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Chapter 6: Symmetry in Patterns in the Msithini Group  
 
Introduction 
 
This chapter is devoted to an investigation of the mathematical principles present in 

the patterns found specifically in the Msithini group of grass mats.  The fundamental 

aim is to elucidate and present explanations of the presence of symmetry in the 

patterns in this group of grass mats, applying the seven international symmetry 

notations for one-dimensional pattern classification.1  By doing this, an 

acknowledgment and enrichment of this aspect of Swazi Material Culture will be 

realised and links with a new mathematical disciplinary paradigm – 

Ethnomathematics – will be made.  In addition, the aims of this chapter are to draw 

attention to some mathematical aspects and ideas incorporated in the patterns 

invented by Swazi mat makers and to support further initiatives that may contribute 

to a fuller realization of the mathematical potential of the rural crafts made by men 

and women in Swaziland. 

 

The ethnomathematical approach adopted in this chapter is a theoretical framework 

that questions the origins of mathematical ideas and calls for a new history of 

mathematics.  The objective of ethnomathematical research consists of looking for 

possibilities of improving the teaching of mathematics by embedding it into the 

cultural context of students and teachers.  As Prof. Gerdes (1999) explains, it is “the 

analysis of mathematics and mathematics education in their cultural context.”   

 

Symmetry in patterns on other parallel objects of Swazi Material culture that admit 

patterning can be found on clay beer pots, Ludziwo (s) Tinziwo (pl,) beaded 

necklaces, Ligcebesha (s) Emagcebesha (pl), grinding mats (Sitsebe) and, more 

                                                 
1 During the 19th century, crystallographers were attempting to fully describe and categorise the 
different ways in which the molecules in a crystal are packed.  The Russian scientist E. S. Fedorov  
(1891) was able to solve this problem by means of symmetry groups. Washburn D & D Crowe, 
1988:59. 
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recently, baskets made from Lutindzi (a mountain grass). These will be briefly 

illustrated pictorially to expand and support the concepts investigated. 

 

The theories of Professor Paulus Gerdes of the Ethnomathematics Research Project 

based at Mozambiques’s Universidade Pedagogica in Maputo have been closely 

followed in this chapter.  Gerdes has written extensively on geometry in African Art 

(Gerdes, 1988, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999). He has 

developed a complementary methodology that enables one to uncover, in traditional 

and material culture, “hidden moments of geometrical thinking.”  Therefore, 

ethnomathematics, according to Prof Gerdes, is:  

 

The analysis of mathematics and mathematics education in their cultural 
context.  2  

 

He is concerned with those spheres of African life in which geometrical ideas, 

geometrical considerations, geometrical explorations, and geometrical imagination 

are interwoven, inter-braided, inter-plaited, inter-cut, inter-coiled, inter-cised, and 

inter-painted. 

 

Gerdes (1999) explains his approach in the following way:  

 

We looked to the geometrical forms and patterns of traditional objects like 
baskets, mats, pots, houses, fish traps, and so forth and posed some questions: 
Why do these material products possess the form they have?  In order to 
answer this question, it came out that the form of these objects is almost never 
arbitrary, but represents many practical advantages and is the only possible or 
optimal solution of a production problem.  3  

 

In relation to the application of this method, quite a lot of ‘hidden’ or ‘frozen’ 

mathematics was discovered and Gerdes thus substantiates:   

 
                                                 
2 Gerdes, P. 1999:3-50 
3 Gerdes, P.1997: 227-228  
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The artisan, who imitates a known production technique, is, generally, doing 
some mathematics.  However, the artisans, who discovered the technique, did, 
and invented quite a lot of mathematics, were thinking mathematically. [sic]4  

 

Whilst collecting, collating, and analysing the different properties of the Swazi grass 

mats, it became evident that although geometric patterns existed on a large number of 

grass mats, the Msithini Group in particular displayed the “hidden moments of 

geometrical thinking” referred to by Gerdes (1995).  His theoretical and empirical 

claims are supported by Ascher (1994), a fellow Ethnomathematician; she believes 

there has to be more understanding of the ideas behind the artefacts as they are 

culturally embedded, so that their mathematical aspects can be recognised.  Weaving, 

for example, involves geometric visualisation. In effect, the weaver is “digitalising 

the pattern.  The weaver expresses the visualisation through actions and materials.” 5 

 

Geometrical patterns are created on the surface of the grass mat using coloured wool 

and a variety of shimmering sweet wrappers.  The formation of geometrical patterns 

on the Msithini Group of mats is related to technological advancement such as the 

introduction of the Imbongolo the mat-making frame, (see Chapter two) (Plates 52, 

53, and 54).  The realisation of vertical, horizontal, and rotational symmetry is 

demonstrated through the patterns found on the mats. 

 

Prominent Ethnomathematicians, Dorothy Washburn and Donald Crowe (1988), 

conducted a comprehensive study of symmetry in cultural objects.  Using mainly art 

objects from Africa, such as Zulu beadwork, Zairean carvings, Nigerian weaving and 

Egyptian wall decorations, they offered a perceptual process of pattern recognition  

 

 

                                                 
4 Gerdes, P. 1998:228 
5 Marcia Ascher 1994:36-43 
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and theoretical style analysis in material culture.6 Thus a unification of two normally 

separate disciplines was applied – mathematics and design.7   

 

The connections between art and mathematics are well established and are firmly 

rooted in the history of art. 8  Art historians often use the characteristics of symmetry 

and the rules of the Golden Mean to assess the formal qualities of a work of art.  

Probably the best-known connection between mathematics and art is linear 

perspective, the representation, or illusion, of the third dimension on a flat, two-

dimensional surface through a basic structure of straight lines that appear to recede to 

a vanishing point on the horizon.  In further establishing the interrelationship between 

art and mathematics, Hardy (1940) compared a mathematician to a painter or a poet 

and a maker of patterns made with ideas.  He wrote: 

 

The mathematician’s patterns, like the painter or poet’s, must be beautiful. 
The ideas, like the colours or the words, must fit together in a harmonious 
way. Beauty is the first test: there is no permanent place in the world for ugly 
mathematics. 9  

 

In the art of the Renaissance, perspective became the convention for representing 

space. In Europe at the turn of the 20th century, social and scientific activities seem to 

have promoted a focus on design.  Because the machines of the industrial revolution 

could stamp and weave patterns endlessly, there was a great need to codify and order 

this new wealth of material.  At the same time, scholars in the humanistic fields were 

also categorising, classifying, and bringing new order to a wealth of artefacts amassed 

by explorers who had begun to fill museums with objects from their world-wide 

travels. 10 

                                                 
6 Washburn and Crowe offered a course at the University of Wisconsin called ‘Symmetries of 
Culture.’ 
7 Washburn and Crowe, 1988:3 
8 See works of Renaissance artists in particular Leonardo Da Vinci 
9 Hardy 1940:p/uk 
10 Washburn, D & D Crowe 1988:7.  It is interesting to note that during this period, although both 
crystallographers and designers were describing repeated patterns, neither seemed to take cognisance 
of the others’ work.  The crystallographers derived the geometry of crystal structure as a mathematical 
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Recent research in Africa has revealed the existence of mathematical correlations. For 

example, Claudia Zaslavsky, in her study “Africa Counts” (1999), pays tribute to 

Africa’s contribution to the science of mathematics.  From a mathematical point of 

view, the most interesting find is a carved bone discovered at the fishing site of 

Ishango on Lake Edward, in Zaire (DRC).  It is a bone tool handle with notches 

arranged in definite patterns; a bit of quartz is fixed in a narrow cavity in its head.  It 

dates back to the period between 23 000 and 18 000 B.C.  The markings on the bone 

represent prime numbers between 1 and 19. 

 

In South Africa, Becker, Getz and Martinson (2001) applied the theories of 

Ethnomathematics to a study of “Symmetry and Pattern in Southern African Flat 

Beadwork Panels.” In a later study, Getz (2003) used African art objects to draw a 

correlation between fractal geometry and Zulu copper wire baskets (izimbenge), 

beadwork, bowls and murals in a video entitled “Ancient Dreams in Modern Times – 

Mathematics in Our African Heritage.” Getz believes: 

 

Instead of studying spirals and other shapes in the abstract we can root them 
in the world around us – not only in nature, but also in the intricate designs of 
our own traditional weaving and beadwork.11   

 

The use of traditional cultures as a source for educational instruction at all levels is 

becoming increasingly popular. Getz (2004), in her mathematical analysis of a 

Northern Sotho beaded apron, found that this type of apron consists of a repetition of 

equilateral triangles in a variety of colours. The mathematical relevance of the design 

                                                                                                                                           
exercise, but the designers had a practical need to organise the myriad patterns from home and afar in 
some systematic descriptive fashion.  Although the designers saw the rhythm and repetition inherent in 
the patterns, they never discovered that patterns could be more systematically, precisely, and 
objectively described by their symmetries. 
11 Getz, C., 2003 ‘Ancient Dreams in Modern Times – Mathematics in Our African Heritage’ Video, 
TSFILMTV 
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is that it repeats itself on the plane surface and mathematicians are interested in how 

many variations there are in which a pattern can possibly be repeated.12 

 

As the aim of this chapter is to establish whether there is symmetry in patterns on 

Swazi grass mats, we turn to Crowe (1988). In several studies of African art, he has 

shown that patterns can be described by their symmetries and that repeated designs 

occur frequently on many art objects. He asserts that symmetry is a mathematical 

property that generates repeated patterns. The most popular use of symmetry is 

bilateral symmetry - that is, mirror reflection - also evident in the mats in the Msithini 

Group.  Symmetry analysis provides a systematic tool and invites geometrical 

exploration. It is a powerful tool to present these symmetrical preferences; it does not 

explain these preferences but it does organise the data (Washburn and Crowe 1988). 

 

There are reasons why researchers into African art and Ethonomathematicians 

consider the property of symmetry in the analysis of culturally produced patterns and 

designs on material culture.  By understanding the role of symmetry in the visual 

recognition process, we can better recognise its frequency throughout a number of 

cultural domains. Crowe (1988), in several studies of African art, has shown that 

patterns can be described by their symmetries and that repeated designs occur 

frequently on many types of objects.  Crowe (1980) has drawn attention to the 

existence of a universal cross-cultural classification scheme for the repeated patterns 

occurring on such diverse media as textiles, pottery, basketry, wall decoration, and 

the art of M.C. Escher.  Crowe (1979) has also applied the international classification 

for the seven one-dimensional and 17 two-dimensional patterns to the analysis of 

decorated pipes from Begho, Ghana.   

 

Symmetry in its various forms is one of the most fundamental features of the designs 

on the Msithini Group of grass mats.  A possible reason could be because the shape  

                                                 
12 Getz, C., 2004:60-60  
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of the rectangular mat is conducive to being divided equally both horizontally and 

vertically.  This is what Gerdes calls the “practical advantage of a production 

problem;” that is, the limitation of the technology applied. 

 

The seven one-dimensional pattern classifications proposed by Washburn are applied 

to analyse the Msithini Group of mat patterns.  The Msithini Group has been chosen 

for this analysis because, while some mats in the General Group exhibit geometric 

patterns, these are single motif patterns, whereas the Msithini Group comprises one-

dimensional patterns.  Thus, this group can be analysed using the international seven 

one-dimensional pattern classifications.  

 

Mathematicians are interested in how a pattern can possibly be repeated.  It is a 

geometrical fact that there are only four possible rigid motions of a plane (distance-

preserving transformation of the plane onto itself), ‘plane’ here referring to the 

‘Euclidean plane,’ the plane of everyday experience: the tabletop, a stretched canvas, 

the unrolled surface of a cylindrical pot, the flat woven fabric that is imagined to 

extend to infinity in all directions (Washburn & Crowe 1988). These are reflection, 

translation, rotation and glide-reflection.  For this reason it is not surprising that any 

one-dimensional pattern admits one of only seven different admissible rigid motions; 

that is, there are only seven one-dimensional patterns.  Similarly, there are only 17 

two-dimensional patterns.  

 

Getz (2004) explains rotations, translations, reflections, and glide reflections simply 

as imagining tracing a repeated pattern onto a large sheet of tracing paper.  The ways 

in which you move the tracing paper so that the original and the traced patterns 

exactly coincide are obtained through the following possibilities: 

I. slide the paper in a straight line – a translation 

II. rotate the paper about a point – a rotation 

III. rotate the tracing paper through 180° about a straight line – a reflection 
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IV. combine a translation and a reflection to give – a glide reflection 

Therefore, the only way a periodic pattern can repeat itself is by means of some (or 

all) of the above ‘rigid motions.’  The following diagram illustrates the Seven 

Notations for one-dimensional patterns:13   

1.1 

 

 

 
1.1 Notation 1 

pmm2 

Symmetries 

Vertical, horizontal and rotational 

symmetry of 180° 

Pattern invariant under 

Vertical reflection, horizontal 

reflection and rotation through an 

angle of 180° 

 

1.2 

 

 

 
1.2 Notation 2 

pma2 

Symmetries 

Vertical, translational-reflected and 

rotational symmetry of 180° 

Pattern invariant under 

Vertical reflection, glide reflection 

and rotation through an angle of 

180° 

 

1.3 

 
1.3 Notation 3 

pm11 

Symmetries 

Vertical symmetry 

Pattern invariant under 

Vertical reflection 

 

1.4 

                                                 
13 (For Notations for One-Colour, Two-Dimensional Patterns, Two-Colour, One-Dimensional Patterns 
and Two-Colour, Two-Dimensional Patterns see Washburn & Crowe 1988) 
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1.4 Notation 4 

p1m1 

Symmetries 

Horizontal symmetry 

Pattern invariant under 

Horizontal reflection 

 

1.5 

 

 
1.5 Notation 5 

p112 

Symmetries 

Rotational symmetry of 180° 

Pattern invariant under 

Rotation through an angle of 180° 

 

1.6 

1.6 Notation 6 

p1a1 

Symmetries 

Translational-reflected symmetry  

Pattern invariant under 

Glide reflection-reflected 

translation 

 

1.7 

 
1.7 Notation 7 

p111 

Symmetries 

Only translational symmetry  

Pattern invariant under 

Only translation 

 

A detailed discussion of all the possible variations of the Msithini Patterns will 

follow.  The patterns to be analysed on the Msithini Group of mats will always be 

thought of as lying on a plane.  First, a brief explanation of the special kinds of design 

that are normally referred to as periodic or repeated pattern is in order.  A repeated 

pattern on the plane (flat surface) may repeat in only one direction (like a border, a 

strip or a band) or in more than one direction (like a fabric design that covers the 

entire surface or the hexagons on a tortoise shell.)  The former are called one-

dimensional patterns; the latter are two-dimensional patterns.  Another way of 

describing this difference is to say that a one-dimensional pattern can be slid along 

itself, in exactly one direction; in such a way, that in its resulting position it cannot be 
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noticed to have shifted.  Such a pattern admits a translation in exactly one direction.  

A two-dimensional pattern admits translation in more than one direction.  Two-

dimensional patterns may also be called “all over” patterns (Crowe 1980).  

 

The Msithini Group of grass mats has invited a geometrical examination, and the 

explorations of the designs are placed in the one-dimensional pattern analysis 

because they are repeated patterns in one direction only.   

 

The creation of the symmetrical patterns on the Msithini Group is largely dependent 

on the organised manipulation of coloured strings whilst making the mat on the 

Imbongolo.  Many variations are possible (diagrams below represent these 

variations).  At the simplest level, the pattern-making is comparable to a knitting 

pattern: the knitter memorises the pattern and whatever takes place on the left half of 

the mat is mirrored on the right half of the mat.  For the grass mat, an uneven number 

of vertical strings will ensure a vertical line of symmetry.  From the collection of the 

Msithini Group of 53 grass mats, (see Figures MM01 – MM53 on pages 134-135 and 

Appendix B, B37-B43) eight have been selected (for the eighth mat, Msithini was 

commissioned to make a mat with a pattern that was translation only).  The primary 

reason for this was to complete the set of visual aids necessary to facilitate teaching 

this concept.  

 
The patterns chosen were all selected from the central panel, each labelled ML1a to 

ML8a (ML denoting Msithini Licansi, the SiSwati word for mat).  The central panel 

pattern was converted into a linear diagram, ML2b. For ML1c to ML8c, the patterns 

were rotated 90° to the right for further observations of the presence of symmetry.  

For patterns MLIa, ML2a and ML7a, subjacent symmetries were sought (subjacent 

symmetries are symmetries within the existing pattern that only become prominent 

once that pattern is ungrouped).  This allowed for a further analysis of line behaviour, 

increasing the symmetrical properties within pattern ML7.  In the diagrams below, 

dotted lines are used to represent lines of symmetry:   



 111

 
 
 
 
 
 
 
 
 
 
 
 
                   
MLP1b 
pmm2     MPL1a   
     
 
 
 
 
 
 
 
 
(Rotate MLP1b 90° to the right) 
MLP1c -  pmm2 (p112) 
 
 
 
           
  
MLP1d        pma2 and p1a1 
 
 
 
MLP1e       pm11 
       
 
MLP1f       pm11 
 
 
If MLP1e is rotated 180°, it will map onto MLP1f 
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MLP1g 
p112 

 
 
 
 
 
 
 
 
Patterns with double symmetry enjoy a remarkable property.  If one rotates such a 
pattern through a straight angle (180°) about the point of intersection of the horizontal 
axis with one of the vertical axes, exactly the same pattern is obtained (MLP1g, 
illustrates this). 
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MLP2b      MLP2a    
pmm2 
 
 
 
 
 
 
 
 
 
(Rotate MLP2b 90° to the right) 
MLP2c - pmm2 (p112) 
 
 
MLP2d        pma2 and p1a1 
 
MLP2e        pma2 and p1a1 
 
MLP2f        pma2 and p1a1 
      
MLP2g        pma2 and p1a1 
 
 
 
MLP2d may be rotated 180° to map onto MLP2e, MLP2f & MLP2g (repeat 
action for MLP2e, MLP2f and MLP2g) 
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MLP3b        MLP3a 
pm11 
 
 
 
 
 
 

(Rotate MLP3b 90° to the right)     MLP3c - p1m1 

 
           
        
 
 
 
 
 
 
 
 
 
 
 
 
MLP4b       MLP4a   
pmm2      
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(Rotate MLP4b 90° to the right) 
MLP4c - pmm2 (p112) 
 
    
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MLP5b      MLP5a 
pm11 
 
 
 
 
 
 
 

 

(Rotate MLP5b 90° to the right) 

MLP5c -  p1m1 
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MLP6b      MLP6a 
pmm2 
 
 
 
 
 
 
 
 
(Rotate MLP6b 90° to the right) 
MLP6c - pmm2 (p112) 
 
 
 
     
 
 
 
 
 
 
 
 
 
 

      
 
MLP7b                 MLP7a 
pm11 
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(Rotate MLP7b 90° to the right) 
MLP7c -  p1m1 
 
 
 
 
 
 
 
 
 
 
 
MLP7d 
 
Subjacent symmetries 
 
In this case, the symmetries become stronger if MLP7b is separated.  
Thus MLP7d - pmm2 
 
 
 
 
 
 
 
 
 
 
 
 
 
MLP7e – pmm2 
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MLP7f – pmm2 
 
 
 
 
 
 
 
MLP7g 
 
 
When MLP7d is separated further, the behaviour of the pattern changes again. 
MLP7g – p1a1 (Translational-reflected symmetry) and pma2 
 
 
 
 
 
 
 
 
 
 
MLP7h – p1a1 and pma2 
 
 
 
 
 
 
 
 
 
 
MLP7i – p1a1 and pma2 
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          MLP8a 
 
 
 
  (Rotate MLP8b 90° to the right)  
MLP8b MLP8c p111        
 
Other Swazi Material Culture items that admit patterning including the following 

examples of pattern behaviour that are derived from Sitsebe (a grinding mat) Tinziwo 

(beer-pots), a basket made from Lutindzi (mountain grass) and Emagcebesha (beaded 

necklaces).  

 
 
 
 
 
 
 
 
 
 
 
 
 
SP1b       SP1a 
(SP1b is two-dimensional) 
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 TP1a 

 
 
 

 

TP1b  p1m1                                      TP1c pm11                      

                                                                          (Rotate 90° to the right  pm11) 

 
 
 
 
 

TP2a      TP2b 
 
 
pm11 
 
   
In this frieze design drawn from a Swazi beer pot, the pattern has vertical lines of 
symmetry A frieze pattern is one consisting of a motif that is repeated at regular 
intervals along a straight line. Frieze groups are symmetry groups - they include 
translations that are parallel. 
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BP1a 
 
The pattern on this basket made from Lutindzi represents a 4-fold rotational 
symmetry.  The motif appears in 4 different positions.  From one position to the next, 
the motif rotates through ¼ of a complete turn, through an angle of 90°. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EP1 – pmm2, p112     EP2 – pm11    EP3 - none 
 
The patterns on these Emagcebesha, beaded necklaces, represent both vertical and 

horizontal lines of symmetry.14 

                                                 
14 An opportunity exists for an in depth symmetrical analysis of the baskets made from Lutindzi, 
Tinziwo, and Emagcebesha, as well as for the two dimensional patterns found on the Sitsebe. 
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The chart below records and places the various patterns within the seven notations for 

one-dimensional patterns: 

 
 Notation Symmetries Pattern invariant under Patterns from Swazi, mats, 

beer-pots, beaded necklaces. 

1 pmm2 Vertical, horizontal 
and rotational 
symmetry of 180° 

Vertical reflection, 
horizontal reflection and 
rotation through an angle 
of 180° 

MLP1b, MLP1c, MLP2b, 
MLP2c, MLP4b, MLP4c,  
MLP6b, MLP6c, LP7d, LP7e, 
LP7f  EP1 

2 pma2 Vertical, translational- 
reflected and 
rotational symmetry 
of 180° 

Vertical reflection, glide 
reflection and rotation 
through an angle of 180° 

MLP1d, MLP2d, MLP2e, 
MLP2f, MLP2g,  MLP7g, 
MLP7h, MLP7i 

3 pm11 Vertical symmetry Vertical reflection MLP1e, MLP1f, MLP3b, 
MLP5b, MLP7b, 
MTP1c, MTP2b, 
EP2 

4 p1m1 Horizontal symmetry Horizontal reflection MLP3c, MLP5c, MLP7c, 
TP1b 

5 p112 Rotational symmetry 
of 180° 

Rotation through an angle 
of 180° 

MLP1g, MLP2c, MLP4c, 
MLP6c,  

6 p1a1 Translational-
reflected symmetry 

Glide reflection/reflected 
translation 

MLP1d, MLP7g, MLP7h, 
MLP7i, MLP2d, MLP2e, 
MLP2f, MLP2g 

7 p111 Only translational 
symmetry 

Only translation MLP8b ML8c 

 

The findings of the analysis of patterns ML1 to ML8 indicate the most popular 

notation to be No.1 pmm2, closely followed by No.2 pma2, and No.3 pm11.  The 

realisation of Notation No. 6 was largely achieved through subjacent symmetry and 

No. 7 p111 is not inherent but superficially created to show the concept of translation 

only. 

 

Further analysis of the Msithini patterns involves establishing how many variations 

exist for the central panel patterns, the outer panel patterns, and full patterns.  To 

determine this, the mats were divided first into two different zones, Msithini Central 

Pattern Panel (MCPP) and Msithini Outer Pattern Panel (MOPP).  In addition, the 

other patterns were placed as Msithini Full Mat Patterns (MFMP) and Msithini 

Additional Mat Pattern (MAMP). 
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The whole group of mats have been entered into a spreadsheet in order of date of 

purchase; each mat has been allocated a number in that order MM1 to MM53 (where 

MM denotes Miriam Msithini) The patterns have been sorted into linear diagrams and 

all the possible variations of patterns recorded and designated a number, MCPP1 to 

MCPP24, MOPP1 to MOPP14 and MFMP1 to MFMP4.  This breakdown was 

necessary in order to ease the process of pattern recognition and collation.  For 

example, from the Msithini Group consisting of 53 mats there are 24 types of Central 

Panel Patterns, 14 Outer Panel Patterns, 4 Full Mat Patterns and one Additional Mat 

Pattern.  These abbreviations also appear in (Appendix B, B35-B36).  For additional 

information concerning this group of mats, (see Appendix B, B37-B43).  The 

diagrams below show symmetrical properties with possibilities for further 

investigation: 
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MSITHINI CENTRAL PANEL PATTERNS (MCPP) 
 
 
 
 
 
 
 
 
 
 
 
 
 
            MCPP 1      MCPP 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           MCPP 3      MCPP 4 
 
 
 
 
 
 
 
 
 
 
 

 
          MCPP 5                  MCPP 6 
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            MCPP 7                                                  MCPP 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MCPP 9               MCPP 10 
 
 
 
 
 
 
 
 
 
 
 
 
 

MCPP 11                  MCPP 12 
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          MCPP 13      MCPP 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MCPP 15      MCPP 16 

 
 
 
 
 
 
 
 
 
 
 
 

 
MCPP 17                MCPP18 
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       MCPP 19           MCPP 20 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        MCPP 21          MCPP 22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MCPP 23            MCPP 24 
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MSITHINI OUTER PANELS PATTERNS (MOPP) 

 
 
 
 
 
 
 
 
 
 
 
 
   
 

MOPP 1          MOPP 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

MOPP 3                      MOPP 4  
       
 
 
 
 
 
 
 
 
 
 
 
 

MOPP 5                   MOPP 6 
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        MOPP 7                       MOPP 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       MOPP 9            MOPP 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              MOPP 11                          MOPP 12 
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 MOPP 13     MOPP 14 
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MSITHINI  FULL MAT PATTERNS (MFMP) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

MFMP 1                     MFMP 1:1    MFMP 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  
 

 
MFMP 3              MFMP 4 
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MSITHINI ADDITIONAL MAT PATTERN 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    MAMP 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      


