomly generated data
testing results:

• CLUMPP, using fast settings, was significantly slower than DePermute across the board.

• The results achieved by CPU and GPU DePermute were similar in most instances.

The differences may be accounted for by the fact that the real data set contains many
block alignments, which CLUMPP does not account for, and by the fact that the problems
are relatively simple in comparison to the tests on randomly generated data. DePermute is
more responsive to the complexity of a problem and will, given a simple problem, halt early.

We note that the quality of result achieved by the CLUMPP program is more variable
– in contrast to the tests on randomly generated data2. The difference is likely because the
data on which the population structure study was made is more conducive to being fit to
particular numbers of population groups.

2Interestingly one can see the same pattern across multiples of two below ten for quality of solution which
was seen in block alignments for DePermute
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Figure 7.5: Graph of Quality versus (K) for randomly generated data testing of CLUMPP
run on system A

We note that the results achieved by DePermute are near identical in instances where the
problem was solved entirely by block alignment and that in most other instances the results
are similar. This may be accounted for by the mechanic of halting once a sufficient quality
of solution has been found, that is, the program is more likely to find solutions with quality
close to the target stopping quality.
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Figure 7.6: Graph of Time versus (K) for real data testing of CLUMPP and DePermute run
on system A
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Table 7.3: Table of Time per group size (K) for real data testing of CPU-DePermute, GPU-
DePermute and CLUMPP run on system A

K CPU-DePermute (seconds) GPU-DePermute (seconds) CLUMPP (seconds)

2 0.08 0.08 53.99

3 3.70 0.61 112.63

4 0.12 0.12 191.36

5 12.49 1.32 291.67

6 0.62 0.26 413.12

7 38.85 0.29 555.44

8 2.99 1.44 720.76

9 235.49 0.51 905.50

10 138.76 0.52 1110.95

11 107.00 2.62 893.94

Table 7.4: Table of Quality per group size (K) for real data testing of CPU-DePermute,
GPU-DePermute and CLUMPP run on system A

K CPU-DePermute GPU-DePermute CLUMPP

2 2.44E−08 2.44E−08 1.00E+00

3 2.07E−02 3.17E−03 8.30E−01

4 2.13E−07 2.13E−07 1.00E+00

5 2.13E−02 1.82E−03 7.62E−01

6 9.95E−04 1.87E−04 9.87E−01

7 4.97E−03 8.51E−04 9.21E−01

8 4.05E−04 8.13E−04 9.92E−01

9 4.27E−03 7.30E−04 9.04E−01

10 7.54E−03 9.09E−04 8.39E−01

11 1.04E−02 4.24E−04 8.16E−01
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Figure 7.7: Graph of Quality versus (K) for real data testing of DePermute run on system A
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Figure 7.8: Graph of Quality versus (K) for real data testing of CLUMPP run on system A
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7.3 System B
System B provides an interesting contrast to the other result sets because it was running the
latest version of the Windows OS unlike the other two platforms (which both were running
Linux).

Given the power of the CPU on system B one would have expected it to outperform
system A, however the measured running time was significantly higher for all CPU based
testing. This may have been due to software incompatibility, because the specifications of
system B would otherwise indicate that the program should perform better and system B was
the only machine which ran another OS.

7.3.1 Randomly Generated Data

Table 7.5: Table of Time per group size (K) for randomly generated data testing of CPU-
DePermute, GPU-DePermute and CLUMPP run on system B

K CPU-DePermute (seconds) GPU-DePermute (seconds) CLUMPP (seconds)

10 477.30 8.73 128.06

15 N/A 8.26 225.74

20 N/A 16.63 398.53
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Figure 7.9: Graph of Time versus (K) for randomly generated data testing of CLUMPP and
DePermute run on system B

7.3.2 Real Data
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Table 7.6: Table of Time per group size (K) for real data testing of CPU-DePermute, GPU-
DePermute and CLUMPP run on system B

K CPU-DePermute (seconds) GPU-DePermute (seconds) CLUMPP (seconds)

2 2.15 2.48 31.58

3 44.27 4.70 65.84

4 3.99 4.32 112.48

5 143.22 6.82 171.30

6 9.66 6.61 242.36

7 394.10 8.06 325.74

8 29.01 9.52 421.59

9 2028.07 10.39 529.14

10 1159.38 11.03 651.29

11 985.47 9.86 525.23
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Figure 7.10: Graph of Time versus (K) for real data testing of CLUMPP and DePermute run
on system B
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7.4 System C
System C is the only instance where the high quality settings (i.e. greedy) for the CLUMPP
algorithm were run. This is because System C was the first test conducted. After the test
was conducted it was determined that this mode of the algorithm was significantly slower
than any other program and did not provide a significant advantage in quality over the other
setting for CLUMPP, therefore it wasn’t tested on other systems.

GPU based testing was not conducted on System C, therefore the results only contain
entries for CPU-DePermute and the two quality settings for which CLUMPP was run.

Note that the high quality mode of CLUMPP did not finish processing any of the randomly
generated data sets within the cut off time and was too slow to finish the majority of the K
values for the real data set.

DePermute achieved lower running times than CLUMPP except in the case of the K = 20
data set. Here we see that CLUMPP outperforms DePermute by approximately 100 seconds
in each of the three runs. We note that the CLUMPP greedy algorithm has a higher constant
factor, but appears to scale better than DePermute on a CPU at larger K.

DePermute performs particularly well at lowK, therefore we propose that the poor scaling
exhibited in this test is caused by DePermutes reliance on threads to perform searches in
designated partitions. In the testing procedure the number of partitions was set to, at least,
K in each test, because that is the smallest number of partitions which DePermute supports.
WhenK exceeds the number of cores on a machine, then the threads are starved for processing
time and I/O bottlenecks are also aggravated.

Finally note that solutions of identical quality were found by both settings on which
CLUMPP was run. This may be indicative of very clear structure in the test data or of the
nature of greedy algorithms in becoming stuck in local optima which are easily found.

7.4.1 Randomly Generated Data

Table 7.7: Table of Time per group size (K) for randomly generated data testing of CPU-
DePermute and CLUMPP run on system C

K CPU-DePermute (seconds) CLUMPP (seconds)

10 47.23 111.51

15 175.70 243.04

20 488.46 429.72

7.4.2 Real Data
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Figure 7.11: Graph of Time versus (K) for randomly generated data testing of CLUMPP and
DePermute run on system C

Table 7.8: Table of Time per group size (K) for real data testing of CPU-DePermute, high
quality settings for CLUMPP and CLUMPP run on system C

K CPU-DePermute (seconds) High Quality CLUMPP (seconds) CLUMPP (seconds)

2 0.21 413.995 62.38

3 4.80 1863.23 131.11

4 0.32 9900.845 223.23

5 12.66 62314.96 335.75

6 1.42 N/A 474.14

7 41.46 N/A 637.43

8 3.45 N/A 826.97

9 235.34 N/A 1044.00

10 140.38 N/A 1281.71

11 108.98 N/A 1051.69
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Figure 7.12: Graph of Time versus (K) for real data testing of CLUMPP and DePermute run
on system C
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Chapter 8

Conclusion

The field of computer science stands at a critical junction and requires a fundamental shift
from sequential to parallel paradigms of computation. A more fundamental approach to
the problem would benefit both industry and academic research. Efforts are being made in
research to advance our understanding of parallel computation and to create a paradigm shift
in the way industry and researchers reason about parallelism.

It has been established, through this and other research, that parallelism, when used
effectively and given a problem which is amenable to it, usually allows one to solve larger
problems within tighter time constraints.

A central tenet of this research is that there are commonalities in the algorithms and
strategies for parallelism for metaheuristics which have previously not been taken advantage
of. To this end this dissertation presents the Parallel Solvers model designed to create parallel
metaheuristic algorithms to solve combinatorial problems. This model is used to implement
an algorithm called DePermute which solves the Label Switching Problem (LSP).

We have established what impact various heuristics have on the number of iterations to
find a sufficiently high quality solution. Importantly it has been established that the most
effective parameter of the algorithm is the size of the initial population. Other parameters,
such as mutation and elitism were found to have adverse effects on the number of iteration
at high levels. The two parameters are most likely effective in practical tests because of
the limitations on memory capacity and bandwidth which prohibit the use of very large
populations.

Divisions of the search space as a heuristic was found to be ineffectual on its own, and
had unpredictable effects on the number of iterations when used in conjunction with commu-
nication. However, both of these were found – through ad hoc testing and performance based
tests – to be an important aspect in making effective use of parallel computating resources.

Implementations of DePermute using a CPU based computer, a GPU based computer and
an FGPA hybrid computer are presented. The GPU based implementation uses the OpenCL
library for GPU based acceleration and the FGPA implementation uses the Convey Platform
as a means of accelerating x86 applications with customised hardware.

The GPU and CPU based prototypes were implemented and are available for use in
research. The prototype programs were tested by measuring running time and quality of
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result and contrasted with results achieved by the CLUMPP program on two settings (Greedy
and Large K Greedy).

It was found that the CPU-DePermute consistently outperforms CLUMPP on fast settings
when tested using the real data set. Achieving a 19.21 times speedup over CLUMPP on
average. It was concluded that this was largely due to the simplicity of the underlying
problems present in the real data set. It was found that GPU-DePermute achieved a 576.0
times speedup over CLUMPP on average by the same measurement.

In terms of quality of solution achieved it was found that DePermute fluctuates between
runs and between problem sizes to a greater degree than CLUMPP. Furthermore it was found
that the quality of result achieved by CLUMPP was highly consistent when run multiple times
and across multiple problem sizes. Given that both programs were found to generate similar
solutions and that the measure which each program uses to determine quality is slightly
different a meaningful comparison between the two programs can’t be drawn in terms of
quality.

DePermute allows one to solve larger problems in less time with similar quality to CLUMPP.
It demonstrates the success of the Parallel Solvers model in its application to the LSP. The
massively parallel paradigm of computation has been found to be amenable to solving com-
binatorial problems in this instance and the model presented herein might also be effective in
accelerating solvers for other combinatorial problems as well.



Appendix A

Extra Quality Results

A.1 System B

Table A.1: Table of Quality per group size (k) for randomly generated data testing of CPU-
DePermute, GPU-DePermute and CLUMPP run on system B

K CPU-DePermute GPU-DePermute CLUMPP

10 1.00E−02 2.34E−03 2.34E−03

15 − 8.24E−04 8.24E−04

20 − 8.49E−04 8.49E−04
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Figure A.1: Graph of Quality versus (k) for randomly generated data testing of DePermute
run on system B
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Figure A.2: Graph of Quality versus (k) for randomly generated data testing of CLUMPP
run on system B

Table A.2: Table of Quality per group size (k) for real data testing of CPU-DePermute,
GPU-DePermute and CLUMPP run on system B

K CPU-DePermute GPU-DePermute CLUMPP

2 2.44E−08 2.44E−08 1.00E+00

3 2.07E−02 2.84E−03 8.30E−01

4 2.13E−07 2.13E−07 1.00E+00

5 2.13E−02 2.16E−03 7.62E−01

6 9.95E−04 3.68E−04 9.87E−01

7 4.97E−03 6.89E−04 9.21E−01

8 4.05E−04 7.98E−04 9.92E−01

9 4.27E−03 5.46E−04 9.04E−01

10 7.54E−03 9.09E−04 8.39E−01

11 1.04E−02 6.29E−04 8.16E−01
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Figure A.3: Graph of Quality versus (k) for real data testing of DePermute run on system B
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Figure A.4: Graph of Quality versus (k) for real data testing of CLUMPP run on system B
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A.2 System C

Table A.3: Table of Quality per group size (k) for randomly generated data testing of CPU-
DePermute and CLUMPP run on system C

K CPU-DePermute CLUMPP

10 1.00E−02 9.99E−01

15 1.10E−02 9.99E−01

20 9.46E−03 9.99E−01
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Figure A.5: Graph of Quality versus (k) for randomly generated data testing of DePermute
run on system C
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Figure A.6: Graph of Quality versus (k) for randomly generated data testing of CLUMPP
run on system C
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Table A.4: Table of Quality per group size (k) for real data testing of CPU-DePermute, high
quality settings for CLUMPP and ordinary settings for CLUMPP run on system C

K Run 1 Run 2 Average

2 2.44E−08 1.00E−00 1.00E+00

3 2.07E−02 8.30E−01 8.30E−01

4 2.13E−07 1.00E+00 1.00E+00

5 2.13E−02 7.62E−01 7.62E−01

6 9.95E−04 − 9.87E−01

7 4.97E−03 − 9.21E−01

8 4.05E−04 − 9.92E−01

9 4.27E−03 − 9.04E−01

10 7.54E−03 − 8.39E−01

11 1.04E−02 − 8.16E−01
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Figure A.7: Graph of Quality versus (k) for real data testing of DePermute run on system C
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Figure A.8: Graph of Quality versus (k) for real data testing of CLUMPP run on system C
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Appendix B

Extra Sample Information

The suspected population groups, the count of members who believe that they are represen-
tative of that group and the population group codes for all members of the sample data set
are listed as follows:

Population Group Description Code Count in Experiment

African Caribbean in Barbados ACB 96

African Ancestry in Southwest US ASW 66

Bengali in Bangladesh BEB 86

South Eastern Bantu Speakers from the Soweto Region BSO 94

Chinese Dai in Xishuangbanna, Chin CDX 99

Han Chinese in Bejing, China CHB 103

Southern Han Chinese, China CHS 108

Colombian in Medellin, Colombia CLM 94

Coloured living in Wellington WCOL 40

Coloured living in Colesberg COL 28

Esan in Nigeria ESN 99

Utah residents with Northern and Western European ancestry EUR 207

Finnish in Finland FIN 99

British in England and Scotland GBR 92

Gujarati Indian in Houston,TX GIH 106

Gambian in Western Division, The Gambia GWD 113

Guinea, Ghana in Kigali GuiGhanaKgal 14

Iberian populations in Spain IBS 107

Indian Telugu in the UK ITU 103

Japanese in Tokyo, Japan JPT 104
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Kinh in Ho Chi Minh City, Vietnam KHV 101

Khoe San KS 39

Khomani San in South Africa Khomani 39

Khwe Speaking San Khwe 17

Luhya in Webuye, Kenya LWK 101

Mende in Sierra Leone MSL 85

Mexican Ancestry in Los Angeles, California MXL 67

Nama San in Namibia Nama 20

Peruvian in Lima, Peru PEL 86

Punjabi in Lahore,Pakistan PJL 96

Puerto Rican in Puerto Rico PUR 105

South Eastern Bantu Speakers SEB 20

Sotho SOT 8

Malay (Singapore Sequencing Malay Project) SSMP 97

Sri Lankan Tamil in the UK STU 103

South Western Bantu Speakers SWB 12

Toscani in Italia TSI 108

Xhosa XHO 8

Unknown XXX 1

Xun San Xun 19

Yoruba in Ibadan, Nigeria YRI 109



Appendix C

Scripts & Test Programs

C.1 Random Data Generation

Listing C.1: Random Data Generation Bash Script

# This script generates data according to the parameters stored in the

ProblemParams.sh file.

2

source ProblemParams.sh

4

mkdir $TEST_DATA_DIR

6

for (( k=$K_START; k <= $K_END; k=$k + $K_STEP ))

8 do

noise $k

10 for (( r=$R_START; r <= $R_END; r=$r + $R_STEP ))

do

12 for (( repeat=0; repeat != $REPEAT; repeat++ ))

do

14 matrixName $k $r $repeat

./GenerateTestMatrices $k $r $INDIVIDUALS $NOISE >

$TEST_DATA_DIR/$MAT_FILE_NAME

16 python SplitMats.py $TEST_DATA_DIR/${MAT_FILE_NAME}_ <

$TEST_DATA_DIR/$MAT_FILE_NAME

done

18 done

done

Listing C.2: Random Data Problem Size Settings

1 # Parameters for tests pertaining to random data set generation

3 # ===Experimental Parameters===

151
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5 # The name of the directory to do the tests in

DIR=Random−Test−Dir
7 # Aggregated results files for each program

CLUMPP_AGGREGATED_RESULT=$DIR/CLUMPP.out

9 CPU_DEPERMUTE_AGGREGATED_RESULT=$DIR/CPU−DePermute.out
GPU_DEPERMUTE_AGGREGATED_RESULT=$DIR/GPU−DePermute.out

11 AVERAGED_RESULTS=$DIR/AverageResults.out

# The range of K values to be tested

13 K_START=10

K_END=20

15 K_STEP=5

# The value of R in all tests

17 R=20

# The number of individuals in the study

19 M=500

# The number of times that the experiment should be repeated

21 REPEAT=3

23 # ===Functions====

25 # The amount of noise to super impose on the data

function noise # ( k )

27 {

N=0.01

29 }

31 # Produces the path to the base matrix file for the given K and repeat number

# Int Int −> String

33 function matrixFile # ( k, repeatNumber )

{

35 K=$1

REPEAT_NUMBER=$2

37

MAT_FILE=$DIR/Matrices−$K−$REPEAT_NUMBER
39 }

41 source SharedSetup.sh

Listing C.3: Script to Split Matrices Into Separate Files as is Appropriate for DePermute

1 # ===Standard Depedencies===

3 import sys

5 # ===Procedure===

7 # Setup variables for reading in matrices

# Expects the name of the file to put the matrices into after splitting them.
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9 # Reads the matrices from StdIn in new line seperated matrices in space (col)

newline (row) seperated

# format

11 lines = ""

baseFile = sys.argv[1]

13 l = 0

15 # Parse the matrix file piped to StdIn

for line in sys.stdin:

17 # In the case that we hit a newline, we've finished parsing a matrix and move

to the next

if line == "\n":

19 out = open ( baseFile + str ( l ), "w" )

l += 1

21 out.write ( lines )

out.close ()

23 lines = ""

# Otherwise we add the next line to the current "matrix" as a string

25 else:

lines = lines + line

Listing C.4: Program to Generate Random Data for Testing Purposes

module Main

2 where

4 −− ===Standard Dependencies===

6 import Control.Monad.State.Lazy

import System.Environment

8 import System.Random

10 −− ===Non Stanadard Dependencies===

12 import Matrix

14 −− ===Functions===

16 −− Produces a collection of test matrices given K, R, M and N where

−− − K is width

18 −− − R is the number of runs

−− − M is the number of individuals

20 −− − N is the noise level in the data

−− Usage ./GenerateTestMatrices <K> <R> <M> <N>

22 main :: IO ()

main = do

24 rnd <− getStdGen

args <− getArgs
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26 if length args /= 4 then

printUsage

28 else do

let (sk : sr : sm : sn : []) = args

30 let k = read sk

let r = read sr

32 let m = read sm

let n = read sn

34 let matShuffleIndPairs = evalState ( generateMatrices k r m n ) rnd

mapM_ ( \ (mat, _) −> printRowMajor mat ) matShuffleIndPairs

36 mapM_ ( \ (_, inds) −> print inds ) matShuffleIndPairs

38 −− Prints how this program should be used to the user

printUsage :: IO ()

40 printUsage = putStrLn $ "Usage:\n ./GenerateTestMatrices <K> <R> <M> <N>"

Listing C.5: Supporting Library of Monadic Stochastic Functions

module Stochastic

2 where

4 −− ===Standard Dependencies===

6 import Control.Monad.State.Lazy

import System.Random

8 import Data.Word

10 −− ===Functions===

12 −− Produces n random numbers in the state monad

nRandomsST :: (RandomGen g, Random a) => Int −> State g [a]

14 nRandomsST n = mapM ( \ x −> randomST ) [1..n]

16 −− Produces n random numbers in the given range in the state monad

nRandomsRST :: (RandomGen g, Random a) => Int −> (a, a) −> State g [a]

18 nRandomsRST n range = mapM ( \ x −> randomRST range ) [1..n]

20 −− Produces a random variable in the state monad

randomST :: (RandomGen g, Random a) => State g a

22 randomST = state random

24 −− Produces a random variable in the given range in the state monad

randomRST :: (RandomGen g, Random a) => (a, a) −> State g a

26 randomRST range = state $ randomR range

Listing C.6: Supporting Library of Functions Which Operate on Matrices

module Matrix
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2 where

4 −− ===Standard Dependencies===

6 import qualified Data.List as L

import Control.Monad.State.Lazy

8 import Control.Monad

import System.Random

10 import Data.Array

12 −− ===Non Standard Dependencies===

14 import Stochastic

16 −− ===Data Defenitions===

18 −− RowMatrix is [[Float]]

−− interp. A representation of a matrix as a list of lists in Row major format

20 type RowMatrix = [[Float]]

22 −− ColMatrix is Array Float [Float]

−− interp. A representation of a matrix as an array of lists in column major

format

24 type ColMatrix = Array Int [Float]

26 −− ===Functions===

28 −− Prints a row major matrix in row major format with space separated values

printRowMajor :: RowMatrix −> IO ()

30 printRowMajor mat = do

let rowToString x = concat $ L.intersperse " " $ map show x

32 mapM_ ( \ x −> putStrLn ( rowToString x ) ) mat

putStr "\n"

34

−− Produces m random, similar, r by k, matrices (with noise induced @ n)

36 generateMatrices :: Int −> Int −> Int −> Float −> State StdGen [(RowMatrix,

[Int])]

generateMatrices k r m n = do

38 mats <− nRandomMatrices m k r n

shuffledMats <− shuffleColumns k mats

40 return shuffledMats

42 −− Produces one random matrix and t − 1 copies of that matrix with n noise

imposed on the copies

nRandomMatrices :: Int −> Int −> Int −> Float −> State StdGen [RowMatrix]

44 nRandomMatrices rows cols t n = do

mat <− randomMatrix rows cols

46 let copies = replicate ( t − 1 ) mat
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noiseCopies <− mapM ( flip induceNoise $ n ) copies

48 return $ mat : noiseCopies

50 −− Produces a random RowMatrix where the rows are normalised

randomMatrix :: Int −> Int −> State StdGen RowMatrix

52 randomMatrix rows cols = do

rnds <− nRandomsRST ( rows * cols ) (0.0, 1.0)

54 return $ take rows $ map (normalise . take cols) $ iterate (drop cols) rnds

56 −− Induces additive noise @ N noise level to each row of the given matrix

induceNoise :: RowMatrix −> Float −> State StdGen RowMatrix

58 induceNoise mat n = do

let l = length ( mat !! 0 )

60 let scaled = n / ( fromIntegral l )

let induce x = do

62 rnds <− nRandomsRST l (0.0, scaled)

return ( normalise $ map (uncurry (+)) $ zip x rnds )

64 mapM induce mat

66 −− Normalises the given list

normalise :: [Float] −> [Float]

68 normalise xs =

let s = sum xs

70 in map (/s) xs

72 −− Shuffles the columns of the given RowMatrices

shuffleColumns :: Int −> [RowMatrix] −> State StdGen [(RowMatrix, [Int])]

74 shuffleColumns cols mats = do

shuffled <− mapM ( colShuffle cols ) $ map rowToColMat mats

76 return $ map ( \ (mat, inds) −> (colToRowMat mat, inds) ) shuffled

78 −− Shuffles the columns in the given ColMatrix randomly

colShuffle :: Int −> ColMatrix −> State StdGen (ColMatrix, [Int])

80 colShuffle cols mat = do

indices <− knuthShuffle [0..cols − 1]

82 let shuffled = listArray (0, cols − 1) $ map (mat!) indices

return (shuffled, indices)

84

−− Shuffles the elements in the given list

86 knuthShuffle :: Eq a => [a] −> State StdGen [a]

knuthShuffle [] = return []

88 knuthShuffle xs = do

pos <− randomRST (0, length xs − 1)

90 let x = xs !! pos

rest <− knuthShuffle ( L.delete x xs )

92 return $ x : rest

94 −− Converts the given RowMatrix to a ColMatrix
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rowToColMat :: RowMatrix −> ColMatrix

96 rowToColMat mat =

let (rows, cols) = (length ( mat !! 0 ), length mat)

98 in listArray (0, cols − 1) $ L.transpose mat

100 −− Converts the given ColMatrix to a RowMatrix

colToRowMat :: ColMatrix −> RowMatrix

102 colToRowMat mat =

L.transpose $ elems mat

C.2 Convergence Based Tests

C.2.1 Shared Scripts

Listing C.7: Generates a Line for Every Desired Configuration for DePermute

1 # This script generates the parameters for a number of runs of DePermute and the

headers of the CSV

# results files for aggregation.

3 #

# It expects a flag for the parameter which should be tuned and values for the

start, end and step

5 # for the range of values it should be changed through.

#

7 # This script works by shadowing the function to generate the needed parameter,

using the afore

# defined functions when they haven't been shadowed.

9

source ProblemParams.sh

11

# Produces the nth line of the given file

13 # Int String −> String

function nthLine # ( n, filePath )

15 {

N=$1

17 FILE_PATH=$2

19 NTH_LINE=`sed −n "${N}{p;q;}" $FILE_PATH`

}

21

# Produces the appropirate division count given the problem width (K)

23 # Int −> Int

function divCount # ( k )

25 {

K=$1

27

nthLine $K $DIV_FILE

29 DIVISION_COUNT=$NTH_LINE
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}

31

# Produces the appropriate population size given K and the number of divisions

33 # Int Int −> Int

function popSize # ( k, divs )

35 {

K=$1

37 DIVS=$2

39 nthLine $K $POP_FILE

POP_SIZE=$(($NTH_LINE / $DIVS))

41 }

43 # Produces the appropriate elitist count for the given value of K and POP_SIZE

# Int Int −> Int

45 function eliteCount # ( k, popSize )

{

47 K=$1

POP=$2

49

nthLine $K $ELITE_FILE

51 ELITE_COUNT=`python −c "print int ( $NTH_LINE * $POP )"`

}

53

# Produces the appropriate mutatiton rate for the given value of K

55 # Int −> Int

function mutationRate # ( k )

57 {

K=$1

59

nthLine $K $MUT_FILE

61 MUTATION_RATE=$NTH_LINE

}

63

# Produces the appropriate proportion of the population to be communicated given

a value of K and

65 # the popSize

# Int Int −> Int

67 function commCount # ( k, popSize )

{

69 K=$1

POP=$2

71

nthLine $K $COMM_PROP

73 COMM=`python −c "print int ( $NTH_LINE * $POP )"`

}

75

# The string to replace with the current repeat number
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77 REPEAT_PLACE_HOLDER=Repeat#

79 # Produces the parameters to run DePermute with a placeholder of [Repeat#] for

the number of this repeat

# Int −> String

81 function depermuteParams # ( k, r, repeatNumber )

{

83 K=$1

R=$2

85 REPEAT_NUMBER=$3

87 baseMatrixName $K $R

divCount $K

89 popSize $K $DIVISION_COUNT

eliteCount $K $POP_SIZE

91 mutationRate $K

commCount $K $POP_SIZE

93

DEPERMUTE_PARAMS="−i
${TEST_DATA_DIR}/${MAT_FILE_NAME}−${REPEAT_PLACE_HOLDER}_ −e $ELITE_COUNT −r
$R −p $POP_SIZE −c $DIVISION_COUNT −k $K −x $INDIVIDUALS −t 0.1 −m
$MUTATION_RATE −s 100 −y 0 −n $COMM"

95 }

97 # Generates the parameters needed for the DePermute program to run for the

required experimental

# parameters

99 # IO ()

function saveDePermuteParamStrings # ()

101 {

for (( k=$K_START; k <= $K_END; k++ )); do

103 for (( r=$R_START; r <= $R_END; r++ )); do

resetIndependantVar

105 startGeneratingXVals

while [ "$STOP" = false ]; do

107 # I think that the problem is that I need to float the matrix

file out of this

depermuteParams $k $r $repeatCount

109 for (( repeatCount=0; repeatCount < $REPEAT; repeatCount++ )); do

FINAL_PARAMS=${DEPERMUTE_PARAMS//$REPEAT_PLACE_HOLDER/$repeatCount}

111 echo $FINAL_PARAMS

done

113 done

done

115 done

}

117
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# Flags that the generation of the independant variable should stop

119 # IO ()

function stopGeneratingXVals # ()

121 {

STOP=true

123 }

125 # Flags that the generation of the independant variable should continue again

# IO ()

127 function startGeneratingXVals # ()

{

129 STOP=false

}

131

# Flags that the generation of the independant variable should reset

133 # IO ()

function resetIndependantVar # ()

135 {

RESET=true

137 }

139 # Flags that the generation of the independant variable shouldn't reset

# IO ()

141 function dontResetIndependantVar # ()

{

143 RESET=false

}

145

RANGE_START=$2

147 RANGE_END=$3

RANGE_STEP=$4

149 STOP=false

DELTA=0.0001

151

if [ −z "$1" ]; then

153 echo "Please provide the name of the parameter which you want to permute"

exit 1

155 elif [ "$1" = "Elitism" ]; then

function eliteCount # ( k, popSize )

157 {

if [ "$RESET" = true ]; then

159 ELITISM_PROP=`python −c "print $RANGE_START − $RANGE_STEP"`

dontResetIndependantVar

161 fi

ELITISM_PROP=`python −c "print $ELITISM_PROP + $RANGE_STEP"`

163 ELITE_COUNT=`python −c "print int ( $ELITISM_PROP * $2 )"`

if [ `echo | gawk "{if ($ELITISM_PROP > ($RANGE_END − $DELTA)) print

(1); else print (0)}"` −eq 1 ]; then
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165 stopGeneratingXVals

fi

167 }

saveDePermuteParamStrings

169 elif [ "$1" = "Population" ]; then

function popSize # ( k )

171 {

echo "Unimplemented: See Test1.sh for implementation details."

173 exit 1

# Start of impl...

175 if [ "$RESET" = true ]; then

POP_SIZE=$(($RANGE_START − $RANGE_STEP))

177 dontResetIndependantVar

fi

179 POP_SIZE=$(($POP_SIZE + $RANGE_STEP))

if [ $POP_SIZE −eq $RANGE_END ]; then

181 stopGeneratingXVals

fi

183 }

saveDePermuteParamStrings

185 elif [ "$1" = "Mutation" ]; then

function mutationRate # ( k )

187 {

if [ "$RESET" = true ]; then

189 MUTATION_RATE=`python −c "print $RANGE_START − $RANGE_STEP"`

dontResetIndependantVar

191 fi

MUTATION_RATE=`python −c "print $MUTATION_RATE + $RANGE_STEP"`

193 if [ `echo | gawk "{if ($MUTATION_RATE > ($RANGE_END − $DELTA)) print

(1); else print (0)}"` −eq 1 ]; then

stopGeneratingXVals

195 fi

}

197 saveDePermuteParamStrings

elif [ "$1" = "Divisions" ]; then

199 function divCount # ( k )

{

201 if [ "$RESET" = true ]; then

DIVISION_EXPONENT=$(($RANGE_START − $RANGE_STEP))

203 dontResetIndependantVar

fi

205 DIVISION_EXPONENT=$(($DIVISION_EXPONENT + $RANGE_STEP))

DIVISION_COUNT=`python −c "print $1**$DIVISION_EXPONENT"`

207 if [ `echo | gawk "{if ($DIVISION_EXPONENT > ($RANGE_END − $DELTA))

print (1); else print (0)}"` −eq 1 ]; then

stopGeneratingXVals

209 fi

}
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211 saveDePermuteParamStrings

elif [ "$1" = "Communication" ]; then

213 function commCount # ( k, popSize )

{

215 if [ "$RESET" = true ]; then

COMM_PROP=`python −c "print $RANGE_START − $RANGE_STEP"`

217 dontResetIndependantVar

fi

219 COMM_PROP=`python −c "print $COMM_PROP + $RANGE_STEP"`

COMM=`python −c "print int ( $COMM_PROP * $2 )"`

221 if [ `echo | gawk "{if ($COMM_PROP > ($RANGE_END − $DELTA)) print (1);

else print (0)}"` −eq 1 ]; then

stopGeneratingXVals

223 fi

}

225 saveDePermuteParamStrings

else

227 echo "Invalid indipendant variable please supply either Elitism, Population,

Mutation, Divisions or Communication"

exit 1

229 fi

231 # Write the csv heading to a file

233 source TestParams.sh

235 GENERATED=$RANGE_START

HEADING="${RANGE_START}"

237 STOP=false

while [ "$STOP" = false ]; do

239 GENERATED=`python −c "print $GENERATED + $RANGE_STEP"`

HEADING="${HEADING},${GENERATED}"

241 if [ `echo | gawk "{if ($GENERATED > ($RANGE_END − $DELTA)) print (1); else

print (0)}"` −eq 1 ]; then

STOP=TRUE

243 fi

done

245 echo $HEADING > $CSV_HEADING_FILE

Listing C.8: Runs the Program for the Given Set of Parameters

1 # This script runs, for each of the parameters piped to it, the CPUDepermute

program storing logging

# data in one file and results in another as defined in the settings below.

3

source PBSArrayFallBack.sh

5 source TestParams.sh
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7 mkdir −p $RESULTS_DIR

9 RESULTS_FILE_BASE_PATH=$RESULTS_DIR/$RESULT_FILE_BASE_NAME

LOG_FILE_BASE_PATH=$RESULTS_DIR/$LOG_FILE_BASE_NAME

11 PROC_COUNT=0

13 # Non cluster run?

if [ −z "$PBS_ARRAYID" ]; then

15 PBS_ARRAYID=0

CONCURRENT=1

17 fi

19 while read paramLine; do

if (( $PROC_COUNT % $CONCURRENT == $PBS_ARRAYID )); then

21 ./CPUDePermute $paramLine 2> $LOG_FILE_BASE_PATH${PROC_COUNT} 1>

$RESULTS_FILE_BASE_PATH${PROC_COUNT}

fi

23 PROC_COUNT=$(($PROC_COUNT + 1))

done

C.2.2 Test 1

Listing C.9: Test 1 script

#!/bin/bash

2 #PBS −N Convergence

#PBS −l nodes=1:ppn=1,walltime=4:30:00,mem=2GB

4 #PBS −q WitsLong

#PBS −o /home/edward/Test1.log

6 #PBS −t 0−191
CONCURRENT=192

8

# The testing procedure for test one (note that this now includes the same

functionality as the AggregateAverages script)

10

# ===Experimental Setup===

12

# Sub directory to run the test in

14 DIR=Test1

# [Start, End] range for K

16 K_START=9

K_END=10

18 # [Start, End] range for R

R_START=10

20 R_END=15

# The number of times that the test for each size should be repeated for

averaging

22 REPEAT=2



164 APPENDIX C. SCRIPTS & TEST PROGRAMS

# Individuals in the study

24 M=100

# Noise level in the simulated output of ADMIXTURE

26 N=0.01

28 # ===Supporting Functions===

30 # Produces the factorial of the given number

# Float −> Float

32 function fact # ( n )

{

34 acc=1

36 for ((l_fact=1; l_fact<=$1; l_fact++));

do

38 acc=$acc*$l_fact

done

40

FACT_RES=$acc

42 }

44 # Produces the given number raised to the given exponent

# Float −> Float

46 function pow # ( b, e )

{

48 acc=1

50 for ((l_pow=1; l_pow<=$2; l_pow++));

do

52 acc=$acc*$1

done

54

POW_RES=$acc

56 }

58 # The maximum number of the population to generate up to

# Int Int −> Int

60 function maxPop # ( K, R )

{

62 case $1 in

5) POP_END=100000;;

64 6) POP_END=100000;;

7) POP_END=1000000;;

66 8) POP_END=1000000;;

9) POP_END=10000000;;

68 10) POP_END=10000000;;

esac

70 }
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72 # The minimum proportion of the population to generate from

# Int Int −> Int

74 function minPop # ( K, R )

{

76 case $1 in

5) POP_START=25;;

78 6) POP_START=2500;;

7) POP_START=25000;;

80 8) POP_START=250000;;

9) POP_START=250000;;

82 10) POP_START=250000;;

esac

84 }

86 # ===Main Program Start===

88 # Create test sub directory

mkdir $DIR

90 PROC_COUNT=0

# For each value of K in the decided range

92 for ((l=$K_START; l<=$K_END; l++));

do

94 # For each value of R in the decided range

for ((L=$R_START; L<=$R_END; L++));

96 do

maxPop $l $L

98 minPop $l $L

POP_INC=$POP_START

100 # For increasing sizes of population up to the amount we specified as max

for ((ll=$POP_START; ll<=$POP_END;ll=$ll+$POP_INC));

102 do

# Run the experiment three times to take the average of the attempts

104 for ((LL=0; LL<$REPEAT; LL++));

do

106 if (( $PROC_COUNT % $CONCURRENT == $PBS_ARRAYID ))

then

108 # Create the initial permuted matrices file

MAT_FILE=$DIR/Matrices−$l−$L−$M−$ll−$LL
110 ./GenerateTestMatrices.exe $l $L $M $N > $MAT_FILE

# Separate the permuted matrices

112 python SplitMats.py ${MAT_FILE}_ < $MAT_FILE

# Run DePermute on the file

114 echo "./DePermute.exe −i ${MAT_FILE}_ −e 0 −r $L −p $ll −c 1

−k $l −x $M −t 0.01 −m 0.000001 −s 200 −y 0 −n 0 >

$DIR/Results−$l−$L−$M−$ll−$LL.out"
./DePermute.exe −i ${MAT_FILE}_ −e 0 −r $L −p $ll −c 1 −k $l

−x $M −t 0.01 −m 0.000001 −s 200 −y 0 −n 0 > $DIR/Results−$l−$L−$M−$ll−$LL.out
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116 # Aggregate iteration count results for this

problem−population combination

cut −d" " −f2 $DIR/Results−$l−$L−$M−$ll−$LL.out | head −1 >>

$DIR/Results−$l−$L−$M−$ll.out
118 fi

PROC_COUNT=$(($PROC_COUNT + 1))

120 done

if (($ll / ( 4 * $POP_INC ) == 1));

122 then

POP_INC=$(($POP_INC * 10))

124 ll=0

fi

126 done

done

128 done

C.2.3 Test 6

Listing C.10: Test 6 script

# The testing procedure for test Six

2

# ===Experimental Setup===

4

# Sub directory to run the test in

6 DIR=Test6

# [Start, End] range for K

8 K_START=5

K_END=20

10 # [Start, End] range for R

R_START=10

12 R_END=20

# The number of times that the test for each size should be repeated for

averaging

14 REPEAT=20

# Individuals in the study

16 M=100

# Noise level in the simulated output of ADMIXTURE

18 N=0.01

# The number of concurrent processes to handle

20 CONCURRENT=4

22 # ===Main Program Start===

24 # Create test sub directory

rm −rf $DIR

26 mkdir $DIR

PROC_COUNT=0
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28 # For each value of K in the decided range

for ((l=$K_START; l<$K_END; l++));

30 do

# For each value of R in the decided range

32 for ((L=$R_START; L<$R_END; L++));

do

34 # Run the experiment three times to take the average of the attempts

for ((ll=0; ll<$REPEAT; ll++));

36 do

PROC_COUNT=`expr $PROC_COUNT + 1`

38 (

# Create the initial permuted matrices file

40 MAT_FILE=$DIR/Matrices−$l−$L−$M−$ll
./GenerateTestMatrices.exe $l $L $M $N > $MAT_FILE

42 # Separate the permuted matrices

python SplitMats.py ${MAT_FILE}_ < $MAT_FILE

44 # Run DePermute on the file

echo "./CountTrivial.exe −i ${MAT_FILE}_ −e 0 −r $L −p 1 −c 1 −k
$l −x $M −t 0.01 −m 0.00001 −s 200 −y 0 −n 0 > $DIR/Results−$l−$L−$M−$ll.out"

46 ./CountTrivial.exe −i ${MAT_FILE}_ −e 0 −r $L −p 1 −c 1 −k $l −x
$M −t 0.01 −m 0.00001 −s 200 −y 0 −n 0 > $DIR/Results−$l−$L−$M−$ll.out

# Aggregate iteration count results for this problem−population
combination

48 cut −d" " −f2 $DIR/Results−$l−$L−$M−$ll.out | head −1 >>

$DIR/Results−$l−$L−$M.out
) &

50 if (($PROC_COUNT % CONCURRENT == 0));

then

52 wait

fi

54 done

# Aggregate problem sizes

56 echo "Problem size (R, K): ($L, $l)" >> $Dir/Results−$l−$L.out
cat $DIR/Results−$l−$L−$M.out >> $Dir/Results−$l−$L.out

58 done

done

C.3 Time Based Testing

Listing C.11: A script which is shared between both the process for testing using real and
the process for using random data

1 # Shared parameters and functions for Time based testing

3 # ===Parameters===

5 # Path to the file containing optimal population counts
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POP_FILE=PopCount.ini

7 # Path to the file containing the number of divisions to use

DIV_FILE=Divs.ini

9 # Path to the file containing mutation rates

MUT_FILE=Mutations.ini

11 # Path to the file containing elitism rates

ELITE_FILE=Elitism.ini

13 # Path to the file containing the proportion of the population which ought to be

communicated

COMM_PROP=Comms.ini

15

# ===Functions===

17

# Produces the nth line of the given file

19 # Int String −> String

function nthLine # ( n, filePath )

21 {

N=$1

23 FILE_PATH=$2

25 NTH_LINE=`sed −n "${N}{p;q;}" $FILE_PATH`

}

27

# Produces the appropirate division count given the problem width (K)

29 # Int −> Int

function divCount # ( k )

31 {

K=$1

33

nthLine $K $DIV_FILE

35 DIVISION_COUNT=$NTH_LINE

}

37

# Produces the appropriate population size given K and the number of divisions

39 # Int Int −> Int

function popSize # ( k, divs )

41 {

K=$1

43 DIVS=$2

45 nthLine $K $POP_FILE

POP_SIZE=$(($NTH_LINE / $DIVS))

47 }

49 # Produces the appropriate elitist count for the given value of K and POP_SIZE

# Int Int −> Int

51 function eliteCount # ( k, popSize )

{
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53 K=$1

POP=$2

55

nthLine $K $ELITE_FILE

57 ELITE_COUNT=`python −c "print int ( ( $NTH_LINE * $POP ) / $K )"`

}

59

# Produces the appropriate mutatiton rate for the given value of K

61 # Int −> Int

function mutationRate # ( k )

63 {

K=$1

65

nthLine $K $MUT_FILE

67 MUTATION_RATE=$NTH_LINE

}

69

# Produces the appropriate proportion of the population to be communicated given

a value of K and

71 # the popSize

# Int Int −> Int

73 function commCount # ( k, popSize )

{

75 K=$1

POP=$2

77

nthLine $K $COMM_PROP

79 COMM=`python −c "print int ( ( $NTH_LINE * $POP ) / $K )"`

}

81

# Produces the path of the results file for runs of CLUMPP

83 # String

function clumppResultsFile # ( k, repeatNumber )

85 {

K=$1

87 REPEAT_NUMBER=$2

89 CLUMPP_RESULTS_FILE=$DIR/Results−Clumpp−$K−$REPEAT_NUMBER.out
}

91

# Produces the path of the log file for runs of CLUMPP

93 # String

function clumppLogFile # ( k, repeatNumber )

95 {

K=$1

97 REPEAT_NUMBER=$2

99 CLUMPP_LOG_FILE=$DIR/Log−Clumpp−$K−$REPEAT_NUMBER.out
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}

101

# Produces the paramaters to run CLUMPP

103 # Int Int −> String

function clumppParams # ( k, repeatNumber )

105 {

K=$1

107 REPEAT_NUMBER=$2

109 matrixFile $K $REPEAT_NUMBER

111 CLUMPP_PARAMS="paramfile −p $MAT_FILE.clumpp −o
$DIR/Perm−Clumpp−$l−$REPEAT_NUMBER −k $K −c $M −r $R"

}

113

# Produces the parameters to run DePermute

115 # Int −> String

function depermuteParams # ( k, repeatNumber )

117 {

K=$1

119 REPEAT_NUMBER=$2

121 matrixFile $K $REPEAT_NUMBER

divCount $K

123 popSize $K $DIVISION_COUNT

eliteCount $K $POP_SIZE

125 mutationRate $K

commCount $K $POP_SIZE

127

DEPERMUTE_PARAMS="−i ${MAT_FILE}_ −e $ELITE_COUNT −r $R −p $POP_SIZE −c 2 −k
$K −x $M −t 0.001 −m $MUTATION_RATE −s 100 −y 0 −n $COMM"

129 }

131 # Produces the path of the results file for CPU DePermute

# Int Int −> String

133 function cpuDePermuteResultsFile # ( k, repeatNumber )

{

135 K=$1

REPEAT_NUMBER=$2

137

CPU_RESULTS_FILE=$DIR/Results−CPU−$K−$REPEAT_NUMBER.out
139 }

141 # Produces the path of the log file for CPU DePermute

# Int Int −> String

143 function cpuDePermuteLogFile # ( k, repeatNumber )

{

145 K=$1
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REPEAT_NUMBER=$2

147

CPU_LOG_FILE=$DIR/Log−CPU−$K−$REPEAT_NUMBER.out
149 }

151 # Produces the path of the results file for GPU DePermute

# Int Int −> String

153 function gpuDePermuteResultsFile # ( k, repeatNumber )

{

155 K=$1

REPEAT_NUMBER=$2

157

GPU_RESULTS_FILE=$DIR/Results−GPU−$K−$REPEAT_NUMBER.out
159 }

161 # Produces the path of the log file for GPU DePermute

# Int Int −> String

163 function gpuDePermuteLogFile # ( k, repeatNumber )

{

165 K=$1

REPEAT_NUMBER=$2

167

GPU_LOG_FILE=$DIR/Log−GPU−$K−$REPEAT_NUMBER.out
169 }

171 # Runs the experiment for a single value of K

# Int Int Int Int −> IO ()

173 function runExperimentAtK # ( k, procCount )

{

175 K=$1

PROC_COUNT=$2

177 for ((L=0; L < $REPEAT; L++));

do

179 if (( $PROC_COUNT % $CONCURRENT == $PBS_ARRAYID ))

then

181 matrixFile $K $L

if [ "$CLUMPP_UNDER_TEST" == "true" ]

183 then

# Run CLUMPP with the current problem

185 clumppResultsFile $K $L

clumppLogFile $K $L

187 clumppParams $K $L

echo "time ./CLUMPP $CLUMPP_PARAMS > $CLUMPP_RESULTS_FILE"

189 echo "time ./CLUMPP $CLUMPP_PARAMS > $CLUMPP_RESULTS_FILE" >

$CLUMPP_LOG_FILE

(time echo '\r' | ./CLUMPP.exe $CLUMPP_PARAMS >

$CLUMPP_LOG_FILE) 2> $CLUMPP_RESULTS_FILE

191 fi
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# Run DePermute

193 depermuteParams $K $L

if [ "$CPU_UNDER_TEST" == "true" ]

195 then

cpuDePermuteResultsFile $K $L

197 cpuDePermuteLogFile $K $L

echo "time ./DePermute $DEPERMUTE_PARAMS > $CPU_RESULTS_FILE"

199 echo "time ./DePermute $DEPERMUTE_PARAMS > $CPU_RESULTS_FILE" >

$CPU_LOG_FILE

(time ./DePermute $DEPERMUTE_PARAMS > $CPU_LOG_FILE) 2>

$CPU_RESULTS_FILE

201 fi

if [ "$GPU_UNDER_TEST" == "true" ]

203 then

gpuDePermuteResultsFile $K $L

205 gpuDePermuteLogFile $K $L

echo "time ./DePermute −g $DEPERMUTE_PARAMS > $GPU_RESULTS_FILE"

207 echo "time ./DePermute −g $DEPERMUTE_PARAMS > $GPU_RESULTS_FILE"

> $GPU_LOG_FILE

(time ./DePermute −g $DEPERMUTE_PARAMS > $GPU_LOG_FILE) 2>

$GPU_RESULTS_FILE

209 fi

fi

211 done

}

Listing C.12: Script to fall back to an environment outside of a Torque PBS environment for
testing outside of the Wits cluster

# If we aren't running this in an array of nodes

2 if [ −z "$PBS_ARRAYID" ]

then

4 CONCURRENT=1

PBS_ARRAYID=0

6 echo Running the test script outside of a torque pbs array...

else

8 CONCURRENT=$1

shift 1

10 fi

Listing C.13: A script which is used to determine which platform the tests ought to be
executed on.

GPU_UNDER_TEST="false"

2 CPU_UNDER_TEST="false"

CLUMPP_UNDER_TEST="false"

4 for param in $1 $2 $3

do
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6 if [ "$param" == "GPU" ]

then

8 GPU_UNDER_TEST="true"

elif [ "$param" == "CPU" ]

10 then

CPU_UNDER_TEST="true"

12 elif [ "$param" == "CLUMPP" ]

then

14 CLUMPP_UNDER_TEST="true"

fi

16 done

C.3.1 Random Data Set Testing

Listing C.14: Script to run tests using random data

#!/bin/bash

2

# Experimental procedure for running CLUMPP, CPU−DePermute and GPU−DePermute on

randomly generated data

4

# Special requirements:

6 # This script requires that several supporting files are present in directory.

# − RandomExperimentParameters.sh −− which contains parameters for the

experiment

8 # − PopCount.ini −− Population sizes for all sizes of K tested

# − Mutations.ini −− Mutation rates for all sizes of K tested

10 # − Elitism.ini −− Elitism rates for all sizes of K tested

# − Comms.ini −− Proportion of the population which ought to be communicated

12 # If you can't find where a parameter is set it was probably set by

RandomExperimentParameters.sh

14 # ===Experimental Setup===

16 source PBSArrayFallBack.sh

source ProgramUnderTest.sh

18 source RandomExperimentSetup.sh

20 # ===Experemental Procedure===

22 # Things I need to set for this experiment:

# Population size, mutation rate, divisions, elitist number, solutions

communicated

24 # Should probably calculate these values from the convergance testing

26 # Construct a sub directory to generate the results in

mkdir −p $DIR

28 # Set the time format to real (i.e. seconds as a decimal number)
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TIMEFORMAT=%R

30 PROC_COUNT=0

# Iterate through each value of K

32 for ((l=$K_START; l <= $K_END; l=$l + $K_STEP));

do

34 runExperimentAtK $l $PROC_COUNT

PROC_COUNT=$(($PROC_COUNT + 1))

36 done

Listing C.15: Script to run tests using random data to run on the GPU platform

#!/bin/bash

2 #PBS −N Rand

#PBS −l nodes=1:ppn=8,walltime=50:00:00,mem=50GB

4 #PBS −q WitsLong

#PBS −o /home/edward/Random.log

6 #PBS −t 0−14

8 if [ −z "$PBS_ARRAYID" ]; then

bash TestRandom.sh 15 GPU

10 else

cd /home/edward/Masters/masters−test−code/Test−Time
12 bash TestRandom.sh 15 GPU

fi

Listing C.16: Script to run tests using random data to run on the CPU platform

1 #!/bin/bash

#PBS −N Rand

3 #PBS −l nodes=1:ppn=8,walltime=1:00:00,mem=50GB

#PBS −q WitsLong

5 #PBS −o /home/edward/Random.log

#PBS −t 0−14
7

cd /home/edward/Masters/masters−test−code/Test−Time
9 bash TestRandom.sh 15 CPU

Listing C.17: Script to run tests using random data to run using the CLUMPP program

1 #!/bin/bash

#PBS −N Rand−CLUMPP
3 #PBS −l nodes=1:ppn=8,walltime=100:00:00,mem=1GB

#PBS −q WitsLong

5 #PBS −o /home/edward/Random.log

#PBS −t 0−14
7

cd /home/edward/Masters/masters−test−code/Test−Time
9 bash TestRandom.sh 15 CLUMPP
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C.3.2 Real Data Set Testing

Listing C.18: Script for experimental setup etc. when testing using real data sets.

1 #!/bin/bash

3 # The variables etc needed to run tests using CLUMPP and CPU and GPU − DePermute

on Scott's provided

# data.

5

# NOTE: Re. how the data is arranged.

7 # There are 50 directories and each contains a run for K: [2, 11]

# This is the transpose of the way I usually do it.

9 # What I could do is copy what I need to a local temp dir, run on that store

the results delete the

# temp dir and copy the next batch.

11

# ===Variables===

13

# Location of the data on the Wits cluster system

15 DATA_BASE_DIR=...

17 # Working dir for matrices and results to be written to

DIR=Real−Test
19 # The range of K values

K_START=2

21 K_END=11

K_STEP=1

23 # The number of R in each test

R=50

25 # The number of individuals in the study

M=909

27 # The number of times to repeat the experiment

REPEAT=2

29

# ===Functions===

31

# Produces the path to the base matrix file for the given K and repeat number

33 # Int Int −> String

function matrixFile # ( k )

35 {

K=$1

37

MAT_FILE=$DIR/Matrix−$K
39 }

41 source SharedSetup.sh
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Listing C.19: Script to run tests using real data

1 #!/bin/bash

3 # Experimental procedure for running CLUMPP and CPU and GPU − DePermute on the

"real" data sets

# which Scott has given me

5

# Special requirements:

7 # This script requires that several supporting files are present in directory.

# − RandomExperimentParameters.sh −− which contains parameters for the

experiment

9 # − PopCount.ini −− Population sizes for all sizes of K tested

# − Mutations.ini −− Mutation rates for all sizes of K tested

11 # − Elitism.ini −− Elitism rates for all sizes of K tested

# − Comms.ini −− Proportion of the population which ought to be communicated

13 # If you can't find where a parameter is set it was probably set by

RandomExperimentParameters.sh

15 # ===Experimental Setup===

17 source PBSArrayFallBack.sh

source ProgramUnderTest.sh

19 source RealDataExperimentSetup.sh

21 # ====Experimental Procedure===

23 # Construct a sub directory to generate the results in

mkdir −p $DIR

25 # Set the time format to real (i.e. seconds as a decimal number)

TIMEFORMAT=%R

27 PROC_COUNT=0

# Iterate through each value of K

29 for ((l=$K_START; l <= $K_END; l=$l + $K_STEP)); do

if (( $PROC_COUNT % $CONCURRENT == $PBS_ARRAYID )); then

31 matrixFile $l

#bash CopyRunToTemp.sh $R $l $MAT_FILE $DATA_BASE_DIR

33 runExperimentAtK $l $PROC_COUNT

#bash DeleteMatrices.sh $R $K $MAT_FILE

35 fi

PROC_COUNT=$(($PROC_COUNT + 1))

37 done

Listing C.20: Script to run tests using real data to run on the GPU platform

1 #!/bin/bash

#PBS −N Rand

3 #PBS −l nodes=1:ppn=8,walltime=50:00:00,mem=50GB
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#PBS −q WitsLong

5 #PBS −o /home/edward/Random.log

#PBS −t 0−14
7

if [ −z "$PBS_ARRAYID" ]; then

9 bash TestReal.sh 15 GPU

else

11 cd /home/edward/Masters/masters−test−code/Test−Time
bash TestReal.sh 15 GPU

13 fi

Listing C.21: Script to run tests using real data to run on the CPU platform

1 #!/bin/bash

#PBS −N Real

3 #PBS −l nodes=1:ppn=8,walltime=10:00:00,mem=50GB

#PBS −q WitsLong

5 #PBS −o /home/edward/Random.log

#PBS −t 0−8
7

if [ −z "$PBS_ARRAYID" ]; then

9 bash TestReal.sh 15 CPU

else

11 cd /home/edward/Masters/masters−test−code/Test−Time
bash TestReal.sh 9 CPU

13 fi

Listing C.22: Script to run tests using real data to run using the CLUMPP program

1 #!/bin/bash

#PBS −N Real−CLUMPP
3 #PBS −l nodes=1:ppn=8,walltime=10:00:00,mem=1GB

#PBS −q WitsLong

5 #PBS −o /home/edward/Random.log

#PBS −t 0−8
7

cd /home/edward/Masters/masters−test−code/Test−Time
9 bash TestReal.sh 9 CLUMPP
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Appendix D

Program Versions

Program Version

Home Desktop

Microsoft Windows 8.1 Pro
Microsoft Visual Studio 2013 Community Edition v12.0.31101.00
NVIDIA CUDA Toolkit V7.0

Haskell Platform 2014.2.0.0
Git Bash Tools 1.9.5-preview20150319

Python 2.7.9
AWS Machine

Red Hat Linux Red Hat 4.8.2-16
GCC (GCC) 4.8.2 20140120 (Red Hat 4.8.2-16)

Cuda Toolkit 6.5.14-1.12.amzn1
Bash 4.1.2(1)-release (x86_64-redhat-linux-gnu)

Python 2.6.9
Wits Cluster Machines

Scientific Linux 6.3 (Carbon)
GCC 4.8.1
Bash 4.1.2(1)-release (x86_64-redhat-linux-gnu)

Python 2.6.6

Table D.1: Table of all programs used in the compilation and testing procedures
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Appendix E

Test Platforms
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Attribute Value

System A

CPU Model AMD FX9370
CPU Core Clock 4.4GHz
L1 Cache Size 128KB
L2 Cache Size 256KB
L3 Cache Size 8MB

RAM 16GB DDR3 @1800Mhz
Graphics Card Model NVIDIA Geforce GTX960

Graphics Card Core Clock 405 MHz
Graphics Card RAM Capacity 2048MB

System B

Amazon Instance Model Id g2.2xlarge
CPU Model Intel Xeon E5-2670
Cache Size 20MB Smart Cache

RAM 15GB
Graphics Card Model NVIDIA Grid K520

Graphics Card Core Clock 823-1063MHz
Graphics Card RAM Capacity 4GB

System C

CPU Model Intel E5-2620
Cache Size 15MB Smart Cache

RAM 32GB RAM

Table E.1: Table listing the specifications of the AWS and Home PC computers used during
testing



Appendix F

Extra Details of Algorithm
Implementations

Here the details of several algorithms and their implementations is discussed. In particular
the implementation of parallel algorithms for the GPU are addressed.

F.1 Bitonic Sort

The bitonic sort algorithm is based on the observation that one can arrange numbers into a
bitonic sequence (a sequence which increases in value up till its mid-point and then decreases)
by creating sub-bitonic sequences for lengths increasing in powers of two. The creation of a
sorted sequence from a bitonic sequence is trivial. A further observation is that the values
can be swapped in parallel leading to a fast parallel implementation of the algorithm.

A natural way to understand the bitonic sort algorithm is by visualising the swaps which
are made at each stage of the algorithm in a sorting network. Figure F.1 illustrates the swaps
made in an eight width network to sort a list of numbers [54]. Note that because of the lack
of data dependencies in each box each swap may be performed in parallel.

In parallelising the bitonic sort, workers are stencilled across comparators in the bitonic
sort network. This is achieved using the loops given in Listing F.1 and the equation in
Equation F.1.

Note that if j falls outside of the bounds of the sorting network then the corresponding
thread breaks the inner loop. The complexity of the bitonic sorting algorithm is O((lgn)2)
when there are half as many threads as there are values to sort. This in an improvement over
the CPU version in itself, however it is limited by the number of threads when the population

Listing F.1: Loop descriptions for a bitonic sort

1 for ( l = CONCAT_SIZE; l > 1; l >>= 1 )

for ( L = offset; L < POP_SIZE; L += SORT_WORKERS )

3 i = (L / (l / 2)) / l + L % (l / 2)

q = i + (l / 2)

183
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Listing F.2: Algorithm for the parallel prefix sum

prefixSums ( block )

2 sums <− []

threadStart <− ( threadOffset + 1 ) * 2 − 1

4 l <− 0

6 for l <− 0..length ( block )

for L <− threadStart, threadStart + 2 * threadCount..length

8 if ( L + 1 ) % l == 0

sums[L] <− sums[L] + block[L − (l >> 1)]

10

for l / 2, l / 4..1

12 for L <− threadStart, threadStart + 2 * threadCount..length

if ( L + 1 ) % / == 0

14 sums[L + l / 2] = sums[l] + sums[L + l / 2]

16 sums[0] <− 1 / fitnesses[0]

18 for l <− 1, 1 + LOCAL_VALUES..POP_SIZE

block <− copyBlock ( globalFitnesses[l:l + LOCAL_VALUES], LOCAL_VALUES )

20 sums <− prefixSums ( block )

globalFitnesses[l:l + LOCAL_VALUES] <− sums

22 sums[0] <− sums[LOCAL_VALUES − 1]

size grows.

F.2 Parallel Prefix Sum
The algorithm proceeds as given in Listing F.2. We now examine the parallel prefix sum in
greater detail. The algorithm for generating prefix sums in parallel is two stage.

• Increasing partial sums are computed on the odd indices. The indices at increasing
powers of two have the value, at the index of half their own index plus one, added to
them.

• Increasing partial sums are computed on the even indices by a similar process.

There are often insufficient threads to compute every index in a block in parallel. Therefore
each thread uses its index to compute a series of indices in the block where it should be
updating the value. That thread alone will update the values at those indices, thus avoiding
unnecessary memory fences.

Once prefix sums have been computed, a trivial stencil based loop is used to normalise all
values in parallel using the value in the last index of the prefix sum buffer as the normalisation
constant.
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