A QoS Framework for

Connection Services in Parlay

Yusuf Bata

A research report submitted to the Faculty of Engineering and the Built Environment,
University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for

the degree of Master of Science in Engineering.

Johannesburg, December 2006

Declaration

I declare that this research report is my own, unaided work, except where otherwise ac-
knowledged. It is being submitted for the degree of Master of Science in Engineering to the
University of the Witwatersrand, Johannesburg. It has not been submitted before for any

degree or examination in any other university.

Signed this ___dayof __ 20___

Yusuf Bata.

ii

Abstract

Most applications using network connection services require information to be transferred
within specific constraints (or Quality of Service). Parlay enables applications to access
functionality of underlying networks while preserving network integrity. Connection service
functionality of underlying networks is currently provided to applications by Parlay in the
Call Control and Data Session Control SCFs. Parlay does not however provide access to
the QoS functionality of connection services although this functionality may be provided by
networks. This report presents the design, specification and simulation of a QoS framework
for connection services provided by Parlay. The QoS framework provides applications with
access to the QoS functionality of connection services in the underlying networks. The de-
sign is divided into 3 parts (or models): the object model (defines the objects that make up
the QoS framework), the information model (deals with how objects specify QoS and map-
pings between different QoS specifications), and the interaction model (defines how objects
interact). A formal, technology-independent specification of the QoS framework is presented
using UML. The specification is composed using the three parts of the design. A simulation
of the QoS framework presented in this report is also described to validate the framework.
The simulation is a multi-threaded, distributed CORBA application implemented in JAVA
(Java SDK version 1.5) and is based on the UML specification of the QoS framework. Details
about the simulation design and implementation are summarised in this report. The QoS
framework provides per-application, per-connection QoS support for Parlay’s connection ser-
vices, supports existing and future Parlay connection services, follows existing Parlay design
paradigms, and co-exists with and makes use of existing and future Parlay infrastructure.
Parlay guidelines relating to permitted changes are followed strictly in the design of the QoS
framework, which ensures the backward compatibility of Parlay if the QoS framework is
added to the Parlay API. All Parlay design guidelines are also followed to allow for the easy
integration of the QoS framework into the Parlay API. The simulation validates that the
design of the QoS framework is: complete (in terms of specification), realistic, compatible
with a standard Parlay implementation (JAVA and CORBA), and scalable (easy integration

of new connection services).

iii

Acknowledgements

I would like to thank my supervisor, Professor Hu Hanrahan, for his invaluable assistance
and guidance. I would also like to thank Telkom for granting me a bursary for which I am

truly grateful.

This work was performed in the Centre for Telecommunications Access and Services at
the University of the Witwatersrand. The Centre is funded by Telkom SA Limited, Siemens
Telecommunications, Sun Microsystems and the Department of Trade and Industry’s THRIP

programme. Their financial support is much appreciated.

Thank you to my parents and family for their never ending support, to my pillar of strength,

my loving wife, and to my newborn baby boy who brings unimaginable joy to my life.

Most importantly, all praises and thanks are due only to the Lord of all creation, without

whom nothing could ever be.

CONTENTS iv

Contents
[Declarationl i
[Abstractl ii
|Acknowledgements| iii
[Contents iv
|List of Figures| xi
[Cist_of Tables| xiv
1 Introduction| 1
I1.1 Background| 1
L1, Connection Services| e 1
[L.1.2° Quality of Service (QoS)|. 2
[1.1.3 Parlay Overview|] 2
1.2 Problem Specification| oo 4
[1.3 Scope of this Report| 5

CONTENTS v
[2___Connection Services| 8
2.1 Introductionl. L 8
22 What is a Connection Service?l 8
2.3 Entities that Make Up a System that Provides Connection Services|. 10
2.4 Using Connection Services|« . o v v v v vt v e 10
2.5 Requirements from Connection Services| 10
2.6 QoS Components| e e e e 11
[2.6.1 QoS Specification|. Lo Lo 12

2.6.2 QoS Mechanisms| o o 14

2.7 Conclusion] 15

I3 An Analysis of Parlay| 16
B.1 Introductionl. 16
3.2 Connection Services in Parlay| L L. 16
3.3 Emtitiesin Parlay| 18
3.4 Existing QoS Aspects in Parlay| 19
[3.4.1 Enterprise QoS Support (for Virtual Private Networks)[. 19

13.4.2 Definition of QoS Traffic Classes| 19

3.5 Changes Permitted to the Parlay API} 21
13.5.1 Changes Permitted to the Parlay Gateway Side| 21

3.5.2 Changes Permitted to the Application Side| 21

13.5.3 Changes Permitted to Data Types| 22

CONTENTS vi
8.6 Conclusionl 22

4 Design Requirements and Approach| 23
A1 Totroductionl. 23
4.2 System Analysis|o 23
4.3 Design Requirements| o o 25
4.4 Design Overview| e 26
4.5 Analysis of QoS Framework Design| 0000 27
4.6 Summary of Design Influences|., 28
4.6.1 The Quartz Architecture] 28

[4.6.2 TINA Service Quality Features (SQFs)| 29

4.6.3 QoS Cycles| 30

4.6.4 The EQoS Framework| 30

47 Conclusionl 30

[5 Design of the Object Model| 32
BI TIntroductionl. 32
5.2 Design Requirements|, 32
.3 Parlay’s Design Paradigms|. 0000, 33
b.3.1 Parlay’s Object-Oriented Paradigm|. 34

b.3.2 The Service Manager Concept| 35

5.3.3 The Session Model Concept| 35

b.3.4 Callback Interfaces 36

CONTENTS vii
9.4 Design of the Object Model| 38
b.4.1 A Service Manager for the QoS Framework| 38

b.4.2 A Session Model for the QoS Frameworkl. 39

b.4.3 Callback Interfaces for the QoS Framework| 40

9.5 Example: Using the Object Modell 40
5.6 Analysis of the Object Model 41
b7 Conclusionl 42

6 Design of the Information Model| 43
6.1 TIntroductionl. 43
6.2 Specification of the T'ype of Trathc, 43
6.2.1 Design Requirements|. 44

6 Design| 44

§ Analysis| Lo 44

6.3 Specification of QoS Levels| oo 44
6.3.1 Design Requirements|. 45

6 Design| L 46

6.3.3 Analysis| 51

6.4 Conclusionl 51

|7 Design of the Interaction Modell 53
[[1 Tntroductionl. 53
7.2 Design Requirements| L. 53

CONTENTS viii

7.3 Design| 54
[7.3.1 Initiation: Request QoS Service|. oL 55
[7.3.2 Discovery: Request SQF Menul 55
[7.3.3 Negotiation: Support Entire QoS Cycle| 56
7.3.4 Reporting: Report Achieved QoS|. 59

7.4 Analysis| 59

(5 Conclusionl 61

I8 UML Specification of the QoS Framework| 62

8.1 TIntroductionl. 62

8.2 Requirements of UML Specifications| 62

8.3 Relation of UML to Design Models| 63

8.4 Parlay’s UML Methodologies| 64
8.4.1 Tools and Languages|. 64
BA2 Colowrd 64
8.4.3 Naming Scheme| L o 64
18.4.4 Exception Handling and Passing Results|. 64
845 References. oo 65

8.5 Overview of UML Specification of Parlay’s QoS Framework| 65

8.6 QoS Framework Class Relationships| 66

8.7 QoS Framework Interface Classes| 67

8.7.1 Interface IpConnectivityManager| 67

CONTENTS ix
8.7.2 Intertace IpQoSSession|.o 68

18.7.3 Interface IpAppConnectivityManager|. 71

8.7.4 Intertace IpAppQoSSession| oL 71

8.8 QoS Framework Data Definitions| 76
8.8.1 TpSQE| . . o o 7

BBZ TRSQES . « o« oo oo 77

89 Conclusionl 7

19 Software Simulation of QoS Framework| 79
9.1 Introductionl. 79
9.2 Objectives of Simulation| o oL 79
9.3 Simulation Design|o oo 80
9.4 Implementation Details| o0 . 82
941 Hardware Detaild oo 82

0.42 Tools Used for Simulationl 82

9.4.3 Setting Up the Environment| 83

9.4.4 Compilation Details|00 L. 83

9.4.5 Running the Simulation|, 83

9.5 Conclusionl 84
10 Conclusion| 85
0.1 Summary| e e e e e e e e 85
[10.2 Conclusionsl« . . 85

CONTENTS

88

LIST OF FIGURES xi

List of Figures

I1.1 Video conversation application example| 2
1.2 Anoverview of Parlay,| o 3
1.3 A QoS framework must allow existing and future SCFs to plugin intoit|. . . 4
I1.4 A map of this report illustrating the dependencies between components.| . . . 6
2.1 Entities that make up a system that provides connection services.|. 9

2.2 An overview of all QoS components that must be present in a system in order |

for the system to provide QoS for connection services.| 12
2.3 QoS dimension values.| oL L 13
2.4 Qod mechanisms| Lo Lo 14
3.1 Connection services that will be provided by Parlay.| 17

3.2 Mapping components in the Parlay system to entities defined in section [2.3] . 18|

4.1 High-level system overview illustrating the focus of the design.| 24
4.2 Mapping of QoS components and design principles to Parlay entities.|. 25
4.3 Design overview.| 26
4.4 Division of QoS components into design sections.| 27

4.5 The relationship between the three design components and the UML specifi- |

LIST OF FIGURES xii

4.6 Summary of design influences.|. oL o Lo 29
.1 Required QoS framework object model.| L. 33
5.2 Object-oriented design paradigms in Parlay,| 33
5.3 Object model for call control service.| 34
5.4 The Service Manager Concept in Parlay’s Call Control SCF.|. 35
b5 Session modeld 36
5.6 Callback interfaces in Parlay.| 37
P.7 Qod framework’s object model.|o oo 37
.8 QoS frameworks service manager.|. oL 38
9.9 QoS frameworks Session model.|o o000 o000 39
5.10 QoS frameworks Callback interfaces.| 40
.11 Example illustrating the use of the QoS tramework.|. 40
6.1 Simple mapping example.| L 47
6.2 A two-step mapping process.| i b e e e e e e 47
[6.3 Decomposing services into Service Quality Features (SQFs)|. 49

F T ThoT : i] 0 BRI TR : I
Cmodell . o o o 54

7.4 Interactions occurring during the QoS cycle. 57

LIST OF FIGURES xiii

7.5 MSC showing how an application requests and receives reports from a QoS |

| session object.|. L 60

8.1 Illustration of the relationship between the three models that make up the |

| design and the UML specification.| 63
8.2 High-level relationships between classes in the QoS framework.] 66
8.3 The extensions to the IpConnectivityManager interface.| 67
8.4 The IpQoSSession interface.| L 68

8.5 The existing IpAppConnectivity Manager intertace has no additional methods |

Cadded] oo 71
8.6 The IpAppQoSSession interface L. 71
9.1 An overview of the QoS framework simulation design,| 80
9.2 CSM interface used for the simulation 81

LIST OF TABLES xiv

List of Tables

[2.1 High-level application QoS requirements adapted from [1]. 11|
[3.1 Summary of QoS classes defined in [2]. L. 20)
[6.1 Generic QoS parameters, defined in [3[. o L 48|
[6.2 The four Service Quality Features (SQFs) of the QoS framework| 49
[8.1 Naming scheme used in Parlay documentation [4]. 65|
8.2 The definition of the TpSQF data type] 77
8.3 The definition of the TpSQFs data type. 77

1.1 Background 1

Chapter 1

Introduction

1.1 Background

1.1.1 Connection Services

Many applications require the transport of information between two locations. A video
conversation application, for example, allows two users with the required terminals to have
a conversation in which they can both see and hear each other on their terminals’ screen

and speaker, respectively.

A video conversation example is illustrated in figure In this example, users A and
B are having a video conversation, using terminals A and B, respectively. Terminal A
is connected to network X, while terminal B is connected to network Z. Network X and
network Z are not directly connected to each other, but are connected via a third network
— network Y. The networks together provide a logical connection between terminals A and
B — it appears to applications residing on the terminals that information is passed directly
between the terminals. The information transferred between the terminals via the networks
is the audio and video data representing the video images and audio sounds of the video
conversation. This information flow between terminals, and through the networks, is termed
an information stream (or stream flow [B]). An information stream may be uni- or bi-

directional.

The information transport service provided by the networks in this example is termed a

‘connection service’ in this report, and is further discussed in chapter

1.1 Background 2

Information stream wit

Audio & Video data @
Logical connection 0
Terminal A erm?al B

User A User B

Figure 1.1: Video conversation application example.

1.1.2 Quality of Service (QoS)

To provide an acceptable service level to end-users of an application, applications using a
connection service require the information to be transferred by networks in a specific manner,

with specific constraints.

A video conversation application, for example, requires both

e a large amount of information to be transferred, since video images together with

sound generate a large amount of information, as well as

e a timely transfer of the information due to the requirements of human perception [6].

The level of quality of a connection service—also known as the Quality of Service (QoS)—
therefore depends on how information is transferred by networks. In a video conversation
application, for example, if the networks do not transfer the required amount of information,
or if the networks do not transfer the information in a timely manner, the quality of the

video will degrade (the video may for example freeze or skip frames).

1.1.3 Parlay Overview

Increasingly, connection services will be requested by applications residing inside or outside

the Telco domain using open interfaces.

Parlay is a collection of open network Application Program Interfaces (APIs) that enable

1.1 Background 3

Application Server

Application 1 Application 2 Application N

|
|
|
) e /1 |
:
|
|

Parlay Gateway

Service Capability Server

Parlay Communication

Framework Call control Data .
SCF control SCF session

manager SCF

Figure 1.2: An overview of Parlay.

third party vendors to develop and deploy, with the minimum effort, applications that access

the full functionality of underlying networks while still preserving its integrity.

By abstracting service creation from telecommunication specific details, the development
process of new applications is shortened and the creation pace of new applications can be

increased [7].

The Parlay architecture consists of three main parts, illustrated in figure [I.2}

e the applications: located in Application Servers;
e the Service Capability Features or SCFs: located in Service Capability Servers; and

e the Parlay Framework.

SCFs are abstractions of the underlying network functionality that may be used by appli-
cations. The SCFs and the Framework constitute the Parlay Gateway. Applications may

therefore use network functionality by interacting with the Parlay Gateway [1].

The interactions of the Parlay Gateway with networks is currently not standardised, and
is implementation specific. A research effort is however currently being made [8]. In this
report, all interactions between the Parlay Gateway and the networks are made via a Com-

munication Session Manager (CSM). This provides a single, standardised point of access to

1.2 Problem Specification 4

Parlay Gateway
. Service Capability Server a
Pariay Il Exiatngschs § [Fuwesers
Framework | | Call [Data T4 goe™ 1 gop 1 gop
control || control || i " 0y o 2 II|
|
| QoS framework i

Figure 1.3: A QoS framework must allow existing and future SCF's to plugin into it.

all networks for the Parlay Gateway. The CSM’s control of networks is based on TINA’s
Network Resource Architecture (NRA) [5].

The manner in which the Parlay architecture is used to provide connection services in

particular is further presented in section [3.2]

There are a range of network functionalities which applications can access via Parlay’s many
Service Capability Features (SCF). Network connection service functionalities are however

the focus of this paper, and are currently addressed by two sets of SCF's in Parlay, namely:

e The Call Control SCF: provides functionality to setup, modify and terminate calls in

underlying networks - including multimedia, multiparty calls, and

e The Data Session Control SCF': provides functionality to setup, modify and terminate

data sessions in underlying networks.

It is however envisaged that there will be more Parlay SCFs developed in the future that

will fall into the category of connection services.

Parlay provides adequate mechanisms for applications to control various connection services
via these SCFs. Parlay however has very limited QoS support for these connection services
[9]. Parlay currently provides no mechanisms to provide per-application, per-connection
QoS support for network connection services, although support for controlling connection

services is provided.

1.2 Problem Specification

A QoS framework is a collection of all the QoS-related aspects of a system that enable the
provision of QoS in the system. A QoS framework must have a plugin architecture: it must
provide a generic infrastructure that provides QoS services for existing and future SCFs, as

shown in figure [1.3

1.3 Scope of this Report 5

This report presents a QoS framework for connection services provided by Parlay. The
QoS framework thus enables the provision and control of QoS by Parlay to applications for

connection services like Parlay’s call and data session control services.

The QoS framework must:

e Provide per-application, per-connection QoS support for connection services provided

by Parlay;
e Support existing and future connection services in Parlay;
e Follow Parlay’s existing design paradigms; and

e Co-exist with and make use of existing and future Parlay infrastructure where possible.

1.3 Scope of this Report

This report presents:

e The design of a QoS framework for connection services in Parlay;

e A formal UML [I0] specification of the design, similar to that provided in the Parlay

specifications (see [I1] for an example of such a specification); and

e Details of a proof of concept simulation that has been developed to validate the design

presented in this report.

The required interactions of Parlay with networks is abstracted in the design using the
concept of the Communication Session Manager (CSM), as described in section [1.1.3] The
requirements of the QoS framework between Parlay and networks are therefore also identified
only at a high level in this report. A detailed design of these interactions are not presented

however.

The following items regarding the QoS framework presented in this report must be addressed

in future work:

e The mapping of Service Quality Features (SQFs — defined in section [6.3.2)) to generic

QoS parameters must be further investigated;

e The validity of the generic QoS parameters defined in Parlay and used in the QoS

framework must also be investigated;

e The addition of exceptions to the UML specification must be made;

1.4 Document Overview 6

Connection services

Define Entities for QoS
connection connection components
services services for entities

y 4 y

/

Parlay Parlay Changes to
background entities Parlay API

Parlay
y 4
N4 ; -
System Design Design Design
analysis requirements overview analysis

Design overview

Object Information Interaction
model model model
4 4 L 4
UML Specification
Simulation

Figure 1.4: A map of this report illustrating the dependencies between components.

e Performance issues must be analysed, for the object model in particular; and

e An effort must be made to integrate the QoS framework into the core Parlay API.

The intended readers of this report are particularly individuals interested in QoS or QoS
frameworks, as well as individuals interested in the improvement of the Parlay API. Read-
ers wishing to explore the use of JAVA and CORBA may also benefit from analysing the

simulation of the QoS framework.

1.4 Document Overview

A map of this report is illustrated in figure The figure also identifies certain dependencies
between various chapters in this report. Chapters[2]and [3|are background chapters that allow
the reader to better understand the design presented in chapters [6] and [7]

A formal description of a connection service—generally, and not in the Parlay context—is
presented in chapter 2| as well as a description of how a connection service is generally
used. The entities that make up a system that provides connection services are presented.
The general requirements of applications from connection services are summarised. The

components, termed QoS components in this report, that must be present in a system in

1.4 Document Overview 7

order for the system to be able to provide QoS for connection services are described. The
entity in the system that must implement each QoS component is also identified. This QoS
component concept is used in the design (in chapter [4)) to identify what components the
QoS framework must implement, and what components must be implemented by external

entities (and are therefore out of the scope of the QoS framework).

An analysis of Parlay is made in chapter [3] A brief overview of Parlay is given, describing
the Parlay architecture, how Parlay works, and the many services provided by Parlay. Con-
nection services in Parlay are described further, including an analysis of the role Parlay plays
in the complete system in terms of the entities presented in chapter |2} Existing QoS aspects
in Parlay are presented, since these must be considered in the design of the QoS framework.
The changes permitted to the Parlay API are listed, since these are also considered in the
design the QoS framework to ensure backward compatibility of the Parlay API if the QoS

framework is added to it.

An overview of the design is presented in chapter [d] The design requirements are described,
followed by a summary of the three parts of the design presented in chapters [f [6] and [7]
A formal, technology-independent specification of the complete design composing all three

parts of the design is presented using UML [10] in chapter

Chapter [J] presents the proof of concept or simulation of the design. The details of the
simulation are given, and an analysis of the simulation is made. The simulation, unlike the
UML specification, is technology-specific: it is a multi-threaded [12], distributed CORBA
[13] application implemented in JAVA [14] (Java SDK version 1.5). The source code for the
simulation of the QoS framework may be found in [I5], together with the detailed source
code documentation. An on-line, browsable version of the source code documentation may
be found in [16].

A summary of the work followed by an analysis of the QoS framework, and a summary of

the required future work for the QoS framework is presented in chapter [I0]

The report is intended to be read in a sequential fashion. The three different parts of the
design may however be read in any order. However, readers only interested in the potential
effect of this report on the Parlay API may refer to the UML specification chapter alone.
Also, readers only interested in a reference implementation of a JAVA/CORBA distributed

application may refer to the simulation chapter alone.

2.2 What is a Connection Service? 8

Chapter 2

Connection Services

2.1 Introduction

The QoS framework presented in this report provides QoS support specifically for connection
services in Parlay. To understand the design of the QoS framework, a basic understanding
of connection services in general is therefore required. This chapter thus presents a formal
description of a connection service in general and not in the Parlay context as a basis for

the design presented in this report.

A formal definition of a connection service is presented in the following section . The
entities that make up a system that provides connection service are described in section
The manner in which a connection service is typically used by the various entities is
presented in section [2.4] Section summarises the general requirements of applications

from a connection service.

The various components (termed QoS components in this report) that must be present in a
system (generally and not in the Parlay context) in order for the system to provide QoS are
presented in section [2.6] The entity defined in section that must implement each QoS

component is also identified.

2.2 What is a Connection Service?

The term connection service does not refer to a particular concrete service in this report,
but rather it is used to classify a range of telecom services that have specific common
characteristics. This classification is used in this report to identify the type of services in

Parlay for which the QoS Framework designed in this report aims to provide QoS services.

2.3 Entities that Make Up a System that Provides Connection Services 9

Network operators Provide

and
control
resources

Provide
access to
resources

.‘:
i §

End-users
YOG
resources

Service users

Figure 2.1: Entities that make up a system that provides connection services.

A classification of services is necessary since the QoS Framework designed in this report does
not aim to provide QoS for a particular existing service in Parlay, but rather all current and
future services that have certain characteristics must be supported by the QoS Framework.

These characteristics are captured under the concept of a connection service in this report.

A connection service is defined in this report as:

Any service which transports an information stream between two or more loca-

tions.

The transport of information streams is required by many applications like voice, video and

data applications, as discussed in section [2.5

This broad definition implies that a connection service is not necessarily a service provided
directly by Parlay or has anything to do with Parlay for that matter. However, Parlay
currently provides access to a number of services provided by various networks which may
be classified as connection services and Parlay might provide more services in the future

that fall into this category.

By providing support for connection services in general and not a specific type of service
like the call control service for example, the QoS framework is applicable to a wide range of

current and future services and is therefore more scalable.

2.5 Requirements from Connection Services 10

2.3 Entities that Make Up a System that Provides Con-

nection Services

There are 3 primary entities identified in a system providing a connection service shown in

figure

e Network operators: provide and control the actual connection service resources like

switches, routers and physical links;

e Service providers: provide service users with access to and control of connection ser-

vices and other resources provided by network operators; and

e Service users: control or use connection services using their terminals.

2.4 Using Connection Services

A connection service is typically provided by a group of networks collectively to applications
running on service users’ terminals. A connection service transports information streams

between two or more service users’ terminals.

Terminals may be either:

e A simple terminal device like a telephone or multimedia device, or

e A computing system in which appropriate applications are deployed.
End-users use their terminals for two primary purposes in the context of a connection service:

e Service control: to setup, modify and terminate connection services provided by net-

works, or

e Service usage: to use the application that requires the connection service, like a video

conversation application, for example — see section [I.1.1]

2.5 Requirements from Connection Services

To provide an acceptable service level to end-users of an application, applications using a
connection service require the information to be transferred by networks in a specific manner,

with specific constraints.

2.6 QoS Components 11

Table 2.1: High-level application QoS requirements adapted from [I].

Sensitivity to:
Application Bandwidth Delay Jitter ‘ Loss
Voice call Low High High Medium
Video call High High High Medium
Streaming video High Medium | Medium | Medium
Streaming audio Low Medium | Medium | Medium
Client/server transactions Medium Medium | Low High
E-mail Low Low Low High
File transfer Medium Low Low High

Application requirements for information transferred by a connection service are described

in general using four QoS dimensions or attributes [I], namely:

Bandwidth: the data transmission rate or amount of information in bits per second

that is required to be transmitted through a stream flow;

e Delay: transit time an application experiences for data transferred from the ingress

point to the egress point of the networks;

e Jitter: measure of delay variation between consecutive packets for a given stream flow;

and

e Loss: the percentage of bits lost in the flow per second, which occurs due to errors

introduced in the medium, as well as due to congestion in networks.

Each of these QoS dimensions affect the application’s performance or end-user’s experience

of the service provided [IJ.

The high-level requirements of some common applications for connection services in terms
of the four QoS dimensions are summarised in table Table 2.1 shows that different ap-
plications have different QoS requirements. It is therefore important to provide customised,

per-application QoS support.

2.6 QoS Components

This section identifies the issues that must be addressed by a complete system providing
QoS for connection services. Each issue that must be addressed by the system is termed a

QoS component in this report.

2.6 QoS Components 12

QoS
components

QoS QoS
specification mechanisms
| |
J d 4 J
User

interaction | Provision | - Control | Management

—

QoS ' QoS dimension

dimensions values
|

QoS QoS QoS QoS QoS
required | offered | agreed || achieved | perceived

Figure 2.2: An overview of all QoS components that must be present in a system in order

for the system to provide QoS for connection services.

To provide QoS for connection services in a system a number of QoS components must be

present in the system.

There are two types of QoS components identified in this report:

e QoS specification components: deal with the specification of QoS-related information

in a system, and

e QoS mechanisms: enable the provision of QoS in a system based on the QoS speci-

fication.

These two types of QoS components are developed in the following two subsections, respec-
tively. A summary of all the QoS components presented in the following sub-sections is
illustrated in figure

The concepts upon which the QoS framework designed in this report are built are obtained
from a variety of sources. The primary QoS concept in this design is the QoS component
concept presented in this section, and is adapted from a survey of QoS architectures [17].
Other QoS surveys also used to develop the QoS component concept are [18] [19] [20] [21].
In addition, many QoS framework designs were evaluated [22] [23] [24] [25].

2.6.1 QoS Specification

QoS specification deals with the specification of QoS-related information in a system. QoS

specification is the common language or terminology used in a system to describe QoS.

2.6 QoS Components 13

Network operator

2: QoS 4: QoS
Ay B,
—————

Offel
|
[

QoS

Service user

Figure 2.3: QoS dimension values.

In terms of the Parlay API, QoS specification components are the parameters of methods
that are part of the QoS framework API that describe anything relating to QoS. For example,
these parameters could be used by an application to describe to the QoS framework the level

of QoS it requires.

There are two types of QoS specification components identified in this report, as shown in

figure 2.2}

e QoS dimensions: describe the QoS dimensions of a service (like delay, for example),

and

e QoS dimension values: describe a value or value ranges of a particular QoS dimension

(the delay must be less than 1 millisecond, for example).

QoS dimension values are further classified based on the context in which they are used.

They are typically specified in the following logical sequence, as illustrated in figure

1. QoS required: specified by the service user in step 1 in figure 2:3] indicating the

minimum required level of QoS.

2. QoS offered: specified by the network operator in step 2, indicating the maximum

offered level of QoS in response to the service user request.

3. QoS agreed: minimum level of QoS agreed upon by the service user and network

operator in step 3.

4. QoS achieved: actual level of QoS achieved by the network operator, and reported to

the service user in step 4.

5. QoS perceived: service user’s perception of QoS level, obtained by observing a connec-

tion service in step 5.

2.6 QoS Components 14

Network operator

Provision | Control | Management

User interaction

Service user

Figure 2.4: QoS mechanisms

QoS specification must be made by service users as well as network operators as required. In
addition, if service users interact with network operators via service providers, then service
providers must be aware of QoS specification standards of both service users and network
operators to transfer or translate it between service users and network operators, described
in the following section . QoS specification components are therefore present across

all entities in a system: service users, service providers and network operators.

2.6.2 QoS Mechanisms

QoS mechanisms enable the provision of QoS in a system based on the QoS specification.

Five categories of QoS mechanisms are illustrated in figure and adapted from [I7]:

User interaction mechanisms: permit interactions between a user and provider — re-

quired to support the control and feedback of QoS services;
e Mapping mechanisms: provide translation between different QoS specifications;
e Provision mechanisms: establish QoS services in the networks;
e Control mechanisms: control QoS services in networks based on QoS agreed; and

e Management mechanisms: ensure QoS agreed levels are sustained by networks.

Control and management mechanisms are functionally similar, with the primary difference
being the time-scales over which they operate — management mechanisms operate on a slower

time scale over longer monitoring and control intervals [I7].

Provision, control and management mechanisms must be implemented by network operators.

Only user interaction and mapping mechanisms must be implemented by service providers.

2.7 Conclusion 15

2.7 Conclusion

The ‘connection service’ concept is used in this report to classify the range of Parlay services
which are supported by the QoS Framework designed in this report. A formal description of a
connection service is presented in this chapter, together with a summary of how a connection
service is typically used. The Quality of Service (QoS) requirements from connection services

are outlined in this chapter.

In chapter [entities in the Parlay system are mapped to the entities identified in section
23] The components that must be present in a complete system in order for the system
to provide QoS for connection services are identified in this chapter. These two factors are
used in chapter [to identify what components must be implemented by the QoS framework,
which is just one part of a complete system, in order for the complete system to provide

QoS for connection services.

3.2 Connection Services in Parlay 16

Chapter 3

An Analysis of Parlay

3.1 Introduction

The QoS framework presented in this report is designed to provide QoS support for con-
nection services when a Parlay Gateway is used to allow applications to access network
capabilities. An understanding of Parlay is therefore required to understand the design of
the QoS framework. This chapter provides the reader with the information related to Parlay

necessary to understand the design of the QoS framework presented in this report.

A Dbrief overview of Parlay is given in the introductory chapter (section , describing
how Parlay works and the services provided by Parlay, as well as a description of the Parlay
architecture. Connection services in Parlay are described in the following section An
analysis of the role Parlay plays in the context of the complete system in terms of the entities
presented in section [2.3] is presented in section [3.3] Existing QoS aspects in Parlay are
identified in section since these must be considered in the design of the QoS framework
presented in chapter[d] The permitted and forbidden changes to the Parlay API specification

are summarised in section [3.5]

3.2 Connection Services in Parlay

An overview of the use of connection services in Parlay is illustrated in figure[3:1} Two types

of users are identified in Parlay :

e Service controllers: users that setup and control network services (via applications) or

third party applications, and

o Service users: the actual users of network connection services.

3.2 Connection Services in Parlay 17

Service | o _|
Controllers ’ | |

pplication 1 || Application 2 || Application N

n’:

- E— =
End—user A

Figure 3.1: Connection services that will be provided by Parlay.

Note that a user may be both a service controller and a service user simultaneously, as is
user Z in the figure. Connection services are typically accessed by service controllers in the

following way:

e Service controllers access Parlay applications (typically through the Internet) and make
requests for connection services in the underlying networks (user Z makes a request to

setup a connection between himself and user A in figure [3.1));
e Parlay applications use the Parlay Gateway to indirectly access network functionality;

e The Parlay Gateway uses the CSM to access network functionality and does not di-

rectly interact with networks;

e The CSM provides the actual interactions with underlying networks to fulfill requests

for connection services;

e Connection services are setup by the individual networks between Service users (a
connection is setup between user A and Z by networks 1, 2 and Z in figure [3.1)).

The CSM offers Parlay Gateway SCF's a logical view of connectivity. Network resources at
the Parlay level are end-to-end information streams between terminals. Parlay can setup,
modify and terminate an information stream that is made up of one or more stream flows

using the CSM. Since interactions between Parlay and the networks occur only through the

3.3 Entities in Parlay 18

Parlay components Entities

Service

Controllers Service

—J_|
L

I | provider

Service

Parlay

Network
operators

Figure 3.2: Mapping components in the Parlay system to entities defined in section 2:3]

CSM, the CSM must also provide per-connection QoS support to Parlay, abstracting the
complexities of the networks. The implementation of the CSM is however not in the scope

of the work presented in this report.

3.3 Entities in Parlay

One way to identify which QoS components, defined in section must be implemented
by Parlay is to identify the entities that components in the Parlay system map to.

Figure [3.2] shows the mapping between components of the Parlay system and the entities
defined in section The networks play the role of network operator entities, the Parlay
Gateway plays the role of a service provider, and service controlling users play the role of

service users.

A major difference between the system of components in the Parlay system and the entities
presented in section [2.3] lies in the interactions between service providers and network op-
erators in this report. These interactions are abstracted using the CSM, defined in section
to hide the complexity of the interactions, while in the entity model service providers

and network operators interact directly.

Another major difference between the Parlay model and the entity model presented in section
is the separation of the end-user role into two roles: a service controller and a service
user. This distinction is necessary due to the different ways in which users interact indirectly

with Parlay.

3.4 Existing QoS Aspects in Parlay 19

3.4 Existing QoS Aspects in Parlay

There is at the time of writing limited support for QoS in Parlay. In particular, the following

three QoS features have been identified in the Parlay standards:

e Enterprise QoS support;
e Generic QoS parameters definitions; and

e A data type for Quality of Service classes is defined.

The generic QoS parameters are described in section [6.3.2] The other two existing QoS

features in Parlay are summarised in the following two subsections.

3.4.1 Enterprise QoS Support (for Virtual Private Networks)

As was mentioned before, a limitation in the Parlay API is that there are no methods for
QoS control and management that can be used by external applications. QoS management
has been partly addressed by the Parlay APIs through the introduction of the Connectivity
Manager SCF [4]. This SCF allows an enterprise to enquire about and control aspects of QoS
in a virtual private network provided by the network provider. However, the connectivity
manager SCF was designed with the intention of providing QoS management on an enterprise
scale and not for individual users. The intended user of the connectivity manager SCF is the
enterprise operator administration tool [9]. Therefore, Parlay does not provide any APIs for
a server-centric service application to perform QoS management on behalf of its individual

users [9].

The Connectivity Manager SCF, however, provides an adequate infrastructure for the QoS
framework presented in this report. The Connectivity Manager SCF infrastructure is there-

fore used to build the QoS framework’s object model, as discussed in chapter

3.4.2 Definition of QoS Traffic Classes

The ‘TpDataSessionQosClass’ is a data type specified in Parlay [26]. This data type is
intended for use in a data session or a multi-media call session. The data type defines four

QoS classes, namely:

1. Conversational QoS class,

2. Streaming QoS class,

3.4 Existing QoS Aspects in Parlay

20

Table 3.1: Summary of QoS classes defined in [2].

tion

Traffic class || Conversation Streaming Interactive Background
class class class class
Description || Conversational Streaming Interactive Background
Real-Time Real-Time Best-Effort Best-Effort
Fundamental|| Preserve time | Preserve Request- Destination
characteris- || relation between | time rela- | Response not expecting
tics information enti- | tion between | Pattern, and | data within a
ties of the stream, | information Preserve certain time,
and Conversa- | entities of the | Payload and Pre-
tional Pattern | stream content serve Payload
(Stringent and content
low delay)
Example of || Voice Streaming Web brows- | Background
the applica- video ing download of

e-mails

3. Interactive QoS class, and

4. Background QoS class.

These four QoS classes are defined in the UMTS specifications [2], and are summarised in
table This data type is re-used in the information model, presented in chapter [6] to
describe the class or type of traffic for a particular connection in the QoS framework, and

is further discussed in the remainder of this section.

The main distinguishing factor between these QoS classes is how delay sensitive the traffic
is: Conversational class is meant for traffic which is most delay sensitive while Background

class is the most delay insensitive traffic class [2].

Conversational and Streaming classes are mainly intended to be used to carry real-time
traffic flows. The main distinction between them is the delay sensitivity of the traffic. Con-
versational real-time services, like video telephony, are the most delay sensitive applications
and those data streams should be carried in Conversational class [2]. Streaming services on
the other hand, like streaming video, are less delay sensitive due to various techniques like

buffering for example.

Interactive class and Background are mainly meant to be used by traditional Internet ap-
plications like WWW, Email, Telnet, FTP and News. Due to looser delay requirements,
compare to conversational and streaming classes, both provide better error rate by means
of channel coding and retransmission. The main difference between Interactive and Back-
ground class is that Interactive class is mainly used by interactive applications, e.g. inter-

active Email or interactive Web browsing, while Background class is meant for background

3.5 Changes Permitted to the Parlay API 21

traffic, e.g. background download of Emails or background file downloading. Responsiveness
of the interactive applications is ensured by separating interactive and background appli-
cations. Traffic in the Interactive class has higher priority in scheduling than Background
class traffic, so background applications use transmission resources only when interactive
applications do not need them. This is very important in wireless environment where the

bandwidth is low compared to fixed networks [2].

3.5 Changes Permitted to the Parlay API

The design presented in this report aims to extend the Parlay API specifications to provide
QoS support for connection services in Parlay. To enable backward compatibility in the
Parlay API specifications, only certain types of changes may be made to the Parlay APIs.
Anything beyond these changes is not permitted, as described in [4]. A summary of the
changes that are permitted to the Parlay APIs are presented in the following subsections.
These ‘rules’ are carefully considered in the design of the QoS framework presented in this

report.

3.5.1 Changes Permitted to the Parlay Gateway Side

Only the following changes are permitted on the Parlay Gateway side [4]:

e Addition of a new interface.
e Addition of a new method to an existing or new interface.

e Addition and removal of exceptions if the implementation uses the Application ver-

sioning convention specified in [4].

3.5.2 Changes Permitted to the Application Side

Only the following changes are permitted on the Application side [4]:

e Addition of a new interface.
e Addition of a new method.

e Addition and removal of exceptions if the implementation uses the Application ver-

sioning convention specified in [4].

3.6 Conclusion 22

3.5.3 Changes Permitted to Data Types

Only the following changes are permitted to existing Data types [4]:

e Elements may be added to ‘sequence’ data types. Care should be taken when adding
elements to data types that are sent back to the client: The client may be outdated
and thus not be able to interpret the new element. Only information that has not
been available before, and therefore is not expected by the client, may be transferred
in added elements. Information that has been available before, and therefore possibly

expected by the client, may not be modified in any way.

e Elements may be added to ‘tagged choice of data elements’ data types, which evaluate
to one of a choice of data elements, if they are always sent from client to server:
either within a parameter of a server side method, or within the result of a client side
method. For example, the TpCallError data type currently has 5 possible error types
[26]. More error types may be added to this data type because it is a ‘tagged choice

of data elements’ data type.

3.6 Conclusion

This chapter provides the reader with the information related to Parlay necessary to un-
derstand the design of the QoS framework presented in this report. A review of the Parlay
architecture is presented, as well as various other aspects of Parlay relating to connection
services. In particular, the usage of connection services in Parlay is described, together with

an identification of entities in the Parlay model.

The entities that components in the Parlay system map to are used in section [£.3] to identify
which QoS components must be implemented by each Parlay component. The existing QoS
aspects in Parlay identified in section are used in the design of the QoS framework,
presented in chapters [f] to [} where applicable. The permitted changes to the Parlay API
specification identified in section [3.5] are also considered in the various parts of the design
to ensure backward compatibility of the Parlay API to previous versions of the Parlay API
in the event that the QoS framework is added to the API.

4.2 System Analysis 23

Chapter 4

Design Requirements and Approach

4.1 Introduction

An overview of the design requirements and approach to the design of the QoS framework
for Parlay is presented in this chapter. The design of the QoS framework is divided into

three components or models, as discussed in section

1. The object model, presented in chapter
2. The information model, presented in chapter [f]

3. The interaction model, presented in chapter

This chapter introduces the high-level design of these three components of the design pre-

sented in the following three chapters, as well as how these components fit together.

An analysis of the complete system in which the QoS framework must be designed is pre-
sented in section The requirements of the design are summarised in section followed
by an overview of the QoS framework design in section A summary of the various con-

cepts which influenced the different parts of the design is given in section

A formal specification of the complete design is presented using UML [10] in chapter

4.2 System Analysis

An analysis of the complete system in which the QoS framework must be designed is pre-

sented in this section. This analysis illustrates on a high-level the entities that the QoS

4.2 System Analysis 24

Service
Controllers

B Application 1
Focus Parlay
of QoS framework
design

h

Figure 4.1: High-level system overview illustrating the focus of the design.

framework must interact with to provide QoS services to requesting applications. A high-

level system overview is illustrated in figure

The QoS framework is a component of the Parlay API, and must therefore interact with
certain entities within the Parlay API to support existing and future SCF's, a topic examined
in chapter

The QoS framework must interact directly with two external entities:

e Applications: to obtain QoS requests for Parlay services, and

e The CSM: to fulfil QoS requests received from applications.

The CSM, introduced in section [I.1.3] must interact with the various networks involved in
the requested QoS services. The networks interact with the connected user terminals and

other equipment to fulfill the QoS requests from applications.

The focus in this report is on the interactions between:

e Applications and the QoS framework, and

4.3 Design Requirements 25

Specification Mechanisms | Design

Applications
QoS
specification

Paﬂay

QoS User interaction Design

specification || Mapping || issues

Communidation Session Manager
QoS ["User interaction | |
specification II

Network operator$

1
|
Provision

Control
Management ||

QoS
specification

Figure 4.2: Mapping of QoS components and design principles to Parlay entities.

e The QoS framework and the Communication Session Manager (CSM)

The other interactions, between the CSM and networks, and between networks and termi-
nals, are outside the scope of this report. Details about certain interactions between the

CSM and various networks may be found in [§].

4.3 Design Requirements

A QoS framework is a collection of all the QoS-related aspects of a system that enable the
provision of QoS in the system. The QoS components of a system that must be present in
a system’s QoS framework in order for the system to provide QoS for connection services
are presented in section 2.6 The QoS-related aspects, both QoS components and further
design principles, are mapped to entities in the Parlay system in figure [£:2] illustrating the
scope of QoS components and design principles in various Parlay entities. As shown in the
figure, QoS specification components are present across all entities since all entities specify
QoS. User interaction components are present across all entities except network operators in
Parlay because user interaction is primarily performed by applications and not networks
in Parlay. The network operator entity must however perform the actual network control
mechanisms of provision, control and management. The mapping component is only in the
scope of the Parlay Gateway which must map QoS specification between applications and
the CSM.

4.4 Design Overview

26

Object
Model

Defines the
entities (or
objects) that
make up the
framework

Information| Interaction
Model Model

.D efines !he I Defines how
information

entities
elements at each . .
interact with
level used by I each other
entities

Ilaﬂ'q:fplic;aticmn l
| entities |

----I h--.—-ll .

Information I Applications

' elements *

i : Parlay
| I
- T - L *
LT I = = I
lfra"ﬁfmrkl |)] 1Qos framework
| eMMes g | Information |
| e |

Figure 4.3: Design overview.

QoS specification, mapping and user interaction mechanisms are therefore the only compo-

nents that must be provided by the QoS framework for Parlay. All other components are

outside the scope of the QoS framework. In addition, various design issues must also be

considered in the design of the framework, as identified in section [5-3}

4.4 Design Overview

To reduce the complexity of the design, the divide-and-conquer approach is used. The design

is divided into 3 smaller, more manageable parts.

An overview of the design of the QoS framework is illustrated in figure [f:3] The three

components of the design are:

1. The Object Model: presented in chapter [5] identifies the entities or objects that com-

pose and interact with the QoS framework at the various levels.

4.5 Analysis of QoS Framework Design 27

Interaction
model

0
<}

=
(Y]
<

I aos - 'll Design
1 specification Pping issues

| Information J | Object
| model | |_model

T
—l

Figure 4.4: Division of QoS components into design sections.

Object Information Interaction
model model model

I ! |

UML Specification

Figure 4.5: The relationship between the three design components and the UML specifica-

tion.

2. The Information Model: presented in chapter [6] identifies the information elements

that are required by each entity to provide QoS services.

3. The Interaction Model: presented in chapter [7} identifies unambiguously how the

defined entities may interact.

Each part of the design addresses specific QoS components or design issues presented in the
previous section (4.3)), as shown in figure

A formal specification of the design is made in chapter [8|using a formal specification language
— the Unified Modelling Language (UML [I0]). This formal specification is composed using

the three design components mentioned above, as shown in figure

4.5 Analysis of QoS Framework Design

The divide-and-conquer approach allows the design to be divided into three smaller, more
manageable components, thus allowing each component to be designed independently, re-
sulting in minimal coupling between the different components of the design, as shown in

figure as well as decreased design complexity. The three components of the design are

4.6 Summary of Design Influences 28

integrated in the UML specification presented in chapter [§

This feature has two major benefits:

e Re-usability: each component of the design has the potential to be re-used in another
design of similar nature, particularly the information model and interaction model,

and

e Flexibility: any component of the design can be replaced relatively easily if necessary,

without severely affecting the other components of the design.

In the latter case, a major change might however be required in the UML specification.

4.6 Summary of Design Influences

The concepts and factors that influenced the three parts of the design are summarised in
this section and illustrated in figure The object model presented in chapter [5|is based
primarily on Parlay’s design paradigms which are presented in section [5.3] The remaining

four factors that influenced the various parts of the design are:

the Quartz architecture: the basis of the mapping concept in the information model;

e TINA Service Quality Features: the source of the QoS specification concept in the

information model;

QoS cycles: used for defining user interaction mechanisms in the interaction model;

and

the EQoS framework: the basis of the user interaction concept in the interaction model.

These four factors and there influences on the various parts of the design are presented in

the following four sub-sections.

4.6.1 The Quartz Architecture

A description of a QoS architecture that provides support for QoS specification and enforce-
ment in heterogeneous distributed computing systems is presented in [27]. Quartz is able

to accommodate differences among diverse computing platforms and areas of application

4.6 Summary of Design Influences 29

Parlay TINA Quartz QoS EQoS
paradigms SQFs ||| architecture cycles || framework
Design QoS . User
issues I specification el Ly I interaction
Object Interaction
model Information model model

Figure 4.6: Summary of design influences.

by adopting a flexible and extensible platform-independent design, which allows its inter-
nal components to be rearranged dynamically to adapt the architecture to the surrounding

environment [27].

Further significant problems found in other QoS architectures, such as the lack of flexibility
and expressiveness in the specification of QoS requirements and limited support for resource

adaptation are also addressed by Quartz [27].

Quartz’s three-step translation or mapping process is adapted for use in the information
model in chapter [6] and provides exceptional flexibility to the information model. The
notion of generic QoS parameters used in the Quartz architecture is also adapted for use in

the information model.

4.6.2 TINA Service Quality Features (SQFs)

The subject of Quality of Service trading in an open network architecture using TINA [28]
is discussed in [29]. Enterprise-level QoS issues are discussed, from which QoS evolution
paths are derived. Service-level QoS issues are identified, and they have been studied as a
part of service quality issues in the TINA service architecture. TINA stream binding and
its role in the TINA QoS framework are presented. Soft guarantee of stream quality is
proposed, which does not require strict resource reservation. The soft guarantee concept
combined with TINA stream binding architecture supports progressive evolution of service
quality [29].

The concept of service quality—which deals with QoS at the service level as opposed to the
network level—is adapted for use in the information model in chapter [f] The service quality
function concept is the basis of the Service Quality Feature concept in the information

model.

4.7 Conclusion 30

4.6.3 QoS Cycles

QoS management for distributed multimedia applications becomes more complex when a
huge number of users are participating, as for instance in broadcasts of major sports events
or in tele-teaching applications. On the other hand, such an application offers a variety
of options to improve resource usage and system performance while decreasing the overall
communication cost. A new QoS management scheme called Cooperative QoS management
which handles both increased complexity and options is presented in [30]. [30] shows how
this new scheme influences the design of applications based on it, especially concerning the
QoS user interface. As an example, [30] presents a tele-teaching application developed in

the framework of a Broadband Services project [30].

The definition of QoS cycles in [30] and [3I], which specify the various interactions be-
tween the different entities involved in establishing QoS for connections, are adapted for the

definition of the QoS cycle in the QoS framework’s interaction model in chapter [7)).

4.6.4 The EQoS Framework

The EQoS framework [22] addresses the challenge of QoS offer and management in a multi-
provider environment by focusing on the agreement that exists between a user and a provider.
This introduces the notion of ‘one stop responsibility’ of a given actor, the primary provider,
to another, the end-user. The user-provider agreement is a harmonised understanding be-
tween the two entities and contains a set of statements describing the way the entities
involved in the negotiation process should behave. Statements may include QoS issues,
tariffing and legal issues. The EQoS framework focuses on the QoS related part of the

user-provider agreement.

The EQoS framework provides guidelines for defining how entities interact. High-level in-
teractions between entities are specified using Message Sequence Charts (MSC) [32], and
low-level interactions are specified using SDL diagrams [33]. These guidelines are used in

the definition of the interaction model in chapter [7}

4.7 Conclusion

An overview of the three parts of the design presented in the following three chapters is
given in this chapter to provide the reader with a ‘big picture’ of the design. An analysis of
the entities with which the QoS framework must interact is made, followed by a summary of
the design requirements for the QoS framework. An overview of the QoS framework design
is given, followed by an analysis of the design. A summary of the factors that influenced

each part of the design is also presented.

4.7 Conclusion 31

The three parts of the design are presented in the following three chapters in more detail,
followed by a formal UML specification of the complete design in chapter [§] The details of

a software simulation of the design are summarised in chapter [0

5.2 Design Requirements 32

Chapter 5

Design of the Object Model

5.1 Introduction

As mentioned in the design overview in chapter [] the design of the QoS framework for
Parlay is divided into three distinct parts. This chapter presents the first part of the QoS
framework design, the Object Model. The Object Model defines:

e The entities or objects that make up the QoS framework, as well as

e The entities that the QoS framework entities interact with.

The design requirements for the object model are described in the following section .
One major design requirement identified is the need for the QoS framework to follow Par-
lay design paradigms. Section therefore presents Parlay design paradigms for object
models. The QoS framework’s object model is based on these Parlay design paradigms. The
object model design is presented in section An analysis of the object model is made in
section

5.2 Design Requirements

The QoS framework must interact with applications to obtain QoS requests as well as the
CSM to fulfil QoS requests, as shown in section The QoS framework is an extension of
the Parlay API. The object model for the QoS framework focuses on defining the objects
that make up the QoS framework as well as how the QoS framework objects fit into the

existing Parlay infrastructure, as shown in figure [5.1

5.3 Parlay’s Design Paradigms 33

Application 1 || Application 2 || Application N

Parlay Gateway
Required QoS framework object_'

| F__ll_mfkilq N
]

Figure 5.1: Required QoS framework object model.

[~ callback interface concept |
Application | =Caliback [Callback | Callback ||
domain interface interface interface

L — — — — — _J

s — — —
Service manager

Session
object

Parlay i
domain Service manager

concept

— e

Figure 5.2: Object-oriented design paradigms in Parlay.

The design of the QoS framework must be completely object-oriented, since it is a part of
Parlay which is itself object-oriented [4]. The general design paradigms of Parlay must also

be followed where possible with regard to object-oriented design.

Applicable examples of object-oriented design paradigms in Parlay that are followed in the
design of the QoS framework are described in the following section (5.3).

5.3 Design paradigms in Parlay used in the design of
the object model

This section contains a summary of design paradigms in Parlay that are used in the design of
the object model for the QoS framework. The following three existing Parlay object-oriented
design paradigms [4] are described in the following subsections and illustrated in figure

5.3 Parlay’s Design Paradigms 34

Call control Application
object model “m———
I~ Call Manager Call object || Call object ||
Application | callback interface callback callback [
domain ! 7= interface interface
pu’ i
I Call Manager Call object || Call object |
Parlay | - ol |
domain a
| Control |
L SCF —\ r
CSM Communication Session Manager (CSM)
domain

Figure 5.3: Object model for call control service.

e Parlay’s Service Manager concept;
e Parlay’s Session model; and

e Callback interfaces.

Parlay’s object-oriented design paradigms are described using an example in the following
section (5.3.1). The three particular design paradigms are presented in the subsequent

sections.

It must be noted that although these design paradigms are mentioned in the Parlay speci-
fication overview [4], they are not singled out as distinguishing features in the various SCF
specifications ([I1], 26] for example). These design paradigms are however used in the design

of the object model for the QoS framework in this report.

5.3.1 Parlay’s Object-Oriented Paradigm

The Parlay architecture is completely object-oriented [4]. The QoS framework is designed
to be a part of Parlay, and must therefore also be object-oriented. In addition, the QoS

framework must support both existing and future connection services.

An example of an object model for an existing connection service in Parlay is the call
control service illustrated in figure [5.3] Parlay’s call control service allows applications to
setup, modify and terminate call sessions in the underlying networks. A call object is used
to provide an abstraction of a call in the underlying networks. One call object is created in

the Parlay Gateway for each call an application participates in.

The various other objects in figure [5.3| are described in the following sub-sections.

5.3 Parlay’s Design Paradigms 35

Application
Call Manager Call session [[Call session
Application | callback interface callback callback
: = interface interface
d°"iaﬂ————ll —— = e
_Service Call Manager
Jnstance ' —
Call
Parlay Control | |
domain SCFE
Csm Communication Session Manager (CSM)
domain

Figure 5.4: The Service Manager Concept in Parlay’s Call Control SCF.

5.3.2 The Service Manager Concept

In Parlay, ‘for each application that uses an SCF, a new object is created to handle all
communication with the application in the Parlay Gateway. This object is referred to as
the Service Manager’ [4] for the SCF. This is based on a software pattern [34] known as the
Factory Pattern [35]. ‘The Service Manager creates any new objects in the SCF’ as required
by the application. The Service Manager and all the objects created by it are referred to as
the ‘service instance’ [4], illustrated in figure

‘Once an application is granted access to an SCF by the Parlay Framework, the Framework
requests the SCF to create a new Service Manager. The reference to this Service Manager
is provided to the application. From this moment onwards the application can start using

the SCF’ by using the reference to the Service Manager [4].

The Call Control SCF’s service manager is called the Call Manager. The Call Control SCF
creates a new Call Manager object upon request, and returns a reference to this object, as
shown in figure [5.4] The reference to the Call Manager can then be used to create a new
Call object for every call it interacts with in the underlying networks. The Call Manager
together with all its created objects, termed Call objects, are collectively known as the

‘service instance’.

5.3.3 The Session Model Concept

A session is defined as ‘a series of interactions between two or more communication end
points that occur during the span of a single connection’ [4]. An example is all operations
to set-up, control, and tear-down a call. An object, called a session object in this report, is
typically created for each session, representing that particular session. Any changes to the

session are made by interacting with the session object.

5.3 Parlay’s Design Paradigms 36

Appl ication Abstraction of call Abstraction of call
level control aspects of control aspects of
connection connection

e A
Network ﬁ
Connection Connection =2
D =67

ID=23 .
Terminal 1 : Terminal 2 Terminal 3 Terminal 4 —

Increasing Abstraction

Figure 5.5: Session model.

‘A session is identified by a Session ID. This ID is unique within the scope of a service

instance and can be related to session numbers used in the network’ [4].

Illustrated in figure are two call sessions in the underlying network that are created by

a call control service manager via interactions with the CSM (not shown in the figure).

e One connection, identified by the session ID 67, is between terminals 1 and 2, and

e Another connection, identified by the session ID 23, is between terminals 3 and 4.

An object is created for each call session, and each object represents a particular session in

the underlying network, from the application’s viewpoint.

In the Call Control SCF the call object creates a separate call leg object for each leg of
the call, each of which represents that particular session leg in the underlying network [T1].

Each call leg object is also assigned a unique session 1D [26].

5.3.4 Callback Interfaces

Parlay Gateway interfaces or objects ‘generally require an application to register a callback
interface. This interface resides on the application side and is used by the object in the
Parlay Gateway domain to report events, results, and errors. An application must register

its callback interface as soon as the corresponding server-side interface is created’ [4].

As shown in figure [5.6] in the Call Control SCF example, each object on the server-side has

a corresponding object on the application-side known as a callback interface.

5.3 Parlay’s Design Paradigms

37

[C;It;c

Call Manager

o
Appllcatl::m| callback interface

domain

Application

Call session [[Call session
callback callback
interface interface

Parlay
domain

Call Manager

— e == =
l Call object I Call object

Call
Control
SCF

=

CSM
domain

QoS
framework
object model

Communication Session Manager (CSM)

Figure 5.6: Callback interfaces in Parlay.

|_ Connectivity

Application | Manager callback

domain

interface

Application

QoS session [[QoS session
callback callback
interface interface

Parlay
domain

ﬂ/; =T T
“onnectivity QoS session || QoS session
Manager

SCF

I

I Connectivity
| Manager \
L

CSM
domain

Communication Session Manager (CSM)

Figure 5.7: QoS framework’s object model.

5.4 Design of the Object Model 38

Application
Connectivity QoS session [QoS session
Application | Manager callback callback callback
domain interface interLface} interface
8
————— = | 4
|Q°S framework’s |~ Connectivity QoS session || QoS session
| Service manager Manager ||
_____ onnectivity
Manager
SCF
Parlay domain
CSM Communication Session Manager (CSM)

domain

Figure 5.8: QoS frameworks service manager.

5.4 Design of the Object Model

The design of the QoS framework’s object model is presented in this section. Parlay’s
QoS framework object model, summarised in figure [5.7} follows all Parlay’s object-oriented
design paradigms discussed in section The object model defines all of the objects that
compose the Parlay QoS framework. The various objects that make up the object model

are discussed further in the following sub-sections.

5.4.1 A Service Manager for the QoS Framework

The objects that make up the QoS framework must fit into the existing Parlay infrastruc-
ture to provide QoS support for connection services. Services in Parlay are accessed by
applications via SCFs, discussed in section [1.1.3] The services of the QoS framework must

therefore also be exposed to applications using an SCF.

The Connectivity Manager Service Control Feature (CM SCF) is an existing SCF in Parlay
that addresses certain limited QoS concerns in the Parlay API, discussed in section [3.4.1
Instead of defining a completely new SCF for the QoS framework, the CM SCF is extended
to accommodate the QoS framework. The Connectivity Manager Interface is used as the

Service Manager for Parlay’s QoS framework, as shown in figure [5.8|

The Connectivity Manager SCF includes the APIs between the enterprise operator and the
provider network for the two parties to establish QoS parameters for enterprise network
packets travelling through the provider network [4, [36]. The Connectivity Manager SCF
currently provides tools for the enterprise operator to set up a provisioned QoS service in
the provider network [4], discussed in section [3.4.1}

5.4 Design of the Object Model 39

)

Abstraction of Abstraction of

:

Application Connection : QoS aspects of
level control aspects ! connection S
"""""""""""""""""""" - Seswrsnesrrsors B L
Call object 1 QoS session object o
Parlay ID = 23 =
K-
level <
CSM level 2
__ (2]
Network bommoncoooooe ¢
Q
level E

Network
Connection
ID=23

Figure 5.9: QoS frameworks Session model.

The CM SCF defines its service manager as the Connectivity Manager Interface [3]. This in-
terface currently handles all QoS-service related interactions between an enterprise operator

and a network provider.

The CM SCF also defines a set of generic QoS parameters which are used in the design of
the Information Model, presented in chapter [6]

5.4.2 A Session Model for the QoS Framework

A QoS Session object is used to represent a session in the underlying network for which an
application requests QoS services. In addition to the particular session object, a call object
or data session object for example, a QoS Session object is created to represent the QoS-
related aspects of the session. All communications relating to QoS services for a particular

session are made through its associated QoS Session object.

The Connectivity Manager is used to create a QoS Session object for each session that an
application requests QoS for in the underlying networks. The QoS Session object is linked
to a particular session by its session ID, illustrated in figure [5.9] For example, a particular
call session created by the application may have a session ID of 23, and a particular data
session may have a session ID of 46. A QoS Session object is created for each session, and

each QoS session object has:

e its own unique session ID, and

e the session ID of the call or data session to which it provides QoS services

The session ID therefore serves as a link between a QoS Session object and the session for

which it provides QoS services.

5.5 Example: Using the Object Model 40

Application
r QoS framework’s callback interfaces |
I Connectivity QoS session QoS session ||
Application | | Manager callback callback callback |
domain h interface interface interface
L — C
iz : S0
Connectivity QoS session || QoS session
Manager
Parlay domain Connectivity
Manager
SCF
Csm Communication Session Manager (CSM)
domain

Figure 5.10: QoS frameworks Callback interfaces.

Application

Connectivity QoS session || Call object
Application |Manager callback callback callback
domain interface interface interface

T —
Connectivity | : - |
QoS session Call object
Parlay Manager — il
domain Connectivity
Manager

CSM Communication Session Manager (CSM)
domain

Figure 5.11: Example illustrating the use of the QoS framework.

5.4.3 Callback Interfaces for the QoS Framework

Each QoS Session object requires an application to register a callback interface, as discussed
in section This interface resides on the application side and is used by the QoS Session
object, which resides on the server side, to report events, results, and errors, as illustrated in
figure An application must register its callback interface as soon as the corresponding

server-side interface, the QoS Session object, is created.

5.5 Example: Using the Object Model

Figure [5.11] illustrates, by use of an example, how the object model and the QoS framework
is used in Parlay. A call object is first created by the application via interactions with the
Call Control Service Manager (not shown in the figure). The call object represents a call in

the underlying network, and is assigned a session ID of 23 in this example. The application

5.6 Analysis of the Object Model 41

requests QoS services for the call session from the Connectivity Manager, and passes the
session ID of the call, which is 23, to the Connectivity Manager to identify the particular
call session. The Connectivity Manager creates a QoS session object and sets its session ID
to that of the call, and passes a reference of the QoS session object to the application. The
application then uses the QoS session object to request QoS levels for the call session or for

any other QoS-related issues.

There is no explicit coupling between the call object and the QoS session object. They
are linked only by the unique session ID of the underlying connection service. The QoS
framework is therefore not coupled to a specific service (SCF), and is therefore able to
support both existing and future connection services in Parlay. For example, the QoS
framework can be used in exactly the same way to provide QoS services for data sessions

(and data session objects).

5.6 Analysis of the Object Model

The design of the object model for the QoS framework follows the existing design paradigms
of Parlay. In particular, the Service Manager concept, the Session Model concept and the
callback interface concepts are all incorporated into the design of the object model for
Parlay’s QoS framework. To avoid duplication, the existing CM SCF is used to effectively
support the QoS framework.

All QoS related issues for a particular QoS session are represented by a QoS Session object.
The QoS Session object is loosely coupled to existing services, thereby separating QoS
concerns from other service concerns. The separation of QoS concerns from other service
concerns allows the QoS session object to provide QoS services for various types of services.
This loose coupling makes the design applicable to both existing services as well as future
services, without any modification to the existing design. The design is therefore very

scalable.

The performance of the design has not at the time of writing been analysed in terms of
factors like memory efficiency and processing speed. A particular performance issue might
be the use of a new object for every session. If performance is found to be unsatisfactory in
an implementation of the QoS framework, this design approach might have to be altered to
improve system performance. This (inefficient) approach is however taken in many Parlay
SCFs. For example, every call session is represented by a separate call object in the Call
Control SCF. If, for example, various applications use the Call Control SCF to create thou-
sands of calls, this translates into thousands of call objects (each representing a particular
call session) being created. This inefficiency is a common trade-off of the object-oriented
design paradigm in general. An alternative approach could use more efficient procedural
approaches at the cost of poor (non-object-oriented) design, which would make the design

less scalable and less re-usable.

5.7 Conclusion 42

5.7 Conclusion

One part of the design of Parlay’s QoS framework is presented in this chapter — the ob-
ject model. The design of the object model incorporates various existing Parlay design
paradigms, including the Service Manager concept, the Session Model concept, and the
callback interface concept. The Connectivity Manager SCF’s service manager, called the
Connectivity Manager, is used as the service manager for the QoS framework. The Connec-
tivity Manager is used to create a QoS Session object that represents all the QoS related

issues with regard to a particular service session.

The design is very scalable, due to the loose coupling between QoS-related issues and other
services. This is accomplished by the introduction of a QoS session object for each service
session, which handles all QoS related issues for that particular service session. This makes

the design of the object model applicable to both existing and future Parlay services.

Performance related issues have not been addressed in this report. If the performance of the
QoS framework is found to be unsatisfactory, the QoS session object concept might require

review to improve the performance of the QoS framework.

This chapter defines the objects that compose the QoS framework. The following chapter
@ defines the information model for the QoS framework, which describes what information
is required by the objects. The third and last part of the design presented in chapter [7]
defines the interaction model for the QoS framework, which describes how the objects pass

information to each other.

The three parts of the design, including the one presented in this chapter, are composed

into a single formal UML specification in chapter [§

6.2 Specification of the Type of Traffic 43

Chapter 6

Design of the Information Model

6.1 Introduction

As mentioned in the design overview in chapter [] the design of the QoS framework for
Parlay is divided into three distinct parts. This chapter presents the second part of the QoS

framework design, the Information Model.

The focus in the information model is primarily on the specification of QoS-related informa-
tion in the QoS framework. There are two types of QoS specification required for connection

services in the Parlay context, namely, the specification of:

e The type of traffic that must be carried by the underlying networks — to allow certain

networks to optimise the transport of traffic across the network resources [2], and

e The level of QoS for connection services in the underlying networks.

The information model is divided into two parts, each of which describe one of the above-
mentioned specification types in the QoS framework. The design of the part that deals with
the specification of the type of traffic is described in the following section . The design
of the part that deals with the specification of the level of QoS is presented in section [6.3

6.2 Specification of the Type of Traffic

This section presents the part of the design of the information model that deals with the

specification of the type of traffic in the underlying networks. The design requirements are

6.3 Specification of QoS Levels 44

presented in the following sub-section, followed by the design in section [6.2.2] An analysis

of the design is made in section [6.2.3

6.2.1 Design Requirements

An application must provide a description of the expected traffic flows for the connection
service which requires QoS services to the QoS framework. The description of the traffic
flow provides the underlying network with the information necessary to manage and optimise

resources required to deliver the QoS service efficiently [2].

The QoS framework must therefore define a specification format or data type for the appli-

cation to specify the expected traffic flow for a connection service.

6.2.2 Design

The Parlay API currently defines a data type that is used for the description of the type
of traffic in the underlying network. This data type is re-used in Parlay’s QoS framework
for the same purpose. The data type is known as the ‘TpDataSessionQosClass’ [26], and is
described in more detail in section [3.4.21

An application using the QoS framework could simply indicate the traffic type using this
data type. The QoS framework would then simply pass this information on to the various

networks involved in the required connection service via the CSM.

6.2.3 Analysis

The use of the existing data type to describe the traffic type on the connection avoids
redundancy. The data type is well-defined and established, since it is currently used in
UMTS networks [2]. [2] provides a good description of the type of traffic as well as the

associated traffic requirements and characteristics.

6.3 Specification of QoS Levels

This section presents the part of the design of the information model that deals with the
specification of QoS levels in the underlying networks. The design requirements are presented
in the following sub-section, followed by the design in section[6.3.2] An analysis of the design
is made in section [6.3.3

6.3 Specification of QoS Levels 45

6.3.1 Design Requirements

The QoS framework must interact with applications to obtain QoS requests as well as the
CSM to fulfil QoS requests. Specification of QoS levels is therefore required at two interfaces,

namely, at the interface between:

1. Applications and the QoS framework: where applications specify their QoS require-

ments to the QoS framework.

2. QoS framework and the CSM: where the QoS framework informs the CSM about the

required level of QoS in the underlying networks.

This part of the information model focuses on defining a data structure that permits the
specification of QoS levels at both these interfaces. The individual QoS specification re-
quirements at each of these interfaces is further discussed in the following two sub-sections,

respectively.

In addition to these identified requirements, a design requirement of the QoS framework is

scalability. The information model must therefore also be scalable.

QoS Specification Requirements at the Application-Parlay Interface

Parlay was designed to open up telecommunications networks to application programmers.
Most application programmers are not familiar with detailed networking concepts. One of
the design requirements in Parlay is therefore to hide the complexities of the underlying

networks from the application programmer [37].

The specification of the