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Abstract

Most applications using network connection services require information to be transferred

within specific constraints (or Quality of Service). Parlay enables applications to access

functionality of underlying networks while preserving network integrity. Connection service

functionality of underlying networks is currently provided to applications by Parlay in the

Call Control and Data Session Control SCFs. Parlay does not however provide access to

the QoS functionality of connection services although this functionality may be provided by

networks. This report presents the design, specification and simulation of a QoS framework

for connection services provided by Parlay. The QoS framework provides applications with

access to the QoS functionality of connection services in the underlying networks. The de-

sign is divided into 3 parts (or models): the object model (defines the objects that make up

the QoS framework), the information model (deals with how objects specify QoS and map-

pings between different QoS specifications), and the interaction model (defines how objects

interact). A formal, technology-independent specification of the QoS framework is presented

using UML. The specification is composed using the three parts of the design. A simulation

of the QoS framework presented in this report is also described to validate the framework.

The simulation is a multi-threaded, distributed CORBA application implemented in JAVA

(Java SDK version 1.5) and is based on the UML specification of the QoS framework. Details

about the simulation design and implementation are summarised in this report. The QoS

framework provides per-application, per-connection QoS support for Parlay’s connection ser-

vices, supports existing and future Parlay connection services, follows existing Parlay design

paradigms, and co-exists with and makes use of existing and future Parlay infrastructure.

Parlay guidelines relating to permitted changes are followed strictly in the design of the QoS

framework, which ensures the backward compatibility of Parlay if the QoS framework is

added to the Parlay API. All Parlay design guidelines are also followed to allow for the easy

integration of the QoS framework into the Parlay API. The simulation validates that the

design of the QoS framework is: complete (in terms of specification), realistic, compatible

with a standard Parlay implementation (JAVA and CORBA), and scalable (easy integration

of new connection services).
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Chapter 1

Introduction

1.1 Background

1.1.1 Connection Services

Many applications require the transport of information between two locations. A video

conversation application, for example, allows two users with the required terminals to have

a conversation in which they can both see and hear each other on their terminals’ screen

and speaker, respectively.

A video conversation example is illustrated in figure 1.1. In this example, users A and

B are having a video conversation, using terminals A and B, respectively. Terminal A

is connected to network X, while terminal B is connected to network Z. Network X and

network Z are not directly connected to each other, but are connected via a third network

– network Y. The networks together provide a logical connection between terminals A and

B – it appears to applications residing on the terminals that information is passed directly

between the terminals. The information transferred between the terminals via the networks

is the audio and video data representing the video images and audio sounds of the video

conversation. This information flow between terminals, and through the networks, is termed

an information stream (or stream flow [5]). An information stream may be uni- or bi-

directional.

The information transport service provided by the networks in this example is termed a

‘connection service’ in this report, and is further discussed in chapter 2.
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Figure 1.1: Video conversation application example.

1.1.2 Quality of Service (QoS)

To provide an acceptable service level to end-users of an application, applications using a

connection service require the information to be transferred by networks in a specific manner,

with specific constraints.

A video conversation application, for example, requires both

• a large amount of information to be transferred, since video images together with

sound generate a large amount of information, as well as

• a timely transfer of the information due to the requirements of human perception [6].

The level of quality of a connection service—also known as the Quality of Service (QoS)—

therefore depends on how information is transferred by networks. In a video conversation

application, for example, if the networks do not transfer the required amount of information,

or if the networks do not transfer the information in a timely manner, the quality of the

video will degrade (the video may for example freeze or skip frames).

1.1.3 Parlay Overview

Increasingly, connection services will be requested by applications residing inside or outside

the Telco domain using open interfaces.

Parlay is a collection of open network Application Program Interfaces (APIs) that enable
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Figure 1.2: An overview of Parlay.

third party vendors to develop and deploy, with the minimum effort, applications that access

the full functionality of underlying networks while still preserving its integrity.

By abstracting service creation from telecommunication specific details, the development

process of new applications is shortened and the creation pace of new applications can be

increased [7].

The Parlay architecture consists of three main parts, illustrated in figure 1.2:

• the applications: located in Application Servers;

• the Service Capability Features or SCFs: located in Service Capability Servers; and

• the Parlay Framework.

SCFs are abstractions of the underlying network functionality that may be used by appli-

cations. The SCFs and the Framework constitute the Parlay Gateway. Applications may

therefore use network functionality by interacting with the Parlay Gateway [7].

The interactions of the Parlay Gateway with networks is currently not standardised, and

is implementation specific. A research effort is however currently being made [8]. In this

report, all interactions between the Parlay Gateway and the networks are made via a Com-

munication Session Manager (CSM). This provides a single, standardised point of access to
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Figure 1.3: A QoS framework must allow existing and future SCFs to plugin into it.

all networks for the Parlay Gateway. The CSM’s control of networks is based on TINA’s

Network Resource Architecture (NRA) [5].

The manner in which the Parlay architecture is used to provide connection services in

particular is further presented in section 3.2.

There are a range of network functionalities which applications can access via Parlay’s many

Service Capability Features (SCF). Network connection service functionalities are however

the focus of this paper, and are currently addressed by two sets of SCFs in Parlay, namely:

• The Call Control SCF : provides functionality to setup, modify and terminate calls in

underlying networks - including multimedia, multiparty calls, and

• The Data Session Control SCF : provides functionality to setup, modify and terminate

data sessions in underlying networks.

It is however envisaged that there will be more Parlay SCFs developed in the future that

will fall into the category of connection services.

Parlay provides adequate mechanisms for applications to control various connection services

via these SCFs. Parlay however has very limited QoS support for these connection services

[9]. Parlay currently provides no mechanisms to provide per-application, per-connection

QoS support for network connection services, although support for controlling connection

services is provided.

1.2 Problem Specification

A QoS framework is a collection of all the QoS-related aspects of a system that enable the

provision of QoS in the system. A QoS framework must have a plugin architecture: it must

provide a generic infrastructure that provides QoS services for existing and future SCFs, as

shown in figure 1.3.
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This report presents a QoS framework for connection services provided by Parlay. The

QoS framework thus enables the provision and control of QoS by Parlay to applications for

connection services like Parlay’s call and data session control services.

The QoS framework must:

• Provide per-application, per-connection QoS support for connection services provided

by Parlay;

• Support existing and future connection services in Parlay;

• Follow Parlay’s existing design paradigms; and

• Co-exist with and make use of existing and future Parlay infrastructure where possible.

1.3 Scope of this Report

This report presents:

• The design of a QoS framework for connection services in Parlay;

• A formal UML [10] specification of the design, similar to that provided in the Parlay

specifications (see [11] for an example of such a specification); and

• Details of a proof of concept simulation that has been developed to validate the design

presented in this report.

The required interactions of Parlay with networks is abstracted in the design using the

concept of the Communication Session Manager (CSM), as described in section 1.1.3. The

requirements of the QoS framework between Parlay and networks are therefore also identified

only at a high level in this report. A detailed design of these interactions are not presented

however.

The following items regarding the QoS framework presented in this report must be addressed

in future work:

• The mapping of Service Quality Features (SQFs – defined in section 6.3.2) to generic

QoS parameters must be further investigated;

• The validity of the generic QoS parameters defined in Parlay and used in the QoS

framework must also be investigated;

• The addition of exceptions to the UML specification must be made;
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Figure 1.4: A map of this report illustrating the dependencies between components.

• Performance issues must be analysed, for the object model in particular; and

• An effort must be made to integrate the QoS framework into the core Parlay API.

The intended readers of this report are particularly individuals interested in QoS or QoS

frameworks, as well as individuals interested in the improvement of the Parlay API. Read-

ers wishing to explore the use of JAVA and CORBA may also benefit from analysing the

simulation of the QoS framework.

1.4 Document Overview

A map of this report is illustrated in figure 1.4. The figure also identifies certain dependencies

between various chapters in this report. Chapters 2 and 3 are background chapters that allow

the reader to better understand the design presented in chapters 4, 5, 6 and 7.

A formal description of a connection service—generally, and not in the Parlay context—is

presented in chapter 2, as well as a description of how a connection service is generally

used. The entities that make up a system that provides connection services are presented.

The general requirements of applications from connection services are summarised. The

components, termed QoS components in this report, that must be present in a system in
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order for the system to be able to provide QoS for connection services are described. The

entity in the system that must implement each QoS component is also identified. This QoS

component concept is used in the design (in chapter 4) to identify what components the

QoS framework must implement, and what components must be implemented by external

entities (and are therefore out of the scope of the QoS framework).

An analysis of Parlay is made in chapter 3. A brief overview of Parlay is given, describing

the Parlay architecture, how Parlay works, and the many services provided by Parlay. Con-

nection services in Parlay are described further, including an analysis of the role Parlay plays

in the complete system in terms of the entities presented in chapter 2. Existing QoS aspects

in Parlay are presented, since these must be considered in the design of the QoS framework.

The changes permitted to the Parlay API are listed, since these are also considered in the

design the QoS framework to ensure backward compatibility of the Parlay API if the QoS

framework is added to it.

An overview of the design is presented in chapter 4. The design requirements are described,

followed by a summary of the three parts of the design presented in chapters 5, 6 and 7.

A formal, technology-independent specification of the complete design composing all three

parts of the design is presented using UML [10] in chapter 8.

Chapter 9 presents the proof of concept or simulation of the design. The details of the

simulation are given, and an analysis of the simulation is made. The simulation, unlike the

UML specification, is technology-specific: it is a multi-threaded [12], distributed CORBA

[13] application implemented in JAVA [14] (Java SDK version 1.5). The source code for the

simulation of the QoS framework may be found in [15], together with the detailed source

code documentation. An on-line, browsable version of the source code documentation may

be found in [16].

A summary of the work followed by an analysis of the QoS framework, and a summary of

the required future work for the QoS framework is presented in chapter 10.

The report is intended to be read in a sequential fashion. The three different parts of the

design may however be read in any order. However, readers only interested in the potential

effect of this report on the Parlay API may refer to the UML specification chapter alone.

Also, readers only interested in a reference implementation of a JAVA/CORBA distributed

application may refer to the simulation chapter alone.
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Chapter 2

Connection Services

2.1 Introduction

The QoS framework presented in this report provides QoS support specifically for connection

services in Parlay. To understand the design of the QoS framework, a basic understanding

of connection services in general is therefore required. This chapter thus presents a formal

description of a connection service in general and not in the Parlay context as a basis for

the design presented in this report.

A formal definition of a connection service is presented in the following section (2.2). The

entities that make up a system that provides connection service are described in section

2.3. The manner in which a connection service is typically used by the various entities is

presented in section 2.4. Section 2.5 summarises the general requirements of applications

from a connection service.

The various components (termed QoS components in this report) that must be present in a

system (generally and not in the Parlay context) in order for the system to provide QoS are

presented in section 2.6. The entity defined in section 2.3 that must implement each QoS

component is also identified.

2.2 What is a Connection Service?

The term connection service does not refer to a particular concrete service in this report,

but rather it is used to classify a range of telecom services that have specific common

characteristics. This classification is used in this report to identify the type of services in

Parlay for which the QoS Framework designed in this report aims to provide QoS services.
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Figure 2.1: Entities that make up a system that provides connection services.

A classification of services is necessary since the QoS Framework designed in this report does

not aim to provide QoS for a particular existing service in Parlay, but rather all current and

future services that have certain characteristics must be supported by the QoS Framework.

These characteristics are captured under the concept of a connection service in this report.

A connection service is defined in this report as:

Any service which transports an information stream between two or more loca-

tions.

The transport of information streams is required by many applications like voice, video and

data applications, as discussed in section 2.5.

This broad definition implies that a connection service is not necessarily a service provided

directly by Parlay or has anything to do with Parlay for that matter. However, Parlay

currently provides access to a number of services provided by various networks which may

be classified as connection services and Parlay might provide more services in the future

that fall into this category.

By providing support for connection services in general and not a specific type of service

like the call control service for example, the QoS framework is applicable to a wide range of

current and future services and is therefore more scalable.
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2.3 Entities that Make Up a System that Provides Con-

nection Services

There are 3 primary entities identified in a system providing a connection service shown in

figure 2.1:

• Network operators: provide and control the actual connection service resources like

switches, routers and physical links;

• Service providers: provide service users with access to and control of connection ser-

vices and other resources provided by network operators; and

• Service users: control or use connection services using their terminals.

2.4 Using Connection Services

A connection service is typically provided by a group of networks collectively to applications

running on service users’ terminals. A connection service transports information streams

between two or more service users’ terminals.

Terminals may be either:

• A simple terminal device like a telephone or multimedia device, or

• A computing system in which appropriate applications are deployed.

End-users use their terminals for two primary purposes in the context of a connection service:

• Service control: to setup, modify and terminate connection services provided by net-

works, or

• Service usage: to use the application that requires the connection service, like a video

conversation application, for example – see section 1.1.1.

2.5 Requirements from Connection Services

To provide an acceptable service level to end-users of an application, applications using a

connection service require the information to be transferred by networks in a specific manner,

with specific constraints.
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Table 2.1: High-level application QoS requirements adapted from [1].

Sensitivity to:

Application Bandwidth Delay Jitter Loss

Voice call Low High High Medium

Video call High High High Medium

Streaming video High Medium Medium Medium

Streaming audio Low Medium Medium Medium

Client/server transactions Medium Medium Low High

E-mail Low Low Low High

File transfer Medium Low Low High

Application requirements for information transferred by a connection service are described

in general using four QoS dimensions or attributes [1], namely:

• Bandwidth: the data transmission rate or amount of information in bits per second

that is required to be transmitted through a stream flow;

• Delay : transit time an application experiences for data transferred from the ingress

point to the egress point of the networks;

• Jitter : measure of delay variation between consecutive packets for a given stream flow;

and

• Loss: the percentage of bits lost in the flow per second, which occurs due to errors

introduced in the medium, as well as due to congestion in networks.

Each of these QoS dimensions affect the application’s performance or end-user’s experience

of the service provided [1].

The high-level requirements of some common applications for connection services in terms

of the four QoS dimensions are summarised in table 2.1. Table 2.1 shows that different ap-

plications have different QoS requirements. It is therefore important to provide customised,

per-application QoS support.

2.6 QoS Components

This section identifies the issues that must be addressed by a complete system providing

QoS for connection services. Each issue that must be addressed by the system is termed a

QoS component in this report.



2.6 QoS Components 12

Figure 2.2: An overview of all QoS components that must be present in a system in order

for the system to provide QoS for connection services.

To provide QoS for connection services in a system a number of QoS components must be

present in the system.

There are two types of QoS components identified in this report:

• QoS specification components: deal with the specification of QoS-related information

in a system, and

• QoS mechanisms: enable the provision of QoS in a system based on the QoS speci-

fication.

These two types of QoS components are developed in the following two subsections, respec-

tively. A summary of all the QoS components presented in the following sub-sections is

illustrated in figure 2.2.

The concepts upon which the QoS framework designed in this report are built are obtained

from a variety of sources. The primary QoS concept in this design is the QoS component

concept presented in this section, and is adapted from a survey of QoS architectures [17].

Other QoS surveys also used to develop the QoS component concept are [18] [19] [20] [21].

In addition, many QoS framework designs were evaluated [22] [23] [24] [25].

2.6.1 QoS Specification

QoS specification deals with the specification of QoS-related information in a system. QoS

specification is the common language or terminology used in a system to describe QoS.
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Figure 2.3: QoS dimension values.

In terms of the Parlay API, QoS specification components are the parameters of methods

that are part of the QoS framework API that describe anything relating to QoS. For example,

these parameters could be used by an application to describe to the QoS framework the level

of QoS it requires.

There are two types of QoS specification components identified in this report, as shown in

figure 2.2:

• QoS dimensions: describe the QoS dimensions of a service (like delay, for example),

and

• QoS dimension values: describe a value or value ranges of a particular QoS dimension

(the delay must be less than 1 millisecond, for example).

QoS dimension values are further classified based on the context in which they are used.

They are typically specified in the following logical sequence, as illustrated in figure 2.3:

1. QoS required : specified by the service user in step 1 in figure 2.3, indicating the

minimum required level of QoS.

2. QoS offered : specified by the network operator in step 2, indicating the maximum

offered level of QoS in response to the service user request.

3. QoS agreed : minimum level of QoS agreed upon by the service user and network

operator in step 3.

4. QoS achieved : actual level of QoS achieved by the network operator, and reported to

the service user in step 4.

5. QoS perceived : service user’s perception of QoS level, obtained by observing a connec-

tion service in step 5.
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Figure 2.4: QoS mechanisms

QoS specification must be made by service users as well as network operators as required. In

addition, if service users interact with network operators via service providers, then service

providers must be aware of QoS specification standards of both service users and network

operators to transfer or translate it between service users and network operators, described

in the following section (2.6.2). QoS specification components are therefore present across

all entities in a system: service users, service providers and network operators.

2.6.2 QoS Mechanisms

QoS mechanisms enable the provision of QoS in a system based on the QoS specification.

Five categories of QoS mechanisms are illustrated in figure 2.4 and adapted from [17]:

• User interaction mechanisms: permit interactions between a user and provider – re-

quired to support the control and feedback of QoS services;

• Mapping mechanisms: provide translation between different QoS specifications;

• Provision mechanisms: establish QoS services in the networks;

• Control mechanisms: control QoS services in networks based on QoS agreed; and

• Management mechanisms: ensure QoS agreed levels are sustained by networks.

Control and management mechanisms are functionally similar, with the primary difference

being the time-scales over which they operate – management mechanisms operate on a slower

time scale over longer monitoring and control intervals [17].

Provision, control and management mechanisms must be implemented by network operators.

Only user interaction and mapping mechanisms must be implemented by service providers.
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2.7 Conclusion

The ‘connection service’ concept is used in this report to classify the range of Parlay services

which are supported by the QoS Framework designed in this report. A formal description of a

connection service is presented in this chapter, together with a summary of how a connection

service is typically used. The Quality of Service (QoS) requirements from connection services

are outlined in this chapter.

In chapter 4 entities in the Parlay system are mapped to the entities identified in section

2.3. The components that must be present in a complete system in order for the system

to provide QoS for connection services are identified in this chapter. These two factors are

used in chapter 4 to identify what components must be implemented by the QoS framework,

which is just one part of a complete system, in order for the complete system to provide

QoS for connection services.
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Chapter 3

An Analysis of Parlay

3.1 Introduction

The QoS framework presented in this report is designed to provide QoS support for con-

nection services when a Parlay Gateway is used to allow applications to access network

capabilities. An understanding of Parlay is therefore required to understand the design of

the QoS framework. This chapter provides the reader with the information related to Parlay

necessary to understand the design of the QoS framework presented in this report.

A brief overview of Parlay is given in the introductory chapter (section 1.1.3), describing

how Parlay works and the services provided by Parlay, as well as a description of the Parlay

architecture. Connection services in Parlay are described in the following section 3.2. An

analysis of the role Parlay plays in the context of the complete system in terms of the entities

presented in section 2.3 is presented in section 3.3. Existing QoS aspects in Parlay are

identified in section 3.4, since these must be considered in the design of the QoS framework

presented in chapter 4. The permitted and forbidden changes to the Parlay API specification

are summarised in section 3.5.

3.2 Connection Services in Parlay

An overview of the use of connection services in Parlay is illustrated in figure 3.1. Two types

of users are identified in Parlay :

• Service controllers: users that setup and control network services (via applications) or

third party applications, and

• Service users: the actual users of network connection services.
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Figure 3.1: Connection services that will be provided by Parlay.

Note that a user may be both a service controller and a service user simultaneously, as is

user Z in the figure. Connection services are typically accessed by service controllers in the

following way:

• Service controllers access Parlay applications (typically through the Internet) and make

requests for connection services in the underlying networks (user Z makes a request to

setup a connection between himself and user A in figure 3.1);

• Parlay applications use the Parlay Gateway to indirectly access network functionality;

• The Parlay Gateway uses the CSM to access network functionality and does not di-

rectly interact with networks;

• The CSM provides the actual interactions with underlying networks to fulfill requests

for connection services;

• Connection services are setup by the individual networks between Service users (a

connection is setup between user A and Z by networks 1, 2 and Z in figure 3.1).

The CSM offers Parlay Gateway SCFs a logical view of connectivity. Network resources at

the Parlay level are end-to-end information streams between terminals. Parlay can setup,

modify and terminate an information stream that is made up of one or more stream flows

using the CSM. Since interactions between Parlay and the networks occur only through the
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Figure 3.2: Mapping components in the Parlay system to entities defined in section 2.3.

CSM, the CSM must also provide per-connection QoS support to Parlay, abstracting the

complexities of the networks. The implementation of the CSM is however not in the scope

of the work presented in this report.

3.3 Entities in Parlay

One way to identify which QoS components, defined in section 2.6, must be implemented

by Parlay is to identify the entities that components in the Parlay system map to.

Figure 3.2 shows the mapping between components of the Parlay system and the entities

defined in section 2.3. The networks play the role of network operator entities, the Parlay

Gateway plays the role of a service provider, and service controlling users play the role of

service users.

A major difference between the system of components in the Parlay system and the entities

presented in section 2.3 lies in the interactions between service providers and network op-

erators in this report. These interactions are abstracted using the CSM, defined in section

1.1.3, to hide the complexity of the interactions, while in the entity model service providers

and network operators interact directly.

Another major difference between the Parlay model and the entity model presented in section

2.3 is the separation of the end-user role into two roles: a service controller and a service

user. This distinction is necessary due to the different ways in which users interact indirectly

with Parlay.
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3.4 Existing QoS Aspects in Parlay

There is at the time of writing limited support for QoS in Parlay. In particular, the following

three QoS features have been identified in the Parlay standards:

• Enterprise QoS support;

• Generic QoS parameters definitions; and

• A data type for Quality of Service classes is defined.

The generic QoS parameters are described in section 6.3.2. The other two existing QoS

features in Parlay are summarised in the following two subsections.

3.4.1 Enterprise QoS Support (for Virtual Private Networks)

As was mentioned before, a limitation in the Parlay API is that there are no methods for

QoS control and management that can be used by external applications. QoS management

has been partly addressed by the Parlay APIs through the introduction of the Connectivity

Manager SCF [4]. This SCF allows an enterprise to enquire about and control aspects of QoS

in a virtual private network provided by the network provider. However, the connectivity

manager SCF was designed with the intention of providing QoS management on an enterprise

scale and not for individual users. The intended user of the connectivity manager SCF is the

enterprise operator administration tool [9]. Therefore, Parlay does not provide any APIs for

a server-centric service application to perform QoS management on behalf of its individual

users [9].

The Connectivity Manager SCF, however, provides an adequate infrastructure for the QoS

framework presented in this report. The Connectivity Manager SCF infrastructure is there-

fore used to build the QoS framework’s object model, as discussed in chapter 5.

3.4.2 Definition of QoS Traffic Classes

The ‘TpDataSessionQosClass’ is a data type specified in Parlay [26]. This data type is

intended for use in a data session or a multi-media call session. The data type defines four

QoS classes, namely:

1. Conversational QoS class,

2. Streaming QoS class,



3.4 Existing QoS Aspects in Parlay 20

Table 3.1: Summary of QoS classes defined in [2].

Traffic class Conversation

class

Streaming

class

Interactive

class

Background

class

Description Conversational

Real-Time

Streaming

Real-Time

Interactive

Best-Effort

Background

Best-Effort

Fundamental

characteris-

tics

Preserve time

relation between

information enti-

ties of the stream,

and Conversa-

tional Pattern

(Stringent and

low delay)

Preserve

time rela-

tion between

information

entities of the

stream

Request-

Response

Pattern, and

Preserve

Payload

content

Destination

not expecting

data within a

certain time,

and Pre-

serve Payload

content

Example of

the applica-

tion

Voice Streaming

video

Web brows-

ing

Background

download of

e-mails

3. Interactive QoS class, and

4. Background QoS class.

These four QoS classes are defined in the UMTS specifications [2], and are summarised in

table 3.1. This data type is re-used in the information model, presented in chapter 6, to

describe the class or type of traffic for a particular connection in the QoS framework, and

is further discussed in the remainder of this section.

The main distinguishing factor between these QoS classes is how delay sensitive the traffic

is: Conversational class is meant for traffic which is most delay sensitive while Background

class is the most delay insensitive traffic class [2].

Conversational and Streaming classes are mainly intended to be used to carry real-time

traffic flows. The main distinction between them is the delay sensitivity of the traffic. Con-

versational real-time services, like video telephony, are the most delay sensitive applications

and those data streams should be carried in Conversational class [2]. Streaming services on

the other hand, like streaming video, are less delay sensitive due to various techniques like

buffering for example.

Interactive class and Background are mainly meant to be used by traditional Internet ap-

plications like WWW, Email, Telnet, FTP and News. Due to looser delay requirements,

compare to conversational and streaming classes, both provide better error rate by means

of channel coding and retransmission. The main difference between Interactive and Back-

ground class is that Interactive class is mainly used by interactive applications, e.g. inter-

active Email or interactive Web browsing, while Background class is meant for background
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traffic, e.g. background download of Emails or background file downloading. Responsiveness

of the interactive applications is ensured by separating interactive and background appli-

cations. Traffic in the Interactive class has higher priority in scheduling than Background

class traffic, so background applications use transmission resources only when interactive

applications do not need them. This is very important in wireless environment where the

bandwidth is low compared to fixed networks [2].

3.5 Changes Permitted to the Parlay API

The design presented in this report aims to extend the Parlay API specifications to provide

QoS support for connection services in Parlay. To enable backward compatibility in the

Parlay API specifications, only certain types of changes may be made to the Parlay APIs.

Anything beyond these changes is not permitted, as described in [4]. A summary of the

changes that are permitted to the Parlay APIs are presented in the following subsections.

These ‘rules’ are carefully considered in the design of the QoS framework presented in this

report.

3.5.1 Changes Permitted to the Parlay Gateway Side

Only the following changes are permitted on the Parlay Gateway side [4]:

• Addition of a new interface.

• Addition of a new method to an existing or new interface.

• Addition and removal of exceptions if the implementation uses the Application ver-

sioning convention specified in [4].

3.5.2 Changes Permitted to the Application Side

Only the following changes are permitted on the Application side [4]:

• Addition of a new interface.

• Addition of a new method.

• Addition and removal of exceptions if the implementation uses the Application ver-

sioning convention specified in [4].



3.6 Conclusion 22

3.5.3 Changes Permitted to Data Types

Only the following changes are permitted to existing Data types [4]:

• Elements may be added to ‘sequence’ data types. Care should be taken when adding

elements to data types that are sent back to the client: The client may be outdated

and thus not be able to interpret the new element. Only information that has not

been available before, and therefore is not expected by the client, may be transferred

in added elements. Information that has been available before, and therefore possibly

expected by the client, may not be modified in any way.

• Elements may be added to ‘tagged choice of data elements’ data types, which evaluate

to one of a choice of data elements, if they are always sent from client to server:

either within a parameter of a server side method, or within the result of a client side

method. For example, the TpCallError data type currently has 5 possible error types

[26]. More error types may be added to this data type because it is a ‘tagged choice

of data elements’ data type.

3.6 Conclusion

This chapter provides the reader with the information related to Parlay necessary to un-

derstand the design of the QoS framework presented in this report. A review of the Parlay

architecture is presented, as well as various other aspects of Parlay relating to connection

services. In particular, the usage of connection services in Parlay is described, together with

an identification of entities in the Parlay model.

The entities that components in the Parlay system map to are used in section 4.3 to identify

which QoS components must be implemented by each Parlay component. The existing QoS

aspects in Parlay identified in section 3.4 are used in the design of the QoS framework,

presented in chapters 4 to 7, where applicable. The permitted changes to the Parlay API

specification identified in section 3.5 are also considered in the various parts of the design

to ensure backward compatibility of the Parlay API to previous versions of the Parlay API

in the event that the QoS framework is added to the API.
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Chapter 4

Design Requirements and Approach

4.1 Introduction

An overview of the design requirements and approach to the design of the QoS framework

for Parlay is presented in this chapter. The design of the QoS framework is divided into

three components or models, as discussed in section 4.4:

1. The object model, presented in chapter 5

2. The information model, presented in chapter 6

3. The interaction model, presented in chapter 7

This chapter introduces the high-level design of these three components of the design pre-

sented in the following three chapters, as well as how these components fit together.

An analysis of the complete system in which the QoS framework must be designed is pre-

sented in section 4.2. The requirements of the design are summarised in section 4.3, followed

by an overview of the QoS framework design in section 4.4. A summary of the various con-

cepts which influenced the different parts of the design is given in section 4.6.

A formal specification of the complete design is presented using UML [10] in chapter 8.

4.2 System Analysis

An analysis of the complete system in which the QoS framework must be designed is pre-

sented in this section. This analysis illustrates on a high-level the entities that the QoS
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Figure 4.1: High-level system overview illustrating the focus of the design.

framework must interact with to provide QoS services to requesting applications. A high-

level system overview is illustrated in figure 4.1.

The QoS framework is a component of the Parlay API, and must therefore interact with

certain entities within the Parlay API to support existing and future SCFs, a topic examined

in chapter 5.

The QoS framework must interact directly with two external entities:

• Applications: to obtain QoS requests for Parlay services, and

• The CSM: to fulfil QoS requests received from applications.

The CSM, introduced in section 1.1.3, must interact with the various networks involved in

the requested QoS services. The networks interact with the connected user terminals and

other equipment to fulfill the QoS requests from applications.

The focus in this report is on the interactions between:

• Applications and the QoS framework, and
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Figure 4.2: Mapping of QoS components and design principles to Parlay entities.

• The QoS framework and the Communication Session Manager (CSM)

The other interactions, between the CSM and networks, and between networks and termi-

nals, are outside the scope of this report. Details about certain interactions between the

CSM and various networks may be found in [8].

4.3 Design Requirements

A QoS framework is a collection of all the QoS-related aspects of a system that enable the

provision of QoS in the system. The QoS components of a system that must be present in

a system’s QoS framework in order for the system to provide QoS for connection services

are presented in section 2.6. The QoS-related aspects, both QoS components and further

design principles, are mapped to entities in the Parlay system in figure 4.2, illustrating the

scope of QoS components and design principles in various Parlay entities. As shown in the

figure, QoS specification components are present across all entities since all entities specify

QoS. User interaction components are present across all entities except network operators in

Parlay because user interaction is primarily performed by applications and not networks

in Parlay. The network operator entity must however perform the actual network control

mechanisms of provision, control and management. The mapping component is only in the

scope of the Parlay Gateway which must map QoS specification between applications and

the CSM.
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Figure 4.3: Design overview.

QoS specification, mapping and user interaction mechanisms are therefore the only compo-

nents that must be provided by the QoS framework for Parlay. All other components are

outside the scope of the QoS framework. In addition, various design issues must also be

considered in the design of the framework, as identified in section 5.3.

4.4 Design Overview

To reduce the complexity of the design, the divide-and-conquer approach is used. The design

is divided into 3 smaller, more manageable parts.

An overview of the design of the QoS framework is illustrated in figure 4.3. The three

components of the design are:

1. The Object Model: presented in chapter 5, identifies the entities or objects that com-

pose and interact with the QoS framework at the various levels.
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Figure 4.4: Division of QoS components into design sections.

Figure 4.5: The relationship between the three design components and the UML specifica-

tion.

2. The Information Model: presented in chapter 6, identifies the information elements

that are required by each entity to provide QoS services.

3. The Interaction Model: presented in chapter 7, identifies unambiguously how the

defined entities may interact.

Each part of the design addresses specific QoS components or design issues presented in the

previous section (4.3), as shown in figure 4.4.

A formal specification of the design is made in chapter 8 using a formal specification language

– the Unified Modelling Language (UML [10]). This formal specification is composed using

the three design components mentioned above, as shown in figure 4.5.

4.5 Analysis of QoS Framework Design

The divide-and-conquer approach allows the design to be divided into three smaller, more

manageable components, thus allowing each component to be designed independently, re-

sulting in minimal coupling between the different components of the design, as shown in

figure 4.5, as well as decreased design complexity. The three components of the design are
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integrated in the UML specification presented in chapter 8.

This feature has two major benefits:

• Re-usability: each component of the design has the potential to be re-used in another

design of similar nature, particularly the information model and interaction model,

and

• Flexibility: any component of the design can be replaced relatively easily if necessary,

without severely affecting the other components of the design.

In the latter case, a major change might however be required in the UML specification.

4.6 Summary of Design Influences

The concepts and factors that influenced the three parts of the design are summarised in

this section and illustrated in figure 4.6. The object model presented in chapter 5 is based

primarily on Parlay’s design paradigms which are presented in section 5.3. The remaining

four factors that influenced the various parts of the design are:

• the Quartz architecture: the basis of the mapping concept in the information model;

• TINA Service Quality Features: the source of the QoS specification concept in the

information model;

• QoS cycles: used for defining user interaction mechanisms in the interaction model;

and

• the EQoS framework: the basis of the user interaction concept in the interaction model.

These four factors and there influences on the various parts of the design are presented in

the following four sub-sections.

4.6.1 The Quartz Architecture

A description of a QoS architecture that provides support for QoS specification and enforce-

ment in heterogeneous distributed computing systems is presented in [27]. Quartz is able

to accommodate differences among diverse computing platforms and areas of application
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Figure 4.6: Summary of design influences.

by adopting a flexible and extensible platform-independent design, which allows its inter-

nal components to be rearranged dynamically to adapt the architecture to the surrounding

environment [27].

Further significant problems found in other QoS architectures, such as the lack of flexibility

and expressiveness in the specification of QoS requirements and limited support for resource

adaptation are also addressed by Quartz [27].

Quartz’s three-step translation or mapping process is adapted for use in the information

model in chapter 6 and provides exceptional flexibility to the information model. The

notion of generic QoS parameters used in the Quartz architecture is also adapted for use in

the information model.

4.6.2 TINA Service Quality Features (SQFs)

The subject of Quality of Service trading in an open network architecture using TINA [28]

is discussed in [29]. Enterprise-level QoS issues are discussed, from which QoS evolution

paths are derived. Service-level QoS issues are identified, and they have been studied as a

part of service quality issues in the TINA service architecture. TINA stream binding and

its role in the TINA QoS framework are presented. Soft guarantee of stream quality is

proposed, which does not require strict resource reservation. The soft guarantee concept

combined with TINA stream binding architecture supports progressive evolution of service

quality [29].

The concept of service quality—which deals with QoS at the service level as opposed to the

network level—is adapted for use in the information model in chapter 6. The service quality

function concept is the basis of the Service Quality Feature concept in the information

model.



4.7 Conclusion 30

4.6.3 QoS Cycles

QoS management for distributed multimedia applications becomes more complex when a

huge number of users are participating, as for instance in broadcasts of major sports events

or in tele-teaching applications. On the other hand, such an application offers a variety

of options to improve resource usage and system performance while decreasing the overall

communication cost. A new QoS management scheme called Cooperative QoS management

which handles both increased complexity and options is presented in [30]. [30] shows how

this new scheme influences the design of applications based on it, especially concerning the

QoS user interface. As an example, [30] presents a tele-teaching application developed in

the framework of a Broadband Services project [30].

The definition of QoS cycles in [30] and [31], which specify the various interactions be-

tween the different entities involved in establishing QoS for connections, are adapted for the

definition of the QoS cycle in the QoS framework’s interaction model in chapter 7).

4.6.4 The EQoS Framework

The EQoS framework [22] addresses the challenge of QoS offer and management in a multi-

provider environment by focusing on the agreement that exists between a user and a provider.

This introduces the notion of ‘one stop responsibility’ of a given actor, the primary provider,

to another, the end-user. The user-provider agreement is a harmonised understanding be-

tween the two entities and contains a set of statements describing the way the entities

involved in the negotiation process should behave. Statements may include QoS issues,

tariffing and legal issues. The EQoS framework focuses on the QoS related part of the

user-provider agreement.

The EQoS framework provides guidelines for defining how entities interact. High-level in-

teractions between entities are specified using Message Sequence Charts (MSC) [32], and

low-level interactions are specified using SDL diagrams [33]. These guidelines are used in

the definition of the interaction model in chapter 7.

4.7 Conclusion

An overview of the three parts of the design presented in the following three chapters is

given in this chapter to provide the reader with a ‘big picture’ of the design. An analysis of

the entities with which the QoS framework must interact is made, followed by a summary of

the design requirements for the QoS framework. An overview of the QoS framework design

is given, followed by an analysis of the design. A summary of the factors that influenced

each part of the design is also presented.
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The three parts of the design are presented in the following three chapters in more detail,

followed by a formal UML specification of the complete design in chapter 8. The details of

a software simulation of the design are summarised in chapter 9.
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Chapter 5

Design of the Object Model

5.1 Introduction

As mentioned in the design overview in chapter 4, the design of the QoS framework for

Parlay is divided into three distinct parts. This chapter presents the first part of the QoS

framework design, the Object Model. The Object Model defines:

• The entities or objects that make up the QoS framework, as well as

• The entities that the QoS framework entities interact with.

The design requirements for the object model are described in the following section (5.2).

One major design requirement identified is the need for the QoS framework to follow Par-

lay design paradigms. Section 5.3 therefore presents Parlay design paradigms for object

models.The QoS framework’s object model is based on these Parlay design paradigms. The

object model design is presented in section 5.4. An analysis of the object model is made in

section 5.6.

5.2 Design Requirements

The QoS framework must interact with applications to obtain QoS requests as well as the

CSM to fulfil QoS requests, as shown in section 4.2. The QoS framework is an extension of

the Parlay API. The object model for the QoS framework focuses on defining the objects

that make up the QoS framework as well as how the QoS framework objects fit into the

existing Parlay infrastructure, as shown in figure 5.1.
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Figure 5.1: Required QoS framework object model.

Figure 5.2: Object-oriented design paradigms in Parlay.

The design of the QoS framework must be completely object-oriented, since it is a part of

Parlay which is itself object-oriented [4]. The general design paradigms of Parlay must also

be followed where possible with regard to object-oriented design.

Applicable examples of object-oriented design paradigms in Parlay that are followed in the

design of the QoS framework are described in the following section (5.3).

5.3 Design paradigms in Parlay used in the design of

the object model

This section contains a summary of design paradigms in Parlay that are used in the design of

the object model for the QoS framework. The following three existing Parlay object-oriented

design paradigms [4] are described in the following subsections and illustrated in figure 5.2:
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Figure 5.3: Object model for call control service.

• Parlay’s Service Manager concept;

• Parlay’s Session model; and

• Callback interfaces.

Parlay’s object-oriented design paradigms are described using an example in the following

section (5.3.1). The three particular design paradigms are presented in the subsequent

sections.

It must be noted that although these design paradigms are mentioned in the Parlay speci-

fication overview [4], they are not singled out as distinguishing features in the various SCF

specifications ([11, 26] for example). These design paradigms are however used in the design

of the object model for the QoS framework in this report.

5.3.1 Parlay’s Object-Oriented Paradigm

The Parlay architecture is completely object-oriented [4]. The QoS framework is designed

to be a part of Parlay, and must therefore also be object-oriented. In addition, the QoS

framework must support both existing and future connection services.

An example of an object model for an existing connection service in Parlay is the call

control service illustrated in figure 5.3. Parlay’s call control service allows applications to

setup, modify and terminate call sessions in the underlying networks. A call object is used

to provide an abstraction of a call in the underlying networks. One call object is created in

the Parlay Gateway for each call an application participates in.

The various other objects in figure 5.3 are described in the following sub-sections.
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Figure 5.4: The Service Manager Concept in Parlay’s Call Control SCF.

5.3.2 The Service Manager Concept

In Parlay, ‘for each application that uses an SCF, a new object is created to handle all

communication with the application in the Parlay Gateway. This object is referred to as

the Service Manager’ [4] for the SCF. This is based on a software pattern [34] known as the

Factory Pattern [35]. ‘The Service Manager creates any new objects in the SCF’ as required

by the application. The Service Manager and all the objects created by it are referred to as

the ‘service instance’ [4], illustrated in figure 5.4.

‘Once an application is granted access to an SCF by the Parlay Framework, the Framework

requests the SCF to create a new Service Manager. The reference to this Service Manager

is provided to the application. From this moment onwards the application can start using

the SCF’ by using the reference to the Service Manager [4].

The Call Control SCF’s service manager is called the Call Manager. The Call Control SCF

creates a new Call Manager object upon request, and returns a reference to this object, as

shown in figure 5.4. The reference to the Call Manager can then be used to create a new

Call object for every call it interacts with in the underlying networks. The Call Manager

together with all its created objects, termed Call objects, are collectively known as the

‘service instance’.

5.3.3 The Session Model Concept

A session is defined as ‘a series of interactions between two or more communication end

points that occur during the span of a single connection’ [4]. An example is all operations

to set-up, control, and tear-down a call. An object, called a session object in this report, is

typically created for each session, representing that particular session. Any changes to the

session are made by interacting with the session object.
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Figure 5.5: Session model.

‘A session is identified by a Session ID. This ID is unique within the scope of a service

instance and can be related to session numbers used in the network’ [4].

Illustrated in figure 5.5 are two call sessions in the underlying network that are created by

a call control service manager via interactions with the CSM (not shown in the figure).

• One connection, identified by the session ID 67, is between terminals 1 and 2, and

• Another connection, identified by the session ID 23, is between terminals 3 and 4.

An object is created for each call session, and each object represents a particular session in

the underlying network, from the application’s viewpoint.

In the Call Control SCF the call object creates a separate call leg object for each leg of

the call, each of which represents that particular session leg in the underlying network [11].

Each call leg object is also assigned a unique session ID [26].

5.3.4 Callback Interfaces

Parlay Gateway interfaces or objects ‘generally require an application to register a callback

interface. This interface resides on the application side and is used by the object in the

Parlay Gateway domain to report events, results, and errors. An application must register

its callback interface as soon as the corresponding server-side interface is created’ [4].

As shown in figure 5.6, in the Call Control SCF example, each object on the server-side has

a corresponding object on the application-side known as a callback interface.
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Figure 5.6: Callback interfaces in Parlay.

Figure 5.7: QoS framework’s object model.
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Figure 5.8: QoS frameworks service manager.

5.4 Design of the Object Model

The design of the QoS framework’s object model is presented in this section. Parlay’s

QoS framework object model, summarised in figure 5.7, follows all Parlay’s object-oriented

design paradigms discussed in section 5.3.1. The object model defines all of the objects that

compose the Parlay QoS framework. The various objects that make up the object model

are discussed further in the following sub-sections.

5.4.1 A Service Manager for the QoS Framework

The objects that make up the QoS framework must fit into the existing Parlay infrastruc-

ture to provide QoS support for connection services. Services in Parlay are accessed by

applications via SCFs, discussed in section 1.1.3. The services of the QoS framework must

therefore also be exposed to applications using an SCF.

The Connectivity Manager Service Control Feature (CM SCF) is an existing SCF in Parlay

that addresses certain limited QoS concerns in the Parlay API, discussed in section 3.4.1.

Instead of defining a completely new SCF for the QoS framework, the CM SCF is extended

to accommodate the QoS framework. The Connectivity Manager Interface is used as the

Service Manager for Parlay’s QoS framework, as shown in figure 5.8.

The Connectivity Manager SCF includes the APIs between the enterprise operator and the

provider network for the two parties to establish QoS parameters for enterprise network

packets travelling through the provider network [4, 36]. The Connectivity Manager SCF

currently provides tools for the enterprise operator to set up a provisioned QoS service in

the provider network [4], discussed in section 3.4.1.
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Figure 5.9: QoS frameworks Session model.

The CM SCF defines its service manager as the Connectivity Manager Interface [3]. This in-

terface currently handles all QoS-service related interactions between an enterprise operator

and a network provider.

The CM SCF also defines a set of generic QoS parameters which are used in the design of

the Information Model, presented in chapter 6.

5.4.2 A Session Model for the QoS Framework

A QoS Session object is used to represent a session in the underlying network for which an

application requests QoS services. In addition to the particular session object, a call object

or data session object for example, a QoS Session object is created to represent the QoS-

related aspects of the session. All communications relating to QoS services for a particular

session are made through its associated QoS Session object.

The Connectivity Manager is used to create a QoS Session object for each session that an

application requests QoS for in the underlying networks. The QoS Session object is linked

to a particular session by its session ID, illustrated in figure 5.9. For example, a particular

call session created by the application may have a session ID of 23, and a particular data

session may have a session ID of 46. A QoS Session object is created for each session, and

each QoS session object has:

• its own unique session ID, and

• the session ID of the call or data session to which it provides QoS services

The session ID therefore serves as a link between a QoS Session object and the session for

which it provides QoS services.
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Figure 5.10: QoS frameworks Callback interfaces.

Figure 5.11: Example illustrating the use of the QoS framework.

5.4.3 Callback Interfaces for the QoS Framework

Each QoS Session object requires an application to register a callback interface, as discussed

in section 5.3.4. This interface resides on the application side and is used by the QoS Session

object, which resides on the server side, to report events, results, and errors, as illustrated in

figure 5.10. An application must register its callback interface as soon as the corresponding

server-side interface, the QoS Session object, is created.

5.5 Example: Using the Object Model

Figure 5.11 illustrates, by use of an example, how the object model and the QoS framework

is used in Parlay. A call object is first created by the application via interactions with the

Call Control Service Manager (not shown in the figure). The call object represents a call in

the underlying network, and is assigned a session ID of 23 in this example. The application
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requests QoS services for the call session from the Connectivity Manager, and passes the

session ID of the call, which is 23, to the Connectivity Manager to identify the particular

call session. The Connectivity Manager creates a QoS session object and sets its session ID

to that of the call, and passes a reference of the QoS session object to the application. The

application then uses the QoS session object to request QoS levels for the call session or for

any other QoS-related issues.

There is no explicit coupling between the call object and the QoS session object. They

are linked only by the unique session ID of the underlying connection service. The QoS

framework is therefore not coupled to a specific service (SCF), and is therefore able to

support both existing and future connection services in Parlay. For example, the QoS

framework can be used in exactly the same way to provide QoS services for data sessions

(and data session objects).

5.6 Analysis of the Object Model

The design of the object model for the QoS framework follows the existing design paradigms

of Parlay. In particular, the Service Manager concept, the Session Model concept and the

callback interface concepts are all incorporated into the design of the object model for

Parlay’s QoS framework. To avoid duplication, the existing CM SCF is used to effectively

support the QoS framework.

All QoS related issues for a particular QoS session are represented by a QoS Session object.

The QoS Session object is loosely coupled to existing services, thereby separating QoS

concerns from other service concerns. The separation of QoS concerns from other service

concerns allows the QoS session object to provide QoS services for various types of services.

This loose coupling makes the design applicable to both existing services as well as future

services, without any modification to the existing design. The design is therefore very

scalable.

The performance of the design has not at the time of writing been analysed in terms of

factors like memory efficiency and processing speed. A particular performance issue might

be the use of a new object for every session. If performance is found to be unsatisfactory in

an implementation of the QoS framework, this design approach might have to be altered to

improve system performance. This (inefficient) approach is however taken in many Parlay

SCFs. For example, every call session is represented by a separate call object in the Call

Control SCF. If, for example, various applications use the Call Control SCF to create thou-

sands of calls, this translates into thousands of call objects (each representing a particular

call session) being created. This inefficiency is a common trade-off of the object-oriented

design paradigm in general. An alternative approach could use more efficient procedural

approaches at the cost of poor (non-object-oriented) design, which would make the design

less scalable and less re-usable.
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5.7 Conclusion

One part of the design of Parlay’s QoS framework is presented in this chapter – the ob-

ject model. The design of the object model incorporates various existing Parlay design

paradigms, including the Service Manager concept, the Session Model concept, and the

callback interface concept. The Connectivity Manager SCF’s service manager, called the

Connectivity Manager, is used as the service manager for the QoS framework. The Connec-

tivity Manager is used to create a QoS Session object that represents all the QoS related

issues with regard to a particular service session.

The design is very scalable, due to the loose coupling between QoS-related issues and other

services. This is accomplished by the introduction of a QoS session object for each service

session, which handles all QoS related issues for that particular service session. This makes

the design of the object model applicable to both existing and future Parlay services.

Performance related issues have not been addressed in this report. If the performance of the

QoS framework is found to be unsatisfactory, the QoS session object concept might require

review to improve the performance of the QoS framework.

This chapter defines the objects that compose the QoS framework. The following chapter

(6) defines the information model for the QoS framework, which describes what information

is required by the objects. The third and last part of the design presented in chapter 7

defines the interaction model for the QoS framework, which describes how the objects pass

information to each other.

The three parts of the design, including the one presented in this chapter, are composed

into a single formal UML specification in chapter 8.
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Chapter 6

Design of the Information Model

6.1 Introduction

As mentioned in the design overview in chapter 4, the design of the QoS framework for

Parlay is divided into three distinct parts. This chapter presents the second part of the QoS

framework design, the Information Model.

The focus in the information model is primarily on the specification of QoS-related informa-

tion in the QoS framework. There are two types of QoS specification required for connection

services in the Parlay context, namely, the specification of:

• The type of traffic that must be carried by the underlying networks – to allow certain

networks to optimise the transport of traffic across the network resources [2], and

• The level of QoS for connection services in the underlying networks.

The information model is divided into two parts, each of which describe one of the above-

mentioned specification types in the QoS framework. The design of the part that deals with

the specification of the type of traffic is described in the following section (6.2). The design

of the part that deals with the specification of the level of QoS is presented in section 6.3.

6.2 Specification of the Type of Traffic

This section presents the part of the design of the information model that deals with the

specification of the type of traffic in the underlying networks. The design requirements are
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presented in the following sub-section, followed by the design in section 6.2.2. An analysis

of the design is made in section 6.2.3.

6.2.1 Design Requirements

An application must provide a description of the expected traffic flows for the connection

service which requires QoS services to the QoS framework. The description of the traffic

flow provides the underlying network with the information necessary to manage and optimise

resources required to deliver the QoS service efficiently [2].

The QoS framework must therefore define a specification format or data type for the appli-

cation to specify the expected traffic flow for a connection service.

6.2.2 Design

The Parlay API currently defines a data type that is used for the description of the type

of traffic in the underlying network. This data type is re-used in Parlay’s QoS framework

for the same purpose. The data type is known as the ‘TpDataSessionQosClass’ [26], and is

described in more detail in section 3.4.2.

An application using the QoS framework could simply indicate the traffic type using this

data type. The QoS framework would then simply pass this information on to the various

networks involved in the required connection service via the CSM.

6.2.3 Analysis

The use of the existing data type to describe the traffic type on the connection avoids

redundancy. The data type is well-defined and established, since it is currently used in

UMTS networks [2]. [2] provides a good description of the type of traffic as well as the

associated traffic requirements and characteristics.

6.3 Specification of QoS Levels

This section presents the part of the design of the information model that deals with the

specification of QoS levels in the underlying networks. The design requirements are presented

in the following sub-section, followed by the design in section 6.3.2. An analysis of the design

is made in section 6.3.3.
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6.3.1 Design Requirements

The QoS framework must interact with applications to obtain QoS requests as well as the

CSM to fulfil QoS requests. Specification of QoS levels is therefore required at two interfaces,

namely, at the interface between:

1. Applications and the QoS framework: where applications specify their QoS require-

ments to the QoS framework.

2. QoS framework and the CSM: where the QoS framework informs the CSM about the

required level of QoS in the underlying networks.

This part of the information model focuses on defining a data structure that permits the

specification of QoS levels at both these interfaces. The individual QoS specification re-

quirements at each of these interfaces is further discussed in the following two sub-sections,

respectively.

In addition to these identified requirements, a design requirement of the QoS framework is

scalability. The information model must therefore also be scalable.

QoS Specification Requirements at the Application-Parlay Interface

Parlay was designed to open up telecommunications networks to application programmers.

Most application programmers are not familiar with detailed networking concepts. One of

the design requirements in Parlay is therefore to hide the complexities of the underlying

networks from the application programmer [37].

The specification of the required service quality (or QoS levels) must therefore be easy to

express and understand for application programmers, as well as hide the complexities of the

underlying networks. Service quality concepts should be simple and intuitive, yet expressive

enough to describe a discernable difference in service quality [29].

QoS Specification Requirements at the Parlay-CSM Interface

The QoS requirements specified by applications to the QoS framework must be interpreted

quantifiably, and mapped to various, possibly different, network-specific network parameters

which describe the required QoS levels. The CSM must interact with various underlying

network technologies to specify applications’ QoS requirements.

Each network technology typically has a different set of QoS parameters that are used to
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specify the required QoS levels. The CSM must therefore convert or map the application’s

QoS requirements to the specific set of QoS parameters of the network with which it commu-

nicates. The QoS parameters presented to the CSM must therefore be generic – it must be

possible to map them to any set of QoS parameters belonging to a particular network tech-

nology. The responsibility of mapping QoS parameters to particular network technologies is

then in the CSM domain.

6.3.2 Design

The design requirements for the specification of QoS levels at the two different interfaces

are different at each interface, as shown in section 6.3.1. A single set of QoS specification

components for both interfaces is therefore not a viable solution. A minimum of two sets of

QoS specification components or parameters are required, one at each interface.

The overall structure of this part of the design is presented in the following sub-section. The

design of the QoS specification data types at the two levels follow in the subsequent two

sub-sections. The mapping between the data types at different levels is briefly discussed in

the fourth and last sub-section.

Structure of QoS Level Specification: A Layered Mapping Process

A possible approach for QoS specification is to define possible QoS choices for applications,

and simply map the application’s QoS choices directly to network-specific QoS parameters.

For example, an application could have 5 possible QoS choices, U1 to U5, as shown in

figure 6.1. These QoS choices could then simply be forwarded by Parlay to the CSM. The

CSM would then translate these 5 application choices to each type of underlying network.

Network A in the figure defines 2 possible QoS choices, A1 and A2. The CSM therefore

translates U1 to U5 into A1 and A2 for communication with network A. Similarly, the CSM

translates U1 to U5 to each of the other network’s defined QoS choices.

This approach is however not scalable. If, for example, a new QoS choice is introduced at

the application level, all the existing mappings from application’s QoS choices to network-

specific QoS parameters will have to be altered to introduce the new QoS choice.

An alternative more scalable approach is illustrated in figure 6.2. An intermediate set of

generic QoS parameters is used between the application’s QoS choices and the network-

specific QoS parameters. In the first step, application’s QoS choices, U1 to U5, are mapped

to a set of generic QoS parameters, G1 to G4. In the second step, the generic QoS parameters

are mapped to the different network-specific QoS parameters. In this approach, changes can

be made to the application’s QoS choices without altering mappings from the generic QoS

parameters to the network-specific QoS parameters. Alternatively, changes can be made to



6.3 Specification of QoS Levels 47

Figure 6.1: Simple mapping example.

Figure 6.2: A two-step mapping process.
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Table 6.1: Generic QoS parameters, defined in [3].

Category Parameter name Parameter unit

Bandwidth Mean bandwidth bytes per second

Measurement interval Milliseconds

Maximum bandwidth bytes per second

Minimum bandwidth bytes per second

Delay Mean delay Milliseconds

Measurement period Milliseconds

Maximum delay Milliseconds

Minimum delay Milliseconds

Delay priority higher value - higher priority

Loss Mean loss per this many packets, one packet

lost

measurement period Milliseconds

Maximum loss per this many packets, one packet

lost

Minimum loss per this many packets, one packet

lost

Loss priority higher value - higher priority

Jitter Mean jitter Milliseconds

Measurement period Milliseconds

Maximum jitter Milliseconds

Minimum jitter Milliseconds

Jitter priority higher value - higher priority

network-specific QoS parameters without altering mappings from QoS choices to the generic

QoS parameters.

Design at Parlay-CSM Interface

The Connectivity Manager SCF defines a comprehensive set of generic QoS (GQoS) pa-

rameters [3]. These generic QoS parameters may be mapped to various different sets of

network-specific QoS parameters. This set of generic QoS parameters are therefore selected

as the ‘language’ of QoS specification between the QoS framework and the CSM. The CSM

can then map this set of generic QoS parameters to the particular set of network QoS pa-

rameters of the network with which it communicates. A summary of the set of generic QoS

parameters defined in the Connectivity Manager SCF [3] is presented in table 6.1.

The GQoS parameters fall into 4 categories: bandwidth, delay, loss and jitter [3], as defined

in section 2.5. The applicability of these parameters must however be validated in future
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Table 6.2: The four Service Quality Features (SQFs) of the QoS framework.

SQF Choice or unit Description

Audio CD, FM radio, PSTN Describes audio quality

Video NTSC, VCR SP, MPEG-2

240*240, HDTV

Describes video quality

Response-

time

Milliseconds Important metric for interactive

games, operational interfaces, web-

services

Throughput kbps Useful for FTP-like services, data

connections

Figure 6.3: Decomposing services into Service Quality Features (SQFs).

work in terms of whether they can be mapped to various current and future network-specific

QoS parameters.

Design at Application-Parlay Interface

To provide a high-level description of service quality (or QoS levels) to application develop-

ers, each Parlay service can be decomposed into one or more Service Quality Features (SQFs).

Each SQF should be simple, intuitive and familiar, yet expressive enough to describe dis-

cernable differences in service quality. Four SQFs are identified for the QoS framework, and

are summarised in table 6.2 [29].

Examples of decomposing existing Parlay services into SQFs are illustrated in figure 6.3.

As can be seen in the figure, each service’s quality can be described by one or more SQFs.

There is therefore a one-to-one or a one-to-many relationship between Parlay services and

SQFs.
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Mapping SQFs to Generic QoS Parameters

The mapping of SQFs to GQoS parameters is outside the scope of this report, but must be

addressed in future work. This section discusses at a high-level a few guidelines for mapping

SQFs to GQoS parameters.

The mapping from an SQF to generic QoS parameters depends on two primary factors:

• The type of traffic on the connection – specified by the QoS class, discussed in section

6.2, and

• The level of quality chosen for the particular SQF by an application.

For example, an application might use one of Parlay’s Call Control services, like the Generic

Call Control service [11]. The application would discover (by enquiring from the QoS frame-

work) that the call control service has only an audio SQF (since it is a voice only call).

The application could choose CD quality for the call, for example. The QoS framework

would then convert this QoS choice to a set of levels for each of the GQoS parameters. For

example, the SQFs could be mapped to the following primary GQoS parameters:

• Bandwidth: 2.3 kilobits per second;

• Delay: 3 milliseconds;

• Jitter: 0.1 milliseconds; and

• Loss: 4 packets per 1000.

The GQoS parameters would be passed by the QoS framework to the CSM, which would

in turn convert these GQoS parameters to the set of network-specific parameters of each

network with which it communicates.

The mapping of the SQFs to the generic QoS parameters is not unique, since the level of the

SQFs are not completely objective. For example, one implementation of the mapping might

map CD quality to a bandwidth of 2.1 kilobits per second, while another implementation of

the mapping might map CD quality to a bandwidth of 2.0 kilobits per second. The mapping

to each GQoS parameter from the same SQF level could potentially be different for each

implementation of this information model. This mapping process is complex and outside

the scope of this report, but must be further investigated in future work.
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6.3.3 Analysis

The decomposition of Parlay services using Service Quality Features (SQFs) makes the

description of the required QoS level by an application developer a simple, intuitive and

familiar process.

The use of the existing generic QoS parameters defined in the Connectivity Manager SCF

avoids redundancy in the information model, building on existing design concepts in the

Parlay API. The feasibility of these parameters must however be verified. In particular,

future work involves verifying whether these parameters are:

• Complete: whether the parameters take advantage of various network features, and

• Applicable: whether the parameters can be mapped, at least to some degree, to various

different network-specific QoS parameters.

The use of a two-step layered mapping process makes the information model more scalable by

reducing the overall number of mappings required in the model. The mappings from SQFs

to the generic QoS parameters are a complex process, and must be further investigated in

future work.

6.4 Conclusion

The second part of three parts of the design of Parlay’s QoS framework is presented in this

chapter – the Information Model. The information model is divided into two distinct parts:

describing the type of traffic, and describing the required QoS.

The description of the type of traffic is made using an existing data structure—‘TpDataSessionQosClass’—

which is defined in [2]. The data type essentially defines four QoS classes, each of which

describes a particular type of traffic.

The description of the required service quality level is simplified for the application program-

mer by decomposing Parlay services into four simple, intuitive and familiar Service Quality

Features (SQFs): Audio quality, Video quality, response-time and throughput.

The description of the required service quality level at the CSM level is made using existing

generic QoS parameters, defined in [3]. The feasibility of this set of parameters must however

be verified in terms of completeness and applicability in future work.

The two-step mapping process makes the design of the information more scalable, and

reduces the number of mappings required in the model. The mappings between SQFs and



6.4 Conclusion 52

generic QoS parameters are complex and must be further investigated in future work. In

addition, the mappings from the generic QoS parameters to network-specific QoS parameters

must be further investigated – this task is in the scope of the CSM.

The previous chapter defined the objects that make up the QoS framework. This chapter

defines the types of information that are required by the objects in the QoS framework to

specify QoS-related information. The third and last part of the design, presented in the

following chapter 7, defines the interaction model for objects in the QoS framework, which

describes exactly how the objects pass information to each other.

The three parts of the design, including the one presented in this chapter, are composed

into a single formal UML specification in chapter 8.
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Chapter 7

Design of the Interaction Model

7.1 Introduction

As mentioned in the design overview in chapter 4), the design of the QoS framework for

Parlay is divided into three distinct parts. This chapter presents the final part of the QoS

framework design, the Interaction Model. The Interaction Model defines:

• How entities in the QoS framework may interact with each other, and

• How entities in the QoS framework may interact with external entities, like applications

and the CSM.

These definitions provide the reader with a practical understanding of how the QoS frame-

work presented in this report operates. The design requirements for the interaction model

are described in the following section (7.2). The design of the interaction model is presented

in section 7.3, followed by an analysis of the design in section 7.4.

7.2 Design Requirements

The QoS framework must interact with applications as well as the CSM, defined in section

1.1.3, to perform the following functions, illustrated in figure 7.1:

• Initiation: The application must initially request to use QoS services from the QoS

framework;
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Figure 7.1: The four user interaction mechanisms that are addressed in the information

model.

• Discovery: The QoS framework must inform the application about the Service Quality

Features (SQFs) of the particular Parlay service for which QoS services are required;

• Negotiation: The QoS framework must support the entire QoS cycle, through the

inform, negotiate, establish, operate and release phases; and

• Reporting: The QoS framework must interact with the CSM to provide reports to

applications regarding the QoS actually achieved by the networks.

The interaction model for the QoS framework focuses on defining unambiguously how entities

interact to fulfill these above-mentioned functions.

7.3 Design

For each of the required interaction functions defined in the previous section, the design of

the interaction model must provide a high-level description of interactions between entities

in the system.

In each of the following sub-sections one interaction function, from the four defined in section

7.2, is described at a high-level using message sequence charts (MSCs) [32] to illustrate the

high-level interactions between entities in the system while performing the specific function.

Only the set of interactions that occur in the normal flow of events is shown in the MSCs.



7.3 Design 55

Figure 7.2: MSC showing how an application requests a QoS service from the QoS frame-

work.

7.3.1 Initiation: Request QoS Service

The Initiation interaction function is the initial interaction of an application with the QoS

framework, where an application requests QoS services for a particular type of Parlay service.

For example, an application may request QoS services for a multi-media call in the underlying

network.

The interactions of the application with the QoS framework to request QoS are illustrated

in figure 7.2. An application must request QoS services from the QoS framework by first

interacting with the QoS framework’s service manager – the Connectivity Manager. The

application requests the Connectivity Manager to create a new QoS Session object. The

session ID of the Parlay service for which QoS services are required is included in this

request. The Connectivity Manager creates a new QoS session object, if the session ID

provided is valid, and returns a reference to the QoS session object to the application. The

QoS session object represents the QoS session for the connection service in the underlying

networks. All interactions relating to that particular QoS session are thereafter performed

using the QoS session object.

7.3.2 Discovery: Request SQF Menu

Once an application has a reference to a QoS session object, it may request the SQF menu

of the Parlay service to which it applies. For example, the SQF menu of a multi-media call

service may have audio and video qualities available. The application can then request the

required service quality for each SQF, in the negotiation phase, discussed in section 7.3.3.

The interactions of the application with the QoS framework to request SQFs are illustrated

in figure 7.3. An application must request the SQFs of a particular Parlay connection service

from the QoS session object, since it (the QoS session object) represents the QoS session.

The QoS session object determines the SQFs of the Parlay connection service to which it is
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Figure 7.3: MSC showing how an application requests an SQF menu from a QoS session

object.

applied, and returns the SQFs of the Parlay service to the application.

7.3.3 Negotiation: Support Entire QoS Cycle

The QoS framework must support the entire QoS cycle, adapted from [31]. Six phases of

the QoS cycle are identified in figure 7.4, namely:

1. The inform phase

2. The negotiate phase

3. The establish phase

4. The operate phase

5. The re-negotiate phase

6. The release phase

The sequence of interactions in each phase of the QoS cycle is described in the following

sub-sections, and illustrated in figure 7.4. A brief overview of the terminology used in the

diagram follows.

Once an application discovers the SQFs that apply to the Parlay connection service, it may

request a required service quality level for each SQF. For simplicity, the required service

quality levels for all the SQFs are collectively called the ‘required QoS ’ (QoSRequired in

figure 7.4). The QoS framework must present the required QoS to the CSM.

The CSM then interacts with the various involved underlying networks, which collectively

offer a specific service quality level for the connection service to the application – this is

known as the ‘offered QoS ’ (QoSOffered in figure 7.4). If the application accepts the offered

QoS, the agreed level of service quality is called ‘agreed QoS ’ (QoSAgreed in figure 7.4).
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Figure 7.4: Interactions occurring during the QoS cycle.
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Inform phase

To start the negotiation process, an application must first request the required QoS from

the QoS session object. The QoS session object converts the QoS request from SQF form

to generic QoS parameter form. The QoS session object forwards the application’s request

to the CSM. The CSM converts the QoS request from generic QoS form to network-specific

QoS form. The CSM forwards the application’s request to the various networks involved.

Negotiate phase

The various networks involved forward their offered QoS to the CSM. The CSM converts the

QoS offered from network-specific QoS form to generic QoS form. The CSM forwards the

QoS offered by the networks to the QoS session object. The QoS session object converts the

QoS offered from the generic QoS form to the SQF form. The QoS session object forwards

the QoS offered by the networks to the application. The application decides to accept the

QoS offered, and forwards a message to the QoS session object to indicate acceptance of the

QoS offer. The QoS session object forwards the acceptance message to the CSM.

Establish phase

The CSM interacts with the various networks involved to setup the required QoS service in

the underlying networks. This typically involves the reservation of resources in the underly-

ing networks for the connection. The various networks involved confirm the establishment

of the QoS service to the CSM. The CSM forwards the confirmation message to the QoS

session object. The QoS session object forwards the confirmation message to the application.

Operate phase

In this phase, the QoS service is operating in the underlying networks, and there are no

interactions between the entities.

Re-negotiate phase

One or more networks involved in the QoS service inform the CSM that the previously

agreed upon QoS can no longer be supported. The new QoS offered is also forwarded to

the CSM. The CSM converts the QoS offered from network-specific QoS form to generic

QoS form. The CSM forwards the QoS offered by the networks to the QoS session object.

The QoS session object converts the QoS offered from the generic QoS form to the SQF
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form. The QoS session object forwards the QoS offered by the networks to the application.

The application decides to accept the QoS offered, and forwards a message to the QoS

session object to indicate acceptance of the QoS offer. The QoS session object forwards the

acceptance message to the CSM. The establish and operate phases follow once more.

Release phase

The application requests a release of the QoS connection from the QoS session object. The

QoS session object forwards the release request to the CSM. The CSM interacts with the

various networks involved to release the connection. The networks can then release the

resources that were reserved for the QoS connection.

7.3.4 Reporting: Report Achieved QoS

During the operate phase of the QoS cycle or shortly after the release phase, the application

may request a report of the actual achieved QoS in the underlying networks, if this request

is supported in the underlying network. The typical interactions between entities in this

scenario are illustrated in figure 7.5, and described in the following paragraph.

The application puts a request forward to the QoS session object for reports. The QoS

session object forwards this request to the CSM. The CSM forwards the request to the

various networks involved in the QoS service. If the request is supported in the network, the

network indicates the actual achieved QoS to the CSM in the network-specific QoS form.

The CSM converts the QoS achieved from network-specific QoS form to generic QoS form.

The CSM forwards the QoS achieved by the networks to the QoS session object. The QoS

session object converts the QoS achieved from the generic QoS form to the SQF form. The

QoS session object forwards the QoS achieved by the networks to the application.

7.4 Analysis

The design of the Interaction Model for the QoS framework defines on a high-level how

the various entities in the QoS framework interact with each other as well as with external

entities, namely the applications and the CSM.

The interaction model supports the entire QoS cycle through the inform, negotiate, estab-

lish, operate, re-negotiate and release phases. It also supports the various other required

functions.
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Figure 7.5: MSC showing how an application requests and receives reports from a QoS

session object.
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7.5 Conclusion

One part of the design of Parlay’s QoS framework is presented in this chapter – the Inter-

action Model. The design of the Interaction Model defines on a high-level how entities that

compose the QoS framework interact with each other as well as with external entities.

The Message Sequence Charts (MSCs) are useful in defining the required functions or meth-

ods of each entity (performed in the next chapter – in the UML Specification).

The interactions of the CSM with the various underlying network technologies identified in

this chapter may be useful in designing the QoS-related aspects of the CSM, but is outside

the scope of this work.

Chapter 5 defines the objects that compose the QoS framework. The previous chapter (6)

defines the information model for the QoS framework, which describes what information is

required by the objects. The third and last part of the design, presented in this chapter,

defines the interaction model for the QoS framework, which describes how the objects inter-

act with each other. The following chapter (8) presents a formal, technology-independent

specification of all three parts of the design using the Unified Modelling Language (UML).
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Chapter 8

UML Specification of the QoS

Framework

8.1 Introduction

This chapter presents a formal, technology-independent specification of Parlay’s QoS frame-

work for connection services. The UML specification is composed using all three parts of

the design presented in the preceding three chapters. To provide a technology-independent

specification of the QoS framework, the Unified Modelling Language (UML) [10] is used.

The requirements of the UML specifications are described in the following section (8.2).

Section 8.3 presents the relationships between the different parts of the UML specification

and the three design models presented in the preceding three chapters. Parlay’s UML

methodologies are summarised in section 8.4, followed by the various parts of the UML

specification of the QoS framework in sections 8.5, 8.6, 8.7 and 8.8.

8.2 Requirements of UML Specifications

The requirements of the QoS framework’s UML specification are inferred from various Parlay

UML specifications [11] [3] [4]. The Parlay API specifications are generally structured with

the following components:

• The Sequence diagrams give the reader a practical idea of how each of the service

capability features is implemented.

• The Class relationships clause show how each of the interfaces applicable to the SCF
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Figure 8.1: Illustration of the relationship between the three models that make up the design

and the UML specification.

relate to one another.

• The Interface specification clause describes in detail each of the interfaces shown within

the Class diagram part.

• The Data Definitions clause show a detailed expansion of each of the data types

associated with the methods within the classes. Note that some data types are used in

other methods and classes and are therefore defined within the Common Data types

part of the Parlay specifications [26].

The interaction model, presented in chapter 7, provides many sequence diagrams in the form

of Message Sequence Charts that give the reader a practical idea of how the QoS framework

is used. Sequence diagrams are therefore not presented again in this chapter as part of the

UML specification.

The remaining three components mentioned above are presented in sections 8.6 to 8.8 and

represent the UML specification of Parlay’s QoS framework.

8.3 Relation of UML to Design Models

As mentioned in the design overview in chapter 4, the design of the QoS framework for

Parlay is divided into three distinct parts, namely the:

1. Object Model

2. Information Model

3. Interaction Model
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The relationships between these three design components and the various parts of the UML

specification presented in this chapter are illustrated in figure 8.1. The object model is used

to define the entities or classes that make up the QoS framework and certain relationships

between the classes. These classes are used as the framework for the interface specification.

The methods of each interface in the interface specification are defined by analysing the

Message Sequence Charts (MSCs) in the interaction model. The parameters of each method

are defined using the specifications in the information model.

8.4 Parlay’s UML Methodologies

The QoS framework is intended to be an extension of the Parlay API and must therefore

follow Parlay’s UML methodologies. Various applicable Parlay UML methodologies are

presented in the following sub-sections, and are followed by the UML specification of the

QoS framework in section 8.5.

8.4.1 Tools and Languages

The Unified Modelling Language (UML) [10] is used as the means to specify class diagrams

in the Parlay API.

8.4.2 Colours

For clarity, class diagrams follow a certain colour scheme: blue for application interface

packages and yellow for all the others.

8.4.3 Naming Scheme

The three primary Parlay API naming scheme conventions used in this report are sum-

marised in table 8.1. A complete description of the Parlay API naming scheme convention

is presented in [4]. Note that spaces within names are not allowed.

8.4.4 Exception Handling and Passing Results

Parlay methods communicate errors in the form of exceptions. Parlay methods themselves

generally use the return parameter to pass results. If no results are to be returned a void is
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Table 8.1: Naming scheme used in Parlay documentation [4].

Type Comment Example

Classes, struc-

tures and types

Start with

Tp TpCapitalizedWithInternalWordsAlsoCapitalized

Interfaces Start with

Ip IpThisIsAnInterface

Methods —

firstWordLowerCaseButInternalWordsCapitalized()

used instead of the return parameter. To support mapping to as many languages as possible,

no method out parameters are allowed.

8.4.5 References

In the interface specification whenever Interface parameters are to be passed as an in param-

eter, they are done so by reference, and the ‘Ref’ suffix is appended to their corresponding

type (e.g. IpAnInterfaceRef anInterface), a reference can also be viewed as a logical indirec-

tion.

Original type IN parameter declaration

IpInterface parm : IN IpInterfaceRef

8.5 Overview of UML Specification of Parlay’s QoS Frame-

work

A formal, technology-independent specification of the QoS framework is presented in this

section using UML. Parlay’s UML methodologies, which are summarised in section 8.4, are

followed in this UML specification. Note that sequence diagrams for the QoS framework

which give the reader a practical idea of how the QoS framework is used are presented in

chapter 7.

The following three sections present the remaining parts of the QoS frameworks’s UML

specification.
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Figure 8.2: High-level relationships between classes in the QoS framework.

8.6 QoS Framework Class Relationships

This section presents at a high-level the interfaces that make up the QoS framework, as well

as the relationships between the various interfaces.

The QoS framework consists of two packages, one for interfaces on the application side in

the Application Server, and one for interfaces on the server side in the Parlay Gateway.

The class diagram in figure 8.2 shows the interfaces that make up the QoS framework.

Communication between these packages is indicated with the UML

<<uses>>

association. For example, The IpQoSSession interface uses the IpAppQoSSession by means

of calling its callback methods.

The interfaces of the server side package are illustrated at the bottom of figure 8.2. All

services in the Parlay API extend the IpService interface [26]. The connectivity manager

(IpConnectivityManager) and QoS session (IpQoSSession) interfaces are services in the Par-

lay API and therefore also inherit from the IpService interface. Note that the connectivity

manager interface is an existing interface that has been extended to support the QoS frame-

work, as discussed in section 5.4.

The connectivity manager interface is the entry point to all QoS framework services. From

this interface a reference to a QoS session can be retrieved. The reference to a QoS session

can then be used to access the various QoS framework services provided.
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Figure 8.3: The extensions to the IpConnectivityManager interface.

The interfaces of the application side package are illustrated at the top of figure 8.2. All

callback interfaces in the Parlay API inherit from the IpInterface interface [26]. The connec-

tivity manager callback interface (IpAppConnectivityManager) and the QoS session callback

interface (IpAppQoSSession) therefore extend the IpInterface interface. These callback in-

terfaces are used by their corresponding server side services for communications (reports,

results, and errors) with the application side.

Each interface is examined in more detail in the following section.

8.7 QoS Framework Interface Classes

This section describes in more detail each interface described in the previous section. The

interfaces, methods and parameters of the QoS framework API are specified using UML. The

interface specification format defined in section 7 of [3] is followed. Note that the IpService

and IpInterface interfaces are defined in [3] and are therefore not repeated in this section.

The definition of method parameters are presented in section 8.8.

8.7.1 Interface IpConnectivityManager

The connectivity manager interface has been extended to support the QoS framework. Only

the extensions to the connectivity manager relating to the QoS framework and not the com-

plete specification are presented in this section. The existing specification of the connectivity

manager can however be found in [3].

The connectivity manager interface, illustrated in figure 8.3, is the entry point to the QoS

framework. After an application is authenticated and authorised by the Parlay Framework

[38], the client application discovers the Connectivity Manager interface, then the operator

can use this interface to step through the process of using the QoS framework.

Only one method is added to this interface: createQoSSession(). This method is used by

applications to get a reference to a new QoS session object.
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Figure 8.4: The IpQoSSession interface.

Method createQoSSession()

An application uses this method to request the connectivity manager to create a new QoS

session object. A reference to the new QoS session object is then returned to the application.

Parameters

No parameters are defined for this method.

Returns

IpQoSSessionRef

A reference to a new QoS session object of type IpQoSSession.

8.7.2 Interface IpQoSSession

The QoS session interface (IpQoSSession) illustrated in figure 8.4 represents all the QoS-

related aspects for a particular connection service in the underlying networks. After an

application obtains a reference to a QoS session object using the connectivity manager

interface, the QoS session object can be used to control various QoS-related aspects of a

connection service in the underlying networks. The methods of this interface are described

in the following sub-sections.

Method getSQFMenu()

An application uses this method to get an SQF menu for the particular connection service

in Parlay with which the QoS session is associated.

Parameters

No parameters are defined for this method.

Returns
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TpSQFs

An SQF menu for the connection service with which the QoS session is associated describing

which SQFs are supported.

Method setSQFLevelReq()

An application uses this method to initially request SQF levels for a connection service.

Parameters

qoSClass

Describes the traffic class of the connection service.

minSQFLevelsRequired

The minimum SQF levels required by the application for the connection service.

Returns

Void.

Method establishReq()

An application uses this method to establish SQF levels for a connection service after re-

ceiving receiving a positive response from the setSQFLevelReq() call (setSQFLevelRes).

Parameters

sQFLevelsRequired

The SQF levels requested by the application for the connection service.

Returns

Void.

Method adjustSQFLevelReq()

An application uses this method to adjust SQF levels for a connection service after SQF

levels are already established using the establishReq() method.

Parameters

sQFLevelsRequired

The new SQF levels requested by the application for the connection service.
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Returns

Void.

Method releaseServiceReq()

An application uses this method to release QoS services for the connection with which it is

associated.

Parameters

No parameters are defined for this method.

Returns

Void.

Method enableReportsReq()

An application uses this method to enable reports from the underlying networks regarding

the achieved QoS levels for a connection service.

Parameters

periodicityOfReports

The frequency with which reports are generated in the network in seconds.

Returns

Void.

Method disableReports()

An application uses this method to disable reports from the underlying networks regarding

the QoS levels for a connection service.

Parameters

No parameters are defined for this method.

Returns
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Figure 8.5: The existing IpAppConnectivityManager interface has no additional methods

added.

Figure 8.6: The IpAppQoSSession interface.

Void.

8.7.3 Interface IpAppConnectivityManager

The connectivity manager callback interface has, like the connectivity manager interface,

been extended to support the QoS framework. The existing specification of the connectivity

manager can be found in [3].

The connectivity manager callback interface, illustrated in figure 8.5, has no additional

methods added for the QoS framework.

8.7.4 Interface IpAppQoSSession

The QoS session callback interface (IpAppQoSSession) illustrated in figure 8.6 is used by

the QoS session for communications to the application side. After an application obtains a

reference to a QoS session object using the connectivity manager interface, a QoS session

callback interface must be created on the application side and registered with the QoS

session object. The QoS session object then uses the callback interface to send reports,

results and errors to the application. The methods of this interface are described in the

following sub-sections.
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Method setSQFLevelRes()

A QoS session object uses this method to respond to the asynchronous setSQFLevelReq()

method call. It indicates that QoS is supported by the underlying networks and the maxi-

mum SQF levels that can be provided.

Parameters

maxSQFLevelsOffered

The maximum SQF levels offered by the underlying networks.

Parameters

reportsSupported

A boolean variable indicating whether reports are supported in the underlying networks.

Returns

Void.

Method setSQFLevelErr()

A QoS session object uses this method to respond to the asynchronous setSQFLevelReq()

method call. It indicates that an error occurred during the asynchronous task.

Parameters

No parameters are defined for this method.

Returns

Void.

Method establishRes()

A QoS session object uses this method to respond to the asynchronous establishReq()

method call. It indicates that the asynchronous request was successful.

Parameters

sQFLevelsSet

The SQF levels actually set for the connection service in the underlying networks.

Returns

Void.
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Method establishErr()

A QoS session object uses this method to respond to the asynchronous establishReq()

method call. It indicates that an error occurred during the asynchronous task.

Parameters

No parameters are defined for this method.

Returns

Void.

Method adjustSQFLevelRes()

A QoS session object uses this method to respond to the asynchronous adjustSQFLevelReq()

method call. It indicates that the asynchronous request was successful.

Parameters

sQFLevelsSet

The new SQF levels actually set for the connection service in the underlying networks.

Returns

Void.

Method adjustSQFLevelErr()

A QoS session object uses this method to respond to the asynchronous adjustSQFLevelReq()

method call. It indicates that an error occurred during the asynchronous task.

Parameters

No parameters are defined for this method.

Returns

Void.
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Method sQFLevelAdjusted()

A QoS session object uses this method to indicate to the application that SQF levels were

adjusted by the underlying networks (without the application requesting an adjustment).

Parameters

sQFLevelsSet

The SQF levels actually set for the connection service in the underlying networks.

Returns

Void.

Method releaseServiceRes()

A QoS session object uses this method to respond to the asynchronous releaseServiceReq()

method call. It indicates that the asynchronous request was successful.

Parameters

No parameters are defined for this method.

Returns

Void.

Method releaseServiceErr()

A QoS session object uses this method to respond to the asynchronous releaseServiceReq()

method call. It indicates that an error occurred during the asynchronous task.

Parameters

No parameters are defined for this method.

Returns

Void.
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Method serviceReleased()

A QoS session object uses this method to indicate that the connection service has been

released without the application requesting release of the service.

Parameters

No parameters are defined for this method.

Returns

Void.

Method enableReportsRes()

A QoS session object uses this method to respond to the asynchronous enableReportsReq()

method call. It indicates that the asynchronous request was successful.

Parameters

No parameters are defined for this method.

Returns

Void.

Method enableReportsErr()

A QoS session object uses this method to respond to the asynchronous enableReportsReq()

method call. It indicates that an error occurred during the asynchronous task.

Parameters

No parameters are defined for this method.

Returns

Void.
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Method sQFReport()

A QoS session object uses this method to report the achieved SQF levels for a connection

service in the underlying networks.

Parameters

sQFLevelsAchieved

The measures SQF levels for the connection service in the underlying networks.

Returns

Void.

8.8 QoS Framework Data Definitions

The data type definitions for the QoS framework are presented in this section. These data

types are used in the methods of the various interfaces of the QoS framework presented in

the interface specification in section 8.7.

Note that the data type definitions for the following data types are defined in the Parlay

specifications [26], and are therefore not repeated in this section.

• TpSessionID

• TpInt32

• TpDataSessionQoSClass – discussed in section 3.4.2

• TpBoolean

Only two additional data types are specified in the QoS framework, namely:

• TpSQF: which represents a single Service Quality Feature (SQF); and

• TpSQFs: which represents a group of SQFs composed of type TpSQF.

These data types are summarised in the following sub-sections.



8.9 Conclusion 77

Table 8.2: The definition of the TpSQF data type.

Sequence element name Sequence element type Description

Name TpString The name of the SQF

Description TpString A description of the SQF

Tag TpBoolean A tag representing whether the SQF

is available or not

SQFLevel TpDouble The numeric level of the SQF

Table 8.3: The definition of the TpSQFs data type.

Sequence element name Sequence element type Description

AudioSQF TpSQF Represents the audio quality of a

connection service

VideoSQF TpSQF Represents the video quality of a con-

nection service

ResponseTimeSQF TpSQF Represents the response-time of a

connection service

ThroughputSQF TpSQF Represents the throughput of a con-

nection service

8.8.1 TpSQF

Defines a sequence of data elements [26] that represent a single Service Quality Feature

(SQF). The TpSQF data type is summarised in table 8.2.

8.8.2 TpSQFs

Defines a sequence of TpSQF data types that represent a collection of Service Quality

Features (SQFs). The TpSQFs data type is summarised in table 8.3.

8.9 Conclusion

This chapter presents a formal, technology-independent specification of Parlay’s QoS frame-

work for connection services. The specification is composed using the three parts of the

design presented in the preceding three chapters. UML is used to provide the technology-

independent specification.

The UML specification presented in this chapter summarises the design of the QoS frame-

work presented in this report.



8.9 Conclusion 78

One aspect not addressed in this UML specification is the inclusion of exceptions [39] thrown

by an object providing a service. This must be addressed in future work to render the UML

specification complete.

The following chapter (9) presents a technology-dependent simulation of the design and

UML specification to prove their validity.
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Chapter 9

Software Simulation of QoS

Framework

9.1 Introduction

This chapter presents the proof of concept or simulation of the design of Parlay’s QoS

framework presented in this report.

The simulation is a multi-threaded [12], distributed CORBA [13] application implemented

in JAVA [14] (Java SDK version 1.5).

The objectives of the simulation are summarised in the following section (9.2). Section

9.3 presents the design of the simulation, followed by the implementation details of the

simulation in section 9.4.

9.2 Objectives of Simulation

The primary goals of the simulation presented in this chapter are to prove that the design

of the QoS framework and its UML specification presented in this report are:

• Complete: the interfaces, methods and parameters defined in the UML specification

are sufficient for all required interactions;

• Realistic: It is possible to implement the QoS framework;

• Compatible: The UML specification is compatible with standard Parlay implementa-

tion technologies like JAVA and CORBA; and
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Figure 9.1: An overview of the QoS framework simulation design.

• Scalable: The QoS framework is decoupled from any particular connection service, and

therefore may be used for current and future connection services.

The design of a simulation that proves these goals is presented in the following section.

9.3 Simulation Design

An overview of the QoS framework simulation design is illustrated in figure 9.1. Additional

interfaces have been added to the core UML specification presented in chapter 8 to simulate

the QoS framework. Note that only the core UML specification components have been

shaded in the diagram.

The additional interfaces added for simulation purposes are:
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Figure 9.2: CSM interface used for the simulation.

Figure 9.3: CSM callback interface used for the simulation.

• An application – ApplicationXYZ;

• The Parlay framework – IpParlayFramework;

• Communication Session Manager – IpCommunicationSessionManager (CSM); and

• Communication Session Manager callback interface – IpParlayCommunicationSession-

Manager.

The application is used to simulate a user of the QoS framework. The Parlay framework

interface is used to simulate certain features of the QoS framework, and is not a complete

implementation of the Parlay framework [38]. The CSM interface illustrated in figure 9.2 is

used to simulate an interface to networks. The CSM callback interface illustrated in figure

9.3 provides a simulated communication interface for the CSM with the Parlay Gateway.

The simulation design is composed of three separate components or applications running

independently in separate processing spaces and separate threads [12], namely:

• An application component: simulating the application domain;

• A Parlay Gateway component: simulating the Parlay domain, including the QoS

framework; and
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• A CSM component: simulating the CSM domain.

Each component runs on its own dedicated server in its own memory space, possibly on

separate computers. All interactions between these components are therefore performed

using CORBA [13], which allows for seamless remote method and process invocation –

this allows objects in different components to ‘call’ each other as if they are in the same

component. The implementation details of the QoS framework simulation are described in

the following section.

9.4 Implementation Details

The implementation details of the QoS framework simulation are described in the following

sub-sections.

9.4.1 Hardware Details

The entire simulation was run on a single laptop with the following specifications:

• Make: Dell Inspiron 8600.

• Processor: Intel Pentium M processor 1600 MHz.

• RAM: 512MB.

• Hard drive: 40 Gigs

• Operating system: Microsoft Windows XP, Home Edition, Version 2002, Service Pack

2.

No additional hardware was required for the simulation.

9.4.2 Tools Used for Simulation

The simulation was developed using an open source, platform-independent Integrated De-

velopment Enviroment (IDE) called Eclipse (version 3.2.0) [40]. In addition, a plug-in for

Eclipse called MemClipse (version 0.6.0) [41] was used for editing the CORBA IDL files [42]

within the Eclipse environment. CORBA’s Naming Service [43] is also used in the simulation

to allow objects to ‘find’ other objects in different components.
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9.4.3 Setting Up the Environment

The prerequisites for compiling and running the simulation are:

• A JAVA compiler: to compile the source code;

• A CORBA module: to allow remote method invocation;

• An IDL-to-JAVA compiler: to generate JAVA stubs from IDL files; and

• A CORBA naming service: to allow objects to ‘find’ other CORBA objects.

All these modules are bundled with the JAVA SDK 1.5. To install the JAVA SDK, simply

copy the downloaded folder to any location on the computer, and then set the PATH envi-

ronment variable to the location of the bin folder, which is located in the first level of the

downloaded folder.

9.4.4 Compilation Details

All interfaces that must be accessed remotely, from a different component or application,

must be defined as CORBA objects. To define an object as a CORBA object, an IDL file

must be written to specify the interface in a language-independent way. An IDL-to-JAVA

compiler is then run on the IDL file, the result of which is a JAVA stub for the interface.

This JAVA stub can then be used by a client application to access the object remotely.

All the QoS framework IDL definitions may be found together with the source code in [15].

9.4.5 Running the Simulation

Once the environment is configured as described in section 9.4.3, the simulation of the QoS

framework can be run. All source code for the simulation may be found in [15]. The

instructions for running the simulation presented in this section may be found with the

source code in the

README.txt

file.

Each server uses CORBA’s naming service to get initial references to remote objects, which

means that before the servers are started, the Naming Service must be started.
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To start the naming service and run the various parts of the application, a set of batch files

which contain the required commands must be double-clicked in the Windows environment.

The order in which the batch files are clicked are however very important. The batch files

are all located in the same location:

ParlayQoSFrameworkSimulation\ALL-SOURCE\

As can be seen, there are 6 batch files in this folder, all of which are pre-pended with numbers

0 to 5. The first two, 0 and 1, are used to generate JAVA source code from IDL files and to

compile the JAVA files. These two batch files do not need to be clicked since they are

already compiled.

To start the application, double click the remaining batch files in numerical order:

1. 2-StartNamingService.bat

2. 3-StartCSMServer.bat

3. 4-StartParlayServer.bat

4. 5-StartApplicationServer.bat

A different console window pops up for each of these services (to force a window closed, press

CTRL-C). The application presents a menu, which can be followed to test the operation of

the QoS framework.

9.5 Conclusion

This chapter presents the proof of concept or simulation of the design of Parlay’s QoS

framework presented in this report to validate it. The simulation is a multi-threaded, dis-

tributed CORBA application implemented in JAVA (Java SDK version 1.5) and is based

on the UML specification of the QoS framework described in chapter 8. Details about the

simulation design and implementation are also summarised in this chapter.

The simulation presented in this chapter validates that the design of the QoS framework

presented in this report is complete, realistic, Parlay-compatible and scalable, as defined in

section 9.2.



10.2 Conclusions 85

Chapter 10

Conclusion

10.1 Summary

This report presents the design, specification and simulation of a QoS framework for con-

nection services in Parlay. The QoS framework enables applications to specify QoS levels

for connection services like call and data session control services in Parlay.

The design is divided into 3 parts: the object model (which defines the objects that make

up the QoS framework), the information model (which deals with QoS specification and

associated mapping), and the interaction model (which defines user interaction mechanisms).

The design of each component is presented.

A formal, technology-independent specification of Parlay’s QoS framework for connection

services is presented. The specification is composed using the three parts of the design.

UML is used to provide the technology-independent specification.

A proof of concept of the design of Parlay’s QoS framework presented in this report is

also described to validate the framework. The simulation is a multi-threaded, distributed

CORBA application implemented in JAVA (Java SDK version 1.5) and is based on the UML

specification of the QoS framework described in chapter 8. Details about the simulation

design and implementation are also summarised.

10.2 Conclusions

The QoS framework presented in this report:
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• Supports existing and future connection services in Parlay;

• Provides per-application, per-connection QoS support to applications;

• Follows Parlay’s existing design paradigms; and

• Co-exists with and make use of existing and future Parlay infrastructure.

The simulation presented in the previous chapter also validates that the design of the QoS

framework is:

• Complete: the interfaces, methods and parameters defined in the UML specification

are sufficient for all required interactions;

• Realistic: It is possible to implement the QoS framework;

• Compatible: The UML specification is compatible with standard Parlay implementa-

tion technologies like JAVA and CORBA; and

• Scalable: The QoS framework is decoupled from any particular connection service, and

therefore may be used for current and future connection services.

Parlay guidelines relating to permitted changes to the Parlay API are followed strictly in

the design of the QoS framework, which ensures the backward compatibility of Parlay if the

QoS framework is added to the Parlay API. All Parlay design guidelines are also followed

to allow for the easy integration of the QoS framework into the Parlay API.

10.3 Future Work

The mapping of SQFs to the generic QoS parameters in the information model is not unique,

since the level of the SQFs are not completely objective. The mapping to each GQoS

parameter from the same SQF level could potentially be different for each implementation

of the information model. This mapping process is complex and outside the scope of this

report, but must be further investigated in future work.

The use of the existing generic QoS parameters defined in the Connectivity Manager SCF

avoids redundancy in the information model, building on existing design concepts in the

Parlay API. The feasibility of these parameters must however be verified. In particular,

future work involves verifying whether these parameters are complete and applicable, as

discussed in section [11].

One aspect not addressed in the QoS framework UML specification is the inclusion of ex-

ceptions thrown by an object providing a service. This must be addressed in future work to

render the UML specification complete.
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The performance of the QoS framework design has not at the time of writing been analysed

in terms of factors like memory efficiency and processing speed. A particular performance

issue might be the use of a new object for every session in the object model. If performance is

found to be unsatisfactory in an implementation of the QoS framework, this design approach

might have to be altered to improve system performance.

An effort must be made to integrate the QoS framework into the core Parlay API, to allow

applications to access the various QoS services.
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