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1 Introduction

Decoupling is crucial to the holographic correspondence. The equivalence between string

theory on AdS5 and four dimensionalN = 4 super-Yang-Mills conformal field theory (CFT)

constitutes the paradigmatic example [2–4]. The gauge theory lives on the worldvolume of

a stack of D3-branes, or equivalently at the boundary of AdS5. String modes in the near-

horizon geometry get stuck in the throat and are gravitationally bound to the branes whose

backreaction sources the AdS5×S5 spacetime. The ten dimensional flat space supergravity

decouples, and we can investigate the remainder of the theory encapsulating the D-brane

dynamics either in terms of an open string language or a dual closed string language. This

decoupling essentially isolates the gravitational degrees of freedom of relevance.

The attractor mechanism for extremal black holes in N = 2 supergravity constitutes

another example of the same phenomenon [5–12]. The entropy of a black hole enumerates

the number of microstates, which is an integer that is determined by the quantized charges.

The moduli at asymptotic infinity, however, vary continuously. The horizon area and thus

the entropy must be independent of the background moduli, which then assume fixed

values at the horizon. The reason this happens is that the radial direction corresponds to

an infinitely long AdS2 throat. Fluctuations in the asymptotic values of the scalar fields

damp down inside the throat, whereas the horizon values, which are fixed by the charges,

are unchanged.

As we expect, because of holography, the number of degrees of freedom of the system is

codimension one in gravity [13, 14]. While in the most symmetric examples, we can promote

gravitational thermodynamics to statistical physics in the microcanonical ensemble [15–22]

and in fact map the precise evolution of states from weak coupling to strong coupling [23–

26], we do not have the ability to identify the microstates that account for entropy in
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generic examples. The most interesting cases about which least is known are the non-

extremal black holes, which have a finite temperature (surface gravity) associated to the

event horizon. The explicit construction of regular solutions in supergravity with the same

charges as non-extremal black holes provides validation for this program [27–34] and has

led to the determination of new decoupling limits [35, 36].

A curious property of non-extremal black holes is that the product of the area of

the horizons is a power of the area of the extremal black hole obtained from taking the

zero temperature limit [37–39]. In particular, for the Reissner-Nordström geometry, the

extremal black hole’s horizon area is the geometric mean of the areas of the event horizon

and the inner (Cauchy) horizon for the various representatives of a family of non-extremal

black holes each of which is at a different temperature:

Aext =
√

A+A− . (1.1)

In our previous paper on this subject [1], we proved this relation for a large class of black

holes in N = 2 supergravity by exploiting the attractor mechanism.

In this article, we take initial steps toward understanding the organization of mi-

crostates for non-extremal black holes in the context of the four dimensional ungauged

N = 2 supergravity that arises in the low energy limit of type II string compactifications.

The action determining the dynamics of field configurations in this theory is Einstein grav-

ity coupled to neutral scalars and U(1) gauged fields. Black hole backgrounds in this

theory, at fixed charges, are characterized by the asymptotic values of the scalar fields

whose flow is governed by a potential that is a fixed function of the charges and scalars.

The Lorentz-violating vacuum solutions in this theory that extremize the classical action

are zero temperature black holes, whose horizon acts as an attractor for the scalar flows.

At the attractor point, the scalars reside at the minimum of the potential.1 The attrac-

tor near-horizon geometry is characterized by a single length scale corresponding to the

extremum of the potential. Due to the attractor mechanism, the values of scalar fields in

the near-horizon geometry are independent of their asymptotic values. The horizon area of

the black hole sets the only length scale in the geometry and in consequence is related to

the extremum of the potential and independent of the asymptotic scalar field values. The

attractor mechanism classifies the solution space of scalar flows in terms of fixed points

and identifies the geometry whose asymptotic symmetry group governs the organization

of microstates in the Hilbert space. The dimension of the Hilbert space is then expressed

as an invariant length scale of the geometry. In considering a non-extremal black hole,

we introduce a second length scale, the temperature, which we can express in terms of

the proper distance between the two horizons, or the deviation from extremality. It is the

existence of this second length scale which explains (1.1).

The organization of the paper is as follows. In section 2, we describe the setup and

recapitulate the derivation of (1.1). At both the inner horizon and the outer horizon, the

scalar fields assume values that depend on the asymptotic moduli, which serve as the initial

1Modulo flat directions, the potential has a unique minimum in the range of asymptotic scalar field

values corresponding to the single centered black holes; this minimum is a function of the charges of the

black hole.
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condition for the flow. Nevertheless, as we determined in [1], there are robust invariants

constructed from integrating over the region between the two horizons. This is a decoupled

region, and it is this decoupling that enables us to explore universal features of non-extremal

solutions. In section 3, as a first step to providing a microscopic interpretation of degrees

of freedom associated to the inter-horizon region, we construct a black hole with the same

entropy and temperature as the original non-extremal black hole with the added feature

that there is a manifest AdS3×S2 description. This facilitates an interpretation of the

entropy in terms of CFT2. We as well investigate fluctuations in the moduli space of hot

attractor geometries about the Reissner-Nordström solution and discover the symmetries

of AdS2. In the extremal limit, we find that the AdS2 symmetry in moduli space becomes

a symmetry in spacetime. Coupled with the hot attractor mechanism, which averages over

the inter-horizon region, this enables us to identify degrees of freedom that contribute to

the entropy. In section 4, we discuss our results, the limitations of the methods we employ,

and compare to recent alternative approaches to a statistical description of the entropy of

non-extremal black holes. Finally, we offer a prospectus for future work.

2 Setup and background

2.1 Equations of motion

To establish notation and introduce important features of attractor spacetimes, we review

the equations of motion for the action of interest. We consider four dimensional gravity

coupled to U(1) gauge fields and moduli,

S =
1

κ2

∫

d4x
√
−G

(

R− 2gij(φ)∂µφ
i∂µφj − fab(φ)F

a
µνF

b µν − 1

2
f̃ab(φ)F

a
µνF

b
ρσǫ

µνρσ

)

.

(2.1)

Taking a static spherically symmetric background geometry

ds2 = −a(r)2 dt2 + a(r)−2 dr2 + b(r)2 dΩ2
2 , (2.2)

and an appropriate ansatz for the gauge fields (see [40] for details), we obtain the following

equations of motion:2

(a2b2)′′ = 2 , (2.3)

b′′

b
= −(φ′)2 , (2.4)

(

a2b2(φi)
′
)′

=
∂φiVeff(φ)

2b2
, (2.5)

together with the Hamiltonian constraint

− 1 + a2b′2 +
1

2
(a2)′(b2)′ = −Veff

b2
+ a2b2φ′2 , (2.6)

2The effective potential, Veff, is given by Veff(φ) = fab(Qea − f̃acQ
c
m)(Qeb − f̃bdQ

d
m) + fabQ

a
mQb

m. The

constants Qa
m and Qea encode charges carried by the gauge fields and fab is the matrix inverse of fab.
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where φ′2 is short hand for gijφ
i′φj ′. Using the equations of motion, (2.6) can also be

written in the following convenient form:

1− (a2(b2)′)′

2
=

Veff(φ)

b2
. (2.7)

We also note that (2.3)–(2.5) follow from extremizing the effective (1 + 1) dimensional

action,

S =

∫

dt

∫

dr

(

(a2b)′b′ − a2b2gijφ
′iφ′j − Veff(φ)

b2
− 1

)

. (2.8)

with (2.6) imposed as a constraint.

2.2 Moduli spaces and attractors: hot and cold

In this section, we discuss attractive properties of both hot and cold black holes. The at-

tractor mechanism is a well known feature of extremal (i.e., zero temperature) black holes.

The scalar moduli flow to fixed values at the horizon so that the black hole entropy is

independent of their asymptotic values.3 Originally viewed as a consequence of supersym-

metry [5], the attractor mechanism can be seen as simply a feature of double horizons which

appear in the zero temperature limit as we review below [40, 41]. Thus, it is extremality

that is the crucial point. Starting with (2.3), which is easily integrated, one obtains

a2b2 = (r − r+)(r − r−) . (2.9)

Assuming that b2 remains finite, the zeros of (2.9) correspond to two horizons.4 Demanding

periodicity of the Euclidean time direction at the outer horizon fixes

T =
(a2)′+
4π

=
(r+ − r−)

4πb2+
=

∆

2πb2+
, (2.10)

where ∆ = 1
2(r+ − r−), related to the coordinate distance between the horizons and of-

ten called the non-extremality parameter, characterizes the deviation from extremality.

From (2.9) and (2.10), we see that in the limit r+ → r−, we have an extremal black hole

with a2 having a double zero at the horizon. Now, evaluating (2.4) and (2.6) at extremality,

using the fact that a2 has a double zero, gives the equations which encode the attractor

mechanism:

∂φiVeff(φ)

b2

∣

∣

∣

∣

r=rext

= 0 , (2.11)

[

Veff(φ)

b2
− 1

]

r=rext

= 0 , (2.12)

3Not all scalars are necessarily fixed. Flat directions — i.e., scalars whose value on the horizon does not

effect the entropy — are not constrained.
4The inner horizon is thermodynamically unstable [42, 43]. Moreover, it has a negative temperature

corresponding to the fact that as a black hole becomes more non-extremal — i.e., the temperature of the

outer horizon increases — the inner horizon becomes smaller. In the framework of supergravity, we regard

the inner horizon as defining a thermodynamically interesting arena.
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where rext is the position of the double horizon. Henceforth, we will denote any quantity

evaluated on the horizon of the extremal solution with the subscript “ext.” From (2.11) we

see that the scalars are fixed at the minimum of the effective potential Veff. The position of

this minimum depends on the charges carried by the black hole but not on the asymptotic

moduli.5 Using the usual area entropy relation, (2.12) can be written

Sext =
1

4
Aext = πb2ext = πVext , (2.13)

so that entropy just depends on the minimum of the potential and not the asymptotic

moduli.

As we have sen, for extremal black holes in asymptotically flat backgrounds there is

only one length scale in the problem related to the horizon area. This scale is fixed by (2.11)

and (2.12). For non-extremal black holes the temperature introduces a second length scale,

∆, which, as one can see from (2.10), can be related to the coordinate distance between

the two horizons. This suggests that any generalization of the attractor mechanism for

non-extremal black holes should involve both horizons. In fact in, as shown in [1], by

integrating (2.5) and (2.7) between the horizons, we generalize (2.11) and (2.12) to the

averaged equations

∫ r+

r−

dr

(

∂φiVeff(φ)

b2

)

= 0 , (2.14)

∫ r+

r−

dr

(

Veff(φ)

b2
− 1

)

= 0 . (2.15)

In [1], we show that (2.13), which tells us that the area of the extremal black hole is

independent of the asymptotic moduli also generalizes. Indeed, the product of the horizon

areas is the quantity which is independent of the asymptotic moduli and therefore related

to the area of the extremal solution:

A+A− = A2
ext , (2.16)

where A± are the areas of the inner and outer horizons respectively and Aext is the extremal

area. Using the usual proportionality relation between area and entropy (2.16) becomes

S+S− = S2
ext , (2.17)

though it is not, a priori, clear how S− should be interpreted.6 What is clear is that S±

both depend on the asymptotic values of the moduli but Sext does not. This means that

there is some non-trivial cancellation involving both horizons.

5Though (2.11) only ensures that we are at an extremum of the potential, for a black hole solution to

exist we need it to be at a minimum.
6There is a first law of thermodynamics associated with the inner horizon that relates the differential

change dS− to changes in the global charges, dM , dJ , and dQ. Once again its interpretation is unclear.

Corresponding to the decrease in the area (entropy) of the inner horizon as the deviation from extremality

increases, the temperature associated to the inner horizon is negative. Moreover, the inner horizon is

classically unstable.
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We now present an alternative derivation of the area law to the one discussed in [1].

Non-extremal solutions, can be regarded as thermal excitations above the extremal back-

grounds. While extremal solutions (in asymptotically flat spacetime) are characterized by

only one length scale, namely the circumferential radius of the horizon, bext, turning on a

temperature introduces a new length scale — the non-extremality parameter, ∆. There

are two other length scales which are natural in the non-extremal solution, viz., the cir-

cumferential radii of the inner and outer horizons, b− and b+, respectively. Given that,

as we have argued, only two length scales characterize the solution, there must exist a

function, f(b+, b−), with dimensions of length squared, which depends only on b2ext and ∆.

It is reasonable to assume that

f(b+, b−) =
∑

m∈S

cmbmext∆
2−m , (2.18)

where S is some countable set. To determine the form of f , it is convenient to consider solu-

tions with constant scalars. It is not hard to see that one can have a constant scalar solution

if the right hand side of (2.5) is zero. In other words (2.11) must be satisfied and φi = φi
ext.

With constant scalars, our action, (2.1), essentially simplifies to Einstein-Maxwell gravity

and the black hole background reduces to the Reissner-Nordström solution. In particu-

lar, integrating (2.4) is easy, and after an simple linear shift of the radial coordinate, one

can take

b(r) = r , (2.19)

so that:

ds2 = −(r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ2

2 . (2.20)

Consequently, (2.18) then becomes

f(r+, r−) =
∑

m∈S

cmbmext∆
2−m . (2.21)

Evaluating the Hamiltonian constraint, (2.6), and using (2.13), gives

r+r− = Veff(φext) = b2ext . (2.22)

The important feature of (2.22) is that it is independent of the non-extremality parameter,

∆, and we can read off the only non-zero coefficient of (2.21): c2 = 1. Furthermore

from (2.22) we conclude that f(b+, b−) = b−b+, so that in general, from (2.18), we have:

b+b− = b2ext , (2.23)

from which the area law easily follows. As discussed in [1], one can also prove the area law

directly using the first law of black hole thermodynamics and the equations of motion or

more formally from the extremization of the field configurations in the region between the

two horizons.

Let us define Region 2 as the spacetime between the two horizons, where the radial

coordinate r ∈ [r−, r+]. (Region 1 and Region 3 are, respectively, r < r− and r > r+.) We

summarize the the hot and cold attractor conditions in table 1.
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Cold attractors Hot attractors

Decoupled horizon Coupled horizons

Moduli-independent area Moduli-independent product of areas
〈

Veff(φ)
b2

− 1
〉

AdS2×S2
= 0

〈

Veff(φ)
b2

− 1
〉

Region 2
= 0

〈

∂
φi

Veff(φ)

b2

〉

AdS2×S2
= 0

〈

∂
φi

Veff(φ)

b2

〉

Region 2
= 0

Table 1. Comparison of hot and cold attractors.

We conclude from table 1 that the attractor geometry equivalent for hot black holes is

simply the region between the horizons and all conditions on the scalar flows can expressed

as averages over the attractor region. This establishes Region 2, the inter-horizon region,

as the correct geometry to look at when exploring the representations of the microscopic

states for hot black holes.7

3 Microstate organization

The degrees of freedom living on the horizon of the extremal black hole give rise to the holo-

graphic extremal black hole entropy and are organized in a representation of the asymptotic

symmetry group of the attractor AdS2 geometry. We would now like to explore the degrees

of freedom of the non-extremal black hole.

In the last section, we saw that the moduli of hot attractors satisfy an inter-horizon

average of the attractor equations for extremal black holes. For extremal black holes we

know that the decoupled near-horizon AdS geometry plays a crucial role in the attractor

mechanism. For the hot attractors, we do not have a decoupled8 near-horizon geometry

let alone an AdS.

Recent attempts to approach this problem for four dimensional black holes involve

identifying symmetries of the underlying string or M-theory that leave the horizon geom-

etry unchanged but convert the asymptotically flat backgrounds to asymptotically conical

backgrounds [44–47]. Hence, these symmetries acting on solution space take an asymp-

totically flat black background to a black hole in an asymptotically conical background

with modified warp factors. This new solution lifts to a BTZ black hole in an AdS3 × S2

background in five dimensions, and therefore can be viewed as a thermal state in the holo-

graphically dual CFT, enabling a leading order microscopic formulation of the entropy via

the Cardy formula for a two dimensional CFT [48]. The conformal symmetry appears here

7The averages for the hot solutions here denotes the inter-horizon radial coordinate average, 〈F (r)〉 =
1
2∆

∫ r+

r
−

drF (r), while those for the cold solutions denote a regulated average over the decoupled AdS2

near-horizon geometry. The latter is trivial as all quantities under consideration are constant all over the

attractive geometry.
8In other words, there does not seem to be some scaling limit in which one can zoom in one of the

horizons to obtain an independent solution. This is not surprising given that we have to average over the

inter-horizon region to recover the hot attractor mechanism.
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in the solution space as opposed to the geometry in the extremal case. However, one of

the caveats of this approach is that the final solution has a conical singularity at spatial

infinity in four dimensions, and is no longer a good solution of the supergravity theory.

Furthermore, the explicit symmetry operation can be executed only for the simplest of

N = 2 cubic prepotentials like in the STU model. In the following subsection, we will

arrive at a background that is asymptotically AdS3 × S2 sans the above limitations and

which supports a black hole with the same entropy and temperature as the black hole

background of interest.

3.1 “Equivalent” solutions

We construct a black hole background with the same entropy and temperature to the

black hole of interest in three steps. In mapping one system to another, the underlying

microstates may differ, but the thermodynamic quantities that characterize the ensemble

remain the same.

In the first step, take a black hole with entropy, Soriginal, temperature, Toriginal, and

with the asymptotic values of the scalars at an arbitrary point in moduli space. The entropy

and the temperature encode the two relevant parameters, as Soriginal is fully determined

by b+ and Toriginal tells us about b−. As discussed in the previous section, there exists

a constant scalar Reissner-Nordström solution carrying the same charges as the original

black hole with the moduli fixed at the extremal attractor point (2.11).9 The metric of

the Reissner-Nordström solution is given by (2.20) which has parameters r±. Using (2.22),

one sees that the charges carried by the black hole fix the combination r+r− since they

determine the value of Veff(φext). The charges carried by the Reissner-Nordström solution

do not fix its temperature, which we will take to be α2Toriginal for some α.10

In the second step, we note that there exists a simple scaling symmetry of the equations

of motion (2.3)–(2.6) at the attractor point:11

a(r) → λa(r) , (3.1)

b(r) → λ−1b(r) , (3.2)

(Qea, Q
a
m) → λ(Qea, Q

a
m) . (3.3)

Here, (3.3) refers to a scaling operation on all of the charges of the system. Under this

operation, (3.2) implies S → λ−2S, so that if λ is chosen such that λ−2 =
Soriginal

S+
, we get

a new Reissner-Nordström solution with entropy Soriginal.

Finally, from (2.10) and (3.1), we see that the temperature scales like T → λ2T . This

means that if we take α = λ−1, the scaled Reissner-Nordström solution has the same

temperature as our original black hole.

9We assume that the black hole potential has a unique extremum defined in terms of its charges and

ignore all lines of marginal stability and moduli dependence resulting thereof.
10The explicit relationship between the temperature and the parameters r± can be read off from (2.10)

with b+ = r+.
11We need to be at the attractor point so that the right hand side of (2.5) is zero.

– 8 –



J
H
E
P
0
4
(
2
0
1
6
)
0
2
6

We proceed to construct a black background that has an asymptotic AdS3 factor.12

First, we use another symmetry of the equations of motion that was pointed out in [1].

This symmetry is a local version of (3.1) and (3.2) with λ(r) = r/
√
r+r−. The charges are

not scaled. The symmetry takes an asymptotically flat Reissner-Nordström solution to a

black hole in AdS2 × S2 at the same non-extremality parameter, with metric,

ds2 = −(r − r+)(r − r−)

b2ext
dt2 +

b2ext
(r − r+)(r − r−)

dr2 + b2extdΩ
2 . (3.4)

We note that this is the near-horizon metric of the asymptotically flat Reissner-Nordström

black hole found in [50] in slightly different coordinates. It will be convenient to shift the

radial coordinate, r → r + 1
2(r+ + r−), so that the metric becomes

ds2 = −r2 −∆2

b2ext
dt2 +

b2extdr
2

r2 −∆2
+ b2extdΩ

2
2 . (3.5)

We now Kaluza-Klein lift this solution to five dimensions, à la [51], where it is a solution

of minimal supergravity and is a BTZ black hole in AdS3×S2, with the same temperature

and entropy as the original black hole. Under the standard AdS3/CFT2 correspondence,

this black hole is a thermal state in the holographically dual CFT and its large charge

leading order entropy is given by the logarithm of the asymptotic growth of states in the

CFT, encoded in the Cardy formula, and expressed in usual notation as,

SBH = 2π

(

√

cL0

6
+

√

cL̄0

6

)

. (3.6)

This allows us to write down a microscopic formula for the four dimensional non-extremal

Bekenstein-Hawking entropy.

In the remainder of this note, we analyze the solution space of the Reissner-Nordström

black hole to investigate the origin of its conformal symmetry. As we shall see, when we

consider fluctuations near the Reissner-Nordström point in the space of solutions of hot

attractors, an AdS geometry reappears. This indicates the potential existence of a special

subset of supergravity states of the black hole at fixed gauge charges that is organized in

the SL(2,R) representations of an AdS2 geometry. Verifying this would require checking

that this AdS background is not just an approximate solution at this order in perturbation

theory and is in fact an exact solution. In what follows, we shall adopt this as a working

hypothesis.

3.2 Conformal symmetry in solution space

To investigate the solution space, we first start at the Reissner-Nordström point in the

moduli space that lies at the extremum of the black hole potential, and look at fluctuations

about this point. (At the Reissner-Nordström point, the scalars are constant and assume

the attractor values.) It should be noted that the fluctuations we consider are not physical

12Emergent AdS3 factors are also seen, for example, in [49].
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fluctuations of a particular solution — we are considering nearby points in solution space

labelled by the asymptotic values of the moduli.

Scalar perturbations on this background were previously considered in appendix B

of [1]. At zeroth order, we start with the Reissner-Nordström background (2.20), (2.22),

a20(r) =
(r − r+)(r − r−)

r2
, b0(r) = r , φ0 = φext . (3.7)

Suppose the asymptotic value of a modulus is slightly shifted from the attractor value. We

consider a scalar near the attractor value, letting

φ = φ0 + ǫφ1 +O(ǫ2) , (3.8)

Neglecting backreaction, the equation for φ1 becomes

((r − r+)(r − r−)φ
′
1)

′ = σ2φ1/(2r
2) , (3.9)

where σ2 = ∂2
φVeff |φ=φ0

is the coefficient of the first order expansion of the right hand side

of (2.5). It is convenient to move the poles of (3.9) from {r+, r−, 0} to {1,−1,−∞} by

substituting

z =
r+(r − r−) + r−(r − r+)

r(r+ − r−)
, (3.10)

which gives

∂z(r+r−(z
2 − 1)∂zφ1) = m2φ1 , (3.11)

where m2 has the usual interpretation of being the mass of the fluctuation about the

extremum of the potential: m2 = 1
2∂

2
φVext.

Using (2.22) and taking gzz = b2ext(z
2−1), one sees that perturbation equation, (3.11),

is, in fact the Klein-Gordon equation for static scalar fluctuations, of mass m, in an AdS2
geometry:

ds2 = b2ext(−(z2 − 1))dt2 +
dz2

b2ext(z
2 − 1)

. (3.12)

Even though the spacetime is not AdS2, the fluctuations in solution space see an effective

black hole in AdS2 at first non-trivial order in perturbation theory. In retrospect, the

appearance of an AdS2 should not be surprising given the SL(2,R) symmetry of hyperge-

ometric equations for the scalar field in this background [52].

In 3.1 we reviewed the existence of exact black hole solutions in AdS2 × S2 with

metric (3.5). As discussed, these are precisely the solutions that lift up to BTZ in AdS3
in five dimensions and allow for a microscopic counting. It is worth noting that when,

∆ = 0, as expected, (3.5) becomes AdS2 × S2, which is the near-horizon geometry of the

extremal solution. The exact AdS2 solution has the same length scale as in (3.12). As a

classical rescaling of the time coordinate is simply a coordinate change, one can perform

the rescaling, r → z ×∆ and t → t/∆, on (3.5) which gives the metric seen by first order

fluctuations (3.12).

Once again, it was noted in [50] that one can eliminate the temperature dependence

of (3.5) but the point for us is that this effectively rescales the mass of the perturbations,
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m by a factor 1
∆ , so that the true mass of the fluctuations, mAdS in the background, (3.5)

is related to the mass in (3.12) as mAdS = m
∆ . Hence, in the zero temperature limit, cor-

responding to a vanishing ∆, an infinitesimal perturbation triggers an infinitely massive

fluctuation, and consequently, a mass gap emerges. From this perspective we understand

the extremal attractor mechanism as the zero temperature limiting case of the hot at-

tractors. As the temperature decreases, scalar fluctuations are damped as they become

more massive so that moduli approach their attractor value as the inter-horizon region

shrinks, and the massless fluctuations are localized in the thin laminar region around the

extremal horizon and arrange themselves in representations of an SL(2,R) group while the

corresponding AdS2 appears as an exact solution of the equations of the motion in the

near-horizon geometry. Hence, the black hole in AdS2 × S2 acts as an effective attrac-

tor geometry in the solution space and which reduces to the spacetime geometry in the

extremal limit.

4 Conclusions and discussion

Let us briefly summarize what we have accomplished so far. For an extremal black hole,

in order to use the Cardy formula to compute the Bekenstein-Hawking entropy, we must

first identify the near-horizon AdS2 × S2 geometry, which is decoupled from asymptotic

infinity by a deep throat. The near-horizon attractor geometry contains all of the degrees

of freedom that are necessary to account for the entropy. From a gravitational perspective,

we can compute the Legendre transform of the action and evaluate it on-shell in the near-

horizon region. This yields the entropy function for the extremal black hole. The values

of the scalar fields obtained from extremizing this function with respect to them are the

attractor quantities, while evaluating the function at its extremum gives the entropy of the

black hole. For a statistical enumeration of the black hole microstates, the near-horizon

geometry exhibits a conformal structure and is Kaluza-Klein lifted to form the near-horizon

geometry of an extremal BTZ black hole, which is then viewed as a chiral thermal ensemble

in the dual CFT. This justifies the microscopic counting, though, of course, it does not

identify the precise states in CFT that are dual to the black hole geometry.

For a non-extremal black hole in the same theory, we have established a parallel pro-

cedure. In the previous section, using the symmetries of the equations of motion, we have

constructed a black hole in AdS2×S2 that has the same entropy and temperature as a non-

extremal static four dimensional black hole solution of N = 2 supergravity. Our method

applies independently of the black hole’s temperature. In particular, we do not specialize

to the near extremal case. In order to perform this analysis, we have fixed scalars to their

attractor values. This isolates a particular solution in the moduli space. This geometry is

then lifted up along a Kaluza-Klein direction corresponding to a graviphoton gauge field

to form BTZ black holes in AdS3 × S2 that are solutions to five dimensional N = 2 super-

gravity. The lift is only possible when the moduli support a weakly coupled supergravity

description. In this case, we have a thermal ensemble in the dual field theory that enables

a microscopic enumeration of the Bekenstein-Hawking entropy for the black hole via the

Cardy formula.

– 11 –



J
H
E
P
0
4
(
2
0
1
6
)
0
2
6

We have made use of the fact that because of the hot attractor mechanism for non-

extremal black holes introduced in [1], there are invariants in moduli space constructed

in terms of certain combinations of the black hole potential, its derivative, and the warp

factor b(r)2 of the S2 that are then expressed as averages over the region between the inner

and the outer horizon. These are precisely the same combinations that are fixed in the

attractor geometry in the extremal case by the equations of motion. Additionally, classical

fluctuations in the inter-horizon region in a non-extremal black hole cannot propagate to

spatial infinity. There is a decoupled region that exists in the absence of an infinitely deep

throat. This supplies a candidate for the part of spacetime geometry which may encode

the leading order entropy of non-extremal black holes. Again, decoupling is key.

Ultimately, in order to understand the statistical physics that underlies gravitational

thermodynamics, we want to identify eSBH exact microstates that account for a black

hole’s entropy. This is a notoriously difficult problem. Aside from the two charge D1/D5

system [24] and the 1
2 -BPS superstar [19, 20] where we have the maximum supersymmetry

compatible with an incipient black hole solution, we do not know how to answer this

question.

An easier problem is simply to enumerate the states. In order to compute the dimension

of the Hilbert space of fluctuations corresponding to the decoupled inter-horizon region, we

first construct a Reissner-Nordström solution which lies at the extremal attractor point in

the moduli space with the same near-horizon thermodynamic properties, viz., temperature

and entropy, as the original black hole. We then quantize the s-wave scalar field fluctuations

in region 2. These are fluctuations in an extremal attractor-like black hole in an AdS2
background and by a rescaling of the time coordinate, they can be brought to the AdS2
factor of the exact black hole in an AdS2×S2 solution of the equations of motion. Hence, for

the purpose of counting states, we adopt the latter geometry as the effective hot attractor

background in the space of solutions as opposed to a spacetime solution as in the extremal

case. One can write an entropy function for this background in parallel to the extremal

limit, and on extremizing it obtain the Bekenstein-Hawking entropy.

It is often the case that the entropy of a non-extremal black hole is parametrically larger

than the entropy of the extremal black hole obtained from taking the zero temperature

limit. Fortunately, this is not the situation that we find ourselves in when employing the

hot attractor mechanism in N = 2 supergravity. The zero temperature limit is a smooth

limit in solution space in the following sense. Because of the area law, we know that Aext =√
A+A−, and this is an invariant for a family of solutions specified by the non-extremality

parameter ∆. When Aext/ℓ
2
P is large — i.e., when the charges are macroscopic and four

dimensional N = 2 supergravity supplies a semiclassical approximation of quantum gravity

— to leading order, there is no jump in the number of states as we take the ∆ → 0 limit

because in this limit A± → Aext. As r± approaches rext, the attractor geometry reduces to

the usual deep throat decoupling geometry, and the scalar manifold space reduces to the

usual attractive flow space at zero temperature.

Recall that we have shown that the mass associated to fluctuations in the space of

solutions about the Reissner-Nordström point behaves as mAdS = m
∆ . In the zero tempera-

ture limit, the spectrum therefore acquires a mass gap. This means that the entropy of the
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extremal solution is fully determined by massless excitations in the spectrum. At non-zero

temperatures, massive excitations also contribute to the entropy at leading order. This

situation is similar in spirit to the proposal of [53] for the near extremal Kerr black hole

in which left moving and right moving modes of CFT2 contribute at the same order to the

entropy. In taking the extremal limit, we isolate the degrees of freedom of a single chiral

sector of the theory [54–57].

In our analysis, we have exploited the symmetries about a special point in the solution

space of the non-extremal black hole where the scalars assume the attractor values. The

AdS2 that appears here with an underlying SL(2,R) symmetry becomes an exact symmetry

in spacetime in the extremal limit. As the hot attractor mechanism recovers the equations

of motion of the extremal black hole by an averaging over region 2, there is an intimate

relation between the moduli space and spacetime geometry. The decoupled regime between

the horizons acts like AdS2 in essential ways. We seek to make the SL(2,R) of the decoupled

region 2 manifest in spacetime. Future work develops this correspondence further. One of

the other critical assumptions we have made is that the potential has a unique extremum

in the region of moduli space corresponding to a single center solution, and this is justified

by the extremum value of the potential being completely independent of moduli. Under a

standard Kaluza-Klein uplift, the attractor geometry can then be embedded as a non-chiral

thermal state in AdS3, and its microscopic entropy can be computed. This constitutes a

preliminary step in understanding the microscopic organization of non-extremal black hole

states in string theory.

The conjecture of [58–60] for describing the microstates of non-extremal black holes in

the D1/D5 system involves an effective string whose vibrations delimit the two horizons.

Quantization of the vibrational profiles of this string then yields the black hole entropy.

Indeed, according to [58], degrees of freedom that reside at the inner horizon are crucial

to reproducing known thermodynamics of black holes. This geometrical picture appears

not to have an obvious smooth extremal limit within a single duality frame. Our approach

may circumvent this by focusing on the moduli space which does have a smooth limit and

which defines the solution space of the theory better.

In [47], a symmetry of M-theory into which N = 2 supergravity is embedded is used to

generate solutions with conformal symmetry, which could then be lifted to BTZ black holes.

However, this method is only effective for theories where the duality symmetries are explic-

itly known, such as those with the simplest cubic prepotentials. Our techniques may apply

to more general four dimensional static solutions in N = 2 theory. Indeed, it is remarkable

that each step so far in the effort to understand the entropy of non-supersymmetric ex-

tremal black holes has a parallel in the extremal case with the same degree of calculational

ability. In principle, one could attempt to extend our results to rotating solutions, but as

this is technically challenging, we leave this for future investigation.

In addition to clarifying these issues, there are a number of new challenges we must

confront. Our analysis is restricted to black hole backgrounds with an arbitrary non-

extremality parameter but which are at a point in the moduli space corresponding to the

attractor values of the scalar fields commensurate with the extremal limit. The scalars are

constant and do not flow. An obvious next step is to understand the embedding of black

holes at other points in the moduli space in terms of CFT ensembles.

– 13 –



J
H
E
P
0
4
(
2
0
1
6
)
0
2
6

It is also not generically true that one can always lift a four dimensional solution to

a weakly coupled solution in five dimensional supergravity with an AdS3 factor. Fields

such as the dilaton, which is one of the moduli, may be strongly coupled along the flow.

The Cardy formula arises as the leading term in the high temperature expansion of the

partition function [61]. If we start off with a charge configuration that is not compatible

with the conditions needed for the Cardy formula to apply, we may be able to perform

a duality transformation to map the system to a high temperature regime. The duality

transformation acts on both charges and moduli, and one must also show that at the

endpoint of the duality operation, the scalar flows still remain in the domain of weakly

coupled supergravity.13 This is a non-trivial constraint on the system.

This scheme for exploring non-extremal solutions may additionally supply clues to the

organization of states in the Hilbert space of black branes of which little is known so far. In

particular, there exist Nernst brane solutions (see [63–67]) in gauged supergravity theories

that exhibit a zero entropy at zero temperature. Working in gauged supergravity, we may

identify and isolate subsectors of the non-extremal Hilbert space, such as Lorentz-violating

Lifschitz sectors that occur as intermediate geometries in attractor flows. Analyzing each

of these subsectors might enable us to fully map out enough states to account for the

Bekenstein-Hawking entropy. This is for future work.
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