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Abstract 
 

The synthesis of good crystalline nanomaterials by green methods is one of the means 

to preventing global warming. Application of microwave thermal methods and the use of 

green solvents to synthesize nanomaterials contribute to this goal. Further, the low cost 

synthesis of nanomaterials contributes to their ease of availability in the market at 

affordable costs. 

 In this study, different NiSx phases and GaN nanomaterials were obtained by 

microwave-assisted solution phase synthesis. NiS2, GaN, -NiS, ( & ) NiS and Ni3S2 

phases were obtained by using different reagents and applying different reaction 

parameters. These materials were characterized by X-ray diffraction, transmission 

electron microscopy, scanning electron microscopy and photoluminescence, to evaluate 

their crystalline phases, morphologies, particle size distribution and optical properties 

respectively. 

 Hierarchical structures of cubic phase NiS2 and spherical HDA capped 

nanostructures were synthesized by a MW-assisted hydrothermal technique. The 

product phase purity was optimized and the effect of precursor concentration and 

capping agents were discussed. Further, optical properties of bare and HDA capped 

NiS2 materials are reported. Detailed analysis of the PL properties shown by these 

materials in the UV-vis range has been given by considering their calculated DOE 

energy band diagrams.  

 Single phase -NiS nanostructures with uniformly distributed hierarchical 

networks were synthesized for the first time in this study. The materials were evaluated 

for thermal stability under an oxidative environment and at temperatures between 150 

oC and 600 oC. NiS materials showed stability at 300 oC and NiO formation was 

observed from 350 oC to 600 oC. The annealing effect on the crystalline size and IR 

absorption of the annealed samples is reported by XRD and FTIR studied. The EPR 

properties of the annealed materials were studied and compared to the oxidized 

materials. The transition temperature of the -NiS was further confirmed by performing 
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electrical measurements on the as-synthesized material. Further, hydrostatic pressure 

sensing properties, ethanol and tomato VOCs sensing properties of the -NiS/PVA 

composite based devices were carried out and the results are reported. The ethanol gas 

sensing properties of the devices prepared showed the highest response when 

compared to hydrostatic pressure sensing and tomato VOCs gas sensing. 

 UV-blue emitting GaN nanostructures were obtained for the first time by a one-

step MW-assisted solvothermal technique. Sensor devices based on the hexagonal 

wurtzite structures obtained and their PVA composites (GaN/PVA) were prepared with 

different GaN NPs concentrations. A very high response to hydrostatic pressure was 

achieved for the devices prepared. The sensitivity of a GaN/PVA composite based 

device was analyzed for tomato VOCs detection and the results are presented. 

 Binary phase ( & ) synthesis of NiS materials is commonly reported for the 

synthesis of Ni:S ratio of 1:1 stoichiometry. This is due to the formation of both phases 

at temperatures lower than 200 oC. Here, the effect of NaOH and the S source was 

investigated as reaction parameters. It was found that the concentration of OH- ions in 

solution plays a huge role in the formation of binary phase NiS as well as its morphology 

distribution in the nanostructures. Hexagonal nanoplatelets, nanorods and nanorod-

based flower-like structures were obtained when different reaction parameters were 

varied in the presence of NaOH. Further, the solubility of different S precursors in the 

solvent used was studied and found to affect both the morphology and crystalline phase 

distribution of the products. 

 Preliminary work on the synthesis of Ni3S2 and Se and Te doped Ni3S2 is 

presented in the last chapter. The crystallite sizes of the materials were determined by 

use of the Scherrer equation and the elemental composition was confirmed by EDS 

analysis. The relative humidity gas sensing of the samples materials was determined 

and sensitivity response of the material to humidity was obtained for the first time.  
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Chapter 1: Introduction 

 

1.0 Preamble 

This chapter contains a brief introduction to nanotechnology. It then introduces the 

motivation for the nanomaterial synthesis method used, semiconductor gas sensors 

based on nanostructures. The aims and objectives of this study are given followed by 

the outline of the whole thesis and references to all material cited in the text. 

1.1 Introduction and rationale 

The worldwide research being carried out in nanotechnology today was in major part 

inspired from a famous talk that was given by Richard Feynman in 1959, entitled 

“There’s Plenty of Room at the Bottom”. This talk was focused on the idea of 

manipulating atoms at the atomic level by the use of small equipment [1]. 

Nanotechnology, which is the application of nanomaterials in useable devices or forms, 

has, for more than two decades, received much focus. The focus includes the 

fabrication of different types of nanostructure architectures, control of both size and 

characteristic properties of the nanostructures as well as the development of new 

technologies or methodologies for the fabrication of novel nanomaterials [2, 3]. In the 

past decade focus has changed to more applicative developments for the 

nanostructures. Nanostructures are now available in the market, in various forms for 

various purposes such as; imaging and diagnostics, bio-magnetic separations, MRI 

contrast agents, sunscreens, power transformers, magnetic recording, transparent 

conductive coatings, magnetic fluid sealing, chemical and mechanical polishing [1, 4 & 5 

]. There are many more applications that nanomaterials can be used in, such as; energy 

storage, energy conversion, drug delivery, catalysis and sensors [6-9]. These are 

related to some of their amazing properties that are found for these materials such as 

their good mechanical, thermal, catalytic, electronic and chemical properties. 
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Although some nanomaterials are found in the market today, there is still a broad 

range of nanotechnologies that could assist in solving some world problems such as 

global warming. One of the ways to address global warming is the use of green 

approaches to carry out chemical reactions in order to minimize the release of 

unwanted by products. Good and affordable environmental monitoring devices are 

essential in order to provide safety in the environment and for the humans. 

The application of a microwave heating coupled with the use of clean solvents to 

synthesize nanomaterials is one of the green approaches to nanomaterial synthesis and 

contributes to the goal of preventing global warming. The convenience of microwave 

application due to short reaction times and minimum energy used make its application 

even more favourable when compared to conventional thermal methods of material 

synthesis.  

Fabrication of semiconductor nanomaterial based gas sensors for environmental 

monitoring is one of the research areas for nanotechnology study and application. The 

possibility of incorporating nanomaterials in small devices and use in monitoring 

different environments ranging from low to high risk environments poses an alternative 

solution to the currently used types of sensors. An advantage is the low cost that is 

associated in both manufacturing nanomaterials and the device; portable devices will 

allow high quality monitoring of the environments when compared to the local area 

installed types of sensors used currently. 

The use of nanomaterials in gas sensors dates back to 1962, when Seiyama 

reported on the way in which the electrical conductivity of zinc oxide (ZnO) could be 

changed by the presence of reactive gases in the air. This report prompted a huge 

research effort on the application of metal oxides (MOx) in gas sensors [10]. The high 

surface area observed for nanomaterials contributes to their fast response to different 

types of gases. Different types of inorganic nanomaterials have been fabricated and 

tested for this application.  Most of these materials are groups II-VI and III-V based 

materials.   

GaN is one of the widely researched group (III-V) materials in the area of gas 

sensing although it has mostly been obtained by use of relatively expensive techniques 
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which makes it expensive to obtain in high quality. It has been shown to be selective to 

a number of gases and can be selective to either oxidising or reducing gases especially 

upon surface modification [11].  

NiS (group II-VI) is novel in this kind of application. Its small band gap and the 

reported catalyst activity are expected to improve the selectivity towards the different 

analyte gases.  

Current challenges in application of nanomaterials in gas sensing technologies 

include their lack of flexibility, poor response times and stability over limited 

temperatures [12, 13]. There is therefore a need for much control of the nanostructures 

and improvement of their properties to account for the remaining parts that limit 

application of these materials. 

 

1.2 Aims and objectives 

 

This thesis covers work determined by the following aims and objectives:  

o To synthesize novel nano-sized NiSx nanomaterials by microwave assisted 

hydrothermal technique. 

o To synthesize Se and Te doped NiSx materials. 

o To synthesize novel GaN semiconductor nanomaterials by microwave assisted 

solvorthermal technique. 

o To characterize the as-synthesized nanostructures by various techniques. The 

techniques used include high resolution electron microscopy (HRTEM), scanning 

electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence 

spectroscopy (PL) and differential scanning calorimetry (DSC). 

o To study gas sensing and pressure sensing properties of the as-synthesized 

materials. 

 



 

                                                           

 

 

 

Page 4 

 

  

1.3 Thesis outline 

This thesis contains eight chapters. 

 

Chapter 1: Introduction 

This chapter contains a brief introduction to nanotechnology. It then introduces the 

motivation for the nanomaterial synthesis method used, semiconductor gas sensors 

based on nanostructures. The aims and objectives of this study are given followed by 

the outline of the whole thesis and references to all material cited in the text. 

Chapter 2: Literature review 

This chapter contains the background information relating to the thesis topic. This 

includes general review on the semiconductor nanostructures, review on the materials 

studied (GaN and NiSx), general properties and applications of the semiconductor 

nanostructured materials, review on previous synthesis methods used, review on 

microwave-assisted growth method and references cited in the text are listed.  

 

Chapter 3: MW-assisted synthesis of NiS2 nanostructures and their photoluminescence 

properties 

This chapter deals with just one of the many phases of nickel sulphide, NiS2. Some of 

the contents of this chapter were published recently and the reference of the paper is 

given in the preliminary pages. The reported work includes the optimisation and 

morphological analysis of NiS2, phase analysis and photoluminescence (PL) properties. 

 

Chapter 4: Synthesis of hexagonal gallium nitride and hexagonal nickel sulphide 

nanostructures and sensing properties of their polymer composite based devices. 

This chapter contains work that was performed at the Federal University of Parana, 

Brazil. The trip was funded by IBSA trilateral agreement. The microwave synthesis of 

GaN and NiS nanostructures and their sensing properties are reported. 

 

Chapter 5: Effect of NaOH and precursor on the nickel monosulphide phase. 
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This chapter reports on the synthesis of binary phase nickel monosulphide. Water and 

NaOH were applied as solvents for the microwave-assisted hydrothermal synthesis of 

NiS. Effect of NaOH concentration, precursor concentration and reaction time are 

reported for different reagents. 

 

Chapter 6: Structural characterization, and the optical and magnetic properties of 

annealed hexagonal nickel sulphide (NiS): Effect of annealing temperature. 

 

This chapter describes the MW-assisted synthesis of single phase NiS using H2O 

solvent. The effect of annealing temperature on the stability of NiS is studied by XRD 

analysis. PL and ESR properties of the annealed samples are also reported. 

 

Chapter 7: Preliminary studies on synthesis and relative humidity sensing of Ni3S2 

layer-based flower-like structures and impurity Se and Te doped Ni3S2. 

 

This chapter shows the synthesis of another phase of nickel sulphide (Ni3S2). The 

microwave heating method was used to synthesize this material and doping with small 

amounts of Se and Te metal impurities was performed. The relative humidity gas 

sensing was studied of the pure phase of the material. The relative humidity 

measurements were taken in a sensing station based in the University of Cologne, 

Germany, via the Eur-FP7 collaboration program. 

 

Chapter 8: Conclusions and recommendations. 

 

This chapter contains some concluding remarks in view of the work covered on the 

thesis. Recommendations for future studies are also made. 
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Chapter 2: Literature review 

 

2.0 Preamble 

This chapter contains the background information relating to the thesis topic. 

This includes general review on the semiconductor nanostructures, review on 

the materials studies (GaN and NiSx), general properties and applications of 

the semiconductor nanostructured materials, review on previous synthesis 

methods used, and review on microwave-assisted chemical synthesis as well 

as references cited on the text 

 

2.1 Nano-structures and nano-materials 

The terms “nanomaterials and nanostructures” are routinely employed in the 

field of nanoscience and nanotechnology today. These are the type of 

materials characterized by a size that falls in at least one dimension less than 

100 nm [1]. They are distinctive in terms of properties when compared to their 

bulk counterparts or single atom or molecules [1]. The interest in studying 

these materials has grown over the past two decades. This growth has been 

promoted by the different properties nanomaterials exhibit, and their proposed 

applications, which open up a new world of possibilities. This has great 

implications for industry as well as in the academic world.  This is evidenced 

by the enormous amount of literature available online on this topic, which 

increases on a daily basis as researchers world-wide try to obtain favourable 

conditions for making as well as applying different types of nanomaterials. 

Nanomaterial based research contributes to many academic fields and has 

managed to bring together fields such as materials science, physics, 

chemistry, engineering and medicine biology [1-5]. In these fields, researchers 

are focused on improving the lives of people via nanoscience and 

nanotechnology applications. This includes education, the design of new and 

reliable materials, new composites, and the improvement of systems, 
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environmental monitoring and conservation [6]. Nanomaterials can be 

classified according to their size and shape which affect their properties and 

these vary from zero dimensional (0-D) to three dimensional (3-D) structures 

[7]. Fig. 2.1 shows the various dimensions that nanostructures materials can 

have. Zero dimensional nanostructures include nanoparticles, nanoclusters 

and nanocrystals. These include quantum dot (1-10 nm) that show a quantum 

confinement effect. Interestingly the confinement of these nanomaterials at 

certain dimensions, by tuning their sizes renders them usable at different 

energy levels [8, 9]. This has been demonstrated for nanomaterials such as 

cadmium selenide (CdSe), zinc oxide (ZnO) and indium phosphide (InP), to 

name a few. These materials show shifts in their optical band gaps to higher 

energy as their size is decreased [8, 9]. One dimensional (1-D) nanostructures 

include nanorods, nanowires and nanotubes. Two dimensional (2-D) 

nanostructures include thin films and nanoplatelets, while three dimensional 

nanostructures covers structures such as nanocubes. 

 

Figure 2.1: Classification of nanomaterials [7]. 

 

 

 

0-D

1-D

2-D

3-D
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2.2 Properties of semiconducting nanomaterials 

Semiconductors in general can be described as materials with a much higher 

conductivity than insulators, and when measured at room temperature they 

have a much lower conductivity than metals [10]. Semiconductors themselves 

have a distinct characteristic of behaving differently as the temperature is 

changed, which is not observed with other materials.  As such, most 

semiconductors behave as insulators at room temperature.   

Semiconductors can be elementary (an element on its own acts as a 

semiconductor) e.g. Si, Ge and α-Sn [10]. They can also be compounds (two 

or more elements covalently bonded to each other) e.g. GaAs, BN, AlN, GaN, 

AlInGaN, AlGaN, InN, etc. [10, 11]. Semiconductor nanostructures can show 

interesting properties. When the size decreases below the Bohr exciton radius 

(natural electron-hole pair separation distance) of the material, the band gap 

of the material tends to vary [12].  

Various mechanisms have been applied to explain the different 

electronic transport mechanisms that occur in nanostructured materials due to 

structural defects and dislocations as well as reduced impurities which 

differentiate their properties from their respective bulk counterparts [13]. 

Conduction mechanisms such as surface scattering, quantized conduction, 

Coulomb charging and tunnelling, widening and discreteness of a band gap 

and a change of microstructure have been reported by Cao [13]. These are 

promoted by the ability to tune both size and shape of the nanomaterials, such 

that, different transport mechanisms apply for different nanostructured 

morphologies [13]. 

 

The band gap of a semiconductor is located between the highest 

occupied energy band, called the valence band (VB), and the lowest occupied 

energy band, called the conduction band (CB). There is an existence of sub-

bands in the band gap of semiconductors, which are associated with surface 

defects and surface states. These are observed when studying the 

photoluminescence optical properties of the nanomaterials. The 

photoemission spectra of nanomaterials have been found to be particle size 



      

 

   

Page 10 

 

  

dependent, a property which is not observed in bulk materials. Absorption of a 

photon by nanosized a semiconductor material excites electrons from the 

valence band into the conduction band, creating an electron-hole pair [14]. 

The excited electrons instantaneously come back to the VB to recombine with 

the holes owing to the fact that the electrons are not stable in excited states. 

During the recombination process, a certain amount of energy is released. 

The released energy can be dissipated as radiation, which results in a 

luminescence emission. Due to the presence of a number of possible sub-

bands, the excited electrons travel through different paths during the 

recombination process, which results in different energy emissions. Different 

types of nanomaterials show different luminescence, and they have been 

employed in many different ways ranging from fluorescent lamps, X-ray 

detectors, light emitting diodes, and charge displays [15]. 

 

2.3 Applications 

Since nanomaterials exhibit unique; chemical, physical, electrical/electronic, 

magnetic, optical and mechanical properties, they can be used for a wide 

variety of applications. Some of the applications for nanomaterials are related 

to energy, electronics, textiles, environment, food, agriculture, health care, etc. 

Some of these applications are summarized in the discussion below. 

 

2.3.1 Energy conversion and storage 

Nanomaterials have been widely studied for energy related applications such 

as in solar cells, lithium ion batteries, catalysis, and supercapacitors. These 

applications are related to the different properties nanomaterials offer, such as 

high surface to volume ratio, a quantum confinement effect, good electron 

transport properties, to mention a few [16, 17]. Due to the increasing global 

consumption of energy, insufficient energy generation and storage, there is 

much need to design materials that can efficiently capture energy from the 

sun, convert energy from clean sources such as H2 production from H2O 

splitting and store energy using light portable and efficient batteries [18, 19]. A 
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lot of research has focused on the application of nanomaterials in the 

fabrication of third generation solar cells [17]. Third generation solar cells are 

low-cost and highly efficient solar cells that apply novel methods in order to 

achieve high efficiency. This is how they differ from the Si based high-cost 

and efficient first generation solar cells, and thin film based low-cost and low-

efficient second generation solar cells. The goal is to fabricate solar cells that 

can efficiently convert solar light to electricity well beyond the single-junction 

Schokley-Queisser limit of 32% by use of multi-layers of graded series of light 

absorbers (multi-junctions) [17]. Dye sensitized solar cells are devices 

fabricated for light-electricity conversion. The mechanism involves light 

induced electron transfer from the dye molecules to the semiconductor oxide 

substrate and the injected charge carries are collected at the collector 

electrode [17]. Conversion efficiencies of above 10% are obtained when using 

dye-sensitized solar cells [20]. Due to the quantum confinement effect 

observed for materials with very small particle sizes in the nanometer range, 

quantum dots have been studied for application in solar cells [17]. They are 

being used as sensitizers instead of the dye, due to their high surface area-to-

volume ratios and outstanding optical properties [21, 22].There is currently a 

lot of research performed based on application of nanomaterials as a cathode 

material in lithium ion batteries. The goal is to obtain materials with a good 

storage capacity [17]. Lithium ions are generally inserted into a host material 

such that the potential of the host changes [17].  

 

2.3.2 Electronic applications  

There are numerous applications for nanomaterials in the field of electronics. 

Applications include their use in efficient and affordable digital displays, high-

density data storage, high power magnets, single electron transistors and 

highly sensitive sensors [23-26]. Much has been documented in literature on 

these different applications, but in this report attention has been given to the 

gas sensing applications of nanomaterials. Typical applications for sensors 

made out of nanocrystalline materials are the smoke detectors, gas detectors 

in chemical laboratories and in the mines, automobile engine performance 
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sensors and for evaluation of toxicity levels of some diseases in infected 

patients in the medical sector. 

 

A high demand for the fabrication of highly sensitive sensors today for 

environmental monitoring in chemistry, physics, manufacturing, as well as for 

medical, food and agriculture areas is increasing [27]. Sensor devices show 

changes in characteristics due to the change of their environment. The 

chemical, physical or mechanical change introduced in a sensor environment 

is used to study the characteristics of the sensor. The area of semiconductor 

based gas sensors (chemoresistive sensors) is of particular interest. When 

compared to other types of gas sensing methods used e.g. optical gas 

sensors and gas chromatography gas sensors [28], semiconductor gas 

sensors prove to be quite easy to analyse and few logistics are required when 

preparing the electronic devices. The other gas sensing methods mentioned 

show a good stability and gas selectivity, which is still a challenge for 

semiconductor gas sensors. Semiconducting nanomaterials are normally 

mounted on top of an insulating substrate, with metal contact electrodes also 

mounted on the insulating material, which allows contact with the sensing 

material from the sides. Alternatively, nanomaterials can be mounted on top of 

Au interdigital electrodes which are deposited on an insulating substrate. Pt 

heaters are also mounted on the backside of a substrate to provide high 

operating temperature requirements. A sketch showing an example of today’s 

type of gas sensing set-up with the sensing device mounted inside a sensing 

chamber is shown in Fig. 2.2. 

Nanomaterials have a high surface-to-volume ratio and gas sensing 

using surface reactions has been intensively explored. Advantages such as 

increased sensitivity, low detection limits, fast response, and the synthesis of 

light and portable devices have been achieved with these types of sensors. 

Parameters such as long life time and high carrier mobility are some of the 

important parameters to look associated with the fabrication of reliable gas 

sensors [29]. The report by Seiyama in 1962 on how the electrical conductivity 

of ZnO could be changed due to the presence of reactive gases in the air 

prompted a huge interest on the application of MOx in gas sensors [29]. Albeit 
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these materials have been reported to be sensitive and sometimes even 

selective, challenges like lack of flexibility, poor response times and stability 

over limited temperature ranges have been encountered [30, 31]. Most of the 

currently applied semiconductor gas sensors are operated at temperatures 

above 150 oC. These temperatures bring a challenge in terms of energy 

consumption and may also reduce the life time of the sensor. UV light is 

sometimes applied to assist the semiconductor surface to actively adsorb or 

desorb gas molecules [32, 33]. There is currently a need for more reliable 

materials for use in sensor device fabrication. 

 

 
Figure 2.2: A schematic diagram of a typical gas sensing set-up used to 

measure gas sensing [34]. 

 

2.3.2.1 Mechanism of semiconductor based gas sensors 

As with any other nanomaterial based application, the microstructure of the 

material employed in the sensor device plays a huge role in sensor 

performance. Many sensors show a change in conductance when exposed to 

different gas environments. Fig. 2.3 (a) shows the widely accepted 

semiconductor sensing mechanism used to explain the interaction of oxidising 

and reducing gases for the n-type and the p-type MOx based semiconductors.  
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A similar mechanism is also realized for metal nitride semiconductors [35] as 

well as metal sulphide (MSx) semiconductors [36] except at elevated 

temperatures where MSx materials become oxidised to MOx material [37]. The 

mechanism is based on semiconductor-gas interactions at the grain 

boundaries of the sensor material. An oxidation (or reduction) process takes 

place on the semiconductor sensor surface during sensing or alternatively gas 

diffuses on the sensor surface by reaction with surface states associated with 

pre-adsorbed ambient oxygen. Electron transfer of delocalized conduction 

band electrons to localized surface starts [35, 38 & 39]. If we consider an n-

type semiconductor, where majority carriers are electrons, the MOx surface 

will adsorb oxygen species (O2
-, O2-, O- [39]) from an air atmosphere by 

trapping conductive electrons, thus making the MOx less conductive [35]. 

Further, for a 1D MOx nanostructure, the high surface-to-volume ratio provides 

a large number of surface atoms which have a potential for causing 

insufficiency in surface atomic coordination and high surface energy. This 

results in a highly active surface which promotes further adsorption of oxygen 

from the atmosphere [39]. When the reducing H2 gas is introduced to this 

oxygen saturated MOx (or any semiconducting material), the concentration of 

adsorbed oxygen species decreases, resulting in increased conductivity of the 

material. The active H2 species react with the surface adsorbed oxygen 

species, generating gaseous H2O [35]. This way, the pre-trapped electrons 

are released back to the conduction band, resulting in increased overall 

conductance of the material. When ambient air is introduced to the material 

and H2 gas is switched off, the conductivity of the material recovers its initial 

condition. ZnS has been used as a gas sensor by Fang et al. [37]. Unlike with 

metal oxides or nitrides, the gas adsorption/desorption processes are more 

likely to be irreversible due to the replacement/removal of S2- ions on the NiS 

surface. When a NiS surface is exposed to H2 gas, two reactions take place 

between H2 and O2- and between H2 and S2- to form H2O and H2S 

respectively. Sulphur deficient MSx is obtained after the desorption process. 

This occurs at elevated temperatures and has been overcome by use of UV 

illumination which causes enhancement of the modulation of conductance by 
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adsorbed oxygen [40]. If O2 was used as the carrier gas, NiS would change to 

nickel oxide [37]. 

         

Figure 2.3: Gas sensing mechanism of n-type (a) and p-type (b) 

semiconductor nanomaterials for oxidising and reducing gases respectively. 

(c) shows the gas sensing mechanism for metal sulphide n-type 

semiconductor. Drawing adapted from reference [35]. 

  

For a p-type semiconductor, where majority carriers are holes, an opposite 

behaviour is observed. Under an oxygen ambient atmosphere, the oxygen 

gets adsorbed on the surface of the material, trapping electrons that are 

excited from the valence band [41]. This results in an increase in the number 

of holes which subsequently increases the conductance of the material. When 

a reducing gas such as H2 is introduced to the sensor environment, electrons 

are injected into the valence band where they recombine with the holes and 

results in a reduced number of holes and less conductance. The sensing 

mechanism for a p-type semiconductor is shown in Fig. 2.3 (b). The sensitivity 

response is determined by recording the resistance before the gas is 

introduced (R0) and the maximum resistance of an analyte gas (Rg). The 

sensitivity is then defined as S = Rmax/Rmin, where Rmax/Rmin is calculated as 

R0/Rg for reducing gases and Rg/R0 for oxidising gases when using n-type 

semiconductor and the reverse is applicable for p-type semiconductors [42]. 

Equations 1-4 show the changing states of oxygen species adsorbed on the 

Atmospheric O2

S2-
S2-O- O-O- O-

Depleted layer

Conducting channel

S2- O- O-

H2 gas

H

H2S(g)

H

H2O(g)

O- HS-H

Atmospheric O2

S2-
S2-O- O-O- O-

Depleted layer

Conducting channel

S2- O- O-O-

H2 gas

H

H2S(g)

H H

H2O(g)

O- H

(a) (b)

Au NP

O2 O2

O- O- O- O-

depleted layer

conducting channel

O- O- O- O-

H2

HH

H2O(g)

(a) (b) (c)
O2

H2O(g)H2S(g)

conducting channel
depleted layerdepleted layer

conducting channel



      

 

   

Page 16 

 

  

surface of MOx semiconductor as the temperature is increased [43, 44]. 

Equation 5 shows the hydrogen reducing mechanism that can take place on 

an oxygenated semiconductor sensor surface at room temperature [45]. 

 

                          (1) 

                   
        (2) 

       
             

        (3) 

      
            

              (4) 

           
                      (5)  

 

Important parameters to be achieved for gas sensors include a high 

sensitivity, good selectivity, fast response time, fast recovery time, 

reproducibility, stability, low cost and good maintenance [46]. These are 

important for the commercial application of nanostructure based gas sensors. 

One of the challenges faced with wide band gap semiconductors is their poor 

selectivity towards different gases [38]. Research attention is now directed on 

trying to improve the selectivity of the sensors and to achieve room 

temperature operation of the sensors in order to minimize running costs and 

to commercialise them for the analysis of individual analytes. The work 

currently done by various research groups has focused on the improvement of 

the nanocrystalline structures, doping nanomaterials with impurities, applying 

selective catalysts on the surface of the semiconductors, and fabricating 

different heterostructures (including use of p-n junctions for light assisted gas 

sensors) which influence carrier charge transport [22, 33, 47 &48 ]. 

 

2.4 Solution phase chemical synthesis of 

nanomaterials 

Nanomaterials can be fabricated via two general approaches viz, a top-down 

approach and a bottom up approach. The top-down approach involves 

breaking down a bulk material until the desired nanomaterials are obtained 

[Fig. 2.4]. This method is not widely used to fabricate nanomaterials due to the 
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number of imperfections it introduces to a material surface [12]. The bottom-

up approach involves growing of nanomaterials from single atoms or 

molecules until cluster of nanomaterials form [Fig. 2.4]. This is the popular 

technique used in the fabrication of nanomaterials. This method generates 

less defects and better homogeneity of a fabricated nanostructure is achieved, 

when compared to the top-down approach. Solution phase chemical synthesis 

is one of the methods that are used in the bottom-up approach. 

 

 

 

Figure 2.4: Top-down (left) and bottom-up (right) - approaches to growth of 

nanomaterials. 

 

 

2.4.1 Nucleation and growth of nanoparticles in solution 

Nanomaterials are readily obtained from a solution by precipitation. The 

nanostructure forms by nucleation which occurs as a result of supersaturation 

after the solute concentration has exceeded the equilibrium solubility of the 

solution [12]. Due to a high Gibbs free energy of the solution, as a result of 

supersaturation, the overall energy of the system decreases in order to 

preserve an equilibrium concentration in the solution [12, 49]. This is a 

thermodynamically driven nucleation process which is referred to as 

Top down approach

Bottom up approach
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.
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homogenous nucleation. The solute molecules combine to produce nuclei 

without a solid interface [49]. The overall free energy, G (Equation 6) of the 

reaction, is the sum of the free energy due to the formation of a new volume 

and the free energy due to the new surface created [49].  

        
 

 
                     (6) 

 

For spherical particles of the reaction where V is the molecular volume of the 

precipitated species, r is the radius of the nuclei, kB is the Boltzmann constant, 

S is the saturation ratio, and  is the surface free energy per unit surface area. 

When S >1, G has a positive maximum value at a critical size, r*, as shown 

in Fig. 2.5.  

 

 

Figure 2.5: Illustration of the overall energy G as a function of the growth 

particle size r [50]. 

 

When the nuclei size is bigger than the critical size, the growth free energy is 

decreased and the stable nuclei grow to form particles. When r = r*, dG/dr = 

0 and the critical size r* is given in equation 7. 

 

        
   

         
     (7) 
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For a given value of S, all particles with r > r* will grow and all particles with r 

< r* will dissolve [49]. This is because the critical size r* is the minimum 

particle size that can be achieved to begin nucleation. From the equation, it is 

clear that the critical nuclei size r* is inversely proportional to the saturation 

ratio S. After the formation of nuclei from the solution, a growth through 

molecular addition occurs, and this relives the supersaturated step. When the 

concentration drops below the critical level, nucleation stops and the particle 

growth continues by molecular addition until the equilibrium concentration of 

the precipitated species is reached [49]. 

Uniformity of the size distribution is achieved through a short nucleation period 

that generates the particles obtained at the end of the reaction followed by a 

self-sharpening growth process. At this stage, the smaller particles grow more 

rapidly than the larger ones because the free energy driving force is larger for 

smaller particles than for larger ones. At this stage, focusing in size occurs 

[49]. The nearly monodispersed size distribution can be obtained by either 

stopping the reaction (nucleation and growth) quickly or by supplying a 

reactant source to keep a saturated condition during the course of the 

reaction. 

Alternatively, when the reactants are depleted due to particle growth, 

an Ostwald ripening, defocusing will occur, where the larger particles continue 

to grow, and the smaller ones get smaller and finally dissolve [50]. Because 

the saturation ratio (S) decreases and the corresponding critical nuclei size 

(r*) increases (according to equation 2) any particles smaller than this new 

critical size will dissolve [50]. If the reaction is quickly stopped at this stage, 

the particles will have a broad size distribution, which is shown by a 

distribution centering two size regimes, a bigger one and a smaller one. Their 

critical size at this saturation is in between the two values. In the latter case, 

the size of the particles become relatively large and their size can extend into 

the micrometer regime. During an actual experiment, when there is no 

continuous supply of reactants, the saturation ratio continues to decrease and 

the critical nuclei size continues to increase. To get a short burst of nucleation, 

a high saturation ratio (S) is required. 
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In addition to the growth by molecular addition, where soluble species 

deposit on the solid surface, particles can grow by aggregation with other 

particles, and this is called secondary growth. The rate of particle growth by 

aggregation is much larger than the growth by molecular addition. After the 

particles grow to a stable size, they will grow by combining with smaller 

unstable nuclei and not by collisions with other stable particles. Because 

nanopartices are small, and are not thermodynamically stable, a method is 

required to allow nanoparticles to settle during the reaction. This can be 

achieved either by adding surfactant protecting agents, such as organic 

ligands or inorganic capping materials [51, 52], or by placing them in an inert 

environment such as an inorganic matrix or polymer [49]. The stability of 

nanocrystal dispersion will then be promoted by a favourable interaction 

between the capping groups and the solvent, which will provide an energetic 

barrier to counteract the van der Waals and for magnetic materials/magnetic 

attractions, between nanoparticles [49]. To help arrest these nanoparticles, 

different solvents are also used to change the solubility or the reaction rate 

[49, 53]. 

Stabilising nanoparticles by use of a capping agent and various 

solvents has also been reported to have a great influence on the shape as 

well as the crystallite structural properties of the final product [53].  

 

2.4.2 Growth Methods 

While there are many physical and chemical ways to synthesize 

nanomaterials such as chemical vapour deposition [54, 55], high energy ball 

milling [56], pulsed laser ablation [57], physical vapour deposition [56], sputter 

deposition [59], colloidal route [60], sol-gel methods [61], solvothermal and 

hydrothermal chemical methods [62, 63]; the solution phase chemical 

methods provide an economical friendly, low energy and convenient way to 

obtain nanomaterials. Some solution based chemical methods that have been 

applied to synthesize nanomaterials include: the solvothermal method, 

hydrothermal method, sol-gel method, sonochemical method, and reflux 

method. The solvothermal method is a relatively low temperature technique 
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where an organic solvent is used as a reaction medium in a closed reaction 

vessel such as an autoclave. A pressure build up is realized during the 

reaction and contributes to the reaction. This method had been used 

extensively in the synthesis of different crystalline nanostructures such as 

ZnO, TiO2, GaN, and Ag, to mention a few [64-67].   The hydrothermal 

method is similar to the solvothermal method, except water is used as a 

solvent instead of an organic solvent. The advantage of this method is the use 

of water in the reaction and it has been reported to produce good crystalline 

phase nanomaterials [68-70]. The sonochemical method is a method where 

nanomaterials are obtained through application of powerful ultrasound 

radiation [71]. This method is known to produce size selective particles in the 

synthesis [71]. The reflux method involves carrying out a reaction at the 

boiling point of the solvent which is kept from evaporating by the help of a 

condenser.  Most reactions take place under an inert atmosphere to prevent 

oxidation of the intended product [72, 73] and a solvent is heated above its 

boiling temperature in order to produce enough energy to promote the desired 

reaction followed by later cooling to obtain the products.  

 

2.4.2.1 Microwave-assisted synthesis of nanostructures 

The microwave heating method has been used widely in the world of 

chemistry over the past decades especially for organic synthesis and for 

digestion of materials for analysis [74-78]. More recently microwave chemistry 

has been considered for material synthesis and in nanotechnology 

applications [75-82]. Most of the inorganic materials synthesized in the 

laboratory require very high temperatures and long reaction periods. The 

advantage of microwave irradiation heating in chemical synthesis of 

nanomaterials is the quick heating, higher reaction rates and the low energy 

consumption requirements of this method [83].   

Microwave assisted inorganic material synthesis is a clean method of 

synthesis that is affordable and reactions are fast with materials produced with 

a reported high purity and a narrow size distribution of nanoparticles [84].  

Although the new microwave ovens designed for chemical reactions can be 
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quite expensive, the ability to perform multiple reactions at the same time and 

over a short period of time coupled with other feature reduces the cost 

implications. The improved heating method is achieved in microwave reactors 

by localized heating unlike the type of heating realized when using 

conventional methods of heating. This is an important parameter that affects 

the formation of nanomaterials. Fig. 2.6 shows the different heating a sample 

experiences with many microwave heating and conventional heating. In 

conventional heating, reactants are slowly activated by a conventional 

external heat source. Heat passes through the walls of the vessel in order to 

reach the reaction contents [85]. In microwave heating, there is a direct 

coupling between the microwaves and the molecules in the reaction mixture, 

which results in a fast temperature rise. Early application of microwave 

synthesis involved the use of kitchen microwave ovens, which introduced 

various concerns such as safety due to absence of temperature and pressure 

controls [86]. This limited the amount of information that could be extracted 

until more chemical friendly microwave reactors were designed.  These 

include the multimode microwave systems that have been commercially built 

specifically for chemical reactions. This system is pressure programmed with 

a limit of 60 bars and other controllable parameters include; temperature, 

time, stirrer speed and cooling [87].  

 

 

 

Figure 2.6: Inverted temperature gradients in microwave versus the 

conventional oil-bath heating: Difference in temperature profiles after 1 min of 

microwave irradiation (left) and treatment in an oil-bath (right) [88]. 
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2.4.2.2 Basic principles of microwave chemistry 

Microwaves are electromagnetic waves whose wavelength lies in the range 

0.01 mm to 1 m (frequency range 0.3 to 300 GHz). A large part of the 

microwave spectrum is used in point to point communication, TV broadcasting 

via satellites and in RADAR systems. Microwaves are also used for heating in 

industrial, biomedical, chemical and in scientific research applications [89]. 

However, only a few frequencies are allowed for microwave application in 

industry, science and medicine, with the most common being the 2.45 GHz 

frequency. When microwaves irradiate a dielectric material, various 

phenomena occur which is dependent on the nature of the electromagnetic 

waves. Two main mechanisms account for their use in nanomaterial chemical 

synthesis viz; dipolar polarization and ionic conduction [90]. 

 The dipolar polarization takes place when polar solvent molecules or 

reagents form part of the reaction. Since these molecules have an electrical 

dipole moment, they align themselves in the direction of the applied electric 

field. Meanwhile the magnetic field alternates, and the molecular dipoles try to 

align themselves with the filed [91]. In this process, energy is lost in the form 

of heat through molecular friction and dielectric loss [92].  

The ionic conduction takes place when charged particles are involved 

in the reaction. The ions also oscillate due to introduction of electric field and 

in the process collide with neighbouring molecules or atoms [90]. The 

collisions cause agitation which results in heat formation. 

 

Chen et al. have successfully synthesized inorganic nanomaterials 

using a microwave irradiation procedure [94]. One of the interesting 

observations from the study related to the shape change of the Ag 

nanomaterials as different power levels and different precursor concentrations 

were applied [94]. Other researchers have also reported a change in particle 

shape, size, and product distribution when the ramping temperature and 

heating times were varied. This is in addition to the effect of metal salt and 

surfactant concentration, reaction temperature, and the solvents that also 

affected the product shape [82]. 

 



      

 

   

Page 24 

 

  

2.5 Gallium Nitride nano-materials 

 

 

 Figure 2.7: Various ternary and quaternary materials used for light emitting 

diodes with the wavelength ranges between 400 and 900 nm [10]. 

 

Fig. 2.7 shows the application of the group III-V semiconductor materials as 

light emitting diodes according to their specific wavelengths. GaAs has a band 

gap of 1.42 eV at room temperature and it is one of the compound 

semiconductors that have been widely used in electronic device fabrication 

[10, 95, & 96] i.e. in diodes, microcircuits, field effect transistors, and in solar 

cells [48]. GaAs has been used quite successfully in industry.   

 

 

Figure 2.8: Independent variation of the band gap and lattice constants for 

the nitride based quaternaries [97]. 
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Amongst the group III nitride based nanostructures AlGaN, AlN, GaN and InN 

nanomaterials have received much attention over the past years due to their 

interesting optoelectronic and electronic applications [98-100].  However, 

these materials have not been explored as much as GaAs.  Their energy band 

gaps cover a wide spectrum and their variation with corresponding lattice 

constants is shown in Fig. 2.8. Different techniques that have been used to 

synthesize these materials include chemical vapour deposition [95], laser 

ablation [101], and arc discharge [102].  Chattopadhyay et al. published a 

review on the growth of 1-D group III nitrides which reported on various ways 

to synthesize these types of materials as well as their properties and their 

applications in nano-sensing and nano-optoelectronics environments [103].   

GaN, like most nitride materials, normally crystallises in the wurtzite 

structure, under ambient conditions [104]. This structure has a hexagonal unit 

cell and lattice constants a and c. The space grouping when using the 

Hermann-Mauguin notation is P63mc and the point group symmetry is 6mm. 

This structure consists of two interpenetrating hexagonal close packed sub-

lattices, each with one type of atom, offset along the c-axis by 5/8 of the cell 

height [105]. It also consists of alternating diatomic close-packed (0001) 

planes of Ga and N pairs; hence the stacking sequence of the (0001) plane is 

AaBbAa in the (0001) direction [105]. The stacking order of the GaN wurtzite 

structure along the (0001) c-direction (AaBa) is shown in Fig. 2.9  
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Figure 2.9: A stick-and-ball stacking model of crystals with 2H wurtzitic 

polytypes. The bonds in an A-plane are indicated with heavier lines to 

highlight the stacking sequence. The left figure shows a 3-D view while the 

right figure shows the (0001) plane projection for the wurtzite phase [106] 

 

Chang and Wu have reported a temperature (T) controlled catalytic 

growth of 1-D GaN nanowires using a gallium organometallic precursor [107]. 

They used a dual temperature zone furnace with the first zone being a low T 

zone and the second being a high T zone.  Their precursor was vaporised 

using a 100 sccm NH3 flow and carried from the low T zone to the second T 

zone of a T range of 550-850 oC.  In their samples they observed different 

GaN morphologies as a function of T. Several other reports show that the 

CVD synthesis of GaN nanowires by ammoniating Ga oxides e.g. Ga2O3 at 

temperatures between 850 and 1000 oC is feasible [35, 108]. 

Soluble GaN nanocrystals have been synthesized by Cheng et al. via a 

solution phase chemical synthesis [107]. Their reaction took place in a round 

bottom flask under inert conditions.  They used a gallium source (GaCl3), a 

nitrogen source (Li3N), a capping agent (trioctylphosphine oxide; TOPO) and 

a solvent (dibenzofuran).  They synthesized GaN nanocrystals at 290 oC 

under ambient pressure conditions.  The TOPO and dibenzofuran ratio was 

varied in order to manipulate the GaN crystal size.  From their studies they 

observed that dibenzofuran controlled the crystal size of the particles.  

Further, their XRD analysis showed that they had synthesised GaN 

nanocrystals [107].  There is not much work that has been done on the 

synthesis of GaN by solution methods. In some cases, soluble Ga metal salt 

View normal to [0001] View along to [0001]

Wurtzitic
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precursors are used to fabricate specific Ga-O/Ga-OH complexes which are 

later ammoniated at higher temperatures to produce GaN with tuned 

structures [109-111].  

 

2.6 Nickel Sulphide nano-materials 

Nickel and sulphur form various phases which include NiS, NiS2, Ni3S4, Ni9S8, 

Ni7S8 and Ni3S2.  NiS display hexagonal and rhomboherdal phases which 

have interesting electrical and catalytic properties. Hexagonal NiS shows a 

metal-insulator transition (MIT) at approximately 264 K. This transition occurs 

parallel to a paramagnetic-anti-ferromagnetic property change with an anti-

ferromagnetic moment of 2B per Ni+ ions [112]. This has attracted intensive 

research on this material with the goal of finding possible reasons for the 

transition and to identify mechanisms for the transition [113-115].   

 

The interest in this material dates back to the early 1960’s, when the 

existence of the transition was discovered by Sparks and Komto [116]. 

Fujimori et al, have done much research on the physical properties of 

materials that exhibit MIT [116, 117]. One of the notable things for NiS 

transitions, unlike many other materials, is its transition being associated with 

a change in lattice parameters and unit cell volume of the crystal structure but 

with no change in the crystal symmetry. Okamura et al carried out optical 

studies on the NiS transition and confirmed an energy gap of 0.2-0.3 eV at the 

transition [113]. They also showed that the energy gap was dependent on the 

temperature as well as on the Ni stoichiometry, where an increase in gap was 

observed with decreasing temperature, while a decrease in gap was observed 

with increasing Ni stoichiometry for Ni1-S (0.002 <  < 0.02). Fig. 2.10 shows 

the phase diagram of -NiS.  
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Figure 2.10: A schematic phase diagram of Ni1-S in terms of temperature (T), 

Ni vacancy concentration (), and external hydrostatic pressure (P). Image 

copied from reference [113] 

 

NiS nanostructured materials have in general been synthesized by 

unsophisticated methods. Soft chemical routes have been employed for the 

synthesis of inorganic nano-materials for a long time. Methods that have been 

used to make these materials include a slow precipitation method, a direct 

infiltration self-assembly route, a single source precursor route and a 

hydrothermal method [118, 119]. Some of the solution chemical methods that 

have been used to synthesize NiS are summarized in Table 2.1. The table 

only shows the solution phase chemical synthesis of NiS (both rhombohedral 

and hexagonal phases). However, other nickel sulphide polymorphs can be 

synthesized via the same method by changing parameters such as Ni:S ratio, 

solvent, precursor and temperature. 

Pan et al. reported on the synthesis of flower and rod like NiS 

nanostructures using distilled water as a solvent [118]. In their experiment, 

they used nickel acetate as a Ni source and thiourea as a source of S. They 

heated a given ratio of the precursors, dissolved in distilled water at 200 oC, 

for 48 hours in a Teflon-lined autoclave. After drying the product in air, they 

obtained flower and rod like NiS with the phase confirmed by XRD.  

Ni foil and S powder in deionized water have been reported by Zhang 

et al. to make oriented nanostructured films of NiS [119]. In a typical reaction, 

a known size of Ni foil and a known quantity of S powder were placed in a 

Teflon-lined autoclave and 15 ml deionized water was added. The reaction 
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was carried for a period of 12 hours under a constant 180 oC temperature 

followed by washing and drying of the product.  

In some cases, a stabilising agent is added into the reaction mixture 

when using the soft chemical routes to synthesize different nanostructures 

[94, 111 & 120].  This is done to control the size and shape of the 

nanomaterial at a nanoscale during synthesis. Stabilizers that have been used 

include trioctyl phosphine oxide (TOPO), hexadecylamine (HDA), polyvinyl 

pyrrolidone (PVP), polyvinyl alcohol (PVA), polyethylene glycol (PEG), 

trioctylphosphine (TOP) and sodium dodecyl sulphate. A mixture of the 

stabilizers is sometimes used instead.   
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Table 2.1 Summary of previous work done on solution chemical synthesis of NiS nanostructures. 

Growth 

method  

Materials Solvent T (oC) Time 

(h) 

Morphology Thickness Phase Reference 

Hydrothermal

-autoclave 

Ni(CH3COO)2.4H2O 

and Na2S2O3.5H2O 

Distilled 

H2O 

200 12 Nanobelts  70-200 

nm 

 

- Wang et al. 

[121] 

Hydrothermal

-autoclave 

Ni(NO3)2.6H2O and 

Thioglycolic acid 

Distilled 

H2O 

180 12 Hierarchical 100-400 

nm 

- Salavati-

Niasari 

[122] 

Hydrothermal

-autoclave 

Ni(CH3COO)2 and 

(NH2)2CS 

Distilled 

H2O 

200 4 Layers - - Sun [123] 

Hydrothermal

-autoclave 

Na2S and Ni(OH)2 NaOH 180 48 Nanorod based 

microspheres 

50-100 nm - & - Wang et al. 

[124] 

Hydrothermal

-autoclave 

NiCl2.6H2O and 

(NH2)2CS 

N2H4.H2O 100-120 

 

 

140-180 

24 Lamella-based 

seaurchin-like 

 

Rod-based 

seaurchin-like 

3-6 m 

 

30-50 nm 

- 

 

- 

 Liu [125] 

Hydrothermal Ni(NO3)2.6H2O, Distilled 220 24 Flowers 2-4 m - Zhou et al. 
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-autoclave NaSCN and CTAB H2O [126] 

Hydrothermal

-autoclave 

Ni foil and S powder Deionized 

H2O 

180 12 Dendrites  - Zhang et al. 

[119] 

Hydrothermal

-autoclave 

NiCl2.6H2O and S 

powder 

Deionized 

H2O + 

NaOH 

160 24 Hexagonal 

flakes 

200 nm - Ma et al. 

[127] 

Hydrothermal

-autoclave 

NiSO4 and (NH2)2CS Deionized 

H2O 

170 10 Nanoflakes –

based flowers 

1 m - Tang, et al. 

[128] 

Hydrothermal

-microwave 

NiCl2.6H2O, PEG and 

Na2S.9H2O 

Distilled 

H2O 

170 1 Needle-based 

starfish-like 

20-35 nm - Bo et al. 

[129] 

Hydrothermal

-autoclave 

Ni(CH3COO)2.4H2O 

and (NH2)2CS 

Distilled 

H2O 

200 48 Rod-based 

flowers 

30-80 nm 

 

- Pan et al. 

[118] 

Hydrothermal

-autoclave 

Ni(NO3)2.6H2O, 

(NH2)2CS and en 

Distilled 

H2O 

160 24 Petal-like 

structures 

5 m - Dong et al. 

[127] 

Hydrothermal

-autoclave 

NiSO4.6H2O, cysteine 

and dodecanethiol 

Distilled 

H2O 

180 12 Nanoflake-

based hollow 

spheres 

2-10 m - Zhao  et al. 

[131] 

Hydrothermal

-autoclave 

Ni(OH)2 and 

(NH2)2CS 

Distilled 

H2O 

150 10 Nanoplatelets 4.7 m - & - Zhao et al. 

[132] 
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Solvothermal

-autoclave 

NiCl2.6H2O and 

Na2S2O3.5H2O 

en 225 120 Rods 1-4 m - Shuguang 

et al. [133] 

Solvothermal

-autoclave 

Ni(CH3COO)2.4H2O 

and C13H12N4S 

en 220 5 Nanoneedle-

based urchin-

like 

150 nm 

30 m 

-  Zhang et al. 

[134] 

Polyol-glass 

flask 

NiCl2.6H2O, 

N2H4.H2O and 

(NH2)2CS 

EG 158 7 Chain-like tubes 280-320 

nm 

- Zhang et al. 

[135] 

Solvothermal

-autoclave 

NiCl2.6H2O, 

N2H4.H2O and 

elemental S 

Ethanol 

Pyridine 

110 10-12 Nanoparticles 

Nanorods 

10 nm 

30 nm 

- & - Meng et al. 

[136]  

Polyol-reflux 

condenser 

NiCl2.H2O and 

(NH2)2CS 

EG - 2 hierarchical 200-300 

nm 

- [137] 

Colloidal 

chemical 

process 

Ni(acac)2 and 

elemental S 

Oleylamine 140 1 Nanocrystals - - Zhang et al. 

[138] 

Hydrothermal

-autoclave 

NiCl2.6H2O,  

C6H5Na3O7·2H2O 

and L- cysteine 

Distilled 

H2O and 

NH3 (pH = 

180 24 Thin flake-

based 

nanoflowers 

5-5 m - Jiang et al. 

[139] 
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 10) 

Hydrothermal

-microwave 

Ni(CH3COO)2.4H2O, 

(NH2)2CS, 

Na3C6H5O7.2H2O 

Deionized 

H2O, and 

NH3 (pH = 

12) 

140 

 

 

180 

1/4 Prismatic 

particles 

 

Prismatic 

particles and 

needles 

500-900 

nm  

 

2-3 m 

 

400-600 

nm 

- 

 

 

- & - 

Idris et al. 

[140] 

Hydrothermal

-autoclave 

NiSO4, NaOH and 

thioacetamide 

Deionized 

H2O 

160 24 Monodisperse 

nanoparticles 

20-50 nm - Guo et al. 

[141] 

Reflux Ni(acac)2 and 1-

dodecanethiol 

Oleylamine 280 5 Nanorods 20 nm - Chi et al. 

[142] 
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Chapter 3: MW-assisted synthesis of NiS2 

nanostructures and their PL properties   

3.0 Preamble 

This chapter deals with just one of the many phases of nickel sulphide, NiS2, we have been 

able to obtain in this study. Some of the contents of this chapter were published recently [a]. 

The reported work includes the morphological analysis of NiS2, phase and their 

photoluminescence (PL) properties.  

 

3.1 Introduction 

Transition metal chalcogenide nanomaterials e.g. CdS, ZnO, ZnS, SnO, SnS, CoS, CuS, 

CuS2, FeS2, CoS2 and NiS2 have received considerable attention over the years owing to the 

novel properties observed when compared to their bulk counterparts which results from a 

quantum confinement effect [1-6]. These material’s properties such as opto-electronic, 

mechanical and chemical properties have aroused intensive investigations for new 

applications including use in catalysis and in optical and magnetic devices. The nickel 

disulfide (NiS2) alloy adopts a pyrite structure and is known to be an antiferromagnetic 

insulator with a band gap of about 0.3 eV. Its narrow band gap has attracted attention for 

possible applications in the semiconductor industry especially in infrared emitters and 

detectors [7]. Methods that have been used to synthesize these types of materials include 

chemical vapour deposition, solid-state reactions and wet chemical thermal techniques [8-

12]. The microwave assisted hydrothermal technique has become one of the methods for 

nanoscale synthesis [13]. This is because microwave addition to hydrothermal reactions 

provides quick, straightforward, and inexpensive ways of attaining the desired products from 

a given chemical reaction. The microwave provides uniform heating of the reaction promoting 
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uniform distribution of the product materials, which is not obtained when using conventional 

heating technique. Also, the solvents used can be green; hazardous by-products are 

prevented. This makes microwave reactors to be potential alternatives for bulk synthesis of 

nanomaterials for industrial applications. Challenges such as control of nanomaterial particle 

size, and morphology can be overcome by controlling various parameters e.g. solvent, 

reaction time, temperature, pressure etc. Addition of a stabilising agent to control the size 

and morphology on nanomaterials has been widely studied and shown to be alternative way 

of obtaining crystalline nanostructures with desired properties. This however is limited to the 

type of application of the nanomaterials one has in mind. 

 

3.2 Experimental 

3.2.1 Reagents and sample preparation 

All reagents used were purchased from the Sigma Aldrich chemical company and were used 

as received without any further purification. To synthesize NiS2 nanostructures, 1.552 g 

Ni(CH3COO)2.4H2O was added to an ethanol solution containing 0.400 g sulfur. The mixture 

was then transferred to a Multiwave 3000 microwave oven that was operated at 600 W for 30 

minutes and fan cooled to room temperature for 20 minutes. The black precipitate formed 

was washed several times with ethanol and dried in an oven at 90 oC for 6 hours to optimize 

for NiS2 formation. The reaction was repeated and the power used was changed to 700 W 

and 800 W. Further, the reaction was repeated in the presence of 5.00 g HDA in order to 

control the size of the nanostructures formed.  

 

3.2.2 Characterization 

The phases of the as-synthesized materials were investigated using X-ray diffraction [Philips 

PW 1830 X-ray diffractometer with a Cu Kα (λ = 0.154 nm)]. Sample morphologies were 

studied using SEM (JOEL 2000) and high resolution transmission electron microscopy (HR-

TEM Joel-Jem 2100). The PL spectra of the as-synthesized samples were recorded at room 

temperature from 310 nm to 800 nm using a Horiba Jobin Yvon HR320 Spectro-fulorometer 
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by exciting the samples with the 300 nm line of a deuterium lamp. The emission was 

detected with a Jobin-Yvon MPT detector.  

Density functional theory simulations were carried out using the generalized gradient 

approximation (GGA) [14] for the exchange and correlation functional, as implemented in the 

CASTEP code [15]. The interaction between the ionic cores and the valence electrons is 

described using the ultrasoft pseudo potential of Vanderbilt [16]. The Brillouin zone is 

sampled using the scheme of Monkhorst and Pack [17]. This k-points sampling gives a good 

convergence to the total energy calculations. A kinetic energy cut-off of 300 eV was used for 

the plane wave expansion of the wavefunctions. The positions of all atoms in the NiS2 unit 

cell were relaxed using the conjugate gradient algorithm with a tolerance of 2x10-5 eV for 

maximal change in total energy. Calculations were considered converged when the residual 

forces were less than 0.05 eV/Å. The electronic states were occupied in accordance with the 

Fermi distribution function using a Fermi smearing parameter of kBT= 0.20 eV. 

 

3.3 Results and discussion 

3.3.1 Phase analysis  

In order to confirm the product phase synthesized, XRD analysis was carried out. Cubic 

phase NiS2 product was confirmed by XRD analysis which corresponds to the literature data 

(NiS2: JCPDS Card number 11-0099) with the cell constant a = 5.68 Å. It can be seen form 

Fig. 3.1 that the NiS2 formation was optimised at 800 W microwave power level. The 

increased microwave power level increases the rate at which the product is formed. The 

crystallite size for the sample synthesized at 800 W was estimated using the Scherrer 

equation given in Equation 1.  





cos

K
D            (1) 

where D is the average dimension of the crystallites, K is a constant (usually applied as 0.9), 

1 x-ray, β is the full width at half maximum of the 

diffraction peak (inaccuracies associated with stress and instrumental broadening are 

expected), and  is the Bragg angle. The average crystallite size for NiS2 was estimated 
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using the reflections shown in Table 1 and 2 and the average obtained was 35 nm. This 

suggests that the NiS2 materials prepared are in the nano-range.  

 

Further, the effect of precursor concentration was studied to see its effect on both diameter 

distribution and size of the products. Fig. 3.2 shows xrd pattern of cubic NiS2 products 

obtained from 0.08 M, 0.16 M and 0.4 M precursor concentrations, while other parameters 

were kept constant at 800 W, 220 oC, and 60 minutes. Crystallite size variation with 

precursor concentration was estimated by applying Scherrer equation to 200 reflection and 

the results are summarized in Table 1. An increase in crystallite size with increased 

precursor concentration was observed for the NiS2 products.  

 

 

 

 

 

Figure 3.1: XRD pattern of cubic NiS2 microstructures synthesized at various microwave 

power levels. 
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Figure 3.2: XRD pattern of cubic NiS2 microstructures synthesized using different precursor 

concentrations while keeping other parameters constant. 

 

 

Table 3.1: Average crystallite size of the NiS2 nanostructures synthesized using different 

precursor concentrations. 

Precursor 

concentration (M) 

200 orientation 

peak position (o) 

D (Scherrer = 

kλ/βcosϴ) [nm] 

0.08 31.509 30.4 

0.16 31.545 38.7 

0.4 31.764 40.9 

 

The same phase was also obtained when HDA capping agent was added to the reaction. It 

can be observed from Fig. 3.3 that the diffraction peak widths are broad, which is an 

indication of a small crystallite size. For the HDA capped NiS2 the average crystallite size 

was estimated by the Scherrer equation to be 9 nm as shown in Table 2. This is a size 

control effect of the capping agent on the nanostructures.  
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Figure 3.3: XRD profile for the NiS2 material synthesized in the presence of 5 g HDA which 

acts as a capping agent. 

 

Table 3.2: Average crystallite size of the NiS2 nanostructures estimated using the Scherrer 

equation. 

Peak orientation D (Scherrer = kλ/βcosϴ) 

[nm] 

Uncapped HDA capped 

111 43 14 

200 41 9.5 

210 32 9.5 

211 27 3 

220 31 7 

Average 34.5 (+/-6)  9 (+/- 4) 
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3.3.2 Microscopy analysis  

Evenly distributed hierarchal microparticles with rough surfaces were observed in the SEM 

images for all the samples synthesized at different microwave power levels without HDA 

addition. The images are shown in Fig. 3.4. The average particle size distribution was 

measured from the SEM images using the imageJ programme. It can be seen from the size 

distribution that the average size increases from about 300 nm to 500 nm with increased 

power level which is due to the increased microwave heating rate as the power is increased. 

From the rough surfaces it can be seen that these hierarchal microparticles are a result of 

small particles that assemble to form big agglomerates. The size of these structures is a 

result of progressive Ostwald ripening growth process. In this process; the smallest units of 

the elements dissolved in solution come together to form particles that grow further to form 

hierarchal agglomerates. The proposed growth mechanism for these structures is given in 

Scheme 1. 
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Figure 3.4: SEM images of the samples synthesized at 600 W (a), 700 W (c), 800 W (e), and 

their corresponding particle size distribution in (b), (d) and (f) respectively. 
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Fig. 3.5 shows the images of NiS2 products obtained at different precursors concentrations. 

The average diameter of the particles was estimated using imageJ programme. It can be 

seen from the figure that the average diameter of about 150 nm was obtained at 0.08 M and 

0.16 M concentrations, and an average diameter of about 500 nm was obtained at 0.4 M 

precursor concentrations. The difference in outer diameter size can be attributed to 

difference in competing ionic species in solution during the growth process. 

 

 

 



    

     

 

  

Page 50 

 

  

 

Figure 3.5: SEM images of the samples synthesized using Ni(Ac) concentrations 0.08 M, 

0.16 M, 0.4 M and their corresponding particle size distribution from top to bottom 

respectively. 
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When HDA was added to the reaction to act as a capping agent, the size of the NiS2 

structures was reduced to a nanometer scale as shown in Fig. 3.6 (a) and (b). It was not 

possible to see the crystallites by SEM due to their small size. However, it can be seen in 

Fig. 3.6 (a) that the sample looks like flakes which is a result of the presence of the HDA 

capping agent. HR-TEM analysis shown in Fig. 3.6 (b) reveals that the NiS2 particles formed 

were spherical with an average crystallite size of about 3 nm. The small size is a result of the 

added HDA capping agent which prevented large particle growth as well as particle 

agglomeration. 

 

Figure 3.6: SEM (a) and HR-TEM (b) images of NiS2 nanostructures synthesized at 600 W 

in the presence of 5 g HDA capping agent. The crystallite size distribution measured from the 

HR-TEM images is shown in (c). 
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Scheme 3.1: Proposed growth mechanisms of bare NiS2 nano-clusters (a) and HDA capped 

NiS2 nano-particles (b). 

 

3.3.3 Photoluminescence 

Fig. 3.7 shows room temperature PL spectra of the NiS2 hierarchical structures and HDA 

capped NiS2 nanocrystals excited at 300 nm. A UV broad emission peak which is comprised 

of four peaks located at about 400 nm (3.10 eV), 428 nm (2.90 eV), 447 nm (2.77 eV) and 

464 nm (2.67 eV) was observed. The presence of more than one peak may be due to the 

presence of structural defects within the samples. A second and much more intense PL 

emission peak was observed in the near IR region. Three peaks were evident with emission 

maxima located at 710 nm (1.75 eV), 751 nm (1.65 eV)/754 nm (1.64 eV) [NiS2/HDA-capped 

NiS2] and 784 nm (1.58 eV).  Both the UV and the near IR emissions observed in our study 

appear at a much higher energy when compared to the reported band gap of NiS2 which is 

within the range 0.3-0.8 eV. The observed emissions can therefore be attributed to intra-band 

transitions that take place on the NiS2 band structure during excitation. The multi peaks could 

also be due to excess S induced energy state transitions. This observation has not been 

reported for NiS2 structures before. Wang et al. reported PL results of NiS2 microspheres of 5 

m constructed of cuboids with 500 nm mean side length. Their fluorescence spectrum was 

recorded from 270 to 500 nm using an excitation wavelength of 277 nm [18]. Their spectrum 
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did not show any fluorescence in this recorded region. So if we assume that bulk NiS2 does 

not show fluorescence, we can then attribute the observed emissions to a nanosize effect. 

Further, most materials that are closely related to NiS2 like FeS2, CoS2 and CuS2 do not 

show this behaviour. However, the UV emission band with quadruple fine structure was 

reported by Denzler et al. for colloidal ZnS nanocrystals. Their UV peaks appeared at 416, 

424, 430, and 438 nm. They attributed the peaks to transitions that involve vacancy states 

and interstitial states for Zn and S atoms [19]. Further, they observed low intensity peaks in 

the IR region which they attributed to transitions between distinct localized states in the gap 

due to impurities and imperfections [19]. The intense emission peaks they observed in the 

UV region could also be supported by the wide band gap of ZnS, which is 3.7 eV. Intense 

emission peaks in the IR region in our case are due to the narrow band gap of NiS2 material. 

In addition to the intra-band emission accounted for in this report, NiO nanostructures show 

room temperature photoluminescence at 400 nm. The chemisorption of oxygen on the NiS2 

surface could be another possible explanation for the UV emission observed in this study. 

Detailed surface analysis is recommended for better understanding of the surface properties 

of the synthesized material. It can be observed for both emissions that the small size HDA-

capped NiS2 nanocrystals show enhanced emission when compared to the uncapped NiS2 

structures. This is due to the smaller size of the capped nanocrystals and is in good 

agreement with what has been reported for other nanomaterials in the literature [20]. The 

small shift of the HDA capped nanoparticles could be attributed to an increased level of 

defects due to the smaller size of the NiS2 particles. 
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Figure 3.7: Photoluminescence spectra of the as-synthesized hierarchal and the HDA-

capped NiS2 nanostructures excited at λ = 325 nm.  

 

The band energy structure and the local density of states (LDOS) calculated for NiS2 are 

shown in Fig. 3.8 (a) and (b). The LDOS spectra shows that the electrons near Fermi level 

energies (EF) are mostly from the Ni 3d and S 3p energy bands. It can also be seen that 

most electrons active at the lower bands are from 3p and 3s orbitals which are likely to 

belong to S atoms. This observation is in agreement with what has been reported in 

literature, where NiS2 band opening was attributed to Ni eg-orbital splitting via LDA 

calculations combined with dynamic mean field theory (DMFT) [21]. Kunes et al. did similar 

calculations accompanied by experimental x-ray photoemission spectroscopy measurements 

[22]. Their NiS2 spectral density also shows S-p density dominating far from the EF which 

suggests dominant S contribution at these energies. This suggests that intra-band transition 

in the NiS2 structure is likely due to the presence of S atoms.  
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Figure 3.8: (a) The band energy structure of NiS2 and (b) the electron states of Ni(3d), Ni-S 

hybridisation and S (3s and 3p) partial density of states. 
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In as far as the photoluminescence features appearing at various wavelengths, we 

considered the gamma, G, line of symmetry in the calculated band structure. The bands 

around the gamma point G in the Brillouin zone of the NiS2 system in Fig. 3.9 were truncated. 

The gamma point (where a/ = 0) being the centre of the Brillouin zone is appropriate when 

the photon wavelength, of excitation (325 nm) is much longer than the lattice parameter of 

the NiS2 system (a ~ 0.568 nm). The energy differences in the band structure as truncated in 

Fig. 9 were carefully identified to the emission energies in the PL spectra in Fig. 3.7. The 

luminescence features at wavelengths of 400 nm (3.10 eV), 428 nm (2.90 eV), 447 nm (2.77 

eV) and 464 nm (2.67) were attributed to some of those electrons de-exciting from S (3p) 

levels down to the Ni (3d) (blue to UV emission) whereas those features at wavelengths of 

710 nm (1.75 eV), 751 nm (1.65 eV)/754 nm (1.64 eV) [NiS2/HDA-capped NiS2] and 784 nm 

(1.58 eV) respectively resulted from de-excitations between either Ni(3d) or S (3s,3p) levels 

and Ni-S hybridization levels (red to near IR emission).  

No band-to-band transitions were observed in the experimental PL which suggests 

that Ni (3d) electrons, being close to the Fermi level, do not participate in the visible, near IR 

and UV emissions. They may be emitting far into the infra-red region which was beyond the 

detection limits of the PL instrument used for these experiments.  
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Figure 3.9: Band structure around the gamma point G of the Brillouin zone of the NiS2 

system. Both the 751 nm and 784 nm feature in the PL spectra are identified on this energy 

diagram as de-excitations either from Ni (3d) or S(3s,3p) to Ni-S hybridization energy states 

whereas the luminescence features from 400-464 nm are attributed to S(3p) to Ni(3d) 

electron relaxations.  
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3.4 Conclusions  

NiS2 nanostructures have been synthesized through the microwave irradiated thermal 

technique by heating a mixture of nickel acetate and sulphur in methanol solution. Varying 

the microwave power level yielded different sized particles with bigger agglomerates of about 

500 nm average particle size. XRD analysis showed that the crystallite size of the 

synthesized material was in the nano-range suggesting that the huge agglomerated particles 

observed during SEM analysis for the samples synthesized without the addition of a 

stabilising agent were self-assembled smaller particles. Precursor concentration was also 

studied to examine its effect on particle morphology and size. NiS2 nanostructured 

agglomerated with average particle sizes in the 150 nm range were obtained at 0.08 M 

precursor concentration. Addition of HDA as a capping agent yielded a NiS2 with smaller 

particle sizes of about 9 nm. The smaller size effect due to HDA addition was seen in the PL 

emission properties of the samples. HDA capped NiS2 nanostructures showed enhanced PL 

emission when compared to the uncapped and bigger size NiS2. The emissions in both 

samples were attributed to intra-band transitions mostly due to the sulphur content in the 

samples according to the calculated band energy structure and partial density of states. 
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Chapter 4: Synthesis of hexagonal gallium 

nitride and hexagonal nickel sulphide 

nanostructures and sensing properties of their 

polymer composite based devices 

 

4.0 Preamble 

This chapter reports on the microwave solvothermal synthesis of GaN and hydrothermal 

synthesis of NiS nanostructures and their sensing properties are reported. Some of the 

contents of this chapter were published recently [a]. 

 

4.1 Introduction 

GaN is a group (II-V) semiconductor with a wide direct band gap of 3.39 eV at room 

temperatures. It is a blue/green light emitter making it a candidate for applications such 

as in light emitting diodes, biomedicine, colour copying [1-6] etc. Numerous studies 

dedicated to the sensing properties of GaN for the detection of harmful gases have 

been reported [7-17]. Literature have shown that GaN has a good sensitivity even at 

room temperature and increased sensitivity towards hydrogen gas (H2) has been 

achieved after palladium nanoparticle coating of a GaN surface [17]. Room temperature 

sensing and selectivity towards single gases are important parameters for industrial 

application of gas sensors. However, it is still a global challenge to obtain good and 

reliable nanomaterial based gas sensors with good selectivity. 

NiS is one of the group (II-VI) semiconductor materials. It is a p-type 

semiconductor with a reported band gap of about 0.3 eV [18]. Similar to many metal 

[a] Linganiso, E.C., Rodrigues, Mhlanga, S.D., Mwakikunga, B.W., Coville, N.J., 

Hummelgen, I.A., “GaN nanostructures-poly(vinyl alcohol) composite based hydrostatic 

pressure sensor device”, Mater. Chem. Phys. 143 (2013) 367. 
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chalcogenide materials, NiS has been widely studied for applications in catalysis, as a 

cathode material in lithium ion batteries and in IR detectors [19-121]. NiS also forms two 

phases viz: the rhombohedral phase (-NiS) and the hexagonal phase (-NiS).  The -

NiS is an interesting material with a metal-to-insulator transition (MIT) occurring at 264 

K [22]. This has brought much attention to NiS in regard to a number of applications 

making use of this MIT. MIT containing materials have been used in applications such 

as in ultrafast switches [23], laser protection [24] and IR detectors [25]. There is little 

experimental work in the literature on the application of NiS or similar alloys in gas 

sensing. This may be associated with its narrow band gap. However, their effect on the 

gas selectivity challenge encountered when using the wide band gap materials is 

becoming an emerging area of interest. In our group we have shown that NiS can 

actually sense H2 gas with a relatively slow recovery at 300 oC [26]. Apart from this 

communication, we are one of other reports showing the use of NiS for similar 

applications.  

 

Nanomaterial-polymer based composites have been of interest to many research 

groups in the field of science and engineering [27, 28]. Polymers offer a high surface 

area for nanostructures and can aid in the processing of nanomaterials. Since polymers 

do not affect the properties of nanomaterials, they have been applied in organic based 

electronic devices to overcome challenges associated with nanomaterial solubility and 

agglomeration [29]. Polymers are flexible, light weight and the preparation of material 

composites is quite cheap rendering them quite interesting for device fabrication based 

on nanomaterials [29]. PVA was applied in the fabrication of our devices due to its 

advantages such as good mechanical strength and flexibility, low conductivity and its 

ability to immobilize the nanostructures on the contact electrodes that were used [30, 

31]. In this chapter, GaN-PVA and NiS-PVA composite based devices were prepared. 

Further, ethanol gas, gases evolved in the process of tomato ripening and hydrostatic 

pressure sensing properties were studied.  
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4.2 Experimental 

4.2.1 Reagents and sample preparation 

All reagents used were purchased from the Sigma Aldrich chemical company and were 

used as received without any further purification. The synthesis procedure followed is 

similar to the one reported in an earlier publication [a]. GaN nanostructures were 

synthesized using a microwave assisted solvothermal technique. In a typical reaction, 

an excess amount of Li3N (99.5 %) was transferred into a Teflon vessel containing 200 

mg GaCl3 (99.9 %) in 30.00 ml benzyl ether solution under a nitrogen flow. The vessel 

was then placed in a rotor and transferred into an Anton Paar multiwave 3000 

microwave reactor system, which was operated at a power of 600 W and pressure of 30 

bars for 10 min. The precipitate that formed was centrifuge washed several times, and 

oven dried at 90°C for 6 h. 

NiS nanostructures were synthesized by adding equimolar solutions of about 30 ml 

Na2S.9H2O and 30 ml NiCl2.6H2O in distilled water. The mixture was transferred to a 

100 ml Teflon vessel which was placed into a Multi-wave 3000 microwave oven. The 

oven was operated at 600 W for 30 minutes and fan cooled to room temperature for 20 

minutes. The NiS black precipitate that formed was washed several times using distilled 

water, ethanol and acetone and later dried in an oven at 90 ˚C for 6 hours. About 600 

mg of the as-synthesized product was weighed and annealed at 300 ˚C for 3 hours 

under nitrogen flow (200 sccm) using a 20 oC/min heating rate in a horizontal quartz 

tube furnace. 

 

4.2.2 Device preparation 

Nanoparticles (NPs) of varying concentrations were dispersed in Mili-Q water using an 

ultra-sonicater for 10 minutes. PVA was added to each sample and the mixtures were 

stirred at 60 oC for 6 hours in order to completely dissolve the PVA. 

The pressure sensors were prepared by depositing NP-PVA dispersions onto 

interdigitated electrodes. A micro-pipette was used to deposit the NP-PVA dispersion by 

depositing 30 L onto an 8 X 8 mm2 set of 20 pairs of 100 m thick ENIG-electrodes 

(ENIG: Electroless Nickel Immersion Gold) separated by 100 m from each other in an 
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interdigitated array onto FR4 epoxy resin/fiber board glass, supplied by Micropress SA. 

The deposited dispersions were allowed to dry in air over night and further dried in an 

oven at 100 oC for 3 hours. 

The devices were electrically characterized using a programmable Agilent 4284A LCR 

meter with an AC signal amplitude of 500 mV as the input signal under ambient 

conditions. The dependence of the conductance G of the devices was investigated 

using a cylindrical tube (diameter of 44.5 mm) and a piston as previously reported [32]. 

The pressure was controlled by displacing the piston to modify the confined gas volume 

in which the sensor was placed. As a sequence of the volume change, the hydrostatic 

pressure was also changed following the relationship h0p0 = hfpf (h being the height of 

the piston in the cylinder, p is the pressure, 0 stands for initial and f stands for final).  

 

4.3 Results and discussion 

XRD data and photoluminescence spectroscopy of the as-synthesized GaN sample is 

shown in Fig. 4.1(a) and (b) respectively. The diffraction peaks in Fig. 4.1(a) correspond 

to the hexagonal wurtzite GaN phase and agrees with JCPDS data for GaN. It was 

noted that the (101) peak which appears at 36.84o (2) for hexagonal GaN, does not 

appear in this data, and the (002) peak located at 34.58o is the most intense peak. This 

suggests that the (002) crystalline direction was much more preferred during the growth 

process. The rest of the identified GaN crystalline orientations were observed in the 

pattern [4]. All the peaks are relatively broad which can be attributed to the small grain 

size of the GaN crystalline structures. The XRD profile also shows that the product 

contains a small amount of -Ga2O3 impurity indicated by (*).  The Ga2O3 could either 

be formed during the reaction (due to the presence of O2 impurities) or more likely 

during product washing and storage. A very broad and intense emission covering an 

area from the ultra-violet to the blue region of the PL spectrum was observed for the 

GaN NPs [Fig. 4.1 (b)]. The peak was deconvoluted into two peaks centred at 3.15 eV 

and 2.95 eV. The peak centred around 3.1 eV can be attributed to a recombination of 

neutral donor-acceptor pairs (DAP) and their LO phonon replica and the peak centred at 

3.0 eV can be attributed to a blue band (BB) [5, 6]. GaN UV emission peaks appearing 
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in a similar region has also been reported by Santana et al [4] for a silicon grown GaN 

thin film which also showed a quite similar diffraction pattern to Fig 4.1 (a). This peak 

was also attributed to DAP transitions from the shallow donors to the shallow acceptors 

[4]. The direct band gap emission common for most GaN structures is not pronounced 

for the as-synthesized nanoparticles. 
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Figure 4.1: XRD patterns of the as-synthesized GaN sample corresponding to 

hexagonal wurtzite GaN (a) and photoluminescence spectrum of the as-synthesized 

GaN nanostructures excited at 300 nm (b). Symbol (*) in (a) corresponds to -Ga2O3 

impurity. 

 

XRD data for the synthesized and annealed NiS sample is shown in Fig. 4.2. The 
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database profile of -NiS (JCPDS #: 89-7141). All peaks were indexed to a single 

phase showing a good crystalline nature of the sample. 

 

 

Figure 4.2: XRD data corresponding to hexagonal phase NiS (presented in more detail 

in chapter 5). 

  

Figures 4.3, 4.4 and 4.5 show G/G0 versus time data, for the three GaN-PVA 

composite based sensors (2 mg/ml. 5 mg/ml and 10 mg/ml GaN NP concentrations in 5 

mg PVA). The time dependence for each sensor device is shown on the inset of the 

figure of each sensor device. The conductance of each sensor was observed to 

increase with applied pressure, and recovery was observed when the pressure was 

released to initial conditions. The variation in sensor sensitivity was also observed to 

increase slightly at lower pressures (below 150 kPa) and a drastic increase was 

observed at higher pressures (above 150 kPa). This shows that the sensors are more 

sensitive at higher pressures. The response and recovery times were measured for the 

three devices after applying 147 kPa. All the devices reached 90% of the maximum 

response in less than 11 s and 90 % of the peak signal was recovered in less than 11 s 

for all the devices. The devices also showed good reproducibility when measurements 

were taken two more times for each device. 
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Fig. 4.6 shows the sensitivity comparison of the devices. The three sensor devices do 

not show the same sensitivity. However, it can be observed that the sensitivity variation 

with pressure follows the same trend with all the sensors. The sensors could reach even 

higher sensitivities as the sensitivity curves do not reach a steady state at the highest 

applied pressures employed in this work. Le Boulbar et al. recently reported on high 

pressure sensitivity of a AlGaN/GaN high-electron-mobility transistor (HEMT) which 

sensed pressures of up to 80 bar [33]. Although their device setup is different from ours, 

the ability of their transistor to sense high pressures is characteristic to the AlGaN/GaN 

material they used.  

 

 

Figure 4.3: Change in conductance and capacitance of GaN(2 mg/ml)-PVA(5 mg/ml) 

based device as a function of applied pressure. 
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Figure 4.4: Change in conductance and capacitance of GaN(5 mg/ml)-PVA(5 mg/ml) 

based device as a function of applied pressure. 

 

Figure 4.5: Change in conductance and capacitance of GaN(10 mg/ml)-PVA(5 mg/ml) 

based device as a function of applied pressure. 
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Figure 4.6: Sensitivity comparisons between the GaN/PVA composite based devices to 

different pressures and varying GaN concentrations. 
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for different applied pressures. An increase in conductance was observed when the 

applied pressure was increased, and a decrease was also observed in the absence of 

applied pressure. The devices also show increased response at elevated applied 

pressures. However, a poor recovery was obtained. The pressure response comparison 

graph (Fig. 4.7) shows increased conductance response with increase in NP 

concentration.  

 

100 110 120 130 140 150 160 170 180 190

0

10

20

30

40

50

 

 


G

/G
0

P (kPa)

 2 mg/ml

 5 mg/ml

 10 mg/ml



 

 

 

  

Page 70 

 

  

 

Figure 4.7: Change in conductance of -NiS/PVA composite based devices as a 

function of applied pressure and NiS concentration for 5 mg/ml and 10 mg/ml 

concentrations in 20 mg PVA for left and right respectively. The bottom centred graph 

shows the difference in the sensitivities of the two samples to pressure. 
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desorb molecules in the presence of air. The inset of Fig. 4.8 shows the ethanol 

response of the device when exposed to 1100 ppb ethanol concentration over a long 

period of time. It can be observed that the device can actually recover when given 

enough time in the air atmosphere. The -NiS nanostructures could be modified by 

doping or metal catalyst decoration in order to quicken its response and recovery times. 

 

 

Figure 4.8: Change in conductance of the -NiS-PVA composite based device in the 

presence and absence of ethanol vapor with different concentrations. 
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in conductivity of the sensor [38]. The overall equation for ethanol gas sensing at room 

temperatures is given in equation 3. 

 

                            (1) 

                   
          (2) 

             
                               (3) 

 

Normally, a series of experiments are done for fruits such as tomato at different maturity 

stages in order to evaluate fruit quality and maintain fruit flavor until consumption. The 

tomato volatiles during ripening are derived from lipids via oxidation when cells are 

disrupted [39]. Other volatiles are contributed by carotenoids, amino acids and 

terpenoids [39, 40]. The electronic nose system (E-nose) is currently being explored as 

an alternative way to study fruit maturity stages and to avoid the gas chromatography 

based techniques. Although E-nose cannot identify (or separate) different chemical 

compounds, high sensitivity, cost effectiveness, and relatively fast analysis are some of 

its advantages [41].  In this study, only one stage tomato sample was used to evaluate 

the sensor devices response. The tomato was randomly picked from a supermarket. 

In Fig. 4.9 (a), (b) and (c), the change in conductance of the devices based on the 

composites; -NiS (5 mg/ml)-PVA (20 mg/ml), -NiS (10 mg/ml)-PVA (20 mg/ml), and 

GaN (10 mg/ml)-PVA (5 mg/ml) was investigated in the presence of tomato volatiles 

and atmospheric air as a function of frequency (Hz). All the devices showed an 

increasing conductance with exposure to tomato volatiles and recovery was observed 

when the devices were exposed to the air atmosphere. Although a small variation was 

observed in the response intensities for the device [NiS (5 mg/ml)-PVA (20 mg/ml] as a 

function of frequency, a decrease in respense intensity was observed for the other 

devices as the frequency was increased from 27 khz to 460 kHz.  Slow recovery of the 

peak intensity was observed when the -NiS based devices were exposed to air. The 

GaN based devise showed a relatively fast recovery although the device could not 

reach saturation after the exposure to tomato atmosphere for about 120 s. This can be 

atytributed to a very high sensitivity of GaN nanomaterials, while the surface-volatile 

interaction could be delayed due to nanoparticle packing as well as the PVA effect. 
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Further studies would require long term studies of the tomato ripening process in order 

to obtain a signature that can be correlated to the fruit maturity stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

Page 74 

 

  

 

 

 

Figure 4.9: Change in conductance and capacitance of (300 oC annealed) -NiS (5 

mg/ml)-PVA(20 mg/ml) based device in the presence of tomato fruit volatiles (a). 

Change in conductance and capacitance of -NiS (10 mg/ml)-PVA (20 mg/ml) based 

device in the presence of tomato fruit volatiles (b). Change in conductance and 

capacitance of GaN (10 mg/ml)-PVA (5 mg/ml) based device in the presence of tomato 

fruit volatiles (c). 
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4.4 Conclusions 

In summary, UV-blue emitting hexagonal GaN nanostructures and hexagonal NiS were 

fabricated using microwave-assisted solvothermal and hydrothermal techniques 

respectively. The as-synthesized materials were successfully mounted into devices in a 

NP-polymer composite form and tested for pressure sensing, ethanol vapor sensing and 

sensing of organic volatile compounds mixture from tomato. A high sensitivity of GaN 

based device to applied hydristatic pressure was realised for the different 

concentrations of a GaN-NPs used. All devices showed a relatively fast response and 

recovery times of less than 11 s. The GaN based device also showed a good response 

to the organic volatile compounds mixture from tomato while the NiS based device 

showed a relatively good response to ethanol vapor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

  

Page 76 

 

  

4.5 References 

[1] Lv, W., Wu, L., Wu, Y., Xv, R., Gai, H., Zou, K. J. Cryst. Growth 307 (2007) 1.  

[2] Okumura, H., Ohta, K., Feuillet, G., Balakrishnan, K., Chichibu, S., Hamaguchi, 

H., Hacke, P., Yoshida, S., J. Cryst. Growth 178 (1997) 113.  

[3] Chen, X.J., Gayral, B., Sam-Giao, D., Bougerol, C., Durand, C., Eymery, J., 

Appl. Phys. Lett. 99 (2011) 251910. 

[4] Santana, G., De Melo, O., Aguilar-Hernandez, J., Mendoza-Perez, R., Monroy, 

B.M., Escamilla-Esquivel, A., Lopez-Lopez, M., De Moure, F., Hernandez, L.A., 

Contreras-Puente G., Materials 6 (2013) 1050. 

[5] Sahoo, P., Dhara, S., Amirthapandian, S., Kamruddin, M., Dash, S., Panigrahi, 

B.K., Tyagi, A.K., Cryst. Growth Des. 12 (2012) 2375. 

[6] Sahoo P., Oliveira, D.S., Cotta, M.A., Dhara, S., Dash, S., Tyagi, A.K., Raj, B., 

J. Phys. Chem. C 115 (2011) 5863. 

[7] Chitara, B., Late, D.J., Krupanidhi, S.B., Rao, C.N.R., Solid State 

Communications 150 (2010) 2053. 

[8] Sahoo, P., Dhara, S., Dash, S., Amirthapandian, S., Prasad A.K., Tyagi, A.K., 

Int. J. Hydrogen Energy 38 (2013) 3513. 

[9] Abdullah, Q.N., Yam, F.K., Hassan, J.J., Chin, C.W., Hassan, Z., Bououdina, 

M., Int. J. Hydrogen Energy 38 (2013)14085. 

[10] Chen, T.-Y., Chen, H.-I., Liu, Y.-J., Huang, C.-C., Hsu, C.-S., Chang, C.-F., Liu, 

W.-C., Sensors and Actuators B 155 (2011) 347. 

[11] Bajpai, R., Motayed, A., Davydov, A.V., Oleshko, V.P., Aluri, G.S., Bertness, 

K.A., Rao, M.V., Zaghloul, M.E., Sensors and Actuators B: Chemical 171 (2012) 

499. 

[12] Ramizy, A., Hassan, Z., Omar, K., Sensors and Actuators B: Chemical 155 

(2011) 699. 

[13] Wang, X.H., Wang, X.L., Feng, C., Yang, C.B., Wang, B.Z., Ran, J.X., Xiao, 

H.L., Wang, C.M., Wang, J.X., Microelectronics Journal 39 (2008) 20. 

[14] Johnson, J.L., Choi, Y., Ural, A., Lim, W., Wright, J.S., Gila, B.P., Ren, F., 

Pearton, S.J., J. Electronic Materials 38 (2009) 490. 



 

 

 

  

Page 77 

 

  

[15] Shah, A.Z., Noor, N.H.M., Hassan, Z., Mahmood, A., Kwong, Y.F., Malaysian 

Journal of Fundamental & Applied Science 8 (2012) 49. 

[16] Chen, Y., Jang, S.-D., Kim, J., Sensor Letters 10 (2012) 748. 

[17] Kim, S.S., Park, J.Y., Choi, S.-W., Kim, H.S., Na, H.G., Yang, J.C., Lee, C., 

Kim, H.W., Int. J. Hydrogen Energy 36 (2001) 2313. 

[18] O’Brien, P., Waters, J., Chem. Vap. Deposition 12 (2006) 9620. 

[19] Zhou, H., Lv, B., Wu, D., Sun, Y., Particuology 10 (2012) 783. 

[20] Wang, J., Chew, S.Y., Wexler, D., Wang, G.X., Ng, S.H., Zhong, S., Liu, H.K., 

Electrochem. Commun. 9 (2007) 1877. 

[21]  Tang, C., Zang, C., Su, J., Zhang, D., Li, G., Zhang, Y., Yu, K., Appl. Surf. Sci. 

257 (2011) 3388.   

[22] Fujimori, A., Namatame, H., Matoba, M., Anzai, S., Physical Review B 42 

(1990) 620. 

[23] Petrov, G.I., Yakovlev, V.V., Squier, J., Appl. Phys. Lett. 81 (2002) 1023. 

[24] Vernardou, D, Pemble, M.E., Sheel, D.W., Surf. Coat. Technol. 188-189 (2004) 

250. 

[25] Pan, M., Liu, J., Zhong, H., Wang, S., Li, Z.-F., Chen, X., Lu, W., J. Cryst. 

Growth 268 (2004) 178. 

[26] Linganiso, E.C., Mwakikunga, B.W., Mhlanga, S.D., Coville, N.J., Sone, B.T., 

Maaza, M., Proceedings of the IEEE Sensors 2012 Conference, Taipei, Taiwan, 

October,  (2012). 

[27] Wang, C., Guo, Z.-X., Fu, S., Wu, W., Zhu, D., Progress in Polymer Science 29 

(2004) 1079.  

[28] El-Mansy, M.K., Sheha, E.M., Patel, K.R., Sharma, G.D., Optik 124 (2013) 

1624.  

[29] Bell, J.M., Goh, R.G.S., Waclawik, E.R., Giulianini, M., Motta, N., Materials 

Forum 32 (2008) 144 

[30] Lindsey, S.E., Street G.B., Synthetic Metals 10 (1984) 67. 

[31]  Zhao, X., Zhang, Q., Chen, D., Lu, P., Macromolecules 43 (2010) 2357. 

[32] Machado, W.S., Athayde, P.L., Mamo, M.A., van Otterlo, W.A.L., Coville, N.J., 

Hummelgen, I.A., Org. Electron. 11 (2010) 1736. 



 

 

 

  

Page 78 

 

  

[33] Le Boulbar, E.D., Edwards, M.J., Vittoz, S., Vanko, G., Brinkfeldt, K., Rufer, L., 

Johander, P., Lalinsky, T., Bowen, C.R., Allsopp, D.W.E., Sensors and 

Actuators A: Physical 194 (2013) 247. 

[34] Liu, C.-K., Huang, M. –W., Wu, J. –M., Shih, H. C., Diamond & Related 

Materials 19 (2010) 981. 

[35] Rajesh, N., Kannan, J.C., Krishnakuma, T., Leonardi, S.G., Neri, G., Sensors 

and Actuators B 194 (2014) 96. 

[36] Santra, S., Guha, P.K., Ali, S.Z., Hiralal, P., Unalan, H.E., Covington, J.A., 

Amaratunga, G.A.J., Milne, W.I., Gardner, J.W., Udrea, F., Sensors and 

Actuators B 146 (2010) 559.  

[37] Ramgir, N.S., Haur, M., Sharma, P.K., Datta, N., Kailasaganapathi, S., 

Bhattacharya, S., Debnath, A.K., Aswal, D.K., Gupta, S.K., Sensors and 

Actuators B 187 (2013) 313.  

[38] Gu, F., Zhang, L., Wang, Z., Han, D., Guo, G., Sensors and Actuators B 193 

(2014) 669. 

[39] Berna, A.Z., Lammertyn, J., Saevels, S., Natale, C.D., Nicolai, B.M., Sensors 

and Actuators B 97 (2004) 324. 

[40] Farneti, B., Cristescu, S.M., Costa, G., Harren, F.J.M., Woltering, E.J., J Food 

Sci. (2012) C1. 

[41] Peris, M., Escuder-Gilabert, L., Analytica Chimica Acta 638 (2009) 1. 

 

 

 

 

 

 

 



 

 

   

Page 79 

 

  

Chapter 5: Effect of NaOH and precursor on the 

nickel monosulphide phase  
 

5.0 Preamble 

This chapter reports on the synthesis of binary phase nickel monosulphide. Water and 

NaOH were applied as solvents for the microwave-assisted hydrothermal synthesis of 

NiS. The effect of NaOH concentration, precursor concentration and reaction time were 

investigated. 

 

5.1 Introduction 

Metal chalcogenide nanomaterials (e.g. CdS, ZnO, ZnS, SnO, SnS, CoS, CuS, NiS etc.) 

have been a topic of interest over the years owing to their novel properties resulting 

from the quantum confinement effect shown by these materials [1-5]. Nanomaterials 

have remarkable electronic, mechanical and chemical and other properties and this has 

resulted in intensive investigations to find new applications for these materials. In 

particular, NiS nano-materials have been widely researched for potential applications in 

catalysis, rechargeable batteries, hydrogen storage devices, optoelectronic devices and 

magneto-electronic devices [6-9]. These materials are relatively cheap to make with 

most fabrication reactions occurring at temperatures below 473 K and H2O being used 

as a solvent [10-12]. 

Chemical methods that have been used to synthesize NiS include the 

conventional reflux method [13], chemical bath deposition method [14], successive ionic 

layer adsorption and reaction (SILAR) method [15], hydrothermal method [16, 17], etc. 

Reaction parameters such as temperature, pressure, reaction time, type of solvent, 

precursor source, concentration of reagents and the solubility of precipitate at 

precipitation, play a huge role in the morphology distribution of the products, as well as 

the type of crystal structure obtained from a given reaction [18, 19].  
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To further explore methods to make NiS phases a microwave-assisted 

hydrothermal technique was chosen to make these nanostructures of NiS due to the 

advantages of the microwave synthesis technique over conventional hydrothermal 

techniques.  Microwaves provide for homogenous heating throughout the reaction 

vessels, which provide a uniform nucleation environment and thus promote uniformity of 

the product produced.  As outlined in the literature review chapter, the NiS nanomaterial 

synthesis has not been explored much, by the microwave synthesis method. 

In this work we show the effect of NaOH concentration, reaction holding time, the 

S source and the precursor concentration on the final product. The microwave assisted 

hydrothermal method was employed to synthesize binary phase NiS nanostructures 

with varying morphologies and phase distributions. 

 

5.2 Experimental 

5.2.1 Reagents and sample preparation 

All reagents were purchased from the Sigma Aldrich chemical company, SA, and were 

used as received without any further purification. NiS nanostructures were synthesized 

by adding equimolar solutions of S (with excess of 0.002 M per reaction) and Ni sources 

using distilled water (H2O) or sodium hydroxide (NaOH) as a solvent. The precursor 

mixture was transferred to a 100 ml Teflon vessel which was placed into a Multi-wave 

3000 microwave oven from Anton Paar. The oven was operated at 600 W for 15, 25 or 

30 minutes and fan cooled to room temperature for 20 minutes. The pressure maximum 

was set at 40 bars. A black precipitate of NiS material was obtained and washed with 

distilled water, ethanol and acetone to remove impurities. All the products were dried in 

an oven at 90 oC for 6 h. The different parameters employed for the reactions carried 

out are shown in Table 5.1. 
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5.2.2 Characterization 

The structural analyses was performed using a Panalytical X’Pert PRO PW 3040/60 X-

ray diffractometer with a Cu Kα (λ = 0.154 nm) monochromated radiation source. XRD 

spectra were collected in θ-2θ scan (10-90˚) with a measurement step of 0.02˚. The 

crystallite size for all the samples was estimated using the Scherrer equation given in 

Equation 1,  





cos

K
D 

           (1) 

where D is the average dimension of the crystallites, K is a constant (usually applied as 

0.9), λ (0.154 nm) is the wavelength of the CuK1 X-ray, β is the full width at half 

maximum of the diffraction peak (inaccuracies associated with stress and instrumental 

broadening are expected), and  is the Bragg angle. 

The surface morphology was determined from high resolution-transmission electron 

microscopy images (JEOL HR-TEM -2100) and scanning electron microscopy (Carl-

Zeiss SEM). 
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Table 5.1: The different parameters used for each reaction carried out. 

Precursors Ni precursor 

Concentration 

(M) 

Reaction 

time (min) 

[NaOH] 

(M) 

NiCl2.6H2O + CS(NH2)2 0.13 15 5 

NiCl2.6H2O + CS(NH2)2 0.13 25 5 

NiCl2.6H2O + CS(NH2)2 0.13 35 5 

NiCl2.6H2O + CS(NH2)2 0.13 15 3 

NiCl2.6H2O + CS(NH2)2 0.13 15 5 

NiCl2.6H2O + CS(NH2)2 0.13 15 7 

NiCl2.6H2O + Na2S.9H2O 0.13 15 0 

NiCl2.6H2O + Na2S.9H2O 0.13 15 5 

NiCl2.6H2O + S 0.13 15 5 

NiCl2.6H2O + CS(NH2)2 0.13 15 5 

Ni(CH3COO)2.4H2O + Na2S.9H2O 0.03 15 0 

Ni(CH3COO)2.4H2O + Na2S.9H2O 0.04 15 0 

Ni(CH3COO)2.4H2O + Na2S.9H2O 0.06 15 0 

Ni(CH3COO)2.4H2O + Na2S.9H2O 0.07 15 0 

Ni(CH3COO)2.4H2O + Na2S.9H2O 0.08 15 0 

Ni(CH3COO)2.4H2O + Na2S.9H2O 0.11 15 0 

 

 

5.3 Results and discussion 

5.3.1 Reaction holding time effect: phase and morphology analysis 

X-ray analysis performed on the samples synthesized from NiCl2.6H2O and CS(NH2)2 

using 5 M NaOH and different reaction times (15, 25 and 35 minutes) confirmed that the 

binary phases, - and -NiS, were formed. It was observed in Fig. 5.1 that the XRD 

peaks shift towards the lower angles as the reaction holding time was increased from 15 

min to 35 min. Crystallite sizes estimated by Scherrer equation for the peaks centred at 
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48.9o and 46o for -NiS and -NiS respectively, were calculated for the different reaction 

times used and are shown in Table 5.2. It was observed that the average crystallite 

sizes increase with increase in holding time which can be attributed to sintering effect. 

The XRD profile also confirmed that when the holding time was increased, the 

rhombohedral phase NiS was dominant, while the hexagonal phase was reduced in 

content with holding time. It is also worth noting that the peak due to the presence of 

Ni(OH)2 located around 38o, is present in all the samples. This suggest  insufficient S2- 

ions in solution which leave some of the intermediate Ni(OH)2 phase present after the 

reaction between Ni2+ and S2- ions. It is shown in the next chapter that this Ni(OH)2   

peak disappeared after annealing the samples at 300 oC for 3 h or more, leaving a 

highly crystalline product with a slightly different (S deficient) Ni:S stoichiometry.  

 

 

Figure 5.1: XRD patterns showing NiS samples synthesized at different times. The 

symbol (#) represent the -NiS phase and the symbol (*) represents the -NiS phase. 
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Table 5.2: Peak shift and estimated crystallite size for 131 orientations for -NiS phase. 

NiS 

phase 

Reaction time 

(min) 

Peak orientation 

 (#), (*) 

Peak position 

[2 (o)] 

Estimated 

crystallite 

size (nm) 

 15 131* 48.88 61 

25  48.86 73 

35  48.85 76 

 15 102# 46.06 19 

25  45.97 22 

35  46.06 21 

 

 

TEM analysis showed that the product consisted of nanorods and a few smaller 

irregular shaped particles. The diameter of the rods was observed to increase in size as 

the holding time was increased [Fig. 5.2]. When the holding time was increased to 35 

minutes, the rods agglomerated to form flower-like structures. The synthesis of flower-

like structures is common for metal chalcogenide nanostructures. Also, the use of a 

strong base as a solvent has been shown to favour the formation of nanostructure-

based flower-like structures [20]. Wahab et al. [20] reported on the growth mechanism 

of ZnO nanostructures synthesized in the presence of NaOH and they studied the effect 

of pH on the product morphology. They attributed the formation of nanoflowers at pH 12 

to uncontrollable and unselective hydrolysis or condensation which generates large 

interconnected particles/structures [20]. In our case reaction holding time was varied in 

the presence of NaOH. It is clear that as the reaction continues, the particles grow 

bigger and after a longer reaction holding time is employed, the structures become 

attached to one another. Chen et al. reported a growth mechanism of -NiS from 

thiourea and NiCl2 using ethylenediamine as a solvent in an autoclave reactor. They 

attributed the formation of similar types of flowers to a slow S substitution in spherical 

groups of Ni-thiourea complexes with further growth adding to the [001] direction to form 

rod-like structures from the core [21]. Contrary to their finding, our image analysis 

shows that both particles and rods are both present at short times and they agglomerate 
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with the diameter of the rods also increasing in length. However, the mechanism 

explained by Chen could also be applicable in our case, with the particles observed due 

to reaction termination during the early stages of formation. This however, would 

suggest that the energy distribution inside the microwave reactor is not very uniform. 

 

 

Figure 5.2: TEM images of NiS samples synthesized at different (a) 15 min, (b) 25 min, 

and (c) 35 min.  

 

In our case, it is possible to explain the growth mechanism of the nanorod-based flower-

like structures, as promoted by the agglomeration of both nanoparticles and nanorods 

with simultaneous increase in the diameter of the rods. Because of the length difference 

of the rods coming together, breakage of longer rods during merging is likely to occur, 

resulting in a rod length determined by the shorter merging nanorod. There is a 

possibility that these particles are associated with the -NiS phase while the rods are 

due to the -NiS phase. Cheng et al. also reported on an increasing -NiS at the 
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expense of -NiS phase after reaction completion due to thermodynamic stability of the 

-NiS phase [21]. 

 

5.3.2 NaOH concentration effect: phase and morphology analysis 

X-ray analysis performed on the samples synthesized from NiCl2.6H2O and CS(NH2)2 

using 15 min reaction time and varying the NaOH concentration (3, 5 and 7 M), 

confirmed that binary phase, - and -NiS phases were both formed. It can be seen in 

Fig. 5.3 and Table 5.3 that the XRD peaks shift towards the lower angles as the solvent 

concentration is increased from 3M to 7M. This can be associated with increasing 

crystallinity of the products as a function of solvent concentration. An increase in the -

NiS phase as the NaOH concentration is increased was observed (peak orientation 

[102]), and a decrease in relative -NiS peak intensities was also observed when the 

NaOH concentration was increased over similar reaction times (peak orientation [220]). 

Peak ratios (/ for peak orientations [131]/[102] were calculated to be 1.81, 1.10, and 

0.66 for 3 M, 5 M, and 7 M respectively. The -NiS phase is thermodynamically more 

stable than -NiS and it has been reported to have a higher solubility constant when 

compared to -NiS [11, 22]. The increasing relative intensity of -NiS can be attributed 

to the precipitation of -NiS occurring first, due to its lower solubility constant, which 

was observed to transform to -NiS when reaction time is increased. It can also be 

noted that the relative intensity of the Ni(OH)2 peak increases with increased NaOH 

concentration. This may be attributed to less S2- ions available and the increasing 

concentration of OH- ions as NaOH concentration is increased. 

Microwave hydrothermal synthesis of binary phase -,-NiS has been reported 

by  Idris et al. [23]. In their study, they observed increasing -NiS phase in the expense 

of -NiS with increased temperature. This was accompanied by appearance of needle-

like structures at higher temperatures compared to the irregular shaped particles they 

observed at lower temperatures [23]. 
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Table 5.3: Variation of the estimated crystallite size of the samples synthesized using 

different NaOH concentrations. 

NiS 

phase 

NaOH 

concentration 

(M) 

Peak orientation 

 (#), (*) 

Peak position 

[2 (o)] 

Estimated 

crystallite 

size (nm) 

 3 300* 32.27 40 

5  32.25 31 

7  32.21 36 

 3 102# 46.13 23 

5  46.05 21 

7  45.81 26 

 

 

Figure 5.3: XRD patterns showing NiS products synthesized at different NaOH 

concentrations. Symbol (*) represent -NiS while symbol (#) represents -NiS phase. 

SEM and TEM analysis for the products showed that they consisted of structures 

varying from a mixture of particles and rods at lower NaOH concentrations, with 

nanorods dominating at 5 M NaOH concentration and rod-based flower-like structures 
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at 7M NaOH. The diameter of the rods was observed to increase in size as the 

concentration increased [Fig. 5.4]. Unlike the flowers observed when time was varied in 

Fig 5.2, the flowers observed when 7 M NaOH was used appear to have relatively 

dense centers in the TEM image. The insets on Fig 5.4 bottom SEM image are cropped 

images showing the appearance of hexagonal platelets at the centres of the flower-like 

structures. This of cause was not observed for all the flower-like structures, but it was 

dominant in most of the TEM images. This was evidenced by the lower number of 

particles in -NiS phase dominated sample while more particles were observed for the 

sample with relatively high -NiS content in Fig 5.1 and Fig 5.2. The hexagonal platelets 

are more likely to be the hexagonal phase structures while the rods are more likely to be 

the rhombohedral phase. Assuming this is the case, we can predict the growth 

mechanism of the flowers. While both -NiS and -NiS are present in solution, the rods 

are drawn to the different sides of the hexagonal platelets.  
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Figure 5.4: SEM (left) and TEM (right) images of NiS synthesized with different NaOH 

concentrations 3M, 5M and 7M from top to bottom respectively. The two insets on the 

7M SEM image (bottom) show hexagonal platelets at the centre of the flowers. 

  



 

 

   

Page 90 

 

  

The platelets later dissolve and form part of the -NiS phase (when given enough 

reaction times). Due to short reaction time employed in this case, the hexagonal 

platelets were not yet dissolved into the flower-like structure in Fig. 5.4 bottom image. 

Fig.5.5 shows the proposed growth mechanism of the flower-like NiS structures. The 

NaOH concentration clearly plays a role in the formation of the flower-like structures. 

This can be attributed to the increased concentration of OH- ions in solution, which form 

Ni(OH)2. The Ni(OH)2 has been shown to favour layer-like structures, and the flower 

fashion of the product may be influenced by this [24]. Further, the increasing amount of 

-NiS as a function of NaOH concentration may be another indication that the -NiS 

first forms and later converts to -NiS phase.  

 

Figure 5.5: Proposed growth mechanism for the binary phase NiS, from particles and 

rods to flower-like structures. 

5.3.3 Precursor effect: phase and morphology analysis 

X-ray analysis of samples synthesized using NiCl2.6H2O and Na2S.9H2O in distilled 

water and 5M NaOH solvent are shown in Fig. 5.6. It was observed that when water is 

used as a solvent, only the -NiS phase was formed. When 5M NaOH was used under 

similar conditions, the -NiS phase began to form. This is due to the high solubility 

constant of -NiS phase when compared to the -NiS phase. Further, when the S 

sources were varied between Na2S.9H2O, S powder and CS(NH2)2, while NaOH 

concentration was kept constant at 5M, the binary phase NiS was formed. The major 

difference in this case was the rate of solubility of the S sources, with Na2S.9H2O being 

the highly soluble S source. It can be seen from Fig 5.6 that the product obtained from 
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this source had the most intense peaks when compared to the other samples. This was 

due to fast accessibility of S2- ions to react with the Ni(OH)2 complex which resulted in a 

relatively high crystalline product. Further, the -NiS is much preferred compared to -

NiS when Na2S.9H2O is used as an S source. The sample prepared using CS(NH2)2 as 

an S source had the -NiS relatively higher than -NiS phase. When S powder was 

used as an S source, binary phase NiS was formed. It is worth noting here that this 

sample has the least intense peaks and a relatively high Ni(OH)2 peak when compared 

to the other samples. This was attributed to the low solubility of S powder in the solvent 

when compared to Ni(OH)2 at the given reaction conditions which resulted in relatively 

less complete dissolution of S2- ions on the Ni(OH)2 complex. 

 

Figure 5.6: XRD patterns of the samples prepared using the same S source 

(Na2S.9H2O) but different solvents (water and NaOH) and samples prepared using 

different S sources; Na2S.9H2O, S powder, CS(NH2)2, while keeping everything else the 

same. The symbol (#) represent the -NiS phase and the symbol (*) represents the -

NiS phase. 

 

The TEM images of the NiS materials were observed to vary with solvent and an S 

source used as shown in Fig. 5.7. When water was used as a solvent, interconnected 

structures with layer–like appearance at a higher magnification were obtained. These 
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layer-like structures consist of ultra-thin layers of about 5 nm (width) as shown on the 

rectangular cropped image in Fig 5.7 (c). When 5 M NaOH was used in a similar 

reaction as above, hexagonal shaped nanoplatelets, nanorods and some irregular 

shaped particles were obtained (Fig. 5.7 d - j). This agreed well with the XRD 

observation made in Fig 5.6, where a binary phase (-NiS and -NiS) was obtained. 

The hexagonal shaped nanoplatelets and nanoparticles were mostly -NiS phase, while 

the rods were probably -NiS. When S powder was used as an S source, a mixture of 

hexagonal nanoplatelets and nanorods was obtained as shown in Fig. 5.7 d. The 

rectangular cropped image from the hexagonal nanoplatelet (Fig. 5.7 h) shows the 

lattice fringes of the platelet, confirming the presence of crystalline structures. A power 

spectrum was performed on the selected rectangular structure from the hexagonal 

nanoplatelet which confirmed a hexagonal structure (Fig. 5.7 i). When CS(NH2)2 was 

used as an S source, uniformly shaped nanorods were obtained with a relatively few 

nanoparticles present (Fig. 5.7 j & k). This was in good agreement with the XRD 

patterns of the -NiS phase yield enhanced on the expense of the -NiS phase.  
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Figure 5.7: TEM images of the samples prepared using the same precursor and water 

(a-c) and NaOH (d & e) solvents. The samples prepared using different S sources; 

Na2S.9H2O (d &e), S powder (f-i), CS(NH2)2 (j & k), while keeping everything else the 

same. Image (i) shows the power spectrum the image (h). 
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5.3.4 Precursor concentration effect: phase and morphology analysis 

X-ray diffraction patterns for the samples obtained when Ni(CH3COO)2.4H2O and 

Na2S.9H2O were used as Ni and S sources respectively, as shown in Fig. 5.8. The 

precursor concentrations were varied between 0.03 M and 0.11 M. It was observed that 

the XRD peaks shift towards right and left relative to the 0.03 M peak, depending on the 

concentration. A consistent observation was the reduction in the relative intensity of 

Ni(OH)2 peak with increased precursor concentration. This could be due to the minimum 

particle-particle space realized at higher concentrations when compared to low 

concentrations which increases the Ni2+ and S2- ions reacting probability. Further, the 

pH of the reagents, which also contributes to OH- ion concentration in solution, was 

maintained between 8.0 and 8.1. 

 

 

Figure 5.8: XRD profile showing -NiS phase samples obtained at varied precursor 

concentrations. The symbol (*) indicates the Ni(OH)2 peak. 

 

Using the Scherrer equation, the crystallite size of a particle was found to be inversely 

proportional to the peak width. Fig. 5.9 shows the variation in the peak widths for the 

different concentrations on the left and a relative comparison between the different 

samples is shown for the peak centered at about 45o on the right of Fig. 5.9. It was 
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observed that as the precursor concentration was increased from 0.03 M to 0.11 M, a 

concentration for minimum crystallite size nucleation obtained was reached at 0.07 M 

and the crystallite size increased again to a maximum value occurring at 0.11 M from 

the selected range of concentrations.  

 

 

Figure 5.9: Peak width variation of the -NiS samples as a function of concentration 

and peak position (left) and the variation of the peak width centered at about 45o as a 

function of precursor concentration. 

 

The TEM images of the materials synthesized using different precursor concentrations 

show relatively similar structures (Fig. 5.10). The structures consisted of irregular 

shaped layer-like structures that were fused together in an irregular manner. The -NiS 

phase has been reported to form layer-like structures when prepared by a hydrothermal 

technique using Ni(CH3CO2)2 and CS(NH2)2 as Ni and S source respectively and water 

was used as a solvent in a stainless steel tank at 200 oC for 4h by Sun [25]. The 

structures obtained in this study do not differ much from the hydrothermally synthesized 

NiS structured obtained using the conventional heating methods reported in the 

literature review chapter. The microwave offers a fast reaction rate and less energy 

consumption to obtaining NiS nanostructures. 
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Figure 5.10: TEM 

images of the 

products from 

precursor 

concentrations 0.03 

M, 0.04 M, 0.06 M, 

0.07 M and 0.08 M 

from top to bottom 

respectively. 
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5.4 Conclusions 

In Summary, a microwave-assisted hydrothermal technique for the synthesis of nickel 

monosulphide using Ni:S ratio of 1:1 was employed. The use of NaOH as a solvent was 

shown to favour a binary phase (- and -) NiS when the reactants; NiCl2.6H2O and 

CS(NH2)2 were reacted. When holding time was evaluated in a similar reaction as 

above, it was shown to affect both the phase as well as the crystallite size of the 

products. The NaOH concentration effect was evaluated and attributed to the hydroxyl 

ions concentration and the reaction heating rate which affects the final phase of the 

product. Further, a growth mechanism was proposed due to observations made on the 

morphologies of the previous reactions, by the assistance of SEM and TEM imaging 

analysis. Water was shown to be selective to only -NiS phase for the reaction between 

NiCl2.6H2O and Na2S.9H2O, and for the reaction between Ni(CH3COO)2.4H2O and 

Na2S.9H2O. The S source effect was evaluated and the results were attributed to 

precursor solubility and Ni(OH)2 solubility which affect the rate of NiS formation. The 

precursor concentration was also evaluated for the reaction between 

Ni(CH3COO)2.4H2O and Na2S.9H2O and it was shown that the crystallite size decreases 

to a certain minimum and then increases between a selected range of 0.03 M to 0.11 M 

precursor concentrations. This study demonstrates that nanomaterials were sensitive to 

the reaction parameters used. The next chapter focuses on the annealing effect of the 

-NiS phase nanostructures. 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

Page 98 

 

  

5.5 References 

[1] Tilley, R.D., Jefferson, D.A., J. Phys. Chem. B 106 (2002) 10895. 

[2] Salavati-Niasari, M., Davar, F., Mazaheri, M., J. Alloys Compd. 470 (2009) 502. 

[3] Salavati-Niasari, M., Davar, F., Mazaheri, M., Materials Research Bulletin 44 

(2009) 2246. 

[4] Salavati-Niasari, M., Mir, N., Davar, F., J. Alloys Compd. 493 (2010) 163.  

[5] Li, F., Kong, T., Wentuan, W., Li, D., Li, Z., Huang, X., Applied Surface Science 

255 (2009) 6285. 

[6] Sartale, S.D., Lokhande, C.D., Mater. Chen. Phys. 72 (2001) 101. 

[7] Guozhen, S., Chen, D., Tang, K., An, C., Yang, Q., Qian, Y., J. Solid State 

Chem. 173 (2003) 227. 

[8] Welters, W.J.J., Vorbeck, G., Zandbergen, H.W., de Haan, J.W., de Beer, 

V.H.J., van Santen, R.A.J., J. Catal. 150 (1994) 155. 

[9] Zhang, X.M., Wang, C., Xie, Y., Qian, Y.T., Materials Research Bulletin 34 

(1999) 1967. 

[10] Pan, Q., Huang, K., Ni, S., Yang, F., He, D., Materials Research Bulletin 43 

(2008) 1440. 

[11] Tang, C., Zang, C., Su, J., Zhang, D., Li, G., Zhang, Y., Yu, K., Applied Surface 

Science 257 (2011) 3388. 

[12] Dong, W., An, L., Wang, X., Li, B., Chen, B., Tang, W., Li, C., Wang, G., J. 

Alloys Compd. 509 (2011) 2170. 

[13] Zhang, J., Qiao, S.Z., Qi, L., Yu, J., Phys. Chem. Chem. Phys. 15 (2013) 12088. 

[14] Kassim, A., Min, H.S., Tee, T.W., Fei, N.C., Am. J. Appl. Sci. 8 (2011) 359. 

[15] Sartale, S.D., Lokhande, C.D., Mater. Chem. Phys. 72 (2001) 101. 

[16] Wang, L., Zhu, Y., Li, H., Li, Q., Qian, Y.,  J. Solid State Chem. 183 (2010) 223. 

[17] Liu, X. Mater. Sci. Engineering B 119 (2005) 19. 

[18] Salavati-Niasari, M., Ghanbari, D., Davar, F., J. Alloys and Compounds 488 

(2009) 442. 

[19] Al-Azri, K., Md Nor, R., Amin, Y.M., Al-Ruqeishi, M.S., Appl. Surf. Sci. 256 

(2010) 5957. 



 

 

   

Page 99 

 

  

[20] Wahab, R., Ansari, S.G., Kim, Y.S., Song, M., Shin, H.S., Appl. Surf. Sci. 255 

(2009) 4891. 

[21]  Chen, S, Zeng, K., Li, H., Li, F., J. Solid State Chem. 184 (2011) 1989. 

[22] Mane, R.S., Lokhande, C.D., Mater. Chem. Phys. 65 (2000) 1. 

[23] Idris, N.H., Rahman, M.M., Chou, S.L., Wang, J.Z., Wexler, D., Liu, H.-K., 

Electrochimica Acta 58 (2011) 456. 

[24] Zhao, W., Zhu, X., Bi, H., Cui, H., Sun, Shengrui, Huang, F., J. Power Sources 

242 (2013) 28. 

[25] Sun, X., Appl. Surf. Sci. 217 (2003) 23. 

 

                                          



 

 

   

Page 100 

 

  

Chapter 6: Structural characterization, optical 

and magnetic properties of hexagonal NiS: Effect 

of annealing temperature 

 

6.0 Preamble 

This chapter describes the MW-assisted synthesis of single phase NiS using H2O 

solvent. The effect of annealing temperature on the stability of NiS is studied by XRD 

analysis. PL and ESR properties of the annealed samples are also reported. 

 

6.1 Introduction 

Nickel and sulphur form many polymorphs such as NiS, NiS2, Ni3S4, Ni3S2, etc [1]. 

Nickel monosulphide (NiS) is one of these polymorphs that crystallizes in two phases 

i.e. a low temperature rhombohedral (-NiS, millerite) phase and the high temperature 

hexagonal (-NiS) phase. Interest in this material came after Sparks and Komoto [2] 

discovered that the -NiS phase exhibited a metal-to-insulator (MIT) phase transition 

which is accompanied by a paramagnetic-to-antiferromagnetic phase transition at a 

temperature of 264 K. Theoretical and experimental studies have been dedicated into 

finding out the cause of this transition as well as factors that affect it [3-10]. 

Nanotechnology based research has also taken its part in developing procedures for the 

fabrication of this unique material. This includes the search for possible applications of 

the material in the field of nanotechnology. Some applications are determined by the 

ultra-violet visible and infra-red optical applications of the nanomaterials due to possible 

band gap tuning as a result of a quantum confinement effect [11-26]. Electrical, optical 

and magnetic properties are some of the notable properties of these materials. As a 

result, they have a wide range of potential applications in light emitting diodes, solar 

cells, gas sensors and lithium ion batteries. Ni-S polymorphs are studied specifically for 

potential use as a cathode material in a rechargeable lithium battery, 
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hydrodesulfurization catalyst, in magnetic devices, and most recently as a possible 

replacement for Pt in visible-light photo-catalysed H2 production reactions [23-24] and 

as counter electrodes for dye-sensitized solar cells [25-26]. 

Chemical methods that have been employed to synthesize this material include 

the conventional reflux method [23], a chemical bath deposition method [27], a 

successive ionic layer adsorption and reaction (SILAR) method [28] and a hydrothermal 

method [12,18]. In this work, due to its time and cost efficiency, we employ the 

microwave assisted hydrothermal method to synthesize -NiS. This method is also a 

candidate for large scale production of nanomaterials since it is relatively fast, 

economical method that gives a high product yield [29-31]. A simple method to obtain 

novel -NiS architectures as well as the study of their crystalline structures and optical 

and magnetic properties as a function of annealing temperature, is presented. 

 

6.2 Experimental 

6.2.1 Reagents and sample preparation 

All reagents used were purchased from the Sigma Aldrich chemical company and were 

used as received without any further purification. NiS nanostructured materials were 

synthesized by adding equimolar solutions of Na2S.9H2O (30 ml in distilled water) and 

NiCl2.6H2O (30 ml in distilled water) together. The precursor mixture was transferred to 

a 100 ml Teflon vessel which was placed into a Multi-wave 3000 microwave oven. The 

oven was operated at 600 W for 30 minutes and fan cooled to room temperature for 20 

minutes. A black precipitate of NiS formed which was washed several times using 

distilled water, ethanol and acetone and later dried in an oven at 90 ˚C for 6 hours.  

 

6.2.2 Annealing 

About 600 mg portions of the as-synthesized products were weighed and annealed 

under an air atmosphere in horizontal quartz tube furnace. The annealing temperatures 

were varied between 150 ˚C and 600 ˚C and annealing was carried out for 3 hours 

under a nitrogen gas flow (200 sccm) and a ramping rate of 20 oC/min was used. 
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6.2.3 Characterization 

The structural analysis was performed using a Panalytical X’Pert PRO PW 3040/60 X-

ray diffractometer with a Cu Kα (λ = 0.154 nm) monochromated radiation source. XRD 

spectra were collected in θ-2θ scan (10-90˚) with a measurement step of 0.02˚. The 

surface morphology was performed using a high resolution transmission electron 

microscope (JEOL HR-TEM 2100). Fourier transform infrared (FT-IR) spectroscopy was 

carried out using a Perkin-Elmer FT-IR spectrometer. The IR spectra were collected 

from 500 to 3500 cm-1.  The microwave absorption measurements were carried out 

using a JEOL electron paramagnetic resonance (EPR) spectrometer operated at a 

constant X-band microwave frequency of 9.4 GHz. For the analysis, the films were 

mounted in the cavity centre at a position where the microwave magnetic field is at its 

maximum. The DC static field was slowly swept between 0 and 500 mT. The microwave 

power was kept at 5 mW during the measurements. The DC field was modulated with a 

superposed AC field whose amplitude was varied between 0.1 mT and 0.6 mT at 100 

kHz frequency. The microwave response was measured as a derivative of its 

microwave absorption signal at room temperature (298 K). Differential scanning 

calorimetry (DSC) analysis was performed using a DSC Q2000 in a nitrogen 

atmosphere at a flow rate of 50 ml/min. The samples were loaded on an aluminium pan 

and about 200 mg was weighed, and the pan was sealed for each sample. Electrical 

measurements were taken using a Kiethley source meter. 

  

6.3 Results 

6.3.1 Phase analysis 

XRD analysis performed on the as-synthesized (raw) sample made from Na2S and 

NiCl2 using the microwave procedure confirmed that a hexagonal NiS phase was 

formed. The experimental d-spacing values obtained for the NiS phases were in good 

agreement with the JCPDS standards PDF # 897141. It can be seen in Fig. 6.1 that the 

XRD peaks shift towards lower angles as the NiS sample is annealed from 90 oC to 300 

oC. From 300 oC, the peaks shift back towards higher angles as the NiO peaks begin to 

form due to the replacement of sulphur by oxygen. It can also be observed that the NiS 
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peaks are still dominant in the annealed samples at 400 oC, after which the NiO peaks 

become dominant and after 600 oC annealing temperatures only cubic NiO peaks are 

observed in the XRD pattern. These results are similar to results reported by Uplane et 

al. [32]. They fabricated NiO thin films from NiS in a thermal oxidation reaction at 

oxidation temperatures of 425, 475 and 525 oC [32]. In their report, they obtained a 

single NiO phase at all oxidation temperatures. This is not exactly result that was 

obtained in our case probably due to the different dimensions of the samples as well as 

the different synthesis techniques employed. This observation is further confirmed by 

FTIR studies (Fig. 6.5). Further information on the XRD analysis of the annealed 

samples is summarised in Fig. 6.2 - 6.4 and Table 6.1. Although no gas analysis of the 

by-products was done during the XRD analysis, the overall oxidation reaction taking 

place at 600 oC can be summarized in Equation 1. 

 

2NiS(s) + 3O2(g)      ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  2NiO(s) + 2SO2(g)       (1) 

 

 

Figure 6.1: XRD pattern of NiS annealed at different temperatures (90 to 600 oC). 

Symbols (#) and (*) correspond to the indexed peaks for -NiS and c-NiO respectively. 
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The crystallite size for all the samples was estimated using the Scherrer equation given 

in Equation 2.  





cos

K
D 

          (2) 

where D is the average dimension of the crystallites, K is a constant (usually applied as 

0.9), λ (0.154 nm) is the X-ray wavelength of the CuK1, β is the full width at half 

maximum of the diffraction peak (inaccuracies associated with stress and instrumental 

broadening are expected) but neglected in this analysis, and  is the Bragg angle. 

 

 

Figure 6.2: Crystallite size variation with annealing temperature, estimated by 

application of the Scherrer equation. 
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Figure 6.3: Peak shift vs estimated crystallite size as a function of temperature for the 

101 peak of NiS (left) and the 200 peak of NiO (right) respectively. 

 

Table 6.1: Summary of the shift in the XRD peak positions and crystallite sizes of 

NiS/NiO samples with annealing temperature. 

  *C-size stands for crystallite size 

Annealing 

temperature 

(oC) 

Peak 101 position 

-NiS (o) 

*C-size 
(nm) 

Peak 200 position 

c-NiO (o) 

*C-size 
(nm) 

Raw 35.13 16.45 - - 

150 35.04 15.54 - - 

200 34.88 16.72 - - 

250 34.62 19.13 - - 

300 34.77 18.83 - - 

350 34.74 22.77 43.53 9.96 

400 34.98 24.06 43.70 10.25 

450 34.62 32.98 43.46 17.18 

500 34.72 26.08 43.53 15.02 

600 - - 43.65 18.28 

 

A high magnification of the XRD profile of the low T data shown in Fig. 6.1 is shown in 

Fig. 6.4. This profile shows a very small peak for nickel hydroxide (Ni(OH)2). This peak 

is normally observed when NiS is synthesized by solution phase techniques and is due 
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to the initial complexation of Ni2+ ions with OH- ions in solution. Ni(OH)2 is actually an 

intermediate phase product before NiS formation. It is worth noting that after annealing 

at temperatures of 250 and 300 oC, this peak disappears. These temperatures are the 

same temperatures that absorbed H2O is expected to completely evaporate [33]. The 

disappearance of the Ni(OH)2 peak means that OH groups have been replaced by S. 

This is supported by the absence of a Ni peak which appears at approximately 38o in 

the XRD profile. More evidence is shown in the DSC results (Fig. 6.6). Further, the 002 

orientation of -NiS (shown in Fig. 6.4) becomes more intense after annealing of the 

sample at 250 and 300 oC. This is associated with increased crystallinity of the sample 

as well as phase stability of -NiS at these temperatures. 

 

 

Figure 6.4: XRD pattern showing the peaks in the range; 25o to 65o for the - NiS 

samples as a function of annealing T. 
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6.3.2. IR absorption properties 

FTIR spectroscopy was performed on the samples as shown in Fig. 6.5. There is a clear 

separation between the samples dominated by NiS (black) and the samples dominated 

by NiO (grey). In agreement with XRD results, the samples (raw and annealed up to 

400 oC) show a relatively low percentage transmittance as compared to the samples 

annealed between 450 to 600 oC. A relatively high transmittance is observed at 450 oC 

and almost 100 % transmittance for the sample annealed at 600 oC. This is related to 

the different optical properties of NiS and NiO. NiS is a small band gap material (about 

0.3 eV) while NiO has a wide band gap (3.6 eV) and has been reported to show high 

percentage transmittance [34]. 

From the transmittance spectra, it can also be noted that SO3
-, S-H and SO4, 

vibrations are present. These are associated with the reactants used and H2O from the 

atmosphere. The S-H vibration band appearing at 2097 cm-1 can be attributed to the 

interaction of the surface S with the adsorbed atmospheric H2O vapour by H bonding. 

These peaks are almost completely suppressed at higher annealing temperatures, 

showing the absence of S-H interactions. Further, a broad band centred at 3300 cm-1 is 

observed after annealing NiS at 500 and 600 oC. This is associated with an O-H 

asymmetrical stretching band from adsorbed moisture from the atmosphere. Another 

band at 1637 cm-1 can be attributed to the O-H bending mode of H2O. A small peak is 

observed for the NiS samples around 1070 cm-1. This peak can be attributed to the 

presence of S=O stretching mode due to the presence of sulphate ions as a result of 

surface adsorbed moisture. A much more intense peak is also observed around 1070 

cm-1 for the samples annealed at 500 and 600 oC. This peak can be attributed to C=O 

stretching mode which comes from atmospheric CO2 adsorbed by the NiO phase 

dominated samples. Peaks for both NiS and NiO could not be identified as they appear 

at lower wavenumbers, below the working range of the FTIR spectrometer. 

  



 

 

   

Page 108 

 

  

 

Figure 6.5: FTIR spectra of the NiS samples annealed at different temperatures (90 to 

600 oC). 

 

6.3.3. Thermal analysis 

DSC patterns were recorded for all the samples. Fig. 6.6 shows the variation of heat 

flow with temperature for the samples; raw and annealed up to 300 oC [Fig. 6.6 (a)] and 

annealed at 350 to 600 oC [Fig. 6.6 (b)]. Endotherms appearing between 100 oC and 

130 oC for the samples annealed below 400 oC were observed during the heating cycle.  

These peaks can be attributed to the elimination of physically adsorbed H2O in the 

samples. A decrease in the intensity of the peaks was observed as the annealing 

temperature was increased. This suggest that some H2O was eliminated during the 

annealing process but some residual physically adsorbed H2O appears present and 

decreases in amount with increased annealing temperature. An endotherm appearing at 

188 oC was observed for the raw and 150 oC annealed samples only. This can be 

attributed to the elimination of chemically bonded hydroxyl groups present in small 

amounts. This is confirmed by the small Ni(OH)2 peak observed in the XRD analysis. 

The samples annealed above 400 oC do not show the H2O elimination peaks. Due to 
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the small volume change (2%) in the crystal unit structure of the -NiS at the point of 

transition, there was no significant change in heat flow at the point of metal-to-insulator 

transition of the samples [2]. The transition was studied by measuring the change in 

resistance of the sample with temperature in Fig. 6.10.  

 

Figure 6.6: DCS plots for the raw and annealed NiS samples (a) from raw to 300 oC 

and (b) from 350 to 600 oC (b). 
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6.3.4 Microscopy analysis 

TEM image analysis was performed on the raw NiS sample and the annealed samples 

as shown in Fig. 6.7. It can be observed from the images that the particles fused 

together forming hierarchical networks. These networks of particles were uniformly 

distributed throughout the samples as shown in the SEM images in Fig. 6.9. A high 

resolution image of the fused particles in Fig. 6.8 (a) reveals that the particles are 

actually made up of highly crystalline layer-like structures. The corresponding power 

spectrum of the selected area (rectangle) shown in the inset of the image in Fig. 6.8 (a) 

confirmed that the as-synthesized hexagonal phase NiS nanostructures are single 

crystalline. The average diameters of the as-synthesized NiS and the annealed samples 

were estimated using the imageJ program. It can be seen in Fig. 6.8 (b) that the fused 

layers have an average diameter of approximately 20 nm. The change in the size of the 

particle diameters with annealing temperature is negligible. However, it can be seen by 

eye observation that the surfaces are actually becoming smoother with annealing 

temperature, as the oxygen atoms substitute sulphur atoms. The synthesis of -NiS by 

microwave-assisted hydrothermal technique has been reported by Nurul et al. where 

they used Ni(ac), thiourea, citric acid trisodium, 40 ml water as a solvent and 20 ml 

ammonia solution. They are the only group that reports on -NiS synthesis method via 

microwave hydrothermal heating. They heated the reactants at 140 oC for 15 min. In 

their image analysis they obtained prismatic particles around 500-900 nm in size [36]. 

Comparing to their results, our method obtained quite narrow distributed particles 

without the use of a capping agent.  
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Figure 6.7: TEM images of NiS samples annealed at different temperatures (90 to 600 

oC) and corresponding to images (a) – (j) respectively. 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Figure 6.8: (a) High resolution TEM image of the as-synthesized NiS nanostructures 

and (b) diameter distribution of the annealed samples. The inset to (a) shows the power 

spectrum of the rectangle selected area confirming a single crystalline phase. 
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Figure 6.9: SEM images of the NiS samples annealed at different temperatures (90 to 

600 oC) and they correspond to images (a) – (j) respectively.  
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6.3.5 Magnetic properties 

The EPR measurements taken at room temperatures and 15 mW microwave power are 

shown in Fig. 6.10. A strong resonance peak was observed for all the samples around 

300 mT and a weak signal was observed for some of the samples at lower fields 

(around 25 mT).  The weak signal was observed to decrease with increase in annealing 

temperature and disappeared at an annealing temperature 300 oC. This peak may be 

influenced by trapped electrons on the surface of the nanomaterials or ionized surface 

due to the presence of defects, which disappears as the sample is annealed and gets 

more crystalline [37]. A new peak in the same region (around 35 mT) starts to emerge 

at an annealing temperature 500 oC (and 600 oC). The peak is shifted towards higher 

fields and it can be associated with defects of the new (NiO) formed species. The 

broader peak centered around 300 mT appear symmetrical for most of the samples and 

the position does not change, symbolising some similarities in the magnetic properties 

of the NiS and NiO phases. This is expected since the substitution of S with O takes 

place with a minimum change in the morphology and size of the nanostructures as the 

phase transforms from hexagonal NiS to cubic NiO.  
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Figure 6.10: ESR results of the raw and annealed NiS samples up to 300 oC (a) and 

samples annealed at 400 to 600 oC (b). 
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a Gaussian or Lorentzian fit. One has to try either of the lineshape equations and 

choose which one fits best. After the fitting, the parameters H0, H and I0 are obtained 

for each lineshape which in the present data are lineshapes for the raw, 150, 200, 250 

…600 oC samples. Once these parameters are obtained, the number of spins A (we 

shall denote them as ), can be quantified,. Unfortunately, neither the Gaussian nor 

Lorentzian could fit to the EPR data obtained because there was no perfect fit. 

Numerical integration of the I(H) data was therefore performed by applying the 

Trapezium method of finding the area under each curve as shown in Equation 3: 

    












n

n

nnnn HHIIdHHI 112
1

    (3) 

 

Table 6.2: Number of spins calculated using the Trapezium method for each annealing 

temperature. 

 

Annealing T #Spin  

25 122731 

150 193598.2 

250 350525.2 

300 2703119 

400 235342.7 

450 456546.5 

500 309045.1 

600 412781.4 
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Figure 6.11: A plot of number of spins in each sample as a function of annealing 

temperature. 

 

The plot in Fig. 6.11 from the values obtained in Table 6.2 reveals two possibilities in 

the profile of number of spins against temperatures of annealing: (1) a clear outlier point 

just at 300 oC and (2) the general linearity in the data below or above 300 oC. If one 

takes the assumption that the huge number of spins at 300 oC is not an outlier, one then 

has to take this as the transition temperature from NiS to the formation of NiO. The 

second argument seems to be more plausible i.e. at Tc, there should be a huge number 

of unpaired electrons as the structure of one phase (NiS) is disintegrating and the new 

structure of NiO is forming. However the slopes of the data above and below Tc are 

slightly different. The slope is steeper before [994285 oC-1] than after [575722 oC-1] Tc. 
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6.3.6 Electronic measurements  

The electronic measurements were carried out on powders of the raw sample by 

measuring resistance versus time as the sample was heating up from liquid N2 from 

about 120 K to about 291 K. The temperature was recorded manually from a 

thermocouple which was inserted beneath the sample holder and the recorded 

temperature was later used in place of time by applying the sigmoidal conversion shown 

in the inset of Fig. 6.11.  A transition in Fig. 6.12 is evident starting around 264 K which 

is in good agreement with what has been reported in literature for α-NiS [3-6]. Due to 

the limitations of the homemade chamber, the cooling cycle could not be measured. 

 

 

Figure 6.12: Low temperature electronic measurement of the raw sample powder. The 

inset is a sigmoidal curve shows the time and temperature relationship, which was used 

to plot resistance change as a function of temperature. 
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6.4 Conclusions  

In summary, novel -NiS nanostructured inter-connected networks have been 

synthesized by a simple and straight forward microwave irradiated hydrothermal 

technique, by reacting nickel chloride with sodium sulphide using water as a solvent. 

The obtained structures were annealed at different temperatures and characterized by 

XRD, FTIR, DSC, TEM, EPR techniques and electric properties were studied. A clear 

transition from NiS below 400 oC annealing temperature to NiO above 400 oC 

temperature was observed in XRD, FTIR and DSC, which is due to oxidation of the NiS 

material. TEM analyses confirmed that the synthesized structures have average 

diameters around 20 nm and were single crystalline. Both NiS and NiO showed similar 

magnetic properties as the hexagonal phase NiS transformed to a cubic phase NiO. 

The electric measurements confirmed the presence of a phase transition when heating 

up the raw NiS sample toward room temperature. The transition was confirmed to be 

around 265 K. 
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Chapter 7: Preliminary studies on synthesis and 

relative humidity sensing of Ni3S2 layer-based 

flower-like structures and impurity Se and Te 

doped Ni3S2 

 

7.0 Preamble 

This chapter describes the synthesis of the Ni3S2 phase of nickel sulphide. The 

microwave heating method was used to synthesize this material. The Ni3S2 was also 

doped with small amounts of Se and Te impurities. Relative humidity gas sensing of the 

pure phase of the material was studied. 

 

7.1 Introduction 

Nickel sulphide (Ni3S2) is the most stable of the nickel sulphide polymorph phase. The 

material occurs in nature as a mineral called heazlewoodite which has a rhombohedral 

phase. It has recently been reported to have applications in lithium ion batteries and 

solar cells [1, 2]. This material has been reported to be a good metallic conductor with a 

room temperature resistivity of about 1.8 x 10-5 Ω cm [3]. There has been little research 

that has been done to study the physical properties of the Ni3S2 material that include its 

photoluminescence (PL) properties, magnetic properties and gas sensing properties 

especially when it has nanoscale dimensions. Of the metal sulphide group of materials, 

ZnS has received much attention in the area of gas sensing and has been reported to 

show sensitivity to NO2 gas that is comparable or much higher than the reported 

sensitivity of some MOx materials [4].  

Doping of semiconductors with metal/non-metal impurities is done to introduce 

localised energy levels in the forbidden band and/or tune the energy band gap of a 

semiconductor [5]. This affects the emission properties of the semiconductor and its 

overall electronic properties. Doping of a single phase nickel sulphide material is a 
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challenge due to the existence of different polymorphs. Both Se and Te have been 

reported to affect the properties on nanostructures when doped in small percentages [6, 

7]. The Ni3S2 material was chosen for doping due to its high chemical stability when 

compared to the other NiSx phases. In this study, small amounts of Se and Te were 

used to dope Ni3S2 materials and. Further, relative humidity (RH) sensing of the Ni3S2 

materials was studied. 

 

7.2 Experimental 

7.2.1 Reagents and sample preparation 

All reagents used were purchased from the Sigma Aldrich (South Africa, Gauteng) 

chemical company and were used as received without any further purification.  

Ni3S2 nanostructures were obtained from a reaction of NiCl2.6H2O (0.010 mol) 

and thiourea (0.013 mol) in distilled H2O (50 ml). The mixture was stirred for 5 minutes 

to ensure homogeneity and transferred into a 100 ml Teflon vessel. The reactants were 

then heated under microwave irradiation at 600 W and 110 oC for 30 minutes and fan 

cooled to room temperature. The black precipitate obtained was washed several times 

with distilled H2O and ethanol followed by drying in an oven at 90 oC for 6 hours. 

To dope Ni3S2 with Se or Te, a similar method was followed. NiCl2.6H2O (0.010 

mol), thiourea (0.012 mol) and [NaO3S2 (0.0003 mol) or TeO2 (0.0003 mol)] in distilled 

H2O (50 ml). The mixtures were stirred for 5 minutes to ensure homogeneity and 

transferred into a 100 ml Teflon vessel. The reactants were then heated under 

microwave irradiation at 600 W and 110 oC for 30 minutes and fan cooled to room 

temperature. The products obtained were washed several times with distilled H2O and 

ethanol followed by drying in an oven at 90 oC for 6 hours. (NB: The doping percentage 

is labelled from the experimental percentage dopant content used and not the actual 

yield).   
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7.2.2 Characterization 

The phases of the prepared samples were investigated using X-ray diffraction [Philips 

PW 1830 X-ray diffractometer with a Cu Kα (λ = 0.154 nm)]. Sample morphologies were 

studied using a scanning electron microscopy (ZEISS SEM) and transmission electron 

microscopy (JEOL-JEM 2100). The chemical compositions of the samples were 

obtained by energy dispersive X-ray spectroscopy (EDS) using a ZEISS SEM 

attachment. The photoluminescence spectra (PL) of the samples were recorded at room 

temperature from 310 nm to 800 nm using a Horiba Jobin Yvon HR320 Spectro-

fluorometer by exciting the samples with the 300 nm line of a deuterium lamp. The 

emission was detected with a Jobin-Yvon MPT detector. The drop cast method was 

used to make the sensing device by stirring Ni3S2 powder in ethanol and casting a drop 

on top of Pt electrodes which were supported on alumina substrates. The RH sensing 

was measured at room temperature by use of humidifier (water bath) and synthetic air 

was used as the carrier gas. The RH sensing was varied between 25 % and 63 % and 

Kiethley source meter was used as a voltage source.  

 

7.3 Results and discussion 

7.3.1 Phase analysis  

XRD analysis of the as-synthesized products, shown in Fig. 1 confirms that a single 

phase Ni3S2 was formed and all the peaks were indexed to the rhombohedral phase.   

There were no new diffraction peaks observed that were associated with the doped 

materials from XRD patterns. This suggests that the small amount of dopants added 

exist in the form of impurity atoms and they did not change the crystal structure of Ni3S2. 

A shift of the XRD peaks to lower angles [Fig 7.1 (b)] was observed for both the 

samples doped with Se and Te which can be attributed to coordination doping of the Se 

and Te metal impurities into the Ni3S2 matrix [8]. Since both doping elements coordinate 

differently to Ni, the lattice parameters are expected to change. The crystalline size of 

the samples was estimated using the Scherrer equation, assuming that strain effects 

were homogeneous throughout the samples. The results are listed for selected 
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orientations in Table 7.1. The shift in peak positions for the doped samples was 

accompanied by decreased grain size, which indicated that the dopants have a 

deteriorating effect on the Ni3S2 crystalline quality [9]. 

 

Table 7.1: Crystallite sizes in nm of the prepared samples estimated by the Scherrer 

equation. 

Orientation Ni3S2 Ni3S1.95Se0.05 Ni3S1.95Te0.05 

101 31.8 28.3 29.9 

110 25.5 19.2 21.5 

202 25.9 21.1 25.9 

 

 

Figure 7.1: (a) XRD patterns of the samples prepared without doping and with 2.5 % Se 

and Te doping. (b) Zoomed image of the 110 crystalline orientations showing a shift in 

peak positions as a function of doping.  
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7.3.2 Microscopy analysis  

TEM images revealed that the synthesized structures formed were layer-based flower-

like structures with dimensions in the micrometer range. It can be seen in the SEM 

images in Fig. 7.2 (b-d) that the thin layer structures form clusters that appear like 

flowers.   

 

 

Figure 7.2: TEM and SEM images of the flower-like Ni3S2 materials. (a & b) pure Ni3S2, 

(b) Ni3S1.95Se0.05, and (c) Ni3S1.95Te0.05. 

 

7.3.3 EDS analysis 

Elemental analysis of the prepared samples was determined by EDS and data is shown 

in Fig. 7.3. Both Ni and S were detected with varying concentrations. Ni has high 

cocentration as expected from the XRD phase analysis. The presence of oxygen can be 

attributed to surface adsorbed oxygen. A similar observation was made for the Se 
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doped samples with the exception of high C content. This is related to the selected area 

for X-ray analysis which had much of the C support used to disperse the samples 

exposed during time of analysis. The presence of Te was also confirmed in Fig. 7.3 (c) 

by the presence of Te peaks. 

 The elemental composition mapped images shown in Fig. 7.4 show the 

distribution of all the elements in the doped samples. It can be seen from both images 

for Se and Te that the doped elements are uniformly distributed throughout the sample. 

This suggest that the dopants nucleated and precipitated at the same time Ni3S2 

formation.  
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Figure 7.3: EDS spectra of the prepared samples (a) pure, (b) Se doped and (c) Te 

doped. 
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Figure 7.4: EDS mapped images of the Se doped (top) and Te doped samples showing 

elemental distribution of the elements Ni, S, Se and Te. 
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7.3.4 Photoluminescence 

The room temperature PL properties of the materials were investigated. A broad UV 

emission peak located around 360 nm and another broad near infrared (NIR) peak 

centered at 700 nm were observed for Ni3S2 in Fig. 7.5. These can be attributed to the 

recombination of electrons with holes that are trapped within the energy band structure 

of Ni3S2 since this material does not have an energy gap in the visible range [3]. After 

doping with Se both the UV and NIR emission peaks appeared to be quenched while 

new peaks were observed, at higher wavelengths. The observed shift can be attributed 

to charge separation. Modified electronic states exist, which a rise during the nucleation 

of the particles which cause alteration of the Ni3S2 energy levels due to overlap with Se 

states [10]. An enhancement in the PL emission for the Te doped sample was observed 

for both the UV and NIR emissions. This suggests that there is an energy transfer from 

Te to Ni3S2 upon excitation, which enhances the overall emission. 

 

 

Figure 7.5: Shows photoluminescence spectra of the prepared samples excited at λ = 

300 nm. 
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7.3.5 Relative humidity (RH) sensing 

The RH sensing of the prepared pure, Se doped and Te doped Ni3S2 based 

devices was measured at controlled room temperatures of 25 oC by recording a 

change in the resistance of the device when different RH percentages were 

introduced to the sensor and dry synthetic air was used to monitor the sensor 

recovery. A drop in resistance was observed in the presence of RH which 

changed with RH %. A recovery of the peak intensity was also observed in the 

presence of air [Fig. 7.6 (a)]. The sensing response (S) of the sensor was 

calculated by using S = Rair/RRH [11], where Rair is the resistance of the sensor in 

air environment and RRH is the maximum resistance reached by the sensor in 

humid environment. A sensitivity of up to 4.5 was achieved at 70 % RH for pure 

Ni3S2 as shown in Fig. 7.6 (b). This can be attributed to the high surface provided 

by the layer-like strictures of the sensing material. A sensing response of up to 

2.5 and 1.4 was obtained for the Se and Te doped samples respectively. 

Improvement of the procedure for device fabrication should allow for easy 

interpretation of the differences on the sensitivities of the sensor devices. Future 

experiments should verify whether the dopants can be used to reduce or improve 

humidity sensitivity of the nickel sulphide materials. 

 The change in resistance as a result of RH sensing is due to the 

adsorption of moisture on the sensor surface. Moisture adsorption affects the 

protonic conduction taking place on the surface, which affects the sensor 

conductivity as the amount of adsorbed water molecules change. Depending on 

the conduction mechanism of water molecules on the sensor surface, humidity 

sensing can be ionic or electronic [12]. At low humidity, conduction is due to 

proton hopping between hydroxyl ions on the first layer of chemisorbed water, 

while at higher humidity, protons hop between physisorbed molecules with a 

Grotthus chain reaction mechanism [12, 13]. In the latter case, H+ proton diffuses 

through the ordered hydrogen bonded array of water molecules. The proton hops 
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from one water molecule to another in the direction of externally applied electric 

field. Because protonic transport increases with increasing RH there will be a 

decrease in the device impedance. This is confirmed by the decreasing 

resistance of the sensor device when RH is introduced. 
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Figure 7.6: (a) RH sensing of the Ni3S2-based sensor device and (b) the 

sensitivity versus RH % plot for the pure, Se doped and Te dopes Ni3S2 based 

sensor devices.  
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7.4 Conclusions  

In summary, rhombohedral Ni3S2 phase with layer-based flower-like structures were 

obtained via a simple, low cost microwave-assisted hydrothermal technique. The 

sample composition was confirmed by XRD and microscopy analysis. The Ni3S2 

material was doped with small amounts of Se and Te and the doped elements were 

confirmed by EDS analysis. A uniform distribution of the dopants within the Ni3S2 

material was observed using the EDS image mapping technique. The Se doped 

samples showed new emission properties while Te doped sample showed the 

enhancement of the Pl properties of Ni3S2 sample. The prepared samples showed 

sensitivity which increased with increased RH percentages. 

 

7.5 Future plans 

More RH sensing studies in doped Ni3S2 samples are planned in order to see the effect 

of doping on the RH sensing performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



      

 

  

Page 135 

 

  

7.6 References 

[1] Lai, C.H., Huang, K.W., Cheng, J.H., Lee, C.Y., Lee, W.F., Huang, C.T., Hwang, 

B.J., Chen, L.J., J. Mater. Chem. 19 (2009) 7277. 

[2]  Chi, W.S., Han, J.W., Yang, S., Roh, D.K., Lee, H., Kim, J.H., Chem. Commun. 

48 (2012) 9501. 

[3] Lai, C.H., Lu, M.Y., Chen, L.J., J. Mater. Chem. 22 (2012) 19. 

[4] Park, S., An, S., Ko, H., Lee, S., Lee, C., Sensors and Actuators B: 188 (2013) 

1270. 

[5] Song, L., Zhang, S., Chen, C., Hu, X., Wei, Q., Chem. Eng. J. 171 (2011) 1454. 

[6] Nenavathu, B.P., Rao, A.V.R.K., Goyal, A., Kapoor, A., Dutta, R.K., Appl. Catal. 

A 459 (2013) 106. 

[7] Jamali-Sheini, F., Yousefi, R., Mahmoudian, M.R., Bakr, N.A., Sa’aedi, A., 

Huang, N.M., Ceramics Int. (2014). 

[8] Sun, L., Liu, C., Liao, C., Yan, C., J. Mater. Chem. 9 (1999) 1655. 

[9] Mhamdi, A., Boukhachem, A., Madani, M., Lachheb, H., Boubaker, K., Amlouk, 

A., Amlouk, M., Optik 124 (2013) 3764. 

[10] Simerjeet K.G., Presrton B., Louisa J. H.W., J Sol-Gel Sci. Technol. 57 (2011) 

68. 

[11] Tsai, F.S., Wang, S.J., Sensors and Actuators B 193 (2014) 280. 

[12] Yadav, B.C., Srivastava, R., Dwivedi, C.D., Pramanik, P., Sensors and 

Actuators A 153 (2009) 137.  

[13] Biswas, P., Kundu, S., Banerji, P., Bhunia, S., Sensors and Actuators B 178 

(2013) 331.  

 

 

 

 

 



      

 

  

Page 136 

 

  

Chapter 8: Conclusions and recommendations 

 

8.0 Preamble 

This chapter contains some concluding remarks in view of the work covered in the 

thesis. Recommendations for future studies are also made. 

 

8.1 General conclusion 

NiSx materials have been obtained via simple chemical routes in the past, however, the 

application of a microwave thermal technique to fabricate these materials have been 

seldom used. Further, the application of these materials in new technologies is only 

emerging. This study explored the microwave synthesis to make some NiSx materials 

and investigate their novel applications in sensing. GaN material synthesis by a novel 

microwave synthesis was also explored as well as its application in sensing.  

 NiS2 hierachical structures were obtained from a reaction of NiCl2.6H2O and S 

powder in ethanol solution. The NiS2 material was obtained when 800 W and 220 oC 

were employed for 60 minutes. The synthesized materials had uniformly distributed 

morphologies with the average particle size of around 400 nm. The PL analysis of the 

materials showed a UV and a NIR emission which were attributed to intra-band 

transitions. A similar observation was observed from HDA capped nanostructures which 

were also obtained from a similar method, with 600 W microwave power was used and 

HDA capping agent added to the reactants. 

 Hexagonal NiS was obtained from a reaction of Na2S.9H2O with NiCl2.6H2O/NiAc 

in water, by microwave heating at 600 W for 15 minutes. Uniformly distributed 

nanolayer-based structures were obtained.  Annealed -NiS material was used to 

prepare a PVA based pressure sensor and ethanol gas sensing device and the material 

was observed to be sensitive to both applied hydrostatic pressure and ethanol gas. 

Further, annealing studies were performed on this material from 150 oC to 600 oC in N2 
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atmosphere and it was observed that NiS started to transform to NiO above a 300 oC 

annealing temperature. This was accompanied by the increasing crystallinity of NiS up 

to 300 oC before the material started to be oxidized. The paramagnetic properties of the 

annealed samples did not vary much between NiS and NiO phases. The FTIR 

properties of the samples were observed to change after annealing the samples at 450 

oC and above. The IR transmission of the annealed samples increased due to the 

presence of NiO. Thermal analysis of the annealed samples showed a reduction in the 

amount of adsorbed hydroxyl groups as the temperature was increased, in agreement 

with XRD analysis. The MIT of this material was confirmed by resistance measurements 

that were recorded while the sample was heating up from liquid N2 to room temperature. 

The transition observed was around 260 K, in agreement with literature reported data. 

 The synthesis of a binary phase (- and -) NiS was studied when a NaOH 

solution was used as a solvent; this is unlike the single -NiS phase formed when H2O 

was used. The formation of the binary phase NiS was promoted by the solubility of the 

precursors in the solvent, different solubility constants of the -NiS and -NiS products, 

as well as the reaction rate and time. Hexagonal platelets and rod-like nanostructures 

were obtained which correspond to -NiS and -NiS respectively. Nanorod-based 

flower-like structures were obtained at high NaOH concentration and increased reaction 

time, which formed from the clustering of rods and particles. Further, a growth 

mechanism was proposed due to observations made on the morphologies of the 

previous reactions, using SEM and TEM imaging analysis  

UV-blue emitting GaN nanocrystals were synthesized from GaCl3 and Li3N in 

benzyl ether, by microwave heating the reactants at 600 W for 10 minutes. XRD 

analysis of the particles confirmed the hexagonal wurtzite phase of GaN. The 

hydrostatic pressure sensing ability of GaN/PVA composite based devices was 

measured for devices fabricated from different concentrations of GaN nanoparticles. A 

very high sensitivity response of up to 48 times was achieved for 2 mg/ml GaN 

concentration in 5 ml PVA at 180 kPa applied hydrostatic pressure. VOCs from tomato 

were also detected by GaN/PVA based device and a high sensitivity was achieved with 
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relatively low response and recovery times. Elimination of oxygen from the GaN 

synthesis reaction by microwave proved to be a challenge which generated Ga2O3 

impurity in the product. 

Rhombohedral Ni3S2 nano-layer based flower-like structures were also obtained 

by microwave assisted hydrothermal synthesis using thiourea and NiCl2.6H2O 

precursors in distilled water. The material was further doped with 2.5% Se and Te using 

a NaO3Se2 and TeO2 as dopant sources. The uniform distribution of the doped 

elements on Ni3S2 was confirmed by EDS electron image mapping, suggesting a 

uniform nucleation of the dopants with the Ni3S2. Further, all the samples showed  

sensitivity which increased with increased RH percentages.  

 

8.2 Future work and recommendations 

The -NiS phase synthesized was observed to have rod morphologies which could be 

interesting for possible electronic application studies. The application of NiSx materials 

in emerging technologies is still new and needs to be pursued as these materials can 

easily be obtained and show interesting properties for visible range optical applications. 

A thorough study of the metal doping on the properties of NiSx materials is needed in 

order to evaluate whether the NiSx material properties could be improved. We were the 

first group to evaluate these materials for sensing applications and studies on sensor 

device fabrication for these materials should be further pursued. 

 

 

 


