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In order to satisfy the increasingly sophisticated 
requirements for simulation in the metallurgical 
industry, this research focused on the development of 
data structures and algorithms general and extendable 
enough to accomodate all hydrometallurgical 
processes.

The data structures' designed to describe process 
stream information were based on the concept of 
substreams (Britt-, 19SG) using the pi ex data 
structure (Evans, Joseph and Seider, 1977) inherent 
to the Pascal programming language. As substreams are 
combined to describe complete process streams, the 
data structures may be extended to describe any 
process stream by creating additional substreams as 
may be required.

Algorithms for partitioning, tearing and ordering 
flowsheets based on the work of Tarjan (1972, 1973) 
and Lee and Rudd (1966) were designed and 
implemented. These algorithms are able to treat the 
large problem sizes associated with
hydrometallurgical process flowsheets.

The data structures and algorithms have been 
successfully combined into a powerful process 
simulator extendable to the general
hydrometallurgical process description.
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CHAPTER 1 : INTRODUCTION

1.1 The Use of Steady-State Simulation in Metallurgy.

The research performed dealt exclusively with
steady-state simulation techniques, and any reference 
to simulation hereafter shall imply steady-state 
simulation.

The use of simulation in the metallurgical industry 
has shown a tremendous growth in the past five years. 
Not only have simulators moved from the university 
and consulting environment into industry, but 
simulation has come to be recognised as a viable 
engineering tool.

Simulators ’lave, in the past, been used as powerful 
predictive units on a large scale. This included 
usage as design • tools, for the prediction of 
alternate circuit configurations and for the 
optimisation of circuit operating parameters. Should 
simulators be more freely available, their usage may 
very well include operator training, the prediction 
of simple plant p :rameter changes, and the 
familiarisation of metallurgists with the variations 
in plant operation with variations of operational 
parameters.
The need for simulators of high quality that are easy 
to use and reliable, and that will instill confidence 
in users unfamiliar with simvlation, is therefore 
obvious.



The use of simulation in South Africa has, in the 
past, been restricted mainly to the ore dressing side 
of mineral processing, for two reasons. Firstly, the 
modelling of ore dressing operations is relatively 
simple, and many models based on historic data or on 
empirical fitting exist. Secondly, available 
simulators have not been able to accommodate the 
complex data structures that exist in 
hydrometallurgy, both in terms of the data for each 
stream in the process flowsheet, and the complex 
structures of the flowsheet itself. The design of 
this simulation program was aimed at solving the 
second of the above problems. The modelling of 
hydrometallurgical unit operations is in itself a 
large task, and research in this field is active.

Thus the aims of this project were to produce a 
simulator that would be able to operate on a small 
computer, thereby making it. accessible to a large 
number of users, while simultaneously laying down the 
program structures required so that the simulation of 
hyd]% metallurgical circuits is also made possible. 
Thi. program shell, capable of accepting 
hydro-aetallurgical unit models and their associated 
stream structures, will further stimulate research in 
the modelling of these unit operations, as the tedium 
of designing the associated code for the tearing of 
recycles, the ordering c.: the calculation phase and 
the design of date structures has been eliminated.

1.2 Simulation strategies.

The primary mathematics i problem in steady-state 
process simulation is one of solving large systems of 
nonlinear algebraic etjuei.ions. There are three 
specialised approaches to solving these equations:



the sequential moduTir approach, the
equation-oriented approach and two-tier algorithms.

1.2.1 The sequential modular approach.

Essentially all industrial simulators available at 
present operate on the sequential modular approach 
(Evans, 1980). A computer routine is developed for 
each unit operation to produce the output stream 
variables as functions of the input stream variables 
and unit parameters. Each routine is then 
sequentially called to simulate the complete process. 
Initial estimates of the recycle stream variables 
must be provided, either by default or by the user, 
the unit calculation order being sequentially 
repeated until convergence of the recycle streams to 
within a specified tolerance has been achieved. The 
solution of design problems or constrained problems 
is also done by iteration. Before a simulation can 
done, a host of precalculation algorithms have to be 
called to determine the calculation order for each 
routine and tihe streams that have to be assumed for 
the simulation to be started.

1.2.2 Equation oriented methods.

These methods collect all of the equations describing 
the flowsheet and solve them as a large system of 
nonlinear algebraic equations. In general, the system 
of equations is sparse and structured. In this 
approach, the models generate and represent the 
equations for each unit operation. These equations 
are then fed to an efficient equation solving 
procedure. Using this method a simulation may be 
formulated as an optimisation or design problem. The 
equation oriented nethod has been used extensively in 
models for individual unit operations, but have not



been used routinely in an industrial simulator
(Evans, 1980).

1.2.3 Two-tier Algorithms.

Using this approach, the overall solution strategy of 
the sequential-modular approach is maintained, while 
both rigorous and simple models are made available. 
The simple models are in the form of a group of 
linear equations that can be rapidly solved by an 
efficient equation solving technique to determine all 
the stream variables. This allows the rigorous models 
to be called when a more accurate simulation is 
required. This method has been used in an advanced 
simulator. (Evans, 1980). Other two-tier algorithms 
include that of Mesterberg et al (1979), known as the 
simultaneous-modular approach, where all the stream 
variables are solved simultaneously using simple 
linear models. The two-tier approach takes advantage 
of all the existing sequential modular software. This 
approach may be considered as another convergence 
method, where simple, fast models are used to rapidly 
approach the solution; the final values being
determined by rigorous modelling.

1.2.4 Comparison of methods.

Writing the executive for an equation-solving 
simulator can become extremely complex (Mesterberg et 
al, 1979). The problems are those of guaranteeing 
that the dressing engineer will give a legitimate 
problem definition to the system and that the 
solution can be made to converge to a solution. The 
sequential modular and two-tier approaches are ouch 
simpler to write. The assumption that each unit 
operation model will calculate unit output stream 
values given input stream values and equipment
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parameters solves many problems. By assuming a rigid 
form for writing a unit model, these routines may be 
written comparatively easily as the writer has to 
make no decisions on the type of input data that he 
will be given. In the equation-solving approach, the 
modeller has to manipulate the equations defining the 
unit into a form recognisable by the system.

The executive for the modular approaches has to 
analyse the flowsheet and determine a 1— imputation 
order for the unit models. Methods for skiving this 
problem are well established.

For the equation solving approach two options exist: 
The equations may be solved by successive 
linearisation or by an analysis attempting to 
minimise the number of iterate variables required. 
Using the former method, the system must calculate or 
estimate partial derivatives and set up a set of 
simultaneous linear equations for each iteration. The 
latter alternative can be very complex and represents 
a massive combinatorial problem as the use and 
position of each equation must be determined. The 
complex form has not been used for simulators 
(Westerberg et al, 1979).

By not using the equation-solving technique, the 
optimisation or design problem, requiring equipment 
parameters t-.i be calculated, becomes more complex and 
greatly incraases the computation time.

Modular simulation executives may be designed and 
written more quickly, the system is simple to specify 
and unit models may be written, tested and made 
computationally robust. The user further has no 
difficulty in specifying data to produce a 
well-defined problem. All of the magnitude of



presently available modular unit models may further 
directly used if this approach is adopted.

The sequential modular method was used for the
present simulator on the basis of the above
arguments. Experience with the MODSIM simulator as 
successfully implemented by Ford and King (1984) 
further indicated the suitability of this approach to 
the present work. The simulator was further written' 
in such a way that the two-tier approach as described 
by Evans (1984) may be implemented at a later stage 
should the robust models prove to be too slow 
computationally for optimisation or design usage.

Henceforth, reference to a "simulator" or 
"simulation" shall imply a steady-state, sequential 
modular sytem.

1.3 The Requirements of an Advanced Process Simulator

As early as 1976 (Evans and Seider), it was 
recognised that the direction which simulation 
techniques must take had to be clearly defined. The 
problems of simulations containing solids in the
process streams, and the adequate representation 
thereof were recognised and the requirements of such 
a simulator set.

These requirements, if applied to the steady-state 
simulation of hydrometallurgical plants, are as 
followsi

1.The system must permit analyses of flowsheets 
with different types of streams.

2. The system must be extendable and capable of 
modification.



3.The system must be adaptable to different 
computing environments, and transportable.

4.The cost of the simulator and performing 
simulations should be reasonable.

5.The system should be file oriented,the results 
of one phase being stored before analysis of the

6.The system must be conveniently accessible to 
the user.

7.The assumptions employed in an analysis should 
be clear.

8.The user should be , „o communicate in a 
convenient form, and it should be easy to 
interpret results.

9.The system should be easy to learn to use and 
well documented.

Only the first six of these apply directly to the 
research done. Although the last points are by no 
means less important, they are the result of good 
human-computer interface design and of the models 
used in the simulation, and are beyond the scope of 
this work. The executive program designed essentially 
operates from and writes to data files for the 
interface to manage. The use of such a modular 
program structure allows the interchanging of 
different sections to suit the requirements of the 
ultimate user.



The first requirements of portability, accessibility 
and cost point to the use of small, or preferably 
micro computers. In the time since Evans and Seider 
set those requirements, computer power has increased 
exponentially, with a simultaneous decrease in cost 
and size. It is now possible for each user to have a 
dedicated machine, and the software we create must 
face this reality. The future of computers is clearly 
in the direction of smaller machines, with a 
proportional increase in their power and speed. The 
use of local computing power conforms to the 
predictions of Evans (1980) for the simulator
environment of the 1990's.

The second major requirement is for a general and 
extendable simulator that will be able to process any 
size problem, with a wealth of different stream types 
and unit operations. This work was primarily
concerned with the design of the data structures and 
algorithms that would meet this second requirement, 
while not losing sight of the first.

1.4 An Evaluation of Existing Metallurgical 
Simulators.

A literature survey of metallurgical simulators 
capable of simulating hydrometallurgical flowsheets 
or which will be extendable to represent the complex 
data associated therewith satisfactorily, was 
undertaken. No simulator exists at present that meets 
the requirements for simulating hydrometallurgical 
operations, although the concepts employed for the 
representation of process stream data and general 
data structures are well established.



The extension of an existing simulator to meet 
advanced requirements has been done by Ritchie and 
Spencer (1984), with great success. The ASPEN-PLUS 
system produced as an extension of ASPEN, an advanced 
chemical process simulator (Evans et al. 1979), is
howver extremely large, consisting of approximately
350 000 FORTRAN statements, and is not implementable
on a micro-computer. The extensions made by Ritchie 
(1984), while allowing for economic evaluation of 
minerals processing operations and greatly enhancing 
the ASPEN system for use in metallurgical 
simulations, does not yet allow adequate date 
structures for the 'representation of complex solids 
that are to be represented in multiple dimensions of 
characterisation. The ASPEN-PLUS system allows solids 
to be distributed according to size and mineral 
content (or grade) and the latter to be distributed 
according to specific gravity. The system does not 
allow true multi-dimensional distributions, e.g. a 
specific gravity distribution in each size class.
Further dimensions for distribution, for example 
flotation rate constants and unreacted core size is 
also not catered for. ASPEN does however use very 
elegant data structures for the representation of 
streams data (Britt, 1980) and state-of-the-art 
algorithms for the precalculation phase, during which 
the flowsheet is analysed and the calculation order 
determined (Evans, 1980). The bulk of the code size 
and unfamiliarity with the code make extensive 
modifications to the . program by unfamiliar users 
difficult.

The Monsanto FLOWTRAN system uses data structures 
similar to ASPEN, however only simple extensions have 
been attempted (Neville and Seider, 1980). Once 
again, the system is written in FORTRAN, with large 
sections of code being used for data manipulation and



memory allocation and management. The difficulties 
associated with maintaining code written to simulate 
a high-level language, as was done in both ASPEN and 
FLOWTRAN, become evident from their work.

Hess and Wiseman (1964) describes the ore-dressing 
simulator of the Julius Kruttschnitt Mineral 
Research Centre. Although the human-computer
interface is elegant, the system is main-frame bound 
and limited to ore-dressing operations, in concept it 
is similar to MODSIM, the ore dressing simulator of 
the University of the Witwatersrand (Ford and King, 
1984). Extensions to the latter appeared feasible, 
however the memory allocation of the program is done 
by recompilation of the main FORTRAN executive and 
linking of the associated code - a very 
time-consuming task on a small computer. The rigid 
FORTRAN array based data structures further 
complicate extensions to allow the multiple solid and 
lixiviant phase descriptions required for 
hydrometallurgical simulations. The MODSIM simulator 
is limited to a true three-dimensional matrix type 
solid phase description.

The FLEXMET system of Fluor (Richarson et al, 1980 
and 1981) cannot describe the solid phase in any 
great detail and is therefore unsuitable for use.

The literature survey clearly indicated that for the 
steady-state simulation of hydrometallurgical 
operations, preferably on a micro-computer, no 
suitable, extendable programs exist and that a 
simulator executive would have to be designed and 
created combining concepts of other simulators to 
meet the advanced requirements.



1.5 Comparison of ore-dressing and hydrometallurgical 
simulator structures.

The hydrometallurgical simulator should be seen as an 
ore-dressing simulator extended to accommodate 
lixiviant data rather than an extension of a chemical 
process simulator to accommodate solids data. The 
adequate representation of the large amount of solids 
data associated with minerals processing operations 
is one of the major problems in data structure design 
for a simulator; a problem investigated and 
effectively solved by Ford (1976). A comparison of 
hydrometallurgical and ore-dressing simulators 
rather than chemical simulators should be made 
before the conceptual extensions can be done.

l.S.l Comparison of Ore-dressing and
Hydrometallurgical Stream Structures

Consider the simulation of ore-dressing circuits as 
compared to the problem of hydrometallurgical, or in 
general, any metallurgical process.

The process streams that make up an ore-dressing 
circuit consist of a combination of solids and water, 
the solids being classified into different 
fractions. Depending on the complexity of the 
simulation, these fractions or classes are generally 
up to three dimensions deep, being size, grade and 
one further characteristic. Grade in this context 
refers to the percentage of valuable mineral in the 
particle. The last characteristic may be any further 
physical or chemical attribute, such as magnetic 
susceptibility, flotability or shape.



This representation is conveniently available by the 
usage of • a matrix-type data structure, each
characteristic being represented by a dimension of 
the matrix. The fraction of the total solids tonnage 
in e«ch class is stored in the corresponding position 
in the matrix, from where it is easily accessible and 
understandable. In general, all programming languages
has this data structure available. The simulator
MODSIM implements the above representation very
successfully in FORTRAN.

The structure required of a hydrometallurgical 
process stream is more complex as the additional
information required' for lixiviant streams and their 
associated solutes is often required. Information
regarding the core size, porosity and shape of solid 
particles may be required and further increases the 
amount of data to be represented. The further 
possibility of gaseous stream types, and the 
associated thermodynamic qualities of
hydrometallurgical process streams, should these be 
required, must further be considered.

Hydrometallurgical process models, also beyond the 
scope of this work, are being developed on a 
population balance approach (Sepulveda and Herbst,
1978). As little information is available as to the 
exact nature of these models and the parameters and 
data that they shall require, the data structure 
must, of necessity, be variable and maintainable. By
the same token, since no knowledge is available
before a simulation is performed about the amount of
the data that will be required, the data structure
must be able to expand or contract to suit the needs 
of the specific system under consideration,



1.5.2 Comparisons of Ore-dressing and
Hydrometallurgicfil Process Operations

The simulation of systems of ore-dressing operations 
leads to a few generalisations that cannot be made 
when simulating the general minerals processing 
operation. The most obvious of these is the
restiiction of a single feed to all unit operations,
except for mixers, where only a single product stream 
is allowed. Although this at first appears to be a 
rather innocuous limit, the simplifications that 
result in the algorithms that precede the actual
simulation phase; partitioning, tearing and 
precedence ordering, is considerable. These 
precalculation algorithms are discussed in detail in 
Chapter 4. in the general hydrometallurgleal circuit, 
this restriction is clearly not possible - we may 
cite a liquid-liquid extraction unit as an obvious 
example of a unit operation to which the single feed 
or single product restriction cannot be applied.

A lesser restriction, that all process streams in the 
circuit shall be of the same type, leads to 
simplification in the generalisation of the code 
produced - this becomes a severe problem when 
considering hydrometallurgical simulations, as shall 
become obvious in later sections.

A further simplification in the simulation of
ore-dressing circuits results from the small number 
of recycles that occur. Recycle streams in the 
analysis of any complex flowsheet requires that the 
steady-state simulation be solved by an iterative 
process. All the recycles in the process have to be 
isolated, streams that constitute a part of the cycle 
have to be opener* or torn, their initial values 
guessed and iterations performed to convergence. In



general, a large ore-dressing operation shall have 
fawer than five recycles in any one connected 
section, and larger numbers shall usually only occur 
in systems where much recycling of water is done. The 
latter occurs in coal washing operations rather than 
mineral processing plants.

In hydrometallurgical operations, on the other hand, 
multiple recycle systems frequently occur, and in a 
system of a few units with, multiple feeds and 
products, in the order of tens of recycle loops may 
occur. This large number of recycles influences both 
the precalculation algorithms and the calculation 
phase of the simulation, and algorithms that were 
perfectly adequate for the ore-dressing simulator 
fall short when hydrometallurgical systems are 
attempted.

1.6 Conclusion

The simulation of the general metallurgical process 
is a complex matter, and simulators that up to date 
have been restricted to ore-dressing are not 
adequate. The general hydrometallurgical process 
simulator requires the representation of different 
types of process streams, a maintainable and variable 
data structure and robust and general precalculation 
algorithms.

The design of these data structures and the
algorithms that will make the simulation of
hydrometallurgical circuits possible were the two 
aims of the research performed.



CHAPTER 2: SIMULATOR DATA STRUCTURES

2.1 The Plex Data Structure

In the early stages of the design of the simulator, 
it was already recognised that rigid data structures, 
as prescribed by certain programming languages such 
as FORTRAN and BASIC, would not be adequate for the 
elegant representation of either a general process 
stream, or a general process simulator. This is 
primarily due to the greatly varying nature of 
simulation problems, both in terms of possible
problem sizes and the stream types to be represented.

Evans, Joseph and Seider (1977) proposed a "plex" 
data structure that met the requirements of their 
advanced process simulator. The plex consists of
groups of contiguous storage locations known as 
beads; the number of locations in each bead being 
variable. A bead may contain different types of 
entries, such as integers, real values, booleans or 
alphanumeric strings.

A bead is referenced to by a pointer, which refers to 
the storage location of the entire bead. A bead may 
also contain a pointer to the next bead, so that
beads may be strung together.

Beads are created dynamically during execution of a 
program from a pool of free storage, and may be 
returned to that pool when no longer required.

Evans and Seider claim that the plex structure will:



1. Increase modularity.
2. Provide flexibility.
3. Allow a more natural description of 
attributes.
4. Make configuration modifications simple.
5. Not waste storage.
6. Not place a limit on problem size.

The implementation of the plex data structure 
therefore allows the creation of a general process 
simulator, able to acconodate a vast range of 
simulation problems.

2.2 Achieving the plex.

There are two ways in which the plex may be achieved; 
the code to simulate the plex structure may be 
written for programming languages that do not 
inherently have the structure (such as FORTRAN), or a 
programming language that supports the plex structure 
may be used.

2.2.1 Simulating the plex in FORTRAN.

A plex structure, written in FORTRAN was used by 
Evans et al (1979) for the ASPEN chemical process 
simulator. This simulator was extended by Ritchie 
(1984) to include solids in a simulation, as 
ASPEN-PLUS. This simulator consists of more than 
350000 lines of FORTRAN code. Kaijaluoto (1979) also 
created a plex data structure for their simulator and 
describes the problems with using FORTRAN. He finds 
that the maintaining and administration of the plex 
requires large amounts of storage space and that the 
creation of a data structure that will not lead to 
programming errors by the user is both difficult and 
time-consuming. The plex created is also slow and 
complicated to use.



The ASPEN simulator uses its own input language that 
may be seen as a new programming language required 
to be known to effect a simulation.

The creation of the code to simulate the plex is not 
simple and becomes a major time factor in the 
creation of new simulator. The maintainability and 
transportability of such a simulator is also reduced 
by the additional specialised code.

2.2.2 The plex as it exists in other languages.

The dynamic allocation of computer memory to suit the 
requirements of the problem, and the accessing of the 
data segments created by means of a pointer is 
available in all the Algol family of languages. This 
family includes Pascal and C.

When using a language that contains the plex as an 
inherent data structure, programming emphasis is 
shifted from creating the code that maintains the 
data structure to using the available structures to 
their full potential. More effort may therefore be 
put into designing and using the best algorithms 
available, both for the simulation and precalculation 
phase.

A major disadvantage when not using FORTRAN is the 
loss of familiarity . "and the required learning of a 
new language if the code is to be updated by a user 
unfamiliar with the language. Algol-type languages 
are however well-defined and their use is to be 
preferred to the situation where an existing language 
is adapted to meet advanced requirements for which it 
was not designed.



2.3 The Choice of a Programming Language.

2.3.1 Overview of languages

FORTRAN and BASIC, while not inherently allowing the 
plex, have further undermined their maintainability 
by the constant addition of new features, such as 
dynamic arrays in BASIC, and certain structured 
programming constructs in FORTRAN 77, which were not 
present in earlier versions. These changes lead to 
severe transportability problems, as each computer 
inevitably supports its preferred version. While 
BASIC has become a standard language for 
micro-computer applications, it is not suitable for 
the development of large programs.

The new generation of programming languages holds 
great advantages for the user. Data structures have 
become less rigid, and unique structures applicable 
to the problem that is being solved may be set up by 
the user. These include the dynamically created plex 
as described above. The use of recursive subroutine 
calls has become an acceptable programming technique, 
leading to more compact code, and more elegant 
solutions to simple problems. The dynamic allocation 
of memory is possible, with obvious benefits for the 
problem size that may be solved, and the creation of 
programs that will solve the general rather than a 
specific problem.

While a very large selection of languages are 
available, very few of these have found general 
acceptability, especially in '.he scientific and 
engineering communities. Those considered included 
Pascal, C, Ada, Simula and some even lesser known. 
For micro-computers, Ada and Simula may be excluded,



the compiler for the former being so large that it
cannot be used, and for the latter generally 
unavailable. C is becoming a greatly favoured
language. It has an exceptionally fast execution
rate, compilers are available, and the language 
produces very compact code. It is however a very low 
level language, meaning that is closer to machine 
code than languages such as BASIC or FORTRAN, and 
many standard features available in other languages 
have to be created by the user. Apparently debugging
C programs is also no simple matter and the
maintainability of programs is low; the code being 
complex.

2.3.2 Language choice.

It became evident that Pascal was becoming a much 
favoured language for general applications. Compilers 
are freely available, and are not only fast, but 
relatively cheap. Large amounts of application 
software is available, making the creation of 
programs to do graphics, mathematical manipulations, 
or data capture quite simple. Pascal is further being 
used as a language to teach programming to student 
engineers at some universities, making the future 
acceptability of the language more certain.

Pascal has all of the features inherent to FORTRAN as 
standard, with all the qualities of the newer Algol 
family languages. Its applicability to the 
requirements of this simulator became evident when 
some of the features not found in FORTRAN were 
considered in detail:



Data structures.
Pascal encourages the use of data structures that 
suit the problem. It is for this reason that the plex
data structure is so convenient to use, as any entity
that can be described by a combination of distinctly
different pieces of information may still be 
allocated a single data structure, this in turn 
consisting of the predefined combinations of 
descriptive information. Pascal further allows the 
definition of any suitable data type for the problem, 
which once defined becomes part of the structures 
inherent to the language. These structures may 
consist of types of variables, or ranges of values 
that any variable may take on, checking being 
performed during execution for out-of-bound values. 
Other inherent data types include sets, strings, 
arrays and arrays of arrays, or matrices. These 
inherent structures and the addition of defined 
structures make the generation of error-free code 
easier, and the maintaining of such code much 
simpler.

Dynamic storage allocation.
This feature allows problems of any size to be 
executed by one single program. If one section of a 
program grows, the memory required for that section 
may be allocated, while the remaining sections remain 
constant. This means that the maximum problem size 
need not be predefined, and that problems consisting
of greatly variable dimensions may be effectively 
solved. This is essentially the implementation of the 
plex described by Evans, Joseph and Seider (1977).

Structured programming.
The control structures of Pascal include all those 
contained in the newer FORTRAN versions, but are more 
convenient to use by the definition of blocks of 
code, started with a BEGIN and terminated with an END



statement, the block then being treated as a single, 
statement. This makes the structuring of programs 
much simpler, and the usage of the GOTO statement is 
practically eliminated.

Recursive subroutines.
The use of recursive procedures, or procedures that 
are allowed to call themselves fvom within the
procedure, make many algorithms much simpler to
implement. This construct is illegal in FORTRAN, and
often leads to bulky and inefficient code where a
recursive routine could be used. This is especially 
true of graph theoretical applications where depth 
first searches are used, as is in simulation.

Language definition.
One final point should be mentioned. Pascal is a very 
well-defined language, with a clearly defined 
standard. This means that if programs are written 
that do not make use of any extensions to the 
language, the programs should be transportable. The 
compilers available for microcomputers are readily 
available for many types of machines, and hence if a 
well-known compiler is used as standard, 
transportability from one PC to another becomes a 
minor problem.

Conclusion.
Pascal appears to have all the characteristics 
required of a language used for large system 
development, and was used for the complete simulator. 
This is not to say that the problem could not have 
been solved using another language, such as FORTRAN, 
but that the convenience of creating the code, and 
the maintainability of the final product required a 
more advanced language. The data structures developed 
in any large program are a function of the language



used, and by using Pascal, it is felt that problems 
may be solved in terms of their inherent structure, 
rather than having to be transformed into a rigid 
data structure definition. More time could therefore 
be allocated to designing good algorithms and code, 
rather than on ways to make the data conform to the 
language and manipulating these rigid data
structures.

2.4 The stream Descriptive Data Structure

2.4.1 Introduction

The representation of the complex, multiphase
material flowing between process units in a general 
way has been one of the great problems of simulator 
design. Only the ASPEN chemical process simulator has 
solved the problem adequately at present. Their 
design of process streams has been extended by 
Ritchie <1984) to include minerals processing
streams. Britt (1980) describes the ASPEN multiphase 
stream structure in great detail. He bases the ASPEN 
structure on the requirements set by Evans and Seider 
(1976).

Britt remarks that "in general it may be stated that 
any portion of a stream that is to be treated in a 
special manner by unit operation blocks need to be 
carried separately from the rest of the stream. These 
separate portions of a stream are called 
"substreams"". Streams may therefore be subdivided 
into substreams, each representing a portion of the 
stream that is to be treated diffently by unit 
operation models.



ASPEN recognises two types of stream components, 
"conventional" and "nonconventional". Conventional 
components (in the chemical sense) represent pure 
compounds or pseudo-compounds that may be 
characterised by standard properties such as
molecular weight, critical pressure and ideal gas 
heat capacity coefficients.

Nonconventional components, such as coal, ash, slag 
wood pulp and, by extension, most ores, cannot have 
their thermodynamic properties calculated by 
conventional methods ,such as equations of state. 
Nonconventional components are instead .characterised 
by vectors of data representing the physical 
properties of the components. These physical 
attributes, as state variables, are carried as stream 
data, since they may change from stream to stream. 
ASPEN considers mixtures of nonconventional 
components as all being of a single phase.

ASPEN further allows the use of three substream 
types, MIXED, NC and CISOLID. A MIXED substream 
represents the flow of any number of phases in 
equilibrium. NC components are "nonconventional"; 
they are considered inert with respect to equilibrium 
calculations but enter into energy balance relations. 
The CISOLID substream represents the flow of 
"conventional" components that are considered inert 
with respect to phase equilibrium calculations, but 
not chemical equilibrium calculations.

It is clear that most substreams used for the 
calculation of metallurgical operations will fall 
into the nonconventional class, due to the presence 
of solids and dissolved species. The concept of 
substreams is however very elegant for the 
representation of complex process ' streams, and was



used for the present simulator. Substreams
representing separable phases rather than
conventional, nonconventional and equilibrium 
condition were used.

Thus any hydrometallurgical process stream may be 
described as the combination of a set of substreams, 
each of these substreams representing a separable 
phase, for example solids, carbon, lixiviants or an 
organic phase. By describing the information 
pertinant to a specific substream type as a record, 
substreams may be combined to describe any process 
stream in general.

The substream descriptive structure can broadly be
described as follows:
Each stream type that exists has a pointer type
unique to it. A stream can be of any type when
created; each stream having a record containing all 
possible stream pointer types. Once the storage and 
descriptive requirements, effectively the type, of
the stream are known, that pointer that describes the 
stream type is initialised, bringing into existence 
all the required memory associated with the stream. 
The remaining pointers are not used. The efficiency 
and ease of manipulation of this pointer description 
far outweighs the memory wasted by having all
possible stream type pointers available. The memory 
used for the description of a single pointer variable
is small; only four bytes are used.

Consider a stream containing solids and some
lixiviant, such as the product from a leach tank. 
Once the stream has been created for a simulation, it 
can take on many possible types. To fix the stream 
type, only the solid-lixiviant stream type pointer is 
initialised. The initialisation of this pointer



brings into existance the memory required to describe 
the solid and lixiviant substreams of the complete 
stream. Had the stream however contained only solid 
material, such as the feed to a crusher, the stream 
type would have been of type unmixed. A further 
parameter would indicate that the specific unmixed 
substream type is solid, and only that memory is 
brought into existance.

As stream data storage space can be allocated 
dynamically, the definition of possible stream types 
does not actually affect the memory allocation in the 
computer. Only when these types are required is their 
memory allocated, and then only as much as is 
required for the specific stream type required.

The overall data structure that resulted from this
study was produced by an evolutionary process. The 
final structure is considered optimal in that it 
allows the generalization of procedures that operate 
on the same substreams of different stream types. 
Single substream records can therefore be accessed 
and processed by a single procedure, rather than
procedures having to be written to accommodate each
possible stream type in the system. This clearly 
simplifies the writing of models to describe unit 
operations.

2,4.2 The stream types

In order to uniquely characterise a process stream 
consisting of separable substreams, two parameters 
are required. The first describes which combination 
of substreams the stream consists of, and the second, 
only applicable in the case of unmixed streams (or 
streams consisting of only one descriptive record), 
to describe the type of this single record. The



example mentioned earlier Illustrates this
requirement.

The simulator can accomodate any number of substream 
types, and their combination into complete stream 
descriptions. The simulator at present accomodates 
both solid and lixiviant substreams as well as the 
combination of these substreams to form a 
solid-l.ixiviant stream. This structure further allows 
the definition of pure liquids such as water by 
considering them as lixiviants containing no 
dissolved species. A carbon substream has been 
designed and implemented for the simulation of carbon
in pulp systems by other workers involved in the
modelling of these systems (Stange, 1985). Subscreams 
can only effectively be designed by those that are 
required to use them for their models - the 
requirements of maintainability and versatility of 
the data structures thus being of paramount 
importance.

2.4.3 The solid substream.

As previously mentioned, the description of the 
solids phase requires a far larger amount of data to 
be stored than lixiviant substreams. The solid
substream descriptive record therefore had to be 
designed to optimally utilise storage, and not to
descibe the maximum possible problem. The actual 
description of the solid phase is however quite 
simple, requiring only the tonnage in the substream, 
and then data to descibe the fractions of the tonnage 
in al% possible classes required to characterise the 
solid. In ore-dressing simulators, these classes 
generally are combinations of three characteristics, 
being size fractions, a grade description and one 
other property; flotability and magnetic
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susceptibility being the most common. In the
description of hyd.rometallurgical processes, other 
characteristics may be required, such as shape, 
porosity and surface quality. A large amount of data 
may thus possibly be required to be stored. This in 
turn requires a data structure with practically no 
limits. In order to do this, a flexible data 
avt-ucture must be used, that structure allowing the 
storage capacity to expand or decrease as required, 
without deliterioua effect to the rest of the
simulator.

The flexibility required is achieved in the following

Rather than defining a static matrix as the 
descriptive part of the solids record, an array of 
pointers is staticly defined. Each of these pointers 
can be activated to point to an array of fixed size. 
As the total number of classes required to describe 
the solid substream is known before the calculation 
phase is entered, the exact number of pointers 
required may be activated. Thus the data structure 
takes on the form of a practically unlimited array, 
values being stored in contiguous locations. The data 
structure for the solid substream is shown
schematically in Figure 2.1.

Some wastage of space must obviously be incurred when 
the array pointed to by the last of the initialised 
pointers is not filled, however this wastage is 
negligable compared to situations where static memory 
is used. The larger the array to which each pointer
points, the fewer the number of pointers that need be
statically defined, and the smaller the amount of 
static storage wasted. In contrast, the amount of 
allocated array space that is unused grows as the
arrays get larger.
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The maximum number of variables that may be stored is 
therefore the product of the number of static
pointers available and the length of each array of
storage that it may be initialised to access. The 
actual dimensions of the classes used to characterise 
the solids are therefore immaterial, so long as the
total number of variables may be accomouated. Should 
the maximum number of storage positions be inadequate 
at any stage, the number of variables that may be 
accomodated can be increased quite simply by
increasing either the length of each dynamic array, 
or increasing the ' numLtr of pointers that are
available to be initialised. The limit on the total 
number of variables possi.cle is only the limit that 
is set by the memory available to the user on the
particular computer being used.

The accessing and storing of values in this array 
structure clearly requires the calculation of the 
positions of both the pointer and the specific 
position in the array it points to. To reduce the 
knowledge of the data structure required of users, 
functions were written that will perform the
replacing and accessing of values from this data
structure if the coordinates of the class, if 
considered as being part of a static matrix, are 
known. This makes the data structure almost 
transparent. These functions give the user the 
impression that he is dealing with a five dimensional 
matrix rather than a set of contiguous arrays (See 
also Section 2.6.2.2). Five dimensions are considered 
adequate for the description of any
hydrooetallurgical simulation, the use of all these 
dimensions in any one model requiring the solution of 
a sixth order partial differential equation 
(Sepulveda and Herbst, 1986). should more dimensions



however be required to be described, the user may 
access all variables without the benefit of the 
utility routine, thus having an unlimited number of 
dimensions at his disposal. The maintaining of the 
variables in the data structure in such a case 
becomes the responsibility of the user.

The solids record is most comprehensively designed, 
and may be considered as a model for the design of 
other substream types, especially those that may 
require the storage of large amounts of data. In 
cases where less data is required to be stored, 
static storage may be used instead, the loss in 
efficient usage of memory space being made up for in 
ease of use.

2.4.4 The complete stream structure

Having described a general substream record, we are 
now in a position to combine substreams into complete 
process stream descriptions. This is done by defining 
records of pointers to the respective substream 
types. These records consist of as many pointers as 
we require substreams. All permutations of 
combinations of substreams into complete streams may 
be defined as stream type records. In order therefore 
to create a stream, or rather the memory to store the 
description of that stream, we simply need to 
initialize the record of pointers that constitutes 
the combination of substreams that describe the 
particular stream.

Each stream further requires a descriptive record to 
indicate its reference number, its source and 
destination units, and the type of stream it 
represents. This data may be stored in a general 
descriptive array, applicable to all streams. This



general array also includes information as to the 
exact nature of the data the stream stores, such as 
the number of descriptive dimensions, and the number 
of classes in each dimension. This makes it possible 
for different streams to have different descriptive 
records, even if they are of the same type; for 
example, the solid substream of a stream preceding a 
crusher may only require a single size class in the 
size dimension, while the product may require a 
larger number of size classes to adequately represent 
the material. In general though, all streams in the 
circuit containing a certain substream type will have 
the same descriptive dimensions for that substream.

Finally, there must be no limit on the number of 
streams in a circuit. This can be done by defining a 
•large' number of static pointers, each one able to 
point to a stream descriptive record. When a stream 
is required, we initialize a pointer to create the 
storage space for that stream. For sequential modular 
simulation, the only streams required to be present 
at any point in the calculation phase is the feed and 
product streams of the unit being simulated, as well 
as the system feed and product streams and the tear 
streams in the circuit. This allows a substantial 
reduction in the storage requirements of any 
simulation, but results in an increase in the
simulation time, as stream data storage space has to 
be allocated and disposed before any unit can be 
calculated. The largest time overhead however occurs 
during the output phase, where permanent storage and 
access is required on some form of disk should all 
the stream data not be available simultaneously. 
Floppy disks generally have a 320 kb storage 
capacity, while most PC's have a 640 kb memory 
capability. This memory allows at least 200 complex 
process streams to be kept in memory simultaneously.



It is therefore considered unlikely that a problem 
exeeding this size will be solved as a single 
simulation.

The present system therefore does not allocate and 
dispose stream data during the calculation phase, but 
keeps all stream data available in memory to 
facilitate better interactive data output. Should 
this at any time result on a limit on the realistic 
maximum problem size, this may be changed to a
allocate and dispose system without any major 
reprogramming.

Consider now the complete data structure to describe 
stream data: (Figure 2.2)

An array of pointers to stream data structures
exists. When it is required to store data pertaining 
to stream n, pointer n is initialised. The 
initialisation of this pointer results in the memory 
for the first level of description of the stream to
be allocated. This first level of description
consists of the following:

1. The flowsheet identity number of the stream.

2. A complete descriptive identity array. This array 
describes the stream type, the size of its class 
structures and its source and destination units.

3. A pointer to a next level of descriptive records. 
A choice of pointers exists at this level - only one 
pointer is initialised, that one pointing to the 
record having the combination of substream pointers 
required to mimic the true stream to be described. 
This poin-er clearly forms the basis of the stream 
type, aa discussed in Section 2.4.1.

-i  t
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The record on the second level of description 
consists of as many pointers as there are substreams 
in the stream. These pointers in turn point to the 
actual data structures required for the stream. These 
pointers also have to be initialised to create the 
required memory space from the heap. Note that on 
this level pointers to records rather than the 
records themselves are used. This is primarily for 
the sake of the unmixed stream descriptive record, as 
some Pascal compilers- Insist on allocating the memory 
required for the largest of the possible choices of a 
variant record. By using the records themselves, the 
memory for the largest of the records would have been 
allocated, by using the pointers, no wastage is 
incurred.

This second level of description thus points to the 
actual substream records earlier discussed.

Although it may appear that an unnecessary level of 
description is included in the data structure in that 
the second level substream pointers (Figure 2.2) 
could have been directly available in the first 
descriptive level in the place of the stream type 
pointers, no ambiguity in the description of a stream 
is possible, and the maintainability of the structure 
is increased. New record types may be included at any 
of these descriptive levels to describe new stream

It should thus be clear that new stream types can be 
created in two ways, firstly by designing a pointer 
to a new combination of existing subatream types or 
by designing a substream that has r̂ ot existed before 
and combining it with other aubstreams to form a new 
stream type with a pointer to it.



2.5 The Unit Operation Structure

2.5.1 Introduction

The data structure required to store the unit model 
types, and the data pertaining to a specific unit in 
the circuit are very similar in concept to those of 
the streams. Once again a large array of pointers are 
allocated, the position of each pointer in the array 
corresponding to a unit reference number in the 
circuit. Associated with each pointer is the unit 
model type to which each unit in the circuit refers. 
Note that these ' are simply the unit types 
represented, not the actual model that is referred 
to. Each unit type can, of course have more than one 
model associated with it, and the reference code of 
the actual unit model that is required to be used is 
passed as a parameter to the unit type routines. This 
may be seen as a two-layered calling program, firstly 
the unit type that was indicated in the circuit is 
called, this routine in turn making the choice 
between the possible models that can be used for the 
simulation of this unit operation.

2.5.2 The unit data structure

The record that is required to be transferred to the 
unit model simulation procedure, is accessed by a 
pointer. This record contains, further to the
reference code of the specific model to be accessed, 
a list of the number of input streams to the unit and 
their reference numbers, as well as the number of 
output streams and their reference numbers. Further 
the number of parameters required for the unit model 
and these parameters can be accessed. Figure 2.3 
represents this data structure schematically.



or UNIT RECORDS f

0O O O 0 . ..LJO O O Q . . 0

INTEGER UNIT TYPE

POINTER TO UNIT DATA

UNIT DATA I

MODEL REFERENCE NUMBER

FEED AND PRODUCT STREAMS 

UNIT PARAMETERS

FIGURE 2.3

UNIT OPERATION DATA STRUCTURE 
UNIT n IS OF TYPE X USING MODEL Y

-± ^  .... .# ... &  m,



Note that an array of simple pointers were not 
allocated, but rather an array of records, each 
record containing both a pointer and an integer 
reference code to the unit type. This reference code 
indicates the unit type that is to be simulated, for 
example a leach tank. This reference code is required 
to be available outside of the descriptive record, so 
that, knowing the unit reference number in the
circuit and considering that position in the array of 
records of unit data,' the unit type is immediately 
available. Thus the pointer to the remainder of the 
data of that particular unit operation type may be 
passed directly to the simulating procedure. The
storage space wasted by the allocation of these unit 
type reference code integers is small, find is
required for the effective calling of the calculation
sequence.

2.6 Data Structure Usage,

2.6.1 Introduction

A certain amount of familiarity with the stream data 
structure is required for the writing of unit models. 
As the unit models for hydrometallurgy are not very 
well established, and the data required to be 
transferred from unit to unit is not yet known, the 
update of the data structures describing substreams 
must also be considered. To assist the user in 
writing unit models, utility procedures have been 
created that reduces "the tedium of accessing data and 
updating records of unit data. The utility routines 
pertaining to the accessing of the solid substream 
are described with specific reference to Figure 2.4.



Note that the symbol used to descibe the usage is 
Pascal for "pointing to" and is indicated 
diagraroaticelly in Figure 2.4 as an arrow.

It should be clear that the exact equivalents of 
these utility routines may be written for any other 
substream type. It is recommended that if a new 
substream type is created, the equivalent routines 
for that substream should be written, so as to 

nimise the difficulties that may arise when 
accessing the variables of the record describing the 
substream.

2.6.2 Utility routines

2.6.2.1 Solidselect.
The accessing of a particular record of a substream 
is the basis of any unit model. Consider again the 
data for the solid phase, and assume that we wish to 
access the tonnage in a particular process stream. 
Let the stream number be n. The value may be changed

str(.n,) .unmix* .solids" .tonnage := whatever ;

in the case of a stream consisting only of solids 
(i.e. UNMIXed) and

str (.n.)  ̂.solix'1 .solids'1. tonnage : = whatever ;

in the case of a SOLid-LIXiviant combination stream. 
Note that the generic use

str(.n.)A.solidsA.tonnage, or even str(.n.)A.tonnage
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is not allowed, even if no chance of ambiguity 
exists, in order to ease this accessing, a function 
called SOLIDSELECT was written. This function will 
return the value of the pointer to the lowest level 
of description. Thus we may use

tempptr := solidselect(str(.n .)) ;

and from then on simply:

tempptrA.tonnage := whatever ;

Where different tonnages of different streams have to 
be accessed, more than one temporary pointer can 
clearly be allocated.

The standard Pascal function 'WITH' may also be used: 

WITH strt.n.)*.unmix*.solids* DO 

BEGIN " WITH } 

tonnage := whatever ;

" other lines to manipulate the solids record }

END; '• WITH >

The nesting of WITH statements is not allowed, and 
the allocation of temporary pointers will, in most 
cases, be easier to use.

2.6.2.2 Solidvalue.
The data structure to store the different fractions 
of the tonnage in each of the possible descriptive 
classes is not simple to use if each fraction is to 
be accessed individually, rather than all the



fractions in turn. The use of this structure is 
simplified by the function SOLIDVALUE, which makes 
the long rows of adjacent arrays take on the 
appearance of a five dimensional matrix. This further 
makes the translation of existing FORTRAN subroutines 
into Pascal much simpler. The function is used in 
conjunction with the procedure SOLIDSELECT previously 
described.

If the numerical value of each of the classes in the 
solid description is known, the fraction may be 
accessed as follows:

teapptr := solidselect(str(.n.)) ;

fraction := solidvaluet 5, 1, 3, 1, 1, tempptr);

fraction may now be used, and updated }

'FRACTION' will contain the fraction in the fifth 
size class, the first grade class and the third
flotability class. Note that the last two classes 
need not exist, but then have to be specified as

To replace the updated value of the fraction in the 
stream record, an equivalent function called SOLIDPUT

2.6.2.3 Mix and split.
Procedures to mix and clear records of streams or the 
complete streams have also been written. Thus to copy 
one record into another, the record is first cleared 
of its original value, and then mixed with the record 
that it must equal. This makes the writing of some
unit operation models extremely simple; for example
the solid product substreams of a splitter are simply



copies of the feed stream, with only the tonnages 
corrected. The fractions in each of the classes must 
obviously remain the same.

2.7 Conclusion.

The data structures required for the description of 
the general process stream and the accessing of the
variables associated therewith can be done in a
general and extendable way. The concept of a
substream to describe sections of a process stream
required to be treated differently from other 
sections of the stream simplifies the creation of 
general unit operation models. The data structure 
designed can accomodate all the requirements of an 
advanced process simulator stream.



CHAPTER 3 : STREAM TYPE CHARACTERISATION.

3.1 Introduction.

Once the data structures to describe the general 
hydrometallurgical process stream have been designed, 
their implementation and use must be considered. The 
fact that the data structures can adequately describe 
the process streams and that they can be maintained, 
does not guarantee, their success when simulating a 
process.

The allocation of the correct stream type, consisting 
of the correct combination of substreams to 
accurately describe the process stream, is required 
for each stream in the process. A stream may be 
allocated too few, too many or exactly the correct 
subi'treams to mimic the true stream.

In terms of simulation, the case where too few 
substreams are allocated to the simulated process 
stream, (this including the situation where
substreams of incorrect types are allocated and/or 
not enough substreams that are of the correct type 
are allocated) the simulation must obviously fail, as 
the unit operation models will be unable to store the 
information produced in any memory space. This may be 
seen as the equivalent of having the pipes in a 
process plant not matching the unit operations, e.g. 
a conveyor belt to transport a liquid stream. The 
underspecification of the substreams of an simulated 
process stream cannot be tolerated.



The correct allocation of all substreams in all 
process streams in the flowsheet is, of course, the 
ideal situation. It is not always possible to predict 
'a priori" what the procee- substream requirements 
shall be, as these are often 1 nit model, rather than 
unit operation dependent. As an example, a filter 
model may or may not require a solid substream 
description in both its product streams, depending on 
the accuracy of the model employed. The situation 
where substream types have to be reallocated every 
time any changes are made to a flowsheet or any unit 
operation within the flowsheet is to be avoided if 
possible.

The overspecification of substreams for any process 
stream, where the correct substreams are allocated 
plus some substream(s) not required, is also 
undesirable. As will be shown, this situation may 
lead to problems with convergence and will certainly 
result in the wastage of computer memory. It is 
however much preferred to the underspecification of 
substreams, as the simulation may proceed and valid 
results can be obtained. Unit models will, in 
general. Ignore excess substreams and only operate on 
those substreams required.

In order to choose a suitable method of stream type 
allocation, the effects of overspecification of 
substreams, both on the memory requirements and the 
convergence properties of the simulator, must be 
considered.

3.2 Stream Types and Computer Memory.

The overspecification of the substreams required for 
any process stream must obviously influence the 
memory requirements of the system. Consider the



flowsheet shown in Figure 3.1, with the "correct” 
stream types indicated on the flowsheet. Correct in 
this case means that for the unit models chosen to 
simulate the process, in each stream only the 
required substreams have been allocated.

There are two areas of concern in this flowsheet. 
Should the model for the filtent be be substituted 
with a different model, this new model allowing the 
description of misplaced solids In the clear liquor, 
a solid substream must be allocated for both filter 
product streams.

The second problem occurs in the   vent extraction
section, where an organic phase enters the circuit. 
No solid nor lixiviant phase substreams are required 
between the extraction and stripping units. The 
organic phase substream only occurs between these two 
unit operations. If memory is therefore allocated for 
all substreams relevant to -the circuit to all the 
streams in the circuit, in this case solid, lixiviant 
and organic substreams, this could result in large 
memory wastage.

Consider the substreams that are relevant to
hydrometallurgy, primarily being solids, carbon, 
lixiviant and organic phases. It can be noted that 
the solid phase presents the largest number of 
variables to be described, due to the heterogeneous 
nature of the population. While comparisons of the 
number of variables depend on the exact problem under 
consideration, an order of magnitude difference
between the number of variables in solid substreams 
and lixiviant, carbon and organic substreams can be
expected. It is thus generally the unnecessary
allocation of solid substreams that will lead to the
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The allocation of a solid substream to every stream 
in Figure 3.1 will result in a minimum of four excess 
substreams, if the acid and ammonia system feeds are 
considered over and above the organic phase. Should 
the filters not produce solids in the clear liquor 
output stream, another six streams affected by the 
filters are unnecessarily assigned solid substreams. 
Thus from a total of 16 streams, only 6 must contain 
a solid substream, resulting in a 62% wastage of 
storage for this particular flowsheet, and 
considering only the solid phase. Should the filters 
require solids in all their product streams, the 
wastage is reduced to 25%.

It is therefore clear that stream type allocation has 
a large effect on the memory requirements of a 
simulation. While computer memory is relatively 
cheap, and the addressable memory of micro-computers 
is increasing by orders of magnitude, the unnecessary 
allocation of dynamic memory space for substreams 
that are not required is not desirable, as the 
elegance and malntainabilty of the simulator as a 
whole is reduced.

3.3 Stream Types and Convergence.

A more subtle effect of the substreams allocated to 
each process stream occurs in the calculation and 
convergence phase of the simulation. This effect is 
due to the characteristics of a general simulator; 
all fields of all correctly allocated substreams of a 
torn process stream must be initialised before the 
simulation can continue, and a unit model is only 
required to update those substreams of its output 
streams that are affected by the operation of the 
unit - it cannot be expected of each unit model to



check whether unnecessary substreams have been 
allocated to its output streams and to update them 
accordingly. This is best Illustrated with reference 
to the simple, hypothetical flowsheet in Figure 3.2.

Assume that all the process streams in Figure 3.2 are 
taken to be a mixture of of solids and lixiviants and 
further that the filter model does not allow any 
solids to escape in the clear liquor, i.e. the model 
assumes that only a lixiviant substream has been 
allocated to stream number 3. Let stream 3 be the 
torn stream.

The simulation calculations will now proceed as 
follows:

1. All fields of both the solid and lixiviant 
substreams of stream 3 a*-e given an initial value 
for the simulation to proceed, even though only 
the lixiviant substream is required. (Assume for 
the moment that these are not all zero's.)

2. Since stream 3 is a tear stream, these initial 
values aro duplicated in tear stream records for 
comparison, to determine whether convergence has 
been achieved.

3. The assumed values of stream 3 are used to 
calculate unit 1. The unit model ignores the 
excess substream of the feed.

4. The results of unit 1 are used to calculate 
unit 2. Note that unit 2 only updates the 
lixiviant substream of stream 3.

5. A convergence check is performed. When the 
solid substream of stream 3 is compared to the 
solid substream of the tear stream, it appears to

ifc ___x
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have converged, since unit 2 did not change these 
values.

6. If the lixlviant substream values have not 
converged, the present value of stream 3 will 
replace the values in the tear stream, and steps 
to 6 repeated to conveigence.

;! Once the calculations have been completed, the
'! overall mass balance of the flowsheet will be

correct. The mass balances around the individual unit 
operations will however be incorrect. This is due to 
the fact that the assumed data for the solid 

\i substream allocated to stream 3 is never removed nor
updated. Had the Bul?stream not been allocated at all 

i the results would of course have been correct.

A few options are available to remove this problem:
'' I. We may zero all fields of all substreams of

tear streams before we recalculate them, at each 
iteration.
2. As for 1, however this is done only during the 
first iteration.
3. We may initialise all tear stream to have 
zero’s in all fields of all substreams.

While the third option is by far the simplest to
implement, it places an unnecessary restriction on 
the operation of the simulator. The first and second 
options are very similar, the second requiring less 
computer operations as the tear streams are only
zeroed once, while the benefits of good
initialisation values remain. The second option will 
however only work when a direct substitution 
convergence method is used; in more advanced
convergence accelerators such as Broyden's method 
(Broyden, 1965), the effect of historic tear streams



remain to predict the next values to be used, and the 
torn streams must be zeroed at each iteration step to 
eliminate this effect. The first option is therefore 
implemented to ensure that, regardless of the 
substreams allocated to the tear streams or the 
convergence accelerator used, the results obtained 
will not be degraded.

3.4 Stream Type Allocation.

Having noted the effects of incorrect stream type 
allocation, a method must be implemented to allocate 
to all streams in the circuit the required substreams 
to mimic the true situation. Three possible methods 
of stream type allocation are available:

1. User specified stream types..
2. System types.
3. Computer allocated types.

3.4.1.User specified stream types.

The user in this case has to allocate to each stream,
whether in tne circuit creation phase or by the
editing of a data file, a definite stream type 
consistent with the requirements cT the circuit. He
must therefore be familiar with the operation of each 
of the unit models, their inherent assumptions and 
the types of recycle streams. Unit models, in
general, are able to accommodate excess substream 
data, however having an insufficient stream type for 
calculation will lead to an error condition.

In the ASPEN simulator, each stream in the flowsheet 
must be allocated a type by the user (Britt, 1984). 
The simulator further makes use of "class changer" 
units, to change the type of a stream from one unit 
to the next when a subsrream is required to be



removed. Mixers, in ASPEN, are the only unit
operation models able to handle different stream 
types at the same time. Thus the circuit is divided 
into sections containing only a certain stream type 
by the user, and the required "type changer" units 
installed to take care of these changes.

User specification of substreams is the least 
reliable and most inefficient method of stream type 
specification. Besides increasing the proficiency 
required of a user to perform t. simulation, it 
further increases the lag time before results are 
produced. Users may further rather overspecify data 
structures, for fear of underspecification and 
producing an situation impossible to simulate, thus 
defeating the space saving objective.

3.4.2. System types.

The allocation of a single definitive stream type to 
the complete circuit being simulated, this type being 
a combination of all the substreams being used in the 
flowsheet, leads to the objections expressed earlier, 
that certain sections of a circuit will be allocated 
memory for the storage of stream data which does not 
actually exist in that part of the flowsheet.

The use of system types is however extremely simple, 
and • since the excess memory is allocated dynamically, 
should not have a detrimental effect on the 
simulation. The smallest combination of substreams 
can alwa> • ue allocated, so that types not used at 
all in the simulation will not be allocated to any 
streams.



This method is further fast, and places little or no 
strain on the user. In cases where the user is 
dissatisfied with the system allocation, he may 
overwrite this default in the system data file. The 
correct or overspecification of stream types to all 
units is guaranteed.

3.4.3. Computer allocated types.

The use of the computer to allocate the stream types 
is no simple matter, and has two major disadvantages.

Firstly, the allocation of stream types is done as a 
separate part of the simulation, leading to a time 
overhead. The determination is iterative and although 
bound to a maximum of two iterations, leads to 
requirements of large sections of code to perform 
these determinations.

In the second instance, this method requires that a 
"r, )del" be written that will specify what stream 
types will be produced by any unit if presented with 
a specific feed type. This is time-consuming, and if 
generality is to be maintained, lengthy. It must 
further be noted that general unit type allocation 
models are not adequate - for example models of 
filters may or may not allow for solids to escape in 
the filtrate, and the specific model type must be 
used. Any scheme such as this further makes the 
writing of new models more of a daunting task, a 
situation that should be avoided.

Note further that under this scheme, a unit model for 
a specific simulation may not be changed and the 
calculation repeated without repeating the stream 
type allocation section of the program as well. The 
computer allocation of streams allows the checking of



stream types to units before the calculation phase to 
determine whether any gross unit mismatches have been 
done. Once again this must be coded in general, 
difficult for users simply intent on writing a new

The main advantage of the computer allocation of 
stream types .is the absolutely optimal usage of 
computer memory, and the allocation of stream types 
not visible as feeds to the system. As an example, 
the organic phase in liquid-liquid extraction, which 
is recycled internally, is not easily recognizable as 
a separable phase that must be allowed for only in 
the internal streams of the flowsheet.

It is primarily the simulation of phase separation, 
creation and destruction units (e.g. filters,
crystallisers and leach units respectively) that 
makes the characterisation of process streams by 
automatic means very difficult, if generality is to 
be maintained.

3.4.4 The Choice of Methods.

Although the preceding sections described three
distinctly different methods of stream type 
allocation, none individually meet the requirements 
completely. A combination of all three methods is
therefore implemented. Whenever possible, the 
simulator allocates a particular stream type to the 
circuit as a whole. In certain, cases, where the 
presence of an additional substream may be required 
for internal recirculation, such as carbon or organic 
substreams, units may contain additional code to 
verify that the required substreams have been 
allocated, warning the user if this has not been 
done. In all instances, the user must be able to
override the substreams allocated by the system.



As an example, in the circuit illustrated in Figure
3.1, allocating a solid-lixiviant stream type to all 
streams in the circuit will adequately solve the 
problem, except in the solvent extraction section 
where an organic phase is recirculated internally. 
The unit operation calculation procedure should
therefore warn the user should the stream type of 
these streams not include an organic uubstream.
Should users feel that the allocation of a solid 
substream to streams not containing this substream is 
too wasteful, they may override this to a stream 
ontaining only a lixiviant substream.

In general, as the information required to describe 
solids is so large, it is the unnecessary allocation 
of solids storage space that leads to memory wastage. 
As sections of a flowsheet are often recognisable as 
being with or without solids, and are not connected 
by recycles, these sections may be simulated 
separately, the products of the first simulation 
being the feeds to the next. In cases where sections 
are connected by recycles, the presence of solids is 
generally obvious.

In conclusion, the saving of program size and the 
gains in the ease of updating models by users 
themselves point in favour of the allocation of a 
particular stream type to the complete circuit in 
question. Should memory allocation be a problem, the 
user may overwrite the default stream types with the 
appropriate types. 'When possible, the system should 
verify that the stream type allocated will be 
adequate for the unit operation to be simulated.

!
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CHAPTER 4 : PRECALCULATION ALGORITHMS

4.1 Introduction

In order to coordinate the simulation computations 
for each of the process units, the specification of a 
precedence-order in which each subroutine must be 
computed is required, This involves breaking the
complete flowsheet into groups of units or sub-plants 
which interact such that only a forward flow of
information occurs. This is referred to as
partitioning the system. These partitioned groups are
also referred to as maximal cyclical nets, or if they 
consist of groups of unit operations, as unit maximal 
cyclical loops. (UMCL's3. Ford (1976) showed that
partitioning a system so that each UMCL is solved
sequentially in the order of mass flow does not
degrade the convergence behaviour of the system even
though the problem size is considerably reduced. 
Considering each UMCL in turn, the order of
calculation of each unit operation model within the 
UMCL must be determined.

.A feed stream to any unit process which is not known 
the first time a unit operation is computed, is known 
as a recycle stream. If recycles are present in a 
UMCL, tearing is required. This involves the opening 
or "tearing" of streams such that all cycles in the 
process are removed. Initial values for the variable., 
present in tear streams are assumed and an iterative 
scheme is employed to force the convergence of the 
torn stream to within a specified tolerance.



Once all uf the tear streams have been determined, a 
calculation order for all units in the UMCL may be 
determined. This calculation path is then repeated 
sequentially until convergence of all the -.ear 
variables has been achieved. It is this sequential 
calculation of all the unit operations to convergence 
that is implied by the term "sequential modular 
simulator".

4.2 Partitioning the flowsheet.

Partitioning the flowsheet into cyclical nets or 
UMCL1s thac may be solved individually may be done by 
performing a path-search. This is presently 
considered to be - the most effective way of 
partitioning (Evans, 1980). Path-searching requires a 
sequential search of connections between units to be 
done until no further common paths (or recycles) are 
found. This group of units containing the common 
connecting paths is known as a cyclical net or UMCL. 
Path searching algorithms operate on a graphical 
representation of the flowsheet in which the units 
are considered as nodes and the streams as vertices 
of a directed graph.

The path-searching algorithm of Sargent and 
Westerberg (1964) in the modified form as
independently rediscovered and presented by Tarjan 
(1972) is very efficient and robust. This algorithm 
is used for partitioning in the ASPEN chemical 
process simulator and is considered to be the best 
currently available (Evans, 1980). ‘fiic algorithm as 
presented by Tar jan further operat-r-s recursively, 
using a depth-first search of the directed graph. A 
depth-first search us&a the following rule: When
selecting an edge to traverse, always choose an edge 
emanating from the vertex most recently reached which



still has unexplored edges (Tarjan, 1972). This 
recursive technique makes the Pascal implementation 
particilarly simple and elegant. The Tarjan algorithm 
was implemented for use in the simulator.

The Tarjan algorithm operates in 0<v,e) time, where v 
is the number of vertices and e the number of edges 
in the graph. Two stacks are maintained during the 
search, one to store the current component .under 
consideration, the other to keep track of points that 
have been reached during a search but have not become 
part of a current component. A current component 
includes a vertex if the vertex is found to have been 
considered before and is connected to the current 
component by another edge.

Once the units in each UMCL have been determined, the 
stream included in that net are found by considering 
the product streams of each unit in turn. Those 
streams which are feeds to other units in the UMCL 
are clearly included in the net and considered for 
possible tearing as they form part of a cycle. 
Product streams not feeding units included within the 
present UMCL are not further considered.

For the determination of the calculation order of the 
UMCL's, the feed and product streams of the net ae a 
whole are required. These are determined as an 
extension of the procedure to determine the streams 
included in each UMCL; those unit product streams not 
forming part of this UMCL must clearly be products of 
this UMCL, these product streams are further feeds to 
the UMCL's that contain the units fed by these 
streams. System feeds and products are left out of 
consideration in all cases.



Once all the feeds and products of all UMCL's in the 
system are known, the UMCL calculation order may be 
determined. As system feeds and products are not 
considered, the first UMCL calculable must have 
"zero" feeds, i.e. no feeds from other UMCL's. The 
product streams from this UMCL may now be considered 
known, and deleted from the feed stream lists of the 
remaining UMCL's. Aa each successive UMCL is found, 
the tear streams within that UMCL are determined and 
the calculation order of each unit within the UMCL 
calculated. This procedure is repeated until all the 
UMCL's have been ordered.

Although the determination of the streams contained 
within any UMCL is based on the extensive searching 
of arrays of unit feed and product stream lists, the 
procedure is fast and reliable.

4.3 Tearing the flowsheet.

In the iterative procedure to solve a UMCL consisting 
of more than one unit operation, each unit must be 
calculated once per iteration. All the inputs to a 
unit must be known before the outputs can be 
determined. If the UMCL contains recycles, as it must 
if it consists of more than a single unit operation, 
it is necessary to assume some input streams in order 
to start the Calculition procedure. These assumed 
streams are termed "tear streams".

A valid decomposition is a set of tear streams that 
opens all - cycles in che UMCL at least once. A 
redundant decomposition iti a valid decomposition from 
which at least one stream may be removed without 
rendering the resulting decomposition invalid; a 
nonredundant decomposition has no such stream.



Once the process computation is started, the 
particular unit ordering (or one of its cyclical 
permutations) repeats itself during successive 
iterations. In any complex system of unit operations 
there are possible permutations of the order in which 
the unit operations can be calculated. These 
permutations depend on the choice of the tear 
streams. As the order in which the unit operations 
are calculated ultimately influence the convergence 
characteristics of the system as a whole (Upadhye and 
Grens, 1975), tear streams must be chosen that will
allow convergence in the least possible computer 
time, using the least storage of information in 
memory.

There is no difference, as far as convergence of the
process computations are concerned, between the
cyclic permutations of any unit ordering. Different 
valid decompositions may therefore result in the same 
convergence characteristics. Such different tear sets 
leading to the same convergence are known as a family 
of tear sets.

The question of an optimal tear set was investigated 
by Upadhye and Grens (1975), and it was shown that 
t k . convergence rate of any flowsheet will be reduced 
if j valid decomposition from a family of tear 
streams other than the nonredundant family is chosen. 
They further showed that in most cases, to choose the
best decomposition for direct substitution
convergence, it is or.' y necessary to find the 
nonredundant decomposition family and to select any 
convenient decomposition .in that family.

Many algorithms exist to i :r,d the nonredundant family 
of valid tear sets, these being based on either exact 
or probability methods, i-’nile the latter method has



been greatly favoured, it is not guaranteed to find a 
solution, and in certain cases a "branch and bound" 
section is required based on a bound trial and error 
search for the optimal .solution. An algorithm
implementing this procedure (Motard and Westerberg, 
1981) was used in the ASPEN simulator (Evans, 1980). 
Other probability algorithms include those of Pho and 
Lapidus (1973) and Christensen and Rudd (1969). Ford 
shows the former to be ineffective.

Of the exact methods, the algorithm of Upadhye and 
Grens (1972) based on dynamic programming has been 
used by MODSIM (Ford, 1976). This algorithm is 
particularly effective, and is guaranteed to find the 
optimal solution, ip all cases. In this algorithm, 
streams may further be weighted to allow the 
selection of different tear sets from the 
nonredundant family based on various criteria, such 
as the minimum number of stream variables that need 
to be assumed (Ford, 1976).

The method of Upadhye and Grens does however suffer 
major disadvantages. The algorithm sequentially 
investigates a set of possible states, each state 
representing the opening of a combination of all 
cycles in the circuit. As the number of possible 
states is 2 n -1 , where n is the number of cycles in 
the circuit, and each state requires at least three 
real storage positions (or 18 bytes of memory), this 
results in huge space requirements. A more subtle 
restriction is however the largest number accurately 
representable by any computer. Each state requires an 
integer reference number to indicate its position in 
an array of states. As is generally the largest
integer accurately representable by most small 
computers, the algorithm is therefore restricted to 
systems consisting of 16 or fewer cycles. Note that
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using negative integers to double the number of
states representable only Increases the maximum
number of cycles by one, with a corresponding
doubling of the required storage space.

In ore-dressing simulation, circuits containing more 
than six cycles in any complex node (UMCL) are rare, 
while in hydrometallurgical simulation a five unit 
countercurrent circuit may have as many as forty 
cycles, due to the multiple feed-product nature of
the unit operations. The exact method of Upadhye and 
Grens is therefore not suitable for a general
simulator.

One other exact method which has often been rejected
from consideration due to its large combinatorial
problem is that of Lee and Rudd (1966). This
algorithm is based on the concept of "containment" of
streams and sets of streams in other streams and sets 
of streams. If one stream opens the same or some of
the cycles that any other stream opens, it is
included in the latter, and may be eliminated from
further consideration. The same concept may be
applied to sets of streams and their inclusion in 
other sets of streams. For systems with with large
numbers of streams, a large number of sets must be
tested for containment, resulting in severe
combinatorial problems. The use of FORTRAN for the 
manipulation and creation of large numbers of sets 
further complicates coding, and may have lent further 
impetus to the development of alternative tearing 
algorithms.

Pascal allows the definition of the set as a data 
type. The set operations for addition, difference and 
intersection further exist. The manipulation of sets 
may therefore be done efficiently. The Lee and Rudd
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algorithm vas hence further investigated and 
subsequently modified to reduce the combinatorial 
problem described. This modified algorithm finds the 
smallest valid tear set that opens the minimum number 
of cycles. In all cases tested, this modified 
algorithm produced a tear set from the nonredundant 
family of tear streams. The algorithm as implemented 
has no bounds on the number of cycles in any UMCL 
that may be operated on.

For both the Upadhye and Grens and the Lee and Rudd 
algorithms, as well as its modified version, the 
stream-cycle matrix is required. This is essentially 
the list or set of cycles that each stream in the 
circuit is included' in. The determination of the 
stream-cycle matrix is discussed in section 6.4.

The modified Lee and Rudd algorithm as implemented 
for the present simulator operates as follows:

1. Investigate each stream in the stream-cycle matrix 
for containment; this being defined as one stream 
being included in a set of cycles smaller or equal to 
the set of cycles that contains any other stream. If 
contained, the stream is removed from further 
consideration. This stage reduces the problem size.

2, If any cycle now contains only a single stream, it 
is a self-loop, and the stream must be a tear stream. 
If such a cycle exists, eliminate that cycle as well 
as all other cycles that contain this tear stream 
from further consideration. Return to step 1.
If no streams or cycles may be further eliminated, 
yet all cycles have not been removed, proceed.



3. For each remaining cycle, a nonvalid tear set 
exists, being that set of streams not containing any 
of the streams in the cycle. Clearly tearing only 
this set will not open all the cycles in the circuit.
Each possible combination of streams remaining can
now be tested for inclusion in the nonvalid tear set
of each remaining cycle. If included, it is itself a
nonvalid set, if not included in any nonvalid tear 
set, it is a valid tear set.

4. Combinations of the streams remain j ae a
possible tear set are tested in increasing set size.
Once a valid set is found, all combinations of
remaining streams with the same set size are tested 
to find that smallest tear set opening the fewest 
number of cycles. This satisfies the Upadhye and
Grens criterion for determining a tear set from the 
nonredundant family of tear sets.
This set of streams, combined with those tear streams 
found during step 2, constitute the complete tear 
set. In most simple cases, the complete tear set will 
be found without having to proceed with steps 3 and

The validity of this modified algorithm rests on one 
assumption; that the redundant families of tear 
streams shall not contain a valid tear set with fewer 
tear streams than the smallest valid tear set from 
the nonredundant family. This assumption is required 
as the algorithm first determines the minimum size of 
a valid tear set, then proceeds to find that valid 
tear set opening the least number of cycles.

The requirement of this assumption is further evident 
when the algorithm is compared with that of Upadhye 
and Grens (1972), in which any tear set from the 
nonredundant family could be produced, the valid set



with the smallest number of torn streams being found 
by the application of their "Replacement Rule" which 
states that if all the input streams to any unit in 
the process are included in a tear set, they may be 
replaced with the output streams of that unit, 
without affecting the validity of the decomposition 

the direct substitution convergence properties.

The assumption mentioned' is only required for the 
algorithm as implemented. It is of course possible to 
search all possible sets of streams that can 
constitute a valid tear set for the optimal solution, 
this being very time-consuming. An upper-bound on the 
size of the largest set of tear streams exists, this 
being the number of cycles in the circuit divided by 
the least number of cycles opened by any stream in 
the circuit. Should any doubt exist about the 
validity of the tear set produced by the algorithm as 
implemented, this fail-safe search method may be 
used, searching all possible tear sets having a size 
smaller or equal to the possible maximum size.

A comment on the weighting of streams during the 
tearing phase is required. In the Upadhye and Grens 
(1972) algorithm, streams may be weighted such that 
the nonredundant tear set found shall also contain 
the minimum number of stream variables (Ford, 1976), 
in an attempt to reduce the number of variables that 
need ' to converge during the calculation phase. This 
implies an a priori knowledge of the type of stream 
under consideration, e.g. whether a stream contains 
solids or not. As discussed in section 3.5, three 
methods for the allocation of stream types exist; an 
overall type for the complete circuit, user specified 
stream types for each individual stream and the 
determination of the required stream types by an 
initial simulation using pseudo-unit operations that



determine the output stream type produced by any unit 
operation given the feed stream types.

For- the first of these methods, as all streams shall 
have an equal number of variables, the set of tear 
streams produced will not be affected by the assigned 
weights, while using the last method requires a set 
of tear streams for the pseudo-simulation, the stream 
types obtained being used to determine the second 
tear set, this being used for the true simulation 
calculations. This method will not only increase the 
program size considerably, but will reduce the
maintainability of the program. The unsuitability of 
this method for the allocation of stream types was 
discussed earlier (Section 3.3), the requirement of 
two different tearing algorithms further proves the 
point. Only in the case wher' 'he user explicitly 
defines the type of each sti i;\ the circuit may 
convergence be enhanced by tt- ing of streams
during the tearing procedure. As time required to 
define the stream types may be. substantial (and error 
prone), the resultant reduction in calculation time 
may very well be lost.

The weighting of streams during the tearing phase 
should therefore be restricted to those weights 
required to produce the minimum number of tear 
streams from the nonredundant family. This only 
requires knowledge of the number of cycles opened by 
each stream in the circuit - a result known from the 
stream-cycle matrix determined (Section 4.4).

4.4 Determination of the stream-cycle matrix.

In order to use either of the exact tearing 
algorithms discussed previously, the stream-cycle 
matrix is required. This is essentially a list of the



cycles In the flowsheet or UMCL, and the streams that 
make up each cycle.

Mateti and Deo (1976) review all types of algorithms 
for enumerating all the cycles of a directed graph or 
flowsheet. From their comparative work, only those 
algorithms based on a backtracking and path-searching 
approach are polynomially time bound, while methods 
using circuit vector space, the edge digraph and 
powers of the adjacency matrix are exponential in 
their enumeration time. An algorithm using
backtracking and path-searching was therefore 
implemented.

Backtrack algorithms search for cycles in the super 
set of all cycles and their cyclic permutations in 
the flowsheet. The efficiency of the algorithms 
depend on
1. The size of the super set,
2. The effort required to compute an element in the 
super set of cycles, and
3. A test to determine whether an element is indeed a 
cycle. (Mateti and Deo, 1976)

The enumeration algorithm of Tarjan (1673) uses 
improved pruning techniques to decrease the size of 
the subset of possible cyclic paths considerably. 
This algorithm operates recursively in a time bound 
of O(n.e.c), where n is the number of vertices (or 
units), e the number of edges (or streams) and c the 
number of cycles in the UMCL under investigation. 
This algorithm was implemented for the enumeration of 
the cycles in the flowsheet, primarily for its 
elegance, robustness and simplicity.



Tarjan describes the algorithm as follows: "The point 
stack used in the algorithm denotes the elementary 
path p currently being considered; the elementary 
path has has start vertex s. Every vertex v on such a 
path must satisfy v >= s. A vertex v becomes marked 
when it lies on the current elementary path p. As 
long as v lies on the current elementary path or it 
is known that every path leading from v to s
intersects p at a point other than s, v stays marked.

For each vertex s. the algorithm generates elementary 
paths which start at s and contain no vertex smaller 
tjan s. Once, a vertex v has been used on a path, it 
can only be used to extend a new path when it has 
been deleted from the point stack and when it becomes 
unmarked. A vertex v becomes unmarked when it may lie 
on a simple circuit which is an extension of the 
current elementary path. Whenever the last vertex on 
an elementary path is adjacent to the start vertex s, 
the elementary path corresponds to an elementary 
circuit which is enumerated."

Other algorithms based on backtracking that are 
theoretically faster than the Tarjan algorithm, being 
time bound to 0((n+e)c), include those of Johnson 
(1975) and Tarjan and Reid (1976). These algorithms 
were not used as the increase in speed produced was 
not considered adequate to justify the increased 
programming effort. It has been found during 
verification of the the simulator (Chapter 5), that
the relative time _ taken to perform all the
precalculation algorithms is negligible compared to 
the time required to calculate to convergence any 
simple circuit that requires tearing; simplicity and 
maintainability of the coded algorithms being of 
greater importance than speed.



4.5 Determination of the calculation order of units 
within a UtiCL.

Once all the tear streams in a UMCL are known, the 
calculation cycle that is required to be repeated to 
convergence must be determined. This cycle is 
essentially the sequential calling of each 
calculation subroutine that models any particular 
unit operation. The determination of the calculation 
cycle is search based, and operates as follows:

Consider each unit operation in the UMCL in 
succession. A unit of which all the feeds are tear 
streams or system feeds must exist (if we have 
determined a valid -tear set). This unit is thus 
placed in the calculation order cycle, and its 
product streams are removed from the feed lists of 
the remaining units. The search for a unit having 
only known streams as feeds is repeated until all the 
units have been placed in the calculation sequence. 
Repeating the sequence thus determined will lead to 
the convergence of all tear streams in the UMCL.

4.6 Verification.

In order to verify the operation of the tearing and 
ordering algorithms, a large number of tests were 
performed, both on industrial and hypothetical 
circuits. Of those tests performed, the examples used 
by Upadhye and Grens (1975) are shown to allow 
comparison with future work. Further to these a 
hypothetical hydrometallurgical countercurrent 
liquid-liquid extraction example was simulated, which 
indicates the limitations of the dynamic programming 
approach.



The example flowsheets are shown in Figures 4.1 a-d, 
while the results obtained by the modified Lee and 
Rudd algorithm and Upadhye and Grens (1975) are 
summarised in Table 4.1. From these results it can be 
noted that in all cases the smallest nonredundant 
tear set was produced by the new algorithm, and that 
the problem size that can be accomodated by this 
algorithm exceeds that of dynamic programming. In all 
cases a viable calculation order was produced, as is 
shown.

4.7 Conclusion.

The algorithms implemented have been tested using 
true simulation examples. In all cases the algorithms 
have produced the optimal tear set and the correct 
unit calculation order. The algorithms are able to 
accomodate any number of units, process streams and 
cycles within any recycle net. The algorithms are 
therefore adequate for the simulation of 
hydrometallurgical circuits, and in general, any 
process circuit.



CAVETT'S PROCESS b . ROSEN'S PROCESS

RAMJI'S PROCESS d. STRIP PROCESS

FIGURE 4.1
EXAMPLE FLOWSHEETS
FOR TEARING AND ORDERING



PROCESS NONREDUNMNT TSAR 
SETS - LPADYS AND 
GRENS (1975)

TEAR-SET MODIFIED 
LEE AND RUDD ALGORITHM

CALCULATION
ORDER

(2,5) (2,8) (5,6,7) {4,1} (Equivalent by 
replacement rule)

3,4,3,2,6,1

(8) (5,6,10) (») 3,5,4,6,6,1,2,7

Rill ni 2,3,4,1

STRIP Problem too large (1,2,3,4,6) 5,4,3,2,1,

Table 4.1

Verification of modified Lee and Rudd Algorithm



CHAPTER 5 : CONCLUSIONS

5.1 Introduction

The future of simulation in the minerals industry is 
assured. Simulation for design and optimisation has 
become an active field. Modelling of 
hydrometallurgical processes using the population 
balance approach is being researched and new models 
for unit operations are constantly being developed. 
It is essential that this research being done in 
different fields of metallurgy be united, so that the 
simulation of complete metallurgical circuits may be 
done with the best available models. This can only be 
accomplished if a maintainable and extendable 
simulation "executive exists that can combine the 
models into a complete process. It was the aim of 
this research work to produce such a simulation 
executive.

5.2 Summary

5.2.1 Data structures

Data structures were designed to represent the 
general process stream in a maintainable and 
extendable way, so that it may be used for the 
simulation of any hydrometallurgical operation. The 
data is easily accessible to the user, and the 
creation of new process operation models is a simple 
task. The accessing and replacing of variables 
operated on by a unit operation model is simplified 
by the use of utility routines that make these data 
structures appear totally transparent.



The use of the concept of substreams allows simple
additions to the stream data structures, so allowing 
the future extension of the simulator to other 
branches of metallurgy, such as pyrometallurgy. 
Existing substreams can be extended by additions to
the descriptive record.

The use of an advanced structural language such as
Pascal has resulted in the dynamic allocation of
memory, thus utilising the computer storage more 
effectively in all sections of the program. Dynamic 
memory allocation in stream descriptive records 
further allows a practically unlimited number of 
variables to b" represented.

The overall stream data structure is considered 
adequate and extendable enough to accomodate all 
hydrometallurgical simulations.

5.2.2 Precalculation algorithms.

The precalculation algorithms utilise procedures that 
are general enough to operate on any flowsheet. No 
limit exists on the number of units or streams in the 
process, and the simulator will produce a tear set 
that shall allow direct substitution to converge in 
the least number of iterations. Tests have indicated 
that the time taken to tear and order the flowsheet 
is negligable compared to the calculation phase of 
the flowsheet.

The precalculation algorithms are considered adequate 
for any further extensions that may be done to the 
simulator executive.



5.2.3 Verification

A large number of ore-dressing unit operation models 
were taken from the MODSIM simulator and translated 
into Pascal to be used in the present executive. The 
unit models translated were:

1. Separation Units

a. Classification Units

i. Cyclone-
ii. Screens

b. Coal Washing Units

i . Drewboy washer
ii. Dense Medium Hydrocyclone

c. Bank of Flotation Cells

d. Gravity Concentration Units

i. Spiral
ii. Reichert Cone

2. Comminution Units

a. Grinding Mills
b. Crushers

3. Water Separation Units

a . Thickeners



Comparitive test were performed between the
simulators, the present version yielding the same
results as MODSIM in all cases. The example
flowsheets tested are shown in Figures 5.1 a and b,
the results obtained for the two simulations are
summarised in Table 5.1. This verification was
required to validitate the usability of the data 
structures and the effectiveness of the 
precalculation algorithms.

Extensions to the stream structures and unit
operation models was done by Stange (1985) for carbon 
in pulp research. Simulation of this 
hydrometallurgical operation was done successfully, 
illustrating the extendability of the simulator to 
the exact requirements of the ultimate user.

5.3 Future research

5.3.1 Introduction

The simulator in its present form can successfully 
simulate a large number of metallurgical processes. 
Ore-dressing models for the simulator have been 
written and tested, as well as a carbon in pulp 
system. For the simulation of all the 
hydrometallurgiacl unit operations, future work is 
required.

5.3.2 Unit operation models.

Research is in progress on the creation of 
hydrometallurgical unit operations. This field has 
received new impetus from the work of Sepulveda 
(1978) with -he population balance approach to 
leaching. This approach is being extended to other 
hydrometallurgical operations.

JUSt.





Strra Mass Flowrate

1 2500.0000
2 2500.0000
3 566.8365
4 1203.0377
5 730.0758
6 1933.1135
7 1933.1135
8 4452.7446
9 2501.0843
10 1952.7446
11 1952.7446

SIZE (microns) % Passing % Passing

Stream 1 Stream 9

1220000 99.93 100.00
862678 96.94 100.00
610011 81.10 100.00
431347 54.91 100.00
305011 31.66 100.00
215677 16.64 100.00
152508 8.33 100.00
107841 4.07 100.00
76255 1.97 100.00
53921 0.95 100.00
36128 0.45 100.00
26961 0.22 100.00
19064 0.10 100.00
13480 0.05 100.00
9532 0-02 75.49
6740 0.01 53.11
4766 0.01 40.05
3370 0.00 31.56
2383 0.00 21.96

RESULTS OF SIMULATIONS
a. CRUSHING CIRCUIT



Strm Mass Flowrate Water Flow Percentage
TPH Solids

1 100.0000 233.3333 30.00
2 453.0672 381.6099
3 452.1535 381.6278
4 452.1535 712.6304 .
5 352.6700 148.2766
6 99.48357 331.0026

SIZE (microns) % Passing % Passing
Stream 1 Stream 5

TABLE 5.1 RESULTS OF SIMULATIONS
b. MILLING CIRCUIT



The simulation of carbon-in-pulp and carbon-in-leach 
processes is of great Importance at present, and it 
can be expected that research in these fields will be 
active in the next few years.

The testing and verification of models developed in 
research is made simple by their inclusion in an 
existing simulator. In this way their interaction 
with other unit operations and in recycle situations 
may further be tested.

5.3.2 Convergence

It has been shown by Westerberg et al (1979) that 
direct substitution will always lead to the 
convergence of a realistic process flowsheet. The 
rate of convergence may however be slow, and may be 
prohibitively so on a microcomputer.

The use of convergence accelerators is a critical 
part of the research required to be performed in 
future. A distinct problem with the Newtonian 
accelerators available at present is that the 
derivatives of the product process streams of each 
unit operation is required, which is a function of 
the unit operation model. These derivatives may 
therefore be extremely complicated and their 
calculation could be as time-consuming as the 
direct-substitution process itself; the decrease in 
the number of iterations being lost in the increased 
calculation effort.

The bounded Wegstein convergence accelerator has 
further been implemented, (Westerberg et al, 1979) 
this method generally yielding improved convergence 
characteristics.



The robustness of direct substitution makes it 
particularly suitable for development work, and was 
therefore retained. It was further felt that the 
convergence problem may only be optimally 
investigated once more knowledge is available on the 
nature of the unit operation models, and should be 
postponed until that time when it may form the centre 
of more intensive research in that field.

5.3.3 Human-computer interfaces

The larger interfaces that will link the user and the 
simulator have been written but were not part of the 
present investigation. These will create flowsheets 
and produce graphical and numerical output in a 
useable form. The maintainability and modularity of 
the sections already created makes the writing of 
these interfaces quite a simple matter, the 
interaction of the user and the machine becoming the 
major design criterion. The final version of the 
interface should allow simulations to be done by any 
user with no computer skills.

5.4 Conclusion

The simulator executive created during this research 
project fulfills all the requirements of an advanced 
hydrometallurgical simulator.

The simulator is considered general, maintainable and 
extendable enough to accomodate any
hydrometallurgical process operation model.
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