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ABSTRACT 
 
 
The production of H2 was monitored using an automated, semi-continuously fed anaerobic fluidised bed 

bioreactor containing 2 facultatively anaerobic bacteria, Enterobacter cloacae (E. cloacae Ecl) and 

Citrobacter freundii (C. freundii Cf1). Shake flask tests using Endo formulation with modified C:N:P ratios, 

showed that a 334:28:5.6 ratio gave the highest attached counts of E. cloacae Ecl and C. freundii Cf1 in 

both single and binary species biofilms grown on granular activated carbon. Once the reactor had 

achieved steady state after 30 days using the modified C:N:P ratio, pH, redox potential, temperature, 

volatile fatty acids and the H2 production rate were monitored. The H2 production rate of 95 mmol H2 / (l x 

h) compared favourably with previous studies. Bacterial biofilms counts for both E. cloacae Ecl and C. 

freundii Cf1 remained high around 9.0 log cfu/g granular activated carbon, although biomass overgrowth 

could not be controlled in the reactor. The efficiency of converting sucrose into H2 was calculated at 

20.5%. Therefore use of this technology to power a 5.0kW proton exchange fuel cell for a single rural 

household is currently not feasible due to the high organic load required. Pooling of wastewater 

generation capacity, improvement of bacterial strain selection and feed formulation, pH control, gas 

removal and purification are factors that need to be considered for future improvement of conversion 

efficiencies. Use of this technology would be most suited for industrial processes generating large 

volumes of wastewater high in carbohydrates. Alternatively, municipal wastewater treatment facilities 

could be converted into electricity generating facilities through the combination of this technology and 

proton exchange membrane fuel cells. 
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