TABLE OF CONTENTS

GENERAL INTRODUCTION

1.2 Geminiviruses

PREFACE	v
ABSTRACT	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
ABBREVIATIONS	xiii
DEDICATION	xvii
CHAPTER 1	1

1.3 The transmission of cassava mosaic virus by the whitefly Bemisia tabaci 1.4 Genetic engineering 1 4 1 Cassava in vitr regeneration

1.1 Cassava (Manihot esculenta Crantz)

1.4.1 Cassava in vitro regeneration	20
1.4.2 Cassava genetic transformation	25
1.4.2.a Agrobacterium-mediated gene transfer	25
1.4.2.b Particle bombardment	27
1.4.3 Mechanisms of genetic engineering for virus resistance	32
1.4.3.a Coat protein-mediated resistance	33
1.4.3.b Replicase-mediated resistance	34
1.4.3.c RNA-mediated resistance	35
1.5 Objectives and thesis plan	38

1.6 References

2

7

17

19

40

ATTEMPTS TO INDUCE DIRECT ORGANOGENESIS FROM

TUBER TISSUE OF CASSAVA (MANIHOT ESCULENTA

CRANTZ)

2.1 INTRODUCTION	63
2.2 MATERIALS AND METHODS	65
2.2.1 Preparation of roots and tuber tissues	65
2.2.2 Plant growth media	66
2.2.3 Microscopy	67
2.3 RESULTS AND DISCUSSION	67
2.3.1 Effects of cytokinin in combination with auxin on callus	67
induction	
2.3.2 Effect of auxins and cytokinins on tuber organogenesis	73
response	
2.3.3 Effect of root explants on organogenesis response	75
2.4 REFERENCES	77

CHAPTER 3	82
BIOLISTIC INOCULATION OF CASSAVA (MANIHOT	
ESCULENTA CRANTZ) WITH SOUTH AFRICAN CASSAVA	
MOSAIC VIRUS	
3.1 INTRODUCTION	83
3.2 MATERIALS AND METHODS	84
3.2.1 Plasmid constructs	84
3.2.2 Preparation of gold particles	84
3.2.3 Bombardment of SACMV dimers into tobacco and cassava	85
plants	

3.3 RESULTS AND DISCUSSION	86
3.4 ACKNOWLEDGEMENTS	90
3.5 REFERENCES	91

62

CHAPTER 4	94
SCREENING OF FOUR SELECTED SOUTH AFRICAN CASSAVA	
(MANIHOT ESCULENTA CRANTZ) CULTIVARS FOR	
PRODUCTION OF EMBRYOGENIC TISSUES	
4.1 INTRODUCTION	95
4.2 MATERIALS AND METHODS	97
4.2.1 Culture conditions	97
4.2.2 Plant material	97
4.2.3 Induction of embryogenic tissues	98
4.2.4 Regeneration of in vitro plantlets	98
4.3 RESULTS AND DISCUSSION	99
4.4 ACKNOWLEDGEMENTS	108
4.5 REFERENCES	109

CHAPTER 5	112
OPTIMISATION OF SACMV N-REP TRANSFORMATION	
EFFICACY USING TOBACCO LEAF DISKS AND CASSAVA FEC	
5.1 INTRODUCTION	113
5.2 MATERIALS AND METHODS	116
5.2.1 Plant material	116
5.2.2 Preparation of the first 600bp N-Rep construct	116
5.2.3 Preparation of the second 621bp N-Rep construct	117
5.2.4 Transformation into A.tumefaciens	118
5.2.5 Transformation of <i>N.tabacum</i> leaf disks	118
5.2.6 Hardening-off	119
5.2.7 Transformation of cassava FEC tissues	120
5.2.8 Molecular analysis of the second 600bp N-Rep construct	121
5.3 RESULTS AND DISCUSSION	121

REFERENCES	146
GENERAL CONCLUSIONS	
CHAPTER 6	141
5.5 REFERENCES	134
5.4 ACKNOWLEDGEMENTS	133
5.3.4 Transient viral replication assay	129
anti-N-Rep transgenic tobacco plants	
5.3.3 Molecular characterization of control and	125
transformed TMS60444 FEC tissues	
tobacco plants and pCAMBIA2301-anti-N-Rep (621bp)	
5.3.2 Expression of the GUS gene in 600bp N-Rep transgenic	122
5.3.1 Cloning of the first 600bp N-Rep construct	121

-

PREFACE

Wow, it's finally time for me to graduate!

Sincere thanks are expressed to my supervisor Prof MEC Rey. Your regular and prompt feedback and guidance is much appreciated. Your support for my endeavours and believing in me made who I am today. I am also indebted to my adopted co-supervisor Dr VM Gray who made significant contributions particularly during the early phase of my work. I also gratefully acknowledge Prof D Mycock's assistance with the design of the experiments particularly in Chapter 2 of the thesis. Dr D Kieck who was my first main supervisor in the initial stages of my work, although he was unable to see it to the end. His guidance gave me sense to design experiments and interpretation of results.

It brings me profound pleasure to express my heartful gratitude to Dr C Fauquet for hosting me at the International Laboratory for Tropical Agriculture (ILTAB), Dr NJ Taylor for supervising the cassava biotechnology work, Dr F Ogbe and Dr J Pita for SACMV challenge work. Other ILTAB members I can't afford to leave out are Denise Peterson, Dr J Yadav, Dr V Ramachandran, Dr A Akano for good company, Dr B Fofana, Dr N Kokora for experiments we did together. Thanks to the President of The Donald Danforth Plant Science Center, Dr RN Beachy and the rest of the team I can't mention all here.

It would be unpardonable of me not to mention Bernadette Delaney and Patricia Cosgrove for their assistance in sorting out my visa, my wife and daughter's visas for our stay in St. Louis, Missouri.

V

A special thanks to Mrs Margaret Grant for ordering my chemicals at the University of the Witwatersrand and all staff members of the School of Molecular and Cell Biology for their moral support.

Finally, I owe a lot to my parents and family for their moral support without which it would have been difficult to pursue my PhD. My profound thanks to my wife, Melica who has spent most of her time looking after Andani and Mulisa and therefore taking over our household which have sustained me throughout my PhD studies.

With great sadness, I am also indebted to my late uncle Don and his late wife Sophie Makwarela for their never dying moral support and friendship.

This study was undertaken with the financial support of National Research Foundation (NRF), Cassava Starch Manufacturing Company (CSM), Oppenheimer memorial trust and UNESCO which is greatly appreciated.

ABSTRACT

Cassava (Manihot esculenta Crantz) is a vegetatively propagated root crop used as a staple throughout the tropics and subtropics. It is the fourth most important and cheapest staple food crop after rice, wheat and maize in developing countries, providing food for over 600 million people. However, its production is severely limited by a wide variety of viral and bacterial diseases, especially Cassava Mosaic Disease (CMD) which is caused by several geminivirus species including, South African cassava mosaic virus (SACMV), African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), Indian cassava mosaic virus (ICMV) and the Ugandan recombinant virus (UqV). In South Africa (SA), there has recently been an enormous upsurge of interest in cassava for industrial applications such as the manufacture of starch, animal feeds, and in its potential as a food security crop for marginalised farmers. However, due to serious losses in cassava yields by begomoviruses, such as SACMV, there is an urgent need for the development of appropriate systems that allows for transformation and regeneration of virus-resistant transgenic cassava cultivars suitable for diverse needs and growth requirements in different geographical areas in southern Africa.

The potential application of cassava tuber disks as an alternative system to leaf tissue for transformation and regeneration was investigated. Furthermore, the antibiotic, carbenicillin, was tested as a possible shoot inducing factor. Disks from freshly-harvested cassava tubers were cultured on 25 different sets of MS supplemented with zeatin (0.01-5 mgl⁻¹) and indole-3-acetic acid (0.01-5 mgl⁻¹). Carbenicillin at 500 μ gl⁻¹ was included in each treatment as a potential

vii

organogenesis inducing factor. The results observed after 21 days in culture indicated that non-embryogenic friable callus formed readily on MS medium supplemented with MS vitamins, 30 gl⁻¹ sucrose, 0.01 mgl⁻¹ indole-3-acetic acid (IAA), 0.01 mgl⁻¹ zeatin (ZEA), 500 μ gml⁻¹ carbenicillin and 0.8% agar, pH 5.8. Shoots or somatic embryos were never formed and only adventitious roots developed at a frequency of 60% on shoot induction medium supplemented with 2 μ M copper sulphate (CuSO₄), 1 mgl⁻¹ 6-benzylaminopurine (BAP) and 0.5 mg⁻¹ indole-3-butyric acid (IBA).

The current study also investigated infection of cassava and tobacco by the SA begomovirus species SACMV, dimer A and B using the particle inflow gun. Full-length head-to-tail dimers of DNA-A and DNA-B of SACMV were constructed by digestion with *Sal*I or *Eco*RI, respectively. The DNA-coated particles were used to shoot 3-week-old cassava plantlets (cv. TMS60444) at a pressure of 1500 psi using the Bio-Rad biolistic device. Thirty-day-old *N. benthamiana* seedlings were also inoculated in the same manner. In both cases young tender uppermost leaves were targeted (five plants inoculated and another 5 as control). Disease symptoms were recorded daily on the first emerging leaves. Cassava plantlets and tobacco seedlings showed infection by visibility of symptoms. On the other hand, control plantlets that were not inoculated were symptomless. Symptoms appeared 7 dpi in tobacco whereas mosaic symptoms became visible 14 dpi in cassava.

The pre-requisite for any cassava transformation program that proposes to develop improved plants is the availability of a reliable regeneration system. Presently many laboratories that prioritize cassava research are able to reliably

viii

regenerate plants from a limited range of cultivars. Unfortunately, some cultivars are still recalcitrant to induce useful levels of embryogenesis from their tissues. In this study, the production of organized embryogenic structures (OES) from five cultivated southern African regionally important cvs. T200, T400, P4/4, P4/10 and TMS303337 was investigated. A west African cv. TMS60444 was used as a control as it has been adopted as a good model cultivar. By utilizing improved procedures developed at ILTAB for producing embryogenic tissues from various other African cassava cultivars, OES were produced from leaf lobe explants of all the above locally-grown cassava cultivars. South African cvs. T200 and T400 performed well, producing OES at a frequency and quality approaching that of the model cv. TMS60444. Both were shown to be significantly superior for the production of embryogenic structures to the other two SA cvs. P4/4, P4/10 and a Zimbabwean cv. TMS303337.

Genetically-engineered expression of viral gene sequences has been proposed as an efficient system to confer protection against virus diseases by eliciting protection mechanisms in the plant. Our collaboration with ILTAB aimed at transferring cassava transformation techniques to the University of the Witwatersrand by adapting ILTAB cassava transformation and regeneration system into local cassava landraces. We isolated N-terminus truncated replicase (N-Rep) by PCR and transformed both tobacco leaf disks and cassava FEC tissues using these two constructs. Anti-sense N-Rep gene in the pCAMBIA2301 vector was then used to transform both S.A. cassava cv. T200 FEC tissues by microparticle bombardment and tobacco leaf disks by *Agrobacterium* cocultivation. Hundred and thirty eight tobacco plants transformed with the plasmid

ix

pCAMBIA2301 and eighty four tobacco plants transformed with pCAMBIA2301anti-N-Rep under the transcriptional control of 35S promoter were obtained from twenty five and thirty three independent leaf disk explants, respectively. The phenotype of these plants was observed as normal. Transformants were further analysed by PCR for the presence of the truncated N-Rep gene. The results of southern blot hybridization analysis of nine transgenic tobacco lines confirmed stable integration of the introduced DNA.

LIST OF TABLES	PAGE
Table 1.1 Cassava production trends in selected regions	7
Table 1.2 Annual cassava production in major African cassava- producing countries	7
Table 1.3 Typical geminiviruses consist of two quasi-isometric subunits with a characteristic 'waist' constriction and pointed ends	12
Table 1.4 Cassava mosaic geminivirus species and strains	13
Table 1.5 Surveys of the incidence of cassava mosaic disease (CMD) in 18 African countries	18
Table 1.6 A summary of methods used in genetic engineering cassava programs	31
Table 2.1 Effect of combining IAA and ZEA on callus induction from tuber explants of <i>Manihot esculenta</i> Crantz cv. T200 after 4 weeks of culture under light and dark incubations	68
Table 2.2 SIM treatments used for the induction of shoot regeneration from Manihot esculenta Crantz cy T200 tuber disks	69
Table 3.1 Primers used to amplify AC1 N-Rep from both cassava and tobacco infected plants	87
Table 4.1 Amount of organised embryogenic structures produced by in vitro leaf lobe explants on induction medium	101

LIST OF F	IGURES	PAGE
Figure 1.1	Cassava small-scale farming for subsistence by Mr. Flawana Masingi of Buvisonto, Bushbuckridge, in Mpumalanga	5
	Province	
Figure 1.2	Mrs. Daina Sekulane's subsistence cassava field	6
0	approximately 600m north of Mr. Masingi's field	
Figure 1.3	Typical geminiviruses consist of two quasi-isometric subunits	8
_	with a characteristic 'waist' constriction and pointed ends	
Figure 1.4	Schematic representation of different regeneration steps in	23
	cassava	
Figure 2.1	Callus and root induction in <i>Manihot esculenta</i> Crantz cv. T200	70
Figure 3.1	Infection with SACMV	88
Figure 3.2	Symptom development after particle bombardment with SACMV	89
Figure 4.1	The effectt of induction medium on the production of	100
	organised embryogenic structures from Southern African	
	cassava cultivars	
Figure 4.2	Organised embryogenic structures produced by immature	102
	leaf lobes after 28 days in MS2 medium supplemented with	
	50µM picioram	400
Figure 4.3	Stages involved in OES production	103
Figure 4.4	regimes on the production of embryogenic structures in	104
	three esserve outlivers	
Figuro 5 1	DCP analysis of Agrobatorium C58C1 pCAMRIA2301	102
Figure J. I	nMON999 and C58C1- nCAMBIA2301-anti-N-Ren using	123
	N-Ren nrimers	
Figure 5.2	Diagrams represent constructs containing fusions between	123
- ----	the GUS coding sequence and the AC1 sequence in the	
	sense orientation (pBI121-N-Rep) or in the anti orientation	
	(pBI121-anti-N-Rep)	
Figure 5.3	Schematic representation of the T-DNA of pCAMBIA2301-	124
	anti-N-Rep containing the <i>NptII</i> , anti N-Rep and <i>uidA</i> genes	
Figure 5.4	Histochemical GUS assay of FEC tissues	127
Figure 5.5	Transformation of TMS60444 FEC tissues with	128
	Agrobacterium C58C1- pCAMBIA2301-anti-NRep	
Figure 5.6	Transformation of <i>N.tabacum</i> leaf disks with <i>Agrobacterium</i>	129
F !	C58C1- pCAMBIA2301-anti-NRep	400
Figure 5.7	Southern blot analysis of genomic DNA of 2 selected	130
	Cool 1- pCAMBIAZOU 1-anti-INREP tobacco plants	

ABBREVIATIONS

2,4-D	2,4-dichlorophenoxyacetic acid
аа	Amino acid
AC1	Replicase gene
ACMV	African cassava mosaic virus
ACMV-CM	African cassava mosaic virus – Cameroon
ACMV-IC	African cassava mosaic virus – Ivory Coast
ACMV-I	African cassava mosaic virus – India
ACMV-KE	African cassava mosaic virus – Kenya
ACMV-NG	African cassava mosaic virus – Nigeria
ACMV-UG-Mld	African cassava mosaic virus – Uganda (mild)
ACMV-UG-Svr	African cassava mosaic virus – Uganda (Severe)
ARC	Agricultural Research Council
BA or BAP	6-Benzylaminopurine
bp	base pair
С°	Degrees Celcius
CaMV	Cauliflower mosaic virus
CIAT	International Center for Tropical Agriculture, Columbia
cm	centimeter
CMD	Cassava mosaic disease
СР	Coat protein
CR	Core region
CV	cultivar
DI	DeFECtive interfering
DIG	Digoxigenin
DNA	deoxyribonucleic acid
dNTP	deoxynucleoside triphosphate
Dpi	Days post inoculation
ds DNA	double-stranded DNA
EACMV	East African cassava mosaic virus
EACMV-CM	East African cassava mosaic virus – Cameroon

EACMV-KE	East African cassava mosaic virus – Kenya
EACMV-MW	East African cassava mosaic virus – Malawi
EACMV-TZ	East African cassava mosaic virus – Tanzania
EACMV-UG1	East African cassava mosaic virus – Uganda
EACMV-UG-Mld	East African cassava mosaic virus – Uganda (mild)
EACMV-UG-Svr	East African cassava mosaic virus – Uganda (Severe)
EDTA	ethylenediamine tetra-acetic acid
et al.	and others
FAO	Food and Agricultural Organisation of the United Nations
FEC	friable embryogenic callus
Fig./s.	figures
g	gram
GD	Gresshoff and Doy medium
GFP	green fluorescent protein
GM	genetically modified
GUS	β-glucuronidase
h	hour
hpt or hph	hygromycin phosphotransferase gene
IBA	Indole-3-butyric acid
ICMV	Indian cassava mosaic virus
ICTV	International Committee for the Taxonomy of Viruses
IITA	International Institute of Tropical Agriculture
ILTAB	International Laboratory for Tropical Agricultural
	Biotechnology
IPTG	isopropyl-β-D-galactopyranoside
IR	intergenic region
kan ^R	kanamycin resistance
kb	kilobase
kbp	kilobase pairs
km	kilometres
I	litres
LB	Left border

M	Molar
μg	microgram
μΙ	microlitre
μΜ	micromolar
mg	milligram
ml	millitre
mm	millimetre
mМ	millimolar
min	minute/s
MP	Movement protein
Mr	molar ratio
mRNA	messenger RNA
MS	Murashige and Skoog
MSV	Maize streak virus
MW	Molecular weight
NAA	α -naphthalene acetic acid
ng	nanograms
nm	nanometres
No.	number
NOS-pro	nopaline synthase gene promoter
NOS-ter	nopaline synthase gene terminator
nt	nucleotide
ORF/s	open reading frame/s
pBKS⁺	pBluescript KS
PCR	polymerase chain reaction
PEG	polyethylene glycole
pers.comm.	personal communication
pg	picograms
PIG	particle inflow gun
pmoles	picomoles
psi	pounds per square inch
RB	right border

Rep	replicase
RNA	ribonucleic acid
rpm	revolutions per minute
RT-PCR	reverse transcription-polymerase chain reaction
SACMV	South African cassava mosaic virus
SD	Standard deviation
SH	Schenk and Hildebrandt medium
sdH ₂ O	sterile distilled water
sec	seconds
Sp ^R	spectinomycin resistance
ssDNA	simgle stranded DNA
T-DNA	transferred DNA
TE	Tris-EDTA
Ti-plasmid	tumour-inducing plasmid
TMV	Tobacco mosaic virus
TrAP	Transcriptional activator protein
Tris	Tris(hydroxymethyl)aminomethane
USA	United States of America
Vir	virulence
v/v	volume per volume
WTGs	Whitefly-transmitted geminiviruses

DEDICATION

To my parents, wife and two daughters