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Abstract

The research reported in this thesis was motivated by the pressing need for novel materi-

als for thermoelectric and photovoltaic applications. We numerically explored properties

of Platinum dichalcogenides dioxide to examine if these compounds have potential as ac-

tive components in thermoelectric and photovoltaic devices. Transition metal dichalco-

genides (TMDs), in layered structures, have diverse properties that complement and

potentially extend beyond promising properties of graphene, the prototypical layered

material. Structural, stabilities (mechanical and dynamical), electronic, optical and

thermoelectric properties of the bulk, bilayer and monolayer trigonal platinum dioxide

and dichalcogenides PtX2, (X = O, S, Se and Te) were investigated based on density

functional theory (DFT) and many-body perturbation theory (MBPT) as implemented

in the Vienna ab-initio simulation package. The structural properties of the bulk, bi-

layer and monolayer PtX2 (such as optimized lattice parameters, cohesive and formation

energies) were extracted from relaxed structures. Elastic coefficients and phonon dis-

persion studies showed that the relaxed structures are mechanically and dynamically

stable. Investigation of the electronic band structure and densities of states of the bulk,

bilayer and monolayer PtX2 show that, at the DFT level of approximation, all the com-

pounds are indirect band gap semiconductors apart from bulk PtO2, PtS2, PtSe2 and

PtTe2 which are semi-metals.

To calculate optical properties, we implemented the Bethe-Salpeter equation (BSE)

calculations on top of non-self-consistent G0W0 calculations to determine the dielectric

matrix. The obtained results for absorbance in the visible light range for single layers

in bulk, bilayer and a monolayer PtX2, are from 0.9 − 35.27% for in-plane absorbance.

which is higher than 2.3% for graphene and 5−10% for layered MoS2, MoSe2 and WS2 of
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similar thickness. The BSE optical gaps are in the range 0.37 to 2.75 eV for monolayer

and bilayer PtX2, while there is no gap bulk PtO2, PtS2, PtSe2 and PtTe2. Monolayer

and bilayer PtX2 may have potential for application in tandem solar cell applications.

Lattice and electronic transport coefficients were obtained within the relaxation-time

approximation to the Boltzmann transport equations as implemented in PHONO3PY

package and BoltzTraP2 packages. We calculated the lattice thermal conductivity for

PtX2 structures per layer, for ease of comparison between few layer and bulk systems.

The obtained results are in range from 24.61×10−8 to 0.07×10−8 Wm−1K−1 at 300 K

for bulk PtO2 to monolayer PtTe2, respectively. The out-of-plane coefficients of bilayer

and monolayer are zero. The obtained values of the figure of merit (ZT) were in a range

from 0.04 to 0.74, with the highest ZT values achieved by bilayer and monolayer PtO2

(0.62 and 0.74), while the lowest ZT value was obtained by bulk PtS2 of 0.04. Also, we

observed the increase of figure of merit from bulk to monolayer which was expected due

to their low lattice thermal conductivity. Most, the highest values of the calculated ZT

were dominated by the electron charge carriers. The investigation suggests that of the

compounds explored, n-type monolayer PtO2 has the most promise for thermoelectric

applications.
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1
Introduction

1.1 Motivation and Overview

The necessity for alternative and renewable energy technologies to decrease our de-

pendence on fossil fuels has lead to different directions of research, including high-

temperature energy harvesting via the direct recovery of waste heat and its conversion

into useful electrical energy using thermoelectric devices. During the past few decades

research on thermoelectric materials has been intensified. Such interest has been driven

by the need for more efficient use of energy and a need for thermoelectric materials that

can be used for converting heat into electricity and electronic refrigeration [2, 3]. The

investigation of a different system of potential thermoelectric materials has been studied

by various research groups. Dresselhaus M S et al., are investigate the thermoelectric

properties of some low-dimensional materials, and they found their figure of merit are

in range from ∼0.08 to ∼0.75 at temperature range from 300 to 1400 K [4]. The figure

of merit for the some selected materials were in range from ∼0.95 at 400 K for Bi2Te3

up to 1.7 at 800 K for ZN4Sb3 [5]. Nanostructuring approach are used to study the

enhancement of thermoelectric figure of merit of bulk materials, their obtained were

in range from 0.25 to 1.4 at temperature range from 0 to 1000 K [6]. The main two

research efforts are focused on the materials are maximization of the power factor PF

and minimization of the thermal conductivity, (especially lattice thermal conductivity).

The proposed application of thermoelectric materials increased the activity in this field

by optimizing greater performance and higher temperature thermoelectric materials

1
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compared with the current materials. Recently, the thermoelectric solar hybrid system

has been investigated to improve absorption in the infrared zone in the solar spectrum

and for thermoelectric solar power generation [7]. Nowadays, of more importance is the

higher performance development of thermoelectric materials. Novel applications of ther-

moelectrics such as enhanced performance of optoelectronics coupled with solid-state

thermoelectric cooling, power provision for deep-space probes via radioisotope ther-

moelectric generators and biothermal batteries to power heart pacemakers. Recently,

thermoelectric generators have been installed in automobiles to capture waste heat from

the exhaust system and to transform it into useful electrical energy for automotive elec-

trical systems and for increased fuel efficiency for use in the next-generation vehicles [8].

Thermoelectric refrigeration is an environmentally green method of small-scale such as

infrared detectors, optoelectronics and localized cooling in computers, and many other

applications [9].

1.2 Photovoltaic

Photovoltaic technology is one of the ways to generate electricity from the sun energy

[10]. In a semiconductor, the PN-junction is incorporated of practically for all photo-

voltaic devices to develop the photovoltage. The solar cell system operation is based

on photovoltaic effects, reported by Becquerel in 1839 [10, 11]. To produce direct volt-

age and current, the PV cell should be connected in series, and this direct voltage

can be converted to alternative current power, when required. Many publications have

described its operating principles [12, 13]. However, the efficiency depends on the en-

ergy absorbed which also depends on the band gap, taking into account the nature of

transition as a direct and an indirect band gap [14].

1.3 Thermoelectric Phenomena

One of the most right challenges of our time is to find renewable alternative energy

sources which are environmentally friendly. The technology of thermoelectric is con-

sidered a kind of energy conversion technology. The description of the conversion of

thermal energy to electrical energy, or vice-versa is a phenomenon that is called the

thermoelectric effect [15]. There are three important transport effects, namely the See-
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beck effect, the Peltier effect and the Thomson effect. Details about those effects are

summarised in section (1.3.1). Thermoelectric performance of materials determine the

energy efficiency of thermoelectric devices. The figure of merit (ZT) is a quantity used

as a gauge for novel thermoelectric materials. Bismuth telluride-based alloys have long

be considered as the best thermometric materials because of their high ZT, which is

slightly above unity. Through the last decade, the search for promising bulk thermo-

electric materials has intensified. Nowadays, new material systems are being developed

to achieve ZT well above unity. This also forms the aims of our study.

1.3.1 Thermoelectric effects

There are three important thermoelectric effects are namely, Seebeck, Peltier and Thom-

son effect. The Seebeck effect describes the voltage gradient in a conductor subjected to

a gradient of temperature. Which was discovered by Seebeck, when a compass needle

deflected when placed in the vicinity of a closed-loop formed of two dissimilar metals

with a temperature difference between the junctions. This observation provides direct

evidence that a current flows through the closed circuit driven by the temperature differ-

ence. On the other hand, the Peltier effect describes the conversion of electrical current

into heat transfer, which is a reverse technique of the Seebeck [15]. The Peltier effect

is the underlying foundation for thermoelectric refrigeration. When an electric current

passes through two dissimilar materials such as metals or semiconductors that are con-

nected at two junctions, heat will be absorbed in one junction and liberated at the

other junction. As a result, one junction cools off while the other heats up, depending

on the direction of the current [16]. Figure 1.1 show Seebeck and Peltier effects. The

Thomson effect is the rate of heat absorbed or emitted when a conductor is subjected

to a temperature difference along its length. There is tow type of Thomson effect the

positive and negative effect, that depends on the direction of the current movement,

from the high to a low potential or vice versa [17]. In this research, we focused on how

heat energy is converted to the electricity, which depends on charge carriers moving

through a gradient of temperature, which is called the Seebeck effect.
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Figure 1.1: Seebeck and Peltier effects.

1.3.2 Thermoelectric figure of merit

The figure of merit concept is used to describe the efficiency of a thermoelectric material.

It is expressed as;

ZT =
S2σT

κ
=

S2σT

κe + κL
, (1.3.1)

where S, σ, T and κ are the Seebeck coefficient, electrical conductivity, temperature

in Kelvin scale and thermal conductivity, respectively. κe and κL are electronic and

phononic contributions, which is a combination of κ (κ = κe +κL). The stander way to

figure out good thermoelectric material is to determine the figure of merit. Thus, the

efficiency of energy conversion has a direct relation to the figure of merit [18]. Hence,

a good thermometric material should have a large Seebeck coefficient for increasing the

conversion of heat to electricity, a high electrical conductivity to reduce the Joule effect

and a low thermal conductivity to make a large gradient of temperature [15].

1.3.3 Optimization of thermoelectric materials

Good thermoelectric materials should have a low thermal conductivity and a large power

factor. Usually, semiconductors have a large (S) and low (σ), compared to metals.

Doping a material might increase its electrical conductivity. But at the same time, the

heavy doping can reduce the Seebeck coefficient due to shifting of the Fermi level close

to band edge or into the band. Then, it is necessary to find a doping level where the

power factor is optimized. There are many ways to reduce the thermal conductivity,

for example, adding a short-range disorder into the crystal structure, or substitution

by isoelectronic elements, which may affect the electrical conductivity. Unfortunately,

to increase the figure of merit through reducing thermal conductivity is considered as a
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main challenge [19, 20].

1.4 Transition-metal dichalcogenides (TMDS)

The word chalcogen comes from the Greek word ”chalcos” which is means ore or metal

and ”genes” which means formation, so ore former is considered the general mean of

the term chalcogen [21]. The chalcogenide elements belong to group sixteen of the pe-

riodic table. This group consists of oxygen, sulphur, selenium, tellurium and polonium,

however, oxygen is usually excluded from this group because it has different chemical

behavior compare to others. For example, the wide contribution of band gaps to various

electrical and optical properties. The chalcogenide compounds were discovered recently

compared to oxygen compound, nevertheless, it is not considered from the chalcogenide

compounds. The minerals pyrite (FeS2) and calaverite (AuTe2) are the most common

form chalcogenide compounds. Generally, chalcogenides can exist over a wide range of

compounds, like glass-forming [22]. Transition metal dichalcogenides and dioxide have

a general form of MX2, where M represents the transition metal and X an atom of

the oxygen family (X = O, S, Se and Te). Some TMDs are layered compounds in a

sandwiched form (X-M-X), held together by covalent bonds, as shown in Figure 1.2.

The van der Waals forces are stacking the layers together. This phenomenon of bonding

is helpful to create the two dimensional structure [23, 24, 25, 26]. However, these

compounds have two important differences from the iso-structural group IVb, Vb and

VIb TMDs. First, a large number of electrons in d-shell in the group VIIIc metal

compounds compared with other groups of metal. The small value of the ratio c/a

is considered second difference when it compares to the ideal value of 1.633 [27]. The

group VIIIc layered TMDs have electronic structure and related behavior quite different

from the other groups of those the TMDs. Previous calculations on the group VIIIc

were done on PdTe2 compound, using both the KKR (Korringa-Kohn-Rostoker) and

LMTO (linear muffin-tin orbital) methods. Substituting chalcogen atoms, from S to Te

shows the variation on the electronic structure [26]. Most works have been focused on

group VI TMDs, MoS2 and WS2, while other groups remain in uncharted waters [28].

Their electronic structure properties studies have been reported and discussed for group

X TMDs [29, 30], which differentiates them from others.
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( a )

a

b

C

( b )

Figure 1.2: Figure of the general form of layered TMDs (MX2). The M and X are
represented by brown and yellow colours. (a) top of MX2 2D and (b) side of MX2 2D

Platinum dioxide (PtO2)

Platinum dioxide is a trigonal phase layered structure with space group P 3̄m1 (No.

164). Stability of α-PtO2 phase were examined using surface x-ray diffraction (SXRD),

the experiments observed that α-PtO2 is fully stable [31, 32]. X-ray was used to measure

lattice parameters of PtO2 and other phases, α-PtO2 has hexagonal structure a CdI2-

like structure with lattice parameters a0 = 3.11 Å, c0 ∼ 4.34 Å and V0 = 36.44 Å3

[33]. The photoelectron spectroscopic shows that its optical gap ranges from 1.30 to

1.47 eV [34], while optical reflectance measurement gives optical gap of ∼1.2 eV [35].

Zhensheng et al. investigated the electronic properties of α-PtO2, and they reported

that is a semiconductor with optical gap of 1.84 eV [36]. Metal oxide has a wide range

of applications in optical devices, catalysis, photo-sensors and electronics [37].

Platinum disulfide (PtS2)

Bulk, bilayer and monolayer PtS2 crystallise in a CdI2 structure, with space group P 3̄m1

(No. 164) [26]. The lattice parameters a0 = 3.54 Å, c0 = 5.04 Å and V0 = 54.78 Å3

for bulk structure were investigated using x-ray diffraction [30, 38, 39]. The structural,

electronic and optical properties of monolayer PtS2 have also been well investigated

[40, 41, 42]. They are predicted to have promising photocatalytic properties [25], but

their thermoelectric properties are yet to be well understood. Previous spectroscopic

studies at 300 K show that bulk PtS2 is a semiconductor with an indirect band gap

of 0.95 and 0.87 eV parallel and perpendicular to the trilayers, respectively [43, 44].

Electronic structure calculations of infinite periodic bulk PtS2 confirmed that bulk and

monolayer PtS2 are indirect band gap semiconductors [40, 41, 42].
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Platinum diselenide (PtSe2)

Platinum diselenide also has a trigonal phase structure, with space group P 3̄m1 (No.

164). X-ray measurements showed that PtSe2 possess crystallises in a CdI2 like-structure

and the lattice parameters are a0 = 3.73 Å, c0 = 5.08 Å and V0 = 61.15 Å3 [45]. Exper-

iments showed that bulk PtSe2 has a metallic behaviour at a temperature from 5 to 380

K with a high residual resistance ratio of 184 [46]. It also has a semi-metal character

[26], while monolayer and bilayer structures are semiconductors with a band gaps of 1.2

eV and 0.21 eV, respectively [47]. Phonon dispersion and electronic properties of bulk,

monolayer, and bilayer PtSe2, were investigated using DFT with the Tkatchenko and

Scheffler van der Waal’s correction (DFT-TS) [48]. This study confirm that the bulk

is semi-metallic while monolayer and bilayer configurations are semiconductors with an

indirect band gap of ∼1.6 eV and ∼0.8 eV, respectively. Yim C. et al [49] demon-

strated that multilayer PtSe2 is easy to synthesise and showed that vertically stacked

heterostructures of PtSe2 on Si can be used as photodiodes and in photovoltaic cells.

The electronic structure of monolayer and bilayer PtSe2 have been calculated using the

Perdew-Burke-Ernzerhof (PBE) exchange-correlation approximation with band gaps of

1.39 and 0.99 eV for PtSe2, respectively [50]. The calculated lattice thermal conduc-

tivity of monolayer PtSe2 with a vacuum of 20.12Å, was found to be 16.97 Wm−1K−1

at 300 K [51]. The investigation of electronic and transport properties for monolayer

PtSe2 reported in reference [52], suggests that this compound has promising properties

for thermoelectric applications.

Platinum ditelluride (PtTe2)

Platinum ditelluride is a third compound of the PtX2 family, with trigonal phase struc-

ture and space group P 3̄m1 (No. 164). The lattice constant of bulk PtTe2 are a0 =

4.01 Å, c0 = 5.20 Å and V0 = 72.43 Å3 was obtained experimentally using x-ray [39].

As in the case of PtSe2, bulk PtTe2 has a metallic behaviour at a temperature from

5 to 380 K with a high residual resistance ratio of 29 [46]. Recently, the bulk PtTe2

has been reported to be a type-II Dirac semi-metal [53]. Mechanical, electronic and

optical properties were calculated for a monolyaer PtTe2 using DFT, and they found a

monolyaer PtTe2 is a semiconductor with in direct band gap of 0.70 eV [41]. Zhishuo

H et al. reported that a monolayer PtTe2 is dynamically stable, and it is a semicon-

ductor with an indirect band gap of 0.61 eV [42]. Biaxial strain effects on electronic
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structures and thermoelectric properties in monolayer PtTe2 have been investigated.

The lattice thermal conductivity of monolayer PtTe2 was found to be 7.89 Wm−1K−1

at 300 K [52]. Also, the electronic and transport properties for monolayer PtTe2 have

been studied and reported in reference [52], and the obtained results suggest that it is

promising for thermoelectric applications. The spin-orbit coupling has been shown to

have an important effect on electronic structures and power factors for semiconducting

TMD monolayers [54, 51, 55].

1.5 Aims

The aims and the specific objectives of this thesis are:

• To investigate physical properties of the layered structure of trigonal phase plat-

inum dioxide and dichalcogenides, (PtX2; (X = O, S, Se and Te)).

• To investigate the structural and electronic properties.

• To examine the mechanical and dynamical stabilities, the elastic constants and

phonon band structure through the computational approaches.

• To investigate the optical properties of most stable phases.

• To calculate the lattice thermal conductivities of the structure, the single-mode

relaxation-time approximation.

• A comparison between the bulk, bilayer and monolayer, for PtX2; (X = O, S, Se

and Te), in order to know the best one for thermoelectric applications.

• Transport properties will then be evaluated by solving Boltzmann transport equa-

tions to obtain the figure of merit, Seebeck coefficient, charge carrier concentra-

tion, lifetime, thermal and electrical conductivity as well as power factor. This will

help to identify the PtX2 phases which are potential candidates for thermoelectric

applications.

1.6 Structure of this Thesis

This thesis has been arranged in the following manner: In Chapter 1, we introduce

a motivation for this research as well as briefly discuss on the platinum oxide and
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chalcogenides. The background of density functional theory, many-body perturbation

theory and Boltzmann transport theory are presented in Chapter 2. in Chapter 3, we

give details of the computational methods. Chapter 4 is dedicated to our calculated

results and discussions. In this section, structural, mechanical, dynamical, electronic,

optical and thermoelectric properties of each compound in studied in separated section.

In section 4.1 we study the the properties for α-PtO2. Section 4.2 is devoted to the

properties for PtS2. Section 4.3 is devoted to the properties for PtSe2. The properties

for PtTe2 are investigated in section 4.4. Finally, Chapter 5 summarises the main

results, concludes the study.



2
Theoretical background

2.1 Many-body Schrödinger equation

In this section, we discussed the many-body systems and Born Oppenheimer approxi-

mation. The many-body systems are very complex, to study the physical and chemical

properties of materials, since this material have a large number of interacting particles,

so, we must then consider it as many-body problems. An ab-initio method was used

to solve the Schrödinger equation for many-body problems. The Schrödinger equation

can be expressed in the form:

Ĥ|ψ〉 = E|ψ〉, (2.1.1)

where |ψ〉 is the wave function, E is the eigenvalue of energy and Ĥ is the Hamiltonian

operator, which can be in form:

Ĥ = − ~2

2me

N∑
i=1

∇2
i −

N∑
j 6=j

ZIe
2

|ri −RI |
+

N∑
j 6=i

e2

|ri − rj |

− ~2

2MI

N∑
I=1

∇2
I −

N∑
J 6=I

ZIZJe
2

|RI −RJ |
,

(2.1.2)

where me, MI and N represent the electrons mass, nuclei mass, electrons and nuclei

number, respectively, while RI , ri,j and Z represent the nuclei position number ith,

electron position number ith or jth and nuclei charge, respectively. ~ and e are the con-

10
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ventional fundamental constants. We can rewrite the Hamiltonian operator as follows;

Ĥ = T̂n + V̂nn + T̂e + V̂en + V̂ee, (2.1.3)

whereby, Tn and Vnn are the kinetic energy and the potential energy of the nuclei,

respectively, Te and Vee are the kinetic energy and potential energy of the electrons,

respectively and Vne stands for the nuclei-electron interaction.

The Born-Oppenheimer approximation suggests that to treat the movement the move-

ment of electrons and nuclei independently because the latter has a heavy mass com-

pared to that of electron [56]. The born-Oppenheimer approximation can be illustrated

in the form of an equation as;

ψ(Rj , ri) = ψe(Rj , ri)ψn(Rj), (2.1.4)

where ψe(Rj , ri) is the electron wave-function and ψn(Rj) is the nucleus wave-function.

2.2 Density Functional Theory

This section is focused on density functional theory description, (Hohenberg-Kohn The-

orems a Kohn-Sham equation) and some approximations which have been used in this

thesis. We will also talk of periodic boundary and Bloch’s theorem, k-points, Brillouin

zone and pseudopotentials. To simplify the original problem of many-body-system, the

movement of the electrons and ionic must be treated separately and hence allows us to

treat the ions in a classical formalism. Density functional theory, based on two theorems

first proved by Hohenberg and Kohn [57, 58] in the 1960s, makes it possible to describe

the ground-state properties of a real system in terms of its ground state charge density

instead of the far more complicated wave function. This theory allows us to find the

ground-state properties of a system in terms of the ground state charge density without

explicit recourse to many-particle wave functions.

2.2.1 The Hohenberg-Kohn Theorems

Theorem I: Interacting particles system in an external potential V (r), this external

potential is unique, for the ground state electronic charge density.
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Theorem II: A universal functional for the energy in terms of the density can be

defined, valid for any external potential Vext(r). For any particular Vext(r), the exact

ground state energy of the system is the global minimum value of this functional, and

the density ρ(r) that minimizes the functional is the exact ground state density ρ0(r).

The first and second theorems have been proved in many articles. [59, 60, 57, 61, 62, 63].

2.2.2 Kohn-Sham equation

Kohn and Sham assumed a practical ansatz based on non-interacting electron system,

the interacting electrons system can be represented by the auxiliary ground state density

system, the auxiliary Hamiltonian usually has the main term of kinetic energy operator

and effective potential Veff [58, 59, 60]. Where the ground state density is given by;

ρ[r] = 2
∑
i

|ψi(r)|2, (2.2.1)

and the Hamiltonian formula is expressed as;

Ĥ =
(
− ~2

2me
∇2 + VKS(r)

)
ψi = εiψi, (2.2.2)

where VKS is the Kohn-Sham potential operator which is consist of three components

as;

VKS = Vext + VH + Vxc, (2.2.3)

where Vext is the external, VH is the Hartree and Vxc is the exchange-correlation poten-

tials.

2.2.3 The local density approximation

The basis of all the approximations of the exchange-correlation is the local density

approximation (LDA). In the LDA, the inhomogeneous electronic system is treated as

a homogeneous electron gas with uniform density. The exchange-correlation potential

is dependant on the exchange-correlation energy from the electronic density, this is the
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local density approximation (LDA) [61] :

Exc[ρ] =

∫
ρ(r)εxc(ρ(r))dr, (2.2.4)

where εxc(ρ(r)) is the exchange-correlation energy density.

2.2.4 Generalised gradient approximation

Hohenberg and Kohn proposed the gradient expansion approximation (GEA) [62, 63,

60, 64] because the LDA does not works for real systems. Notwithstanding, the disap-

pointing results, the GEA provided the basis for the generalised gradient approximation

(GGA) which is currently the most popular exchange-correlation functional [61, 65] de-

fined as;

EGGAxc [ρ] =

∫
ρ(r)εxc(ρ(r)),∇ρ(r)d3r. (2.2.5)

The GGA is considering inhomogeneity for electron density gradient. However, GGA

results in almost underestimation, for example, the lattice constant and band gap re-

sults, compared to LDA results. GGA has many different types, but in this research

the Perdew-Burke-Ernzerhof (PBE) [66, 67] exchange-correlation functional,

2.2.5 Van der Waal’s

The LDA and GGA are among stander exchange correlation functionals in DFT, to

describe the structural parameters, electronic structure and other properties. How-

ever, fail to account for long-range electron correlations that are the primary cause of

van der Waals interactions, resulting from dynamical correlations between fluctuating

charge distributions, which play a significant role in layered structures [68]. The opti-

mized Becker 86b van der Waals (optB86b-vdW) [69] is consider a attempt to improve

approximate functionals to account for van der Waals effects.

2.2.6 Periodic Boundary Conditions and Bloch’s Theorem

Since the crystal solid is periodic in three dimensions (3D) and the calculations problem

of that is a large number of electrons; the periodic boundary conditions (PBC) can re-
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duce the system size to just one particular unit cell taking the symmetry into account.

For a layered crystal (monolayers and surfaces), which have periodicity in two dimen-

sions, it can be represented as slabs, with a vacuum region. To prevent the interaction

between the layer, the vacuum region must be enough large to ensure the layers are

decoupled.

The periodic boundary conditions in Blochs theorem [70, 71, 72], was described using

the wave function in Bloch’s theorem can be expressed as:

ψk(r) = eik.ruk(r), (2.2.6)

where ψk(r) is the electronic wave function, r is a position vector, k is a wave vector, in

the right side of the above expression, is the plane wave eik.r and the periodic function

uk(r).

K-points and Brillouin zone

Three independent lattice vectors are required to define the reciprocal lattice vectors

of the cell. The Wigner-Seitz size cell of the reciprocal lattice is represented as a first

Brillouin zone. The volume (ΩBZ) is defined as [73];

ΩBZ = bi.bj × bk =
(2π)2

Ω
, (2.2.7)

where Ω is the unit cell volume. Note that the accurate method to sample the Brillouin

zone has been devised by Monkhorst-Pack [74] and Chadi and Cohen [75].

Pseudopotentials

The physical properties of the materials depends more on valence than core electrons.

The advantage of pseudopotential is substituting the core electrons and strong ionic

potential by a weaker pseudopotential [76, 73, 61]. The pseudopotential represents a set

of pseudo wave functions in place of the true valence wave function [73, 77]. There are

many types of pseudopotentials one can construct from first-principles such as ultra-

soft pseudopotentials [78], the potentials based on the projector augmented wave (PAW)

method [79] and norm-conserving pseudopotentials [80].
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2.3 Many-body perturbation theory

The Green function, GW Approximation and Bethe-Salpeter equation were covered

briefly. The many-body perturbation theory (MBPT) is based on quasi-particle and

Green function concepts. It is best method to accurately describe the exited states

properties than DFT [60, 64].

2.3.1 Green’s function

The Green function can be used to extract physical informations in many-body theory

[81]. The energy, lifetime and expectation values of single-particle operators are the

quasi-particle properties, which are obtained from the Green function [82].

2.3.2 GW Approximation

The solution of many-body system can be used to obtain the self-energy of two particles

Green’s function [83], but this is not practicable. Hedin [84] proposed GW Approxima-

tion to obtain the self-energy which is practicable method given by;

∑
GW

(r, r′; t) ' iG(r, r′; t)W (r, r′; t), (2.3.1)

where G(r, r′; t) is the interacting Green function and W (r, r′; t) is the dynamically

screened coulomb. r, r′ and t are the conventional fundamental constants.

2.3.3 Bethe-Salpeter equation

The description of excitation state requires propagation of two particles (electron-hole

pair) which is beyond the one-particle Green function GW approach. GW approach

required the improvement in the response functions to account for two-particle Green

function. The electron-hole pairs interaction can now be included by adding the ver-

tex correction in vertex function which is beyond the RPA. This is done by including

the vertex function Γ into polarizability function equation P through the second itera-

tion and solve for polarizability 3P , four-point screened-interaction function 4W (1,2,3,4)

and four-point Kernal function K(1,2,3,4) [85, 86]. In practice to perform BSE calcu-

lations requires one first to determine the static screened electron-hole interaction term



Section 2.4 Boltzmann equation Page 16

W (x,x′;ω=0) and the quasiparticle band structure, typically from a GWA calculation

[87, 86]. With this the effective two-particle Hamiltanion H2P is built, H2P is diagonal-

ized to derive the expression of macroscopic dielectric function εM (ω) directly related to

measurable quantities. If one considers the positive resonance part of H2P the resultant

operator is Hermitian and its eigenstate orthogonal [85, 86]. H2P contributes to the

bare Coulomb interaction called the electron-hole exchange and contribution due to the

screen electron-hole W is responsible for the appearance of bound states, and it can

even lead to hydrogen like spectral features in insulators [85].

2.4 Boltzmann equation

The Boltzmann equation provides description of electrons motion, which changes their

position and momentum when subjected to diffusion. The linearised Boltzmann equa-

tion is given by [88, 89] ;

∑
q′p′

[
(nqp − n0qp)− (nq′p′ − n0q′p′)

]
Zq′p′
qp − vp(q) · ∇T

∂n0qp
∂T

= 0, (2.4.1)

where nqp is the distribution for phonon, (q) is the wave-number, p is the polarization,

n0qp is the equilibrium distribution, Zq′p′
qp is the intrinsic probability and vp(q) is group

velocity of phonon (q, p) T is temperature. The Phonon-phonon umklapp scattering

can be written in the form [90];

τ−1U (ω) = BUω
2Te−θ/3T , (2.4.2)

with

BU ≈
~γ2

Mv2θ
, (2.4.3)

where γ is the Grüneisen parameter, ω is the frequency, M is the average mass of an

atom and θ is the Debye temperature [?].

2.5 Transport theory

It is good to understand the electrical and thermal transport behavior of thermoelectric

materials, to help in finding a suitable material [91].
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2.5.1 Transport equation

The expression of transport equation was stated by Liouville theorem, for a distribution

function of particles;

df

dt
=
∂f

∂t
+
[∂f
∂t

]
external

+
[∂f
∂t

]
internal

, (2.5.1)

where f(r,k, t) is the carrier distribution function, r and k are position and wave vectors,

respectively, and t is time, and also, the internal and external are denote the changes

of f under external forces and internal phenomena, respectively. The carriers equation

can be also written as;

−
[∂f(r,k)

∂t

]
external

= v· ∇rf +
dk

dt
· ∇kf =

[∂f
∂t

]
internal

, (2.5.2)

where v is the carriers velocity. ∇r,∇k are gradients with respect to position and wave

vector, respectively. The relaxation time can be define as τ(k), which can represent[
∂f
∂t

]
internal

= −f−f0
τ(k) , where f and f0 are the slightly and the equilibrium perturbed

distribution function, respectively [92]. The expression of transport equation including

relaxation time becomes;

− f − f0
τ(k)

= v· ∇rf +
dk

dt
· ∇kf. (2.5.3)

2.5.2 Seebeck coefficient and electrical conductivity

The definition of the Seebeck coefficient can be written as;

S =
dV

dT
=

1

e

(∂Ef/∂r

∂T/∂r

)
, (2.5.4)

where S in equation above is given by;

S = ± 1

eT

[
Ef −

∫ ∞
0

g(E)τE2∂f0(E)

∂E
dE/

∫ ∞
0

g(E)τE
∂f0(E)

∂E
dE
]
, (2.5.5)

where g(E) is the electron density of states. The negative sign of the Seebeck coefficient

indicates that carriers are electrons, and the positive sign of the Seebeck coefficient indi-

cates carriers are holes [93]. On the other hand, the expression of electrical conductivity
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can be given as;

σ =
2e2

3m∗

∫ ∞
0

g(E)τE
∂f0(E)

∂E
dE, (2.5.6)

where m∗ is the effective mass.

2.5.3 Thermal conductivity (κ)

To understand how the material response to the heat transfer, one should examine

its thermal conductivity. The thermal conductivity has two main components, the

electronic and lattice contributions to total thermal conductivity.

Electronic thermal conductivity (κe)

The electronic thermal conductivity is due to the collision between the electrons during

their movement when the temperature is raised. The electronic thermal conductivity

component is an important part, especially when we have heavy doped semiconductor.

The expression of κe can be written as;

κe =
3

2

(kB
e

)2
σT, (2.5.7)

where kB is Boltzmanns constant, σ is the electrical conductivity, and T is kinetic energy

of carriers.

Lattice thermal conductivity (κL)

The lattice thermal conductivity means, heat conduction via vibrations of the lattice

ions in a solid [94]. Hence, the lattice thermal conductivity can be determine using the

Boltzmann equation [88, 89]. In the single-mode relaxation-time approximation [95],

the lattice thermal conductivity can be expressed as;

κL =
1

ZΩ

∑
Cv⊗ vτ, (2.5.8)

where Z, Ω and τ are the unit cell number, unit cell volume and the relaxation time or

phonon lifetime respectively. C is the heat capacity that is expressed as;

C = kB

( ~ω
kBT

)2 e(~ω/kBT )

[e(~ω/kBT ) − 1]2
, (2.5.9)
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where ω = ω(q) is the phonon frequency, T is the temperature whereas kB and ~ indicate

the reduced Boltzmann constant and Planck constant, respectively. v is phonon group

velocity that given by;

v = ∇qω(q, j), (2.5.10)



3
Computational details

In this chapter, we address the calculation details of DFT, MBPT and Boltzmann

transport equations that have been applied in this thesis.

3.1 DFT Calculations

All ground state calculations were carried out using Density Functional Theory (DFT)

with plane wave projector-augmented (PAW) pseudopotential formalism [96], as imple-

mented in the Vienna ab-initio simulation package (VASP) [97, 98]. Within the gener-

alised gradient approximation (GGA), the exchange-correlation functional was approxi-

mated by the Perdew-Burke-Ernzerhof (PBE) [69] formulation, while the optB86b-vdW

[99] functional was used to capture the van der Waal’s interactions as a result of the

layered nature of the structure. The electron wave function was expanded in a plane

wave basis set with an energy cut-off of 520 eV for bulk and 350 eV for bilayer and

monolayers, in all calculations. A sampling of the Brillouin zone was performed using

Monkhorst-Pack grid, [74] an 8×8×6 the Gamma centred k-point mesh for bulk, and

a 12×12×1 the Gamma centred k-point mesh for bilayer and monolayer. Ground-state

geometry of bulk, bilayer and monolayer were fully relaxed until the force on each atom

was less than 1×10−3 eV/ Å. The energy-convergence criterion was 1×10−8 eV, for

bulk, bilayer and monolayer. For the thermal properties calculations, were created a

supercell of 4×4×4 for bulk and 5×5×1 for bilayer and monolayer from their relaxed

pristine unit-cell. In order to avoid any artificial interlayer interaction, a vacuum layer

20
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of 15 Å along c direction was added for bilayer and monolayer calculations.

3.2 Structural Properties

3.2.1 Lattice parameter

The equilibrium lattice constant for PtX2 compounds were optimized by finding the

minima of the energy as a function of the lattice constant. The total energy as a function

of lattice spacing is obtained by varying the lattice constants, with full relaxations of

all the atoms. The fully relaxed structure from PBE and optB86b-vdW are used to

perform the EOS static calculation using the Blöchl tetrahedron correction to extract

energy. From which the lattice parameter is extracted [100].

3.2.2 Cohesive energy

Cohesive energy was investigated at the equilibrium lattice structures. It is the negative

of the energy that must be supplied to the solid to separate its constituents into neutral

free atoms at rest and at infinite separation, the cohesive Ecoh can be written in form;

E
(PtX2)
coh =

E
(PtX2)
comp. −N × (xE

(Pt)
atom + yE

(X)
atom)

N × (x+ y)
, (3.2.1)

where N is the number of PtX2 unit per unit cell, EPt
atom and EX

atom are the atomic

energies of Pt and X, while x and y are the number of Pt and X atoms per unit cell,

respectively.

3.2.3 Formation energy

Formation energy, Eform, is used to verify the relative phase stabilities for any compound.

Formation energy is that energy required to decompose a compound into its most stable

constituent compounds. which is given by

E
(PtX2)
form = E

(PtX2)
coh −

[xE(Pt)
coh + yE

(X)
coh

x+ y

]
. (3.2.2)
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where E
(PtX2)
form is the total cohesive energy per PtX2 unit cell; E

(Pt)
coh and E

(X)
coh the cohesive

energy per atom for Pt and X atoms, respectively. The parameters x and y are defined

is section (3.2.2)

3.3 Stabilities

3.3.1 Mechanical stability

Elastic constants are crucial parameters, through their knowledge, one can predict and

derive a useful mechanical coefficient of a material. For bulk PtX2, in crystal structure

of a trigonal, has six independent elastic constants, C11, C12, C13, C14, C33 and C66

which are similar to tetragonal crystal. The elastic matrix satisfy the Born criterion

C66 = (C11, C12)/2, C11 > |C12| and 2C2
13 < C33(C11, C12) [101, 102].

In this research, we calculated the elastic constants and investigated the elastic prop-

erties by two independents coefficient, Young’s modulus Y and Poisson’s ratio ν. The

Young’s moduli describes the hardness of materials, while Poisson’s ratio (ν) provides

information on bonding nature [103]. The elastic constants (Cij) (i and j are matrix di-

mensions) were used to define these coefficients. For bulk, we used the Young’s modulus

in formula

Y =
1

V0

(∂2Es
∂ε2

)
, (3.3.1)

where Es, ε and V0 are the strain energy, the uniaxial strain and volume, respectively,

since the bulk is a 3D (three-dimensional) structure which depends on volume V0. Since

the bilayer and monolayer is 2D (two dimensional), so we focus of the in-plane Young’s

moduli which is depends on the equilibrium in-plane area, A0, of the supercell and the

strain energy. The Young’s moduli is defined as

Y =
1

A0

(∂2Es
∂ε2

)
, . (3.3.2)

To obtain the Young’s modulus and Poisson’s ratio ν for a bulk we used Hill’s approach

[104], and for a bilayer and monolayer, we used two independent elastic constants, C11

and C12 [105]. The two dimensional expression for Y can also be written in terms of
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elastic constants as [41, 105, 106, 107, 108]

Y = (C2
11 − C2

12)/C11, (3.3.3)

and the two dimensional Poisson’s ratio can be expressed as

ν = C12/C11. (3.3.4)

3.3.2 Dynamical stability

The associated collective excitation for crystal lattice vibrations is called the phonons

[95]. Highly converged forces were required for the calculations of the dynamical matrix

using the direct force constant approach as implemented in the PHONOPY package

[109]. We employed a 4×4×4 supercell for bulk and 5×5×1 supercell for bilayer and

monolayer. The phonon dispersion relations were computed along several high sym-

metry directions using relaxed lattice parameters. The gap usually observes between

the acoustic and optical mode, indicates that the difference in mass between Pt atom

mass and X atomic mass according to Eq. 3.3.5. It is clear that Pt atoms have more

contribution in the low frequency region which is acoustic region, and X atoms have

more contribution in the high frequency which is optical mode region.

ω2
± = K

( 1

M1
+

1

M2

)
±K

√[( 1

M1
+

1

M2

)2
− 4sin2(qa/2)

M1M2

]
, (3.3.5)

where ω is frequency M1, M2 is the mass of Pt and X atoms, respectively, K is spring

constant, q wave vector and a are the separate distance between two mass [110]. The

two solutions of Eq. 3.3.5 are two branches of phonon, the plus sign, for the optical

mode, and the minus sign is for the acoustic mode.

3.4 Electronic properties

A diagram of the electronic energy band is the essential quantity that characterises the

electronic structure of a solid and determines its ground state and a series of excita-

tions involving electronic states [111]. Electronic structure properties are defined by

band structure and density of states (DOS), which clarify the occupied and unoccu-
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pied electronic states. The band gap is the forbidden states that located between the

valence and conduction bands, the magnitude of band gap is classifying the materials

into insulators, semiconductors or metals. Moreover, the band structure diagram is

used to distinguish the nature of the band gap ( direct or indirect ) depending of the

position of the maximum valence band (MVB) and minimum conduction band (MCB)

with respect to the k-points. The DOS is a simple form describing the condenses of the

band structure properties for the occupied state in reciprocal space [112]. Total DOS

is combined from the projection DOS that shows the contribution of the orbitals. The

band gap can be defined through the DOS by top edge of the valence and bottom edge

of the conduction. The calculation of the electronic structure was done in the Brillouin

zone along the high symmetry path. We used the optimized lattice parameter for bulk,

bilayer and monolayer, and k-point of 8×8×6 for bulk and 12×12×1 for bilayer and

monolayer in carrying out the electronic studies.

3.5 Optical coefficient

The optical coefficients were determined as follows, the imaginary part ε1(ω) of the di-

electric function is obtained from the momentum matrix elements between the occupied

and unoccupied wave-functions. The real part ε1(ω), is defined by the Kramer-Kronig

relations [113], whereas the absorption coefficient α(ω) is derived from the dielectric

function as follows: [114].

ε2,αβ(ω) =
4π2e2

Ω
lim
q→0

1

q2

∑
CV k

2wkδ(εCk − εV k − ω)

×〈uCk+eαq|uV k〉〈uCk+eβq|uV k〉∗, (3.5.1)

ε1,αβ(ω) = 1 +
2

π
P

∫ ∞
0

ε2,αβ(ω′)ω′dω′

ω′2 − ω2
, (3.5.2)

α(ω) =

√
2ω

c

[√
ε21,αβ(ω) + ε22,αβ(ω)− ε1,αβ(ω)

]1/2
, (3.5.3)
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where wk is the k-points weight, Ω is the volume of the unit cell, eα are unit vectors,

and V and C are induces restricted to the valence and conduction band, respectively.

While P refer to the principal value, α and β are tensor dimensions, ω is frequency and

c is the speed of light.

The investigation of the optical properties for the bilayer and monolayer were performed

using a supercell, where a single layer was included per supercell. For comparison of the

bulk, bilayer and monolayer, we obtained the optical absorbance, and the percentage of

the radiation absorbed, in the visible photon energy range of 1 − 3 eV, by a single layer

in the bulk, bilayer and a monolayer. The computed results for a single layer of bulk,

bilayer and monolayer were calculated by using the absorbance, A = 1−exp(−α(ω)∆z),

where α(ω) is the absorption coefficient and ∆z is the thickness of a slab of the material.

For comparison with a bilayer and a monolayer, we set ∆z equal to the thickness of a

single layer in the bulk. While for the bilayer and monolayer, the absorption coefficient

scales like the inverse of the length of the supercell perpendicular to the layer for a

sufficiently large supercell and the correct value of ∆z in a periodic supercell calculation

is the length of the supercell perpendicular to the layer [115, 116].

We described the absorption edge using the Tauc plot of the optical dispersion, the

Tauc method [117] determine absorption edge by linear extrapolation of (αhν)
1
n to zero

from an equation αhν = K(hν − Eg)
n. Where Eg is the gap, α is absorption, hν the

photon energy, K the proportionality constant and the exponent n takes values 2, 1
2 , 3

2

and 1
3 for direct, indirect, allowed and forbidden transitions, respectively.

3.6 Lattice thermal conductivity

The lattice thermal conductivity calculation was done using the PHONO3PY package

[109] that solves the single-mode relaxation-time approximation of the linearised phonon

Boltzmann transport equation. A 4×4×4 supercell for bulk and 5×5×1 supercell for

bilayer and monolayer were used for solving the linearised lattice Boltzmann transport

equation in the single-mode relaxation time approximation PHONO3PY package [95].

In the thermal conductivity calculation, 2753 for bulk, while 3700 and 950 for bilayer and

monolayer, respectively. A unique triplet displacements were included in the calculation

of the scattering terms [95]. The normal unit for thermal conductivity is Wm−1K−1 per

unit cross-sectional area, which gives the thermal conductivity of a volume of material
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of a cross-sectional area of 1 m2 and 1 m thick, with heat conducted perpendicular

to the cross-sectional area. For a single layer, the cross-sectional area for out-of-plane

thermal conductivity is taken as 1 m2, but the thickness is that of a single layer. The

cross-sectional area for single layer in-plane thermal conductivity is that of the cross-

sectional area of a single layer perpendicular to the plane of the layer. The ’thickness’

is taken as 1 m. For single layers we use units of Wm−1K−1 per cross-sectional area

(not per unit cross-sectional area), where the cross-sectional area and thickness depends

on the direction in which the heat flow is measured. With this definition, the units for

thermal conductivity are consistent for bulk and single layers [1].

3.7 Transport phenomena

We used the deformation potential and elastic constants to calculate a set relaxation

times of charge carrier which were dependent on k-point and energy, as proposed by

Bardeen and Shockley [118]. To determine the electronic transport coefficients, we used

these relaxation time. The BoltzTraP2 package [119] was used to solve the Boltzmann

transport equations resulting in the approximate values of various transport coefficients

such as S, σ and κe as the output. The calculation of transport coefficients as a func-

tion of temperatures such as Seebeck, power factor, electrical conductivity, and thermal

conductivity, was done for a single layer in bulk, bilayer, and monolayer, to investigate

the thermoelectric potential of this binary compounds. The in-plane coefficients were

considered for a single layer in bulk, bilayer and monolayer calculations. The concentra-

tions of charge carriers which were used are 1019 and 1020 cm−3 for all PtX2 except, the

bulk of PtO2 when we used 1020 and 1021 cm−3. The range of temperature considered

varies since it depends on the melting point for each compound.



4
Results and Discussions

The structural, mechanical and dynamical stabilities, electronic, optical and thermo-

electric properties of trigonal structure PtX2 (X = O, S, Se and Te) were investigated

in this section, based on the theoretical methods (Chapter 2) and computational details

(Chapter 3), the obtained results are presented and discussed. Figure 4.1 illustrated

the bulk, bilayer and monolayer (a) bulk unit cell, (b) monolayer unit cell, (c) top view

of the monolayer, and (d) side view of the monolayer. The Octahedral coordination 1T

shows Platinum atoms sandwiched (X-Pt-X) between two layers of X atoms.

c

a
b

( a )

( b )
( c )

a

b

C

( d )

Figure 4.1: Crystal structure of bulk, bilayer and monolayer PtX2. (a) the bulk
structure unit cell, (b) the monolayer structure unit cell, (c) top view of monolayer and
(d) side view of bilayer. The Pt atoms and X atoms are represented by grey and red
ball, respectively.
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4.1 Platinum dioxide (α-PtO2)

4.1.1 Structural Properties

In Table 4.1, we listed the equilibrium lattice constant (a, c and V0) of the bulk, bilayer

and monolayer α-PtO2. The lattice parameters of bulk obtained using optB86b-vdW

functional are close to the experimental results, while those from the PBE functional

are slightly overestimated. The calculated lattice parameters of bilayer and monolayer

are similar to the previous study for monolayer. The optB86b-vdW approximation

includes an approximation of long-range interaction. This could explain the difference

between the results from the two functionals. On the other hand, we set c = 15Å

as a vacuum layer for bilayer and monolayer which is make the vad der Waal’s force

between the layers to be weak. The investigation of the phase stability was done using

the cohesive and formation energies as defined in Chapter 3, using Equation (3.2.1) and

(3.2.2), respectively. In Table 4.1, we listed the cohesive and formation energies per

atom for bulk, bilayer and monolayer, and compared with available previous studies.

Cohesive and formation energies are used to study phase stability in the solid-state.

Our calculations gave a negative of cohesive energy and formation energy, indicative of

energetically stable compounds. the values of cohesive energy and formation energy are

independent of the approximation used.

Table 4.1: Calculated, experimental and theoretical optimized lattice constants of
bulk, bilayer and monolayer α-PtO2, cohesive (Ecoh) and formation formation energies
per atom, and inter-layer distance.

a (Å) c (Å) Vo (Å3) Ecoh (eV) Eform (eV)

Bulk PBE 3.15 4.91 42.32 -4.35 -0.49

optB86b-vdW 3.12 4.36 36.92 -4.54 -0.44

Exp[120] 3.11 4.34 36.44 – –

Exp[121] 3.10 4.16 34.63 – –

Exp[122] 3.08 4.19 34.42 – –

Bilayer PBE 3.12 15 – -4.37 -0.51

optB86b-vdW 3.12 15 – -3.30 -1.11

Monolayer PBE 3.12 15 – -4.37 -0.51
optB86-vdW 3.12 15 – -3.27 -0.41

Previous work[123] 3.14 – – – -0.40
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4.1.2 Mechanical stability

In this section we examine the mechanical stability for bulk, bilayer and monolayer α-

PtO2. The elastic constants listed in Table 4.2, fulfil the Born stability criteria [102] see

section (3.3.1), which indicate that bulk, bilayer and monolayer α-PtO2 are mechanically

stable. The Young’s moduli and Poisson’s ratio for α-PtO2, were obtained for bulk,

bilayer and monolayer are represented in Table 4.3. We observe that Young’s moduli

increases with the increase of the number of layers, indicative of increased resistance

to deformation under the application of opposing forces as the number of layers are

increased. The results agree with previous study [41], for monolayer. In Table 4.3, we

present the calculated Young’s moduli (Y) and Poisson’s ratio (ν) for bulk, bilayer and

monolayer α-PtO2, and bulk moduli and shear moduli for bulk α-PtO2. The calculated

results for bilayer and monolayer are in accordance with the calculated value of in-plane

stiffness for MoS2, which is 123 GPa, while the Poisson’s ratio in accordance with Si

and MoS2 which are 0.30 and 0.25, respectively, reported in ref [124].

Table 4.2: Elastic constants (Cij (GPa)) for bulk, bilayer and monolayer α-PtO2.

C11 C12 C13 C33 C66

Bulk optB86b-vdW 270.42 70.26 20.81 25.89 100.08

Bilayer PBE 122.22 38.12 – – –

Monolayer PBE 178.87 53.12 – – –

Table 4.3: The obtained Bulk moduli (B) Shear moduli (G),Young’s moduli (Y) and
Poisson’s ratio (ν) in GPa, for bulk, bilayer and monolayer.

B Y G ν

Bulk optB86b-vdW 56.78 100.45 41.68 0.21

Bilayer PBE – 110.33 – 0.31

Monolayer PBE – 116.18 – 0.23

4.1.3 Dynamical Stability

The phonon calculations for the bulk α-PtO2 were done using the optb86B-vdw relaxed

structure. Since optB86b-vdW and PBE functions gave the same equilibrium lattice

parameters for bilayer and monolayer, so we used PBE for phonon calculations since it

is computationally less demanding. The phonon dispersion was calculated along with
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Figure 4.2: The band structure of phonon dispersion for α-PtO2. (a) Bulk (b) Bilayer
(c) Monolayer.

several high symmetry directions. Figure 4.2 shows the phonon dispersion band struc-

ture and 4.3 shows the phonon dispersion density of states and atoms contribution,

relations of α-PtO2 bulk, bilayer and monolayer, computed at the equilibrium configu-

ration zero pressure using the PHONOPY package [125, 109]. The phonon frequencies

are positive throughout the Brillouin with zone, which indicates that the bulk, bilayer

and monolayer compounds are dynamically stable. The phonon frequencies are in the

range of (0 − 18.73) THz for bulk, (0 − 18.12) THz for bilayer and (0 − 18.83) THz

for the monolayer, respectively. Note, the bilayer phonon band structure appears dense

compared to the bulk and monolayer. This is due to the increase in the number of

atoms per unit cell, while the frequency range is almost unchanged for all three config-

urations. The bulk and monolayer of the primitive cell of α-PtO2 contain three atoms

and therefore there are nine phonon modes for each wave vector (three acoustic modes

and six optical modes). For the bilayer, the primitive cell of α-PtO2 contains six atoms

and therefore, there are eighteen phonon modes or each wave vector (six acoustic modes

and twelve optical modes). The highest frequency of the acoustic modes, defined here

as the acoustic cut-off, is approximately 8.8 THz for bulk, 8.42 THz for bilayer and 8.68

THz for monolayer. Figure 4.2(a-c) depicts the phonon band structure for bulk, bilayer

and monolayer, respectively, and the total density of states and atoms contribution are

shown in Figure 4.3(a-c). The phonon band structure and density of states for bulk,

bilayer and monolayer show the same behaviour. It is evident that (O) controlled in the

frequency optical region, and (Pt) contributes more in the frequency acoustic region.
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Figure 4.3: Phonon total and partial density of states for α-PtO2. (a) Bulk (b)
Bilayer (c) Monolayer.

Table 4.4: The calculated band gaps compared to the experimental and theoretical
(in eV) of α-PtO2.

optB86-vdW PBE GW0 Experimental Previous work

Bulk 1.61 1.63 2.73 1.30 - 1.47[34],1.2[35]1.84[36] –

Bilayer 1.63 1.74 4.36 — —

Monolayer 1.72 1.86 4.73, 4.00[123] — 2.00[123]

4.1.4 Electronic structure properties

The electronic band structure of bulk, bilayer and monolayer α-PtO2 are presented in

Figure 4.4(a-c), respectively. They all exhibited an indirect semiconductor band gap,

of values 1.61, 1.73 and 1.86 eV, respectively. MVB and MCB are located between Γ

and M points for bulk, and between A and L points for bilayer and monolayer. We also

present the total and partial density of states (TDOS and PDOS) in Figure 4.4(a-c)

for bulk, bilayer and monolayer α-PtO2, respectively. The maximum and minimum

edge of the band gap in density of states, which is caused by valence and conduction

band, respectively, are contributed by Pt(s), Pt(d) in valence band, while the minimum

conduction band is mainly due to the Pt(s), Pt(d) and O(p) orbitals for all the three

structures. It is important to point out that the band structure of bilayer looks denser

than than of the bulk and monolayer while its DOS is also higher. This is due to the

difference in the number of atoms in the primitive cell, as we mentioned before. We

summarise our calculated fundamental band gap values in Table 4.4 and compared with

available experimental values.
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Figure 4.4: Calculated electronic structure of α-PtO2. (a) Bulk (b) Bilayer (c)
Monolayer.

Carolyn R A [34] used x-ray photoelectrons spectroscopy to determine the optical prop-

erties of the bulk α-PtO2. The absorption coefficient and the optical transitions of

infrared show that its optical band gap varies between 1.30 and 1.47 eV. An optical

band gap of 1.2 eV was obtained for α-PtO2 by Neff H et al. [35], using x-ray diffrac-

tion, energy-sensitive microanalyses, optical reflectance measurements and resistivity.

Scanning tunnelling spectroscopy measurements by Zhensheng J et al [36], give a optical

gap of 1.84 eV. Hence, our calculated results are range of experimental values which

vary from 1.2 to 1.84 eV. The bilayer and monolayer band gap are represented in Table

4.4, the monolayer value is high than bilayer hence, the value of bilayer also higher than

of bulk.
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Figure 4.5: Calculated total and partial DOS. (a) Bulk (b) Bilayer (c) Monolayer.
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4.1.5 Optical properties

In this section, we use Equation 3.5.1, 3.5.2 and 3.5.3 as defined in Chapter 3 to cal-

culate the imaginary and real parts of the dielectric functions. The absorption and

absorbance as well as other related parameters were then derived from the dielectric

functions. Figure 4.6(a-c) depict the imaginary and real parts of the dielectric functions

and the absorbance respectively, computed with the BSE GW0 approximation. Figure

4.7(c) illustrate the absorbance of bulk, bilayer and a monolayer. The maximum ab-

sorbance in in-plane polarization for monolayer is ≈ 8.06% at 2.92 eV and for bilayer

is ≈ 5.64% at 2.51 eV and 0.91% at 2.12 eV for bulk. The absorbance of a monolayer

is considerably greater than the absorbance for a bilayer and bulk. This agrees with

MoS2, MoSe2 and WS2 results (5−10%) [115, 116], where the single layer absorbance

is high in monolayer than bilayer and bulk. Moreover, in the out-of-plane polarisation,

the maximum absorbance is ≈ 0.09% at 2.99 eV for monolayer and ≈ 0.39% at 2.82 eV

for bilayer and 0.14% at 2.15 eV for a single layer of bulk. The optical band gap was

obtained by fitting our BSE optical data on the Tauc plot [117]. It is worth mentioning

that the BSE is considered up to date as the best of estimation for the optical properties

as it included the two particles Green’s function. For the bulk α-PtO2, the in-plane and

out-of-plane optical band gap polarizations are 1.66 and 1.77 eV, respectively, which is

an average of the experimental measurements range. The difference of two values sug-

gests significant optical anisotropy, and it suits to photovoltaic solar cells applications

[126]. The calculated optical band gaps of the in-plane and out-of-plane polarization,

for the monolayer, are 2.32 and 2.75 eV, and for bilayer are 1.89 and 2.34 eV, while

for bulk are found to be 1.63 and 1.77 eV, respectively. Also suits to photovoltaic solar

cells applications.

4.1.6 Lattice thermal conductivity

Figure 4.7(a) and (b) show the lattice thermal conductivity against temperature and

frequency, respectively, for a single layer of bulk, bilayer and monolayer α-PtO2 struc-

ture. The average lattice thermal conductivity at 300 K for single layer in bulk, bilayer

and monolayer is 8.47×10−8, 4.59×10−8 and 1.06×10−8 Wm−1K−1 in-plane direction

for bulk, bilayer and monolayer respectively, in the out-of-of the plane direction, we

found it to be 0.05×10−8 Wm−1K−1 for bulk and zero for the others. The lattice ther-

mal conductivity for a single layer in bulk decreases by about ∼46% of the bilayer and
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Figure 4.6: (a) Imaginary part ε2(ω), (b) real part ε1(ω) of dielectric function and
(c) absorbance for bulk, bilayer and monolayer of α-PtO2.

∼87% of the monolayer, in the in-plane. Furthermore, a high in-plane lattice thermal

conductivity was found to be at the low-temperature. For instance, our calculations

predict a value of 24.61×10−8 Wm−1K−1 at 70 K for bulk, and 18.90×10−8 Wm−1K−1

at 50 K for bilayer and 2.19×10−8 Wm−1K−1 at 100 K for monolayer. The high out-

of-plane is 0.52×10−8 Wm−1K−1 at 10 K for bulk. The lattice thermal conductivity

against frequency at 300 K is presented in Figure 4.7(b), and its cumulative lattice

thermal conductivity as a function of the frequency of single layer for bulk, bilayer and

monolayer. We observed that the lattice thermal conductivity is highly anisotropic,

with the thermal conductivity in-plane of the layers being much higher than that of

the out-of-plane direction for two cases bulk, bilayer and monolayer. Furthermore, we

calculated the directional projected density of states for each atom as a function of

frequency. Figure 4.8 shows the in-plane and out-of-plane contributions, left and right,

respectively, which are along [100] and [001]. The results of directional projected density

of states look like phonon density of states, but here we have directional contributions.

The Pt atoms contributed more in acoustic mode than O atoms and vice versa for

optical mode for all bulk, bilayer and monolayer, in the in-plane direction. In the out-

of-plane direction, we only have the contribution for bulk. To know the contribution

ratio of phonon to lattice thermal conductivity, we examine the contribution of acoustic

and optical phonons branches mode. At 300 K, the in-plane (out-of-plane) acoustic

mode total contribution to the thermal conductivity is 94% (77%), 96.65% (0%) and

93% (0%) for bulk, bilayer and monolayer α-PtO2 respectively. The contributions of

phonon to lattice thermal conductivity per atoms are illustrated in Figure 4.9 (left and
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Figure 4.7: Lattice thermal conductivity and heat capacity for bulk and monolayer
α-PtO2. (a) Lattice thermal conductivity against temperature, (b) cumulative lattice
thermal conductivity against frequency.

right), for bulk, bilayer and monolayer. Through Figure 4.9, we can note that the ratio

of contribution is almost the same in in-plane, for bulk, bilayer and monolayer. The

out-of-plane contribution of the bulk is given at the right. This is in clear contrast

to the conventional understanding, especially in the out-of-plane direction, where the

acoustic modes dominate thermal conductivity [127].

Phonon lifetime

The phonon lifetime is the time between two phonon-phonon scattering events and it is

obtained by third-order force constants [90, 95]. Figure 4.10(a-c) shows how the bulk,

bilayer and monolayer α-PtO2 phonon lifetime depends on frequency, at 300 K. The

highest peak for phonon lifetime is located in acoustic mode, and while the lowest peak

for phonon lifetime is located in optical mode for all structures. This is in accordance

with a somewhat powerful scattering in the high frequency optical phonon modes. To

differentiate the phonon lifetime contributions to the total lattice thermal conductivity,

one can use the phonon lifetime distribution of acoustic and optical phonon mode [128].
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Figure 4.8: Directional projected density of states, left is in-plane and right is out-of-
plane for bulk, bilayer and monolayer α-PtO2 as function of frequency.

Figure 4.9: Contribution ratio of phonon to lattice thermal conductivity, left is in-
plane and right is out-of-plane for bulk and monolayer α-PtO2 as function of frequency.
(Recall there is no contribution in out-of-plane for monolayer).
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Figure 4.10: Phonon lifetime at 300 K, (a) Bulk, (b) bilayer and (c) monolayer of
α-PtO2 as function of frequency.
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Figure 4.11: Phonon average of directional group velocity, (a) Bulk, (b) bilayer and
(c) monolayer of α-PtO2 as function of frequency.

Group velocity

The group velocity depends on the dispersion as shown in Equation (2.5.10). In this

work, we calculated the average of directional group velocities for bulk, bilayer and

monolayer α-PtO2. The obtained results are shown in Figure 4.11(a-c). In the low

frequency range, the in-plane group velocities are higher than out-of-plane, while at

high frequency the in-plane and out-of-plane are small compared to the low frequency

values. The anisotropy in group velocities has a great impact on the lattice thermal

conductivity [129]. The group velocities distributions of the bulk, bilayer and monolayer

for in-plane are almost similar, except in out-of-plane which have a value of 6 Å.THz

for bulk, while it is 0 Å.THz for bilayer and monolayer. The combined effect of the

frequency dependence of the phonon lifetimes and group velocities are consistent with

the anisotropy in the thermal conductivity as well as the large contribution to the total

thermal conductivity from the low frequency phonons.

4.1.7 Transport properties of α-PtO2

The calculated Seebeck coefficients are presented in Figure 4.12 for bulk, bilayer, and

monolayer α-PtO2. We observed that the maximum values of Seebeck coefficient were

obtained for holes concentrations, which are 429µV/K at 700 K for bulk and, 573 µV/K

at 700 K for bilayer, and 484µV/K at 700 K for the monolayer. From the plot, we can

notice that the Seebeck coefficients increase as the temperature increases.

In Figure 4.13, we illustrated the electrical conductivity for the single layer in bulk, bi-

layer, and monolayer α-PtO2. We found that the highest values at 200 K are 1.23×10−4
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Figure 4.12: Seebeck coefficients of bulk, bilayer and monolayer α-PtO2.

S/m, 3.9×10−4 S/m and 28.2×10−4 S/m, respectively, which are attributed to electrons

carriers concentration such as 1021 cm−3 for bulk, and 1020 cm−3 for bilayer and mono-

layer.
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Figure 4.13: Electrical conductivity for a single layer in bulk, bilayer and monolayer
α-PtO2.

On the other hand, we computed the electronic contribution to thermal conductivity

for the single layer in bulk, bilayer and monolayer α-PtO2, to gauge the contribution to

the total lattice thermal conductivity from electronic thermal. Figure 4.14 depicts the

highest values, at a high temperature of 700 K for bulk while it is at a low temperature

of 200 K for bilayer and monolayer. However, the highest values are determined by

the majority charge carriers such as electrons. The obtained results show the lowest

electronic contribution is obtained the bulk structure followed by the monolayer, and

whereas the bilayer α-PtO2 had the highest values of κe which could be attributed to

the variation in their band gap size.

The power factor was calculated over a temperature range of from 200 K to 700 K

for the single layer in bulk, bilayer, and monolayer. The obtained results are plotted

in Figure 4.15, where, we see the difference in the behavior between the bulk, and
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Figure 4.14: Electronic contribution to thermal conductivity for a single layer in
bulk, bilayer and monolayer α-PtO2.

bilayer and monolayer. The highest values of power factor for the all structures are

3.95×10−12WK−2m−1 for bulk at 700 K, and 232×10−12WK−2m−1 for bilayer at 200

K, while, it is 48×10−12WK−2m−1 at 200 K for monolayer.
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Figure 4.15: Power factor for a single layer in bulk, bilayer and monolayer α-PtO2.

The dimensionless figure of merit (ZT) was calculated from 200 K to 700 K, and the

values for the single layer in bulk, bilayer, and monolayer α-PtO2 show at 700 K, 400

K, and 300 K, respectively. The obtained ZT values are 0.11 for bulk, 0.62 for bilayer

and 0.74 for monolayer, as illustrated in Figure 4.16. The high values of the figure of

merit were obtained when the carriers are electrons in all case. As a result, this system

provides a broad operational range. These results indicate that at room temperature

the monolayer has a high value among the three structures, and is therefore a promising

candidates for the thermoelectric power generation applications, with further tuning.
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Figure 4.16: Figure of merit for bulk, bilayer and monolayer α-PtO2.

4.2 Platinum disulfide (PtS2)

4.2.1 Structural Properties

The fully optimized equilibrium lattice parameters (a, b and V0) of the bulk, Bilayer and

monolayer PtS2 are listed in Table 4.5. The lattice parameter of bulk PtS2, a = 3.55 Å

and c = 5.03 Å calculated by using optB86b-vdW are close to a = 3.54 Å and c = 5.04

Å from the experimental measurements [30, 38, 39]. The obtained lattice parameters

for the bilayer are similar to the bulk and monolayer. The monolayer lattice parame-

ter is in agreement with the ones from previous studies. Note that for the PBE bulk

results, the lattice parameter c of the bulk, perpendicular to the layers, is relatively

larger compared to the experimental values, while the optB86b-vdW value is in good

agreement. On the other hand, we set c = 15Å as a vacuum layer for bilayer and mono-

layer which is make the vad der Waal’s force between the layers to be weak. We believe

that it is due to the fact that The optB86b-vdW takes into consideration the long-range

interactions which are not captured by the PBE. The investigation of the phase sta-

bilities for bulk, bilayer and monolayer, were done using the cohesive and formation

energies as defined in Chapter 3, using Equation (3.2.1) and (3.2.2), respectively. In

Table 4.9, we listed the cohesive and formation energies per atom for bulk, bilayer and

monolayer, and compared with available previous studies. Our calculated cohesive and

formation energies are negative, which suggest that the bulk, bilayer and monolayer

PtS2 are energetically stable. The bulk, bilayer and monolayer cohesive and formation

energies per atom, respectively, are similar for each approximation, which is consistent

with the understanding that the inter-layer bonding is weak and its contribution to the

total energy is relatively small.
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Table 4.5: Calculated, experimental and theoretical optimized lattice constants of
bulk bilayer and monolayer PtS2, cohesive (Ecoh) and formation formation energies per
atom, and inter-layer distance.

a (Å) c (Å) Vo (Å3) Ecoh (eV) Eform (eV)

Bulk PBE 3.51 5.35 56.92 -4.21 -0.34

optB86b-vdW 3.55 5.03 54.87 -3.60 -0.45

Exp[30] 3.54 5.04 54.79 – –

Exp[38] 3.54 5.04 54.78 – –

Exp[39] 3.54 5.04 54.76 – –

Bilayer PBE 3.55 15 – -4.22 -0.35

optB86b-vdW 3.54 15 – -3.43 -2.04

Monolayer PBE 3.58 15 – -4.23 -0.36

optB86b-vdW 3.58 15 – -3.48 -2.09

Previous work[130] 3.57 – – – –

Previous work[41] 3.58 – – – –

Previous work[42] 3.52 – – – –

Previous work[123] 3.57 – – – -0.33

4.2.2 Mechanical Stability

In this section, we investigated the mechanical stability for bulk, bilayer and monolayer

PtS2. The elastic constants presented in Table 4.6, fulfil the Born stability criteria [102]

see section (3.3.1), which indicate that bulk, bilayer and monolayer PtS2 are mechani-

cally stable. The Young’s moduli and Poisson’s ratio for PtS2 were obtained for bulk,

bilayer and monolayer are represented in Table 4.7. We observed that Young’s moduli

increase with the increase of the number of layers, indicative of increased resistance

to deformation under the application of opposing forces as the number of layers are

increased. The results agree with previous study for monolayer [41]. In Table 4.7, we

presented the obtained Young’s moduli (Y) and Poisson’s ratio (ν) for bulk, bilayer

and monolayer PtS2 which consistent with available previous study [41]. The values of

the Young’s moduli in Table 4.7 show that the bilayer can withstand deformation more

than the monolayer and the bulk.

Table 4.6: Elastic constants (Cij (GPa)), for bulk, bilayer and monolayer PtS2.

C11 C12 C13 C14 C33 C66

Bulk optB86b-vdW 130.43 62.52 23.41 16.99 11.46 33.96

Bilayer PBE 122.22 38.12 – – – –

Monolayer PBE 81.86 24.25 – – – –

Monolayer Other work[41] 91.82 32.10 – – – –
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Table 4.7: The obtained Bulk moduli (B) Shear moduli (G),Young’s moduli (Y) and
Poisson’s ratio (ν) in GPa, for bulk, bilayer and monolayer, and the other theoretical
study.

B Y G ν

Bulk optB86b-vdW 31.84 55.85 23.12 0.21

Bilayer PBE – 110.33 – 0.31

Monolayer PBE – 74.67 – 0.29

Monolayer Other work[41] – 80.59 – 0.27

4.2.3 Dynamical Stability

For phonon dispersion calculations, we used optB86-vdW approximation for bulk while

PBE approximation for bilayer and monolayer, since they have a best lattice param-

eters compare to experimental and previous study. The phonon dispersion relations

were calculated along with several high symmetry directions. Figure 4.17(a-c) show

the phonon dispersion band structure and Figure 4.18(a-c) show the phonon dispersion

density of states, relations of PtS2 bulk, bilayer and monolayer, respectively, calcu-

lated at the equilibrium configuration with the PHONOPY package [109]. The phonon

frequencies are positive throughout the Brillouin zone, which suggests that the bulk,

bilayer and monolayer PtS2 are dynamically stable. The phonon frequencies are in the

range of 0 − 11.7 THz for bulk and 0 − 10.57 THz for bilayer and 0 − 10.47 THz for

the monolayer, respectively. The reducing in the frequency range for the monolayer is

possibly due to the reducing in a number of atomic bonds in the bilayer and monolayer

compared to the bulk. The highest frequency of the acoustic modes, defined here as the

acoustic cut-off, are approximately 6 THz for both bulk, bilayer and monolayer. Note,

the bilayer phonon band structure is dense compared to the bulk and monolayer, which

is the same as bilayer PtO2. In Figure 4.11(a-c), we plot the total and partial density

of states for bulk, bilayer and monolayer, respectively. It is proved, that the Pt atom

dominates in the low frequency acoustic region, and the S atom contributes more to the

high frequency optical mode region.

4.2.4 Electronic structure properties

The electronic structure investigation is presented in this section for the bulk, bilayer

and monolayer PtS2. In Figure 4.19(a-c), we plotted the band structure of the bulk,

bilayer and the monolayer PtS2, respectively. Bulk PtS2 is an indirect band gap of
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Figure 4.17: The band structure of phonon dispersion for PtS2. (a) Bulk (b) Bilayer
(c) Monolayer.
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value 0.81 eV, with a maximum of the valence band at Γ point and the minimum of

the conduction band at K point. For bilayer and monolayer PtS2, the maximum of

the valence is between the K and Γ points, while the minimum of the conduction band

lies between Γ and M points, indicating an indirect band gap for bulk, bilayer and

monolayer. In Figures 4.20(a-c), we also plotted the total and partial density of states

(TDOS and PDOS) for each atom of bulk, bilayer and monolayer PtS2, respectively.

S(p) has the largest contribution at the top of the valence band followed by Pt(d), for

bulk, bilayer and monolayer. In the conduction band, orbital hybridization between

the Pt(d) and the S(p) states occurs for bulk, bilayer and monolayer. The dense of

bilayer band structure is similar to the bilayer of PtO2. To investigate the intrinsic

Table 4.8: The calculated band gaps values compared to the experimental and theo-
retical (in eV) of PtS2.

optB86-vdW PBE GW0 Exp. Other calculations

Bulk 0.81 1.06 1.10 0.87[44], 0.95[131], 0.7[132] 0.48[133],1.2[26],0.73[130]

Bilayer 1.13 1.26 3.78 — —

Monolayer 1.67 1.80 3.90, 3.14[123] 1.6[133] 1.81[130],1.76 [41],1.94[40],

1.78[134],1.69[42, 123],1.80[135]

band gap we used many approximations namely the optB86b-vdW, PBE and GW0.

In the calculations involving post DFT approximations, we used the optimized lattice

parameters from the optB86b-vdW geometric optimisation in the case of bulk PtS2

and the values for the PBE calculation for the bilayer and monolayer. In Table 4.8, we

summarise the computed values with previous studies and experimental results included

for comparison. The measured band gaps of this material vary from 0.7 to 0.95 eV, a

relatively wide range of values. We observed that the optB86b-vdW approximation gives

value within the range of the reported experimental results, while PBE, surprisingly,

gives a value above the experimental range. Such unusual behaviour, where GGA

DFT overestimates the band gap of transition metal dichalcogenides has also been

reported in previous studies [136]. Note that all the DFT gap energies are approximate

fundamental gap energies [137], while the experimental values are optical gap values.

Direct comparisons are strictly not justified, but it is a common practice in the literature

to compare these values. Experimental band gap values for the bulk PtS2 have been

reported by a number of groups: F. Parsapour et al. reported a band gap of 0.87 eV

using optical spectroscopy [44]; H. Tributsch and O. Gorochov measured a band gap

of 0.95 eV, by means of photoelectrochemical mechanisms [131]; and diffuse-reflectance

measurements by F. Hulliger give a band gap of 0.7 eV [132]. The band gap of the
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bulk PtS2 has also been obtained by many authors: Y. Zhao et al. used the optB86b-

vdW to predict a band gap of 0.48 eV [133]; a band gap of 1.2 eV was obtained by G.

Guo and W. Liang [26] using the linear muffin-tin orbital method combined with the

atomic sphere approximation method [138], and the PBE calculations by H.L. Zhuang

and R.G. Hennig give a 0.73 eV band gap [130]. The only experimental band gap of

the monolayer PtS2 was reported by Y. Zhao et al [133]. They obtained, using the

Fourier-transform infra red spectrometry, a band gap of 1.6 eV. Theoretical monolayer

gap values have also been reported. Band gaps of 1.76 and 1.94 eV were predicted by

J. Du et al. [41] using the PBE, with the spin-orbit coupling included; and S. Ahmed

[40] using the PBE, respectively. P. Miró et al. [134] used the dispersion corrected PBE

exchange-correlation functional (PBE-BJ-D3) [69, 139] to obtain a band gap of 1.78 eV,

whereas the local density approximation calculations by Z. Huang give an estimation of

1.69 eV [42]. The band gap value of bilayer is found to be 1.13 and 1.26 eV, by using

optB86b-vdW and PBE approximations, respectively. The difference between our band

gap results which we computed with the optB86b-vdW and PBE approximations and

the results of other calculations of 0.48 eV using optB86b-vdW approximation [133]

and 0.73 eV using PBE approximation [130] for bulk PtS2, for monolayer the other

calculations are 1.76 using PBE [41] and 1.78 eV using PBE [69, 139], which were

performed with the same approximations. Our calculated values are more much close

to experimental values. May the reason is can come from differences between DFT

implementations and input variables including lattice parameters, k-points and energy

cut-offs, after convergence test for all. The calculated band gap values for bulk, bilayer

and monolayer were found to be suitable for photovoltaic

4.2.5 Optical properties

For the optical properties, the imaginary and real parts of the dielectric functions were

calculate by solving the BSE approximation in conjunction with the GW since the

later usually gives a good approximation of the fundamental band gap. Figure 4.21(a)

and (b) illustrate the imaginary part and real part of dielectric functions for bulk, and

a single layer of bilayer and a monolayer. The absorbance of a single layer in bulk,

a single layer of a bilayer and a monolayer PtS2 was plotted in Figure 4.21(c). The

maximum absorbance for in-plane polarisation for a monolayer is ≈ 13.15% at 2.51

eV, for bilayer ≈7.64% at 1.83 eV and ≈ 2.00% at 2.90 eV for bulk. For out-of-plane
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Figure 4.19: Bulk, bilayer and monolayer PtS2 calculated electronic structure using
optB86b-vdW for bulk and PBE for bilayer and monolayer. (a) Bulk, (b) bilayer and
(c) monolayer. Along high symmetry directions.
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Figure 4.21: GW0 BSE results (a) imaginary part ε2(ω), (b) real part ε1(ω) of
dielectric function and (c) absorbance for bulk, bilayer and monolayer of PtS2.

polarisation, the maximum absorbance is ≈ 0.09% at 2.6 eV for monolayer, ≈ 0.15%

at 2.54 eV and 0.9% at 3 eV for bulk. The absorbance of a monolayer is substantially

higher than the absorbance of bulk. This is consistent with results for graphene and

MoS2 [115, 116], where the monolayer absorbance is higher than the absorbance of

bulk. The optical band gap was estimated by fitting the BSE optical absorption with

the Tauc plot [117]. The BSE approximations are expected to give a good estimation

of the optical properties. For the bulk PtS2, the optical band gap for the in-plane and

out-of-plane polarisations are 1.09 and 1.36 eV, respectively. The difference between

the two values shows significant optical anisotropy. The value for in-plane polarisation

band gap is in accordance with the experimental value. The in-plane and out-of-plane

polarisation values of the bilayer are 1.61 and 1.73 eV, respectively. For the monolayer,

optical band gaps of 1.95 and 2.30 eV were predicted for the in-plane and out-plane

polarisation, respectively. The in-plane optical band gap is once again consistent with

the experimental values as given in Table 4.9. The obtained results for bulk and bilayer

make them candidates for photovoltaic applications [126].

4.2.6 Lattice thermal conductivity

Figure 4.22 (a) and (b) plots the lattice thermal conductivity dependence of the temper-

ature and frequency for a single layer in bulk, bilayer and a monolayer. As demonstrated

in Figure 4.22(a), the average in-plane lattice thermal conductivity for a single layer at

300 K is 2.30×10−8, 1.16×10−8 and 0.15×10−8 Wm−1K−1 for bulk, bilayer and mono-
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Figure 4.22: Lattice thermal conductivity per layer, (a) lattice thermal conductivity
against temperature, (b) cumulative lattice thermal conductivity against frequency.

layer, respectively. The out-of-plane thermal conductivity is 0.08×10−8 Wm−1K−1 for

a single layer of the bulk, whereas it is zero for the monolayer and bilayer. The in-plane

lattice thermal conductivity for a monolayer is ∼7% and ∼49.6% of that of a single layer

in bulk and bilayer, respectively. This is a significant decrease and points to a possible

technique for decreasing lattice thermal conductivity by decreasing the thickness to a

few layers. Further, the highest in-plane value of lattice thermal conductivity found

to be in the low-temperature range with 8.66×10−8 Wm−1K−1 at 60 K, 5.04×10−8

Wm−1K−1 at 50 K and 0.61×10−8 Wm−1K−1 at 60 K for a single layer in bulk and

bilayer, and a monolayer, respectively. The highest out-of-plane thermal conductivity

for a single layer in bulk is 0.34×10−8 Wm−1K−1 at 10 K. We observe that the lattice

thermal conductivity is highly anisotropic, with the in-plane thermal conductivity much

higher than the out-of-plane thermal conductivity for all bulk, bilayer and monolayer.

Furthermore, we calculated the directional projected density of states for each atom as

a function of frequency. Figure 4.23 shows the in-plane and out-of-plane contributions,

left and right, respectively, which are along [100] and [001]. The results of directional

projected density of states look like phonon density of states, but here we have di-

rectional contributions. The same behavior of the directional projected for PtO2. To

perceive the contribution ratio of phonon to lattice thermal conductivity for bulk, bi-

layer and monolayer PtS2, we examine the contribution of acoustic and optical phonons

branches mode. We obtained that the in-plane acoustic mode total contribution is
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Figure 4.23: Directional projected density of states, left is in-plane and right is out-
of-plane for bulk, bilayer and monolayer PtS2 as function of frequency.

Figure 4.24: Contribution ratio of phonon to lattice thermal conductivity, left is in-
plane and right is out-of-plane for bulk and monolayer PtS2 as function of frequency.
(Recall there is no contribution in out-of-plane for monolayer).

96.23%, 96.42% and 97.12% for bulk, bilayer and monolayer PtS2 respectively. While

the out-of-plane 77.01% for bulk, and 0% for bilayer and monolayer. The contributions

of phonon to lattice thermal conductivity per atoms are illustrated in Figure 4.24 (left

and right), for bulk, bilayer and monolayer. Through Figure 4.24, we can note that the

ratio of contribution is almost the same in in-plane, for bulk, bilayer and monolayer.

This is in clear contrast to the conventional understanding, especially in the out-of-plane

direction, that the acoustic modes dominate thermal conductivity [127].

Phonon lifetime

In this section, we define the phonon lifetime, which is the time between events phonon-

phonon scattering, which is calculated by third-order force constants [90, 95]. Figure



Section 4.2 Platinum disulfide (PtS2) Page 50

(a) (b) (c)

Figure 4.25: Phonon lifetime against frequency at 300 K. (a) Bulk, (b) bilayer and
(c) monolayer.

4.25(a-c) shows how the bulk, bilayer and monolayer PtS2 phonon lifetime depends

on frequency, at 300 K. The highest peak for phonon lifetime is located in acoustic

mode, and while the lowest peak for phonon lifetime is located in optical mode for all

structures. This is in accordance with a slightly strong scattering in the high frequency

optical phonon modes. The phonon lifetime distribution of acoustic and optical phonon

mode can be used to differentiate the phonon lifetime contributions to the total lattice

thermal conductivity [128].

Group velocity

The group velocity depends on the dispersion as plotted in Equation (2.5.10). In this

study, we computed the average of directional group velocities for bulk, bilayer and

monolayer PtS2. The calculated results are depicted in Figure 4.26(a-c). In the low

frequency range, the in-plane group velocities are higher than out-of-plane, while at

high frequency the in-plane and out-of-plane are small compared to the low frequency

values. The anisotropy in group velocities have a great impact on the lattice thermal

conductivity [129]. The group velocities distributions are almost identical for the three

structures in the in-plane direction, but in the out-of-plane direction, the bulk has a

value of 10 Å.THZ while the other remain at 0 Å.THz. The combined effect of the

frequency dependence of the phonon lifetimes and group velocities are consistent with

the anisotropy in the thermal conductivity as well as the large contribution to the total

thermal conductivity form the low frequency phonons.
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(a) (b) (c)

Figure 4.26: Average directional phonon group velocities against frequency. (a) Bulk,
(b) bilayer and (c) monolayer.

4.2.7 Transport properties of PtS2

The Seebeck coefficients were calculated and presented in Figure 4.27 for bulk, bilayer

and monolayer PtS2, at a range of temperature between 200 to 500 K. The results predict

the highest values of Seebeck coefficient for holes carriers concentrations of 1019cm−3.

At 500 K we obtained 294µV/K for bulk, 334 µV/K for bilayer and 410µV/K for mono-

layer. From the plots, we can observe that the Seebeck coefficients are increasing with

the increasing of the temperature.
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Figure 4.27: Seebeck coefficients of bulk, bilayer and monolayer PtS2.

The electrical conductivity for the bulk, bilayer and monolayer PtS2 are depicted in

Figure 4.28. We found the maximum values for a single layer at 200 K, are 1.75×10−4

S/m for bulk, 7.97×10−4 S/m for bilayer and 3.6×10−4 S/m for monolayer, which are

caused by electrons carriers whose concentration is 1020 cm−3. For all concentration

of charge carriers, the electrical conductivity decreases with an increase in tempera-

ture. This indicates that the electrical conductivity decreases when the temperature

is increase due to their inverse relationship, which it is converse to what was noted in
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Figure 4.27 for Seebeck coefficient case.
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Figure 4.28: Electrical conductivity for a single layer in bulk, bilayer and monolayer
PtS2.

In order to know the contribution to the total thermal conductivity arising from the

electronic component, we examined the electronic contribution to the total thermal con-

ductivity. Figure 4.29 depicts the maximum values, at a low temperature of 200 K for a

single layer in bulk, bilayer and monolayer, achieve by the majority of electrons carriers

concentration of 1020cm−3. The obtained results show the same behaviour occur, from

bulk to bilayer and to monolayer structure, with different highest values. Generally,

for semiconductors the lattice thermal contribution often dominates the total thermal

conductivity, since κL > κe.
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Figure 4.29: Electronic contribution to thermal conductivity coefficients for a single
layer in bulk, bilayer and monolayer PtS2.

Power factor is a parameter used to measure the ability of electric power generation of a

material. The power factor was calculated over a temperature range of from 200 to 500

K for a single layer in bulk, bilayer and monolayer. The obtained results are plotted in

Figure 4.30. Similarity on the power factor gradient can be observed among the struc-

tures. The highest and lowest values of power factor for all structures are obtained from
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the electrons carrier concentration of 1019cm−3 and 1020cm−3, respectively, around 200

K. The highest charge carriers concentration decreases gradually when the temperature

increases, which is opposite to the lowest charge carriers concentration.
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Figure 4.30: Power factor for a single layer in bulk, bilayer and monolayer PtS2.

The ZT was obtained within the range of from 200 to 500 K. The high value of figure of

merit for each of a single layer in bulk, bilayer and monolayer PtS2 were attained at 200

K, 500 K and 500 K, respectively. Their ZT values are 0.04 for bulk, 0.12 for bilayer

and 0.18 for monolayer, as illustrated in Figure 4.31. The maximum values of figure of

merit were dominated by electrons carriers concentration of 1019cm−3, while the lowest

values are dominated by electrons carriers concentration of 1020cm−3, in all cases. The

small values of the figure of merit are possibly due to the high values of lattice thermal

as provided in the previous section. ZT values are increasing in opposite to increasing

the number of layers.
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Figure 4.31: Figure of merit for bulk, bilayer and monolayer PtS2.
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4.3 Platinum diselenide (PtSe2)

4.3.1 Structural Properties

The fully optimized equilibrium lattice parameters of bulk, bilayer and monolayer PtSe2,

using optB86-vdW and PBE approximations and compared with available experimental

and previous study data are listed in Table 4.9. We observed that the calculated results

of the lattice parameters using optB86-vdW function agreed to the experimental for bulk

and monolayer to the previous study. On the other hand, the obtained lattice parameters

for the bilayer are close to the bulk and monolayer. On the other hand, we set c = 15Å

as a vacuum layer for bilayer and monolayer which is make the vad der Waal’s force

between the layers to be weak. The investigation of the phase stability done using the

cohesive and formation energies as defined in Chapter 3, using Equation (3.2.1) and

(3.2.2), respectively. In Table 4.9, we listed the energy and formation energies per atom

for bulk, bilayer and monolayer, and compared with available previous studies. The

computed cohesive energy and formation energies are negative. Hence, the bulk, bilayer

and monolayer PtSe2 are energetically stable. The a and c lattice parameters, the inter-

layer structural parameters, show the least variation across the different approximations.

The inter-layer spacing, defined by the c lattice parameter, show the most variation.

We note that optB86-vdW gives the best equilibrium structural parameters for bulk

PtSe2 when compared to the experimental.

Table 4.9: Calculated, experimental and theoretical, optimized lattice constants of
bulk, bilayer and monolayer PtSe2, cohesive (Ecoh) and formation formation energies
per atom, and inter-layer distance.

a (Å) c (Å) Vo (Å3) Ecoh (eV) Eform (eV)

Bulk PBE 3.81 4.87 61.24 -4.20 -0.38

optB86b-vdW 3.76 4.97 61.11 -4.55 -0.43

Exp[45, 30] 3.72 5.08 61.15 – –

Exp[121] 3.74 5.14 62.54 – –

Bilayer PBE 3.76 15 – -3.95 -0.39

optB86b-vdW 3.76 15 – -3.22 -0.31

Monolayer PBE 3.81 15 – -3.96 -0.38
optB86-vdW 3.81 15 – -3.03 -0.71

Previous work[130] 3.75 – – – 0.11

Previous work[123] 3.75 – – – -0.36
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4.3.2 Mechanical stability

In this section, we examined the mechanical stability of the three PtSe2 structures. The

elastic constants listed in Table 4.10, fulfil the Born stability criteria [102] see section

(3.3.1), which indicate that bulk, bilayer and monolayer PtSe2 are mechanically stable.

The Young’s moduli and Poisson’s ratio for PtSe2 were obtained for bulk, bilayer and

monolayer are represented in Table 4.11. We observed that Young’s moduli increases

with the increase of the number of layers, indicating the increase of the resistance

to deformation under the application of opposing forces as the number of layers are

increased. The results agree with previous study [41], for monolayer. We also present the

calculated Young’s moduli (Y) and Poisson’s ratio (ν) for bulk, bilayer and monolayer

PtSe2, and bulk moduli and shear moduli for bulk PtSe2, which consistent to an available

previous study [41]. The values of the Young’s moduli in Table 4.11 shows that the bulk

is more resistant to deformation than monolayer and bilayer, also the bilayer more resist

than monolayer.

Table 4.10: Elastic constants (Cij (GPa)), for bulk, bilayer and monolayer PtSe2.

C11 C12 C13 C33 C66

Bulk optB86b-vdW 197.7 67.89 41.32 40.73 64.91

Bilayer PBE 76.52 18.19 – – –

Monolayer PBE 65.38 19.37 – – –

Monolayer Other work[41] 73.73.40 26.30 – – –

Table 4.11: The obtained Bulk moduli (B) Shear moduli (G),Young’s moduli (Y)
and Poisson’s ratio (ν) in GPa, for bulk, bilayer and monolayer PtSe2, and the other
theoretical study.

B Y G ν

Bulk optB86b-vdW 66.75 102.97 41.42 0.24

Bilayer PBE – 72.19 – 0.24

Monolayer PBE – 59.64 – 0.29

Monolayer Other work[41] – 64.35 – 0.25

4.3.3 Dynamical stability

The harmonic phonon dispersion relations were computed along with the high symmetry

directions. The phonon band structure, total density of states and partial density of
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Figure 4.32: The band structure of phonon dispersion for PtSe2. (a) Bulk (b) Bilayer
(c) Monolayer.
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Figure 4.33: TDOS and atomic contributions to acoustic and optical modes of phonon
dispersion for PtSe2. (a) Bulk (b) Bilayer (c) Monolayer.

states, for bulk, bilayer and monolayer PtSe2 are presented in Figure 4.32(a-c) and

Figure 4.33(a-c), respectively. The phonon partial density of states shows the atomic

contribution to the total phonon density. The range of phonon frequencies is between

0 − 6.6 THz for bulk and monolayer, while for bilayer is 0 − 6.7 THz. All the phonon

frequencies are positive, which indicates that the bulk, bilayer and monolayer of PtSe2

are dynamically stable. The similarity behavior of bilayer PtSe2, was noted for PtO2 and

PtS2 in the phonon band structure. The total and partial density of states respectively

for bulk, bilayer and monolayer are presented in Figure 4.11(a-c). It is evident that the

Pt atom controls in the low frequency acoustic region and the Se atom contributes more

to the high frequency optical mode region.
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Figure 4.34: Bulk, bilayer and monolayer PtSe2 calculated electronic structure using
optB86b-vdW for bulk and PBE for bilayer and monolayer. (a) Bulk, (b) Bilayer (c)
Monolayer. Along high symmetry directions.

4.3.4 Electronic structure properties

The electronic band structure, total and partial density of states of the bulk, bilayer and

monolayer PtSe2 are shown in Figure 4.34(a-c) and Figure 4.35(a-c), respectively. The

electronic structure calculations proved that the bulk phase of both compounds shows is

a semi-metal, while the bilayer and monolayer are semiconductor with an indirect band

gap. The minima of the conduction are located between Γ and M , while the maxima of

the valance are at the A and L points, of the Brillouin zone. Furthermore, we calculated

the density of states (total and partial), Figure 4.35(a-c) illustrated the contributions

of atoms to the gap edge. The density of states in Figure 4.35(a) confirmed the band

structure plot for bulk a semi-metal behaviour. But, the density of states for bilayer

and monolayer show that the maximum valence band is mostly do to the Se(p) orbital

while the minimum conduction band comes from the hybridisation between the Pt(d)

and Se(p) states. Note, the bilayer band structure appears dense as it is in PtO2 and

PtS2 bilayer. In Table 4.12, we summarised the band gap values for bulk, bilayer and

monolayer for PtSe2. Our calculated results agree with the experimental and previous

studies in Table 4.12. We find that the band gaps decrease with the increasing number

of layers as it was previously reported by Xu M et al. [140]. The values of the band gap

explain that the bilayer and monolayer suitable to photovoltaic applications.
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Figure 4.35: Bulk, bilayer and monolayer PtSe2 calculated TDOS and PDOS for each
atom and orbital using optB86-vdW for bulk and PBE for bilayer and monolayer. (a)
Bulk (b) Bilayer (c) Monolayer.

Table 4.12: The calculated band gaps values compared to the experimental and the-
oretical (in eV) of PtSe2.

optB86-vdW PBE GW0 Exp. Other calculations

Bulk semimetal semimetal – semimetal[29, 47] –

Bilayer 0.76 0.93 1.24 ∼0.80[48] 0.21[47],0.99[50]

Monolayer 1.25 1.38 3.90, 2.10[130],2.67[123] 1.6[48] 1.20[47],1.22[141] ,1.41[130],1.39[50],

1.29[123],1.25[42],1.40[135],1.18[51]
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Figure 4.36: GW0 BSE results (a) imaginary part ε2(ω), (b) real part ε1(ω) of
dielectric function and (c) absorbance for bulk, bilayer and monolayer of PtSe2.
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4.3.5 Optical properties

Figure 4.36(a-c) presents the calculated imaginary and real parts of the dielectric func-

tions, and the absorbance of bulk, a single layer of the bilayer and a monolayer PtSe2.

As we mentioned it in the case of other compounds, these properties are obtained by

solving the BSE. The maximum absorbance in in-plane polarization for monolayer is ≈
31.05% at 2.06 eV and for bilayer is ≈ 26.89% at 1.51 eV and 25.04% at 1.95 eV for

bulk. The absorbance of a monolayer is considerably greater than the absorbance for a

bilayer and bulk. This is higher than that of MoS2, MoSe2 and WS2 (5−10%) [115, 116],

where the single layer absorbance is high in monolayer than bilayer and bulk. Moreover,

in the out-of-plane polarisation, the maximum absorbance is ≈ 0.09% at 2.60 eV for

monolayer and ≈ 0.96% at 1.58 eV for bilayer and 16.00% at 0.80 eV for bulk. We used

the Tauc plot [117] to calculate the optical band gap. For the bulk PtSe2, the in-plane

and out-of-plane optical band gap polarizations are 0.1 and 0.3 eV, respectively. The

value for in-plane polarisation gap is higher than a predicted experimental gap. For

the monolayer, the optical band gap of 1.43 and 1.64 eV was predicted for the in-plane

polarisation and out-of-plane, respectively. The calculated optical band gaps of the in-

plane and out-of-plane polarization, for the bilayer are 1.10 and 1.25 eV, respectively.

Therefore, the obtained values of the bilayer could also be used for photovoltaic solar

cells applications, [142, 143, 144].

4.3.6 Lattice thermal conductivity

The lattice thermal conductivity against temperature and frequency were shown in Fig-

ure 4.37(a) and (b) respectively, for a single layer of bulk, bilayer and monolayer PtSe2

structure. The average lattice thermal conductivity at300 K for a single layer in bulk,

bilayer and monolayer is 0.47×10−8, 0.24×10−8 and 0.11×10−8 Wm−1K−1 in-plane di-

rection for a single layer in bulk, bilayer and monolayer respectively, and 0.10×10−8

Wm−1K−1 out-of-plane for bulk while the out-of-plane for bilayer and monolayer are

zero. The lattice thermal conductivity value for a single layer in bulk decreases by

about ∼49% of the bilayer and ∼77% of the monolayer, in the in-plane. Further, the

high in-plane value of lattice thermal conductivity per single layer was found to be in

the low-temperature range is 7.27×10−8 Wm−1K−1 at 20 K for bulk, and 2.39×10−8

Wm−1K−1 at 20 K for bilayer and 2.27×10−8 Wm−1K−1 at 30 K for monolayer. The

high out-of-plane is 1.28×10−8 Wm−1K−1 at 10 K for single layer bulk. The lattice
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Figure 4.37: Lattice thermal conductivity per layer for PtSe2, (a) lattice thermal
conductivity vs temperature, (b) cumulative lattice thermal conductivity vs frequency.

thermal conductivity against frequency at 300 K is plotted in Figure 4.7(b), and its

cumulative lattice thermal conductivity as a function of the frequency of single layer

for bulk, bilayer and monolayer. We observed that the lattice thermal conductivity

is highly anisotropic, with the thermal conductivity in-plane of the layers being much

higher than in the out-of-plane direction for two cases bulk, bilayer and monolayer. The

all lattice thermal conductivity values for a single layer in bulk, bilayer and monolayer

PtSe2, are suits for thermoelectric application

Furthermore, we calculated the directional projected density of states for each atom as

a function of frequency. Figure 4.38 shows the in-plane and out-of-plane contributions,

left and right, respectively, which are along [100] and [001]. The results of directional

projected density of states look like phonon density of states, but here we have direc-

tional contributions. The Pt and Se atoms contribution to the directional projected

density of states look like PtO2 and PtS2 compounds. While in out-of-plane just we

only have the contribution for bulk. To understand the contribution ratio of phonon to

lattice thermal conductivity for bulk, bilayer and monolayer PtSe2, we compute the con-

tribution of acoustic and optical phonons branches mode. The contribution estimated

to the thermal conductivity from the acoustic modes at 300 K. We obtained that the in-

plane acoustic mode total contribution is 95.12%, 95.39% and 96.58% for bulk, bilayer

and monolayer PtSe2 respectively. While the out-of-plane 86.02% for bulk, and 0% for

bilayer and monolayer. The contributions of phonon to lattice thermal conductivity per
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Figure 4.38: Directional projected density of states, left is in-plane and right is out-
of-plane for bulk, bilayer and monolayer PtSe2 as function of frequency.

Figure 4.39: Contribution ratio of phonon to lattice thermal conductivity, left is in-
plane and right is out-of-plane for bulk and monolayer PtSe2 as function of frequency.
(Recall there is no contribution in out-of-plane for monolayer).

atoms are illustrated in Figure 4.39 (left and right), for bulk, bilayer and monolayer.

Through Figure 4.39, we can note that the ratio of contribution is almost the same in

in-plane, for bulk, bilayer and monolayer. Also in the right, we have out-of-plane, which

is for bulk. This is in clear contrast to the conventional understanding, especially in the

out-of-plane direction, that the acoustic modes control thermal conductivity [127].

Phonon lifetime

Figure 4.40(a-c) shows how the bulk, bilayer and monolayer PtSe2 phonon lifetime

depends on frequency, at 300 K. The highest peak for phonon lifetime is located in

acoustic mode, and while the lowest peak for phonon lifetime is located in optical mode

for all structures. This is in accordance with a somewhat potent scattering in the high
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(a) (b) (c)

Figure 4.40: Phonon lifetime against frequency at 300 K for PtSe2. (a) Bulk, (b)
bilayer and (c) monolayer.

frequency optical phonon modes. To differentiate the phonon lifetime contributions to

the total lattice thermal conductivity, one can use the phonon lifetime distribution of

acoustic and optical phonon mode [128].

Group velocity

The calculated results are plotted in Figure 4.41(a-c). The in-plane group velocity is

higher than out-of-plane in the low frequency range, while at high frequency the in-

plane and out-of-plane are small compared to the low frequency values. The anisotropy

in group velocity has a big impact on the lattice thermal conductivity [129]. The

similarity of the distribution for in-plane group velocities of bulk and monolayer. In

contrast, the out-of-plane group velocities is 11 Å.THz for bulk and zero for others.

The combined effect of the frequency dependence of the phonon lifetimes and group

velocities are consistent with the anisotropy in the thermal conductivity as well as the

large contribution to the total thermal conductivity form the low frequency phonons.

4.3.7 Transport properties of PtSe2

In Figure 4.42, we present the calculated Seebeck coefficients for bulk, bilayer and

monolayer PtSe2 at range of temperature between 200 K to 600 K. The highest values

of Seebeck coefficient were obtained when majority carriers are holes with concentra-

tions of 1019cm−3 to be 1013µV/K at 200 K for bulk, and 343µV/K at 600 K for bilayer,

while for monolayer it was 376 µV/K at 600 K.

In Figure 4.43, the highest values of the electrical conductivity are found at 200 K for
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(a) (b) (c)

Figure 4.41: Average directional phonon group velocities against frequency for PtSe2.
(a) Bulk, (b) bilayer and (c) monolayer.
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Figure 4.42: Seebeck coefficients of bulk, bilayer and monolayer PtSe2.

all structures. For the bulk, it is 0.53×10−4, 18.07×10−4 and 3.42×10−4 S/m for the bi-

layer and monolayer, respectively. These values are achieved when the electrons carriers

concentration is 1020 cm−3. For all concentration of carriers, the electrical conductivity

decreases with an increase in temperature. This explains that the electrical conductiv-

ity, whereby an increase in temperature results in a decrease in electrical conductivity

due to their inverse relationship, and it is converse to what was noted in Figure 4.42 for

the case of Seebeck coefficient.

Figure 4.44 illustrate the computed electronic contribution to thermal conductivity for

a single layer in the bulk, bilayer and monolayer PtSe2. The highest κe values are

achieved at a high temperature of 600 K for bulk, while it is at low temperature (200

K) for both bilayer and monolayer. At 200 K for bulk, bilayer and monolayer are dom-

inated by the majority of electrons carriers concentration of 1020cm−3, while minimum

temperature values, were dominated by the majority hole carriers whose concentration

is 1019cm−3. The calculated results show the same behaviour of electrical contribution

Figure 4.43 for bilayer and monolayer structures. Oftenly, in reality, the lattice thermal
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Figure 4.43: Electrical conductivity for a single layer in bulk, bilayer and monolayer
PtSe2.

contributions dominate the total thermal conductivity since κL > κe.

100 200 300 400 500 600 700
T (K)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

K
e
 [

10
8  

(W
/m

Ks
)]

Bulk PtSe2
p=1E19 cm 3

p=1E20 cm 3

n=1E19 cm 3

n=1E20 cm 3

100 200 300 400 500 600 700
T (K)

0.0

0.2

0.4

0.6

0.8
Bilayer PtSe2

p=1E19 cm 3

p=1E20 cm 3

n=1E19 cm 3

n=1E20 cm 3

100 200 300 400 500 600 700
T (K)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Mono PtSe2
p=1E19 cm 3

p=1E20 cm 3

n=1E19 cm 3

n=1E20 cm 3

Figure 4.44: Electronic contribution to thermal conductivity for a single layer in
bulk, bilayer and monolayer PtSe2.

The power factor was calculated over a temperature range of temperature, from 200

K to 600 K for a single layer bulk, bilayer and monolayer PtSe2, the obtained results

plotted in Figure 4.45. The similarity between the bulk and the bilayer and a monolayer

is visible in the plot. The highest and lowest values of power factor for the bulk struc-

ture is detected at 600 K which 06 obtained by the electrons carriers concentration of

1020cm−3, and for bilayer and monolayer are at 200 K which detected by the electrons

carriers concentration of 1020cm−3, respectively, close to 200 K. The charge carriers

concentration decreases gradually when the temperature increase, which is reverse to

the lowest charge carriers concentration.

The dimensionless figure of merit (ZT) was determined within 500K and 600 K for

PtSe2. The figure of merit magnitudes of 0.16 at 500 K for bulk, and 0.35 at 600 K for

bilayer, and 0.46 at 300 K for monolayer were extracted, as illustrated in Figure 4.46.

The high values of the figure of merit were achieved by holes carriers in bulk case, and
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Figure 4.45: Power factor for a single layer in bulk, bilayer and monolayer PtSe2.

by electrons carriers in bilayer and monolayer cases. The monolayer structure possess

a higher value than bulk and bilayer.
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Figure 4.46: Figure of merit for bulk, bilayer and monolayer PtSe2.
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4.4 Platinum ditelluride (PtTe2)

4.4.1 Structural Properties

The fully optimized equilibrium lattice constants of PtTe2 for two approximations com-

pared with experimental data are listed in Table 4.13. We observe that the calculated

results by optB86-vdW are a0 = 4.05 Å, c0 = 5.11 Å and V0 = 72.04 Å3, which are

agree with the experimental a0 = 4.01 Å, c0 = 5.20 Å and V0 = 72.43 Å3 [145]. Also

the calculated lattice parameters for a bilayer are same to the results by previous study.

On the other hand, we set c = 15Å as a vacuum layer for bilayer and monolayer which

is make the vad der Waal’s force between the layers to be weak. The investigation of

the phase stabilities for bulk, bilayer and monolayer, were done using the cohesive and

formation energies as defined in Chapter 3, using Equation (3.2.1) and (3.2.2) respec-

tively. Our calculated cohesive and formation energies are listed in Table 4.13 per atom

for bulk, bilayer and monolayer, and compared with the available previous study. For-

mation and cohesive energies are negative, indicating these structures are energetically

stable. the PtTe2 structures are exothermic, suggesting that structures can be formed

from their constituent atoms [146]. The a and c lattice parameters, the in-layer struc-

tural parameters, show the least variation across the different approximations. The

inter-layer spacing, defined by the c lattice parameter, show the most variation. We

note that optB86-vdW gives the best equilibrium structural parameters for PtTe2 when

compared to experiment.

Table 4.13: Calculated, experimental and theoretical optimized lattice constants of
bulk bilayer and monolayer PtTe2, cohesive (Ecoh) and formation formation energies
per atom, and inter-layer distance.

a (Å) c (Å) Vo (Å3) Ecoh (eV) Eform (eV)

Bulk PBE 4.00 4.89 66.9 -4.43 -0.40

optB86b-vdW 4.05 5.11 72.04 -3.24 -0.37

Exp[45, 38, 39] 4.02 5.22 73.29 – –

Exp.[145] 4.01 5.20 72.43 – –

Bilayer PBE 4.08 15 – -3.80 -0.37

optB86b-vdW 4.09 15 – -2.93 -0.84

Monolayer PBE 4.05 15 – -3.80 -0.36
optB86-vdW 4.04 15 – -2.74 -0.66

Previous work[123] 4.02 – – – -0.32
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4.4.2 Mechanical stability

The calculations mechanical properties are exam for the elastic stability of materials.

The obtained elastic constants are listed in Table 4.14, accordance with the Born stabil-

ity criteria [102] see section (3.3.1), which confirm that the bulk, bilayer and a monolayer

PtTe2 are mechanically stable. Further, we investigated Young’s moduli (Y) and Pois-

son’s ratio (ν) to test the stiffness and bonding nature of the materials. In Table 4.15,

we present the computed Young’s moduli (Y) and Poisson’s ratio (ν) for bulk, bilayer

and monolayer PtTe2 compared to an available previous study [41], and bulk moduli and

shear moduli for bulk PtTe2. As we mentioned previously of Young’s moduli decreasing

with when the number of layer decrease, indicative of increased resistance to defor-

mation under the application of opposing forces as the number of layers is increased.

While, the Poisson’s ratio values looks the same for all bulk, bilayer and monolayer.

The values of the Young’s moduli in Table 4.7 shows that the bulk is more resist to

deformation than monolayer and bilayer, also the bilayer more resist than monolayer.

Table 4.14: Elastic constants (Cij (GPa)), for bulk, bilayer and monolayer PtTe2.

C11 C12 C13 C33 C66

Bulk optB86b-vdW 169.33 52.83 42.16 69.22 58.25

Bilayer PBE 85.36 21.74 – – –

Monolayer PBE 64.61 22.89 – – –

Monolayer Other work[41] 58.62 32.90 – – –

Table 4.15: The obtained Bulk moduli (B) Shear moduli (G),Young’s moduli (Y) and
Poisson’s ratio (ν) in GPa, for bulk, bilayer and monolayer, and the other theoretical
study.

B Y G ν

Bulk optB86b-vdW 68.69 103.84 41.60 0.25

Bilayer PBE – 79.82 – 0.25

Monolayer PBE – 59.64 – 0.29

Monolayer Other work[41] – 40.15 – 0.35

4.4.3 Dynamical stability

The phonon dispersion relations were calculated along with the high symmetry di-

rections. Figure 4.47(a-c) depicted the phonon band structure, for bulk, bilayer and
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0 1 2 3 4 5 6 7 8

Phonon density of states

0

1

2

3

4

5

6

F
re

q
u

e
n

cy
 (

T
H

z)

TDOS

Pt

Te

(a)

0 3 6 9 12 15 18

Phono density of states

0

1

2

3

4

5

TDOS

Pt

Te

(b)

0 2 4 6 8 10

Phonon density of states

0

1

2

3

4

5

TDOS
Pt
Te

(c)

Figure 4.48: TDOS and atomic contributions to acoustic and optical modes of phonon
dispersion for PtTe2. (a) Bulk (b) Bilayer (c) Monolayer.

monolayer PtTe2. The phonon frequencies range is 0−5.4 THz, 0−5.0 THz and 0−5.2

THz for bulk, bilayer and monolayer, respectively. Figure 4.48(a-c) show the total and

partial density of states, and explain the atomic contribution to the total phonon den-

sity, to the acoustic and optical mode for bulk, bilayer and monolayer. All the phonon

frequencies are positive, which is suggest that the bulk, bilayer and monolayer of PtTe2

are dynamically stable. Also, we observed the same phonon band structure dense of the

bilayer PtTe2 as in bilayer for PtO2, PtS2 and PtSe2. From the plots, we can confirm

that the most contribution of (Pt) atoms are in acoustic mode and (Te) atoms are in

optical mode.
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Figure 4.49: Calculated band structure of PtTe2. (a) Bulk (b) Bilayer (c) Monolayer.

4.4.4 Electronic structure properties

In Figure 4.49(a-c) and Figure 4.50(a-c), we show the electronic band structure, total

and partial density of states of the bulk, bilayer and monolayer PtTe2, respectively.

The electronic structure investigations proved that the bulk phase of both compounds

have a semi-metal behavior, hence the bilayer and monolayer are semiconducting with

an indirect band gap in both compounds. The minima of the conduction are located

at Γ, while the maxima of the valance band between A and L points, almost the same

of PtO2, of the Brillouin zone. The obtained density of states (total and partial) was

done to know the orbital contributions to the gap edge. We found that a semi-metal

behaviour for bulk through the density of states plot, but the bilayer and monolayer

are semiconductors with gap edge determine by Te(p) in top of the valence band and

hybridization of Pt(d) and Te(p) in the minimum conduction band. The bilayer band

structure exhibits the same behavior of a bilayer for other compounds. In Table 4.16,

we listed the band gap values for bulk, bilayer and monolayer for PtTe2. Our calculated

results agreed with some of the previous studies [26, 50, 48]. We find that the band gaps

decrease with the increasing number of layers as it was previously reported by Xu M

et al. [140]. The obtained results of band gap for bilayer and monolayer were consistent

to photovoltaic solar cell applications.
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Figure 4.50: Calculated total and partial DOS of PtTe2. (a) Bulk (b) Bilayer (c)
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Table 4.16: The calculated band gaps values compared to the experimental and the-
oretical (in eV) of PtTe2.

optB86-vdW PBE GW0 Exp. Other calculations

Bulk semimetal semimetal – semimetal[29] –

Bilayer 0.33 0.43 — — —

Monolayer 0.63 0.80 3.90, 2.03[123] — 0.75[123],0.61[42],0.38[52],

0.70[135],0.79[130]
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Figure 4.51: GW0 BSE results (a) imaginary part ε2(ω), (b) real part ε1(ω) of
dielectric function and (c) absorbance for bulk, bilayer and monolayer of PtTe2.
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4.4.5 Optical properties

The imaginary and real parts of the dielectric functions, and the absorbance of bulk, a

single layer of the bilayer and a monolayer PtTe2, were calculated and plotted in Figure

4.51(a-c). The maximum absorbance in in-plane polarization for monolayer is ≈ 35.27%

at 1.33 eV and for bilayer is ≈ 26.75% at 1.45 eV and 6.32% at 1.65 eV for bulk. The

absorbance of a monolayer is considerably greater than the absorbance for a bilayer and

bulk. This agrees with MoS2, MoSe2 and WS2 results (5−10%) [115, 116], where the

single layer absorbance is high in monolayer than bilayer and bulk. Moreover, the out-

of-plane polarisation, the maximum absorbance is ≈ 0.15% at 2.30 eV for monolayer and

≈ 6.04% at 2.36 eV for bilayer and 5.20% at 1.88 eV for bulk. The Tauc plot [117], was

used to obtain the optical band gap. For the bulk PtTe2, the in-plane and out-of-plane

optical band gap polarizations are 0.03 and 0.00 eV, respectively, which is confirmed

the experimental measurements. The calculated optical band gaps of the in-plane and

out-of-plane polarization, for the monolayer, are 1.00 and 1.50 eV, and for bilayer are

0.37 and 0.92 eV, respectively. Therefore, the obtained values of the monolayer and

bilayer can be use for photovoltaic solar cells applications [142, 143, 144].

4.4.6 Lattice thermal conductivity

In Figure 4.52(a) and (b), we illustrate the lattice thermal conductivity vs temperature

and frequency, respectively, for a single layer of bulk, bilayer and monolayer PtTe2

structure. The average lattice thermal conductivity at 300 K for single layer in bulk,

bilayer and monolayer is 0.33×10−8, 0.12×10−8 and 0.07×10−8 Wm−1K−1 in-plane

direction for a single layer in bulk, bilayer and monolayer respectively, and 0.08×10−8

Wm−1K−1 out-of-plane for bulk while the out-of-plane for bilayer and monolayer are

zero. The lattice thermal conductivity value for bulk decreases by about ∼64% of the

bilayer and ∼79% of the monolayer, in the in-plane. Further, the high in-plane value

of lattice thermal conductivity per single layer was found to be in the low-temperature

range is 2.58×10−8 Wm−1K−1 at 20 K for bulk, and 0.95×10−8 Wm−1K−1 at 20 K

for bilayer and 0.52×10−8 Wm−1K−1 at 30 K for monolayer. The high out-of-plane is

0.60×10−8 Wm−1K−1 at 20 K for single layer bulk. The lattice thermal conductivity

against frequency at 300 K is presented in Figure 4.52(b), and its cumulative lattice

thermal conductivity as a function of the frequency of single layer for bulk, bilayer and

monolayer. We observed that the lattice thermal conductivity is highly anisotropic,
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Figure 4.52: Lattice thermal conductivity per layer for PtTe2, (a) lattice thermal
conductivity against temperature, (b) cumulative lattice thermal conductivity against
frequency.

with the thermal conductivity in-plane of the layers being much higher than in the

out-of-plane direction for two cases bulk, bilayer and monolayer. The all lattice thermal

conductivity values for a single layer in bulk, bilayer and monolayer PtTe2, are suits for

thermoelectric application

Furthermore, we computed the directional projected density of states for each atom as a

function of frequency. The in-plane and out-of-plane contributions are shown in Figure

4.53 left and right, respectively, which are along [100] and [001]. The results appears the

similarity of directional projected density of states for other compounds. To perceive

the contribution ratio of phonon to lattice thermal conductivity for bulk, bilayer and

monolayer PtTe2, we compute the contribution of acoustic and optical phonons modes.

The contribution estimated to the thermal conductivity from the acoustic modes at 300

K. We obtained that the in-plane acoustic mode total contribution is 86.22%, 83.33%

and 92.30% for bulk, bilayer and monolayer PtTe2 respectively. While the out-of-plane

64.29% for bulk, and 0% for bilayer and monolayer. The contributions of phonon to

lattice thermal conductivity per atoms are illustrated in Figure 4.54 (left and right),

for bulk, bilayer and monolayer. Through Figure 4.54, we can note that the ratio of

contribution is almost the same in in-plane, for bulk, bilayer and monolayer. Also in

the right, we have out-of-plane, which is for bulk. This is in clear contrast to the

conventional understanding, especially in the out-of-plane direction, that the acoustic
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Figure 4.53: Directional projected density of states, left is in-plane and right is out-
of-plane for bulk, bilayer and monolayer PtTe2 as function of frequency.

Figure 4.54: Contribution ratio of phonon to lattice thermal conductivity, left is in-
plane and right is out-of-plane for bulk and monolayer PtTe2 as function of frequency.
(Recall there is no contribution in out-of-plane for monolayer).

modes control thermal conductivity [127].

Phonon lifetime

The third-order force constants [90, 95], were used to obtain the phonon lifetime. The

phonon lifetime at 300 K for bulk, bilayer and monolayer PtTe2, as a function of fre-

quency, as depicted in Figure 4.55(a-c). The highest peak for phonon lifetime is located

in acoustic mode, and while the lowest peak for phonon lifetime is located in optical

mode for all structures. This is in accordance with a slightly strong scattering in the

high frequency optical phonon modes. The phonon lifetime distribution of acoustic and

optical phonon mode can be used to differentiate the phonon lifetime contributions to

the total lattice thermal conductivity [128].
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Figure 4.55: Phonon lifetime against frequency at 300 K for PtTe2. (a) Bulk, (b)
bilayer and (c) monolayer.
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Figure 4.56: Average directional phonon group velocities against frequency for PtTe2.
(a) Bulk, (b) bilayer and (c) monolayer.

Group velocity

The investigations of group velocity was described according to Equation (2.5.10). In

Figure 4.56(a-c) we plot the average of group velocity. The in-plane group velocity is

higher than out-of-plane in the low frequency range, while at high frequency the in-plane

and out-of-plane are small compared to the low frequency values. The anisotropy in

group velocity has a big impact on the lattice thermal conductivity [129]. The similarity

of the distribution for in-plane group velocities of bulk and monolayer. In contrast, the

out-of-plane group velocities is 13 Å.THz for bulk, while it is 0 Å.THz for bilayer and

monolayer. The combined effect of the frequency dependence of the phonon lifetimes

and group velocities are consistent with the anisotropy in the thermal conductivity as

well as the large contribution to the total thermal conductivity form the low frequency

phonons.
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4.4.7 Transport properties of PtTe2

Figure 4.57 shows the calculated Seebeck coefficients for a single layer in bulk, bilayer

and monolayer PtTe2, between 200 K and 800 K temperature range. The Seebeck co-

efficient for the bulk have negative values for all charge carriers concentration, which

explain that the bulk can be a good n-type material. Possibly because the bulk have

metallic behaviour so the majority of carriers should be electrons. From the plot, we

can observe that the Seebeck coefficients are increases according to increase of the tem-

perature.
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Figure 4.57: Seebeck coefficients of bulk, bilayer and monolayer PtTe2.

Figure 4.58, presents the electrical conductivity for a single layer in bulk, bilayer and

monolayer PtTe2 in the temperature range of 200 K to 800 K. The highest values were

found to be at 200 K for all structures, which are 7.9×10−4 S/m for bulk, 4.4×10−4

S/m for bilayer and 1.5×10−4 S/m for monolayer, which are associated with by elec-

tron carriers whose concentration is 1020 cm−3 for a single layer in bulk, bilayer and

monolayer. For all concentration of carriers, the electrical conductivity decreases with

an increase in temperature. This indicates that an increase in temperature results in a

decrease in electrical conductivity, due to their inverse relationship, and it is converse to

what was noted in Figure 4.57 for the case of Seebeck coefficient. This is also observed

in the preceding binary compounds.

The obtained electronic contribution to thermal conductivity for a single layer in bulk,

bilayer and monolayer PtTe2 in the temperature range of 200 K to 800 K is provided

in Figure 4.58. To understand how the total thermal conductivity is affected by elec-

tronic contribution. Figure 4.59 shows the maximum values, at a low temperature of

200 K for bulk, bilayer and monolayer, while, the lowest values are found to be at high

temperature range. Also, the behavior of bilayer and monolayer kook the same, since



Section 4.4 Platinum ditelluride (PtTe2) Page 76

100 200 300 400 500 600 700 800 900
T (K)

2

4

6

8

[1
0

4  
(S

/m
)]

Bulk PtTe2
p=1E19 cm 3

p=1E20 cm 3

n=1E19 cm 3

n=1E20 cm 3

100 200 300 400 500 600 700 800 900
T (K)

0

1

2

3

4

Bilayer PtTe2
p=1E19 cm 3

p=1E20 cm 3

n=1E19 cm 3

n=1E20 cm 3

100 200 300 400 500 600 700 800 900
T (K)

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Mono PtTe2

p=1E19 cm 3

p=1E20 cm 3

n=1E19 cm 3

n=1E20 cm 3

Figure 4.58: Electrical conductivity for a single layer in bulk, bilayer and monolayer
PtTe2.

the high concentration for each of electrons and holes has a high value of the electronic

contribution, reverse to the low concentration. However, the highest values are deter-

mined when the majority are electrons whose carrier concentrations is 1020cm−3. The

obtained results show the lowest electronic contribution is provided by the monolayer

structure, whereas the highest is by bulk structure.
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Figure 4.59: Electronic contribution to thermal conductivity for a single layer in
bulk, bilayer and monolayer PtTe2.

The calculated power factor for a single layer in bulk, bilayer, and monolayer PtTe2 in

the temperature range of 200 K to 800 K, were plotted in Figure 4.60. The highest and

lowest values of power factor was found at low temperature of 200 K. The behavior of

power factor curvature for bilayer and monolayer looks the same since the charge carri-

ers concentration of 1019cm−3 for each of electrons and holes have given high values at

low temperature, while the low values were reported for charge carrier concentration of

1020cm−3 for each of them. Contrarily, the behavior of the bulk system seemed different.

The dimensionless figure of merit (ZT) was calculated from 200 K to 800 K, and the

greatest values for a single layer in the bulk, bilayer and monolayer PtTe2 are attained
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Figure 4.60: Power factor for a single layer in bulk, bilayer and monolayer PtTe2.

at 800 K. The obtained ZT values are, 0.08 at 600 K for bulk, 0.37 at 700 K for bilayer

and 0.51 at 600 K for monolayer, as depicted in Figure 4.61. The high values of ZT were

dominated by holes carrier of 1020cm−3 for bulk and by electrons carriers of 1019cm−3

for bilayer and monolayer. The results indicates that a monolayer have higher ZT than

bilayer and bulk. Also, the figure of merit values for all the structures increases with

increasing temperature, since, the lowest values are at low temperature.
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Figure 4.61: Figure of merit for bulk, bilayer and monolayer PtTe2.



5
Summary and Conclusion

5.1 Summary

In this section we summarize the results of our calculations for the PtX2 (α-PtO2, PtS2,

PtSe2 and PtTe2) compounds examined in this thesis. All compounds were structurally

relaxed to configurations that are mechanically and dynamically stable. Table 5.1,

presents the calculated DFT and BSE-optical (in-plane and out-of-plane) band gap

values for the PtX2 compounds. We note that α-PtO2 has the widest band gap (DFT

and optical) compared to other compounds. Also, the band gap values increases from

bulk to bilayer to monolayer, which suggests that a degree of band gap engineering

is possible for these compounds. The obtained optical band gap values in the 0.3 -

2.75 eV range for PtX2 structures, so the values between 1.0 to 1.7 eV are suitable

for photovoltaics cell applications, while the values less than 1.0 and high than 1.7 are

suitable for lower and top layers of the tandem solar cell, respectively [142, 143, 144].

Table 5.1: Our calculated, DFT and BSE-optical gap (in-plane (in) and out-of-plane
(out) ) band gaps (in eV) for the bulk, bilayer and monolayer of PtX2.

Bulk Bilayer Monolayer
Compound

optB PBE
BSE

optB PBE
BSE

optB PBE
BSE

in out in out in out

α-PtO2 1.61 1.63 1.66 1.77 1.63 1.74 1.89 2.34 1.72 1.86 2.32 2.75

PtS2 0.81 1.06 1.09 1.36 1.13 1.26 1.61 1.73 1.67 1.80 1.95 2.30

PtSe2 semimetal semimetal 0.10 0.3 0.93 0.93 1.10 1.25 1.38 1.38 1.43 1.64

PtTe2 semimetal semimetal 0.03 0.00 0.33 0.43 0.37 0.92 0.63 0.80 1.00 1.50
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In Table 5.2, we listed the results for the maximum absorbance in the range from 1− 3

eV. The PtX2 structures exhibited values ranging from 0.9 for bulk α-PtO2 up to 35 for

monolayer PtTe2. Hence, the monolayers absorbance has the highest values among the

others, also it increases from α-PtO2 to PtTe2 compound. Moreover, the absorbance is

dependent on the thickness of the material, which is the reason for the high values for

monolayer, since it is thickness is a single layer thick. The monolayer PtTe2 show the

highest absorbance compared to others.

Table 5.2: The calculated maximum absorbance of in-plane, in the visible photon
energy range for bulk, and a single layer of bilayer and monolayer PtX2.

Compound
Bulk Bilayer Monolayer

absorbance % Energy (eV) absorbance % Energy (eV) absorbance % Energy (eV)

α-PtO2 0.91 2.12 5.64 2.51 8.06 2.92

PtS2 2.00 2.90 7.64 1.83 13.15 2.51

PtSe2 25.04 1.95 26.89 1.51 31.05 2.06

PtTe2 6.32 1.65 26.75 1.45 35.27 1.33

The in-plane average lattice thermal conductivity per layer for PtX2 compounds are

shown in Table 5.3. Hence, our calculated values of the in-plane average lattice thermal

conductivity for PtX2 compounds per layer are in range from 0.07×10−8 for monolayer

PtTe2 to 8.47×10−8 Wm−1K−1 for bulk α-PtO2 at room temperature. The results are

given per layer for ease of comparison, see Section (3.6) for details. The low values of the

lattice thermal conductivity is considered to be promising for the thermoelectric figures

of merit. In our results, the lowest lattice thermal were found for the monolayers, PtTe2

monolayer has lowest value of all the compounds investigated.

Table 5.3: Lattice thermal conductivity (in Wm−1K−1 ) for a single PtX2 layer.

Compound κL × 10−8 (Bulk) κL × 10−8 (Bilayer) κL × 10−8 (Monolayer)

α-PtO2 8.47 4.59 1.06

PtS2 2.30 1.16 0.15

PtSe2 0.47 0.24 0.11

PtTe2 0.33 0.12 0.07

Thermoelectric figures of merit (ZT) for the PtX2 compounds are shown in Table 5.4.

For comparison, we stated the highest values of ZT at a certain temperature, besides

that, we observed how the ZT appears in various temperature. Our obtained ZT is

between 0.04 at 200 K for bulk PtS2 to 0.74 at 300 K for monolayer α-PtO2, which

it looks small ZT values for the bulk system. It is clear, that the monolayer for each

compound possesses a high ZT value. Besides that, also the highest monolayer ZT
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value at 300 K, was found to be that of monolayer α-PtO2, which is close to unity.

Even though the thermal conductivity has a low value, unfortunately, the power factor

was small for all PtX2 compounds. Since the ZT of monolayer α-PtO2 has a value that

is close to unity. Hence, it can be suitable for thermoelectric applications as n-type

since it is due to the electrons charge carrier, as compared to the bulk system. The

ZT of others system are low, for thermoelectric applications as it is unless strategies to

improve ZT via reduction of lattice component i.e through straining or nanostructuring

are implemented.

Table 5.4: The in-plane highest figure of merit (ZT) at a various temperature regimes
of bulk, bilayer and monolayer PtX2.

Compound
Bulk Bilayer Monolayer

ZT Temperature (K) ZT Temperature (K) ZT Temperature(K)

α-PtO2 0.11 700 0.62 400 0.74 300

PtS2 0.04 200 0.12 500 0.18 500

PtSe2 0.16 500 0.35 600 0.46 500

PtTe2 0.08 600 0.37 700 0.51 600

5.2 Conclusion

First-principles calculations were used to investigate the structural, mechanical, dynam-

ical stabilities, optical and thermoelectric properties of the trigonal PtX2 (X=O, S, Se

and Te), to get some insights about their applications as a thermoelectric or photovoltaic

materials. This was carried out using density functional theory and many-body pertur-

bation theory. All calculations were performed using the Vienna ab-initio Simulation

Package (VASP) in conjunction with the PHONOPY, PHONO3PY and BoltzTraP2

packages. Mostly, the results are in agreement with available experimental and theoret-

ical data. Since these PtX2 compounds have potential device applications, we opted to

summarise our results and discuss potential applications separately as provided below.

We hope that our predicted results will provide a better theoretical understanding of

the rich properties of these materials, as extensively captured in this work.

The study of structural properties shows that the compounds, at their minimum energy

configurations, are mechanically and dynamically stable. While, through the DFT and

optical band gap, the monolayer of PtX2 compounds show that the values of band gap

are good for photovoltaic and tandem solar cell application [142, 143, 144]. However,
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the absorbance results depict that the monolayer PtTe2 possesses a high percentage of

radiation absorption. Furthermore, we investigated the in-plane average lattice thermal

conductivity for PtX2 compounds per layer, in order to calculate the transport coef-

ficients, which was encourage by the low values average lattice thermal conductivity.

Unfortunately, the calculation of the in-plane transport show low values for the power

factor for all PtX2 structures. That was the main reason for the low values of the

obtained thermoelectric figure of merit ZT.
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[113] M Gajdoš, K Hummer, G Kresse, J Furthmüller, and F Bechstedt. Linear optical

properties in the projector-augmented wave methodology. Physical Review B,

73(4):045112, 2006.

[114] Nurettin Korozlu, K Colakoglu, and E Deligoz. Structural, electronic, elastic and

optical properties of cdxzn1−xte mixed crystals. Journal of Physics: Condensed

Matter, 21(17):175406, 2009.



REFERENCES Page 92

[115] Li Yang, Jack Deslippe, Cheol-Hwan Park, Marvin L Cohen, and Steven G Louie.

Excitonic effects on the optical response of graphene and bilayer graphene. Phys-

ical review letters, 103(18):186802, 2009.

[116] Marco Bernardi, Maurizia Palummo, and Jeffrey C Grossman. Extraordinary

sunlight absorption and one nanometer thick photovoltaics using two-dimensional

monolayer materials. Nano letters, 13(8):3664–3670, 2013.

[117] O Stenzel. The physics of thin film optical spectra, surface sciences, 2005.

[118] J Bardeen and W Shockley. Deformation potentials and mobilities in non-polar

crystals. Physical review, 80(1):72, 1950.
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