HYDROMETALLURGICAL SIMULATION -
A VIABLE PROGRAM STRUCTURE

Johannes Jacobus le Roux Cilliers

A dissertation submitted to the Faculty of
Engineering, University of the Witwatersrand,
Johannesburg, in fulfilment of the requirements
for the degres of tMaster of Science in
Engineering

Johannesburg, 1986

T

1

T

B Y - A S N . T

DECLARATION

I declare that this dissertation is my ouwn, unaided
work. It 4is being submitted for the Degree of Master
of Science in Engineering in the University of the
Witwatersrand, Johannesburg. It has not been
submitted before for any degree or examination in any
other University.

(Gl

3 day of Mﬂew 198 +

iii

ABSTRACT

In order to satiefy the increasingly sophisticated
requirements for simulation in the metallurgical
industry, this research focused on the development of
data structures and algorithms general and extendable
enough to all hyd 1llurgical
processes.

The data structures-” designed to describe process
stream information were based on the concept of
substreans {Brity, i886) using the plex data
structure (Evans, Joseph and Seider, 1977) inherent
to the Pascal programming language. As substreams are
combined to describe complete process streams, the
data structures may be extended to describe any
proceBs stream by creating additional substreams as
may be required.

Algorithms for partitioning, tearing and ordering
flowsheets based on the work of Tarjan (1872, 1873}
and Lee and Rudd {1966) were designed and
implenmented. These algorithms are able to treat the
large problem gizes associated with
hydrometallurgical process fiowsheets.

The data structures and algorithms have been
successfully combined into a powerful process
simulator extendable to the general
hydrometallurgical process descriptian.

E /
iv
CONTENTS Page
DECLARATION ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES viii
1 INTRODUCTION 1
1.1 The Use of Steady-state Simulation in
Metallurgy 1
i.z Simulation Strategies 2
1.2.1 The sequential modular approach a - R
1.2.2 Equation oriented methods 3 i
1.2.3 Two-tier algorithms 4
1.2.4 Comparison of methods 4 i
1.3 The Requirements of an Advanced Process
Simulator [}]
1.4 An Evaluation of Existing Metallurgical
Simulators 8
1.5 CQomparison of Ore-dressing and
Hydrometallurgical Simulator Structures 1t Wt
1.5.1 Comparison of ore-dressing and h
hydrometallurgical stream structures i1 2]
1.5.2 Comparison of ore-dressing and
hydrometallurgical process operations 13 i
1.6 Conclusion 14 v
]

SIMULATOR DATA STRUCTURES

The Plex bata Structure

Achieving the Plex

simulating the plex in FORTRAN

The plex as it exists in other languages
The Cholce of Programming Language
oOverview of languages

Language choice

The Stream Descriptive Data Structure
Introduction

The stream types

The solid substream

The compleote stream structure

The Unit Operation Structure
Introduction

The unit data structure

Data Structure Usage

Introduction

Utiiity routines

Conclusion

STREAM TYPE CHARACTERISATION

Introduction

Streaw’ Types and Computer Memory
Stream Types and Convergence
Stream Type Allocation

User specified stream types
System types

Computer allocated types

The choice of methods

15

15
16
16

18
18
19
22
22
25
26
30
35
35
35
37
37
38
42

4“3

43
44
47
s1
51
52
53
s4

vi

PRECALCULATION ALGORITHM®

Introduction

Partitioning the Flowsheet

Tearing the Flowsheet

Determination of the Stream-cycle Matrix
Determination of the Calculation Order
Verification

Conclusion

CONCLUSIONS

Intreduduction

Summary

Data structures
Precalsulation slgorithme
Verification

Future Research

5.3.1 Introduction
5.3.2 Unit operation models
5.3.3 Convergence
5.3.4 Human-computer interfaces
5.4 Conclusion
REFERENCES
e AMM P .

56

56
57
59
66
&9
&2
70

73

73
73
73
74
75
76
76
7%
80
a1
81

82

Y s
vii
-
L1ST OF FIGURES
i -
3 3
i Figure Page
2.1 Achematic of solid substream 28 DR
2.2 Schematic representation of a e
solid-lixiviant straan 33 = X
2.3 The unit operation data structure 36 “ 3
5
2.4 Schematic of data structure
indicating pointer name 39 M
3.1 Typical uranium flowsheet 46 L
3.2 Hypothetical process 49 ;
3
S
L. 4.1 Example flowsheets for tearing i
e and ordering 71 >
. ¥ 2;{5
i 5.1 Flowsheets for system verification 77,78
e '
; o4
R s
%

viii
LIST OF TABLES
Table Page
4.1 Verification of modified
Lee and Rudd algorithm 72
5.1 Results of simulations 79

BT

CHAPTER 1 : INTROBUCTION

1.3 The Use of Steady-State Simulation in Metallurgy.

The reseayrch performed dealt exclusively with
steady~-state simulation techniques, and any reference
tae simulation hereafter shall imply steady-state
sinulation.

The use of Bimulation in the metallurgical industry
has shown a tremendous growth in the past five vears.
Not only have simulators moved from the university
and consulting environment into industry, but
simulation has comé te be recognised as a viable
engineering tool.

Simulators Nave, in tha past, been used as powerful
predictive units on & large =scale. This included
usage as design - tools, for the prediction of
alternate circuit configurations and for the
optimization of circuit operating parameters. Should
simulators be more freely available, their usage may
very well include operator tralning, the prediction
of simple plant £ rameter changes, and the
familiarisation of metallurgists with the variations
in plant operation with variations of operational
parameters.

The need for simulators of high quality that are easy
to use and reliasble, and that will instill confidence
in users unfamiliar with simvlation, 1is therefore
obvious.

The use of simulation in South Africa has, in the
past, been restricted mainly to the ore dressing side AN
of mineral processing, for two reasons. Firstly, the ;\“ *
modelling of ore dressing operations is relatlvely
gimple, and many models based on historic data or on LN -
empirical fitting exist, Secondly, available 4
simulators have not been able to accommodate the T
complex data structures that exist in

hydrometallurgy, both in terms of the data for each
stream in the process flowsheet, and the complex -
structures of the flowsheet itself. The demign of

this simulation program was aimed at solving the b
sscond of the above problems. The modelling of
hydrometallurgical pnit operations is in itseif a {
large task, and research in this field is active. !

Thus +the aims of this project were to produce a
gimulator that would be able to operate on a small
computer, thereby making it accessible to a large
number of ugers, while simultaneously laying down the
program structures reguired so that the simulation of
hydrom@tallurglcal circuits is also made possible.
Thi. program shell, capable of accepting
hydroaetallurgical unit models and their associated
stream Btructures, will further stimulate research in
the modelling of these unit operations, as the tedium
of designing the amsocisisd code for the tearing of
recycles, the ordering ¢7 the calculation phase and
the design of date structursas has been eliminated.

1.2 Simulation strategies. H

The primary mathematicai problem in steady-state
process simulation is one ¢f golving large systems of
nonlinear algebraic egGuaLionsa. There are three
specialised approaches to solving these equations:

the sequential modu! ar approach, the
equation-oriented approach and two-tier algorithms.

1.2.1 The sequential modular approach.

Essentially all industrisl simulators available at
present operate on the sequential modular approach
(Evans, 1980). A computer routine is developed for
each unit operation to produce the output stream)
variables as functions of the input stream variables P
and unit parameters. Each routine is then
sequentially called to simulate the complete process. i
Initial estimates of the recycle stream variables
must be provided, either by default or by the user, W
the unit calculation order being sequentially N
. repeatesd until convergence of the recycle streans %o
7 L within a specified tolerance has been achieved. The =

! solution of design problems or constrained problems
is also done by iteration. Before a simulation can Re
! done, a host of precalculation algorithme have to be R y
‘,'k called to determine the calculation order for each r
routine and the streams that have to be assumed for
the simulation to be started.

- 1.2.2 Equation oriented methods. L

These methods collect all of the equations describing
H the flowsheet and solve them as a large system of E
nenlinear algebraic equations. In general, the system 3
of equations is sparse and structured. In this
approach, the models generate and represent the
equations for each unit operation. These equations
are then fed to an efficlent equation solving |
procedure. Using this method a simulation may be
formulated as an optimisation or design problem. The
equation oriented method has been used extensively in
models for individual unit operations, but have not .

been used routinely in an industrial simulator
(Evans, 1980).

1.2.3 Two-tier Algorithms,

Using this approach, the overall solutlon strategy of
the sequantial-modular approach is maintained, while
both rigorous aad sinple models are made available.
The simple models are’ in the form of a group of
linear equations that can be rapidly solved by an
efficient equation solving technique to determine all
the stream variables. This allows the rigorous mcdels
to be called when a more accurate simulation is
required. This method has been used in an advanced
simulator, (Evans, "1980). Other two-tier aigorithms
include that of Westerberg et al (1979}, known as the
simultaneous-modular approach, where all the gtream
variables are solved simultaneously using simple
lipear models. The two-tier approach takes advantage
©f all the existing sequential modular software. This
approach may be considered as another convergence
mwethod, where simple, fast models are used to rapidly
approach the solution; the final values being
determined by rigorous modelling.

1.2.4 Comparison of methods.

Writing the executive for an equation-selving
simulator can become extremely complex (Westerberg et
al, 1979). The problems are those of guaranteeing
that the dressing engineer will give a legitimate
problem definition to the system and that the
solution casn be made to converge to & solution. The
sequential modular and two-tier approsches are much
simpler to write. The assumption that each unit
operation model will calculate unit output stream
values given input stream values and equipment

- A-\MM PO Y Wy me.

-

Il

been used routinely in an industrial simulator
(Evans, 1980}.

1.2.3 Two-tier Algorithms.

Using this approach, the overall solution strategy of
the sequential-modular approach is maintained, while
both rigorous and simple models are made available.
The simple models are in the form of a group of
linear equations that can be rapidly solved by an
efficient equation solving technique to determine all
the stream variables. This allows the rigorous models
to be called when a more accurate simulation is
required. This method has been used in an advanced
simulator. (Evawi, -1980)4 Other two-tier algorithas
include that of Westerberg et al (1979), known as the
simultaneous-modular approach, where all the stresm
variables are solved simultaneously using simple
linear models. The two-tier approach takes advantage
of 21l the existing sequential modular software. This
approach may be considered as another convergence
method, where simple, fast models are used to rapidly
approach the solution; the final values being
determined by rigorous modelling.

1.2.4 Comparison of methods.

Writing the executive for an equation-solving
simulator can become extremely complex (Westerberg et
al, 1979). The problems are those of guaranteeing
that the dressing engineer will give a legitimate
problem definition - to the system and that the
solution can be made to converge to 2 solution. The
sequential modular and two-tier approaches are much
simpler to write. The assumption that each unit
operation model will calculate unit output strean
values given input stream values and equipment

3 N _\.m“ e B o B . e 2 w

i

parameters solves many problems. By assuming a rigid
form for writing a unit model, these routines may be
uritten comparatively easily as the uriter has to
make no decisions on the type of input data that he
will be given. In the equation-solving approach, the
modeller has to manipulate the eguations defining the
unit into a form recognisable by the system.

The executive for the modular approaches bhas to
analyse the flousheet and determine a ramputation
order for the unit models. Methods for suiving this
problem are well established. .

For the equation solving approach two options exist:
The equations méy be solved by successive
linearisation or by an analysis attempting to
minimise the number of iterate variables reqguired.
Using the former method, the system must calculate or
estimate partial derivatives and set up a set of
simultaneous linear equations for each iteration. The
latter alternative can be very complex and represents
a massive combinatorial problem as the use and
position of each equation must be determined. The
complex form has not been used for simulators
{Westerberg et al, 1979).

By not using the equation-solving technique, the
optimisation or design problem, reguiring equipment
parameters tn be calculated, hecomes more complex and
greatly incrzases the computation time.

Modular simulation - executives may be designed and
written mere quickly, the system is simple to specify
and unit models may be written, tested and made
computationally robust. The user further has no
difficulty in specifying data to produce a
well-defined problem. A1l of the magnitude of

. 'm.m e ke W L am LB e

presently available modular wunit models may further
directly used if this approach is adopted.

The sequential modular method was used for the
present simulator on the basis of the above
arguments. Experience with the MODSIM simulator as
successfully implemented by Ford and King (1984)
further indicated the suitability of this approach to

the present work. The simulator was further written

in such a way that the two-tier approach as described
by Evans (1984) may be implemented at a later stage
should the robust models prove to be too slow
computationally for optimisation or design usage.

Henceforth, reference to a “simulator" or
"simulation” shall imply a steady-state, sequential
modular sytem.

1.3 The Requirements of an Advanced Process Simulator

As early as 1976 (Evans and Seider), it was
recognised that the direction which simulation
techniques must take had to be clearly defined. The
problems of simulations containing solids in the
process streams, ard the adeqguate representation
thereof were recognised and the requirements of such
a simulator set.

These requirements, if applied to the steady-state
simulation of hydrometallurgical plants, are as
follows:

1.The system must permit analyses of flowsheets
with different types of streams.

2.The system must be extendable and capable of
modification.

S e

3.The system must be adaptable to different
computing environments, and transportable.

4.The cost of the simulator and performing
simulations should be reasonable.

5.The system should be file oriented,the results
of one phase being stored before analysis of the
next.

6.The system must be conveniently accessible to
the user.

7.The assumptions employed in an analysis should

be clear.
8.The user should be . -0 communicate in a

convenient form, and it should be easy to
interpret results.

9.The system should be easy to learn to use and
well documented.

Only the first siax of these apply directly to the
research done. Although the last points are by no
means less important, they are the result of good
human-computer interface design and of the models
used in the simulation, and are beyond the scope of
this work. The executive program designed essentially
operates from and writes to data files for the
interface to menage. The use of such a modular
program structure allows the interchanging of
different sections to suit the requirements of the
ultimate user.

The first requirements of portability, accessibility
and cost point to the use of small, or preferably
micro computers. In the time since Evans and Seider
set thase requirements, computer power has increased
exponentially, with a simultaneous decrease in cost
and size. It is now possible for each user to have a
dedicated machine, and the 3software we create must
face this reality. The future of computers is clearly
in the direction of smaller machines, with a
proportional increase in their power and speed. The
use of local computing power conforms to the
predictions of Evans (1980) for the simulator
environment of the 1990's.

The second major requirement is for a general and
extendable simulator that will be able to process any
size problem, with a wealth of different siream types
and unit operations. This work was primarily
concerned with the design of the data structures and
algorithms that would meet this second requirement,
while not losing sight of the first.

1.4 An Evaluation of Existing Metallurgical
Simulators.

A literature survey of metallurgical simulators
capable of simulating hydrometallurgical flousheets
or which will be extendable to represént the complex
data associated therewith satisfactorily, was
undertaken. No simulator exists at present that meets
the requirements for simulating hydrometallurgical
cperations, although the concepts employed for the
repr tion of proce: stream data and general
data structures are well established.

ot A s e w R o« a

The extension of an existing simulator to meet
advanced requirements has been done by Ritchie and
Spencer (1984), with great success. The ASPEN-PLUS
system produced as an extension of ASPEN, an advanced
chemical process simulator (Evans et al. 1979), is
howver extremely large, consisting of approximately
350 000 FORTRAN statements, and is not implementable
on a micr puter. The ions made by Ritchie
{1984}, wuhile allowing for ecgnomic evaluation of
minerals processing operations and greatly enhancing
the ASPEN system for use in metallurgical
gimulations, does not vet allow adequate data
structures for the “representation of complex solids
that are +to be represented in multiple dimensions of
characterisation. The ASPEN-PLUS system allows solids
to be distributed according to size and mineral
content {or grade) and the latter to be distributed
according to specific gravity. The system does not
allouw true multi-dimensional distributions, e.g. a
specific gravity digtribution in each size class.
Further dimensions for distribution, for example
flotation rate constants and unreacted core size is
also not catered for. ASPEN does however use very
elegant data structures for the representation of
streams data {Britt, 1980) and state-of-the-art
algorithms for the precalculation phase, during which
the flowsheet is analysed and the calculation order
determined (Evans, 1980). The bulk of the code size
and unfamiliarity with the code make extensive
modifications to the . program by unfamiliar users
difficult.

The Monsanto FLOWTRAN wmystem uses data structures
similar to ASPEN, however only simple extensions have
been attempted (Neville and Seider, 1980). Once
again, the system is written in FORTRAN, with large
sections of code being used for data manipulation and

10

memory allocation and management. The difficulties .
associated with maintaining code written to simulate
a high-level 1language, as was done in both ASPEN and
FLOWTRAN, become evident from their work.

Hess and Wiseman (1984) describes the ore-dressing
simulator of the Julius Kruttschnitt Mineral

Research Centre. Although the human-computer -
interface is elegant, the system is main-frame bound Lo
and limited to ore-dressing operations. In concept it af

is similar to MODSIM, the ore dressing simulator of ;
the University of the Witwatersrand (Ford and King, b
1984}, Extensions to the latter appeared feasible,
howevar the memory allocation of the program is done
by recompilation of the main FORTRAN executive and
linking of the associated code - a very
time-consuming task on a small computer. The rigid
FORTRAN array based data structures further
complicate extensions to allow the multiple solid and S
lixiviant phase descriptions required for
hydrometallurgical simulations. The MODSIM simulator
is limited to a true three-dimensional matrix type
solid phase description.

The FLEXMET system of Fluor (Richarson et al, 1980 .
and 1981) cannot desceribe the solid phase in any
great detail and is therefore unsuitable for use. .

The literature survey clearly indicated that for the ;
steady-state simulation of hydrometallurgical
operations, preferably on a micro-computer, no
suitable, extendable programs exist and that & 4
simulator executive would have to be designed and o
created combining concepts of other simulators to
meet the advanced requirements.

" oA W v By

e

1.5 Comparison of gre-dressing and hydrometallurgical
simulator structures.

The hydrometallurgical simulator should be seen as an
ore-dressing simulator extended to accommodate
lixiviant data rather than an extension of a chemical
process sinulator to accommodate solids data. The
adequate representation of the large amount of solids
data associated with minerals processing operations
is one of the major problems in data structure design

for a simulator; a problem investigated and
effectively solved by Ford (1976). A comparison of
hydrometalliurgical and ore-dressing simulators
rather than chemical simulators should be made

before the concemtual extensions can be done.

1.5.1 Comparison of Ore-dressing and
Hydrometallurgical Stream Structures

Consider the simulation of ore-dressing circuits as
compared to the problem of hydrometallurgical, or in
general, any metallurgical process.

The process streams that make up an ore-dressing
circuit congist of a combination of galids and water,
the solids being classified inte different
fractions. Depending on the complexity of the
simulation, these fractions or classes are generally
up to three dimensions deep, bwing size, grade and
one further characteristic. Grade 'in this context
refers to the percentage of valuable mineral in the
particle. The last characteristic may be any further
physical or chemical attribute, such as magnetic
susceptibility, flotability or shape.

P3N Am_m.‘. slbaas B . wRL - N

ileld

i

12

This 1=presentation 1s conveniently available by the
usage of . a matrix-type data structure, each
characteristic being represented by a dimension of
the matrix. The fraction of the total solids tonnage
in each colass is stored in the corresponding position
in the matrix, from where it is easily accessible and
understandable. In general, all programming languages
has this data structure available. The simulator
MODSIM implements the above representation very
successfully in FORTRAN.

The structure required of a hydrometallurgical
process Btream 1s more complex as the additional
E information required- for lixiviant streams and their
aspociated solutes is often required. Information
=:7\ = regarding the core size, porosity and shape of solid
L b particles may be required and further increases the
i amount of data to be represented. The further
possibility of gaseous stream types, and the
associated thermodynanic qualities of
hydr llurgical pr 9, streams, should these be
required, must further be considered.

Hydrometallurgical process models, also beyond the
scope of this work, are being developed on a
population balance approach (Sepulveda and Herbst,
1978). As little information is available as to the
exact nature of these models and the parameters and
data that they shall require, the data ‘structure
must, of necessity, be variable and maintainable. By
] the same token, since no knowledge is available

& befors a simulation is performed about the amount of

the data that will be required, the data structure !
5 must be able to expand or contract to suit the needs |
! of the specific system under consideration. i

acd - A T 3 o &

13

1.5.2 Comparisons of Ore~dressing and -
Hydrometallurgical Process Operations E

The simulatisn of systems of ore-dressing operations
leads to & few generalisations that cannot be made
when simulating the general minerals processing
operation. The most obvious of these is the SN -
restiiction of & single feed to all unit operations, .
except for mixers, where only a single product streesm \f
is allowed. Although this at first appears to be a b
rather innocucus limit, the simplifications that
regult in the algorithms that precede the actual N
simulation phase; partitioning, tearing and
precedence ordering, is considerable. These {
precalculation algorithms are discussed in detail in
Chapter 4. In the general hydrometallurgiéal cifcuit,
this restriction is clearly not possible - we may
cite a liquid-liquid extractien unit as an obvious
example of a unit operation to which the single feed o
or single product restriction cannot be applied. at

i
A lesser restriction, that all process streams in the N
circuit shall be of the same type, leads to e
simplification in the g=zneralisation of the code
produced - this becomes a severe problem when ﬁ
considering hydrometallurgical simulations, as shall

become obvious in later sections.

A further simplification in the simulation of
ore-dressing circuits results from the amall number
of recycles that occur. Recycle streams in the
analysis of any complex flowsheet requires that the
steady-state simulation be solved by an iterative
process. All the recycles in the process have to be
isolated, streams that constitute a part of the cycle
have to be openet or torn, their initial values
guessed and iterat.ons performed to convergence. In

g 36

=

II 1 \iﬂéigm YR TUE Y. - A e - - é‘”ﬂh

general, a large ore-dressing operation shall have
fewer than five recycles in any one connected
section, and larger numbers shall usually only occur
in systems where much reaycling of water is done. The
latter occurs in coal washing operations rather than
mineral processing plants.

In hydrometallurgical operations, on the other hand,
multiple recycle systems frequently occur, and in a
system of a few units with multiple feeds and
products, in the order of tens of recycle loops may
oceur. This large number of recycles influences both
the precalculation algorithms and the ocalculation
phase of the simulation, and algorithms that were
perfectly adequate for the ore-dressing simulator
fall short when hydrometallurgical systems are
attempted.

1.6 Conclusion

The simulation of the general metallurgical process
is a complex matter, and simulators that up to date
have been restricted to ore-dressing are not
adequate. The general hydrometallurgical process
simulator requires the representation of different
types of process streams, a maintainable and variable
data =structure and robust and general precalculation
algorithms.

The design of these data structures and the
algorithms that will make the simulation of
hydrometallurgical circuits possible were the two
aims of the research performed.

et . .iﬁﬁi . bl - B LR e EY

i
i

15

CHAPTER 2: SIMULATOR DATA STRUCTURES

2.1 The Plex Data Structure

In the early stages of the design of the simulator,
it was already recognised that rigid data structures,
as prescribed by certain programming languages such
as FORTRAN and BASIC, would not be adequate for the
elegant representation of either a general process
stream, or a general process simulator. This is
primarily due to the greatly varying nature of
simulation problens, both in terms of possible
problem sizes and the stream types to be represented.

Evans, Joseph and Seider (1977) proposed a "plex"
data structure that met the requirements of their
advanced process simulator. The plex consists of
groups of contiguous storage locations Kknown as
beads; the numbar of locations in each bead being
variable. A bead may contain different types of
entries, psuch as integers, real values, booleans or
alphanumeric strings.

A bead is referenced to by a pointer, which refers to
the Btorage location of the entire bead. A bead may
also contain a pointer to the next bead, so that
beads may be strung tcgether.

Beads are created dynamically during execution of a
program from a pool of free storage, and may be

rerturned to that pool when no longer required.

Evans and Seider claim that the plex structure will:

ot AR L ces o B P .

e .

1%
1. Increase modularity.
2. Provide flexibility.
3. Allow a more natural description of

attributes.

4. Make configuration modifications simple.

5. Not waste storage.

6. Not place a limit on problem size.
The implementation of the plex data structure
therefore =allows the creation of a general process
simulator, able to accomodate a vast range of
simulation problems.

2.2 Achieving the plex.

There are two ways in which the plex may be achieved;
the code to simuiate the plex structure may be
written for programming languages that do not
inherently have the structure (such as FORTRAN), or a
programming language that supports the plex structure
may be used.

2.2.1 Simulating the plex in FORTRAN.

A plex structure, written in FORTRAN was used by
Evens et al (1979} for the ASPEN chemical process
simuplator. This simulator was extended by Ritchie
(1984) to include solids in a simulation, as
ASPEN-PLUS. This simulator consists of more than
350000 lines of FORTRAN code. Kaijaluoto (1979) also
created a plex data structure for their simulator and
describes the problems with using FORTRAN. He finds
that the wmaintaining and administration of the plex
requires large amounts of gtorage space and that the
creation of a data structure that will not lead to
programming errors by the user is both difficult and
time-consuming. The plex created is also slow and
complicatad to use. .

e

The ASPEN simulator uses its own input language that
may be seen as a new programwming language required
to be known to effect a simulation. .

The creation of the code to simulate the plex is not
simpie and becomes & major time factor in the
creation of new simulator. The maintainability and
transportability of such a simulator is also reduced
by the additional specialised code.

2.2.2 The plex as it exists in other languages.

The dynamic allocation of computer memory to suit the
reguirements of the problem, and the accessing of the
data segments created by means of & polnter is
available in ~ all the Algol family of languages. This
family includes Pascal and C.

When using & language that contains the plex as an
inherent data Structure, programming emphasis is
shifted from creating the code that maintains the
data structure to using the available structures to
their full potential. More effort may therefore be
put into designing and using the best algorithms
available, both for the simulation and precalculation
phase.

A major disadvantage when not using FORTRAN is the
loss of familiarity .’and the required learning of a
new language if the code is to be updated by a user
unfamiliar with the language. Algol-type languages
are however well-defined and their use 185 to be
preferrer to the situation where an existing language
is to meet requirements for which it

was not designed.

FRPUI SR S

. S

ks f AJH‘EEiL s oo e 0 B . M B ﬁL.A,._A14n_A§E!!L‘;_A§

18

2.3 The Choice of a Programming Language.

2.3.1 Overview of languages

FORTRAN and BASIC, while not inherently allowing the
plex, have further undermined their maintsinability
by the constant addition of new features, such as
dynamsc arrays 1n BASIC, and certain structured
programming constructs in FCRTRAN 77, which were not
present in earlier versions. These changes lead to
severe transportability problems, as each computer
inevitably supports its preferred version. #hile
BASIC has become a standard language for
micro-computer applications, it is not suitable for
the development of large programs.

The new generation of programming languages holds
great advantages for the user. Data structures have
bacome less rigid, and unique structures applicable
to the problem that is being solved may be set up by
the user. These include the dynamically created plex
as described abova. The use of recursive subroutine
calls has become an acceptable programming technique,
leading to more compact code, and mors elegant
Bolutions to simple problems. The dynamic allocation
of memory is possible, with obvious benefits for the
problem gize that may be solved, and the creation of
programs that will solve the general rather than a
zpacific problem.

While a very large selection of languages are
available, very few of these have found general

lity, speciall in lhe scientific and
engineering communities. Those considered included
Pascal, C, Ada, Simula and some even lesser known.
For micro-computers, Ada and Simula may be excluded,

15

the compiler for the former being so large that it
cannot be used, and for the latter generally
unavailable. ¢ is becoping a greatly favoured
language. It has an exceptionally fast execution
rate, compilers are available, and the language
produces very compact code. It is however a very low
level language, meaning that is closer to machine
code than languages such as BASIC or FORTRAN, and
many standard features available in other languages
have to be created by the user. Apparently debugging
€ programs is also no simple matter and the
paintainability of programs is low; the code being
complex.

2.3.2 Language choice.

it became evident that Pascal was becoming a much
favoured language for general applications. Compilers
are £freely available, and are not only fast, but
relatively cheap. Large amounts of application
software is available, making the creation of
programs to do graphics, mathematical manipulations,
or data capture quite simple. Pascal is further being
used as a language to teach programming to student
engineers at some universities, making the future
acceptability of the language mora certain.

Pascal has all of the features inherent to FORTRAN as
standard, with all the qualities of the newer algel
family languages. Its applicability to the
requirements of this simulator became evident when
some of the features not found in FORTRAN were
considered in detail:

e A e e h . ow

~,

20

Data structures.

Pascal encourages the use of data structures that
suit the problem. It is for this reason that the plex
data structure is so convenient to use, as any entity
that can be described by a combination of distinctly
different pieces of information wmay stiil be
allocated a single data structure, thiz in turn
consisting of the predefined combinationse of
descriptive information. Pascal further allows the
definition of any suitable data type for the problem,
which once defined becomes part of the structures
inherent to the Jlanguage. These structures may
consist of types of variables, or ranges of values
that any variable may take on, checking being
performed during execution for out-of-bound vaiues.
Other inherent data types include sets, =atrings,
arrays and arrays of arrays, or matrices. These
inherent structures and the addition of defined
structures make the generation of error-free code
easier, and the maintaining of such code much
simpler.

Dynamic storage allocation.

This feature allows problems of any size to be
executed by one single program. If one section of a
program grows, the memory reguired for that section
may be allocated, while the remaining sections remain
constant. This means that the maximum problem size
need not be predefined, and that problems consisting
of greatly variable dimensions may be effectively
solved. This is ally the impl ion of the
plex described by Evans, Joseph and Seider (1977).

t

Structured programming.

The control structures of Pascal include all those
contained in the newer FORTRAN versions, but are more
convenient to use by the definition of blocks of
code, started with a BEGIN and terminated with an END

21 B

statement, the block then being treated as a single
statement. This makes the structuring of programs
much simpler, and the uszage of the GOTO statement is

!

L

5
practically eliminated. f; B

f .
Recursive subroutines.
The use of recursive p es, Or pr that L
are allowed to call themselves f£rom within the = B
procedure, make many algorithms much simpler to ba -

implement. This construct is illegal in FORTRAN, and A
often leads to bulky and inefficient code where a
recursive routine could be used. This is especially
true of graph <theoretical applications where depth
first searches are used, as is in simulation.

Language definition,
One final point should be mentioned. Pascal is a very
well-defined language, with a clearly defined
standard. This means that if programs are written
that do pot make use of any extensions to the 3
language, the programs should be transportable. The bl
compllers avaiiable for microcomputers are readily 2l
{
H
¢

available for many types of machines, and hence if a
well-known compiler is used as standard,
transportability from one PC to another becomes a ki
minor problem.

Conclusion.
Pascal appears to have all the characteristics 4
required of a language used for large system
development, and was used for the complete simulator.
This is not to say that the problem could not have
been solved wusing another language, such as FORTRAN,
but that the convenience of creating the code, and
the maintainability of the final product required a
more advanced language. The data structures developed
in any large program are a function of the language

i il o .) L R ;Qmﬂt. &

22

used, and by using Pascal, it is felt that problems
may be sclved in terms of thelr inherent structure,
rather than having to be transformed into a rigid
data structure definition., More time could therefore
be allocated to designing good algorithms and code,
rather than on ways to make the data conform to the
language and manipulating these rigid data
structures.

2.4 The Stream Descriptive Data Structure

2.4.1 Introduction

The representation of the complex, multiphase
material flowing between process units in a general
way has been one of the great problems of simulator
design. Only the ASPEN chemical process simulator has
solved the problem adequately at present. Their
design of process streams has been extended by
Ritchie {1984} to include minerals processing
streams. Britt (1980) describes the ASFEN multiphase
stream structure in great detail. He baseg the ASPEN
structure on the requirements set by Evans and Seider
(1976} .

Britt remarks that "in general it may be stated that
any portion of a stream that is to be treated in a
special wanner by unit operation blocks need to be
carried separately from the rest of the stream. These
separate portions of a stream are called
"substreams"”. Streams may therefore be subdivided
into substressts, each representing a portion of the
stream that is to be treated diffently by unit
operation models.

4

i

... A . S -k &_4_.44_;&&“_5

23

ASPEN recognises two types of stream components,

"conventional” and ‘“nonconventional". Conventional
components {in the chemical sehse) represent pure
or 2 d d; that may be

characterised by standard properties such as
molecular weight, critical pressure and ideal gas 5
heat capacity coefficients. e

ional ts, such as coal, ash, slag o
wood pulp and, by extension, most ores, cannot have
their thermodynamic properties caleculated by
conventional methods ,such as equations of state.

No! ional are instead sharacterised
by vectors of data representing the physical B
properties of the components. These physical

attributes, as state variables, are carried as stream
data, since they may change from stream to stream.
ASPEN considers mixtures of nonconventional
components as all being of a single phase.

e S

ASPEN further allows ths use of three substream
types, MIXED, NC and CISOLID. A MIXED substream
represents the flow of any number of phases in
equilibrium. NC are " ional";
they are considered inert with respect to equilibrium
calculations but enter into energy balance relations. y P
The QISOLID substream represents the flow of)

onal” that are considered inert
with respect to phase equilibrium calculations, but
not chemical equilibrium calculations.

It is clear that most substreams used for the
T calculation of wmetallurgical operations will f£all
f into the nonconventional class, due to the presence
I . of solids and dissolved species. The concept of
: substreams is however very elegant for the »
representation of complex process ' streams, and was

ale NMM TSV . - - e

- L/
el
24
used for the present simulator, Substreans
representing separable phases rather than
nal, ional and equilibrium

condition were used.

Thus any hydrometallurgical process stream may be
described as the combination of a set of substreams,
each of these =substreams representing a seperablie
_phase, for example solids, carbon, lixiviants or an
organic phase. By describing the information
pertinant to a specific substream type as a record,
substreams wmay be combined to describe any process
streas in general.

The substream descriptive structure can broadly be
described as follows:

Each stream type that exists has a pointer type
unique to it. A giream cen be of any type When
created; each stream having a record containing all
possible sBtream peointer types. Once the storage and
descriptive requirements, effectively the type, of
the stream are known, that pointer that describes the
stream type is initialised, bringing into existance
all the required memory associated with the stream.
The remaining pointers are not used. The efficiency
and ease of manipulation of this pointer description
far outwelghs thea memory wasted by having all
possible stream type pointers available. The memory
used for the description of a single pointer variable
is small; oniy four bytes are used.

Congider a strean containing solids and some
lixiviant, such as the product from a leach tank.
once the stream has been created for a simulation, it
can take on many possible types. To fix the stream
type, only the solid-lixiviant stream type pointer is
initialiged. The initialisation of this pointer

i N AJHiEEiL dlirtomr,

25

brings into existance the memory required to describe
the solid and 1lixiviant substreams of the complete
strean. Had the stream however contained only solid
material, such as the feed to a crusher, the stream
typa would have been of type unmixed. A& further
parameter would indicate that the specific unmixed
substream type i& solid, and only that memory is
brought into existance.

As streanm data storage space can be allocated
dynamically, the definition of possible stream types
does not actually affect the memory allocation in the
computer. Only when these types are required is their
memory allocated, and then only as much as is
required for the specific stream type requiraed.

The overall data structure that resulted from this
study was produced by an evelutionary process. The
final structure is considered optimal in that it
allows the generalization of procedures that operate
oh the same substreams of different stream types.
Single substream records can therefore be accessed
and processed by a single procedure, rather than
procedures having to be written to accommodate each
possible stream type in the system. This clearly
simplifies the writing of models to describe unit
operations.

2,.4.2 The stream types

In order to uniquely' characterise a process Stream
copsisting of separable substreams, two parameters
are required. The first describes which combination
of subatreams the stream consists of, and the second,
only applicable in the case of unmixed streams (or
streams cons: ing of only one descriptive recerd),
to describe the type of this single record. The

i
|
|

26

example mentioned earlier 1llustrates this
regquirement.

The simulator can accomodate any number of substream
types, and their combination inte complete stream
descriptions. The simulator at present accomodates
both solid and lixiviant substreams as well as the
combination of these substreams to form a
solid-lixiviant stream. This structure further allows
the definition of pure liquids gmuch as water by
considering them as lixiviants containing no
dissolved species. A carbon substream has been
designed and implemented for the simulation of carbon
in pulp systems by other workers involved in the
modelling of these systems (Stange, 1985). Subsireams
can only effectively be designed by those that are
required to use them for their models - the
requirements of maintainability and versatility of
the data structures thus being of paramount
importance.

2.4.3 The solid substream.

As previcusly mentioned, the description of the
solids phase requires a far larger amount of data to
be stored than lixiviant substreams. The solid
substream descriptive record therefore had to be
designed to optimally utilise storage, and not to
descibe the wmaximum possible problem. The actual
description of the solid phase is however quite
simple, requiring onl& the tonnage in the substream,
and then data to descibe the fractions of the tonnage
in all possible classes required to characterise the
solid. In ore-dressing simulators, these classes
generally are combinations of three characteristics,
being size fractions, a grade description and cne
other property; flotability and magnetic

o B ,ximﬁiAuMAM PRSI .3 P

26

example mentioned earlier illustrates this
requirement.

The saimulator can accomodate any number of substream
types, and their combination into conmplete stream
descriptions. The simulator at present accomodates
voth solid and lixiviant substreams as well as the
combination of these substreams to form a
solid-lixiviant stream. This structure further allows
the definition of pure liquids sBuch as water by
considering them as lixiviants containing no
dissolved spacies. A carbon substream has been
designed and implemented for the simulation of carbon
in pulp systems by other workers involved in the
modelling of these systems (Stange, 1985). Substreams
can only effectively be designed by those that are
required to use them for their models -~ the
requirements of maintainability and versatility of
the data structures thus being of paramount
importance.

2.4.3 The solid substream.

As previously mentioned, the description of the
solids phase requires a far larger amount of data to
be stored than lixiviant substreams. The solid
substream descriptive vrecord therefore had to be
designed tc¢ optimally utilise storage, and not to
degcibe the maximum possible problem. The actual
description of the‘ solid phase is however quite
simple, requiring onl& the tonnage in the substreanm,
and then data to descibe the fractions of the tonnage
in all possible classes required to characterise the
solid. In ore~dressing simulators, these classes
generally are combinations of three characteristics,
being size fractions, a grade description and one
other property; flotability and magnetic

N .Jzﬁﬂi provwn atdee o R w2 - W

-

2

27
susceptibility being the most common. In the P
description of hydrometallurgical processes, other o ?

characteristics may be raguired, such as shape, »
poroaity and surface quality. A large amount of data B .
may thus possibly be required to bs stored. This in ¢ |
turn requires a data structure with practically no
limits. Iin order te do this, a flexible data
awructure must be used, that structure allowing the
storage capacity to expsnd or decrease as required, -
without deliterious effect to the rest of the i ®
simulator. ! N

The flexibility required is achieved in the following
way:

Rather than defining a static matrix as the)
descriptive part of the solids record, an array of i
pointers is staticly defined. Each of these pointers
can be activated to point to an array of fixed size,
As the total number of classes required to describe

the solid substream is knoun before the calculation
phase is entered, the exact number of pointers |
required may be activated. Thus the data structure B
takes on the form of a practically unlimited array, . : E
values being stored in contigucus locations. The data f
structure for the solid substream is shown
schematically in Figure 2.1.

Y

Lome wastage of space must obviocusly be incurred when N
the array pointed to by the last of the initialised :
pointers is not filled, however this wastage is
negligable compared to situations where static memory
is wused. The larger the array to which each pointer
points, the fewer the number of pointers that need be i
statlcally defined, and the smaller the amount of
static storage wasted. In contrast, the amount of
allocated array space that is unused grows as the
arrays get larger.

3 8

SN el e T

Ty

{

.

TONNAGE

DDD D 4RRAY OF PDINTERS

UNUSED POINTERS

HAXINUK YASTED STORAGE

FIGURE 2.1
SCHEMATIC OF SOLID SUBSTREAN

’

i

i E N e

i

1
i

N ...\%M RTT N. RN ALAA‘A__X’L‘L;“

29

The maximum number of variables that may be stored is
therefore the product of the number of sgtatic

f peinters available and the length of each array of
& § storage that it may be initialised to access. The
o f actual dimensions of the classes used to characterise

? the solids are therefore immaterial, s¢ long as the
total number of variables may be accomouated. Should
the maximum number of storage positions be inadequate o=
at any stage, the number of variables that may be
accomodated can be increased guite =imply by
increasing either the length of each dynamic array, 1
or increasing the " numier of pointers that are i
available to be initialiswd. The limit on the total g

number of variables possitie is only the limit that
is set by the memory available to the user on the
particular computer being used.

The accessing and storing of values in this array
structure clearly requires the calculation of the {
positions of both the pointer and the specific

position in the array it points to. To reduce the
knowledge of the data structure required of users,
functions were written that will perform the
replacing and accessing of values from this data

structure if the coordinates of the class, if
considered as being part of a static matrix, are
knoun. This makes the data structure almost
transparent. These functions give the user the

impression that he is dealing with a five dimeiisional i
matrix rather than a set of contiguous arravs (See !
also Section 2.6.2.2}. Five dimensions are considered H

adequate for the description of any
hydrometallurgical simulation, the use of all these 0
dimensions in any one model requiring the solution of
a sixth order partial differential equation

{Sepulveda and Herbst, 1984). Should more dimensions

ﬂﬁ-‘ [S N

a0

however be required to be described, the user may
access all variables without the benefit of the
utility routine, thus having an umlinited number of
dimensions at his disposal. Th= maintaining of the
veriables in the data structure in such a cage
becomes the responsibility of the user.

The solids record is most comprehensively designed,
and may be considered as a model for the design of
other substream types, especially those that may
require the storage of Jlarge amounts of data. In
cases where less data is required to be stored,
static storage may be used instead, the loss in
efficient usage of memory space being made up for in
ease of use.

2.4.4 The complete stream structure

Having described a general substream record, we are
now in a position to combine substreams into complete
process stream descriptions. This is done by defining
records of pointers to the respective substream
types. These records consist of as many pointers as
e require substreams. All permutations of
combinations of substreams into complete streams may
be defined as stream type records. In order therefore
to create a stream, or rather the memory to store the
description of that stream, we simply nead to
initialize the record of pointers that constitutes
the combipation of substreams that describe the
particular stream.

Each stream further requires a descriptive record to
indicate its reference number, its source and
destination units, and the type of stream it
represents, This data may be stored in a general
descriptive array, applicable to all streams. This

31

general array also includes. information as to the
exact nature of the data the stream stores, such as
the number of descriptive dimensions, and the number
of classes in each dimension. This makes it possible
for different streams to have different descriptive
< records, even 1if they are of the same type; for i
example, the solid substream of & Stream preceding a i
crusher may only require a single size class in the P

& size dimension, while the product may require a e
larger number of size classes to adequately represent 3
the material. In general though, all streams in the
o) cireuit containing a certain substream type will have
. the same descriptive dimensions for that substream.

[
N %— Finally, thera must be no limit on the number of g
~ ~£ streams in a circuit, This can be done by defining a o
& 'large’ number of static pointers, each one able to P
o point to a stream descriptive record. When a stream gy
-1 is required, we initialize a pointer to create the
| storage space for that stream. For sequential modular
b i simulation, the only satreams required to be prusent
3! at any point in the calculation phase is the feed and
; product streams of the unit being gimulated, as well
L as the system feed and product streams and the tear
- ! stresms in the circuit. This allows a substantial

reduction in the storage requirements of any
simylation, but results in an increase in the
simulation time, as stream data storage space has to
be allocated and disposed before any unit can be ’
calculated. The largest time overhead however occurs 4
during the output phase, where permanent storage and { E
access is required on some form of disk should all

the stream data not be avallable simultanecusly. L
Floppy disks generally have a 320 kb storage
capacity, while most PC's have 2 640 kb memory
capability. This memory allows at least 200 complex
process streams to be kept in memory simultaneously. -

e s

(

e e

-

32

It is therefore considered unlikely that a problem
exeeding this size will be solved as a single
simulation.

The present system therefore does not allocate and
dispose stream data during the calculation phase, but
keeps all stream data available in memory to
facilitate better interactive data output. Should
this at any time result on a limit on the realistic
maximum problem size, this way be changed to a
allocate and dispose system without any major
reprogramuing. .
Consider now the complete data structure to describe
stream data: (Flgure 2.2)

An array of pointers to stream dats atructures
exists. When it is required to store data pertaining
to stream n, pointer n is dipitialised. The
ipitialisation of this pointer resulits in the memory
for the first level of description of the stream to
be allocated. This first level of description
consists of the following:

1. The flowsheet identity number of the stresm.

2. A complete descriptive identity array. This array
describes the stream type, the size of its class
structures and its source and destination units.

3. A pointer to a next level of descriptive records.
A choice of pointers exists at this level - only one
pointer is initlalised, that one pointing to the
record having the combination of substream pointers
required to mimic the true stream to be described.
This poin.er clearly forms the basis of the streanm
type, as discussed in Section 2.4.1.°

AR/ SO TS WP

L

1

8 i e Mﬂm.u%m

e

kY

DDD[]D . D STATIC ARRAT OF FOIWTERS

FIRST LEVEL
DESCRIPTIVE
RECORD.

SECOND LEVEL
DESCRIPTIVE
RECORD

THIRD LEVEL
DESCRIPTIVE
RECORD

POSITLON n

e TRNTITY NUMUER
l D STATIC TDENTITY ARRAY
e CEXPADABLE. F RESUIRED)
CHULCE UF STREAN TYPE POINTERS
10-LINIVIANT AT PRESENTS
RECORD OF SUBETREAM POINTERS 1
i
i
4
1
o ki
SuBRTREAN SURETNESH I
i
¢
FIGURE 2.2 !
SCHEMATIC REPRESENTATION §
OF & SOLID-LIXIVIANY STREAM |

v ot i, as B B . & W k)_&‘_nm

34

The vrecord on the second lavel of description
consists of as many pointers as there are substreams
in the stream. These pointers in turn point to the
actual data structures required for the stream. These
pointers also have to be initialised to create the
required memory space from the heap. Note that on
this level pointers to records rather than the
records themselves are used. This is primarily for
the sake of the unmixed stream descriptive record, as
some Pascal compilers- insist on allocating the memory
required for the largest of the possible choices of a
varisnt record. By using the records themselves, the
memory for the largest of the records would have been
allocated, by using the pointers, no wastage is
incusrred.

This second level of description thus points to the
actual substream records earlier discussed.

Although it may appear that an unnecegsary level of
deseription is included in the data structure in that
the second level substream pointers (Figure 2.2)
could have been directly available in the first
descriptive level in the place of the stream type
peinters, no ambiguity in the description of a stream
is possible, and the maintainability of the structure
is increased. New record types may be included at any
of these descriptive levels to describe new stream
types.

It should thus be clear that new stream types can be
created in tweo ways, firstly by designing a peinter
to a new combination of existing substream types or
by designing a substream that has not existed before
and combining it with other substreame to form a new
stream type with a pointer to it.

35

2.5 The Unit Operation Structure
2.5.1 Introduction

The data structure required to store the unit model
types, and the data pertaining to a specific ynit in
the circuilt are very similar in concept to those of
the streams. Once again a large array of pointers are
allocated, the position of each pointer in the array
corresponding to a unit reference number in the
circuit. Associated with each pointer is the unit
model type to which each unit in the cirecuit refers.
Note that these are simply the unit types
represented, not the actual mnodel that 18 referred
to. Each unit type can, of course have pore than one
model associated with it, and the reference code of
the actual unit model that is required to be used is
passed as a parameter to the unit type routines. Thisz
may be seen as a two-layered calling program, firstly
the unit type that was indicated in the circuit is
called, this routine in turn making the chofce
between the possible models that can be used for the
sinulation of this unit operation,

2.5.2 The unit data structure

The record that is reguired to be transferred to the
unit model simulation procedure, is accessed by a
pointer. This record containg, further to the
reference code of the specific model to be accessed,
a 1list of the number of input streams to the unit and
their reference numbers, as well as the number of
output streams and their reference numbers. Further
the number of parameters required for the unit model
and these parameters can be accessed. Figure 2.3
represents this data structure schematically,

[PRI SE N 5

s

=

o

Ry e]

PostTION n

STATIC ARRAY (I X ID l:l INTEGER UNIT TYPE
OF LT RECORDS D D PDINTER TO UNIT DATR

UNIT DATA 2 :
HODEL REFERENGE NUNBER
DDDD FEED @ND PRODUST STREAHS (
DDDD D UNIT PARAHETERS : ‘
o
4
¢
:
FIGURE 2.3
UNIT OPERATION DATA STRUCTURE |
UNIT n IS OF TYPE X USING MODEL Y ;
§ '
i
{
;.

a7

Note that an array of simple pointers were not
allocated, but rather an array of records, each
record containing both a pointer and an integer
reference code to the unit type. This reference code
indicates the unit type that 1s to be simulated, for
example a leach tank. This reference code is required
to be available outside of the descriptive record, so
that, knowing the unit reference number in the
circuit and considering that position in the array of
records of unit data, the unit type is immediately
available. Thus the pointer to the remainder of the
data of that particular unit operation type may be
passed directly to the simulating prouedure. The
storage space wasted by the allocation of these unit
type reference code integers is small, and is
required for the effective calling of the calculation
sequence.

2.6 Data Structure Usage.

2.6.1 Introduction

A certain amount of familiarity with the stream data
structure 1is required for the writing of unit models.
As <he unit models for hydrometallurgy are not very
well eptablighed, and the data required to bhe
transferred from unit to unit is not yet known, the
update of the data structures describing substreams
must also be considered. Tc assist the user in
writing unit models, utility procedures have been
created that reduces ‘the tedium of accessing data and
updating records of unit data. The utility routines
pertaining to the accessing of the solid substreanm
are described with specific reference to Figure 2.4.

S

3

!
i
i
:
|
|
{

Note that the symbol "*" used to descibe the usage is
Pascal for “"pointing to” and is indicated
diagramatically in Figure 2.4 as an arrow,

It should be clear that the exact equivalents of
these utility routines may be written for any other
substream type. It is recommended that 1f a new
substream type is created, the equivalent routines
fnr that substream should be written, so as to
nimise the difficulties that may arise when
accesging the variables of the record describing the
substream. T

R

=y

2.6.2 Utility routines

2.6.2.1 Solidselect.

The accessing of a partirular record of a substream
is the basis of any unit model. Consider again the
data for the solid phase, and assume that we wish to
accesz the tonnage in a particular process streaum.
et the stream number be n. The value may be changed
with:

ISR PO

str(.n,)* . unnix* . solids* . tonnage := whatever ;

in the case of a stream consisting only of solids i
{i.e. UNMIXed) and . i
i

str(.n.}".solix*.solids* . tonnage whatever

in the case of a SOLid-LIXiviant combination stream.
Note that the generic use

: i
str{.n.)".solids".tonnage, or even str{.n.)}*.tonnage {
i

-5 | R W Y o N |,

T

¥ o

STR™

L.

“STR*

L1

LA L

A

#SOL1IX™ QR "UNNIXER® POINTERS

2y
+
i
SUBSTREAN POINTERS é

A SOLIDS™ “LIXIV
Pt
N I
2
v ¢ SOLIOS™
*TONNAGE"

ii,,[]

P ——
a1 —

LIXIVA <

D LIIVIANT SUBSTREAN

SOLID SUBSTREAH

FIGURE 2.4

SCHEMATIC OF DATA STRUCTURES
SHOWING POINTER NAMES

JOT . A . U LR Ml oo T

49

is not allowed, even if no chance of ambiguity
exists. In order to ease this accessing, a function
called SOLIDSELECT was written. This function will
return the value of the pointer to the lowest level
of description. Thus we may use

tempptr := solidselect{str{.n.}) :

and from then on simply:
tempptr”.tonnage := whatever ;
¥ Where different tonnages of different streams have to

P be accessed, more than one temporary Ppointer can
S clearly be allocated.

N ° The standard Pascal functien 'WITH' may also be used:

P > R WITH &tr{.n.)*.unmix”.solids* DO
&
| BEGIN ~ WITH }

tonnage := whatever ;

other lines to manipulate the solids record }

END; 7 WITH }

- H The nesting of WITH statements is not allowed, and
* o the allocation of temporary pointers will, in most
cases, be easler to use.

3 3 2.6.2.2 Solidvalue. . {
The data structure to store the different fractions
of the tonnage in each of the possible descriptive Q
y classes is not simple to use if each fraction is ta
be accessed individually, rather than all the

41

fractions in turn. The use of this structure is
simplified by the function SOLIDVALUE, which makes
the long rows of adjacent arrays take on the
appearance of a five dimensional matrix. This further
makes the translation of existing FORTRAN subroutines
inte Pascal much simpler. The fupnction is used in
conjunction with the procedure SOLIDSELECT previously
. ' described.

If the numerical value of each of the classes in the)
] solid description 4is known, the fraction may be f -
| accessed as follows: i

tempptr := solidselect(str(.n.}) ;

fraction

. i
solidvalue(5, 1, 3, 1, 1, tempptr); i
~ fraction may now be used, and updated } i
"FRACTION' will contain the fraction in the fifth
gize class, the first grade class and the third
flotability class. Note that the last two classes
need not exist, but then have to be specified as
unity.

To replace the updated value of the fraction in the
stream record, an egquivalent function called SOLIDPUT
exists.

2.6.2.3 Mix and split. -
o Procedures to mix and clear racords of streams or the 1
complete streams have also been written. Thus to copy
one record into another, the record is first cleared i

of its original value, and then mixed with the record

that it must equal. This makes the writing of some
unit operation models extremely simple; for example k
the sgolild product substreams of a splitter are simply

_—

exle 33

i

42

copies of the feed stream, with only the tonnages
corrected. The fractions in each of the classes must
obviously remain the same.

2.7 Conclusion.

The data structures required for the description of
the general process stream and the accessing of the
variables associated therewith can be done in a
general and extendable way. The concept of a
substream to describe sections of a process stream
required to be treated differently from other
sections of the stream simplifies the creation of
general unit operation models. The data structure
designed can accoﬁodate all the requirements of an
advanced process simulator stream.

PR AP

P NN A A W - L;AAE&J

CHAPTER 3 : STREAM TYPE CHARACTERISATION.

3.1 Introduction.

once the data structures to describe the general
hydrometaliiurgical process stream have been designed,
their implementation and use must be considered. The
fact that the data structures can adequately describe
the process streams and that they can be maintained, :
does not guarantee their success when simulating a ?

|

¢ gt

LR —

: process.

The allocation of the correct stream type, consisting
of the correct combination of substreams to

accurately describe the process stream, is required
for each stream in the process. A stream may be
allacated teo few, too many or exactly the correct
subztreams to mimic the true stream.

,‘__W-VA...W,de:

In terms of simulation, the case where too few
substyreams are allocated to the simulated process
stream, {this including the situation where
substreams of incorrect types are allocated and/or
not enough substreams that are of the correct type
are allocated) the simulation must obviously fail, as
the unit operation modeie will be unable to store the

information produced in any memory space. This may be ;
seen as the equivalent of having the pipes in a
process plant not matching the unit operations, e.g.
a conveyor belt to transport a liquid stream. The
underspecification of the substreams of an simulated
process stream cannot be tolerated.

e g

is
1%
i
k]

The correct allocation of all substreams in all
process streams in the flowsheet is, of course, the
ideal situation. It is not always possible to predict
'a priori' what the proces~ substream requirements
shall be, as these are often 'nit model, rather than
unit operation dependent. As an example, a filter
model may or may not require a solid subatream
description in both its product streams, depending on
the accuracy of the model enployed. The situation
where substream types have to be reallocated every
time any changes are made to a flowsheet or any unit T o
operation within the flowsheet is to be avoided if

LS

possible.

i

o
. 4 y

i
The overspecification of substreams for any process 4
stream, where the correct substreams are allocated
plus some substream(s) not required, is also
undesirable. As will be shown, this situation may
lead to problems with convergence and Will certainly
result in the wastage of computer memory. It is
however much preferred to the underspecification of
substreams, as the simulation may proceed and valid
results can be obtained. Unit nodels will, in
general, lgnore excess substreams and only operate on
those substreams required.

In order to choose a suitable method of stream type ©
allocation, the effects of overspecification of
substreams, both on the memory requirements and the
convergence properties of the simulator, must be
considered.

2.2 Stream Types and Computer Memory.

The overspecification of the substreams required for
any process stream must obviously influence the
nemory reguirements of the system. Consider the d

_— N AR S Y

45

flowsheet shown in Figure 3.1, with the "correct"
gtream types indicated on the flowsheet. Correct in
this case means that for the unit models chosen to
simulate the process, in each stream only the
required subatreams have been allocated.

There are two areas of concern in this flousheet.
Should %he medel for the filteru be be substituted
with a different model, this new model allowing the
description of misplaced solids in the clear liquor,
a solid pubstream nust be allocated for both filter
product streams.

The second problem occurs in the ...vent extraction
section, where an organic phase enterr the circuit.
No solid nor lixiviant phase substreams are required
between the extraction and stripping units. The
organic phase substream only occurs between these two
unit operations. If memory is therefore allocated for
all substreams relevant to -the ecircuit to all the
streams in the circuit, in this case solid, lixiviant
and organic substreams, this could result in large
memory wastage.

Congider the substreams that are relevant to
hydrometallurgy, primarily being solids, carbon,
lixiviant and organic phases. It can be noted that
the solid phase presents the largest number of
varisbles to be described, due to the heterogenaous
nature of the population. While comparisons of the
number of variables dépend on the exact problem under i 4
!

consideration, an order of magnitude difference ‘
betwsen the number of variables in solid substreams N
and lixiviant, carbon and organic substreams can be “ !
expected, It is thus generally the unnecessary 3

allocation of solid mubstreams that will lead to the
greatest storage waste.

~ . / .
- H
b CALCIRE
. csoLIDY
-
e
CLIXIVIANTS
soL1p-LIXIVIANT
;

< ! FILTER . !
: LEXIYIANY {fﬂLlP-Ll)ﬂvlhl" R
S i
F B i? ORGANIC ‘
- +
=] &
H o
i SOLVEX
% i
i ORGANIC |
i
ANMONTR = o LIXIVIaNT]
tLTvTvIaRTY| [RECIP e 1.

SOLID-LIXIVIANT

LIXIVIANT

FILTER

“tsorind

FIGURE 3.1
TYPICAL URANIUM FLOWSHEET

ool . e e

=

47

The allocation of a solid substream to every stream
in PFigure 3.1 will result in a minimum of four excess
substreams, if the acid and ammonia system feeds are
considered over and above the organic phase. Should
the filters not produce solide in the clear liguor
output stream, another =six streams affected by the
filters are unnecessarily assigned solid substreams.
Thus from a total of 16 streams, only 6 must contain
a solid substream, resulting in a 62% wastage of
storage for this particular flousheet, and
considering only the solid phase. Should the filters
require solids in all ‘their product streams, the
wastage is reduced to 25%.

It 1is therefore clear that stream type allocation has
a large effect on the memory requirements of a
simulation. while computer memory is relatively
cheap, aud the addressable memory of micro-computers
is increasing by orders of magnitude, the unnecessary
allocation of dynamic memory space for substreams
that are not required is not desirable, as the
elegance and maintainabilty of the simulator as a
whole is reduced.

3.3 Stream Types and Convergence.

A more subtle effect of the substreams allccated to
each process stream occurs in the calculation and
convergence phase of the simulation. This effect is
due to the characteristics of a general simulator;
all fields of all correctly allocated substreams of a
torn process stream must be initialised before the
sinulation can continue, and & unit model is only
required to update those substreams of its output
streams that are affected by the operation of the
unit - it cannot be expected of each unit medel to

48

check whether unnecessary substreams have bean
allocated to its output streams and to update them
accordingly. This is best illustrated with reference
to the simple, hypothetical flowsheet in Figure 3.2.

Assume that all the process streams in Figure 3.2 are
tsken to be a mixture of of solids and lixiviants and
further that the filter model does not allow any
solids to escape in th2 clear liquor, i.e. the model
assumes that only a lixiviant substream has been
allocated to stream number 3. Let stream 3 be the
torn stream.

The simulation calculations will now proceed as
follows: '
1. All fields of both the solid and lixiviant
substreams of stream 3 ase given an initial value
for the simulation to proceed, even though only
the lixiviant substream is required. (Assume for
the moment that these are not all zero's.)

2. Since stream 3 is a tear stream, these initial
valuee are duplicated in tear stream records for
comparison, to determine whether convergence hag
been achieved.

3. The assumed values of stream 3 are used to
calculate unit 1. The unit model ignores the
excess sSubstream of the feed.

4. The results of unit 1 are used to calculate
unit 2, Note -that unit 2 only updates the
lixiviant substream of stream 3.

5. A convergence check is performed. When the
sclid substream of stream 3 is compared to the
solid substream of the tear stream, it appears to

o P 3 i S

‘X
1
ii P
: #
Ry
S
o
S
}?\ /; 31 LIXIVIANT ONLY « NO SOLIDS' i
.
: SOLID- Y1 LEACH moiprrawivian o] 2t FILTER —gaie?
LIXIVIANT LEXIVIANT
; i
B i
!
FIGURE 3.2 !
: HYPOTHETICAL PROCESS 'ﬂel
! '
R {
! |
“ E s
; i
|
|
: {
; i
k }
. !
; !
i
.

e R

- o B . b W B . am ey

52

have converged, since unit 2 did not change these
values.

6. If the lixiviant substream values have not

converged, the present value of stream 3 will

replace the values in the tear stream, and steps
3 to & repeated to conve:gence.

Once the calculations have been completed, the
averall mass balance of the flowsheet will be
correct. The mass balances around the individual unit
K operations will however be incorrect. This is due to

' the fact that the assumed data for the solid
N substiream allocated to gtream 3 is never removed nor
updated. Had the substream not been allocated at all
the results would of course have been correct.

A few options are available to remove this problem:
1. We may zero all fields of all substreams of
tear Btreams before we recalculate them, at each
iteration.
2. As for 1, however this is done only during the
first iteration.
3. We may initialise all tear stream to have
zero's in all fields of all substreams.

While the third option is by far the simplest to
implement, it places an unnecassary restriction on
‘ . the operation of the simulator, The first and second
options are very similar, the second requiring less
computer operations as the tear stresms are only
zeroed once, while the benefits of good
initialisation values remain. The second option will
however only work when a direct substitution
convergence method is uged; in wmore advanced
convergence accellerators such as Broyden's method
{Broyden, 1965), the effect of historic tear atreams

x> A e ok oL W _n ow. am Aoy

51

repain to predict the next values to be used, and the
torn streams must be zerced at each iteration step to
eliminate this effect. The first option i1s therefore
implemented to snsure that, regardiess of the
substreams allocated to the tear streams or the
convergence accelerator used, the results obtained
will not be degraded.

3.4 Stream Type Allacation.

Having noted the effects of incorrect stream type
allocation, a method must be implemented to allocate
to all streams in the circuit the required substreams
to mimic the true situation. Three possible methods
of gtream type allocatjon are available:

1. User specified stream types..

2. System types.

3. Computer allocated types.

3.4.1.User specified stream types.

The user in this case has to alliocate to each stream,
whether in tne circuit creation phase or by the
editing of a data file, a definite stream type
consistent with the requirements ¢l the circuit. He
must therefore be familiar with the operation of each
of the unit models, their inherent assumptions and
the types of recycle sireams. Unit models, in
general, are able to accommodate excess gubstream
data, however having an insufficient stream type for
calculation will lead to an error condition.

In the ASPEN simulator, each stream in the flowsheet
must be allocated a type by the user (Britt, 1984).
The simulator further makes use of "class changer”
units, to <change the type of a stream from one unit
to the next when a substream 1is required to be

I

RO Ay

52

removed, Mixers, in ASPEN, are the only unit
operation models able to handle different stream
types at the same time. Thus the circuit is divided
into Bections containing only a certain stream type
by the user, and the required "type changer" unite
installed to take care of these changes.

User specification of substr@ams is the lieast
reliable and most inefficient method of stream type
specification. Besides increasing the proficiency
required of a user to perform % simulation, it
further increases the lag time before results are
produced. Users may further rather overspecify data
structures, for fear of underspecification and
producing an situatjon impossible to simulate, thus
defeating the space'saving objective.

3.4.2. System types.

The allocation of a single definitive stream type to
the complete circuit being simulated, this type being
a combination of all the substreams being used in the
flowusheet, leads to the objections expressed earlier,
that certain sections of a circuit will be allocated
memory for the storage of stream data which does not
actually exiset in that part of the flowsheet. :

The use of system types is however extremely siuple,
and * since the excess memory it allocated dynamically,
should not have a detrimental effect on the
simulatien. The swmallest combination of substreanms
can alway* Dbe allocated, S0 that types not used at
all in the simulation will not be allocated to any
streams,

g 3

. s _a om

53

This method is further fast, and places little or no
strain on the user. In cases where the user is
dissatisfied with the system allocation, he nay
overwrite this default in the system data file. The
correct or overspecification of stream types to all
units ip guaranteed.

3.4.3. Computer allocated types.

The use of the computer to allocate the strzam types
is no simple matter, and has two major disadvantages.

Firstly, the allocation of stream types is done as a
separate part of the simulation, leading to & time
overhead. The determination is iterative and although
bound to a maximum of two iterations, 1leads to
requirements of large sections of code to perform
these determinations.

In the s=econd instance, this method requires that a
*r.»del” be written that will specify what stream
types will be produced by any unit 1f presented with
a specific feed type. This is time-consuming, and if
generality is to be maintained, lengthy. It must
further be noted that general unit type allocation
models are not adequate - for exagple models of
filters may or may not allow for solids to escape in
the filtrate, and the specific model type must be
used. Any scheme such as this further makes the
uriting of new models more of a daunting task, a
situation that should be avoided.

Note further that under this scheme, a unit model for
a specific saimulation may not ' be changed and the
calculation repeated without repeating the stream
type allocation section of the program as well. The
conputer allocation of streams allows the checking of

R e e —
i

54

strear types to units before the calculation phase to
determine whether any gross unit mismatches have been
done. Once again this must be coded in general,
difficult for users simply intent on writing a new
model .

The main advantage of the computer allocation of
streap types is the absolutely optimal usage of
computer memory, and the allocation of stream types
not visible as feeds to the system. As an example,
the organic phase in liquid-liquid extraction, which
is recycled internally, is not es.ily recognizable as
& separable phase that nust be allowed for only in
the internal streams of the flowsheet.

e RS S .

It 4is primarily the simulation of phase separation,
creation and destruction units {e.g. filters,
crystallisers and leach units respectively) that
makes tha characterisation of process streams by
automatic means very difficult, if generality is to
be maintained. £

3.4.4 The Cholce of Methods.

‘ Although the preceding sections described three
distinctly different methods of stream type
allocation, none individually meet the requirements |
completely. A combination of all three methods is H
; therefore implemented. Whenever possible, the
i simulator allocates a particular stream type to the |
circuit as a whole. In certain cases, where the 5
presence of an additiopal substream may be required {
for internal recirculation, such as carbon or organic j
substreams, units may contain additional code to ;
verify that the required substreams have been i
allocated, warning the user if this has not been :
done. In all instances, the user must be able to

override the substreams allocated by the system.

55

As an example, in the circuit illustrated in Figure
3.1, allocating a solid-lixiviant stream type to all
streams in the cirecuit will adequately solve the
problem, except in the solvent extraction section
where an organic phase is recirculated internally.
The unit operation calculation procedure should
therefore warn the user should the stresam type of
these streams not include an organic usubstream.
Should users feel that the allocation of a solid
substream to streams nolt containing this substream is
too wasteful, they may override this to a stream
v ntaining only & lixiviant substream.

In general, as the information required to describe
solids is so large, it is the unnecessary allocation
of solids storage space that Ieads to memory wastage.
As wsections of a flowsheet are often recognisable as
being with or withcut solids, and are not connected
by recycles, these sections may be simulated
separately, the products of the first simulation
being the feeds to the next. In cases where sections
are connected by recycles, the presence of solids is
generally obviocus.

in conclusion, the saving of program size and the
gains in the easme of updating wodels by users
themselves point in favour of the allocation of a
particular stream type to the complete circuit in
question. Should memory allocation be a problem, the
user may overurite the default stream types with the
appropriate types. When possible, the system ghould
verify that the stream type allocated will be
adequate for- the unit operation to be simulated.

e

56

CHAPTER 4 : PRECALCULATION ALGORITHMS

4.1 Introduction

In order to coordinate the simulation computations
for each of the process units, the specification of a
precedence-order in which each subroutine must be
computed is required. This involves breaking the
complete flowsheet into groups of units or sub-plants
which interact such that orly a forward flow of
information occcurs. This is referred to as
partitioning the system. These partitioned groups are
also referred to as iaximal cyclical nets, or if they
consist of groups of unit operations, as unit maximal
cyclical 1leops. ({(UMCL's). Ford (1976) showed that
partitioning a system so that each UMCL is solved
sequentiaily in the order of mass flow does not
degrade the convergence behaviour of the system even
though the problem size 1s considerably raduced.
Considering each UMCL in turn, the order of
calculation of each unit operation model within the
UMCL must be determined.

A feed stream to any unit process which is not known
the first time a unit operation is computed, is known
as a recycle stream. If recycles are present in a
UMCL, tearing is required. This invelves the opening
or "tearing" of streams such that all cycles in the
process are removed. Initial values for the variable.
present In tear streams are assumed and an iterative
scheme is employed to force the convergence of the
torn stream to within a specified tolerance.

= _Mm RTINS § * &

57

once all w«f the tear streams have been determined, a
caleulation order for all units in the UMCL may be
determined. This calculation path is then repeated
sequentially until convergence of all the %ear
variables has been achieved. It is this sequential
calculation of all the unit operations to convergence
that is dimplied by the term "sequential modular
simulator”.

4.2 Partitioning the flousheet.

Partitioning the flowsheet into cyclical nets or
UMCL's thac may be solved individually may be done by
performing a path-search. This is presently
considered to be - the nmost effective way of
partitioning (Evans, 1980). Path-searching requires a
sequential search of connections between units to be
done uatil no further common paths (or recycles) are
found, This group of units containing the common
connecting paths is known as a cyclical net or UMCL,
Path gearching algorithme operate on a graphical
representation of the f{lowsheet in which the units
are considered as nodes and the streams as vertices
of a directed graph.

The path-searching algorithm of Sargent and
Westerberg (19643 in the modified form as
independently redigcovered and presented by Tarjan
{1972) is very efficient and vobust. This algorithm
is used for partitioning in the ASPEN chemical
process simulator and is considered to be the best
currently available (Evans, 1980). - algorithm as
presented by Tarjan further operatss tecursively,
using a depth-first search of the directed graph. A
depth-first search uses the following rule: Whep
selecting an edge to traverse, always choose an edge
emanating from the vertex most recently reached which

e . A V. T

T e

T R e SR T

58

still has unexplored edges (Tarjan, 1972). This
recursive technidque makes the Pascal implementation
partic-ilarly simple and elegant. The Tarjan slgorithm
was implemented for use in the simulator.

The Tarjan algorithm operates in O(v,e) time, where v
iz the number of vertices and e the number of edges
in the graph. Two stacks are maintazined during the
search, one to store the current component. under
consideration, the other to keep track of points that
have been reached during a search but have not become
part of a current component. A current compenent
includes a vertex if the vertex is found to have heen
considered before and is connected to the current
component by another edge.

Once the units in each UMCL have been determined, the
stream included in that net are found by considering
the product streams of each unit in turn. Those
streams which are feeds to other units in the UMCL
are clearly included in the net and considered for
possible tearing as they form part of a cycle.
Product streams nhot feeding units included within the
present UMCL are not further considered.

For the determination of the calculation order of the
UMCL’8, the feed and product streams of the net ag a
whole are required. These are determined as an
extension of the procedure to determine the streams
included in each UMCL; thnse unit product streams not
forming part of this UMCL must clearly be products of
this UMCL, these product streams are further feeds to
the UMCL's that contain the units fed by these
streams. System feeds and products are left out of
congideration in all cases.

kb B &%M RPN " S

I

50

Once all the feeds and products of all UMCL's in the
system are known, the UMCL calculation order may be
determined. As system feeds and products are not
considered, the first UMCL calculable nust have
“zero" feeds, i.e. no feeds from other UMCL's. The
product streams from this UMCL may now be considered
knoun, and deleted from the feed stream lists of the
remaining UMCL's. As each successive UMCL is fourd,
the tear streams within that UMCL are determined and
the calculation order of each unit within the UMCL
calculated. This procedure is repeated until all the
UMCL's have been ordered.

P
3

Although the determination of the streams contalned
within any UMCL is based on the extensive searching A
of arrays of unit feed and product stream lists, the :
procedure is fast and reliable.

4.3 Tearing the flowshest.

In the iterative procedure to solve a UMCL consisting
of more than one unit operation, each unit must be
calculated once per iteration. All the inputs to a

unit muat be known before the outputs can be !
determined. If the UMCL contains recycles, as it must jk
if it consiste of more than a single unit operation, i)
it is necessary to zssume some input streams in order
to start the calcai.tion procedurg., These assumed
streams are termed "tear streams".

A wvalid decomposition 1is a set of tear streams that
opene all. cycles in c¢he UMCL at least once. A
redundant decomposition is a valid decomposition from
which at least one stream mnay be removed without
rendering the resulting decomposition invalid; a
nonredundant decomposition has no such atream.

&

60

once the process computation is started, the
particular unit ordering (or one of its cyclical
pernutations) repeats itself during successive
iterations. In any complex system of unit operations
there are possible permutations of the order in which
‘the unit operations can be calculated. These
permutations depend on the choice of the tear
stresms. As the order in which the unit operations
are calculated ultimately influence the convergence
characteriwtics of the gystem as a whole (Upadhye and
Grens, 1975), tear streams must be chosen that will
allow convergence in the least possible computer
time, wusing the least storage of information in
mEMOTY .

There is no difference, as far as convergence of the
process computations are concerned, between the
cyclic permutations of any unit ordering. Different
valid decompositions may therefore result in the same
convergence characteristics. Such different tear sets
leading to the same convergence are known as a family
of tear gets.

The question of an optimal tear set was investigated
by upadhye and Grens (1975), and it was shown that
thk: sonvergence rate of any flowsheet will be reduced
if a valid decomposition from a family of tear
streams other than the nonredundant family is chosen.
They further showed that in most cases, to choose the
best decomposition for direct substitution
convergence, it is or'y necessary to find the
nonredundant decompositici: family and to select any
convenient decomposition in that family.

Many algorithms exist t. :iund the nonredundant family
of wvalid tear sets, thesc velng based on elther exact
or probability methods. 'nile the latter method has

o A e ek R w &

61

been greatly favoured, it is not guaranteed to find a
solution, and in certain cases a "branch and bound"
section is required based on a bound trial and error
search for the optimel solution. An algorithm
implementing this procedure (Motard and Westerberg,
1981) was used in the ASPEN simulator (Evans, 1980}.
Other preobability algorithms include those of Pho and
Lapidus {1973) and Christensen and Rudd (1969). Ford
shows the former to be ineffective.

Of the exact methods, the algorithm of Upadhye and
Grens {1972) based on dynamic programming has been
used by #ODSIM (Ford, 1976). This algorithm is
particularly effective, and is guaranteed to find the
optimal solution ip all cases. In this algorithm,
streamns may further be weighted to allow the
selection of differant tear =ets from the
nonredundant family based on various criteria, such
ag the minimum number of stream variables that need
to be assumed (Ford, 1976).

The method of Upadhye and Grens does however suffer
major disadvantages. The algorithm sequentially
investigates a set of possible states, each state
representing the opening of a combination of all
cyecles inm the circuit. As the number of possible
states is 2" ~1, where n is the number of cycles in
the ec¢ircuit, and each state requires at least three
real storage positions (or 18 bytes of memory), this
results in huge space requirements. A more subtle
restriction 18 houever the largest number accurately
representable by any computer. Each state requires an
integer reference number to indicate its position in
an array of states. As 2"-1 is generally the largest
integer accurately representable by most small
computers, the algorithm is therefore restricted to
systems consisting of 16 or fewer cycles. Note that

oy A e e m W s _a

62

using negative integers to double the number of
states representable only increases the maximum
number cf cycles by one, with a corresponding
doubling of the required storage space.

In ore-dreseing simulation, circuits contalning mora
than six cycles in any complex node (UMCL) are rare,
while in hydrometallurgical simulation a five unit
sountercurrent circuit wmay have as many as forty
cycles, due to the multiple feed-product nature of
the unit operations. The exact method of Upadhye and
Grens is thererore not suitable for a general
simulator.

One other exact method which has often been rejected
from consideration due to its large combinatorial
problem is that of Lee and Rudd (1966). This
algorithm is based on the concept of "containment™ of
streams and pets of streams in other streams and sets
of streams. If one stream opens the same or some of
the cycles that any other stream opens, it is
included in the Jlatter, and may be eliminated from
further consideration. The same concept may be
applied to sets of streams and thelr inclusion in
other sets of streams. For systems with ﬁith large
numbars of streams, a large number of sets must be
tested for containment, resulting in severe
combinatorial problems. The use of FORTRAN for the
manipulation and creation of large numbers of sets
further complicates coding, and may have lent further
impetus to the development of alternative tearing
algorithms. .

Pascal allows the definition of the set as a data
type. The set opuwrations for addition, difference and
intersection further exist. The manipulation of sets
may therefore be done efficiently. The Lee and Rudd

i AR L e s ps - N

63

algorithm »nas hence further irveastigated and
subsequently modified to reduce the combinatorial
problem described. Thie modified algorithm finds the
smallest valid tear set that opens the minimum number
of cycles. In all cases tested, this modified
algorithm produced a tear set from the nonredundant
fanily of tear streams. The algorithm as implemznted
hag no bounds on the number of cjcles in any UMCL
that may be operated on.

For both the Upadhye and Grens and the Lee and Rudd
algorithms, as well as its meodified version, the
stream~cycle matrix is required. This is essentially
the list or set of c¢ycles that each siream in the
circuit is inclrded- in. The determination of the
stream-cycle matrix is discussed in section 4.4.

The modified Lee and Rudd algorithm as implemented
for the present simulator operates as follows:

1. 1Investigate each stream in the stream-cycle matrix
for containment; this being defined as one Stream
being included in a set of cycles smaller or equal to
the set of cycles that contains any other stream. If
contained, the stream is removed from further
consideration. This stage reduces the problem size,

2. If any cycle now contains only a single stream, it
iz a self-loop, and the stream must be a tesr stream.
If such a cycle exists, eliminate that cycle as well
as all other cycles that contain this tear stream
from further consideration. Return to step 1.

If npo streams or cycles may be further eliminated,
yet all cycles have not besen removed, proceed.

64

3. For each remasining cycle, a ncnvalid tear set
exists, being that set of streams not containing any
of the streams in the cycle. Clearly tearing only
this set will not open all the cycles in the nircuit.
Each possible combination of streams remaining can
now be tested for inclusion in the nonvalid tear set
of each remaining cycle. If included, it is itself a
nonvailid set, if not iacluded in any nonvalid tear
set, it is a valid tear set.

4. Combinations of the streams rvemain 2 as a
possible tear set are tested in increasing set size.
Once & valid set is found, all combinations of
remaining streams with the same set size are tested
to find that smallest tear set opening the fewest
number of cycles. This satisfies the Upadhye and
Grens criterion for determining a tear set from the
nonredundant family of tear sets.

This set of streams, combined with those tear streams
found during step 2, constitute the complete tear
set. In most simple cases, the complete tear set will
be found without having to proceed with steps 3 and
4.

The validity of this modified algorithm rests on one
assumption; that the redundant families of tear
streams Ehall not contain a valid tear set with fewer
tear streams than the smallest valid tear set from
the nonredundant family. This assumption is required
as the algorithm first determines the minimum size of
a valid tear set, then proceeds to find that valid
tear set opening the least number of cycles.

The requirement of this assumption is further evident
when the algorithm is compared with that of Upadhye
and Grens (1972}, in which any tear set from the
nonredundant family could be produced, the valid set

65

with the smallest number of torn streams being found
by the application of their "Replacement Rule” which
states that if all the ipput streams to any unit in
the process are included in a tear set, they may be
replaced with the output streams of that unit,
without affecting the validity of the decomposition
~r the direct substitution convergence properties.

The assumption mentioned' is only required for the
algorithm as implemented. It is of course possible to
search all possible sets of streams that can
constitute a valid tear set for the optimal solution,
this being very time-consuming. An upper-bound on the
size of the largest set of tear streams exists, this
being the number of cycles in the circuit divided by
the least number of c¢ycles opened by any stream in
the circuit. Should any doubt exist about the
validity of the tear set produced by the algoritnm as
implemented, this fail-safe search method may be
used, searching all possible tear sets having a size
smaller or equal to the possible maximum size.

A comment on the weighting of streams during the
tearing phase is required. In the Upadhye and Grens
(1972) algorithm, streams may be weighted such that
the nonredundant tear set found shall also contain
the wminimum number of stream variables (Ford, 1976),
in an attempt to reduce the number of variables that
need / to converge during the calculation phase. This
implies an & priori knowledge of the type of stream
under consideration, e.g. whether a stream contains
solids or not. As - discussed in section 3.3, three
methods for the allocation of stream types euist; an
overall type for the complete circuit, user specified
stream types for each individual stream and the
determination of the required stream types by an
initial simulation using pseudo-unit operations that

-t .Y A e & R - .

o Al e

e

56

determine the output stream type produced by any unit
operation given the feed stream types.

For. the first of these methods, as all streams shall
have &n equal number of variables, the set of tear
streams Pproduced will not be affected by the assigned
weights, while using the last method requires a set
of tear streams for the pseudo-simulation, the stream
types obtained being used to determine ‘he second
tear set, this being used for the true simulation
calculations. This method will not only increase the
program size considerably, but will reduce the
maintainability of the program. The unsuitability of
this method for the allocation of stream types was
discussed earlier (Séction 3.3}, the requirement of
two different tearing algorithms further proves the
peint. ©Only in the case whers “he user explicitly
defines the type of each sty ir. the circuit may
convergence be enhanced by ti :ing of streams
during the tearing procedure. As c¢ime required to
define the stream types may be substantial {and error
prone}, the resultant reduction in calculation time
may very wWell be lost.

The weighting of streams during the tearing phase
should therefore be restricted to those weights
required to produce the minimum number of tear
Streans from the nonredundant family. This only
requires knowledge of the number of cycles opened by
each stream in the circuit - a result knoun from the
stream-cycle matrix determined (Section 4.4).

4.4 Determination of the stream-cycle matrix.
In order to use either of the exact tearing

algorithms discussed previously, the stream-cycle
matrix 1is required. This is essentially a list of the

67

cycles in the flowsheet or UMCL, and the streams that
make up each cycle.

Mateti and Deo (1976) review all types of algorithms
for enumerating all the cycles of a directed graph or
flowsheet. From thelr comparative work, only those
algorithms based on a backtracking and path-searching
approach are polynomially time bound, while methods
using circuit vector space, the edge digraph and
powers of the adjacency matrix are exponential in

their enumeration time. An algorithm using
backtracking and path-searching was therefore
implemented.

Hacktrack algorithms "search for cycles in the super
set of all cycles and their eyclic permutations in
the flowsheet. The efficiency of the algorithms
depend on

1. The size of the super set,

2. The effort required to compute an element in the
super set of cgycles, and

3. A test to determine whether an element is indeed &
cycle. (Mateti and Deo, 1976}

The enumeration algorithm of Tarjan (1873) uses
improved pruning techniques to decrease the size of
the subset of possible oyclic paths considerably.
This algorithm operates recursively in a time bound
of O(n.e.c), where n is the number of vertices {(or
units), e the number of edges {(or streams} and ¢ the
number of cycles in the UMCL under investigation.
This algorithm was implemented for the enumeration of
the cycles in the flowsheet, primarily for its
elegance, robustness and simplicity.

68

Tarjan describes the algorithm as follows: “The point
stack used in the algorithm denctes the elementary
path p currently being considered; the elememtary
path has has start vertex s. Every vertex v on such a
path must patisfy v »= s. A vertex v becomes marked
,; when it 1lies on the current elementary path p. As

long as v lies on the current elementary path or it
is known that every path leading from v to = I
intersects p at a point other than s, v stays marked. -

For each vertex s, the algorithm generates elementary
paths which start at s and contain no vertex smaller
tjan s. COnce. a vertex v has been used on a path, it
can only be used to extend a new path whern it has
been deleted from the point stack and when it becomes
_7\ ‘ unmarked. A vertex v becomes unmarked when it may lie
on a simple circuit which is an extension of the
current elementary path. Whenever the last vertex on

S an elememtary path is adjacent to the start vertox s,
o the elementary path corresponds to an elementary
circuit which is enumerated."

Other algorithme pased on backtracking that are
theoretically faster than the Tarjan algoritham, being
time bound to O({n+e)c), include those of Johnson
o {1975) and Tarjan and Reid (1976). These algorithms
: were not used as the increase in speed produced was
" not considered adequate to Jjustify the increased
SR programming effort. It has been found during
verification of the the simulator (Chapter 5), that
the relative time | taken to perform all the
H : precalculation' algorithms is negligible compared to
the time required to calculate to convergence any
simple circuit that requires tearing; simplicity and
maintainability of the coded algorithms being of
greater importance than speed.

e ——

o0

- Lad K L

€9

4.5 Determination of the calculation order of units
within a UMCL.

Once all the tear streams in a UMCL are known, the
caleulation cycle +that is required to be repeated to
convergence must be determined. This cycle is
essentially the sequential calling of each
calculation subroutine that models any particular
unit operation. The determination of the calculation
cycle is search based, and operates as follows:

Consider each unit operation in the UMCL in
suyccession. A unit of which all the feeds are tear
streams or system feeds must exist (if we have
determined a valid -tear set). This unit is thus
placed in the calculation order cycle, and its
product streams are removed from the feed lists of
the rumaining units. The search for a unit having
only known streams as feeds is repeated until all the
units have been placed in the caleulation sequence.
Repeating the sequence thus determined will lead to
the convergence of all tear streams in the UMCL.

4.6 Verification.

In order to verify the cperation of the tearing and
ordering algorithms, a large number of tests were
perforned, both on industrial and hypothetical
circuits. Of those tests performed, the examples used
by Upadhye and Grens (1975) are shown to allow
comparison with future work. Further to these a
hypothetigal hydrometallurgical countercurrent
liquid-liquid extraction example was simulated, which
indicates the limitations of the dynamic programming
approach,

TR

70

The example flowsheets are shown in Figures 4.1 a-d,
while the results obtained by the modified Lee and
Rudd algorithm and Upadhye and Grens (1975) are
summarised in Table 4.1. From these results it can be
noted that in all cases the smallest nonredundant
tear set was produced by the new algorithm, and that
the problem size that can be accomodated by this
algorithm exceeds that of dynamic programming. In all
cases a viable calculation order was produced, as is
shoun.

4.7 Conclusion.

The algorithms implemented have been tested using
true simulation examples. In all cases the algorithms
have produced the optimal tear set and the correct
unit calculation order. The algorithms are able to
accomodate any number of units, process streams and
oycles within any precycle net. The algerithms are
therefore adequate for the simulation of
hydrometallurgical circuits, and in general, any
process circuit.

a. CAVETT’S PROCESS b. ROSEN‘S PROCESS

]
H. ZR{3P{
4

c. RAMJI’S PROCESS d. STRIP PROCESS

FIGURE 4.1
EXAMPLE FLOWSHEETS
FOR TEARING AND ORDERING

Verification of modified Lee and Rudd Algorithm

PROCESS NONREDUNDANT TEAR TEAR-SET MODIFIED CALCULATION
SETS - UPADYE AND LEE AND RUDD ALGORITHM ORDER
GRENS (1975)
CAVET (2,5} (2,8} {5,6,7} {4,1} (Equivaient by 3,4,5,2,6,1
replacement rule)
rosEN {8} {5,6,10} {8} 3,5,4,6,8,1,2,7
RATT {1} {2} (3,5 {1} 2,3,4,1
STRIP Problem too large {1,2,3,4,86} 5,4,3,2,1,
Table 4.1

i
i
P

73

CHAPTER 5 : CONCLUSIONS

5.1 Introduction

The future of simulation in the minerals industry is
assured. Simulation for design and optimisation has
becone an active field. Modelling of
hydr llurgical P! using the population
balance approach is being resgarched and new models
for unit operations are constantly being developed.
It is essential that this research being done in
different filelds of metallurgy be united, s0 that the
simulation of complete metallurgical circuits may be
done with the best available models. This can only be
accomplished if a maintainable and extendable
simulation ‘executive exists that can combine the
nodels into a complete process. It was the aim of
this research wuwork to produce such a simulation

executive.
5.2 Summary
5.2.1 pata structures

bata structures were designed to represent the
general process stream in a maintainable and
extendable way, so that it may be used for the
simulation of any - hydrometallurgical operation. The
data is easily accessible to the user, and the
creation of new process operation models is a simple
task. The acceesing and replacing of variables
operated on by a unit operation model is simplified
by the use of utility routines that make these data
structures appear totally transparent.

v gy w (Y .

R oD

74

The use of the concept of substreams allows simple
additions to the stream data structures, so allowing
the future extension of the sipulator to other
branches of metallurgy, such as pyrometallurgy.
Exigting substreams can be extended by additions to
the descriptive recaord.

The use of an advanced structural language such as
Pascal has resulted in the dynamic allocation of i
memory, thus utilising the computer storage more f
effectively in all sections of the program. Dynamic
memory allncation in stream descriptive records
further allows a bractically unlimited pumber of i
variables to be represented.

The overall stream data structure is considered
adeguate and extendable enough to accomodate all
hydrometallurgical simulations.

5.2.2 Precalculation algorithms.

The precalculation algorithms utilise procedures that
are general enough to operate on any flowsheet. No
limit exists on the number of units or streams in the
process, and the simulator will produce a tear set
that shall allow direct substitution to converge in
the least number of iterations. Tests have indicated
that the time taken to tear and order the flowsheet
is negligable compared to the calculation phase of
the flowsheat.

The precalculation algorithms sre considered sdequate
for any further extensions that may be done to the
simulator executive.

-

75

5.2.3 Verification g

A large number of ore-dressing unit operation models
were taken from the MODSIM simulator and translated
into Pascal to be used in the present executive. The
unit models translated were: ~

1. Separation Units

a. Classification Units

i. Cyclone -
ii. Screens

b. Coal Washing Units

i. Drewboy washer
ii. Dense Medium Hydrocyclone

. Bank of Flotation Cells
d. Gravity Concentration Units

i. Spiral *
ii. Reichert Cone

2. Comminution Units

a. Grinding Mills
b. Crushers .

3, Water Separation Units

a. Thickeners

e 2AG . s . P

76

Comparitive test uwere performed between the
simulators, the present versjon vyielding the same
results as MODSIM in all cases. The example
flousheets tested are shown in Figures $.1 a and b,
the results obtained for the two simulations are
summarised in Table 5.1. This verification was
required to validitate the usability of the datas
structures and the effgctiveness of the
precalculation algorithms.

Extensions to the stream structures and unit
operation models was done by Stange (1985} for carbon
in pulp research. Simulation of this
hydrometallurgical operation was done successfully,
illustrating the extendability of the simulator to
the exact requirements of the ultimate user.

5.3 Future research
5.3.1 Introduction

The simulator in its present form can successfully
simulate a large number of metallurgical processes.
Ore-dressing models for the simulator have been
written and tested, as well as a carbon in pulp
systen. For the simulation of all the
hydrometallurgiacl unit operations, future work is
required.

5.3.2 Unit operation models.

Research is in progress on the creation of
hydrometallurgical unit operations. This field bhas
received new impetus from the work of Sepulveda
(r1978) with -he population balance approach to
leaching. This approach is being extended to other
hydrometallurgical operations.

w 24 N Y

a. CRUSHING CIRCUIT

I
T

b. MILLING CIRCUIT

FIGURE 6.1 FLOWSHEETS FOR SYSTEM VERIFICATION

" ’

2 (microns) % Passing % Passing

Stresm 1 Styeam 9
1220000 99.93 100.00
862678 96.94 160.00
610011 81.10 100.00
431347 54.91 100.00
305011 31.66 100.00
215677 16.64 100.00
152508 8.33 100.00
107841, 4.07 180.00
76255 1.97 100.60
53921 0.95 100.00
38128 .45 1690.00
26961 0.22 160.00
19064 0.10 180.00
13480 0.05 100.00
9532 0.02 75.49
6740 0.01 53,11
4766 .01 40.05
3370 Q.00 31.56
2383 0.00 21.96

TABLE 5.1 RESULTS OF SIMULATIONS
a. CRUSHING CIRCUIT

3

" /
Strn Mass Flowrate Water Flow Pexcentage
No TPH Solids
1 100.0000 233.3333 30.00
2 453.0672 381.6099 54.28
3 4521535 381.6278 54.23
4 452.1535 712.6304 38.82
5 352.6700 148.2766 70.40
6 99.4835 564.3539 14.99

7 - 331.0026 -

SIZE (microns) % Passing % Passing
Stream 1 Stream 5

2360.0 97.60 99.73
1700.0 < 94.50 99.03
1180.0 90.50 97.79
850.0 85.50 95.67
600.0 78.90 92.17
425.0 69.80 86.24
360.0 56.70 76.33
212.0 40.30 60.40
150.0 27.60 40.38
106.0 20.00 22.79

75.0 15.10 11.94

53.0 11.40 6.48

38.0 8.60 3.88

27.0 6.80 2.59

TABLE 5.1 RESULIS OF STMULATIONS

b. MILLING CIRCUIT
e I - M Y

80

The simulation of carbon-in-pulp and carbon-in-leach
processes is of great lmportance at present, and it
can be expected that research in these fields will be
active in the next few years.

The testing and verification of models developed in
research is made simple by their inclusion in an
existing simulator. In this way their interaction
with other unit operations and in recycle situations
may further be tested.

5.3.2 Convergence

It has been shown by . Westerberg et al (1879) that
direct substitution will always lead to the
convergence of a vrealistic process flowsheet. The
rate of convergence may however be slow, and may be
prohibitively so on a microcomputer.

The use of convergence accelerators is a critical
part of the research required tc be performed in
future. 4 distinct problem with the Newtonian
accelerators available at present is that the
derivatives of the product process streams of each
unit operation is required, which is a function of
the unit operation model. These derivatives may
therefore be extremely complicated and their
calculation could be as time-~consuming as the
direct-substitution process itself; the decrease in
the number of iterations being lost in the increased
calculation effort.

The bounded Wegstein convergence accelerator has
further been implemented, (Westerberg et al, 1979)
this method generally vyielding improved convergence
characteristics.

-

81

The robustness of direct substitution makes it
particularly suitable for development work, and was
therefore retained. It was further felt that the
convargence problen Ray only be optimally
investigated once more knowledge is available on the
nature of the unit operation models, and should be
postponad until that time when it may form the centre
of more intensive research in that field.

5.3.3 Human-computer interfaces

The larger interfaces that will link the user and the
simulator have been written but were not part of the
present investigation. These will create flowsheets
and produce graphical and numerical output in a
useable form. The maintainability and modularity of
the sections already created mpakes the writing of
these interfaces quite a simple matter, the
interaction of the user and the machine becoming the

major design criterion. The final version of the

interface should allow simulations to be done by any
user with no computer skills.

5.4 Conclusion -

The simulator executive created during this research
project fulfills all the requirements of an advanced
hydrometallurgical simulator.

The simulator is considered general, maintainable and
extendable enough to accomodate any
hydrometallurgical process operation model.

82

REFERENCES

Britt,H.I. (1980) Multiphase stream structures in the
ASPEN process simulator. In Foundations of
computer-aidéd chemical process design, Vol 1,
471-510, R.S5.H.Mah and W.D.Seider (eds), Engineering
Foundation, New York.

Broyden,C.G. (1965) A class of methods for solving
nonlinear simultaneous equations. Math. Comput. 19,
577. -

Christensen,J.H. and D.F.Rudd (1969) Stiucturing
design computations. AIChE J. 1S, 94-100.

Evans,L.B. (1980) d in pr £1 ing
systems. In Foundations of computer-aided chemical
process deeign, Vol 1, 425-468, R.S.H.Mah and
W.D.Seider (eds), Enginsering Foundation, New York.

Evans,L.B. and W.D.Seider (1976) The requirements of
an advanced computing system. CEP June, 80-83.

Evens,L.B., B.Joseph and W.D.Seider (1977) Systen
structures for process simulation. AIChE J. 23,

658666,

Evans,L.B. et al (1979) ASPEN: an advanced system for
process engineering. Comput.Chem.Eng. 3, 319-327,

Ford,M.A. (1976) Simulation of ore dressing plants.

PhD thesis, University of the Witwatersrand,
Johannesburg.
"y Bk, . s & . .

e

Ford,M.A. and King,R.P (1984}

graphics process analyser and
London, England, 26-30 March.
Johnson,D.B. ({1975) Finding

circuits of a directed graph.
77-84.

Comput.Chem.Eng. 3, 307.

Lee,W. ang Rudd,D.F. (1966)
Mateti,P. and Deo,N. (1976)
enumerating all circuits of a
5, 90~99.

Motard ,R.L and A.W.Westerberg
sets for flowsheets. AIChE J. S,

~ extensions of FLOWTRAN to

Pho,T.K. and L.Lapidus (1973)
@ided design : I. An optimum

Richardson,J .M., D.R.Coles,
J.W.White (1980) Flexmet -~ a

a3

The simulation of

ore-dressing plants. Int.J.Min.Proc. 12, 285-304.

Hess,F.W. and Wiseman,D.M. (1984) Interactive colour

simulator for mineral

concentrators. 18th International APCOM ~ymposium,

all the elementary
SIAM J.Comput. 4,

Kaijaluoto,S. (1979) Experiences in the use of plex
data structure in flowsheeting similation.

on the ordering of

recycle calculations. AIChE J. 12, 1184-1190.

On algorithms for
graph. SIAM J.Comput.

(1981} Exclusive tear
725-732.

Neville,J.M. and Seider,W.D. (1980) Coal pretreatment

model solids handling

equipment. Comput.Chem.Eng. 4, 49-61.

Topies in computer
tearing algorithm for

recycle streams. AIChE J. 19, 1170-1181.

J.L.vanderbeek and
flexible computation

eystem for steady-state analysis of metallurgical

84

process flowsheets. AIME Arizona conference meeting,
becember.

Richardson,J.M., D.R.Coles and J.W.White. (1981)
Fluor Mining and Metals introduces Flexmet, a
computer-aided and flexible metallurgical technique
for steady-state flowsheet analysis. Eng.Min.J. 182,
88-97.

Ritchie,I.C. (1984) Economic evaluation of minerals
extraction processes by use of a flexible process
simulation program. £hD thesis, Royal School of Mines
London. :

Ritchie,I.C. and Spencer,R. {1984) Economic
evaluation of minerals extraction processes by use of
a flexible process simulation program. 18th
International APCOM symposium, London, England, 26-30
March.

Sargent,R.W.H. and A.W.Westerberg (1964) "Speed-up™
in chemical engineering design. Trans. Instn. Chem.
Engrs., 42, 190-197.

Sepulveda,J.E and Herbst,J.A (1878} A population

balance approach to the modeling of multistage

continuous leaching systems. AIChE Symposium series,
1s of hydr llurgical operations.

Stange,W. (1985} MSe. thesis in preparation.
University of the Witwatersrand, Johannesburg.

Tarjan,R. (1972) Depth-first search and linear graph
algorithms. SIAM J. Comput. 1, 146-160.

n LAk .

e b +8 -

Tarjan,R. {1923) Enumeration of the elementary
circuits of a directed graph. SIAM J.Comput., 2,
211-216.

Tarjan,R. and Reid,R.C (1976) Bounds on backtrack
algorithms for listing oyeles, paths and spanning
trees. Networks, 5, 237-252.

Upadhye,R.S. and E.A.Grens II (1972) 4an efficient
algorithm for optimal decomposition of recycle
streams. AIChE J. 18, 533-539.

Upadhye,R.S. and E.A.Grens II (1975) Belection of
decompositions for chemical process simulation. AIChE
J. 21, 136-143.

Westerberg,A.W. et al {(1979) Process flowsheeting.
Cambridge University Press, Cambridge.

R

¥
Y

Author Cilliers Johannes Jacobus Le Roux
Name of thesis Hydrometallurgical Simulation - A Viable Program Structure. 1986

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

