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Abstract

Probability theory plays a crucial role in the study of the geometry of Banach spaces.

In the literature, notions from probability theory have been formulated and studied

in the measure free setting of vector lattices. However, there is little evidence of these

vector lattice techniques being used in the study of geometry of Banach spaces. In

this thesis, we fill this niche. Using the l-tensor product of Chaney-Shaefer, we

are able to extend the available vector lattice techniques and apply them to the

Lebesgue-Bochner spaces. As a consequence, we obtain new characterizations of the

Radon Nikodým property and the UMD property.
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Introduction

Martingales and stopping times have their origins in probability theory and have

proven invaluable in the study of geometry of Banach spaces (cf. [11, 37, 44, 45,

14, 18, 88]). The medium in which probability theory and the geometry of Banach

spaces mingle are the Lebesgue-Bochner spaces.

Let (Ω,Σ, µ) denote a finite measure space, Y a Banach space and 1 ≤ p < ∞.

We denote the Banach space of p-integrable functions on Ω, taking values in Y ,

by Lp(µ, Y ). These are the functions f : Ω → Y for which the Bochner norm

‖f‖p :=
(∫

Ω ‖f‖
p dµ

)1/p is finite.

There are two fundamental questions that arise when considering the Lebesgue-

Bochner spaces:

1. If a Banach space Y has a certain property, does Lp(µ, Y ) inherit this same

property?

2. Given a property for Lp(µ, Y ), what are implications on the geometry of Y ?

The second question has lead to the identification of important classes of Banach

spaces. The characterizations of these classes often exploit the interplay between

the geometry of Banach spaces and probability theory. A classical example is the

class of Banach spaces Y for which the Radon-Nikodým Theorem holds in Lp(µ, Y ).

Such Banach spaces are said to have the Radon-Nikodým property (RNP). The

Radon-Nikodým property has been characterized with the use of martingales (cf.

[37, 45, 20, 53]). Another, more recent example are the Banach spaces Y for which

all martingale difference sequences are unconditional in Lp(µ, Y ) for 1 < p < ∞.

Such Banach spaces are said to be unconditional for martingale difference sequences

(UMD). Both the properties RNP and UMD have intrinsic geometrical characteri-

zations which rely heavily on martingale and stopping time techniques. These geo-

metric characterizations are independent of the Lebesue-Bochner spaces from which

their respective definitions originated (cf. [14, 18, 37, 45]).
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Many of the classical martingale results in Lp(µ) rely on the lattice properties of

Lp(µ) rather than the underlying measure space. This has been observed by several

authors who were able to transport some of the theory to the more general, measure

free setting of vector lattices [101, 25, 95, 99, 96, 97, 98, 32, 108, 107, 61, 62, 63, 64,

65, 66, 67].

Our primary aim in this thesis is to study Troitsky’s generalized notion of a

martingale in a Banach lattice in [101] and some of its consequences in the Lebesgue-

Bochner spaces. We use the generalization of the Lebesgue-Bochner spaces Lp(µ, Y )

as provided by Chaney and Schaefer (cf. [19, 92]). Chaney and Schaefer generalized

the Lebesgue-Bochner space Lp(µ, Y ) to a completed tensor product with respect to

the l-norm, which we denote E⊗̃lY . Here, E denotes a Banach lattice, Y a Banach

space and

‖u‖l = inf

{∥∥∥∥∥
n∑

i=1

|xi|‖yi‖

∥∥∥∥∥ : u =
n∑

i=1

xi ⊗ yi

}

for all u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ Y . In the case where E = Lp(µ) we have E⊗̃lY

isometrically isomorphic to Lp(µ, Y ).

We will extend Troitsky’s theory to the l-tensor product of Chaney-Schaefer and

develop techniques to provide new results concerning the above mentioned geometric

properties.

In Chapter 1, we provide a preliminary understanding of the Lebesgue-Bochner

spaces and their ties to the geometry of Banach spaces. Most of the material in this

chapter is well known, but we still present proofs of important results that are used

later on. Although this may bore those familiar with the subject, it is still interesting

to note the contrast in technique as one passes from the Lebesgue-Bochner spaces

to the measure-free setting of the l-tensor product.

The information on the l-tensor product in the literature is sparse. We therefore,

in Chapter 2, provide an extensive exposition of the l-norm, which contains some new

proofs of known results (cf. [28]). We outline three important formulas for calculating

the l-norm. The lattice properties of the l-norm are also discussed. In particular, we

show that order theoretic versions of injectivity and uniformity hold for the l-norm.

We also present a new proof of a known result concerning the inheritance of a lattice

ordering in E⊗̃lY , in the case where Y is a Banach lattice (cf. [19, 92]). The chapter

concludes with a direct proof of a result concerning the order continuity of the l-norm

(cf. [68]).
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We wish to demonstrate that the abstraction of a martingale in [101] is more

than just a change in notation, but a vehicle for obtaining new results that cannot

be formulated in the classical setting.

For instance, when considering the Lebesgue-Bochner space Lp(µ, Y ) more gen-

erally as the l-tensor product E⊗̃lY of a Banach lattice E and a Banach space Y ,

another natural question may be asked:

3. Given a Banach space Y that endows Lp(µ, Y ) with a certain property, for which

Banach lattices E does this property hold in E⊗̃lY ?

We show in Chapter 3, by studying spaces of norm bounded martingales and their

behavior under the l-tensor product, that this question has a non-trivial answer for

the Radon Nikodým property. Indeed, our abstractions afford us a generalization of

a well known characterization of the Radon Nikodým property: Y has the Radon

Nikodým property if and only if every Lp(µ, Y )-bounded martingale, 1 < p < ∞,

is norm convergent (cf. [45, Theorem II.2.2.2]). We show that this characterization

holds in E∗⊗̃lY for all order continuous dual spaces E∗ of separable Banach lattices

E. As a consequence of the techniques used in proving this result, we are able to show

that Y ∗ has the Radon Nikodým property if and only if (E⊗̃lY )∗ = E∗⊗̃lY
∗ holds

for every separable Banach lattice E with order continuous dual. This generalizes a

well known duality result for the Lebesgue-Bochner spaces; i.e. [37, Chapter IV, §1,

Theorem 1].

The techniques used in Chapter 3 also have other applications. In Chapter 4, we

use these techniques to prove a Grothendieck style characterization of the Banach

spaces `p(Y ) := {(yi) ⊂ Y : (‖yi‖) ∈ `p}, 1 ≤ p < ∞ (cf. [36]). We show that

`1(Y ) is isometrically isomorphic Lcas(c0, Y ), where Lcas(c0, Y ) denotes the space of

‘cone absolutely summing’ operators from c0 into Y . These are operators that map

positive summable sequences to absolutely summable sequences. Similarly, we show

`p(Y ) is isometrically isomorphic to Lcas(`q, Y ), where 1
p + 1

q = 1, p 6= 1.

In Chapter 5, we harness the theory in Chapter 3 to provide a complete descrip-

tion of convergent martingales in the l-tensor product. This description specializes

to the following result for Lebesgue-Bochner spaces (cf. [26]).

Theorem Let (Ω,Σ, µ) be a finite measure space, Y a Banach space and (Σn)

an increasing sequence of sub σ-algebras of Σ. In order for (fn, Σn)∞n=1 to be a

convergent martingale in Lp(µ, Y ) (1 ≤ p < ∞) it is necessary and sufficient that,

for each i ∈ N, there exist a convergent martingale (x(n)
i , Σn)∞n=1 in Lp(µ) and yi ∈ Y

such that, for each n ∈ N, we have
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fn(ω) =
∞∑
i=1

x
(n)
i (ω)yi for all ω ∈ Ω,

where∥∥∥∥∥
∞∑
i=1

∣∣∣ lim
n→∞

x
(n)
i

∣∣∣∥∥∥∥∥
Lp(µ)

<∞ and lim
i→∞

‖yi‖ = 0.

The above theorem reveals the inner workings of norm convergent martingales, which

yield further characterizations of the properties RNP and UMD. These results de-

pend on the ability to represent elements of the l-tensor product as an infinite series.

We present two methods for doing this. The first method, proved in [69], is simi-

lar in spirit to the well known representation of elements in the projective tensor

product (see for example [90, Proposition 2.7]). This method yields the above stated

theorem. The second method is to use ‘bases with vector-valued coefficients’. This

concept was studied by Figiel and Wojtaszczyk in [46]. We exhibit a simple condition

for a basis in a Banach lattice E to be a ‘Y-basis’ of E⊗̃lY , for any Banach space Y .

The advantage to Y -bases is the uniqueness of the series representation of elements

of E⊗̃lY . The use of Y -bases provides analogous description results for convergent

martingales.

In Chapter 6, we consider the notion of a martingale difference sequence (m.d.s. )

in a Banach space Y . We study the space of ‘m.d.s. multipliers’, associated with a

m.d.s. (di) ⊂ Y . This is the sequence space

A(di) :=

{
(αi) ⊂ R :

∞∑
i=1

αidi converges in Y

}
,

endowed with the norm ‖ · ‖A(di) , defined by ‖(αi)‖A(di) = supn∈N ‖
∑n

i=1 αidi‖ for

each (αi) ∈ A(di). The unit vectors (ei) form a basis of A(di) that is equivalent to

(di). Using the martingale techniques developed in Chapter 3, we are able to show

that (di) is an unconditional m.d.s. if and only if A(di) can be renormed so that it

becomes an order continuous Banach lattice under the ordering (αi) ≥ 0 ⇔ αi ≥ 0,

for each i ∈ N. We denote this Banach lattice again by A(di) and call it ‘the Banach

lattice of unconditional m.d.s. multipliers’.

We consider the l-tensor product of two martingale difference sequences. Using

the technique of Gelbaum and Gil de Lamadrid in [49], we are able to show that if

(ξi) is a m.d.s. in the Banach lattice E, relative to a positive filtration, and (ηj) is

a m.d.s. in the Banach space Y , then (ξi ⊗ ηj) is a m.d.s. in E⊗̃lY , provided the

sequence (ξi⊗ ηj) is ordered in an appropriate manner. Consequently, if 1 ≤ p <∞,
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(di) ⊂ Lp(µ) is a classical m.d.s. basis and (yj) ⊂ Y a basis, then (di⊗ yj) is a basis

of Lp(µ, Y ).

It is a well known fact that the spaces Lp(µ) possess an unconditional basis for

1 < p <∞ (cf. [13, 72]). However, Aldous showed in [1] that this is not always true

for Lp(µ, Y ), even when 1 < p <∞ and Y has unconditional basis. This dashes any

hope of showing that (ξi⊗ηj) is an unconditional m.d.s. in E⊗̃lY when (ξi) and (ηj)

are unconditional. Thus, in the pursuit of results on unconditionality, we consider

the space A(ξi)⊗̃lA
(ηj). Using a result of Popa (cf. [85]), we are able to show that

(ei ⊗ ej) is an unconditional basis of A(ξi)⊗̃lA
(ηj) when both (ξi) ⊂ E and (ηj) ⊂ Y

are unconditional. Consequently, (ei⊗ej) ⊂ A(ξi)⊗̃lA
(ηj) is not necessarily equivalent

to the m.d.s. (ξi ⊗ ηj) ⊂ E⊗̃lY . However, if (ξi) is also a boundedly complete basis

of E, and E has type p and cotype q, then we have the continuous embeddings

`p(E)⊗̃lY ⊃ [(ei ⊗ ξi)⊗ ηj ] → A(ξi)⊗̃lA
(ηj) → [(ei ⊗ ξi)⊗ ηj ] ⊂ `q(E)⊗̃lY,

defined by (ei ⊗ ξi) ⊗ ηj 7→ ei ⊗ ej 7→ (ei ⊗ ξi) ⊗ ηj for each i, j ∈ N. The sequence

((ei ⊗ ξi) ⊗ ηj) is an unconditional m.d.s. in both `p(E)⊗̃lY and `q(E)⊗̃lY , but

does not span either of these spaces. In the case when E has type and cotype 2,

the m.d.s. ((ei ⊗ ξi) ⊗ ηj) ⊂ `2(E)⊗̃lY is equivalent to the unconditional basis

(ei ⊗ ej) ⊂ A(ξi)⊗̃lA
(ηj).

In Chapter 7, we add the notion of a stopping time to Troitsky’s theory of mar-

tingales in Banach lattices in [101]. Bounded stopping times in Riesz spaces have

been studied in [62]. Our aim is to extend this theory to unbounded stopping times

in the Banach lattice setting. A generalized definition of a stopping time in a Ba-

nach lattice, adapted to a filtration, is formulated. Our definition of a stopping time

differs slightly from the definition in [62].

We show that a stopping time in an order continuous Banach lattice E can be

considered as an unconditional Schauder decomposition. This allows access to the

theory of Schauder decomposition and multipliers in the thesis of Witvliet (cf. [103]).

Consequently, we are able to define a stopped martingale in an order continuous

Banach lattice, with respect to an unbounded stopping time, adapted to an R-

bounded filtration. This gives rise to an optional stopping theorem for unbounded

stopping times. For R-bounded filtrations, this theorem states that a net of stopped

martingales in an order continuous Banach lattice, indexed by a directed set of

unbounded stopping times, is again a martingale.

We extend this optional stopping theorem to the l-tensor product E⊗̃lY , where

Y is a Banach space. Consequently, we are able to characterize convergent nets of
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stopped martingales in E⊗̃lY . In particular, we get the following result.

Theorem Let (Ω,Σ, µ) be a finite measure space, 1 < p < ∞, and Y a Banach

space. Suppose that (fi, Σi) ⊂ Lp(µ, Y ) is a convergent martingale and D a directed

set of (not necessarily bounded) stopping times adapted to (Σi). Then the following

statements are equivalent:

(a) The net of stopped processes {fτ}τ∈D is convergent in Lp(µ, Y ).

(b) For each i ∈ N, there exist a yi ∈ Y and a convergent martingale (x(i)
j , Σj)∞j=1 ⊂

Lp(µ) with {x(i)
τ }τ∈D convergent, so that fτ =

∑∞
i=1 x

(i)
τ (ω)yi for each ω ∈ Ω and

τ ∈ D, where∥∥∥∥∥
∞∑
i=1

∣∣∣∣limτ∈D
x(i)

τ

∣∣∣∣
∥∥∥∥∥ <∞ and limi→∞ ‖yi‖ = 0.

The above equivalence holds for 1 ≤ p <∞ with (fi, Σi) ⊂ Lp(µ, Y ) not necessarily

convergent, provided D is a directed set of bounded stopping times.

The geometric notion of R-boundedness, first studied by Berkson and Gillespie

in [8], plays a pivotal role here, as well as the property (α), introduced by Pisier in

[83]. Also see a weaker form of property (α) studied by Kalton and Weis in [59].

Lastly, we apply the above techniques to unconditional Schauder decompositions

in the Lebesgue-Bochner spaces. Bourgain noted in [9] that if Y is a UMD space with

an unconditional basis, then Lp(µ, Y ) has an unconditional basis for 1 < p < ∞.

We generalize this result to stopping times. We show that if Y is a UMD lattice

possessing a stopping time, then the Schauder decomposition of Lp(µ, Y ), formed

from the product of any martingale decomposition of Lp(µ, Y ) with this stopping

time, is unconditional.

This study has produced several publications that have either appeared or are

in press, namely [26, 29, 27, 25, 30, 28]. This thesis is arranged, more or less, in the

order these papers developed. Due to the difficulty in obtaining and collating some of

the literature, we have interspersed extensive preliminaries (some with new proofs)

throughout the text, to make this work more accessible. We hope that someone

with a modest background in functional analysis and probability theory will be able

to understand the concepts presented here. Arguably, one of the motivations for

studying ‘measure free’ stochastic processes in vector lattices is to avoid grubby

set theoretic manipulations, intrinsic to probability theory. This motivation would

amount to nil if the ‘measure free’ theory were difficult to access. In this spirit,
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we have included an appendix at the end, where the definitions and results used

implicitly throughout the text may be found, together with suitable references.

Each chapter starts with an introduction where we provide an overview of the

results contained therein, as well as their origin. Also, each chapter concludes with

a ‘notes and remarks’ section where we provide insights not directly related to the

material, directions for further reading and the occasional conjecture or problem.



1

Martingales and the geometry of Banach spaces

1.1 Introduction

We begin by providing the necessities to understand the Bochner integral and the

Lebesgue-Bochner spaces as a completed tensor product. We extend all the neces-

sary notions from classical probability theory to the Lebesgue-Bochner spaces and

present a classical characterization of the Radon Nikodým property, namely: A Ba-

nach space Y has the Radon Nikodým property if and only if every Lp(µ, Y )-bounded

martingale, 1 < p <∞, is norm convergent. We provide a full proof for this result, as

it plays an important role in our characterization of the Radon Nikodým property in

Chapter 3. Our exposition of the Bochner integral and the Radon Nikodým property

in Sections 1.2 and 1.3 is primarily a blend of Egghe [45] and Diestel and Uhl [37].

We refer the reader to these influential texts for the full story, as we only provide a

small glimpse of the theory here. A reader who is familiar with the Lebesgue-Bochner

spaces may forego the material in these sections.

Section 1.4 is concerned with unconditional convergence and the so called ‘UMD

property’. Here, we recall some essential results on unconditional convergence of se-

ries in Banach spaces. We then turn our attention to bases and basic sequences. We

consider the Haar system and the sequence of Rademacher functions as important ex-

amples of basic sequences. Important results concerning the Rademacher functions,

such as the Khinchin Inequality and Kahane’s Inequality are recalled. This leads to

the notions of type and cotype. Finally, after a discussion of the unconditionality of

the Haar system, the section concludes with a discussion of UMD property and its

relationship with the existence of unconditional bases in Lp(µ, Y ), 1 < p <∞. The

material in this section is based on Diestel, Jarchow and Tonge [36], Lindenstrauss

and Tzafriri [71], Burkholder [18] and Rubio de Francia [88].

Sections 1.5 and 1.6 are closely related. Section 1.5 deals with unconditional

Schauder decompositions and their interaction with collections of R-bounded oper-
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ators. We present the elegant multiplier theorem of Clément, de Pagter, Sukochev

and Witvliet in [22, 103]. This result plays a decisive role in Chapter 7, when viewed

in the context of stopping times. Section 1.6 considers products of commuting pairs

of Schauder decompositions. An important geometrical property of Pisier [84] is

recalled, namely property (α). This property guarantees that the product of two

unconditional Schauder decompositions is again unconditional. A generalization of

the Stein Inequality is also presented here (cf. [94]). These results are important for

the work done in Chapter 7. The material in Sections 1.5 and 1.6 is almost exclu-

sively drawn from the comprehensive thesis of Witvliet [103]. We present the proofs

of results that we will use in later Chapters. We highly recommend the thesis of

Witvliet, and the references contained therein, for more background on uncondi-

tional Schauder decomposition and multiplier theorems.

1.2 The Lebesgue-Bochner spaces

Throughout, let Y denote a Banach space and (Ω,Σ, µ) denote a σ-finite measure

space. We say a function s : Ω → Y is simple if there exist y1, y2, . . . , yn ∈ Y and sets

A1, A2, . . . , An ∈ Σ such that s =
∑n

i=1 yiχAi . Here, χAi denotes the characteristic

function of Ai, given by χAi(ω) = 1 when ω ∈ Ai and χAi(ω) = 0 when ω 6∈ Ai.

A function f : Ω → Y is called µ-measurable if there exists a sequence of simple

functions (sn) with limn→∞ ‖sn − f‖ = 0 µ-almost everywhere. We now recall the

definition of the Bochner integral (cf. [37, 45]).

Definition 1.2.1 The Bochner integral of a simple function s =
∑n

i=1 yiχAi , over

a set E ∈ Σ, is defined as∫
E
sdµ =

n∑
i=1

µ(Ai ∩ E)yi.

A µ-measurable function f : Ω → Y is said to be Bochner integrable if there exists

a sequence of simple functions (sn) with limn→∞
∫
Ω ‖sn − f‖dµ = 0. In this case,

the Bochner integral of f , over a set E ∈ Σ, is∫
E
f dµ = lim

n→∞

∫
E
sn dµ.

The fact that this limit exists and is independent of the sequence of approximating

simple functions is proved in the same manner as for the scalar case. There is a

simple, yet important, test for Bochner integrability.

Theorem 1.2.2 (Bochner) If f : Ω → Y is a µ-measurable function, then f is

Bochner integrable if and only if the scalar-valued function ‖f‖ : Ω → R is integrable.
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Proof. Suppose that f is Bochner integrable, then there exists a sequence of simple

functions (sn) for which limn→∞
∫
Ω ‖sn − f‖dµ = 0 holds. Thus,∫

Ω
‖f‖dµ =

∫
Ω
‖(f − sn) + sn‖dµ ≤

∫
Ω
‖(f − sn)‖dµ+

∫
Ω
‖sn‖dµ

for each n ∈ N, whence
∫
Ω ‖f‖dµ <∞.

Conversely, let (sn) be a sequence of simple functions that converge µ-almost

everywhere to f . Fix a δ > 0 and define

gn(ω) =

{
sn(ω), if ‖sn(ω)‖ ≤ (1 + δ)‖f(ω)‖;
0, otherwise.

Then (gn) is a sequence of µ-measurable simple functions that converges to f µ-

almost everywhere. Moreover, (‖f − gn‖) is dominated by the integrable function

(2 + δ)‖f‖. The Lebesgue Dominated Convergence Theorem implies

lim
n→∞

∫
Ω
‖f − gn‖dµ =

∫
Ω

lim
n→∞

‖f − gn‖dµ = 0

and the proof is complete. ut

The Dominated Convergence Theorem easily extends to the Bochner Integral by

virtue of the above theorem. Also, if f : Ω → Y is integrable, there exists a sequence

of approximating simple functions (sn) for which limn→∞
∫
Ω ‖sn‖dµ =

∫
Ω ‖f‖dµ,

whence the inequality∥∥∥∥∫
E
f dµ

∥∥∥∥ =
∥∥∥∥ lim

n→∞

∫
E
sn dµ

∥∥∥∥ = lim
n→∞

∥∥∥∥∫
E
sn dµ

∥∥∥∥
≤ lim

n→∞

∫
E
‖sn‖dµ =

∫
E
‖f‖dµ (1.1)

holds for each E ∈ Σ. Another simple but important result, achieved by approxi-

mating by simple functions, is the following.

Proposition 1.2.3 Let X and Y be Banach spaces with f : Ω → X Bochner in-

tegrable. If T : X → Y is a bounded linear operator, then Tf : Ω → Y is Bochner

integrable and
∫
Ω Tf dµ = T

(∫
Ω f dµ

)
.

Proof. Choose a sequence ofX-valued simple functions (sn) for which limn→∞
∫
Ω ‖sn−

f‖dµ = 0. Then (Tsn) is a sequence of Y -valued step functions that converges µ-

almost everywhere to Tf and
∫
Ω Tsn dµ = T

(∫
Ω sn dµ

)
for each n ∈ N. Moreover,

limn→∞
∫
Ω ‖Tsn− Tf‖dµ ≤ ‖T‖ limn→∞

∫
Ω ‖sn− f‖dµ = 0 so that Tf is Bochner

integrable. Consequently,
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Ω
Tf dµ = lim

n→∞

∫
Ω
Tsn dµ = lim

n→∞
T

(∫
Ω
sn dµ

)
= T

(
lim

n→∞

∫
Ω
sn dµ

)
= T

(∫
Ω
f dµ

)
completes the proof. ut

Definition 1.2.4 For 1 ≤ p < ∞ and a Banach space Y , the Bochner space of

(classes of µ-almost everywhere equal) p-integrable functions is the vector space

Lp(µ, Y ) =
{
f : Ω → Y µ-measurable :

∫
Ω
‖f‖p dµ <∞

}
together with the Bochner norm, defined by ‖f‖p =

(∫
Ω ‖f‖

p dµ
)1/p for all f ∈

Lp(µ, Y ). In the case p = ∞,

L∞(µ, Y ) = {f : Ω → Y µ-measurable : ess-sup ‖f‖ <∞}

and ‖f‖∞ = ess-sup ‖f‖ for all f ∈ L∞(µ, Y ). When µ is the Lebesgue measure, the

associated Bochner spaces are referred to as the Lebesgue-Bochner spaces.

In the case Y = R, the Bochner spaces reduce to the scalar-valued Lp-spaces.

The fact that the Bochner spaces are Banach spaces follows in the same manner as

for the scalar case. It is clear from the definition of Bochner integrability that the

simple functions are dense in the Bochner spaces for 1 ≤ p < ∞. This simple fact

is vital for the extension of many results from the scalar-valued case to the vector-

valued case. It is also vital in the following decomposition of the Bochner spaces into

a completed tensor product (cf. [19, 31, 34, 35, 37]).

For 1 ≤ p <∞ define a bilinear mapping ψ : Lp(µ)× Y → Lp(µ, Y ) by

ψ(f, y)(ω) = f(ω)y for all ω ∈ Ω.

Then the induced linear map ψ` : Lp(µ)⊗ Y → Lp(µ, Y ) is described by

ψ`(f ⊗ y)(ω) = f(ω)y for all ω ∈ Ω

and is injective. Thus, Lp(µ, Y ) contains a copy of Lp(µ) ⊗ Y and we may induce

the Bochner norm. The normed space (Lp(µ)⊗ Y, ‖ · ‖p) is denoted Lp(µ)⊗∆p Y .

Let Sp(µ) denote the real-valued simple functions in Lp(µ), we write

Sp(µ)⊗ Y :=

{
n∑

k=1

χAk
⊗ yk : n ∈ N, χAk

integrable, yk ∈ Y

}

and let
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Sp(Y ) :=

{
n∑

k=1

ykχAk
: n ∈ N, χAk

integrable, yk ∈ Y

}

denote the Y -valued simple functions in Lp(µ, Y ). Then, the restricted map

ψ` : Sp(µ)⊗ Y → Sp(Y )

clearly defines a one-to-one, norm preserving correspondence between Sp(µ)⊗Y and

Sp(Y ). Hence

ψ`(Sp(µ)⊗ Y ) = Sp(Y ) ⊂ ψ`(Lp(µ)⊗∆p Y ) ⊂ Lp(µ, Y ).

Since Sp(µ) is dense in Lp(µ) and Sp(Y ) is dense in Lp(µ, Y ) it follows, by taking

completions, that Lp(µ)⊗̃∆pY is isometrically isomorphic to Lp(µ, Y ).

We recall some classical definitions and results from probability theory. Through-

out, let (Ω,Σ, µ) denote a finite measure space.

Definition 1.2.5 Let 1 ≤ p <∞ and Y be a Banach space.

(a) If Σ1 is a sub σ-algebra of Σ, the conditional expectation of f ∈ Lp(µ) relative

to Σ1, denoted by E(f | Σ1), is a Σ1-measurable element of Lp(µ) which is given

by ∫
A

E(f | Σ1) dµ =
∫

A
f dµ for all A ∈ Σ1. (1.2)

(b) A monotone increasing sequence (Σi) of sub σ-algebras of Σ is called a filtration.

(c) If (Σi) is a filtration, a sequence (fi) ⊂ Lp(µ) is said to be adapted to (Σi) if

each fi is Σi-measurable.

(d) A sequence (fi) ⊂ Lp(µ) adapted to (Σi) is called a martingale relative to (Σi)

if E(fm | Σn) = fn for all n ≤ m. We use the notation (fn, Σn) when there is a

need to indicate the filtration involved.

(e) A sequence (fi) ⊂ Lp(µ) adapted to (Σi) is called a submartingale (supermartin-

gale) relative to (Σi) if E(fm | Σn) ≥ (≤)fn for all n ≤ m.

(f) Let (di) ⊂ Lp(µ) be a sequence and σ(d1, . . . , di) denote the smallest σ-algebra

allowing d1, . . . , di to be measurable. Then (di) is called a martingale difference

sequence (m.d.s. ) if

E(di+1 | σ(d1, . . . , di)) = 0

for each i ∈ N.

(g) A sequence (fi) ⊂ Lp(µ) is called uniformly integrable if for each ε > 0, there

exists δ > 0 such that
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µ(E) < δ,E ∈ Σ ⇒
∫

E
|fn|dµ < ε

for all n ∈ N.

The above definition for (sub) (super) martingales extends to filtrations indexed

by uncountable directed sets in the obvious manner. For a filtration (Σi), it follows

from (1.2) that E( · | Σi) is a positive contractive projection for each i ∈ N and, for

i ≤ j, we have

E( · | Σi) = E(E( · | Σj) | Σi) = E(E( · | Σi) | Σj),

which implies R
(
E( · | Σi)

)
⊂ R

(
E( · | Σj)

)
.

If 1 < p <∞ and (fn) ⊂ Lp(µ) with supn∈N ‖fn‖p <∞, it follows from Hölders

inequality that (fn) is uniformly integrable with supn∈N ‖fn‖1 < ∞. In probability

theory, a stronger definition for uniform integrability is often used: for each ε > 0,

there exists K > 0 such that∫
{ω∈Ω:|fn(ω)|>K}

|fn|dµ < ε

for all n ∈ N. This is equivalent to Definition 1.2.5(g) when supn∈N ‖fn‖1 < ∞ (cf.

[21, pp. 96–97]). The Doob Convergence Theorem (cf. [41]) asserts that a L1(µ)-

bounded martingale converges in L1(µ)-norm if and only if it uniformly integrable.

We will also make use of distributions; suppose that (Ω,Σ, µ) is a finite mea-

sure space and f : Ω → R is measurable. Then, the (cumulative) distribu-

tion function Nf of f is defined by µ(f−1(B)) for every Borel set B ⊂ R. If

Nf ({ω ∈ Ω : f(ω) < −a}) = Nf ({ω ∈ Ω : f(ω) > a}) for each a ∈ R, then f

is said to be symmetric. Observe that if f is a symmetrically distributed measurable

function, then Nf = N−f . The measurable functions f1, . . . , fn are said to be inde-

pendent whenever µ(
⋂n

i=1{ω ∈ Ω : fi(ω) ∈ Bi}) =
∏n

i=1 µ({ω ∈ Ω : fi(ω) ∈ Bi})
for any Borel sets B1, . . . , Bn. An infinite set of measurable functions is said to be

independent if every finite subset is independent.

The notion of a conditional expectation can be extended to the vector-valued

Lp-spaces with the aid of simple functions. Let Σ1 be a sub σ-algebra of Σ. Define

E( · |Σ1) : Sp(Y ) → Sp(Y )

by

E

(
n∑

i=1

χAi ⊗ xi

∣∣∣∣Σ1

)
= (E( · |Σ1)⊗ idY )

(
n∑

i=1

χAi ⊗ xi

)
=

n∑
i=1

E(χAi |Σ1)⊗xi,
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where E(χAi |Σ1) denotes the conditional expectation of χAi ∈ Lp(µ). By Jensen’s

inequality, it follows that

∆p

(
E

(
n∑

i=1

χAi ⊗ xi

∣∣∣∣Σ1

))
≤ ∆p

(
n∑

i=1

χAi ⊗ xi

)
.

The conditional expectation E( · |Σ1) : Lp(µ, Y ) → Lp(µ, Y ), of f ∈ Lp(µ, Y ) rela-

tive to Σ1, is the continuous extension of the operator E( · |Σ1) ⊗ idY on Sp(Y ) to

Lp(µ, Y ); it satisfies (1.2) and is a contractive projection. The notion of an adapted

sequence, martingales and martingale difference sequences now extend to Lp(µ, Y )

in the obvious manner.

Uniform integrability extends to Lp(µ, Y ) as follows: A sequence (fn) ⊂ Lp(µ, Y )

is said to be uniformly integrable if (‖fn‖) ⊂ Lp(µ) is uniformly integrable. Again,

it follows easily from the Hölder inequality that if supn∈N ‖fn‖p < ∞ for some

1 < p < ∞, then (fn) is uniformly integrable. It follows from the Maximal Lemma

(cf. [45, Lemma II.1.5] or [37, Chapter V, §2, Lemma 7]) that every norm convergent

martingale (fi) ⊂ Lp(µ, Y ) also converges µ-almost everywhere (cf. [37, Chapter V,

§2, Theorem 8] or [45, Theorem II.1.6]). If (fi) ∈ Lp(µ, Y ) is just a sequence that

converges in norm, then we can only find a subsequence of (fi) that converges µ-

almost everywhere (cf. [45, pp. 11–12]).

In general, the Doob Convergence Theorem does not hold in Lp(µ, Y ) for any

Banach space Y . However, there is a class of Banach spaces for which this theorem

does hold. This is the theme of the next section.

1.3 The Radon-Nikodým property

In this section we define the Radon-Nikodým property and illustrate its intimate

relationship with martingales. We start with the definition of a vector measure.

Throughout, let (Ω,Σ, µ) be a finite measure space and Y be a Banach space.

Definition 1.3.1 (a) A function F : Σ → Y is called a (countable additive) vector

measure if F (
⋃∞

n=1En) =
∑∞

n=1 F (En) where (En) ⊂ Σ is pairwise disjoint.

(b) A vector measure F : Σ → Y is called µ-continuous if limµ(E)→0,E∈Σ F (E) = 0.

(c) The variation of a vector measure F : Ω → Y if defined as |F |(E) =

supπ

∑
A∈π ‖F (A)‖, where the supremum is taken over all finite partitions π

of E.

(d) A vector measure F : Ω → Y is said to be of bounded variation if |F |(Ω) <∞.
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It can be shown that a vector measure of bounded variation is countably addi-

tive if and only if its variation is countably additive. Since we are only interested in

countably additive vector measures, we will drop the reference to countable additiv-

ity.

One way vector measures of bounded variation arise is the Bochner integral.

Indeed, If f : Ω → Y is a Bochner integrable function, define F (E) =
∫
E f dµ for

all E ∈ Σ. Then, the following result guarantees that F is a vector measure.

Proposition 1.3.2 If f : Ω → Y is a Bochner integrable function, then the follow-

ing statements hold:

(a) limµ(E)→0,E∈Σ

∫
E f dµ = 0.

(b) If (En) ⊂ Σ is pairwise disjoint, with E :=
⋃∞

n=1En, then
∫
E f dµ =

∑∞
n=1

∫
En
f dµ.

Moreover,
∑∞

n=1

∫
En
f dµ converges absolutely.

(c) If F (E) :=
∫
E f dµ, then F is a vector measure of bounded variation and

|F |(E) =
∫
E ‖f‖dµ for all E ∈ Σ.

Proof. (a) Since limµ(E)→0,E∈Σ

∫
E ‖f‖dµ = 0, the result follows by (1.1).

(b) Notice that
∑∞

n=1

∫
En
f dµ is absolutely summable by (1.1) and so is also

summable by the completeness of Y . Lastly, observe∥∥∥∥∥
∫

⋃∞
n=1 En

f dµ−
m∑

n=1

∫
En

f dµ

∥∥∥∥∥ =

∥∥∥∥∥
∫

⋃∞
n=m+1 En

f dµ

∥∥∥∥∥
which goes to zero by part (a).

(c) The fact that F is a vector measure follows from parts (a) and (b). Let π be a

finite partition of E ∈ Σ. Then, by (1.1),∑
A∈π

‖F (A)‖ =
∑
A∈π

∥∥∥∥∫
A
f dµ

∥∥∥∥ ≤∑
A∈π

∫
A
‖f‖ dµ =

∫
E
‖f‖ dµ.

Taking the supremum over all finite partitions of E on the right shows |F |(E) ≤∫
E ‖f‖ dµ. An application of Bochner’s theorem shows that F is of bounded varia-

tion.

For the reverse inequality, let ε > 0 and choose a sequence of simple functions (sn)

with limn→∞
∫
Ω ‖sn − f‖dµ = 0. There exists an N ∈ N such that n ≥ N implies∫

Ω ‖sn−f‖dµ < ε/2. Choose a finite partition π′ of E such that
∑

A∈π′

∥∥∫
A sn dµ

∥∥ =∫
E ‖sn‖dµ. Select a finite refinement π of π′ such that |F |(E)−

∑
B∈π

∥∥∫
B f dµ

∥∥ <
ε/2. Moreover, we still have

∑
B∈π

∥∥∫
B sn dµ

∥∥ =
∫
E ‖sn‖dµ and∑

B∈π

∣∣∣∣ ∥∥∥∥∫
B
sn dµ

∥∥∥∥− ∥∥∥∥∫
B
f dµ

∥∥∥∥ ∣∣∣∣ ≤ ∫
E
‖sn − f‖dµ < ε/2
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by (1.1). Consequently,∣∣∣∣|F |(E)−
∫

E
‖sn‖dµ

∣∣∣∣ =

∣∣∣∣∣|F |(E)−
∑
B∈π

∥∥∥∥∫
B
sn dµ

∥∥∥∥
∣∣∣∣∣

≤

∣∣∣∣∣|F |(E)−
∑
B∈π

∥∥∥∥∫
B
f dµ

∥∥∥∥
∣∣∣∣∣+

∑
B∈π

∣∣∣∣ ∥∥∥∥∫
B
sn dµ

∥∥∥∥− ∥∥∥∥∫
B
f dµ

∥∥∥∥ ∣∣∣∣
< ε/2 + ε/2 = ε.

Thus, limn→∞
∫
E ‖sn‖dµ =

∫
E ‖f‖dµ = |F |(E). ut

Corollary 1.3.3 If f and g are Bochner integrable and
∫
E f dµ =

∫
E g dµ for all

E ∈ Σ, then f = g µ-almost everywhere.

Proof. The vector measure F (E) :=
∫
E(f − g) dµ = 0 for all E ∈ Σ. Hence, 0 =

|F |(E) =
∫
E ‖f − g‖dµ by the above theorem. Consequently, ‖f − g‖ = 0 µ-almost

everywhere, which completes the proof. ut

It follows that every Bochner integrable function corresponds to a vector measure

of bounded variation that is µ-continuous. In the case where Y = R, the classical

Radon Nikodým Theorem provides a converse; we recall the statement of the Radon-

Nikodým Theorem for the vector-valued case:

Theorem 1.3.4 (Radon-Nikodým) Let G : Σ → Y be a µ-continuous vector

measure of bounded variation, then there exists a Bochner integrable function g ∈
L1(µ, Y ) such that G(E) =

∫
E g dµ for all E ∈ Σ.

Unfortunately (or perhaps, fortunately) the above theorem is not always valid.

For example, the Radon Nikodým Theorem fails when Y = c0 or Y = L1(µ) (cf.

[37, Chapter III, §1, Examples 1 and 2]). The failure of this theorem lead to the

identification of a class of Banach spaces for which the Radon-Nikodým theorem

does hold.

Definition 1.3.5 A Banach space Y is said to have the Radon Nikodým property

with respect to the measure space (Ω,Σ, µ) if, for every µ-continuous vector measure

G : Σ → Y of bounded variation, there exists a Bochner integrable function g ∈
L1(µ, Y ) such that G(E) =

∫
E g dµ for all E ∈ Σ. Y is said to have the Radon

Nikodým property (RNP) if Y has the Radon Nikodým property with respect to

every finite measure space.

There is a long list of characterizations of the Radon Nikodým property, to which

we will add a few more, later on. One of the more famous characterizations is the

Lewis-Stegall Theorem (cf. [37, Chapter III, §1, Theorem 8]).
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Theorem 1.3.6 (Lewis-Stegall) A Banach space Y has the Radon-Nikodým

property with respect to (Ω,Σ, µ) if and only if every bounded linear operator T :

L1(µ) → Y admits a factorization T = LS

L1(µ) Y

`1

-T

@
@@RS �

�
��
L

where L : `1 → Y and 0 ≤ S : L1(µ) → `1 are continuous linear operators. In this

case, for each ε > 0, L, S may be chosen such that ‖S‖ ≤ ‖T‖+ ε and ‖L‖ ≤ 1.

We point out that the proof of the Lewis-Stegall Theorem presented in [37] shows

that the operator S : L1(µ) → `1 in the above theorem is positive. This observation

is crucial for our work in Chapter 3.

A classical characterization of when a dual space has the Radon Nikodým prop-

erty is:

Theorem 1.3.7 Let (Ω,Σ, µ) be a finite measure space, 1 ≤ p < ∞, and Y a

Banach space. Then Lp(µ, Y )∗ = Lq(µ, Y ∗) where 1
p + 1

q = 1, if and only if Y ∗ has

the Radon-Nikodým property with respect to (Ω,Σ, µ).

We now collect some sufficient conditions for a Banach space to have the Radon

Nikodým property.

Proposition 1.3.8 Let Y be a Banach space. Then, Y has RNP if one of the fol-

lowing statements hold:

(a) Y is a Hilbert space.

(b) Y has a separable dual.

(c) Y is reflexive.

(d) Y has a boundedly complete basis.

(e) Y is a subspace of a Banach space with RNP.

The existence of a conditional expectation on Lp(µ) depends on the Radon

Nikodým Theorem. However, conditional expectations always exist on Lp(µ, Y ), even

when the Radon Nikodým Theorem fails, as is easily seen by the above construction.

This curious phenomenon gives us a clue that probability theory will play a decisive

role in characterizing the Radon Nikodým property. We shall present a martingale

characterization.
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Let (fn, Σn) ⊂ Lp(µ, Y ) be a martingale, then F (E) := limn→∞
∫
E fn dµ exists

for each E ∈
⋃∞

n=1Σn. Indeed, there is an N ∈ N such that E ∈ Σn for all n ≥ N .

Hence, by (1.2),
∫
E fN dµ =

∫
E E(fn |ΣN ) dµ =

∫
E fn dµ = limn→∞

∫
E fn dµ. We

use this in the following lemma.

Lemma 1.3.9 Let 1 ≤ p < ∞ and (fn, Σn) ⊂ Lp(µ, Y ) be a martingale. Then

(fn, Σn) converges in Lp(µ, Y ) if and only if there exists f ∈ Lp(µ, Y ) such that, for

each E ∈
⋃∞

n=1Σn, we have F (E) = limn→∞
∫
E fn dµ =

∫
E f dµ.

Proof. Suppose limn→∞ fn = f . It follows from (1.1) and Bochner’s Theorem that

the linear operator Lp(µ, Y ) → Y , defined by g 7→
∫
E g dµ, is bounded with norm

less than or equal to one for all E ∈ Σ. Hence, limn→∞
∫
E fn dµ =

∫
E f dµ for all

E ∈ Σ ⊃
⋃∞

n=1Σn.

Conversely, suppose there exists f ∈ Lp(µ, Y ) such that, for each E ∈
⋃∞

n=1Σn,

we have F (E) = limn→∞
∫
E fn dµ =

∫
E f dµ. LetΣ∞ denote the σ-algebra generated

by
⋃∞

n=1Σn and set f∞ = E(f |Σ∞). Then, by (1.2), F (E) =
∫
E f∞ dµ for all

E ∈
⋃∞

n=1Σn and E(f∞|Σn) = fn for all n ∈ N. Observe that, since 1 ≤ p < ∞,

simple functions that are measurable with respect to the algebra
⋃∞

n=1Σn are dense

in Lp
∞ := Lp(Ω,Σ∞, µ|Σ∞ , Y ) 3 f∞. Thus, for ε > 0, there exists a simple function

sε ∈ Lp
∞ that is

⋃∞
n=1Σn-measurable with ‖sε − f∞‖p < ε/2. Consequently, there

exists an N ∈ N such that E(sε |Σn) = sε for all n ≥ N . Hence,

‖fn − f∞‖p ≤ ‖fn − sε‖p + ‖sε − f∞‖p

= ‖E(f∞ − sε |Σn)‖p + ‖sε − f∞‖p

≤ 2‖sε − f∞‖p

< ε.

Since Lp
∞ is a closed subspace of Lp(µ, Y ), the proof is complete. ut

We are now in a position to reproduce the following well known characterization

of the Radon Nikodým property.

Theorem 1.3.10 The following statements are equivalent for a Banach space Y :

(a) Y has the Radon Nikodým property.

(b) Every uniformly integrable martingale (fn) ⊂ L1(µ, Y ) with supn∈N ‖fn‖1 < ∞
converges in L1(µ, Y ).

(c) Every martingale (fn) ⊂ L1(µ, Y ) with supn∈N ‖fn‖∞ <∞ converges in L1(µ, Y ).

(d) Every martingale (fn) ⊂ Lp(µ, Y ) (1 < p < ∞) with supn∈N ‖fn‖p < ∞ con-

verges in Lp(µ, Y ).
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Proof. We show the implications (a)⇒(b)⇒(c)⇒(a), (d)⇒(c) and (b)⇒(d).

(a)⇒(b) Suppose that Y has RNP and let (fn, Σn) ⊂ L1(µ, Y ) be a uniformly

integrable martingale with supn∈N ‖fn‖1 <∞. For E ∈
⋃∞

n=1Σn, the limit F (E) :=

limn→∞
∫
E fn dµ exists. Let Σ∞ denote the σ-algebra generated by

⋃∞
n=1Σn, we will

show that F is a µ-continuous vector measure on Σ∞, of bounded variation.

For a sequence (Ei) ⊂
⋃∞

n=1Σn we may consider the union A :=
⋃∞

i=1Ei to be

disjoint. Let ε > 0, then by the uniform integrability of (fn), there exists N ∈ N
such that l > k ≥ N implies

∥∥∥∑l
i=k

∫
Ei
fn dµ

∥∥∥ ≤ ∫⋃l
i=k Ei

‖fn‖dµ < ε for all n ∈ N.

Consequently,

∞∑
i=1

lim
n→∞

∫
Ei

fn dµ = lim
n→∞

∞∑
i=1

∫
Ei

fn dµ = lim
n→∞

∫
A
fn dµ = F (A)

exists in Y . Hence, F (Ac) = F (Ω \ A) = limn→∞
∫
Ω fn dµ − limn→∞

∫
A fn dµ also

exists. It follows that F (A) exists for all A ∈ Σ∞.

A similar argument shows that F is countably additive on Σ∞. Indeed, let

(Ai) ⊂ Σ∞ be pairwise disjoint. Then, using uniform integrability as above and the

existence of F (Ai) for each i ∈ N, we have
∑∞

i=1 F (Ai) =
∑∞

i=1 limn→∞
∫
Ai
fn dµ =

limn→∞
∑∞

i=1

∫
Ai
fn dµ = limn→∞

∫⋃∞
i=1 Ai

fn dµ = F (
⋃∞

i=1Ai).

To show that F is of bounded variation on Σ∞, let π ⊂ Σ∞ be a finite partition

of Ω. Then,∑
A∈π

‖F (A)‖ =
∑
A∈π

∥∥∥∥ lim
n→∞

∫
A
fn dµ

∥∥∥∥ = lim
n→∞

∑
A∈π

∥∥∥∥∫
A
fn dµ

∥∥∥∥
≤ sup

n∈N

∑
A∈π

∫
A
‖fn‖ dµ = sup

n∈N

∫
Ω
‖fn‖ dµ <∞.

Lastly, we show that F is µ-continuous. Let µ(Ai) ⊂ Σ∞ with limi→∞ µ(Ai) = 0

and ε > 0. By the uniform integrability of (fn), there exists N ∈ N such that i ≥ N

implies
∥∥∥∫Ai

fn dµ
∥∥∥ ≤ ∫Ai

‖fn‖dµ < ε for all n ∈ N. Consequently, ‖F (Ai)‖ < ε.

Since Y has RNP, there exists f ∈ L1
∞ := L1(Ω,Σ∞, µ|Σ∞ , Y ) such that

F (E) = lim
n→∞

∫
E
fn dµ =

∫
E
f dµ

for all E ∈ Σ∞. Since L1
∞ is a closed subspace of Lp(µ, Y ), an application of Lemma

1.3.9 shows that (b) is true.

(b)⇒(c) Let (fn) ⊂ L1(µ, Y ) be a martingale with supn∈N ‖fn‖∞ < ∞. Then

supn∈N ‖fn‖1 ≤ supn∈N ‖fn‖∞ <∞. Moreover, since

µ({ω ∈ Ω : ‖fn(ω)‖ > sup
n∈N

‖fn‖∞}) = 0
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for each n ∈ N, we have∫
{ω∈Ω:‖fn(ω)‖>supn∈N ‖fn‖∞}

‖fn‖dµ = 0

for each n ∈ N, showing that (fn) in uniformly integrable. An application of (b)

confirms (c).

(c)⇒(a) Assume (c) to be true and let (Ω,Σ, µ) denote any finite (complete) mea-

sure space. First, assume that F : Σ → Y is a vector measure with the following

property:

∃ K > 0 such that ‖F (E)‖ ≤ Kµ(E) for all E ∈ Σ. (1.3)

Let P = {π ⊂ Σ : π a finite partition of Ω}, directed by refinement. Define

fπ =
∑
A∈π

F (A)
µ(A)

χA

for each π ∈ P, using the convention 0/0 = 0. Denote by Σπ the σ-algebra generated

by π. It is readily verified that (fπ, Σπ)π∈P ⊂ L1(µ, Y ) is a martingale. Also,

‖fπ‖∞ = sup
A∈π

‖F (A)‖
µ(A)

≤ K <∞

for all π ∈ P. Consequently, supπ∈P ‖fπ‖∞ <∞.

Suppose, for a moment, that (c) implies that (fπ, Σπ)π∈P is convergent in

L1(µ, Y ); i.e. there exists f ∈ L1(µ, Y ) such that limπ∈P ‖fπ − f‖1 = 0. Because

PE := {π ∈ P : π ≥ {E,Ω \ E} }

is cofinal in P for each E ∈ Σ, we have∫
E
f dµ = lim

π∈P

∫
E
fπ dµ = lim

π∈PE

∫
E
fπ dµ = lim

π∈PE

∑
A∈π,A⊂E

F (A)
µ(A)

µ(A ∩E) = F (E)

for all E ∈ Σ, as required.

To show that (c) implies that (fπ, Σπ)π∈P is convergent, assume (fπ, Σπ)π∈P is

not convergent. Then, there is ε > 0 such that, for each π ∈ P, there exist π ≤
π′, π′′ ∈ P with ‖fπ′ − fπ′′‖1 ≥ 2ε. Hence, either ‖fπ − fπ′‖1 ≥ ε or ‖fπ − fπ′′‖1 ≥ ε.

Choose π ≤ γ ∈ {π′, π′′} such that ‖fπ − fγ‖1 ≥ ε. Continuing this process, we

can inductively extract a countable martingale (fπn , Σπn)n∈N ⊂ (fπ, Σπ)π∈P that

contradicts (c).

To prove (a), let G : Σ → Y be a µ-continuous measure of bounded variation.

It follows from the completeness of (Ω,Σ, µ) that |G| is also µ-continuous. By the

classical Radon-Nikodým Theorem, there exists 0 ≤ ϕ ∈ L1(µ) such that
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|G|(E) =
∫

E
ϕ dµ (1.4)

for all E ∈ Σ. Observe ‖G(E)‖ ≤ |G|(E) for all E ∈ Σ so that G satisfies property

(1.3) with respect to the finite measure space (Ω,Σ, |G|). By the above, there exists

g ∈ L1(|G|, Y ) such that

G(E) =
∫

E
g d|G| (1.5)

for all E ∈ Σ. Combining (1.4) and (1.5), we obtain G(E) =
∫
E gϕdµ for all E ∈ Σ,

with gϕ ∈ L1(µ, Y ).

(d)⇒(c) Let (fn) ⊂ L1(µ, Y ) be a martingale with supn∈N ‖fn‖∞ < ∞. Then

supn∈N ‖fn‖p ≤ supn∈N ‖fn‖∞ < ∞. By (d), (fn) is convergent in Lp(µ, Y ), which

implies convergence in L1(µ, Y ).

(b)⇒(d) Let (fn, Σn) ⊂ Lp(µ, Y ) be a martingale with supn∈N ‖fn‖p < ∞. By

Hölders inequality, (fn) is uniformly integrable with supn∈N ‖fn‖1 < ∞. Conse-

quently, (fn) converges to a function f ∈ L1(µ, Y ). Thus, by Lemma 1.3.9,

F (E) = lim
n→∞

∫
E
fn dµ =

∫
E
f dµ

for all E ∈
⋃∞

n=1Σn. Since (fn) is a martingale, (fn) also converges to f µ-almost

everywhere. By Fatou’s Lemma, we have∫
Ω
‖f‖p dµ ≤ lim

n→∞

∫
Ω
‖fn‖p dµ ≤ sup

n∈N
‖fn‖p

p <∞,

whence f ∈ Lp(µ, Y ). Another application of Lemma 1.3.9 proves (d). ut

1.4 Unconditional convergence and the UMD property

Before we delve into the intricacies of Banach spaces that are unconditional for

martingale difference sequences (UMD), we review some results on unconditional

convergence.

Definition 1.4.1 Let X be a normed space and (xn) ⊂ X be a sequence.

(a) The series
∑∞

n=1 xn is said to converge to x ∈ X if limn→∞ ‖
∑n

i=1 xi − x‖ = 0.

In this case, we say that (xi) is summable.

(b) The series
∑∞

n=1 xn is said to be unconditionally convergent if, for every permu-

tation π of N, the series
∑∞

n=1 xπ(n) is convergent. In this case, the sequence (xn)

is said to be unconditionally summable.
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(c) The series
∑∞

n=1 xn is said to be unordered summable to x ∈ X if, for every ε > 0,

there exists a finite set N0 ⊂ N so that for every finite set N with N0 ⊂ N ⊂ N,

we have ‖
∑

n∈N xn − x‖ < ε.

(d) The series
∑∞

n=1 xn is said to be absolutely convergent if the series
∑∞

n=1 ‖xn‖
is convergent. In this case, the sequence (xn) is said to be absolutely summable.

In finite dimensional normed spaces, a series is absolutely summable if and only

if it is unconditionally summable. It is well known that a normed space is a Ba-

nach space if and only if every absolutely summable sequence is unconditionally

summable (cf. [36, Proposition 1.1]). However, as a consequence of the Dvoretzky-

Rogers Theorem (cf. [36, Theorem 1.2]), every infinite dimensional Banach space

contains a sequence that is unconditionally summable but not absolutely summable.

Unconditional summability has many useful equivalent forms, which are collected in

[36, Theorem 1.9]. We state this theorem, which is referred to often throughout the

text.

Theorem 1.4.2 For a sequence (xn) in a Banach space Y , the following statements

are equivalent:

(a) (xn) is unconditionally summable.

(b) (xn) is unordered summable.

(c) (xn) is subseries summable, that is, for every strictly increasing sequence (kn) of

natural numbers, the series
∑∞

n=1 xkn is convergent.

(d) (xn) is sign summable, that is,
∑∞

n=1 θnxn converges for every choice of signs

θn = ±1.

(e) (λnxn) is summable for every (λn) ∈ `∞.

(f) (xn) is weakly subseries summable.

(g) (xn) is weakly sign summable.

(h) (λnxn) is weakly summable for every (λn) ∈ `∞.

(i) The operator T : Y ∗ → `1, defined by Tx∗ = (〈xn, x
∗〉)∞n=1, is compact.

(j) (bn) 7→
∑∞

n=1 bnxn defines a compact operator from `∞ into Y .

(k) (bn) 7→
∑∞

n=1 bnxn defines a compact operator from c0 into Y .

(l) (bn) 7→
∑∞

n=1 bnxn defines a bounded operator from `∞ into Y .

It ought to be mentioned that the equivalence of weak subseries summability and

strong subseries summability is a famous result due to Orlicz and Pettis (cf. [36, The-

orem 1.8]). This elegant result allows access to the rest of the weak characterizations

of unconditional summability.
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Given a Banach space Y , define the vector space of unconditionally summable

sequences in Y , denoted by `1[Y ]. The above theorem suggests a norm for `1[Y ],

namely:

‖(xn)‖ε := sup

{ ∞∑
n=1

|〈xn, x
∗〉| : x∗ ∈ Y ∗, ‖x∗‖ ≤ 1

}
(1.6)

= sup

{∥∥∥∥∥
∞∑

n=1

bnxn

∥∥∥∥∥ : ‖(bn)‖∞ ≤ 1

}
. (1.7)

Formula (1.6) is the norm of the operator T defined in Theorem 1.4.2(i) and formula

(1.7) is the norm of the adjoint of T ; i.e. the operator defined in Theorem 1.4.2(l). It

is a simple exercise to show that `1[Y ] is a Banach space using the second of these

formulae. Moreover, using the compactness of the operator T , it can be shown that

`1[Y ] is isometric to `1⊗̃εY (cf. [90, Example 3.4]), hence our choice of the notation

‖ · ‖ε.

We focus our attention on a special kind of sequence, namely:

Definition 1.4.3 Let Y denote a Banach space.

(a) A sequence (yi) in a Banach space Y is called a basis if each element y ∈ Y has

a unique series expansion y =
∑∞

i=1 αiyi, where (αi) is a sequence of scalars.

(b) A sequence (uj) ⊂ Y is called a block basis of the basis (yi) if uj =
∑nj+1

i=nj+1 αiyi

for each j ∈ N, with (αi) scalars and n1 < n2 < . . . an increasing sequence of

natural numbers.

(c) A basis (yi) ⊂ Y is called unconditional if the unique series expansion
∑∞

i=1 αiyi

of each element in Y converges unconditionally.

(d) A sequence (yi) ⊂ Y is called a basic sequence if (yi) is a basis of its closed linear

span, which we denote by [yi].

(e) If (yi) is an unconditional basis of [yi], then (yi) is referred to as an unconditional

basic sequence.

(f) Two basic sequences (xi) and (yi) are called equivalent if, given a sequence of

scalars (αi), we have
∑∞

i=1 αixi convergent if and only if
∑∞

i=1 αiyi convergent.

Equivalently, (xi) and (yi) are equivalent if there exists an isomorphism T from

[xi] onto [yi] such that Txi = yi for each i ∈ N.

If Y is a Banach space with basis (yi), define the norm ‖ · ‖0 on Y by ‖x‖0 =

supn∈N ‖
∑n

i=1 αiyi‖ for all x =
∑∞

i=1 αiyi ∈ Y . It is clear that ‖x‖ ≤ ‖x‖0 for each

x ∈ Y , and an easy argument shows that (Y, ‖ · ‖0) is complete. The Open Mapping

Theorem implies that the norms ‖ · ‖ and ‖ · ‖0 are equivalent. Define the natural

projections associated with (yi) as the sequence of projections (Pi) on Y given by
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Pn (
∑∞

i=1 αiyi) =
∑n

i=1 αiyi for each
∑∞

i=1 αiyi ∈ Y and n ∈ N. It follows, by the

above remarks and the Principle of Uniform Boundedness, that (Pi) is a uniformly

bounded collection of linear projections. The quantity K = supi∈N ‖Pi‖ < ∞ is

known as the basis constant. Thus, a basis can be characterized as follows (cf. [71,

Proposition 1.a.3.]):

Proposition 1.4.4 Let (yi) be a sequence in a Banach space Y . Then (yi) is a basis

of Y if and only if the following three conditions hold:

(a) yi 6= 0 for all i ∈ N.

(b) There is a constant K so that, for every choice of scalars (αi) and positive

integers n < m, we have∥∥∥∥∥
n∑

i=1

αiyi

∥∥∥∥∥ ≤ K

∥∥∥∥∥
m∑

i=1

αiyi

∥∥∥∥∥ .
(c) The closed linear span of (yi) is all of Y .

Parts (a) and (b) of the above proposition characterize basic sequences. If K = 1 for

the basis (yi) in the above proposition, then (yi) is referred to as a monotone basis.

If ‖yi‖ = 1 for each i ∈ N, then (yi) is said to be normalized.

The unit vectors ei = (δik)∞k=1 (i = 1, 2, . . .) form a monotone and normalized

basis in each of the spaces c0 and `p, 1 ≤ p <∞.

A more interesting example of a monotone basis is the Haar system in Lp(µ),

1 ≤ p <∞. Here, µ is the Lebesgue measure on the unit interval. The Haar system

is defined by χ1 = 1 and

χ2k+l(ω) =


1, if ω ∈ [(2l − 2)2−(k+1), (2l − 1)2−(k+1)];

−1, if ω ∈ ((2l − 1)2−(k+1), (2l)2−(k+1)];

0, otherwise

for k = 0, 1, 2, . . ., l = 1, 2, . . . , 2k. We will write (χi) to denote the Haar system in its

given order. Let Σn be the σ-algebra generated by
∑n

i=1 χi for each n ∈ N. Then, it

is readily verified that (
∑n

i=1 αiχi, Σn)n∈N is a martingale for every choice of scalars

(αi). Consequently, for n ≤ m, we have ‖
∑n

i=1 αiχi‖ = ‖E(
∑m

i=1 αiχi |Σn)‖ ≤
‖
∑m

i=1 αiχi‖. Lastly, since [χi] contains all the diadic step functions, Proposition

1.4.4 shows that (χi) is a basis of Lp(µ) for 1 ≤ p < ∞. It is easy to see that

the Haar system is a sequence of symmetrically distributed, independent functions.

Consequently, the Haar system is a martingale difference sequence. A basis of Lp(µ)

that is also a martingale difference sequence will be referred to as a m.d.s. basis.
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Definition 1.4.5 Let (Ω,Σ, µ) be the unit interval equipped with the Lebesgue

measure. The sequence of Rademacher functions (ri) is defined to be the block basic

sequence of the Haar system, given by

r1(ω) = χ1(ω) and ri(ω) =
2i−1∑

k=2i−2+1

χk(ω) = sign(sin(2iπω)),

for all ω ∈ Ω and i ≥ 2. We mention here that whenever the Rademacher functions

are used, it will be implicitly assumed that the underlying measure space is the

Lebesgue interval.

The Rademacher sequence is also symmetrically distributed and independent.

Another useful feature of the Rademacher functions is orthogonality; if 0 < n1 <

n2 < . . . < nk and p1, . . . , pk ≥ 0 are natural numbers, then it is easily verified that∫ 1

0
rp1
n1
· rp2

n2
· . . . · rpk

nk
dt =

{
1, if each pj is even;

0, otherwise.

This feature is used in the proof of the classical inequality of Khinchin (cf. [36,

Theorem 1.10]):

Theorem 1.4.6 (Khinchin’s Inequality) For any 0 < p < ∞, there are posi-

tive constants Ap and Bp such that

Ap

(
n∑

i=1

|αi|2
)1/2

≤

(∫ 1

0

∣∣∣∣∣
n∑

i=1

αiri(t)

∣∣∣∣∣
p

dµ

)1/p

≤ Bp

(
n∑

i=1

|αi|2
)1/2

for every choice of scalars α1, α2, . . . , αn.

This inequality has many far reaching consequences. An obvious consequence is

that the Rademacher functions are equivalent to the unit vector basis in `2 for all

0 ≤ p <∞. Hence, (ri) is an unconditional basic sequence in Lp(µ) for 1 ≤ p <∞,

but not an unconditional basis. It can also be shown that [ri] is complemented in

Lp(µ) for 1 < p < ∞ and not complemented when p = 1. A generalization of the

Khinchin’s inequality is the classical result of Kahane (cf. [36, Theorem 11.1]):

Theorem 1.4.7 (Kahane’s Inequality) If 0 < p, q < ∞ and Y is a Banach

space, then there is a constant Kp,q > 0 for which∥∥∥∥∥
n∑

i=1

ri ⊗ yi

∥∥∥∥∥
Lq(µ,Y )

≤ Kp,q

∥∥∥∥∥
n∑

i=1

ri ⊗ yi

∥∥∥∥∥
Lp(µ,Y )

holds for every choice of vectors y1, y2, . . . , yn ∈ Y .
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Unfortunately, a Khinchin style inequality of the form

Ap

(
n∑

i=1

‖yi‖2

)1/2

≤

∥∥∥∥∥
n∑

i=1

ri ⊗ yi

∥∥∥∥∥
Lp(µ,Y )

≤ Bp

(
n∑

i=1

‖yi‖2

)1/2

does not hold in general; e.g. when Y = c0 or Y = `1. The notions of type and cotype

are crafted to determine the deviation of a Banach space from this inequality.

Definition 1.4.8 Let Y be a Banach space.

(a) Y is said to have type p if there is a constant M ≥ 0 such that∥∥∥∥∥
n∑

i=1

ri ⊗ yi

∥∥∥∥∥
L2(µ,Y )

≤M

∥∥∥∥∥
n∑

i=1

ei ⊗ yi

∥∥∥∥∥
`p(Y )

holds for every choice of vectors y1, y2, . . . , yn ∈ Y . The smallest constant for

which the above inequality holds is called type p constant of Y and is denoted

Tp(Y ).

(b) Y is said to have cotype q if there is a constant M ≥ 0 such that∥∥∥∥∥
n∑

i=1

ei ⊗ yi

∥∥∥∥∥
`q(Y )

≤M

∥∥∥∥∥
n∑

i=1

ri ⊗ yi

∥∥∥∥∥
L2(µ,Y )

holds for every choice of vectors y1, y2, . . . , yn ∈ Y . The smallest constant for

which the above inequality holds is called the cotype q constant of Y and is

denoted Cq(Y ).

In the above definition, Kahane’s inequality tells us that we may replace ‖·‖L2(µ,Y )

with ‖ · ‖Lr(µ,Y ), 0 < r < ∞, provided there is a suitable adjustment of constants.

Every Banach space has type ≤ 1 and cotype ∞. It is not possible to have a non-

trivial Banach space with type > 2 or cotype < 2 (cf. [72, 36]). Hilbert spaces have

both type and cotype equal to 2 (cf. [36, Corollary 11.8]). A Banach space has the

same type or cotype as its bidual (cf. [36, Corollary 11.9]). If a Banach Y space has

type p, then its dual has cotype q and Cq(Y ∗) ≤ Tp(Y ) where 1
p + 1

q = 1 (cf. [36,

Proposition 11.10]). Thus, a Banach space must have finite cotype if its dual has

non trivial type. The converse fails when considering `1, which has cotype 2, and its

dual `∞, which only has trivial type.

We pass to unconditional bases. Suppose (yi) is an unconditional basis of a Ba-

nach space Y . By the Closed Graph Theorem, for any σ ⊂ N, the map Pσ : Y → Y

defined by Pσ (
∑∞

i=1 αiyi) =
∑

i∈σ αiyi is a bounded linear projection. Similarly, for

every choice of signs θ = (θi), we have a bounded linear operator Mθ : Y → Y given
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by Mθ (
∑∞

i=1 αiyi) =
∑∞

i=1 θiαiyi. Moreover, by the Principle of Uniform Bound-

edness, we have that supσ ‖Pσ‖ and supθ ‖Mθ‖ are finite and these quantities are

related by the inequality

sup
σ
‖Pσ‖ ≤ sup

θ
‖Mθ‖ ≤ 2 sup

σ
‖Pσ‖.

The quantity supθ ‖Mθ‖ is known as the unconditional constant of the unconditional

basis (yi) and is always larger than or equal to the basis constant. Consequently, a

basis (yi) is unconditional if and only if there is a constant M > 0 such that∥∥∥∥∥
n∑

i=1

θiαiyi

∥∥∥∥∥ ≤M

∥∥∥∥∥
n∑

i=1

αiyi

∥∥∥∥∥
holds for every choice of scalars (αi), every choice of signs (θi) and n ∈ N.

An easy, but useful, consequence of the Hahn Banach Theorem is the following

result concerning unconditional constants (cf. [71, Proposition 1.c.7]).

Proposition 1.4.9 Let (yi) be an unconditional basic sequence with unconditional

constant M . Then for every choice of scalars (αi) such that
∑n

i=1 αiyi is convergent

and every sequence (λi) ∈ `∞, we have∥∥∥∥∥
∞∑
i=1

λiαiyi

∥∥∥∥∥ ≤ 2M‖(λi)‖∞

∥∥∥∥∥
∞∑
i=1

αiyi

∥∥∥∥∥ .
(In the real case we may take M instead of 2M).

The Haar system is an unconditional basis of Lp(µ) for 1 < p <∞ (cf. [72, The-

orem 2.c.5] and [13, Theorem 9]). The unconditionality of the Haar system was first

proved by Paley in 1931 (cf. [80]). The space L1(µ) is not isomorphic to a subspace

of a space with unconditional basis (cf. [71, Proposition 1.d.1]). Consequently, the

Haar system is not an unconditional basis of L1(µ).

Later, in 1966, Burkholder and Gundy discovered that every martingale differ-

ence sequence in Lp(µ), 1 < p < ∞, is unconditional (cf. [13]). Dor and Odell [42]

and, independently, Pe lczyński and Rosenthal [81] proved that every monotone ba-

sis of Lp(µ) is unconditional. Their proofs use a characterization by Andô; every

contractive projection on Lp(µ) (1 ≤ p < ∞) that preserves the constant functions

is, in fact, a conditional expectation (cf. [5] and [87]).

Maurey [75] showed the unconditional constant of the Haar system is bigger

than the unconditional constant of any other martingale difference sequence. On

the other hand, Olevskǐı [77, 78] showed the unconditional constant of the Haar

system is smaller than the unconditional constant of any unconditional basis of
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Lp(µ). Observing this, Burkholder proved the unconditional constant of the Haar

system in Lp(µ) is p∨ ( p
p−1)−1 where 1 < p <∞ (cf. [15, 17, 18]). Moreover, if (Pn)

is a sequence of contractive projections on Lp(µ) with P0 = 0 and PiPj = PjPi = Pj

for all j ≤ i, then the inequality∥∥∥∥∥
∞∑

n=1

αn(Pn − Pn−1)f

∥∥∥∥∥
p

≤
[
p ∨

(
p

p− 1

)
− 1
]
‖f‖p

holds for all 1 < p <∞, f ∈ Lp(µ) and |αn| ≤ 1 (cf. [42, 16]).

In view of the fact that Lp(µ) always possesses an unconditional basis when

1 < p < ∞, a natural question was raised in [37, p. 116]: Does Lp(µ, Y ) possess an

unconditional basis if 1 < p <∞ and Y is a Banach space with unconditional basis?

This question remained open for a number of years before being answered negatively

in 1978 by Aldous in [1]. He showed, using a delicate probabilistic argument, that

if Lp(µ, Y ) has an unconditional basis, then Y is necessarily a UMD space. Since

all UMD spaces are reflexive, it follows that Lp(µ, Y ) cannot have an unconditional

basis if Y = `1 or Y = c0, even though the unit vectors form an unconditional basis

of Y . Herewith, the definition of a UMD space:

Definition 1.4.10 A Banach space Y is said to be unconditional for martingale

difference sequences (UMD) if Up(Y ) is finite for all 1 < p < ∞. Here, Up(Y )

denotes the least 1 ≤M ≤ ∞ such that∥∥∥∥∥
n∑

i=1

θidi

∥∥∥∥∥
p

≤M

∥∥∥∥∥
n∑

i=i

di

∥∥∥∥∥
p

holds for every martingale difference sequence (di) ⊂ Lp(µ, Y ), every choice of signs

(θi) and every n ∈ N. In this definition, the measure space must be purely non-

atomic.

Thus, if
∑∞

i=1 αidi converges in Lp(µ, Y ) where 1 < p <∞ and Y is UMD, then∑∞
i=1 αidi converges unconditionally.

Pisier showed that, for a Banach space Y , the finiteness of Up(Y ) for all 1 < p <∞
is equivalent to the finiteness of Up(Y ) for some 1 < p <∞ (cf [75]). This fact also

follows naturally from an intrinsic geometric characterization of UMD spaces, proved

by Burkholder in [14];

Theorem 1.4.11 (Burkholder) A Banach space is UMD if and only if it is

ζ-convex. Here, a Banach space Y is said to be ζ-convex if there exists a biconvex

function ζ : Y ×Y → R such that ζ(0, 0) > 0 and ζ(x, y) ≤ ‖x+y‖ if ‖x‖ = ‖y‖ = 1.
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It was noted by Maurey in [75], and proved by Aldous in [1, Proposition 2],

that all UMD spaces are necessarily super-reflexive (also see [9]). However, there are

super-reflexive spaces that are not UMD (cf. [9, 83]).

The class of UMD spaces appears to be quite small, with most of the exam-

ples arising from classical analysis. Verifying even the simplest example of a UMD

space, namely R, involves the deep inequalities of Burkholder. It also follows from

Burkholder’s geometrical characterization that every Hilbert space is a UMD space.

Indeed, the required biconvex function is given by ζ(·, ·) = 1 + (·, ·) where (·, ·) de-

notes the inner product. Other examples of UMD spaces include Lp(µ) and `p for

1 < p <∞. It is immediate that if Y is a UMD space then `p(Y ) and Lp(µ, Y ) are

also UMD spaces, for 1 < p <∞. The Schatten p-classes for 1 < p <∞ are another

example.

The property of UMD is invariant under isomorphism. Moreover, UMD spaces

have non-trivial type and finite cotype. The dual of a UMD space is also a UMD

space. We may also consider a smaller class of martingale difference sequences when

testing for UMD spaces (cf. [88]).

Proposition 1.4.12 Let 1 < p < ∞. For a Banach space Y , the following are

equivalent:

(a) Y is a UMD space.

(b) There exists a constant M such that, for any choice of signs (θi), we have∥∥∥∥∥θ1E(f |W1) +
n∑

i=2

θi (E(f |Wi)− E(f |Wi−1))

∥∥∥∥∥
p

≤M

∥∥∥∥∥E(f |W1) +
n∑

i=2

(E(f |Wi)− E(f |Wi−1))

∥∥∥∥∥
p

for all f ∈ Lp(µ, Y ) and n ∈ N. Here, Wi denotes the σ-algebra generated by the

i-th Rademacher function.

Martingales adapted to the filtration (Wn) in the above proposition are referred

to as Walsh-Paley martingales. If (fn,Wn) is a Walsh-Paley martingale, then fn =∑2n−1
i=1 χi ⊗ yi, where y1, y2, . . . , y2n−1 ∈ Y and n = 1, 2, . . ..

For more background and elementary properties of UMD spaces, we refer the

reader to [88, 18].

1.5 Schauder decompositions and R-boundedness

We pass to a more general notion than that of a basis.
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Definition 1.5.1 Let Y be a Banach space. A sequence (Di) of bounded linear

projections on Y is called a Schauder decomposition of Y if

(a) DiDj = 0 whenever i 6= j and

(b) y =
∑∞

i=1Diy for all y ∈ Y .

The corresponding partial sum projections (Pn) are defined by Pn =
∑n

i=1Di.

Note that
⋃∞

i=1R(Pi) is dense in Y . In an analogous fashion to the natural projec-

tions associated with a basis, it follows from the Principle of Uniform Boundedness

that (Pn) is uniformly bounded. Hence, (Di) is also uniformly bounded.

Notice that the sequence (Diy) is a basic sequence in Y for each y ∈ Y . Indeed,

for n < m and any scalars (αi) we have∥∥∥∥∥
n∑

i=1

αiDiy

∥∥∥∥∥ =

∥∥∥∥∥Pn

(
m∑

i=1

αiDiy

)∥∥∥∥∥ ≤ sup
n∈N

‖Pn‖

∥∥∥∥∥
m∑

i=1

αiDiy

∥∥∥∥∥ .
Now use Proposition 1.4.4.

If dim(Di) = 1 for each i ∈ N, any sequence (yi) with yi ∈ R(Di) for each

i ∈ N forms a basis for Y . In this case, each y ∈ Y has a unique basis expansion

y =
∑∞

i=1 αiyi where the αi’s are scalars.

Definition 1.5.2 let Y be a Banach space and (Di) be a Schauder decomposition

of Y . The decomposition (Di) will be called unconditional if there exists a constant

M for which∥∥∥∥∥
n∑

i=1

θiDiy

∥∥∥∥∥ ≤M

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥
holds for all choices of signs (θi), all n ∈ N and all y ∈ Y . The smallest M for which

this inequality holds is called the unconditional constant of (Di).

As a consequence of the Principle of Uniform Boundedness, the above definition

is equivalent to the unconditional convergence of
∑∞

i=1Diy for every y ∈ Y (cf. [103,

Lemma 1.2.5]).

An important class of a Schauder decompositions arise from filtrations. If

(Ω,Σ, µ) is a finite measure space, Y a Banach space and (Σi) a filtration with

Σi ↑ Σ, then the Schauder decomposition of Lp(µ, Y ), 1 ≤ p < ∞, formed by

the differences (E( · |Σi) − E( · |Σi−1)) is called a martingale decomposition. Note

that if 1 < p < ∞ and Y is a UMD space, then all martingale decompositions

are unconditional. Conversely, by Proposition 1.4.12, if the filtration generated by

the Rademacher functions determines an unconditional Schauder decomposition of

Lp(µ, Y ), 1 < p <∞, then Y is a UMD space.
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Using this observation, we can derive a characterization of UMD spaces that is

similar to Theorem 1.3.10. The following definition will be useful in the formulation

of this result.

Definition 1.5.3 Let 1 ≤ p <∞ and Y be a Banach space. If (fn) ⊂ Lp(µ, Y ) is a

martingale, we define the ±1-transform of (fn) to be the martingale (gn) defined by

gn =
∑n

i=1 θi(fi − fi−1) for each n ∈ N, where (θi) denotes a choice of signs. Here,

we observe the convention f0 = 0.

Theorem 1.5.4 Let 1 < p < ∞ and Y be a Banach space. Then the following

statements are equivalent:

(a) Y is a UMD space.

(b) Every ±1 transform of every martingale (fn) ⊂ Lp(µ, Y ) with supn∈N ‖fn‖p <∞
converges in Lp(µ, Y ).

Proof. (a)⇒(b) Suppose Y is a UMD space and (fn) ⊂ Lp(µ, Y ) is a martingale

with supn∈N ‖fn‖p <∞. Define di = fi− fi−1 for each i ∈ N and gn =
∑n

i=1 θidi for

each n ∈ N, where (θi) is any choice of signs. By the definition of a UMD space, we

have

sup
n∈N

‖gn‖p = sup
n∈N

∥∥∥∥∥
n∑

i=1

θidi

∥∥∥∥∥
p

≤ Up(Y ) sup
n∈N

∥∥∥∥∥
n∑

i=1

di

∥∥∥∥∥ = Up(Y ) sup
n∈N

‖fn‖p <∞.

Since Y is a UMD space, Y is reflexive. Thus, Y also has the Radon Nikodým

property. By Theorem 1.3.10, (gn) converges in Lp(µ, Y ).

(b)⇒(a) Let f ∈ Lp(µ, Y ) and define d1 = E(f |Σ1) and di = E(f |Σi)−E(f |Σi−1)

for i ≥ 2, where (Σi) denotes a filtration with Σi ↑ Σ. Consider the martingale (fn)

defined by fn =
∑n

i=1 di for each n ∈ N. Then supn∈N ‖fn‖p ≤ ‖f‖p < ∞. By (b),

every ±1 transform of (fn) is convergent in Lp(µ, Y ). It follows that (Σi) determines

an unconditional Schauder decomposition of Lp(µ, Y ). Consequently, Y is a UMD

space by Proposition 1.4.12. ut

The Rademacher functions play a role in determining whether a Schauder de-

composition is unconditional. The results that follow are taken from the thesis of

Witvliet (cf. [103]).

Proposition 1.5.5 Let (Di) be a Schauder decomposition of the Banach space Y .

The following statements are equivalent:

(a) The decomposition (Di) of Y is unconditional.
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(b) There exists a 1 ≤ p <∞ such that

M−1
p

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ri ⊗Diy

∥∥∥∥∥
∆p

≤Mp

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥
holds for some constant Mp > 0, for all y ∈ Y and n ∈ N.

(c) For all 1 ≤ p <∞ there exists Mp > 0 such that

M−1
p

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ri ⊗Diy

∥∥∥∥∥
∆p

≤Mp

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥
holds, for all y ∈ Y and n ∈ N.

Proof. (c)⇒(b) Obvious.

(a)⇒(c) First note that if the decomposition (Di) is unconditional, then there

exists a constant M > 0 so that

M−1

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

θiDiy

∥∥∥∥∥ ≤M

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥
holds for any choice of signs (θi) and y ∈ Y . The right inequality holds by defi-

nition. For the left inequality, let x =
∑n

i=1 θiDiy for some y ∈ Y . By definition,

‖
∑n

i=1 θiDix‖ =
∥∥∑n

i=1 θ
2
iDiy

∥∥ ≤ M ‖
∑n

i=1Dix‖ = M ‖
∑n

i=1 θiDiy‖. Hence, if

(Ω,Σ, µ) is the Lebesgue interval and (ri) the sequence of Rademacher functions,

then

M−1

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ri(ω)Diy

∥∥∥∥∥ ≤M

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥
holds for each ω ∈ Ω. Consequently,

M−1
p

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ri ⊗Diy

∥∥∥∥∥
∆p

≤Mp

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥
holds for all 1 ≤ p <∞.

(b)⇒(a) Let (θi) be any choice of signs, then ri and θiri have the same distribution.

Consequently,∥∥∥∥∥
n∑

i=1

θiDiy

∥∥∥∥∥ ≤Mp

∥∥∥∥∥
n∑

i=1

θiri ⊗Diy

∥∥∥∥∥
∆p

= Mp

∥∥∥∥∥
n∑

i=1

ri ⊗Diy

∥∥∥∥∥
∆p

≤M2
p

∥∥∥∥∥
n∑

i=1

Diy

∥∥∥∥∥ .
ut
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If (Di) is an unconditional Schauder decomposition of a Banach space Y , Theorem

1.4.2 implies that any sequence λ = (λi) ∈ `∞ induces a bounded operator Tλ : Y →
Y defined by Tλy =

∑∞
i=1 λiDiy for each y ∈ Y . Conversely, if λ = (λi) is a sequence

such that Tλ is bounded, then λ ∈ `∞.

More generally, one could consider a sequence of operators L = (Li) ⊂ L(Y ) with

the property Li(R(Di)) ⊂ R(Di) for each i ∈ N, or equivalently, DiLiDi = LiDi for

each i ∈ N. For such a sequence, consider the induced map TL : Y → Y defined by

TLy =
∞∑
i=1

LiDiy (1.8)

for each y ∈ Y . When is this map bounded? The answer to this question leads to

the definition of R-boundedness.

Indeed, if k ∈ N, then DkTL =
∑∞

i=1DkDiLiDi = DkLkDk = LkDk on the dense

set Y0 :=
⋃∞

i=1R(Pi), where (Pi) are the corresponding partial sum projections of

(Di). Proposition 1.5.5 implies

M−1
2 ‖y‖ ≤

∥∥∥∥∥
∞∑
i=1

ri ⊗Diy

∥∥∥∥∥
∆2

≤M2‖y‖

for all y ∈ Y0. Since TL(Y0) ⊂ Y0, we obtain the inequality

M−1
2 ‖TLy‖ ≤

∥∥∥∥∥
∞∑

k=1

rk ⊗ LkDky

∥∥∥∥∥
∆2

≤M2‖TLy‖

from above. It follows that ‖TL‖ < ∞ if and only if there exists a constant M > 0

such that∥∥∥∥∥
∞∑
i=1

ri ⊗ Liyi

∥∥∥∥∥
∆2

≤M

∥∥∥∥∥
∞∑
i=1

ri ⊗ yi

∥∥∥∥∥
∆2

holds for all sequences (yi) ⊂ Y0 with yi ∈ R(Di) for each i ∈ N. The definition of

‘randomized boundedness’ of a collection (Li) ⊂ L(Y ) is crafted to guarantee the

boundedness of the induced operator TL.

Definition 1.5.6 Let Y be a Banach space. A collection T ⊂ L(X) is said to be

R-bounded if there exists a constant M > 0 such that∥∥∥∥∥
n∑

i=1

ri ⊗ Tixi

∥∥∥∥∥
∆2

≤M

∥∥∥∥∥
n∑

i=1

ri ⊗ xi

∥∥∥∥∥
∆2

holds for all (Ti)n
i=1 ⊂ L(X), (xi)n

i=1 ⊂ X and n ∈ N. Here, the sequence (ri) denotes

the Rademacher functions.
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The property of R-boundedness is stable under the operation of taking closures.

Proposition 1.5.7 Let Y be a Banach space. If T ⊂ L(Y ) is an R-bounded col-

lection, then its closure (in the operator norm topology) is also R-bounded with the

same R-bound as T .

Proof. Let T denote the closure of T . Choose T1, T2 . . . Tn ∈ T and vectors

y1, y2, . . . , yn ∈ Y . For each 1 ≤ i ≤ n there exists a sequence (T (i)
k ) ⊂ T such

that limk→∞ ‖(T − T
(i)
k )yi‖ = 0. Consequently,∥∥∥∥∥

n∑
i=1

ri ⊗ Tiyi

∥∥∥∥∥
∆2

≤

∥∥∥∥∥
n∑

i=1

ri ⊗ (Ti − T
(i)
k )yi

∥∥∥∥∥
∆2

+

∥∥∥∥∥
n∑

i=1

ri ⊗ T
(i)
k yi

∥∥∥∥∥
∆2

≤
n∑

i=1

∥∥∥(Ti − T
(i)
k )yi

∥∥∥+M

∥∥∥∥∥
n∑

i=1

ri ⊗ yi

∥∥∥∥∥
∆2

Taking the limit as k →∞ gives the result. ut

Observe that R-boundedness implies uniform boundedness when n = 1. On a

Hilbert space, R-boundedness and uniform boundedness are equivalent (cf. [103,

Lemma 2.2.3]).

In [103, Lemma 2.2.10] it is shown that if T is countable in the above definition,

then T = {Ti : i ∈ N} is R-bounded with R-bound M if and only if∥∥∥∥∥
n∑

i=1

ri ⊗ Tiyi

∥∥∥∥∥
∆2

≤M

∥∥∥∥∥
n∑

i=1

ri ⊗ yi

∥∥∥∥∥
∆2

holds for all vectors y1, y2, . . . , yn ∈ Y and n ∈ N. This result is used to show that if

(Di) is an unconditional decomposition of a Banach space Y , then (Di) is R-bounded

(cf. [103, Lemma 2.2.12]).

Let (Σi) denote a filtration, then it follows from the work of Stein in [94] that

the sequence of operators (E( · |Σi)) on Lp(µ) is R-bounded for 1 < p < ∞. More

generally, it can be shown that if (Di) is an unconditional Schauder decomposition

of a Banach space possessing property (α) (cf. [84]), or even the weaker property

(∆) (cf. [59]), then the sequence of partial sum projections corresponding to (Di) is

R-bounded. This result is shown in [10] and [103, Theorem 2.4.3]. We shall study

property (α) and present the proof of [103, Theorem 2.4.3] in the next section.

We conclude with the following important multiplier theorem (cf. [103, Theorem

2.2.4] or [22]).

Theorem 1.5.8 (Clément-de Pagter-Sukochev-Witvliet) Let (Di) be an

unconditional Schauder decomposition of the Banach space Y , with unconditional
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constant K. Suppose that T ⊂ L(Y ) is R-bounded with R-bound M . If L = (Li) ⊂ T
is such that LiDi = DiLiDi for all i ∈ N, then the series

TLy :=
∞∑
i=1

LiDiy

is convergent in Y for all y ∈ Y , and defines a bounded linear operator TL : Y → Y

with ‖TL‖ ≤ K2M .

Proof. Let y ∈ Y and n ≤ m be natural numbers. Using Proposition 1.5.5 and the

definition of R-boundedness, we have∥∥∥∥∥
m∑

i=n

LiDiy

∥∥∥∥∥ =

∥∥∥∥∥
m∑

i=n

DiLiDiy

∥∥∥∥∥ =

∥∥∥∥∥
m∑

k=1

Dk

(
m∑

i=n

DiLiDiy

)∥∥∥∥∥
≤ K

∥∥∥∥∥
m∑

k=1

rk ⊗Dk

(
m∑

i=n

DiLiDiy

)∥∥∥∥∥
∆2

= K

∥∥∥∥∥
m∑

k=1

m∑
i=n

rk ⊗Dk (DiLiDiy)

∥∥∥∥∥
∆2

= K

∥∥∥∥∥
m∑

i=n

ri ⊗ LiDiy

∥∥∥∥∥
∆2

≤ KM

∥∥∥∥∥
m∑

i=n

ri ⊗Diy

∥∥∥∥∥
∆2

≤ K2M

∥∥∥∥∥
m∑

i=n

Diy

∥∥∥∥∥→ 0

as n,m→∞. Consequently, ‖TLy‖ ≤ K2M‖y‖ for all y ∈ Y . ut

For more on R-bounded collections, we refer the reader to [22, 103, 59].

1.6 Property (α) and product Schauder decompositions

In this section, we consider products of unconditional Schauder decompositions and

a special property that guarantees this product decomposition is unconditional. This

section is also an exposition of results contained in the thesis of Witvliet (cf. [103]).

Definition 1.6.1 Let Y be a Banach space. A pair of Schauder decompositions (Di)

and (D′
j) of Y are said to commute if DiD

′
j = D′

jDi for all i, j ∈ N.

In what follows, let (Di) and (D′
j) denote commuting Schauder decompositions

of a Banach space Y . Using the idea of Gelbaum and Gil de Lamadrid in [49] for

constructing the tensor product basis with respect to a uniform crossnorm, one can

define an order for the collection (DiD
′
j).

Definition 1.6.2 Let (Di) and (D′
j) be commuting decompositions of the Banach

space Y . We define the square ordering on the collection (DiD
′
j) to be the ordering

of the indices (i, j) along the squares; i.e., (i1, j1) ≤ (i2, j2) when one of the following

conditions hold:

(a) max{i1, j1} < max{i2, j2},
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(b) max{i1, j1} = max{i2, j2} and i1 < i2 or

(c) max{i1, j1} = max{i2, j2} = i1 = i2 and j1 ≥ j2.

We shall use the notation Sk for the set consisting of the first k ordered pairs of

indices (i, j) in the square ordering.

The following diagram illustrates the above definition.

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

. . . (4, 3) (4, 4)

-

? ? ?
�

? ?
� �

?
� �

It is evident that
⋃

i,j∈NR(DiD
′
j) is dense in Y . It also follows from the definition of

the square ordering that corresponding partial sum projections Pn =
∑

(i,j)∈Sn
DiD

′
j

are uniformly bounded. In fact,

sup
n∈N

‖Pn‖ ≤ 3

(
sup
n∈N

∥∥∥∥∥
n∑

i=1

Di

∥∥∥∥∥
)sup

n∈N

∥∥∥∥∥∥
n∑

j=1

D′
j

∥∥∥∥∥∥
 .

Indeed, Let (Si) denote the corresponding partial sum projections of (Di) and

(Tj) denote the corresponding partial sum projections of (D′
j). Then

Pk =


SiTi ; k = i2

SiTi + Sk−i2Di+1 ; i2 < k ≤ i2 + i+ 1

Si+1Ti+1 −D′
i+1T(i+1)2−k ; i2 + i+ 1 < k < (i+ 1)2

for each k ∈ N. Thus,

‖SiTi‖ ≤ ‖Si‖‖Ti‖ ≤
(

sup
n∈N

‖Sn‖
)(

sup
n∈N

‖Tn‖
)
,

‖Sk−i2Di+1‖ ≤ ‖Sk−i2‖‖Di+1‖ ≤ 2
(

sup
n∈N

‖Sn‖
)(

sup
n∈N

‖Tn‖
)

and

‖D′
i+1T(i+1)2−k‖ ≤ ‖D′

i+1‖‖T(i+1)2−k‖ ≤ 2
(

sup
n∈N

‖Sn‖
)(

sup
n∈N

‖Tn‖
)
,

from which the assertion follows. Consequently, the collection (DiD
′
j) arranged in

the square ordering is a Schauder decomposition of Y . We will revisit this technique

later on.
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A natural question to ask is whether (DiD
′
j) is unconditional if (Di) and (D′

j)

are both unconditional. In general, the answer is negative, as is shown in [103,

Proposition 5.3.5]. There is, however, a class of Banach spaces where this property

does hold. Taylor made to suit our purpose is:

Definition 1.6.3 A Banach space Y is said to have property (α) if there exists a

constant α > 0 such that

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

θijri(s)rj(t)yij

∥∥∥∥∥∥
2

dsdt ≤ α2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

ri(s)rj(t)yij

∥∥∥∥∥∥
2

dsdt

for all vectors (yij) ⊂ Y , choices of signs (θij), and n ∈ N. Here, (ri) denotes the

sequence of Rademacher functions.

Property (α) was introduced by Pisier in [84] and is independent of the UMD

property. Like the UMD property, Lp(µ, Y ) inherits property (α) from Banach spaces

Y with property (α). Property (α) has a special interaction with R-bounded collec-

tions of operators.

Lemma 1.6.4 Let Y be a Banach space with property (α) and T ⊂ L(Y ) be R-

bounded with R-bound M . Then there exists a constant K > 0 such that

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

ri(s)rj(t)Tijyij

∥∥∥∥∥∥
2

dsdt ≤ K2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

ri(s)rj(t)yij

∥∥∥∥∥∥
2

dsdt

for all Tij ∈ T , all yij ∈ Y (1 ≤ i, j ≤ n) and all n ∈ N.

Proof. Let n ∈ N and (r′ij) denote a n × n matrix of the first n2 Rademacher

functions. Since Y has property (α), we have∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

ri(s)rj(t)Tijyij

∥∥∥∥∥∥
2

dsdt

=
∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

(
r′ij(u)

)2
ri(s)rj(t)Tijyij

∥∥∥∥∥∥
2

dsdt

≤ α2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

r′ij(u)ri(s)rj(t)Tijyij

∥∥∥∥∥∥
2

dsdt

for all u ∈ [0, 1]. Integrating and using the R-boundedness of T yields
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∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

ri(s)rj(t)Tijyij

∥∥∥∥∥∥
2

dsdt

≤ α2

∫ 1

0

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

r′ij(u)ri(s)rj(t)Tijyij

∥∥∥∥∥∥
2

dsdt

 du

= α2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

r′ij ⊗ Tij

(
ri(s)rj(t)yij

)∥∥∥∥∥∥
2

∆2

dsdt

≤ α2M2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

r′ij ⊗ ri(s)rj(t)yij

∥∥∥∥∥∥
2

∆2

dsdt

= α2M2

∫ 1

0

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

r′ij(u)ri(s)rj(t)yij

∥∥∥∥∥∥
2

dsdt

 du

≤ α4M2

∫ 1

0

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

ri(s)rj(t)yij

∥∥∥∥∥∥
2

dsdtdu

= α4M2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

ri(s)rj(t)yij

∥∥∥∥∥∥
2

dsdt.

Setting K = α2M completes the proof. ut

Theorem 1.6.5 Let Y be a Banach space with property (α) and let (Di) be an

unconditional Schauder decomposition of Y . If T ⊂ L(Y ) is an R-bounded collection

of operators, then

S := {TL : L = (Li) ⊂ T with LiDi = DiLiDi for all i ∈ N}

is R-bounded. Here, TL is defined as in (1.8) and well defined by Theorem 1.5.8.

Proof. We start with a special case. Select S1, S2, . . . , Sn ∈ S0 where

S0 :=

{
n∑

i=1

DiLi : (Li)n
i=1 ⊂ T with LiDi = DiLiDi for all 1 ≤ i ≤ n, n ∈ N

}
.

Without loss of generality, we may assume that 0 ∈ T . Consequently, there is N ∈ N
such that Si =

∑m
j=1 L

(i)
j Dj for all 1 ≤ i ≤ n and m ≥ N .

Using the R-boundedness of T , Lemma 1.6.4 and Proposition 1.5.5 twice, we

have
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n∑

i=1

ri ⊗ Siyi

∥∥∥∥∥
2

∆2

=
∫ 1

0

∥∥∥∥∥∥
m∑

j=1

Dj

(
n∑

i=1

ri(s)L
(i)
j Djyi

)∥∥∥∥∥∥
2

ds

≤M2
2

∫ 1

0

∥∥∥∥∥∥
m∑

j=1

rj ⊗Dj

(
n∑

i=1

ri(s)L
(i)
j Djyi

)∥∥∥∥∥∥
2

∆2

ds

= M2
2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
n∑

i=1

m∑
j=1

ri(s)rj(t)L
(i)
j Djyi

∥∥∥∥∥∥
2

dsdt

≤M2
2K

2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
n∑

i=1

m∑
j=1

ri(s)rj(t)Djyi

∥∥∥∥∥∥
2

dsdt

= M2
2K

2

∫ 1

0

∥∥∥∥∥∥
m∑

j=1

rj ⊗Dj

(
n∑

i=1

ri(s)yi

)∥∥∥∥∥∥
2

∆2

ds

= M4
2K

2

∫ 1

0

∥∥∥∥∥∥
m∑

j=1

Dj

(
n∑

i=1

ri(s)yi

)∥∥∥∥∥∥
2

ds

= M4
2K

2

∥∥∥∥∥∥
n∑

i=1

ri ⊗

 m∑
j=1

Djyi

∥∥∥∥∥∥
2

∆2

.

Taking the limit as m → ∞ shows that the set S0 is R-bounded. Proposition 1.5.7

completes the proof as S is the closure of S0. ut

Corollary 1.6.6 If (Di) is an unconditional Schauder decomposition of a Banach

space Y with property (α), then the set S = {
∑

i∈σ Di : σ ⊂ N} is R-bounded.

Proof. Apply the above theorem with T = {0, idY } ut

Corollary 1.6.7 (Stein’s Inequality) Let (Ω,Σ, µ) be a finite measure space,

1 < p < ∞ and (Σi) be a filtration. Then the sequence of conditional expectations

(E( · |Σi)) on Lp(µ) is R-bounded.

Proof. We may assume Σi ↑ Σ. Since Lp(µ) has property (α) and (E( · |Σi)) are the

corresponding partial sum projections of an unconditional decomposition of Lp(µ),

the result follows easily from the above corollary. ut

Theorem 1.6.8 Let (Di) and (D′
j) be a pair of commuting unconditional Schauder

decompositions of a Banach space Y . If Y has property (α) then the product decom-

position (DiD
′
j) is unconditional.
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Proof. We have already ascertained that (DiD
′
j) is a Schauder decomposition. To

prove unconditionality, let (ηij) be an m×m matrix with entries in {0, 1}. For each

1 ≤ i ≤ m, define the finite sets σi := {j ∈ N : ηij = 1}. Then,

m∑
i=1

m∑
j=1

ηijDiD
′
jy =

m∑
i=1

∑
j∈σi

D′
j

Diy

for each y ∈ Y . Since Y has property (α), it follows from Corollary 1.6.6 and Theorem

1.5.8 that there is a constant M > 0 so that∥∥∥∥∥∥
m∑

i=1

m∑
j=1

ηijDiD
′
jy

∥∥∥∥∥∥ ≤M

∥∥∥∥∥∥
m∑

i=1

m∑
j=1

DiD
′
jy

∥∥∥∥∥∥
holds for each y ∈ Y . Consequently, each expansion

∑∞
i=1

∑∞
j=1DiD

′
jy is subseries

summable and thus, by Theorem 1.4.2, unconditionally summable. An application

of the Principle of Uniform Boundedness completes the proof. ut

1.7 Notes and remarks

In Section 1.3, we have only focused on norm convergence of martingales. There

are is also a classical characterization of the Radon Nikodým property in terms of

almost everywhere convergence.

Theorem 1.7.1 A Banach space Y has the Radon Nikodým property if and only if

every L1(µ, Y )-bounded martingale converges almost everywhere.

This result is due to A. Ionescu Tulcea, C. Ionescu Tulcea (cf. [53]) and Chatterji (cf.

[20]). Notice how we can drop the requirement of uniform integrability in Theorem

1.3.10(b), provided we trade in norm convergence for almost everywhere convergence.

In the Introduction, we mentioned that the Radon Nikodým property has an in-

trinsic geometrical characterization. This geometrical property is known as ‘dentabil-

ity’.

Definition 1.7.2 Let Y be a Banach space.

(a) A bounded set D ⊂ Y is called dentable if for each ε > 0, there exists x ∈ D such

that x 6∈ co (D \ Bε(x)). Here, co denotes the closed convex hull and Bε(x) =

{y ∈ Y : ‖x− y‖ ≤ ε}.
(b) If every bounded set in Y is dentable, then Y is called dentable.

Contributions by Davis, Huff, Maynard, Phelps and Rieffel yielded the following

deep characterization of the Radon-Nikodym property.
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Theorem 1.7.3 (Davis-Huff-Maynard-Phelps-Rieffel) A Banach space Y

has the Radon Nikodým property if and only if it is dentable.

We refer the reader to [45, Theorem II.2.3.3] and [37, Chapter V, §3, Theorem 7] for

more details, as well as for references to the original papers. The above result has

a similar quality to Burkholder’s geometrical characterization of the UMD property

in [14] (Theorem 1.4.11). That is, both of these characterizations are independent

of the Lebesgue-Bochner spaces. Burkholder also proved the following martingale

characterization of the UMD property in [14].

Theorem 1.7.4 (Burkholder) A Banach space Y has the UMD property if and

only if every ±1-transform of every L1(µ, Y )-bounded martingale converges almost

everywhere.

This result bears a marked resemblance to Theorem 1.7.1. By the same token, The-

orem 1.3.10 and Theorem 1.5.4 also resemble each other.

The UMD property has an important interaction with the R-boundedness of

partial sum projections associated with unconditional Schauder decompositions. In

Corollary 1.6.6, we exhibited Witvliet’s generalization of the Stein inequality (cf.

[103, Corollary 2.3.5]). It was shown that if (Di) is an unconditional decomposition

of a Banach space Y with property (α), then the collection of operators {
∑

i∈σ Di :

σ ⊂ N} is R-bounded on Y . We ought to mention that this result was generalized

further by Witvliet.

Definition 1.7.5 A Banach space Y is said to have property (∆) if there exists a

constant α > 0 such that

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i≤j≤n

θijri(s)rj(t)yij

∥∥∥∥∥∥
2

dsdt ≤ α2

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
∑

1≤i,j≤n

ri(s)rj(t)yij

∥∥∥∥∥∥
2

dsdt

for all vectors (yij) ⊂ Y , choices of signs (θij), and n ∈ N. Here, (ri) denotes the

sequence of Rademacher functions.

It is evident that if a Banach space has property (α), then it also has property

(∆). Property (∆) was introduced by Kalton and Weis in [59], where it was also

shown that every UMD space possesses this property. Witvliet generalized the Stein

inequality to Banach spaces with property (∆) (cf. [103, Theorem 2.4.3]).

Theorem 1.7.6 (Stein’s Inequality) If (Di) is an unconditional decomposi-

tion of a Banach space Y with property (∆), then the collection of operators

{
∑n

i=1Di : n ∈ N} is R-bounded on Y .
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Consequently, the above result holds for any unconditional Schauder decomposition

of a UMD space. This implies that all martingale decompositions of Lp(µ, Y ) (1 <

p < ∞) are R-bounded, provided Y has the UMD property. The case Y = R is

crucial for the theory of stopping times in Chapter 7.



2

Generalized vector-valued Lp-spaces

2.1 Introduction

Having sampled some of the classical theory of the Lebesgue-Bochner spaces in the

previous chapter, it is time to free ourselves from the confines of a measure space.

We have seen that the Lebesgue-Bochner space Lp(µ, Y ) may be decomposed as

the completed tensor product Lp(µ)⊗̃∆pY for 1 ≤ p <∞, where ∆p is the induced

Bochner norm. Our purpose is to exhibit a reasonable crossnorm ‖ · ‖l on the tensor

product of a general Banach lattice E and a Banach space Y that ‘extends’ the

Bochner norm. That is to say, when E = Lp(µ), the norms ‖ · ‖l and ∆p coincide on

E ⊗ Y .

In Section 2.2, we consider the class of cone absolutely summing operators that

map from a Banach lattice to a Banach space. These are the operators that map

positive summable sequences to absolutely summable sequences. The cone absolutely

summing norm on this class of operators is used to induce the l-norm on the tensor

product E ⊗ Y . Consequently, the theory of cone absolutely summing operators

plays a central role. We recall some basic properties, as well as important duality

and extension results. Our work is taken primarily from the comprehensive survey

of Banach lattices by Schaefer [92].

Section 2.3 shows how the class of cone absolutely summing operators can be used

to induce the l-norm on the tensor product E⊗Y , as well as how the l-norm extends

the Bochner norm. The l-norm was studied by Schaefer in [92]. Independently, Jacobs

studied the ∆-norm on E⊗Y and Chaney studied the M -norm on the tensor product

X ⊗ F , of a Banach space X and a Banach lattice F . We show that the transpose

of the M -norm, the l-norm and the ∆-norm all coincide on E ⊗ Y . This fact is

known, but not clearly seen from the literature. Since it provides us with multiple

formulae for calculating the l-norm, and forms the foundation for most of our work,
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we present a complete, elementary proof for this result. Some parts of the proof are

original and can be found in [28].

It is well known that the Bochner norm is not an injective, uniform crossnorm.

In Section 2.4, we show that weaker order theoretic versions of these properties hold

for the l-norm. We make extensive use of these properties throughout this thesis.

We also show that if E and F are both Banach lattices, then the completed l-tensor

product E⊗̃lF is a Banach lattice. This result was shown by Chaney for the M -norm

and by Schaefer for the l-norm, using operator theoretic arguments. We provide a

new proof for this result which relies on Fremlin’s fundamental construction of a

Riesz tensor product of Archimedean vector lattices [47]. Our proof for this result

can also be found in [28].

This chapter concludes with Section 2.5, which shows that the l-tensor product

of order continuous Banach lattices is again order continuous. This result was first

shown by Popa in [85]. Later, a direct proof was found, which appeared in [68]. We

present this proof.

2.2 Cone absolutely summing operators

The origin of cone absolutely summing operators lies in the following definition of

Dinculeanu found in [38, 39, 40].

Definition 2.2.1 (Dinculeanu) Suppose Y is a Banach space and 1 ≤ p < ∞.

Let T : Lp(µ) → Y be a bounded linear operator. We define the triple bar norm of

T by

|||T |||p = sup

{
n∑

i=1

‖αiT (χAi)‖Y : s =
n∑

i=1

αiχAi a simple function, ‖s‖p ≤ 1

}
.

The finiteness of |||T |||p is characterized by the following theorem, which can be

found in [37, Chapter IV, §4, Theorem 8].

Theorem 2.2.2 Suppose Y is a Banach space and 1 ≤ p <∞. For T ∈ L(Lp(µ), Y )

we have |||T |||p < ∞ if and only if T maps positive convergent series in Lp(µ) to

absolutely convergent series in Y .

Proof. Note that T maps positive convergent series in Lp(µ) to absolutely convergent

series in Y if and only if

‖T‖L := sup


n∑

i=1

‖Tfi‖ : (fi) ⊂ Lp(µ)+,

∥∥∥∥∥∑
i=1

fi

∥∥∥∥∥
p

≤ 1

 <∞. (2.1)



2.2 Cone absolutely summing operators 45

It is easy to see that |||T |||p ≤ ‖T‖L which proves the ‘if’ part of the theorem. For

the converse, show |||T |||p ≥ ‖T‖L by approximating by simple functions. ut

Dinculeanu showed in [38, 39, 40] that a bounded operator T : Lp(µ) → Y has

|||T |||p <∞ if and only if there exists a Y -valued, µ-continuous vector measure F of

q-bounded variation (1
p + 1

q = 1) such that Tf =
∫
Ω f dF for all f ∈ Lp(µ). Given

this result, a number of characterizations of the Radon Nikodým property in terms

of operators mapping from Lp(µ) (1 < p <∞) into a Banach space Y emerged (cf.

[104, 102, 19]).

Schaefer studied the class of cone absolutely summing operators in [92, 91], as

well its dual counterpart, the class of majorizing operators.

Definition 2.2.3 Let E, F be Banach lattices and X, Y Banach spaces. If T ∈
L(E, Y ) and S ∈ L(X,F ) then,

(a) T is called cone absolutely summing if for every unconditionally summable se-

quence (xi) ⊂ E+, (Txi) is absolutely summable in Y . The space of cone abso-

lutely summing operators from E into Y is denoted by Lcas(E, Y ).

(b) S is called majorizing if for every null sequence (xi) ⊂ X, (Txi) is contained in

an order interval in F . The space of majorizing operators to from X into F is

denoted by Lmaj(X,F ).

Cone absolutely summing operators serve as an order theoretic counter part to

the absolutely summing operators studied in [36]. In the terminology of Krivine (cf.

[60]), cone absolutely summing operators are known as 1-concave operators (see also

[72, p. 45]).

A candidate for the norm of a cone absolutely summing operator is suggested by

(2.1) and the following lemma.

Lemma 2.2.4 Let E be a Banach lattice and (xn) ⊂ E+. If (xn) is uncondition-

ally summable, then ‖(xn)‖ε = ‖
∑∞

n=1 xn‖. Consequently, (xn) is unconditionally

summable if and only if it is summable.

Proof. For each x∗ ∈ E∗ and x ∈ E+ we have |〈x, x∗〉| ≤ 〈x, |x∗|〉. Since ‖ |x∗| ‖ =

‖x∗‖, it follows that
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∞∑

n=1

xn

∥∥∥∥∥ = sup

{∣∣∣∣∣
〈 ∞∑

n=1

xn, x
∗

〉∣∣∣∣∣ : x∗ ∈ E∗, ‖x∗‖ ≤ 1

}

= sup

{〈 ∞∑
n=1

xn, x
∗

〉
: x∗ ∈ E∗+, ‖x∗‖ ≤ 1

}

= sup

{ ∞∑
n=1

〈xn, x
∗〉 : x∗ ∈ E∗+, ‖x∗‖ ≤ 1

}

= sup

{ ∞∑
n=1

|〈xn, x
∗〉| : x∗ ∈ E∗, ‖x∗‖ ≤ 1

}
= ‖(xn)‖ε <∞.

An application of Theorem 1.4.2 completes the proof. ut

Since convergence and unconditional convergence of positive series in a Banach lat-

tice are equivalent, we are justified in the following definition.

Definition 2.2.5 Let E, F be Banach lattices and X, Y Banach spaces. If T ∈
Lcas(E, Y ) and S ∈ Lmaj(X,F ) then,

(a) the cone absolutely summing norm of T is defined as

‖T‖cas = sup

{
n∑

i=1

‖Txi‖ : (xi)n
i=1 ⊂ E+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}
,

(b) the majorizing norm of S is defined as

‖S‖maj = sup
{∥∥∥∥ sup

1≤i≤n
|Txi|

∥∥∥∥ : (xi)n
i=1 ⊂ X, sup

1≤i≤n
‖xi‖ ≤ 1

}
.

It follows that Lcas(E, Y ) and Lmaj(X,F ) are Banach spaces under their re-

spective norms and the inclusion maps Lcas(E, Y ) ↪→ L(E, Y ) and Lmaj(X,F ) ↪→
L(X,F ) are continuous with norm less than or equal to one (cf. [92, Chapter IV, §3,

Proposition 3.6]). Moreover, we have the following theorem (cf. [92, Chapter IV, §3,

Theorem 3.8]):

Theorem 2.2.6 Let E be a Banach lattice and Y be a Banach space, then the

canonical map T 7→ T ∗ from L(E, Y ) into L(Y ∗, E∗) maps Lcas(E, Y ) isometrically

into Lmaj(Y ∗, E∗). A corresponding assertion is valid for Lmaj(X,F ), where X is a

Banach space and F is a Banach lattice.

For a comprehensive exposition of cone absolutely summing and majorizing maps,

we refer the interested reader to [92, Chapter IV, §3]. We conclude this section with

a useful extension result (cf. [92, Chapter IV, §3, Proposition 3.9]).
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Theorem 2.2.7 Let E0 be a Banach sublattice of the Banach lattice E, and let

Y be any Banach space. If T0 ∈ Lcas(E0, Y ), then T0 possesses an extension T ∈
Lcas(E, Y ) such that ‖T‖cas = ‖T0‖cas.

2.3 The l-tensor product of a Banach lattice and a Banach space

In the early 1970’s, two important contributions to the theory of tensor products,

which involve the tensor product of a Banach lattice and a Banach space, were

independently made by Chaney (cf. [19]) and by Schaefer (cf. [92]).

If E is a Banach lattice and Y is a Banach space, Chaney introduced the M -norm

on Y ⊗ E as

‖u‖M :=

∥∥∥∥∥sup

{∣∣∣∣∣
n∑

i=1

x∗(xi)yi

∣∣∣∣∣ : ‖x∗‖ ≤ 1

}∥∥∥∥∥
for all u =

∑n
i=1 xi ⊗ yi ∈ Y ⊗ E. He also showed that the M -norm is equal to the

|µ|-norm on Y ⊗ E, defined by

‖u‖|µ| = inf

{∥∥∥∥∥
n∑

i=1

‖xi‖ |yi|

∥∥∥∥∥ : u =
n∑

i=1

xi ⊗ yi

}

for all u ∈ Y ⊗ E (cf. [19, Theorem 1.4]). The |µ|-norm is the transpose of the

∆-norm on E ⊗ Y , given by

‖u‖∆ = inf

{∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ : u =
n∑

i=1

xi ⊗ yi

}
for all u ∈ E ⊗ Y . The ∆-norm was introduced earlier by Jacobs in his thesis, see

[54].

Schaefer considered the l-norm on E⊗Y , where the l-norm is the norm induced on

E⊗Y by the cone absolutely summing norm on the Banach space of cone absolutely

summing operators T : E∗ → Y . Denote by ‖ · ‖l the norm on E ⊗ Y induced by

‖ · ‖cas under the canonical embedding of E ⊗ Y into Lcas(E∗, Y ), defined by

n∑
i=1

xi ⊗ yi = u 7→ Lu

where Lux
∗ =

∑n
i=1〈xi, x

∗〉yi for all x∗ ∈ E∗; i.e.,

‖ · ‖l := ‖ · ‖cas

∣∣
E⊗Y

.

Under the canonical identification u 7→ Lu, of E ⊗ Y with a subspace of

Lcas(E∗, Y ) and Y ⊗E with a subspace of Lmaj(Y ∗, E∗∗), the transpose map u 7→ tu
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from E ⊗ Y onto Y ⊗ E corresponds with the formation of adjoints Lu 7→ L∗u from

Lcas(E∗, Y ) into Lmaj(Y ∗, E∗∗). Consequently, the norm induced on Y ⊗E by ‖·‖maj

under the canonical embedding of Y ⊗ E into Lmaj(Y ∗, E) is the transpose of the

norm ‖ · ‖l. We denote this norm by ‖ · ‖m; i.e.,

‖ · ‖tl = ‖ · ‖m := ‖ · ‖maj

∣∣
Y⊗E

.

An intriguing result, proved by Schaefer, is that the dual of E ⊗l Y is isometrically

isomorpic to Lcas(E, Y ∗) under the canonical map f 7→ Tf , defined by 〈x, Tfy〉 =

〈x⊗ y, f〉 (cf. [92, Chapter IV, §7, Theorem 7.4]).

A similar result was proved earlier by Jacobs in his thesis. He proved that the

dual of E ⊗∆ Y is canonically isometric to Lcas(E, Y ∗). A proof of the theorem of

Jacobs can also be found in the thesis of Jeurninck, see [56, p. 104].

Since ‖z‖ = sup{|〈z, z∗〉| : z∗ ∈ Z∗, ‖z∗‖ ≤ 1} for all z ∈ Z, in any Banach space

Z, it follows from the duality results of Jacobs and Schaefer that ‖ · ‖∆ = ‖ · ‖l on

E ⊗ Y . Together with Chaney’s result that ‖ · ‖M = ‖ · ‖|µ| on Y ⊗ E, we have

‖ · ‖tM = ‖ · ‖∆ = ‖ · ‖l on E ⊗ Y,

where ‖ · ‖tM denotes the transpose of ‖ · ‖M .

An important property of the l-tensor product is its connection with the Lebesgue-

Bochner spaces. Let Y denote a Banach space, (Ω,Σ, µ) denote a σ-finite measure

space and 1 ≤ p < ∞. If E = Lp(µ), then the completed l-tensor product E⊗̃lY is

isometric to Lp(µ, Y ) under the canonical mapping f ⊗x 7→ f( · )x (cf. [19, 92]). We

summarize with the following theorem:

Theorem 2.3.1 (Chaney-Jacobs-Jeurnink-Schaefer) Let E be a Banach

lattice and Y a Banach space. The following norms of u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ Y

are equal:

(a) ‖u‖l := sup

{
m∑

j=1

∥∥∥∥ n∑
i=1

x∗j (xi)yi

∥∥∥∥ : (x∗j )m
j=1 ⊂ E∗+,

∥∥∥∥∥ m∑
j=1

x∗j

∥∥∥∥∥ ≤ 1

}
,

(b) ‖u‖tM :=
∥∥∥∥sup

{∣∣∣∣ n∑
i=1

y∗(yi)xi

∣∣∣∣ : ‖y∗‖ ≤ 1
}∥∥∥∥,

(c) ‖u‖∆ := inf
{∥∥∥∥ n∑

i=1
‖yi‖ |xi|

∥∥∥∥ : u =
n∑

i=1
xi ⊗ yi

}
.

In particular, when E = Lp(µ) with 1 ≤ p < ∞ and (Ω,Σ, µ) a σ-finite measure

space, we have all three of the above norms equal to the Bochner norm ∆p on E⊗Y ,

induced by Lp(µ, Y ).
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The techniques used in the literature to prove the above result are not easily

accessible. Also, some of the literature itself is difficult to obtain. Due to the impor-

tance of the above result to the rest of this thesis, we present a complete, elementary

proof.

Our strategy will be to show that E⊗tM Y isometrically embeds into E∗∗⊗tM Y .

We then show that similar embeddings hold for ‖ · ‖l and ‖ · ‖∆. Thus, the result

will follow after proving that these three norms co-incide on E∗∗ ⊗ Y . We conclude

by showing that ‖ · ‖tM and ∆p coincide on E⊗Y when E = Lp(µ) and 1 ≤ p <∞.

Before we start, the definition of ‖ · ‖tM needs to be checked:

Lemma 2.3.2 Let E be a Banach lattice and Y a Banach space. For finite sequences

(xi)n
i=1 ⊂ E and (yi)n

i=1 ⊂ Y we have sup {|
∑n

i=1 y
∗(yi)xi| : ‖y∗‖ ≤ 1} ∈ E. More-

over, this supremum can be approximated in norm by finite suprema of elements

from {|
∑n

i=1 y
∗(yi)xi| : ‖y∗‖ ≤ 1}.

Proof. Let A := {|
∑n

i=1 y
∗(yi)xi| : ‖y∗‖ ≤ 1} and e :=

∑n
i=1 ‖yi‖ |xi|, then it is clear

that A ⊂ [0, e]. Consider the ideal in E generated by e, denoted Ee, together with the

gauge norm defined by ‖x‖e := inf{λ > 0 : x ∈ [−λe, λe]}. Then (Ee, ‖·‖e) is an AM -

space with order unit e. We show that A is precompact in (Ee, ‖ · ‖e). Let (wj) ⊂ A,

then, for each j ∈ N, we have wj = |
∑n

i=1 y
∗
j (yi)xi|, where ‖y∗j ‖ ≤ 1. By Banach-

Alaoglu, the dual unit ball of Y is w∗-compact. Thus, there exists a subsequence

(y∗jk
) that converges in the w∗-topology to a functional y∗ in the unit ball of Y ∗; i.e.

y∗jk
(y) → y∗(y) as k → ∞ for all y ∈ Y . Thus, by letting w = |

∑n
i=1 y

∗(yi)xi| ∈ A,

we have that

|wjk
− w| ≤ sup

1≤i≤n
|y∗jk

(yi)− y∗(yi)|
n∑

i=1

|xi| → 0 as k →∞.

Hence, (wj) ⊂ A has a subsequence that converges relatively uniformly and thus

in norm to w ∈ A in (Ee, ‖ · ‖e). This shows that A is precompact in (Ee, ‖ · ‖e).

Since every precompact subset in an AM -space has a supremum (cf. [76, Theorem

2.1.12]), we have supA ∈ Ee ⊂ E. The last part of the assertion follows from [76,

Corollary 2.1.13] and the fact that the inclusion map Ee ↪→ E is continuous. ut

The above lemma shows that ‖ · ‖tM is well defined and allows us to prove:

Theorem 2.3.3 Let E be a Banach lattice and Y be a Banach space. Then E⊗tM Y

is isometrically embedded into E∗∗ ⊗tM Y .

Proof. Let iE : E → E∗∗ denote the canonical Riesz isometry. We have that
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(

sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

})∥∥∥∥∥
E∗∗

≥

∥∥∥∥∥sup

{
iE

(∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣
)

: ‖y∗‖ ≤ 1

}∥∥∥∥∥
E∗∗

holds for all u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ Y . For the reverse inequality, let ε > 0. Then,

by Lemma 2.3.2, there exist functionals y∗1, . . . , y
∗
m in the dual unit ball of Y such

that∥∥∥∥∥sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

}
− sup

1≤j≤m

∣∣∣∣∣
n∑

i=1

y∗j (yi)xi

∣∣∣∣∣
∥∥∥∥∥

E

< ε.

Since iE is a Riesz isometry, this implies that∥∥∥∥∥iE
(

sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

})
− sup

1≤j≤m
iE

(∣∣∣∣∣
n∑

i=1

y∗j (yi)xi

∣∣∣∣∣
)∥∥∥∥∥

E∗∗

< ε.

Hence,∥∥∥∥∥iE
(

sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

})∥∥∥∥∥
E∗∗

<

∥∥∥∥∥ sup
1≤j≤m

iE

(∣∣∣∣∣
n∑

i=1

y∗j (yi)xi

∣∣∣∣∣
)∥∥∥∥∥

E∗∗

+ ε

≤

∥∥∥∥∥sup

{
iE

(∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣
)

: ‖y∗‖ ≤ 1

}∥∥∥∥∥
E∗∗

+ ε.

The fact that ε is arbitrary yields∥∥∥∥∥iE
(

sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

})∥∥∥∥∥
E∗∗

≤

∥∥∥∥∥sup

{
iE

(∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣
)

: ‖y∗‖ ≤ 1

}∥∥∥∥∥
E∗∗

.

By the above reasoning and the fact that iE is a Riesz isometry, it follows that

‖(iE ⊗ idY )(u)‖E∗∗⊗tMY =

∥∥∥∥∥sup

{
iE

(∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣
)

: ‖y∗‖ ≤ 1

}∥∥∥∥∥
E∗∗

=

∥∥∥∥∥iE
(

sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣ : y∗ ∈ ‖y∗‖ ≤ 1

})∥∥∥∥∥
E∗∗

=

∥∥∥∥∥sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

}∥∥∥∥∥
E

= ‖u‖E⊗tMY

for all u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ Y , showing that E ⊗tM Y is isometrically embedded

into E∗∗ ⊗tM Y . ut
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The next theorem is more general than the above result. It is a result that is key

to many of the main results throughout this thesis. We will revisit this result in the

next section.

Theorem 2.3.4 (a) Let E be a Banach lattice and Y a Banach space. If E0 is a

Banach lattice with i0 : E0 → E a Riesz isometry and Y0 a Banach space with

j0 : Y0 → Y an isometry, then i0 ⊗ j0 : E0 ⊗l Y0 → E ⊗l Y is an isometry.

(b) Let X be a Banach space and F a Banach lattice. If X0 is a Banach space with

i0 : X0 → X an isometry and F0 a Banach lattice with j0 : F0 → F a Riesz

isometry, then i0 ⊗ j0 : X0 ⊗m F0 → X ⊗m F is an isometry.

Proof. Let T ∈ Lcas(E∗, Y0) with j0 : Y0 → Y an isometry, it follows that

‖j0 ◦ T‖cas = sup

{
n∑

i=1

‖(j0 ◦ T )(x∗i )‖ : (x∗i )n
i=1 ⊂ E∗+,

∥∥∥∥∥
n∑

i=1

x∗i

∥∥∥∥∥ = 1

}

= sup

{
n∑

i=1

‖T (x∗i )‖ : (x∗i )n
i=1 ⊂ E∗+,

∥∥∥∥∥
n∑

i=1

x∗i

∥∥∥∥∥ = 1

}
= ‖T‖cas.

Consequently, if u ∈ E ⊗ Y0, then ‖u‖l = ‖(idE ⊗ j0)(u)‖l so that

(idE ⊗ j0) : E ⊗l Y0 → E ⊗l Y

is an isometry.

Next, consider T ∈ Lmaj(X∗, F0) with j0 : F0 → F now a Riesz isometry. Then

we have

‖j0 ◦ T‖maj = sup
{∥∥∥∥ sup

1≤i≤n
|(j0 ◦ T )(x∗i )|

∥∥∥∥ : (x∗i )n
i=1 ⊂ X∗, sup

1≤i≤n
‖x∗i ‖ ≤ 1

}
= sup

{∥∥∥∥j0( sup
1≤i≤n

|T (x∗i )|
)∥∥∥∥ : (x∗i )n

i=1 ⊂ X∗, sup
1≤i≤n

‖x∗i ‖ ≤ 1
}

= sup
{∥∥∥∥ sup

1≤i≤n
|T (x∗i )|

∥∥∥∥ : (x∗i )n
i=1 ⊂ X∗, sup

1≤i≤n
‖x∗i ‖ ≤ 1

}
= ‖T‖maj.

Consequently, if u ∈ X ⊗ F0, then ‖u‖m = ‖(idX ⊗ j0)(u)‖m so that

(idX ⊗ j0) : X ⊗m F0 → X ⊗m F

is an isometry.

Since ‖ · ‖m = ‖ · ‖tl, it follows that if i0 : X0 → X is an isometry, then i0 ⊗ idF :

X0 ⊗m F → X ⊗m F is an isometry, from which (b) is readily deduced.

Similarly, since ‖ · ‖l = ‖ · ‖tm, it follows that if i0 : E0 → E is a Riesz isometry,

then i0⊗ idY : E0⊗l Y → E ⊗l Y is an isometry, from which (a) is now evident. ut
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In particular, it follows from the above result that E ⊗l Y embeds into E∗∗ ⊗l Y

isometrically. To prove a similar result for the ∆-norm we need a duality result from

the thesis of Jacobs (cf. [54]). The proof presented here is due to the author and

appears in [28].

By noting that for u ∈
∑n

i=1 xi ⊗ yi ∈ E ⊗ Y , we have the decomposition

u =
n∑

i=1

(‖yi‖xi)+ ⊗ (yi/‖yi‖) +
n∑

i=1

(‖yi‖xi)− ⊗ (−yi/‖yi‖),

it follows that

‖u‖∆ = inf

{∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ : u =
n∑

i=1

xi ⊗ yi, xi ≥ 0, ‖yi‖ = 1

}
.

Thus, for f ∈ (E ⊗∆ Y )∗, we have

‖f‖ = sup

{
|f(u)| : u =

n∑
i=1

xi ⊗ yi, ‖u‖∆ ≤ 1

}

= sup

{
|f(u)| : u =

n∑
i=1

xi ⊗ yi, xi ≥ 0, ‖yi‖ = 1,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}
, (2.2)

which will be used in the proof of:

Theorem 2.3.5 (Jacobs) Let E be a Banach lattice and Y a Banach space. Then

(E ⊗∆ Y )∗ is isometric to Lcas(E, Y ∗).

Proof. Consider the map from (E ⊗∆ Y )∗ into L(E, Y ∗) given by f 7→ Tf where

〈y, Tfx〉 = f(x⊗ y) for all x ∈ E and y ∈ Y . By (2.2), we have

‖f‖ = sup

{
|f(u)| : u =

n∑
i=1

xi ⊗ yi, xi ≥ 0, ‖yi‖ = 1,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}

= sup

{∣∣∣∣∣
n∑

i=1

〈yi, Tfxi〉

∣∣∣∣∣ : (xi)n
i=1 ⊂ E+, (yi)n

i=1 ⊂ Y, ‖yi‖ = 1,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}

= sup

{
sup

{ ∣∣∣∣∣
n∑

i=1

〈yi, Tfxi〉

∣∣∣∣∣ :

(yi)n
i=1 ⊂ Y, ‖yi‖ = 1

}
: (xi)n

i=1 ⊂ E+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}
.

Note that for any sequence (yi)n
i=1 ⊂ Y with ‖yi‖ = 1, there exists a sequence of

scalars α1, . . . , αn with |αi| = 1 for i = 1, . . . , n such that∣∣∣∣∣
n∑

i=1

〈yi, Tfxi〉

∣∣∣∣∣ ≤
n∑

i=1

|〈yi, Tfxi〉| =
n∑

i=1

|〈αiyi, Tfxi〉| =

∣∣∣∣∣
n∑

i=1

〈αiyi, Tfxi〉

∣∣∣∣∣ .
Consequently, we have
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‖f‖ = sup

{
sup

{ n∑
i=1

|〈yi, Tfxi〉| :

(yi)n
i=1 ⊂ Y, ‖yi‖ = 1

}
: (xi)n

i=1 ⊂ E+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}
.

Notice for each ε > 0 there exists yi with ‖yi‖ = 1, for i = 1, . . . , n, so that

sup {〈yi, Tfxi〉 : ‖yi‖ = 1} − ε/n < 〈yi, Tfxi〉 ≤ sup {〈yi, Tfxi〉 : ‖yi‖ = 1} .

Summing over i gives
n∑

i=1

sup {〈yi, Tfxi〉 : ‖yi‖ = 1} − ε

<
n∑

i=1

〈yi, Tfxi〉 ≤
n∑

i=1

sup {〈yi, Tfxi〉 : ‖yi‖ = 1} .

This implies

n∑
i=1

sup {〈yi, Tfxi〉 : ‖yi‖ = 1} = sup

{
n∑

i=1

〈yi, Tfxi〉 : (yi)n
i=1 ⊂ Y, ‖yi‖ = 1

}
,

and so

‖f‖ = sup

{
n∑

i=1

sup {|〈yi, Tfxi〉| : ‖yi‖ = 1} : xi ≥ 0,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}

= sup

{
n∑

i=1

‖Tfxi‖ : xi ≥ 0,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}
= ‖Tf‖cas.

Thus, the map f 7→ Tf is a linear isometry of (E ⊗∆ Y )∗ into Lcas(E, Y ∗) which

is easily seen to be surjective. ut

We can now prove the following result. The proof is adapted from [19].

Theorem 2.3.6 Let E be a Banach lattice and Y be a Banach space. Then E⊗∆ Y

is isometrically embedded into E∗∗ ⊗∆ Y .

Proof. Let iE : E → E∗∗ denote the canonical Riesz isometry and i∗Y : Y ∗∗∗ → Y ∗

denote the adjoint of the canonical isometry from Y into Y ∗∗. Consider the map

from Lcas(E∗∗, Y ∗) into Lcas(E, Y ∗) defined by T 7→ T ◦ iE . We shall show this

map is a metric surjection. Note already for any T ∈ Lcas(E∗∗, Y ∗), the map T ◦ iE
is just the restriction of T to E; thus, it follows by the definition of ‖ · ‖cas that

‖T ◦ iE‖cas ≤ ‖T‖cas.

Now let R ∈ Lcas(E, Y ∗) and let S = i∗Y ◦ R∗∗. Then, for all x ∈ E and y ∈ Y ,

we have
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〈y, (S ◦ iE)x〉 = 〈y, (i∗Y ◦R∗∗ ◦ iE)x〉 = 〈y, (R∗ ◦ iY )∗iE(x)〉

= 〈(R∗ ◦ iY )y, iE(x)〉 = 〈x,R∗iY (y)〉 = 〈Rx, iY (y)〉

= 〈y,Rx〉,

which shows that S ◦ iE = R. Thus, the following diagram commutes.

E∗∗ Y ∗∗∗

E Y ∗

-R∗∗

H
HHH

HHHj

S

?
i∗Y

-R

6
iE

As a consequence of the isometric embedding Lcas(E, Y ∗) ↪→ Lcas(E∗∗, Y ∗∗∗)

given by Theorem 2.2.6, we obtain

‖S‖cas = ‖i∗Y ◦R∗∗‖cas

= sup

{
n∑

i=1

‖(i∗Y ◦R∗∗)xi‖ : (xi)n
i=1 ⊂ E+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}

≤ sup

{
n∑

i=1

‖i∗Y ‖‖R∗∗xi‖ : (xi)n
i=1 ⊂ E+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}

= sup

{
n∑

i=1

‖R∗∗xi‖ : (xi)n
i=1 ⊂ E+,

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤ 1

}
= ‖R∗∗‖cas = ‖R‖cas = ‖S ◦ iE‖cas,

which shows that S ∈ Lcas(E∗∗, Y ∗) and the map T 7→ T ◦ iE is surjective. So for

each R ∈ Lcas(E, Y ∗), there exists S ∈ Lcas(E∗∗, Y ∗) such that

S ◦ iE = R and ‖S‖cas = ‖R‖cas.

Hence, ‖R‖cas = inf{‖T‖cas : T ∈ Lcas(E∗∗, Y ∗), T ◦ iE = R}, showing that the map

T 7→ T ◦ iE is indeed a metric surjection from Lcas(E∗∗, Y ∗) onto Lcas(E, Y ∗).

But (E ⊗∆ Y )∗ = Lcas(E, Y ∗) and (E∗∗ ⊗∆ Y )∗ = Lcas(E∗∗, Y ∗) by Theorem

2.3.5. Thus, it follows that E ⊗∆ Y is isometrically embedded into E∗∗ ⊗∆ Y and

the proof is complete. ut

To complete the first part of the proof of Theorem 2.3.1, we now show that the

norms ‖ · ‖l, ‖ · ‖tM and ‖ · ‖∆ coincide on E∗∗ ⊗ Y .

Consider the norms ‖ · ‖l and ‖ · ‖tM on E∗⊗ Y . Let u =
∑n

i=1 x
∗
i ⊗ yi ∈ E∗⊗ Y ,

then the induced map Lu ∈ Lcas(E, Y ) is defined by Lu(x) =
∑n

i=1 x
∗
i (x)yi for all

x ∈ E. Consequently, by Theorem 2.2.6, we have ‖u‖l := ‖Lu‖cas = ‖L∗u‖maj, where

L∗u ∈ Lmaj(Y ∗, E∗) is given by 〈x, L∗u(y∗)〉 =
∑n

i=1 y
∗(yi)x∗i (x), yielding
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‖u‖l = sup

{∥∥∥∥∥ sup
1≤j≤m

|L∗u(y∗j )|

∥∥∥∥∥ : (y∗j )m
j=1 ⊂ Y ∗, ‖y∗j ‖ ≤ 1

}

= sup

{∥∥∥∥∥ sup
1≤j≤m

∣∣∣∣∣
n∑

i=1

y∗j (yi)x∗i

∣∣∣∣∣
∥∥∥∥∥ : (y∗j )m

j=1 ⊂ Y ∗, ‖y∗j ‖ ≤ 1

}
. (2.3)

Note that E∗ is a Dedekind complete Banach lattice and the set{
sup

1≤j≤m

∣∣∣∣∣
n∑

i=1

y∗j (yi)x∗i

∣∣∣∣∣ : (y∗j )m
j=1 ⊂ Y ∗, ‖y∗j ‖ ≤ 1

}
⊂ E∗+

is upwards directed and bounded above by
∑n

i=1 ‖yi‖ |x∗i |. Thus, we may interchange

the norm and supremum in (2.3), which gives

‖u‖l =

∥∥∥∥∥sup

{
sup

1≤j≤m

∣∣∣∣∣
n∑

i=1

y∗j (yi)x∗i

∣∣∣∣∣ : (y∗j )m
j=1 ⊂ Y ∗, ‖y∗j ‖ ≤ 1

}∥∥∥∥∥
=

∥∥∥∥∥sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)x∗i

∣∣∣∣∣ : ‖y∗‖ ≤ 1

}∥∥∥∥∥
= ‖u‖tM .

Now consider the norms ‖·‖∆ and ‖·‖tM on E∗⊗Y . Suppose that u =
∑∞

i=1 x
∗
i ⊗

yi ∈ E∗ ⊗ Y with {x∗i }n
i=1 a mutually disjoint set. Then

‖u‖tM =

∥∥∥∥∥sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)x∗i

∣∣∣∣∣ : ‖y∗‖ ≤ 1

}∥∥∥∥∥ =

∥∥∥∥∥sup

{
n∨

i=1

|y∗(yi)| |x∗i | : ‖y∗‖ ≤ 1

}∥∥∥∥∥
=

∥∥∥∥∥
n∨

i=1

(
|x∗i | sup{|y∗(yi)| : ‖y∗‖ ≤ 1}

)∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

‖yi‖ |x∗i |

∥∥∥∥∥
≥ inf

{∥∥∥∥∥
n∑

i=1

‖yi‖ |x∗i |

∥∥∥∥∥ : u =
n∑

i=1

x∗i ⊗ yi

}
= ‖u‖∆.

An easy application of the triangle inequality shows that we in fact have ‖u‖tM =

‖u‖∆. Hence, if the set{
n∑

i=1

x∗i ⊗ yi ∈ E∗ ⊗ Y : {x∗i }n
i=1 mutually disjoint

}

is dense in E∗⊗̃∆Y , we have the norms ‖ · ‖∆ and ‖ · ‖tM equal on E∗ ⊗ Y . We will

show that this is indeed the case, after we complete the proof of Theorem 2.3.1.

To this end we observe that, from the above results, we have the diagram
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E ⊗l Y E∗∗ ⊗l Y

E ⊗tM Y E∗∗ ⊗tM Y

E ⊗∆ Y E∗∗ ⊗∆ Y

-iE⊗idY

?

6
I1

?

6
H1

-iE⊗idY

?

6
I2

?

6
H2

-iE⊗idY

where H1 and H2 are surjective isometries and iE : E → E∗∗ denotes the canonical

Riesz isometry. It follows that I1 and I2 are also surjective isometries induced by H1

and H2 respectively, and so the norms ‖ · ‖l, ‖ · ‖tM and ‖ · ‖∆ are equal on E ⊗ Y .

For the last part of the proof, let E = Lp(µ) with 1 ≤ p < ∞. For any u =∑n
i=1 χAi ⊗ yi ∈ S(µ)⊗ Y , we have

‖u‖tM =

∥∥∥∥∥sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)χAi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

}∥∥∥∥∥
p

=

∥∥∥∥∥
n∑

i=1

‖yi‖χAi

∥∥∥∥∥
p

= ∆p(u)

as above. Since S(µ)⊗ Y is dense in E⊗̃∆pY , the result follows.

The density of S(µ) ⊗ Y in Lp(µ)⊗̃∆pY is generalized to the ∆-tensor product

by the following result, which is still required in the proof of Theorem 2.3.1. This

result was proved by Chaney in [19], using representation theory. We provide an

elementary proof, via Freudenthal’s Spectral Theorem.

Theorem 2.3.7 Let E be a Banach lattice with principle projection property and

let Y be a Banach space. Then the set of step-functions{
n∑

i=1

xi ⊗ yi ∈ E ⊗ Y : {xi}n
i=1 mutually disjoint

}
is dense in E⊗̃∆Y .

Proof. Let f ∈ E⊗̃∆Y and ε > 0. There exists u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ Y with∥∥∥∥∥f −
n∑

i=1

xi ⊗ yi

∥∥∥∥∥
∆

<
ε

2
. (2.4)

Now let gε = (
∑n

i=1 |xi|)/‖
∑n

i=1 |xi| ‖, then for each i (1 ≤ i ≤ n), the fact that

|xi| ≤
∑n

i=1 |xi| implies that |xi| is an element of the ideal generated by gε. Thus, by

Freudenthal’s Spectral Theorem (cf. [3, 6.9], [76, Theorem 1.2.18] or [106, Theorem

33.2]), for arbitrary δ > 0 and i (1 ≤ i ≤ n), there exist linear combinations of

disjoint components of gε, denoted s
(i)
δ , with

0 ≤ |xi| − s
(i)
δ <

δgε

n
(
sup1≤i≤n ‖yi‖

) .
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Thus, for each i (1 ≤ i ≤ n), we have

0 ≤ ‖yi‖(|xi| − s
(i)
δ ) ≤ δgε‖yi‖

n
(
sup1≤i≤n ‖yi‖

) ≤ δgε

(
sup1≤i≤n ‖yi‖

)
n
(
sup1≤i≤n ‖yi‖

) =
δgε

n
,

and summing over i gives

0 ≤
n∑

i=1

‖yi‖|xi| −
n∑

i=1

‖yi‖s(i)δ ≤ δgεn

n
= δgε.

By taking the norm and using the fact that ‖gε‖ = 1, we obtain the inequality∥∥∥∥∥
n∑

i=1

‖yi‖|xi| −
n∑

i=1

‖yi‖s(i)δ

∥∥∥∥∥ ≤ δ‖gε‖ = δ.

Setting δ = ε/2 gives∥∥∥∥∥
n∑

i=1

xi ⊗ yi −
n∑

i=1

s(i)ε ⊗ yi

∥∥∥∥∥
∆

≤ ε

2
. (2.5)

Choose a disjoint collection of components of gε, denoted {ql : 1 ≤ l ≤ r}, so that

each s
(i)
ε can be written as s(i)ε =

∑r
j=1 γ

(i)
j qj for i = 1, . . . , n. Hence, s(i)ε ⊗ yi =(∑r

j=1 γ
(i)
j qj

)
⊗ yi =

∑r
j=1(qj ⊗ γ

(i)
j yi), and summing over i gives

n∑
i=1

s(i)ε ⊗ yi =
n∑

i=1

r∑
j=1

(qj ⊗ γ
(i)
j yi) =

r∑
j=1

(
qj ⊗

n∑
i=1

γ
(i)
j yi

)
. (2.6)

Finally, by (2.4), (2.5) and (2.6), we get∥∥∥∥∥∥f −
r∑

j=1

(
qj ⊗

n∑
i=1

γ
(i)
j yi

)∥∥∥∥∥∥
∆

≤

∥∥∥∥∥f −
n∑

i=1

xi ⊗ yi

∥∥∥∥∥
∆

+

∥∥∥∥∥
n∑

i=1

xi ⊗ yi −
n∑

i=1

s(i)ε ⊗ yi

∥∥∥∥∥
∆

≤ ε

2
+
ε

2
= ε,

where the qj ’s are mutually disjoint and the proof is complete. ut

2.4 Lattice properties of the l-norm

If X and Y are Banach spaces and α is a norm on X ⊗ Y , we denote the normed

space (X⊗Y, α) by X⊗α Y , its norm completion by X⊗̃αY and its continuous dual

by (X ⊗α Y )∗. The norm of an element u ∈ X⊗̃αY will be denoted αX,Y (u) when

there is a need to distinguish the Banach spaces involved or simply α(u) if there

is no risk of ambiguity. A norm α on X ⊗ Y is called a reasonable crossnorm (cf.

[31, 52, 34, 35, 37]) if α satisfies the conditions:
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(a) For x ∈ X and y ∈ Y , α(x⊗ y) ≤ ‖x‖ ‖y‖.
(b) For x∗ ∈ X∗ and y∗ ∈ Y ∗, x∗ ⊗ y∗ ∈ (X ⊗α Y )∗ and ‖x∗ ⊗ y∗‖ ≤ ‖x∗‖ ‖y∗‖.

It is well known that the inequalities in (a) and (b) may be replaced by equality.

It is also well known that α is a reasonable crossnorm on X ⊗ Y if and only if

π(u) ≤ α(u) ≤ ε(u) for every u ∈ X ⊗ Y ([31, 90]). Hence, it is readily verified from

Theorem 2.3.1 and the inequalities

sup

{∥∥∥∥∥
n∑

i=1

y∗(yi)xi

∥∥∥∥∥ : ‖y∗‖ ≤ 1

}
≤

∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ ≤
n∑

i=1

‖yi‖‖xi‖

that ‖ · ‖l is indeed a reasonable crossnorm.

Let X, X0, Y and Y0 be Banach spaces. If S : X0 → X and T : Y0 → Y are

bounded linear maps, then a reasonable crossnorm α is called a uniform crossnorm

if S ⊗ T : X0 ⊗α Y0 → X ⊗α Y satisfies

‖S ⊗ T‖ ≤ ‖S‖‖T‖.

Since the inequality ‖S ⊗ T‖ ≥ ‖S‖‖T‖ holds for all reasonable crossnorms α,

equality holds in the definition of uniform crossnorms. In the case where X0 is a

closed subspace of X, Y0 is a closed subspace of Y and α is a uniform crossnorm, we

have that αX,Y (u) ≤ αX0,Y0(u). This inequality can be strict and thus E0⊗̃αY0 need

not be a subspace of E⊗̃αY . A uniform crossnorm for which αX0,Y0(u) = αX,Y (u)

holds for each closed subspace X0 of X and Y0 of Y is called injective.

Pisier noted that the Bochner norm ∆p is not an injective uniform crossnorm for

1 < p <∞ (see [31, p. 147]). However, for 1 ≤ p <∞, it is known that the Bochner

norm ∆p, induced by Lp(µ,X), has the property that if 0 ≤ S : Lp(µ) → Lp(µ)

(note that any positive operator between Banach lattices is bounded, thus S is also

bounded) and T : Y → Y is a bounded map, then S ⊗ T : Lp(µ, Y ) → Lp(µ, Y ) has

the property that

‖S ⊗ T‖ = ‖S‖‖T‖ (2.7)

(see [37, 69]). Property (2.7) extends to the l-tensor and the m-tensor products as

stated below (cf. [69]).

Theorem 2.4.1 (a) Let E1 and E2 be Banach lattices and let Y1 and Y2 be Banach

spaces. Let T1 : E1 → E2 be a positive linear operator and T2 : Y1 → Y2 be a

bounded linear operator. Then
∥∥(T1⊗T2)u

∥∥
l
≤ ‖T1‖ ‖T2‖ ‖u‖l for all u ∈ E1⊗Y1.

(b) Let X1 and X2 be Banach spaces and let F1 and F2 be Banach lattices. Let

T1 : X1 → X2 be a bounded linear operator and T2 : F1 → F2 be a positive

linear operator. Then
∥∥(T1 ⊗ T2)u

∥∥
m
≤ ‖T1‖ ‖T2‖ ‖u‖m for all u ∈ X1 ⊗ F1.
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Proof. Let u ∈ E1 ⊗∆ Y1. Then u =
∑n

i=1 xi ⊗ yi and

(T1 ⊗ T2)(u) =
n∑

i=1

T1xi ⊗ T2yi.

Thus, by Theorem 2.3.1,

‖(T1 ⊗ T2)u‖l =

∥∥∥∥∥
n∑

i=1

T1xi ⊗ T2yi

∥∥∥∥∥
l

≤

∥∥∥∥∥
n∑

i=1

‖T2yi‖ |T1xi|

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

i=1

‖T2yi‖T1(|xi|)

∥∥∥∥∥ ≤ ‖T1‖ ‖T2‖

∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ .
Consequently,

‖(T1 ⊗ T2)u‖l ≤ ‖T1‖ ‖T2‖ ‖u‖l.

The proof for the m-norm is similar. ut

In Theorem 2.3.4 we showed that the l-norm exhibits a weaker form of injectivity:

if E0 is a closed Riesz subspace of E and Y0 is a closed subspace of Y, then E0⊗̃lY0

is a closed subspace of E⊗̃lY .

These properties motivate the following definition:

Definition 2.4.2 If E, E0 are Banach lattices and Y , Y0 Banach spaces with 0 ≤
S : E0 → E, T : Y0 → Y bounded linear maps, then a reasonable crossnorm α is

called

(a) left order uniform (or in short, left uniform) if ‖S ⊗ T‖ ≤ ‖S‖‖T‖,
(b) left order injective (or in short, left injective) if S ⊗ T : E0⊗̃αY0 → E⊗̃αY is an

isometry, provided that S is a Riesz isometry and T is an isometry.

The notions of a right order uniform crossnorm and a right order injective crossnorm

are defined in a symmetrical manner.

We now pass to the l-tensor product of two Banach lattices. We rely on a funda-

mental construction of the Riesz tensor product of Archimedean Riesz spaces.

Definition 2.4.3 Let E and F be Archimedean Riesz spaces. We denote the pro-

jective cone of E ⊗ F by

E+ ⊗ F+ :=

{
n∑

i=1

xi ⊗ yi : (xi, yi) ∈ E+ × F+, n ∈ N

}
.

D.H. Fremlin (in [47]) constructed an Archimedean Riesz space E⊗F with the

following properties:



2.4 Lattice properties of the l-norm 60

(RBi) If (x, y) ∈ E × F , then |x| ⊗ |y| = |x⊗ y| in E⊗F .

(F) If G is any Archimedean Riesz space such that E ⊗ F is a vector subspace of

G and |x| ⊗ |y| = |x ⊗ y| in G for all (x, y) ∈ E × F , then E⊗F is the Riesz

subspace of G generated by E ⊗ F .

(SS) If E0 and F0 are Riesz subspaces of E and F respectively, then E0⊗F0 is a Riesz

subspace of E⊗F.
(ru-D)+ If z ∈ (E⊗F )+, then there exists (x, y) ∈ E+ × F+ with the property that for

each ε > 0 there exists vε ∈ E+ ⊗ F+ such that |z − vε| ≤ εx ⊗ y; moreover,

vε ∈ E+ ⊗ F+ may be chosen such that vε ≤ z (see [51]).

Let E and F be Banach lattices. We are interested in those reasonable crossnorms

α on E ⊗ F which have extensions to E⊗F in such a way that (the extension of)

α is a Riesz norm on E⊗F. Such reasonable crossnorms are called order reasonable

crossnorms. The following theorem was proved in [70].

Theorem 2.4.4 Let E and F be Banach lattices. If α is a reasonable crossnorm on

E ⊗ F , then |α|, defined by

|α|(u) = inf
{
α(v) : v ∈ E+ ⊗ F+ and |u| ≤ v

}
for all u ∈ E⊗F,

is a Riesz norm on E⊗F and a reasonable crossnorm on E ⊗ F with the property

that E⊗̃|α|F is a Banach lattice, with positive cone the |α|-closure of the projective

cone in E ⊗ F. Moreover, α can be extended to a Riesz norm on E⊗F if and only

if α = |α| on E ⊗ F .

The above theorem motivates the following definition.

Definition 2.4.5 (a) A left (right) order uniform crossnorm that is also an order

reasonable crossnorm will be referred to as a left (right) uniform Riesz crossnorm.

(b) A left (right) order injective crossnorm that is also an order reasonable crossnorm

will be referred to as a left (right) injective Riesz crossnorm.

The l-norm (m-norm) is an example of a left (right) uniform, left (right) injective

Riesz crossnorm, as the following results show.

Theorem 2.4.6 (Chaney-Schaefer) If E and F are Banach lattices, then

(a) E⊗̃MF is a Banach lattice, with positive cone the M -closure of the projective

cone of E ⊗ F.

(b) E⊗̃lF is a Banach lattice, with positive cone the l-closure of the projective cone

of E ⊗ F.
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The above result was proved by Chaney in [19] and Schaefer in [92] using operator

techniques. We present a new proof that uses the above mentioned construction of

Fremlin. Our proof appears in [28]. We start with a trivial lemma pertaining to the

monotonicity of the ∆-norm.

Lemma 2.4.7 Let E and F be Banach lattices and let u ∈ E ⊗ F . Then ‖u‖∆ ≤
‖u+ v‖∆ for all v ∈ E ⊗ F .

Proof. Let u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ F and v =
∑n

i=1 ai ⊗ bi ∈ E ⊗ F . From the

definition of the ∆-norm and the fact that F is Riesz normed, we have

‖u‖∆ ≤

∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

(‖yi‖ |xi|+ ‖bi‖ |ai|)

∥∥∥∥∥ ,
which holds for all representations of u and v. But then ‖u‖∆ ≤ ‖u+ v‖∆. ut

Definition 2.4.8 Let E and F be Archimedean Riesz spaces. The cone on E ⊗ F

induced by (E⊗F )+ is denoted by [E+ ⊗ F+].

Using property (Ru-D)+, the cone [E+ ⊗ F+] can be characterized as follows:

z ∈ [E+ ⊗ F+] if and only if there exists (x, y) ∈ E+ × F+ such that z + ε(x⊗ y) ∈
E+ ⊗ F+ for all ε > 0 (cf. [48]).

Theorem 2.4.9 Let E and F be Banach lattices. If u ∈ E ⊗ F , then

‖u‖∆ = inf {‖v‖∆ : |u| ≤ v ∈ E+ ⊗ F+}

where ≤ denotes the order with respect to the cone (E⊗F )+. Consequently, ‖ · ‖∆ is

a left uniform, left injective Riesz crossnorm.

Proof. Let u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ F , then |u| ∈ E⊗F and |u| = |
∑n

i=1 xi ⊗ yi| ≤∑n
i=1 |xi| ⊗ |yi|. Thus,{∥∥∥∥∥

n∑
i=1

‖yi‖ |xi|

∥∥∥∥∥ : u =
n∑

i=1

xi ⊗ yi

}
⊂

{∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ : |u| ≤
n∑

i=1

|xi| ⊗ |yi|

}
.

Hence,

inf

{∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ : |u| ≤
n∑

i=1

|xi| ⊗ |yi|

}
≤ ‖u‖∆.

Thus, if v ∈ E+ ⊗ F+ has the representation
∑n

i=1 ai ⊗ bi, it follows that

inf {‖v‖∆ : |u| ≤ v ∈ E+ ⊗ F+}

≤ inf

{∥∥∥∥∥
n∑

i=1

‖bi‖ ai

∥∥∥∥∥ : |u| ≤
n∑

i=1

ai ⊗ bi ∈ E+ ⊗ F+

}
≤ ‖u‖∆.
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For the reverse inequality, consider u ∈ E⊗F and all
∑n

i=1 xi⊗yi ∈ E⊗F for which

the inequality |u| ≤
∑n

i=1 |xi| ⊗ |yi| holds with respect to the ordering induced by

(E⊗F )+. Represent
∑n

i=1 |xi| ⊗ |yi| ∈ E ⊗ F by

n∑
i=1

|xi| ⊗ |yi| =
n∑

i=1

ai ⊗ bi,

where ai ∈ E and bi ∈ F . Then u ≤
∑n

i=1 ai ⊗ bi in (E ⊗F, [E+ ⊗F+]). Thus, there

exists (x, y) ∈ E+×F+ such that for any ε > 0 there exists vε ∈ E+⊗F+ such that(
n∑

i=1

ai ⊗ bi − u

)
+ ε(x⊗ y) = vε.

Hence,

u+ vε =
n∑

i=1

ai ⊗ bi + εx⊗ y

and by Lemma 2.4.7, we have

‖u‖∆ ≤ ‖u+ vε‖∆ ≤

∥∥∥∥∥
n∑

i=1

‖bi‖ |ai|+ ε‖y‖x

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

‖bi‖ |ai|

∥∥∥∥∥+ ε‖y‖‖x‖.

But ε > 0 is arbitrary and so

‖u‖∆ ≤

∥∥∥∥∥
n∑

i=1

‖bi‖ |ai|

∥∥∥∥∥ ,
which gives

‖u‖∆ ≤ inf

{∥∥∥∥∥
n∑

i=1

‖bi‖ |ai|

∥∥∥∥∥ :
n∑

i=1

|xi| ⊗ |yi| =
n∑

i=1

ai ⊗ bi

}

=

∥∥∥∥∥
n∑

i=1

|xi| ⊗ |yi|

∥∥∥∥∥
∆

.

Consequently,

‖u‖∆ ≤ inf

{∥∥∥∥∥
n∑

i=1

|xi| ⊗ |yi|

∥∥∥∥∥
∆

: |u| ≤
n∑

i=1

|xi| ⊗ |yi|

}
= inf {‖v‖∆ : |u| ≤ v ∈ E+ ⊗ F+} .

ut

Proof of Theorem 2.4.6 By Theorem 2.4.9, we have ‖u‖∆ = ‖u‖|∆| for all

u ∈ E ⊗F . Thus, ∆ is a norm on E ⊗F with the desired properties as described in

(b), by Theorem 2.4.4. But, as shown in Theorem 2.3.1, we have ‖ · ‖∆ = ‖ · ‖l on

E⊗F . Hence, Theorem 2.4.6 part (b) is proved. Part (a) now follows from Theorem

2.3.1 and the fact that the transposition map is a Riesz isometry. ut
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2.5 Order continuity of the l-norm

In the previous section we saw that the l-tensor product of two Banach lattices is

again a Banach lattice. Now, we shall prove that the l-tensor product of two order

continuous Banach lattices is again order continuous. We recall some facts about

regular operators.

Let E and F be Riesz spaces. An operator T : E → F is called regular if

T = T1−T2 where T1, T2 : E → F are both positive operators. We denote the space of

regular operators by Lr(E,F ). If F is Dedekind complete, then Lr(E,F ) becomes a

Dedekind complete Riesz space with a modulus given by |T |(x) = sup{|Ty| : |y| ≤ x}
for all T ∈ Lr(E,F ) and x ∈ E+. In this case, Lr(E,F ) contains all the order

bounded operators. Recall that an operator T : E → F is order bounded if the

image of any order bounded set in E, under T , is order bounded in F . It is clear

that every regular operator is already order bounded.

In the case where E and F are Banach lattices, we may equip Lr(E,F ) with the

norm ‖ · ‖r defined by

‖T‖r = inf{‖S‖ : 0 ≤ S ∈ Lr(E,F ), |Tx| ≤ S|x| ∀x ∈ E+}

for all T ∈ Lr(E,F ), whence ‖T‖r ≤ ‖T‖. Then, (Lr(E,F ), ‖·‖r) is a Banach space,

which we denote by Lr(E,F ). If F is Dedekind complete, then Lr(E,F ) becomes a

Banach lattice with ‖T‖r = ‖ |T | ‖ for each T ∈ Lr(E,F ) (cf. [76, Proposition 1.3.6]

or [92, Chapter IV, §1, Proposition 1.4]).

In [85], Popa showed that if E and F are order continuous Banach lattices, then

E⊗̃mF is an order continuous Banach lattice. In [68], a direct proof for Popa’s result

is given, which yields as a bonus, that if F has property (P), then E⊗̃mF is an order

ideal of Lr(E∗, F ).

Definition 2.5.1 A Banach lattice F is said to have property (P) if there exists a

positive, contractive projection F ∗∗ → F , where F (under evaluation) is identified

with a vector sublattice of its bidual F ∗∗.

It is readily verified that all dual Banach lattices have property (P) and that all

Banach lattices with property (P) are Dedekind complete. If E and F are Banach

lattices, with F possessing property (P). Then, by [92, Chapter IV, §4, Theorem 4.3],

it follows that Lmaj(E,F ) is a Banach sublattice of Lr(E,F ). In fact, Lmaj(E,F ) is

an ideal of Lr(E,F ). This result is used in the proof of the following:
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Theorem 2.5.2 If E and F are Banach lattices, each with order continuous norm,

then E⊗̃mF has order continuous norm. Moreover, if F has property (P), then

E⊗̃mF is an ideal in Lr(E∗, F ).

Proof. Since F is a Banach lattice with order continuous norm, F is Dedekind com-

plete. Thus, the space of regular maps Lr(E∗, F ) is a Dedekind complete Banach

lattice.

Since continuous linear operators of finite rank are regular, it follows that E ⊗
F ⊂ Lr(E∗, F ). The ideal AE⊗F generated by E ⊗ F in Lr(E∗, F ) is contained in

Lmaj(E∗, F ); observe, by the definition of a majorizing operator, 0 ≤ S ≤ T , T ∈
Lmaj(E∗, F ) and S ∈ Lr(E∗, F ) imply S ∈ Lmaj(E∗, F ). Now, for 0 ≤ S ∈ AE⊗F ⊂
Lr(E∗, F ) we can find an operator of finite rank (in fact, of rank one) that majorizes

S, implying that S itself is majorizing. Consequently, AE⊗F ⊂ Lmaj(E∗, F ).

We claim that the ‖ · ‖maj-closure of AE⊗F has order continuous norm. Since

AE⊗F is Dedekind complete, it suffices to show that

Tn ↓ 0 in AE⊗F ⇒ ‖Tn‖maj ↓ 0.

Let (Tn) be a sequence in AE⊗F such that Tn ↓ 0 and select x ∈ E+ and y ∈ F+ such

that 0 ≤ Tn ≤ x⊗ y for all n ∈ N. Let ε > 0 be given. Since E has order continuous

norm, it follows from [3, 12.17] that there exists φ ∈ E∗+ such that

〈x, (|ψ| − φ)+〉 < ε for all ‖ψ‖ ≤ 1.

Thus, if (ψi)k
i=1 are functionals in the unit ball of E∗, then

|Tnψi| ≤ Tn|ψi|

≤ Tn(|ψi| − φ)+ + Tnφ

≤ (|ψi| − φ)+(x)y + Tnφ

≤ εy + Tnφ

for each i (1 ≤ i ≤ k) so that∥∥∥∥∥ sup
1≤i≤k

|Tnψi|

∥∥∥∥∥ ≤ ε‖y‖+ ‖Tnφ‖.

By the order continuity of the norm on F , we have that ‖Tn‖ ↓ 0. Consequently,

‖Tn‖maj ↓ 0, which completes the proof of the claim.

To complete the proof of the theorem, it suffices to show that AE⊗F ⊂ E⊗̃mF .

To this end, let 0 ≤ T ∈ AE⊗F and choose x ∈ E+ and y ∈ F+ such that T ≤ x⊗ y.
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We denote the boolean algebra of components of x⊗ y by Cx⊗y. Since AE⊗F is an

ideal in Lr(E∗, F ) and x⊗ y ∈ AE⊗F , we have

Cx⊗y ⊂ AE⊗F .

Let ε > 0 be given. By Freudenthal’s Spectral Theorem (cf. [3, 6.9], [76, Theo-

rem 1.2.18] or [106, Theorem 33.2]), there exist scalars α1, α2, . . . , αk and disjoint

C1, C2, . . . , Ck ∈ Cx⊗y such that

0 ≤ T −
k∑

i=1

αiCi < ε(x⊗ y).

Consequently, T can be approximated in the ‖ ·‖maj-norm by an element of the form∑k
i=1 αiCi where α1, α2, . . . , αk are scalars and C1, . . . , Ck ∈ Cx⊗y.

Before continuing, we fix some notation. For any set D ⊂ E, we let

Dσ := {x ∈ E : xn ↑ x for some sequence (xn) ⊂ D}

Dσ := {x ∈ E : xn ↓ x for some sequence (xn) ⊂ D}

Dη := {x ∈ E : xλ ↑ x for some net {xλ} ⊂ D}

Dη := {x ∈ E : xλ ↓ x for some net {xλ} ⊂ D}.

Using this notation, it follows by de Pagter’s Component Theorem (cf. [79] or [2,

Theorem 2.6]) that we have

Cx⊗y =
(

((Sx⊗y)σ)η

)η
(2.8)

where Sx⊗y consists exactly of elements of the form
m∑

i=1

Qi(x⊗ y)P ∗i (2.9)

with the Qi(x ⊗ y)P ∗i mutually disjoint and Qi : F → F , P ∗i : E∗ → E∗ band

projections. Since the norm ‖ ·‖maj is order continuous on AE⊗F and Cx⊗y ⊂ AE⊗F ,

it follows from (2.8) that every Ci can be approximated in the norm ‖ · ‖maj by an

element of the form (2.9). However, if Q : F → F and P ∗ : E∗ → E∗ are band

projections, then

Q(x⊗ y)P ∗ = (P ∗∗x)⊗ (Qy)

where P ∗∗x ∈ E, since E is an ideal of E∗∗ by the order continuity of the norm

on E (cf. [76, Theorem 2.4.2]) and P ∗∗x ≤ x. Thus, T can be approximated in the

norm ‖ · ‖maj by an element of the projective cone of E ⊗ F . Consequently, T is an
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element of the ‖ · ‖maj-closure of the projective cone. It now follows from Theorem

2.4.6 that AE⊗F ⊂ E⊗̃mF so that E⊗̃mF has order continuous norm.

Now suppose that F has property (P), then by the remark preceding the theorem,

Lmaj(E∗, F ) is a Banach lattice and an ideal in Lr(E∗, F ). Since E⊗̃mF is the ‖·‖maj-

closure of the ideal AE⊗F , it follows that E⊗̃mF is an ideal of Lmaj(E∗, F ) and thus

of Lr(E∗, F ). ut

Corollary 2.5.3 Let E and F be Banach lattices, each with order continuous norm,

then E⊗̃lF has order continuous norm. Moreover, if F has property (P), then E⊗̃lF

is an ideal in Lr(E∗, F ).

Proof. This follows from the fact that the transposition map is a Riesz isometry. ut

Observe that the above result also holds for the completed tensor products

E⊗̃MF , E⊗̃tMF , E⊗̃|µ|F and E⊗̃∆F by Theorem 2.3.1.

2.6 Notes and remarks

In Section 2.4, we identified the notions of left order uniform and left order injective.

We showed that the l-norm is an order reasonable crossnorm, possessing both of these

properties. This is only part of the picture.

Let X and Y be Banach spaces. We recall that a reasonable crossnorm α on X⊗Y
is called projective if, whenever X1 and Y1 are quotients of X and Y respectively,

we have that X1 ⊗α Y1 is a quotient of X ⊗α Y .

It is well known that the Bochner norm ∆p is not a projective norm (cf. [31]).

However, it does possess an order theoretic version of projectivity, studied in [69].

We recall some terminology.

Let E and F be Banach lattices and let T : E → F be a positive linear operator;

if [0, Tx] = T [0, x] for all x ∈ E+, then T is called interval preserving ; and if T [0, x]

is dense in [0, Tx] for all x ∈ E+, then T is called almost interval preserving.

It is shown in [76, p. 42] that if E and F are Banach lattices and T : E → F

is a positive linear mapping; then T is a Riesz homomorphism if and only if T ∗ is

(almost) interval preserving; and T is almost interval preserving if and only if T ∗ is

a Riesz homomorphism. The following result was proved in [69].

Theorem 2.6.1 (a) Let E and E1 be Banach lattices and let Y and Y1 be Banach

spaces. If q0 : E → E1 is an almost interval preserving metric surjection and

q1 : Y → Y1 is a metric surjection, then q0 ⊗ q1 : E⊗̃lY → E1⊗̃lY1 is a metric

surjection.
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(b) Let X and X1 be Banach spaces and let F and F1 be Banach lattices. If q1 :

F → F1 is an almost interval preserving metric surjection and q0 : X → X1 is a

metric surjection, then q0 ⊗ q1 : X⊗̃mF → X1⊗̃mF1 is a metric surjection.

In view of the above result, it is sensible to make the following definition.

Definition 2.6.2 If E and E1 are Banach lattices, Y and Y1 are Banach spaces,

q0 : E → E1 an almost interval preserving metric surjection and q1 : Y → Y1 a

metric surjection, then a reasonable crossnorm α is called left order projective (or

in short, left projective) if q0 ⊗ q1 : E⊗̃αY → E1⊗̃αY1 is a metric surjection. The

notion of a right order projective crossnorm is defined in a symmetrical manner.

It is intriguing that the l-norm enjoys both left injectivity and left projectiv-

ity, as well as left uniformity. For this reason, we have the formulae in Theorem

2.3.1 for calculating the l-norm. In particular, we may take the infimum over all

representations; i.e.

‖u‖l = inf

{∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ : u =
n∑

i=1

xi ⊗ yi

}
for all u ∈ E⊗̃lY,

or, we may take the supremum over functionals in the dual unit ball; i.e.

‖u‖l =

∥∥∥∥∥sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)xi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

}∥∥∥∥∥ for all u ∈ E⊗̃lY.

The latter formula has the advantage of being independent of the representation

u =
∑n

i=1 xi ⊗ yi. On the other hand, as we shall see in Chapter 5, every tensor

u ∈ E⊗̃lY is characterized by a (non unique) series representation u =
∑∞

i=1 xi⊗ yi

where ‖
∑∞

i=1 |xi|‖ <∞ and limi→∞ ‖yi‖ = 0. Moreover,

‖u‖l = inf

{∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥ sup
i∈N

‖yi‖ : u =
∞∑
i=1

xi ⊗ yi,

∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥ <∞, lim
i→∞

‖yi‖ = 0

}
.

In Section 2.4, we saw that the l-tensor product of two Banach lattices is again

a Banach lattice. It is interesting to note that this property is not shared by any

of Grothendieck’s ‘natural tensor norms’, introduced in [52] (also see [31, 90]). This

was shown by D. Pérez-Garćıa and I. Villanueva in [82], where they exhibit a Ba-

nach lattice E such that E⊗̃αE does not have the so called ‘Gordon-Lewis property’

for any natural tensor norm α. Consequently, E⊗̃αE cannot be isomorphic to a

Banach lattice. Thus, a natural tensor norm is not an order reasonable crossnorm.

The question of whether this is true for every tensor norm remains open. For back-

ground reading on the Gordon-Lewis property (and local unconditional structure),

the reader would do well to consult [36].
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In general, when considering the l-tensor product E⊗̃lY of a Banach lattice E

with a Banach space Y , a slight change in the category of operators on E allows for

the use of numerous tensor norm techniques. We often exploit this fact throughout

this thesis.



3

Martingales and the Radon Nikodým property

3.1 Introduction

There have been a number of authors that have considered stochastic processes in

a general vector lattice. In particular, we are interested in the work of Troitsky,

who formulated a generalized notion for a martingale in a Banach lattice [101]. One

drawback to this approach is that we can only apply this theory to the Lebesgue-

Bochner space Lp(µ, Y ) when it is a Banach lattice. Even in this case, one can say

little about the geometry of Y using these methods. Our purpose in this chapter

is to remedy this problem, using the l-tensor product. Because the l-norm can be

used to extend a scalar valued Lp-space to its vector-valued counterpart, it can also

be used to extend the theory of Troitsky to the vector-valued setting, without the

requirement of an ordering. With this goal in mind, we start by exhibiting the results

of Troitsky in [101].

In Section 3.2, we formulate the notions of a filtration and a martingale in a

general Banach space. We then study the Banach space of norm bounded martingales

in this setting, as well as the subspaces of norm convergent, weakly convergent and

weak* convergent martingales. A generalization of Doob’s convergence is presented.

Unless otherwise mentioned, the results in this section are due to Troitsky [101].

Although the work of Troitsky is formulated for Banach lattices, there are many

results that do not require an order structure.

Having studied the convergence of martingales in Banach spaces, we now look

at the impact of adding a lattice structure in Section 3.3. We modify the Banach

space definitions of a filtration and a martingale appropriately for the Banach lattice

setting. This allows for the formulation of submartingales and supermartingales.

Our focus is the inheritance of a lattice structure in the space of norm bounded

martingales from the underlying Banach lattice. Again, unless otherwise mentioned,

the results in this section are due to Troitsky [101].
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Section 3.4 is pivotal to our study of these abstract martingales in the vector-

valued setting. We consider the l-tensor product of a filtration on a Banach lattice

E with a filtration on a Banach space Y . Our considerations reveal an important

distributive property of the space of norm convergent martingales on E⊗̃lY . This

property allows for an explicit description of norm convergent martingales in the

Lebesgue-Bochner spaces, which is studied in Chapter 5. The material in this section

is original an can be found in [26].

The abstract martingale techniques developed in previous sections can now be

used to provide some answers to the following question, mentioned in the Introduc-

tion:

• Given a Banach space Y that endows Lp(µ, Y ) with a certain property, for which

Banach lattices E does this property hold in E⊗̃lY ?

In Chapter 1, we saw that a Banach space Y has the Radon Nikodým property if

and only if every Lp(µ, Y )-bounded martingale, 1 < p < ∞, is norm convergent.

We show, in Section 3.5, that this result holds in the l-tensor product E∗⊗̃lY , for

all order continuous duals E∗ of separable Banach lattices E. In proving this result,

we consider martingales in the space of cone absolutely summing operators. As a

consequence, we are able to generalize another classical result, namely Theorem

1.3.7. We prove that if Y is a Banach space, then Y ∗ has the Radon Nikodým

property if and only if E∗⊗̃lY
∗ = (E⊗̃lY )∗ for all separable Banach lattices E with

order continuous dual. To our knowledge, the results in this section are new.

3.2 Martingales in Banach spaces

Throughout, let Y denote a Banach space and (Ω,Σ, µ) denote a finite measure

space. If (Σi) is a filtration, then the sequence of corresponding conditional expec-

tations (E( · |Σi)) constitute a sequence of contractive commuting projections on

Lp(µ), with increasing range. This observation suggests an abstract definition for a

filtration on a Banach space.

Definition 3.2.1 Let Y be a Banach space.

(a) If Ti : Y → Y is a contractive projection and Ti∧j = TiTj for each i, j ∈ N, then

the sequence of projections (Ti) is called a BS-filtration on Y .

(b) If (Ti) is a BS-filtration on Y , then a sequence (fi) ⊂ Y is said to be adapted to

(Ti) if fi ∈ R(Ti) for each i ∈ N.
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(c) If (Ti) is a BS-filtration on Y , then (fi, Ti) is called a martingale on Y if Tifj = fi

for all i ≤ j.

We use the prefix ‘BS’ to indicate that the filtration acts on a Banach space.

Later, we will introduce an additional definition for a filtration on a Banach lattice,

for which we use the prefix ‘BL’.

It follows from the above definition that if (fi, Ti) is a martingale, then (fi) ⊂ Y

is adapted to the BS-filtration (Ti). It also follows that R(Ti) ⊂ R(Tj) for i ≤ j.

Our primary example of a BS-filtration, other than the classical Lp-space setting,

are the partial sum projections corresponding to a Schauder decomposition. The

notion of a BS-filtration (Ti) on a Banach space Y is weaker than that of a Schauder

decomposition of Y . Indeed, for a BS-filtration, we do not require x = limi→∞ Tix

for all x ∈ Y .

Now consider

M(Y, Ti) = {(fi, Ti) : (fi, Ti) is a martingale in Y } .

Then M(Y, Ti) is a vector space if we define (fi, Ti) + (gi, Ti) = (fi + gi, Ti) and

λ(fi, Ti) = (λfi, Ti) for all λ ∈ R. The map Θ : M(Y, Ti) → Y N, defined by

Θ ((fi, Ti)) = (fi), is a linear injection.

It is well known that the space of all norm bounded sequences on Y , denoted

by `∞(Y ) :=
{

(yi) ∈ Y N : supi∈N ‖yi‖ <∞
}

, is a Banach space with respect to the

norm ‖(yi)‖∞ := supi∈N ‖yi‖. We induce this norm on a subspace of M(Y, Ti).

Definition 3.2.2 Let Y be a Banach space and (Ti) a BS-filtration on Y . We define

the space of norm bounded martingales as

M(Y, Ti) =
{

(fi, Ti) ∈M(Y, Ti) : sup
i∈N

‖fi‖ <∞
}
,

together with the norm defined by ‖(fi, Ti)‖ = supi∈N ‖fi‖ for all (fi, Ti) ∈M(Y, Ti).

It is evident that M(Y, Ti) is a normed space with respect to ‖ · ‖ and that Θ is

an isometry from M(Y, Ti) into `∞(Y ). Notice that if (fi, Ti) ∈M(Y, Ti), then

‖(fi, Ti)‖ = sup
i∈N

‖fi‖ = lim
i→∞

‖fi‖.

This fact follows easily from ‖fi‖ = ‖Tifi+1‖ ≤ ‖fi+1‖.

Theorem 3.2.3 Let Y be a Banach space and (Ti) a BS-filtration on Y . Then

M(Y, Ti) is a Banach space.
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Proof. Select a Cauchy sequence (f (n)
i , Ti) from M(Y, Ti). Since `∞(Y ) is a Banach

space, the sequence (f (n)
i ) converges to a limit (fi) ∈ `∞(Y ). It suffices to check that

this limit is a martingale. Indeed, for i ≤ j, we have f (n)
i = Tif

(n)
j for each n ∈ N.

Since each Ti is bounded, we have limn→∞ Tif
(n)
j = Tifj = fi as required. ut

Let Ii = idY for all i ∈ N, where idY denotes the identity map on Y . Then (Ii)

is a (trivial) BS-filtration on Y and

(fi, Ii) ∈M(Y, Ii) ⇐⇒ (fi) is a constant sequence in Y.

If we define Ψ : Y → M(Y, Ii) by Ψ(f) = (fi, Ii), where f = fi for all i ∈ N, then

Y is isometrically isomorphic to M(Y, Ii). Plainly, every martingale in M(Y, Ii) is

convergent.

Definition 3.2.4 Let Y be a Banach space and (Ti) a BS-filtration on Y . We define

the space of norm convergent martingales by

Mnc(Y, Ti) = {(fi, Ti) ∈M(Y, Ti) : (fi) is norm convergent in Y } .

Since convergent sequences are norm bounded, we have Mnc(Y, Ti) ⊂M(Y, Ti).

We verify that Mnc(Y, Ti) is a complete with respect to the norm induced by

M(Y, Ti).

Theorem 3.2.5 Let Y be a Banach space and (Ti) a BS-filtration on Y . Then

Mnc(Y, Ti) is a Banach space.

Proof. Let (f (n)
i , Ti) be a Cauchy sequence in Mnc(Y, Ti). Since M(Y, Ti) is a Ba-

nach space by Theorem 3.2.3, the sequence (f (n)
i , Ti) converges to a limit (fi, Ti) ∈

M(Y, Ti). We check that this limit is a convergent martingale. Let ε > 0 and select

n ∈ N such that supi∈N ‖f
(n)
i − fi‖ < ε/3. Since (f (n)

i )∞i=1 is a Cauchy sequence,

there exists N > 0 so that i, j ≥ N implies ‖f (n)
i − f

(n)
j ‖ ≤ ε/3. Consequently,

‖fi − fj‖ ≤ ‖fi − f
(n)
i ‖+ ‖fj − f

(n)
j ‖+ ‖f (n)

i − f
(n)
j ‖ ≤ ε/3 + ε/3 + ε/3 = ε,

whence (fi) is a Cauchy sequence in Y . This completes the proof. ut

To describe Mnc(Y, Ti), we use the following analogue of a Lemma 1.3.9 (cf. [37,

Chapter 5, §2, Corollary 2]). This result and its corollary can be found in [26].

Proposition 3.2.6 Let Y be a Banach space and (Ti) a BS-filtration on Y . Then

f ∈
⋃∞

i=1R(Ti) if and only if limi→∞ ‖Tif − f‖ = 0.
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Proof. Suppose that limi→∞ Tif = f . It is evident that Tif ∈ R(Ti) for each i ∈ N
so that f ∈

⋃∞
i=1R(Ti). Conversely, suppose that f ∈

⋃∞
i=1R(Ti). Then there exists

a sequence (fn) ⊂
⋃∞

i=1R(Ti) such that limn→∞ fn = f . Thus, for each ε > 0, there

exists n ∈ N so that ‖fn − f‖ < ε/2. Since (Ti) is a filtration on Y, there exists an

Nε ∈ N such that i ≥ Nε implies fn ∈ R(Ti). Hence,

‖Tif − f‖ ≤ ‖Tif − fn‖+ ‖fn − f‖

= ‖Ti(f − fn)‖+ ‖fn − f‖

≤ ‖f − fn‖+ ‖fn − f‖

< ε/2 + ε/2 = ε

completes the proof. ut

Corollary 3.2.7 Let Y be a Banach space and (fi, Ti) a martingale in Y . Then

(fi, Ti) converges to f if and only if f ∈
⋃∞

i=1R(Ti) and fi = Tif for all i ∈ N.

Proof. Suppose (fi, Ti) converges to f , then it is clear that f ∈
⋃∞

i=1R(Ti). Also,

for i ≤ j, we have Tifj = fi so that limj→∞ Tifj = Tif = fi. Conversely, by the

above proposition, we have ‖Tif − f‖ = ‖fi − f‖ → 0 as i → ∞, which completes

the proof. ut

We recall the following definition from [101].

Definition 3.2.8 Let Y be a Banach space and (Ti) a BS-filtration on Y .

(a) If limi→∞ Tiy = y for all y ∈ Y , then the BS-filtration (Ti) is said to be dense in

Y.

(b) If (fi, Ti) is a martingale, then (fi, Ti) is called fixed if there exists f ∈ Y such

that fi = Tif for all i ∈ N. In this case, (fi, Ti) is said to be fixed on f .

By Proposition 3.2.6, it is obvious that a BS-filtration (Ti) on a Banach space

Y is dense in Y if and only if
⋃∞

i=1R(Ti) = Y . Also, Corollary 3.2.7 implies that

all convergent martingales are fixed, but not all fixed martingales are convergent,

unless the corresponding BS-filtration is dense. This gives us an intermediate space

of martingales.

Definition 3.2.9 Let Y be a Banach space and (Ti) a BS-filtration on Y . Define

the space of fixed martingales by

Mf(Y, Ti) = {(fi, Ti) ∈M(Y, Ti) : ∃ f ∈ Y so that Tif = fi ∀ i ∈ N} .
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Observe that if (fi, Ti) ∈ Mf(Y, Ti) is fixed on f ∈ Y , then supi∈N ‖fi‖ =

supi∈N ‖Tif‖ ≤ ‖f‖ < ∞. So plainly, we have Mnc(Y, Ti) ⊂ Mf(Y, Ti) ⊂ M(Y, Ti).

In general, Mf(Y, Ti) need not be complete unless Mnc(Y, Ti) = Mf(Y, Ti) or

Mf(Y, Ti) = M(Y, Ti). We extend the notion of a dense BS-filtration in a Banach

space with the following definition.

Definition 3.2.10 Let Y be a Banach space and (Ti) a BS-filtration on Y . We say

that (Ti) is complemented in Y if there exists a contractive projection T∞ : Y → Y

with R(T∞) =
⋃∞

i=1R(Ti) and TiT∞ = T∞Ti = Ti for all i ∈ N.

Note that any BS-filtration that is dense in a Banach space Y is complemented by

the identity operator. Consequently, we may replace the word ‘dense’ with the word

‘complemented’.

Proposition 3.2.11 Let Y be a Banach space and (Ti) a BS-filtration on Y . If (Ti)

is complemented in Y , we have Mnc(Y, Ti) = Mf(Y, Ti). In this case, Mf(Y, Ti) is

complete.

Proof. If (Ti) is complemented in Y by T∞ : Y → Y and (fi, Ti) ∈Mf(Y, Ti) is fixed

on some f ∈ Y , then (fi, Ti) is also fixed on T∞f ∈
⋃∞

i=1R(Ti). Consequently, (fi, Ti)

is convergent by Corollary 3.2.7. The completeness is taken care of by Theorem 3.2.5

ut.

If (Σi) is a classical filtration, then (E( · |Σi)) is complemented by E( · |
∨∞

i=1Σi),

where
∨∞

i=1Σi denotes the σ-algebra generated by
⋃∞

i=1Σi. Consequently, a classical

martingale is convergent if and only if it is fixed.

A well known result of Dunford and Pettis asserts that a sequence (fi) ⊂ L1(µ)

is norm bounded (i.e. supi∈N ‖fi‖1 <∞) and uniformly integrable if and only if (fi)

is relatively weakly compact in L1(µ) (cf. [43]). Note that we are using the weaker

form of uniform integrability in Definition 1.2.5. Replacing uniform integrability with

relative weak compactness allows us to generalize Doob’s Convergence Theorem to

the Banach space setting.

Theorem 3.2.12 Let Y be a Banach space and (Ti) a BS-filtration on Y . If

(fi, Ti) ∈ M(Y, Ti) and (fi) is relatively weakly compact in Y , then (fi, Ti) ∈
Mf(Y, Ti). If, in addition, (Ti) is complemented in Y , then (fi, Ti) ∈Mnc(Y, Ti).

Proof. Let (fi, Ti) ∈ M(Y, Ti) with (fi) relatively weakly compact in Y . By the

Eberlein-Šmulian Theorem (cf. [33]), there exists a subsequence (fik) that converges

weakly to some f ∈ Y . Since bounded maps are weakly continuous, we have Tjfik →
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Tjf weakly as k →∞ for all j ∈ N. Since Tjfik = fj for large k, we have fj = Tjf for

each j ∈ N. If (Ti) is complemented, we have Mnc(Y, Ti) = Mf(Y, Ti) by Proposition

3.2.11. This completes the proof. ut

For a reflexive Banach space Y , the weak and weak* topologies coincide. By

the Banach Alaoglu Theorem, every norm bounded martingale is relatively weakly

compact. Thus, we have an immediate corollary.

Corollary 3.2.13 Let Y be a reflexive Banach space and (Ti) a BS-filtration on Y .

Then, Mf(Y, Ti) = M(Y, Ti). In the case where (Ti) is complemented in Y , we even

have Mnc(Y, Ti) = Mf(Y, Ti) = M(Y, Ti).

We pass to weakly convergent martingales. Motivated by the results on weak

convergence of martingales in [101], we make the following definition.

Definition 3.2.14 Let Y be a Banach space and (Ti) a BS-filtration on Y . Define

the space of weakly convergent martingales by

Mwc(Y, Ti) = {(fi, Ti) ∈M(Y, Ti) : (fi) is weakly convergent in Y } .

Proposition 3.2.15 Let Y be a Banach space and (Ti) a BS-filtration on Y , then

Mwc(Y, Ti) ⊂Mf(Y, Ti).

Proof. Suppose (fi, Ti) ⊂ Mwc(Y, Ti) converges weakly to f ∈ Y . Since bounded

operators are also weakly continuous, it follows that Tjfi → Tjf weakly as i → ∞
for all j ∈ N. Consequently, for j ≤ i, we ascertain from fj = Tjfi → Tjf weakly as

i→∞, that fj = Tjf for each j ∈ N. ut

Again, Mwc(Y, Ti) need not be complete unless Mwc(Y, Ti) = Mnc(Y, Ti) or

Mwc(Y, Ti) = M(Y, Ti).

Corollary 3.2.16 Let Y be a Banach space and (Ti) a BS-filtration on Y . If (Ti)

is complemented in Y , a martingale (fi, Ti) ∈ M(Y, Ti) is norm convergent if and

only if it is weakly convergent. In this case, Mwc(Y, Ti) is complete.

Proof. By the above proposition, we have the inclusions Mnc(Y, Ti) ⊂Mwc(Y, Ti) ⊂
Mf(Y, Ti). By Proposition 3.2.11 we have Mnc(Y, Ti) = Mf(Y, Ti) and the assertion

follows immediately. An application of Theorem 3.2.5 completes the proof. ut

The following result can be found in [26].
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Proposition 3.2.17 Let Y be a Banach space and (Ti) a BS-filtration on Y . Then

L : Mnc(Y, Ti) →
⋃∞

i=1R(Ti), defined by L ((fi, Ti)) = limi→∞ fi, is a surjective

isometry.

Proof. It follows easily that L is well defined, linear and

‖L‖ = sup {‖L(fi, Ti)‖ : ‖(fi, Ti)‖ ≤ 1} ≤ 1.

To see that L is a surjection, let f ∈
⋃∞

i=1R(Ti). Then Tif → f in norm and (Tif, Ti)

is a martingale on Y such that L ((Tif, Ti)) = f . Also, L ((fi, Ti)) = 0 implies that

limi→∞ fi = 0 and Corollary 3.2.7 assures us that fi = Ti0 = 0 for each i ∈ N. Thus,

it follows that L is injective. Furthermore,

‖L−1‖ = sup
{
‖L−1f‖ : ‖f‖ ≤ 1

}
= sup

{
sup
i∈N

‖Tif‖ : ‖f‖ ≤ 1
}
≤ 1,

which completes the proof that L is a surjective isometry. ut

Corollary 3.2.18 Let (Ti) be a BS-filtration on a Banach space Y. Then
⋃∞

i=1R(Ti) =

Y if and only if Mnc(Y, Ti) is isometrically isomorphic to M(Y, Ii), where Ii = idY

for all i ∈ N.

Proof. This can easily been seen from the fact that
⋃∞

i=1R(Ti) = Mnc(Y, Ti) and

Y = M(Y, Ii). ut

To summarize, we have established the following inclusions for a BS-filtration

(Ti) on a Banach space Y :

∞⋃
i=1

R(Ti) = Mnc(Y, Ti) ⊂Mwc(Y, Ti) ⊂Mf(Y, Ti) ⊂M(Y, Ti),

with equality holding throughout in the case where Y is reflexive and (Ti) is com-

plemented in Y .

We now consider dual spaces, which gives access to weak* convergent martingales.

Again, the following definition is motivated by the results on weak* convergence of

martingales, found in [101].

Definition 3.2.19 Let Y ∗ be the dual of a Banach space and (Ti) a BS-filtration

on Y ∗. Define the space of weak* convergent martingales by

Mw∗c(Y ∗, Ti) = {(fi, Ti) ∈M(Y ∗, Ti) : (fi) is weak* convergent in Y ∗} .
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Again, Mw∗c(Y ∗, Ti) need not be complete. If (Ti) is a BS-filtration on a Banach

space Y , it is easily verified that the sequence of adjoint operators (T ∗i ) on Y ∗ is also a

BS-filtration. Indeed, each T ∗i is a contractive projection and T ∗i T
∗
j = (TjTi)∗ = T ∗i∧j

for all i, j ∈ N.

Definition 3.2.20 Let Y be a Banach space and (Ti) a BS-filtration on Y . We refer

to the BS-filtration of adjoint operators (T ∗i ) on Y ∗ as the dual filtration.

Proposition 3.2.21 Let Y be a Banach space and (Ti) a BS-filtration on Y . Then

we have the inclusion Mw∗c(Y ∗, T ∗i ) ⊂ Mf(Y ∗, T ∗i ). Moreover, if (Ti) is comple-

mented in Y , then Mw∗c(Y ∗, T ∗i ) = Mf(Y ∗, T ∗i ).

Proof. Let (f∗i , T
∗
i ) ∈ Mw∗c(Y ∗, T ∗i ) with weak* limit f∗ ∈ Y ∗. Since T ∗i is adjoint,

and thus weak*-continuous for each i ∈ N, we have T ∗j f
∗
i → T ∗j f

∗ weak* as i→∞.

On the other hand, for j ≤ i, we have T ∗j f
∗
i = f∗j . Consequently, f∗j = T ∗j f

∗ for each

j ∈ N, so that (f∗i , T
∗
i ) ∈Mf(Y ∗, T ∗i ).

Now suppose that (Ti) is complemented in Y by the contractive projection T∞ :

Y → Y and (f∗i , T
∗
i ) ∈ Mf(Y ∗, T ∗i ) is fixed on f∗ ∈ Y ∗. By Proposition 3.2.6, we

have ‖TiT∞f − T∞f‖ → 0 as i→∞ for each f ∈ Y . Consequently,

〈f, f∗i 〉 = 〈f, T ∗i f∗〉 = 〈TiT∞f, f
∗〉 → 〈T∞f, f∗〉 = 〈f, T ∗∞f∗〉

as i→∞ for all f ∈ Y . Thus, (f∗i , T
∗
i ) ∈Mw∗c(Y ∗, T ∗i ). ut

We conclude with:

Theorem 3.2.22 Let Y be a Banach space and (Ti) a BS-filtration on Y , then

M(Y, Ti) ⊂Mf(Y ∗∗, T ∗∗i ). In the case (T ∗i ) is complemented in Y ∗, we have

M(Y, Ti) ⊂Mw∗c(Y ∗∗, T ∗∗i ) = Mf(Y ∗∗, T ∗∗i ).

Proof. Let Z =
⋃∞

i=1R(T ∗i ). We start by showing that M(Y, Ti) ↪→ Z∗ isometrically.

Consider the map M(Y, Ti) → Z∗, defined by (fi, Ti) := F 7→ f∗∗F , where

〈f∗, f∗∗F 〉 = lim
i→∞

〈fi, f
∗〉

for all f∗ ∈ Z. We first check that the map F 7→ f∗∗F is well defined. Indeed, if

f∗ ∈ Z, then f∗ ∈ R(T ∗i ) for some i ∈ N. Consequently, T ∗i f
∗ = f∗ and, for every

j ≥ i, we get

〈fj , f
∗〉 = 〈fj , T

∗
i f

∗〉 = 〈Tifj , f
∗〉 = 〈fi, f

∗〉.
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Thus, the sequence (〈fi, f
∗〉) is eventually constant; i.e. f∗∗F exists. It is now readily

verified that the map F 7→ f∗∗F is linear. Moreover,

|〈f∗, f∗∗F 〉| = lim
i→∞

|〈fi, f
∗〉| ≤ lim

i→∞
‖fi‖‖f∗‖ ≤ sup

i∈N
‖fi‖‖f∗‖,

which shows ‖f∗∗F ‖ ≤ ‖(fi, Ti)‖. For the reverse inequality, let j ∈ N and, using the

Hahn-Banach Theorem, choose a norm one functional y∗ ∈ Y ∗ with 〈fj , y
∗〉 = ‖fj‖.

Then

‖f∗∗F ‖ ≥ |〈T ∗j y∗, f∗∗F 〉| = lim
i→∞

|〈fi, T
∗
j y

∗〉| = lim
i→∞

|〈Tjfi, y
∗〉| = |〈fj , y

∗〉| = ‖fj‖.

Consequently, ‖f∗∗F ‖ ≥ supj∈N ‖fj‖ = ‖(fi, Ti)‖ and the map F 7→ f∗∗F is an isometry.

To complete the first part of the proof let F = (fi, Ti) ∈ M(Y, Ti) and, using

the Hahn-Banach Theorem, extend the corresponding functional f∗∗F uniquely to a

functional f̂∗∗F on Y ∗. Then, for every y∗ ∈ Y ∗ and j ∈ N,

〈y∗, T ∗∗j f̂∗∗F 〉 = 〈T ∗j y∗, f̂∗∗F 〉 = 〈T ∗j y∗, f∗∗F 〉

= lim
i→∞

〈fi, T
∗
j y

∗〉 = lim
i→∞

〈Tjfi, y
∗〉 = 〈fj , y

∗〉.

Consequently, fi = T ∗∗i f̂∗∗F for all i ∈ N and (fi, Ti) ∈ Mf(Y ∗∗, T ∗∗i ). For the last

part of the proof, assume (T ∗i ) is complemented in Y ∗ and apply Proposition 3.2.21.

ut

It follows easily from the above proof that, in the case (T ∗i ) is complemented in Y ∗,

we also have the isometric embedding M(Y, Ti) ↪→ Y ∗∗ because Z is complemented

in Y ∗ by a norm one projection. Consequently, we have M(Y, Ti) ↪→ Z∗ = Z
∗
↪→

Y ∗∗.

If we add the above results to our previous summary, we get the following inclu-

sions for a BS-filtration (Ti), with complemented dual filtration in Y ∗, on a Banach

space Y :

∞⋃
i=1

R(Ti) = Mnc(Y, Ti) ⊂Mwc(Y, Ti)

⊂Mw∗c(Y, Ti) ⊂Mf(Y, Ti) ⊂M(Y, Ti)

⊂ Y ∗∗ = Mnc(Y ∗∗, T ∗∗i ) ⊂Mwc(Y ∗∗, T ∗∗i )

⊂Mw∗c(Y ∗∗, T ∗∗i ) = Mf(Y ∗∗, T ∗∗i )

⊂M(Y ∗∗, T ∗∗i ),

where all the above inclusions are isometries.
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3.3 Martingales in Banach lattices

Let (Ω,Σ, µ) denote a finite measure space and 1 ≤ p < ∞. It is well known that

the spaces Lp(µ) are Banach lattices. Moreover, if Σ1 ⊂ Σ, then E( · |Σ1) : Lp(µ) →
Lp(µ) is strictly positive and R(E( · |Σ1)) is a closed Riesz subspace of Lp(µ). In

fact, R(E( · |Σ1)) = Lp(Ω,Σ1, µ|Σ1). It turns out that these properties are key to

accessing vector-valued results concerning filtrations.

We consider martingales in a Banach lattice. With the added lattice structure,

it is essential to add to the definition of a BS-filtration.

Definition 3.3.1 Let E be a Banach lattice.

(a) A BS-filtration (Ti) on E for which Ti ≥ 0 for each i ∈ N is called a positive

BS-filtration on E. If Ti is strictly positive (i.e. Ti is positive and Ti|x| = 0 ⇒
x = 0 ∀ x ∈ E) for each i ∈ N, then (Ti) is called a strictly positive BS-filtration.

(b) A positive BS-filtration (Ti) on E for which R(Ti) is a (closed) Riesz subspace

of E, for each i ∈ N, is called a BL-filtration on E.

(c) If (Ti) is a positive BS-filtration on E, then (fi, Ti) is called a submartingale

(supermartingale) on E if Tifj ≥ (≤)fi for all i ≤ j.

Observe in the above definition that a sequence is a martingale if and only if it

is both a submartingale and a supermartingale. In the case where a submartingale

(supermartingale) (fi, Ti) is norm bounded, we will still use the notation ‖(fi, Ti)‖ =

supi∈N ‖fi‖.
The notion of a positive BS-filtration coincides with Troitsky’s notion of a fil-

tration on a Banach lattice in [101]. Also, the notion of a submartingale (super-

martingale) in the above definition is consistent with [101]. However, there is a

subtle difference between this definition and Definition 1.2.5(e). Indeed, the classical

definition requires that a submartingale (supermartingale) be adapted to the corre-

sponding filtration. In the definition above, there is no guarantee that fi ∈ R(Ti)

for all i ∈ N if (fi, Ti) is a submartingale (supermartingale), unless (fi, Ti) is also a

martingale.

In the case where a positive BS-filtration (Ti) is complemented in the Banach

lattice E by a contractive projection T∞ : E → E, it follows that T∞ is positive.

Indeed, if f ∈ E+, then Tif ∈ E+ for each i ∈ N. Thus, Proposition 3.2.6 implies

limi→∞ Tif = TiT∞f = T∞f ≥ 0. Consequently, T∞ is positive.

In [92, Chapter III, §11, Proposition 11.5] it is shown that if T : E → E is a

strictly positive projection on a Banach lattice E, then R(T ) is a Banach sublattice

of E. Consequently, every strictly positive BS-filtration is a BL-filtration.
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In [101], it is remarked that if (Ti) is a positive BS-filtration on a Banach lattice E

with
⋃∞

i=1R(Ti) a Riesz subspace of E, then one may as well assume
⋃∞

i=1R(Ti) =

E. When only considering positive BS-filtrations on a Banach lattice E, this is indeed

the case. However, if one plans to extend the theory to the l-tensor product, it is

important to maintain the distinction between
⋃∞

i=1R(Ti) and E. We, therefore,

avoid this assumption.

We define a partial ordering on the space of martingales defined on a Banach

lattice relative to a positive BS-filtration.

Definition 3.3.2 Let E be a Banach lattice and (Ti) a positive BS-filtration on E.

We define a partial ordering on M(E, Ti) by

(fi, Ti) ≥ 0 ⇐⇒ fi ≥ 0 for all i ∈ N.

The following result can be found in [26].

Proposition 3.3.3 Let E be a Banach lattice and (Ti) a BL-filtration on E. If

L : Mnc(E, Ti) →
⋃∞

i=1R(Ti) is defined by L((fi, Ti)) = limi→∞ fi, then Mnc(E, Ti)

is a Banach lattice and L : Mnc(E, Ti) →
⋃∞

i=1R(Ti) is a surjective Riesz isometry.

Proof. It was shown in Proposition 3.2.17 that L is a surjective isometry. To see

that L is positive is trivial, because if (fi, Ti) ≥ 0, then fi ≥ 0 for each i ∈ N
and limi→∞ fi ≥ 0. Similarly, L−1 is positive, because if 0 ≤ f ∈

⋃∞
i=1R(Ti) then

Tif ≥ 0 for each i ∈ N; hence, L−1(f) = (Tif, Ti) ≥ 0.

Since
⋃∞

i=1R(Ti) is a Riesz space, it follows that Mnc(E, Ti) is also a Riesz space.

Indeed, for F,G ∈ Mnc(E, Ti), it is readily verified that L−1(L(F ) ∨ L(G)) is the

least upper bound in Mnc(E, Ti) of {F,G}.
Thus, by the preceding part, L is a surjective Riesz isometry. Since ‖·‖E is a Riesz

norm, the martingale norm is also a Riesz norm. Furthermore, since
⋃∞

i=1R(Ti) is

a Banach lattice, Mnc(E, Ti) is a Banach lattice. ut

For a Banach lattice E and positive BS-filtration (Ti) on E, the space M(E, Ti)

is a partially ordered vector space with respect to the order defined in Definition

3.3.2. In general, M(E, Ti) need not be a lattice with respect to this ordering. To

achieve a lattice ordering, we assume more about the order structure of E.

Definition 3.3.4 A Banach lattice E is said to be a Kantorovič-Banach space (KB-

space) if every increasing norm bounded sequence is also norm convergent.

The spaces Lp(µ) (1 ≤ p < ∞) serve as classical examples of KB-spaces. With

this additional structure, Troitsky [101] obtained the following result.



3.3 Martingales in Banach lattices 81

Theorem 3.3.5 If E is a KB-space and (Ti) a positive BS-filtration on E, then

M(E, Ti) is a Banach lattice with lattice operations given by

(fi, Ti) ∨ (gi, Ti) =
(

lim
i→∞

Tj(fi ∨ gi), Tj

)∞
j=1

,

(fi, Ti) ∧ (gi, Ti) =
(

lim
i→∞

Tj(fi ∧ gi), Tj

)∞
j=1

and

|(fi, Ti)| =
(

lim
i→∞

Tj(|fi|), Tj

)∞
j=1

for all (fi, Ti), (gi, Ti) ∈M(E, Ti).

Notice that the intuitive guess of |(fi, Ti)| = (|fi|, Ti) is incorrect. One does not

have to look far for a counter example: Consider the Banach lattice L1(µ) with

respect to the Lebesgue interval. The sequence f1 = 0 and fi = χ[0,1/2) − χ[1/2,1] for

all i ≥ 2 is a martingale with respect to the filtration (Σi), defined by Σ1 = {∅, [0, 1]}
and Σi = {∅, [0, 1

2), [12 , 1], [0, 1]} for all i ≥ 2. However, |fi| = 1 for all i ∈ N, which

is not a martingale relative to (Σi). To prove the above theorem, we need a lemma

from [101].

Lemma 3.3.6 Let E be a Banach lattice and (Ti) a positive BS-filtration on E. If

(fi, Ti) and (gi, Ti) are two norm bounded submartingales in E, then the following

statements hold:

(a) For each j ∈ N, the sequence (Tj(fi ∨ gi))∞i=j is increasing, norm bounded by

‖(fi, Ti)‖+ ‖(gi, Ti)‖, and bounded below by fj ∨ gj.

(b) If (Tj(fi ∨ gi))∞i=j converges to hj for each j ∈ N, then (hi, Ti) ∈ M(E, Ti) and

(hi, Ti) is the least martingale satisfying (fi, Ti) ≤ (hi, Ti) and (gi, Ti) ≤ (hi, Ti).

In the case where (fi, Ti), (gi, Ti) ∈ M(E, Ti) with (gi, Ti) = (−fi, Ti), we have

(fi, Ti) ∨ (−fi, Ti) = (hi, Ti) = |(fi, Ti)| ∈ M(E, Ti) and ‖ |(fi, Ti)| ‖ = ‖(fi, Ti)‖.

Proof. (a) Since each Tj is positive, we have Tj(fi ∨ gi) ≥ (Tjfi)∨ (Tjgi) ≥ fj ∨ gj ,

for j ≤ i. Moreover,

Tj(fi+1 ∨ gi+1) = TjTi(fi+1 ∨ gi+1) ≥ Tj((Tifi+1) ∨ Ti(gi+1)) ≥ Tj(fi ∨ gi).

Lastly,

‖Tj(fi ∨ gi)‖ ≤ ‖fi ∨ gi‖ ≤ ‖|fi|+ |gi|‖ ≤ ‖(fi, Ti)‖+ ‖(gi, Ti)‖.

This proves part (a).

(b) To see (hi, Ti) ∈M(E, Ti), observe for i ≤ j that
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Tihj = Ti( lim
k→∞

Tj(fk ∨ gk)) = lim
k→∞

TiTj(fk ∨ gk)) = lim
k→∞

Ti(fk ∨ gk) = hi,

and ‖hi‖ ≤ ‖(fi, Ti)‖ + ‖(gi, Ti)‖ for all i ∈ N. Thus, (hi, Ti) is a martingale and

‖(hi, Ti)‖ <∞.

Since, by part (a), Tj(fi ∨ gi) ≥ fj ∨ gj for all i ≥ j, it follows that hj ≥ fj ∨ gj

for all j ∈ N. Consequently, (hi, Ti) ≥ (fi, Ti) and (hi, Ti) ≥ (gi, Ti). Now suppose

(zi, Ti) ∈M(E, Ti) such that (zi, Ti) ≥ (fi, Ti) and (zi, Ti) ≥ (gi, Ti). Then zi ≥ fi∨gi

for all i ∈ N, whence zj = Tjzi ≥ Tj(fi ∨ gi) for all j ≤ i. Taking the limit as i→∞
yields zj ≥ hj . Thus, (zi, Ti) ≥ (hi, Ti).

For the case where (fi, Ti), (gi, Ti) ∈M(E, Ti) with (gi, Ti) = (−fi, Ti), we obtain

(fi, Ti) ∨ (−fi, Ti) = (hi, Ti) = |(fi, Ti)| ∈ M(E, Ti). Moreover,

‖hj‖ = lim
i→∞

‖Tj |fi|‖ ≤ lim
i→∞

‖fi‖ = ‖(fi, Ti)‖

and, for j ≤ i, we have |fj | = |Tjfi| ≤ Tj |fi|. Consequently,

‖hj‖ = lim
i→∞

‖Tj |fi|‖ ≥ ‖fj‖,

so that ‖(fi, Ti)‖ = ‖ |(fi, Ti)| ‖. ut

Combining the above lemma with the KB property yields:

Proof of Theorem 3.3.5: Let (fi, Ti), (gi, Ti) ∈M(E, Ti) where E is a KB-space.

Then Lemma 3.3.6(a) asserts that (Tj(fi ∨ gi))∞i=j is an increasing sequence that is

norm bounded for each j ∈ N. Since E is a KB-space, hj := limi→∞ Tj(fi ∨ gi)

exists for each j ∈ N. Lemma 3.3.6(b) implies that (hi, Ti) ∈ M(E, Ti) and

(hi, Ti) = (fi, Ti) ∨ (gi, Ti). In particular, we have |(fi, Ti)| ∈ M(E, Ti) with

‖(fi, Ti)‖ = ‖ |(fi, Ti)| ‖ for each (fi, Ti) ∈ M(E, Ti). This completes the proof.

ut

Corollary 3.3.7 If E is an AL-space and (Ti) a positive BS-filtration on E, then

M(E, Ti) is also an AL-space.

Proof. Since E is an AL-space, E is a KB-space. Theorem 3.3.5 implies that

M(E, Ti) is a Banach lattice. Let (fi, Ti), (gi, Ti) ∈ M(E, Ti)+, then fi, gi ∈ E+

for each i ∈ N whence ‖fi + gi‖ = ‖fi‖+ ‖gi‖. Consequently, we have

‖(fi, Ti) + (gi, Ti)‖ = lim
i→∞

‖fi + gi‖ = lim
i→∞

(‖fi‖+ ‖gi‖) = ‖(fi, Ti)‖+ ‖(gi, Ti)‖.

ut

Corollary 3.3.8 For every 1 ≤ p < ∞, we have that M(Lp(µ), Σi) is a Banach

lattice for every filtration (Σi).
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Proposition 3.3.9 Let E be a Banach lattice with the KB-property and (Ti) a pos-

itive BS-filtration on E. If (si, Ti) is a norm bounded submartingale in E, then there

exists a unique least martingale (fi, Ti) ∈M(E, Ti) such that si ≤ fi for each i ∈ N.

Moreover, ‖(fi, Ti)‖ ≤ ‖(si, Ti)‖.

Proof. Suppose that (si) is a norm bounded submartingale relative to (Ti). By

Lemma 3.3.6(a), (Tj(si))∞i=j is an increasing sequence that is norm bounded by

supi∈N ‖si‖ for each j ∈ N. Since E is a KB-space, (Tj(si))∞i=j converges in norm to

hj ∈ E for each j ∈ N. Moreover, Lemma 3.3.6(b) implies that (hi, Ti) ∈ M(E, Ti).

Since Lemma 3.3.6(b) also implies that (hi, Ti) is the least martingale which domi-

nates (si), it follows that (hi, Ti) is unique. Lastly,

‖hi‖ = lim
j→∞

‖Tisj‖ ≤ lim
j→∞

‖sj‖ = sup
i∈N

‖si‖.

Thus, ‖(hi, Ti)‖ ≤ ‖(si, Ti)‖. ut

If a Banach lattice E is not necessarily a KB-space, there are also conditions we

can put on a positive BS-filtration (Ti) so that M(E,Ti) has a lattice ordering.

Lemma 3.3.10 An increasing norm bounded sequence contained in a finite-dimensional

subspace of a Banach lattice has a supremum and converges to it in norm.

Proof. Suppose that (xi) is an increasing sequence contained in the unit ball of a fi-

nite dimensional subspace of a Banach lattice. By continuity of the lattice operations,

xn ≤ limi→∞ xni for every n ≥ 1 and every convergent subsequence (xni). There-

fore, if (xmi) is another convergent subsequence, then limi→∞ xmi ≤ limi→∞ xni . It

follows that all convergent subsequences of (xi) have the same limit. Since the unit

ball of a finite dimensional space is compact, the proof is complete. ut

Proposition 3.3.11 Let E be a Banach lattice and (Ti) a positive BS-filtration on

E with each Ti of finite rank, then M(E, Ti) is a Banach lattice with the same lattice

operations as in Theorem 3.3.5.

Proof. Let (fi, Ti), (gi, Ti) ∈M(E, Ti), then (Tj(fi ∨ gi))∞i=j ⊂ R(Tj) for each j ∈ N.

Since R(Tj) is finite-dimensional, (Tj(fi ∨ gi))∞i=j is convergent for each j ∈ N by

Lemma 3.3.10. The result now follows from Lemma 3.3.6 in a similar manner to the

proof of Theorem 3.3.5. ut

Definition 3.3.12 Let E be a Banach lattice and (Ti) a positive BS-filtration on

E. Define the space of regular martingales to be
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Mr(E, Ti) = {(fi, Ti) ∈M(E, Ti) : ∃ (gi, Ti) ∈M(E, Ti)+

such that (fi, Ti) ≤ (gi, Ti)}.

It is evident that a martingale is regular if and only if it is the difference of two

positive martingales.

Proposition 3.3.13 Let E be a Banach lattice and (Ti) a positive BS-filtration on

E. If E has order continuous norm, then Mr(E, Ti) is a Banach lattice with the

same lattice operations as in Theorem 3.3.5. Moreover, if E is a KB-space, then

Mr(E, Ti) = M(E, Ti)

Proof. Let (fi, Ti), (gi, Ti) ∈ Mr(E, Ti). There are two positive martingales (f̂i, Ti),

(ĝi, Ti) such that (fi, Ti) ≤ (f̂i, Ti) and (gi, Ti) ≤ (ĝi, Ti). Lemma 3.3.6(a) implies

that (Tj(fi ∨ gi))∞i=j is increasing for each j ∈ N. Also,

Tj(fi ∨ gi) ≤ Tj(f̂i ∨ ĝi) ≤ Tj(f̂i + ĝi) = f̂j + ĝj

for each j ∈ N. Thus, (Tj(fi ∨ gi))∞i=j is order bounded for each j ∈ N. The or-

der continuity of E implies that E is Dedekind complete. Consequently, hj :=

supj≤i<∞ Tj(fi ∨ gi) ∈ E, and the order continuity of E gives limi→∞ ‖Tj(fi ∨ gi)−
hj‖ = 0 for each j ∈ N. From Lemma 3.3.6(b) we see that (hi, Ti) ∈ M(E, Ti).

Moreover, (hi, Ti) ∈ Mr(E, Ti) since (hi, Ti) ≤ (f̂j + ĝj , Ti), whence Mr(E, Ti) is a

Riesz space.

Lemma 3.3.6(b) implies that ‖ |(fi, Ti)| ‖ = ‖(fi, Ti)‖ for all (fi, Ti) ∈Mr(E, Ti).

Thus, to show that Mr(E, Ti) is a Banach lattice, we need only show that Mr(E, Ti)

is complete. Select a Cauchy sequence (f (n)
i , Ti) ⊂ Mr(E, Ti). Since M(E, Ti) is

complete, there exists (fi, Ti) ∈M(E, Ti) such that limn→∞ ‖(f (n)
i , Ti)− (fi, Ti)‖ =

0. By selecting a suitable subsequence, we may assume ‖(f (n+1)
i , Ti)− (f (n)

i , Ti)‖ <
2−n for all n ∈ N. By the first part of the proof |(f (n+1)

i , Ti) − (f (n)
i , Ti)| exists for

each n ∈ N. Consequently, the series

∞∑
n=1

∣∣∣(f (n+1)
i , Ti)− (f (n)

i , Ti)
∣∣∣

converges inM(E, Ti). Set (f̂i, Ti) =
∑∞

n=1 |(f
(n+1)
i , Ti)−(f (n)

i , Ti)|. Plainly, (f̂i, Ti) ≥
0. Now observe

(f (m)
i , Ti) = (f (1)

i , Ti) +
m−1∑
n=1

(
(f (n+1)

i , Ti)− (f (n)
i , Ti)

)
≤
∣∣∣(f (1)

i , Ti)
∣∣∣+

m−1∑
n=1

∣∣∣(f (n+1)
i , Ti)− (f (n)

i , Ti)
∣∣∣ ≤ ∣∣∣(f (1)

i , Ti)
∣∣∣+ (f̂i, Ti).
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Thus, limn→∞(f (n)
i , Ti) ≤ |(f (1)

i , Ti)|+ (f̂i, Ti) and so (fi, Ti) ∈Mr(E, Ti).

To complete the proof, assume E is a KB-space. Theorem 3.3.5 implies that

M(E, Ti) is a Banach lattice. But then, (fi, Ti) ≤ |(fi, Ti)| ∈ M(E, Ti) for all

(fi, Ti) ∈M(E, Ti). Consequently, M(E, Ti) = Mr(E, Ti). ut

We have seen that in order for M(E, Ti) (respectively, Mr(E, Ti)) to be a Banach

lattice, we need to assume that E is a KB-space (order continuous). In this case, it is

natural to inquire whether the space M(E, Ti) (Mr(E, Ti)) is also a KB-space (order

continuous). In order to prove this, we need an extra assumption on the underlying

filtration. We recall the following definition from [101].

Definition 3.3.14 Let E be a Banach lattice and (Ti) a positive BS-filtration on

E. We say (Ti) is bounded below on E+ if there exist i ∈ N and a constant δ > 0

such that ‖Tif‖ ≥ δ‖f‖ for every f ∈ E+.

If Σ1 ⊂ Σ and 0 ≤ f ∈ L1(µ), then

‖E(f |Σ1)‖1 =
∫

Ω
|E(f |Σ1)|dµ =

∫
Ω

E(f |Σ1) dµ =
∫

Ω
f dµ =

∫
Ω
|f |dµ = ‖f‖1.

Consequently, any classical filtration on L1(µ) is bounded below.

Theorem 3.3.15 Let E be a Banach lattice and (Ti) a positive BS-filtration on E

that is bounded below on E+. Then the following statements hold.

(a) If E has order continuous norm, then Mr(E, Ti) is an order continuous Banach

lattice.

(b) If E is a KB-space, then M(E, Ti) is a KB-space.

Proof. (a) It follows from Proposition 3.3.13 that Mr(E, Ti) is a Banach lattice.

Let ((f (α)
i , Ti))α ⊂ Mr(E, Ti)+ be a downwards directed net with infimum 0. For

a fixed i ∈ N, the sequence (f (α)
i ) ⊂ E+ is decreasing. Since E is order continuous

(and thus, Dedekind complete), fi := infα f
(α)
i ∈ E+ and limα ‖f (α)

i − fi‖ = 0. For

i ≤ j, we have

Tifj = Ti(lim
α
f

(α)
j ) = lim

α
Ti(f

(α)
j ) = lim

α
f

(α)
i = fi

and supi∈N ‖fi‖ < ∞. Thus, (fi, Ti) ∈ Mr(E, Ti)+. Moreover, it follows from 0 ≤
(fi, Ti) ≤ (f (α)

i , Ti) for all α and ((f (α)
i , Ti))α ↓ 0 that (fi, Ti) = 0. Consequently,

limα f
(α)
i = 0 for all i ∈ N. Since (Ti) is bounded below on E+, there exist i ∈ N

and a constant δ > 0 such that ‖Tif‖ ≥ δ‖f‖ for all f ∈ E+. Hence, for every j ∈ N
with i ≤ j, we have
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‖f (α)
i ‖ = ‖Tif

(α)
j ‖ ≥ δ‖f (α)

j ‖.

Taking the limit as j → ∞, we obtain ‖(f (α)
i , Ti)‖ ≤ 1

δ‖f
(α)
i ‖ for each α. Now,

taking the limit as α → ∞, we observe ‖(f (α)
i , Ti)‖ ≤ 1

δ‖f
(α)
i ‖ → 0. This completes

the proof of (a).

(b) Since E is supposedly a KB-space, E is also order continuous. Theorem 3.3.5

implies that M(E, Ti) is a Banach lattice. Moreover, Proposition 3.3.13 implies

that M(E, Ti) = Mr(E, Ti). Hence, by part (a), M(E, Ti) is an order continu-

ous Banach lattice. Let ((f (n)
i , Ti))n∈N ⊂ M(E, Ti) be an increasing sequence with

supn∈N ‖(f
(n)
i , Ti)‖ ≤ K <∞. For each i ∈ N, the sequence (f (n)

i )∞n=1 ⊂ E is increas-

ing and norm bounded by K. Thus, there exists fi such that limn→∞ ‖f (n)
i −fi‖ = 0

for each i ∈ N. Moreover, supi∈N ‖fi‖ ≤ K <∞. Also, for i ≤ j, we have

Tifj = Ti(lim
α
f

(α)
j ) = lim

α
Ti(f

(α)
j ) = lim

α
f

(α)
i = fi.

Thus, (fi, Ti) ∈ M(E, Ti) and ((f (n)
i , Ti))n∈N ↑ (fi, Ti). Since M(E, Ti) is order

continuous, we have limn→∞ ‖(f (n)
i , Ti)− (fi, Ti)‖ = 0 and the proof is complete. ut

In general, a classical filtration (Σi) is not bounded below on Lp(µ) for 1 <

p < ∞, so the above proof does not apply to M(Lp(µ), Σi) and Mr(Lp(µ), Σi).

However, Corollary 3.2.13 comes to our aid. Since Lp(µ) is reflexive and E( · |Σi)

is complemented, it follows that M(Lp(µ), Σi) = Mr(Lp(µ), Σi) = Mnc(Lp(µ), Σi).

But Mnc(Lp(µ), Σi) is Riesz isometric to Lp(Ω,∨∞i=1Σi, µ|∨∞i=1Σi), by Theorem 3.3.3.

Consequently, M(Lp(µ), Σi) and Mr(Lp(µ), Σi) are both KB-spaces.

3.4 Filtrations on the l-tensor product

Let (Ω,Σ, µ) denote a finite measure space, Y a Banach space and 1 ≤ p < ∞.

Our aim in this section is to make the necessary preparations for characterizing the

Radon Nikodým property, using the abstract martingale theory developed in the

preceding sections.

In general, we cannot use the definition of a BL-filtration on Lp(µ, Y ), unless

Lp(µ, Y ) is a Banach lattice. Also, the class of BS-filtrations on Lp(µ, Y ) is too

large to characterize RNP. To overcome this, we consider the l-tensor product of

a BL-filtration on a Banach lattice E with a BS-filtration on a Banach space Y .

The following results are stated in terms of left uniform, left injective crossnorms,

of which the l-norm is a special case.
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Lemma 3.4.1 (a) Let E be a Banach lattice and Y a Banach space. If α is

a left uniform, left injective crossnorm on E ⊗ Y , 0 ≤ S : E → E and

T : Y → Y bounded projections and R(S) a (closed) Riesz subspace of E, then

S ⊗α T : E⊗̃αY → E⊗̃αY is a bounded projection with norm ‖S‖‖T‖ and range

S(E)⊗̃αT (Y ), which is a closed subspace of E⊗̃αY .

(b) A symmetrical result holds if α is a right uniform, right injective crossnorm on

Y ⊗ E.

Proof. Since α is a left order uniform crossnorm, it follows that ‖S ⊗ T‖ = ‖S‖‖T‖;
consequently, the continuous extension S⊗αT : E⊗̃αY → E⊗̃αY is bounded. To see

that S⊗αT is a projection, let u ∈ E⊗̃αY . Then there exists a sequence (uj) ⊂ E⊗Y
such that uj → u in norm. Representing each uj as

∑nj

i=1 x
(j)
i ⊗ y

(j)
i , we conclude

that

(S ⊗α T )2(uj) =
nj∑
i=1

S2(x(j)
i )⊗ T 2(y(j)

i ) =
nj∑
i=1

S(x(j)
i )⊗ T (y(j)

i ) = (S ⊗α T )(uj).

By the continuity of S ⊗α T, it follows that (S ⊗α T )2(u) = (S ⊗α T )(u). As S(E)

is a closed Riesz subspace of E and T (Y ) a closed subspace of Y , the left order

injectivity of the α-norm gives

(S ⊗α T )(E ⊗ Y ) = S(E)⊗ T (Y ) ⊂ S(E)⊗̃αT (Y ) ↪→ E⊗̃αY (isometrically).

Thus, S(E)⊗T (Y ) ⊂ (S⊗αT )(E⊗̃αY ) ⊂ S(E)⊗̃αT (Y ). As S⊗αT is a bounded pro-

jection and thus has closed range, it follows that (S⊗α T )(E⊗̃αY ) = S(E)⊗̃αT (Y ).

ut

Theorem 3.4.2 (a) Let E be a Banach lattice and Y a Banach space. If α is a

left uniform, left injective crossnorm on E ⊗ Y , (Si) a positive BS-filtration on

E and (Ti) a BS-filtration on Y , then (Si ⊗α Ti) is a BS-filtration on E⊗̃αY .

Moreover, if (Si) is a BL-filtration, then R(S ⊗α Ti) = R(Si)⊗̃αR(Ti) for each

i ∈ N.

(b) A symmetrical result holds if α is a right uniform, right injective crossnorm on

Y ⊗ E.

Proof. The proof follows easily from Lemma 3.4.1 and its proof. ut

In particular, if (Ti) is a BL-filtration on a Banach lattice E, it can be naturally

extended to the vector valued setting by considering (Ti ⊗l idY ) on E⊗̃lY . This

extension is consistent with the sequence of operators (E( · |Σi)) on Lp(µ, Y ), cor-

responding to the classical filtration (Σi). We now consider the l-tensor product of

BL-filtrations.
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Lemma 3.4.3 (a) Let E and F be Banach lattices. If α is a left uniform, left in-

jective Riesz crossnorm on E ⊗ F , S : E → E and T : F → F positive con-

tractive projections with ranges (closed) Riesz subspaces of E and F respectively,

then (S ⊗α T ) : E⊗̃αF → E⊗̃αF is a positive contractive projection with range

S(E)⊗̃αT (F ), which is a closed Riesz subspace of E⊗̃αF .

(b) A symmetrical result holds if α is a right uniform, right injective Riesz crossnorm

on E ⊗ F .

Proof. By Lemma 3.4.1, it suffices to show that S⊗αT ≥ 0 with range S(E)⊗̃αT (F )

a Riesz subspace of E⊗̃αF.

Since α is an order reasonable crossnorm, it follows that E⊗̃αF is a Banach

lattice with E+⊗F+ α-dense in (E⊗̃αF )+. Since (S⊗T )(E+⊗F+) ⊂ E+⊗F+ and

S ⊗ T : E ⊗α F → E ⊗α F is continuous, in fact ‖S ⊗ T‖ = ‖S‖‖T‖, we get that

0 ≤ S ⊗α T : E⊗̃αF → E⊗̃αF .

By the left order injectivity of α, we have that S(E)⊗̃αT (F ) is a closed subspace

of E⊗̃αF. Also, by property (SS) in Section 2.4, we get that S(E)⊗T (F ) is a Riesz

subspace of E⊗F and is thus also a Riesz subspace of E⊗̃αF . Since S(E)⊗T (F )

is dense in S(E)⊗̃αT (F ), it follows that S(E)⊗̃αT (F ) is a closed Riesz subspace of

E⊗̃αF . ut

Theorem 3.4.4 (a) Let E and F be Banach lattices. If α is a left uniform, left

injective Riesz crossnorm on E ⊗ F , (Si) and (Ti) BL-filtrations (positive BS-

filtrations) on E and F respectively, then (Si ⊗α Ti) is a BL-filtration (positive

BS-filtration) on E⊗̃αF.

(b) A symmetrical result holds if α is a right uniform, right injective Riesz crossnorm

on E ⊗ F .

Proof. The proof follows easily from Lemma 3.4.3 and its proof. ut

The following result is the corner stone of many of the main results in this thesis.

Note that the proof relies on the definition of the l-norm (m-norm).

Theorem 3.4.5 (a) If (Si) is a BL-filtration on the Banach lattice E and (Ti) is a

BS-filtration on the Banach space Y, then

∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti) =
∞⋃
i=1

R(Si ⊗l Ti).

(b) If (Ji) is a BS-filtration on the Banach space X and (Ki) is a BL-filtration on

the Banach lattice F , then



3.4 Filtrations on the l-tensor product 89

∞⋃
i=1

R(Ji) ⊗̃m

∞⋃
i=1

R(Ki) =
∞⋃
i=1

R(Ji ⊗m Ki).

Proof. We will prove the first equality, the second is derived similarly.

(⊃): Let y ∈
⋃∞

i=1R(Si ⊗l Ti) and ε > 0 be given. Select y0 ∈ R(Si ⊗l Ti) for

some i ∈ N such that ‖y − y0‖l < ε. Since R(Si ⊗l Ti) = Si(E) ⊗̃l Ti(Y ) and

Si(E) ⊗̃l Ti(Y ) ⊂
⋃∞

i=1R(Si) ⊗̃l
⋃∞

i=1R(Ti) by the left order injectivity of the

l-norm, it follows that y ∈
⋃∞

i=1R(Si) ⊗̃l
⋃∞

i=1R(Ti).

(⊂): Let y ∈
⋃∞

i=1R(Si) ⊗̃l
⋃∞

i=1R(Ti) and ε > 0 be given. Select y0 ∈⋃∞
i=1R(Si) ⊗

⋃∞
i=1R(Ti) such that ‖y − y0‖l < ε/2. Let y0 =

n0∑
i=1

ai ⊗ yi, where

ai ∈
⋃∞

i=1R(Si) and yi ∈
⋃∞

i=1R(Ti). Select vi ∈
⋃∞

i=1R(Ti) such that

‖yi − vi‖Y <
ε

4
∑n0

i=1 ‖ai‖

and select bi ∈
⋃∞

i=1R(Si) such that

‖ai − bi‖E <
ε

4
∑n0

i=1 ‖vi‖
.

Let z1 =
n0∑
i=1

bi ⊗ vi. Then z1 ∈
⋃∞

i=1R(Si ⊗l Ti),

y0 − z1 =
n0∑
i=1

(
ai ⊗ (yi − vi) + (ai − bi)⊗ vi

)
,

‖y0 − z1‖l ≤

∥∥∥∥∥
n0∑
i=1

(
‖yi − vi‖ |ai|+ ‖vi‖ |ai − bi|

)∥∥∥∥∥
E

< ε/4 + ε/4 = ε/2,

and

‖y − z1‖l ≤ ‖y − y0‖l + ‖y0 − z1‖l ≤ ε/2 + ε/2 = ε.

Thus, y ∈
⋃∞

i=1R(Si ⊗l Ti). ut

Thus, one has the following distributive property:

Corollary 3.4.6 (a) If (Si) is a BL-filtration on the Banach lattice E and (Ti) is a

BS-filtration on the Banach space Y , then

Mnc

(
E ⊗̃l Y, Si ⊗l Ti

)
= Mnc(E,Si) ⊗̃lMnc(Y, Ti).

(b) If (Ji) is a BS-filtration on the Banach space X and (Ki) is a BL-filtration on

the Banach lattice F , then

Mnc

(
X ⊗̃m F, Ji ⊗m Ki

)
= Mnc(X, Ji) ⊗̃mMnc(F,Ki).
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Proof. We only prove (a), since the proof for (b) is similar. By Propositions 3.2.17,

Proposition 3.3.3 and Theorem 3.4.2, we have that
⋃∞

i=1R(Si) is Riesz isometric

to Mnc(E,Si),
⋃∞

i=1R(Ti) is isometric to Mnc(Y, Ti) and Mnc

(
E ⊗̃l Y, Si ⊗l Ti

)
is

isometric to
⋃∞

i=1R(Si ⊗l Ti). By Theorem 3.4.5, we have

∞⋃
i=1

R(Si ⊗l Ti) =
∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti),

from which the above assertion is now clear. ut

Corollary 3.4.7 Let E be a Banach lattice and Y a Banach space. If (Si) is a

complemented BL-filtration on E and (Ti) is a complemented BS-filtration on Y ,

then (Si ⊗ Ti) is a complemented BS-filtration on E ⊗̃l Y .

Proof. Assume (Si) and (Ti) are complemented by the contractive projections 0 ≤
S∞ : E → E and T∞ : Y → Y respectively. By Theorem 3.4.5 and Lemma 3.4.1, we

have

R(S∞ ⊗l T∞) = R(S∞)⊗̃lR(T∞) =
∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti) =
∞⋃
i=1

R(Si ⊗l Ti).

Consequently, by Theorem 3.4.2, (Si⊗lTi) is a BS-filtration complemented by S∞⊗l

T∞. ut

3.5 A characterization of the Radon Nikodým property

To characterize the Radon Nikodým property, we still require a fair amount of

preparation. We first consider BS-filtrations on the space of cone absolutely summing

operators from a Banach lattice E to a Banach space Y .

Proposition 3.5.1 Let E be a Banach lattice and Y a Banach space. Suppose that

(Ti) is a BL-filtration on E. Then the sequence (T̂i) of maps T̂i : Lcas(E, Y ) →
Lcas(E, Y ), defined by T̂iF = F ◦ Ti for each F ∈ Lcas(E, Y ) and i ∈ N, is a BS-

filtration on Lcas(E, Y ).

Proof. Since (Ti) is a BL-filtration, F ◦ Ti ∈ Lcas(E, Y ) and T̂i is a well defined,

linear projection for each i ∈ N. It also follows from
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‖T̂iF‖cas = sup


n∑

j=1

‖FTixj‖ : (xj)n
i=1 ⊂ E+,

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥ ≤ 1


= sup


n∑

j=1

‖Fxj‖ : (xj)n
i=1 ⊂ R(Ti)+,

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥ ≤ 1


≤ sup


n∑

j=1

‖Fxj‖ : (xj)n
i=1 ⊂ E+,

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥ ≤ 1


= ‖F‖cas

that each T̂i is bounded and supi∈N ‖T̂i‖ = 1. Moreover,

T̂iT̂jF = F ◦ Tj ◦ Ti = F ◦ Ti∧j = T̂i∧jF

for each F ∈ Lcas(E, Y ) and i, j ∈ N. Consequently, (T̂i) is a BS-filtration on

Lcas(E, Y ). ut

In view of the above proposition, we are justified in making the following defini-

tion.

Definition 3.5.2 Let E be a Banach lattice and Y a Banach space. Suppose that

(Ti) is a BL-filtration on E. Then (T̂i), as defined in Proposition 3.5.1, is called the

BS-filtration on Lcas(E, Y ) induced by (Ti).

We exhibit a known characterization of cone absolutely summing operators (cf.

[92, Chapter IV, §3, Proposition 3.3]).

Lemma 3.5.3 Let E be a Banach lattice, Y a Banach space and l > 0. For any

bounded operator T : E → Y the following statements are equivalent:

(a) T is cone absolutely summing with ‖T‖cas ≤ l.

(b) There exists x∗T ∈ E∗+ so that ‖x∗T ‖ ≤ l and ‖Tx‖ ≤ 〈|x|, x∗T 〉 for all x ∈ E.

(c) There exist an AL-space L, 0 ≤ T1 ∈ L(E,L) and T2 ∈ L(L, Y ) such that

T = T2 ◦ T1 where ‖T1‖ ≤ l and ‖T2‖ ≤ 1.

In the case where E is separable, we may take L = L1(µ) in (c), where (Ω,Σ, µ) is

a finite measure space.

Proof. (a)⇒(b) Define the map ρT : E+ → R by

ρT (x) = sup

{ ∞∑
i=1

‖Txi‖ : (xi) ∈ (`1⊗̃εE)+,
∞∑
i=1

xi = x

}
(3.1)

for each x ∈ E+. Since ‖T‖cas ≤ l, we have ρT (x) ≤ l‖x‖ for all x ∈ E+. Clearly,

ρT is homogenius. Moreover, ρT is additive on E+. To see this, let x, y ∈ E+ and
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(xi), (yi) ∈ (`1⊗̃εE)+ such that
∑∞

i=1 xi = x and
∑∞

i=1 yi = y. Define the sequences

(x̂i), (ŷi) ∈ (`1⊗̃εE)+ by

(x̂1, x̂2, x̂3, . . .) = (x1, 0, x2, 0, x3, 0, . . .)

and

(ŷ1, ŷ2, x̂3, . . .) = (0, y1, 0, y2, 0, y3, . . .)

respectively. Then
∑∞

i=1 x̂i + ŷi = x+ y and

ρT (x+ y) ≥
∞∑
i=1

‖T x̂i + T ŷi‖ =
∞∑
i=1

‖T x̂i‖+
∞∑
i=1

‖T ŷi‖ =
∞∑
i=1

‖Txi‖+
∞∑
i=1

‖Tyi‖.

Taking appropriate suprema on the right hand side yields ρT (x+y) ≥ ρT (x)+ρT (y).

For the reverse inequality, let z = x+y and choose any sequence (zn) ∈ (`1⊗̃εE)+
satisfying

∑∞
i=1 zi = z. Define wn =

∑n−1
i=1 zi, un = wn ∧ x, vn = (wn − x)+,

xn = un+1 − un and yn = vn+1 − vn for each n ∈ N. Observe that limn→∞ un = x

and limn→∞ vn = y. Consequently, un ↑ x and vn ↑ y and xn, yn ∈ E+ for each

n ∈ N. Moreover,

xn + yn = wn+1 ∧ x− wn ∧ x+ (wn+1 − x)+ − (wn − x)+

= (wn+1 ∧ x− wn ∧ x) + (wn+1 ∨ x− x− (wn ∨ x− x))

= |wn+1 ∧ x− wn ∧ x|+ |wn+1 ∨ x− wn ∨ x|

= |wn+1 − wn|

= zn

for each n ∈ N. Thus, (xi), (yi) ∈ (`1⊗̃εE)+ with
∑∞

i=1 xi = x,
∑∞

i=1 yi = y and

∞∑
i=1

‖zi‖ ≤
∞∑
i=1

‖xi‖+
∞∑
i=1

‖yi‖ ≤ ρT (x) + ρT (y).

Since (zn) ∈ (`1⊗̃εE)+ was an arbitrary sequence satisfying
∑∞

i=1 zi = z, taking the

appropriate supremum on the left hand side yields ρT (x+ y) ≤ ρT (x) + ρT (y).

Hence, ρT may be uniquely extended to a linear functional x∗T on E (cf. [106,

Lemma 20.1]) of norm ‖x∗T ‖ ≤ l. Thus, by the construction of x∗T , we have

‖Tx‖ ≤ ‖Tx+‖+ ‖Tx−‖ ≤ 〈x+, x∗T 〉+ 〈x−, x∗T 〉 = 〈|x|, x∗T 〉

for all x ∈ E.

(b)⇒(c) Assume (b) to be true. Then there exists a functional x∗T ∈ E∗+ so that

‖x∗T ‖ ≤ l and ‖Tx‖ ≤ 〈|x|, x∗T 〉 for all x ∈ E. The map E → R+, defined by
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x 7→ 〈|x|, x∗T 〉, defines a L-norm on E. Let N := {x ∈ E : 〈|x|, x∗T 〉 = 0}, then N is

a closed ideal in E, E/N is a Riesz space and the quotient map q : E → E/N is a

Riesz homomorphism. It is not difficult to see that the quotient norm, defined by

‖q(x)‖ = inf{〈|x− z|, x∗T 〉 : z ∈ N}

for all x ∈ E, is an L-norm on E/N . Let L denote the norm completion of E/N

with respect to this L-norm. Then L is an AL-space and

q : E → L (3.2)

is a Riesz homomorphism with dense range and norm ‖q‖ ≤ l. Let T1 = q and define

τ : R(T1) → Y by τ(T1x) = Tx for each x ∈ E. Then τ is bounded with norm

‖τ‖ ≤ 1. Since R(T1) is dense in L, we have T2 : L → Y where T2 denotes the

unique continuous extension of τ . Consequently, ‖T1‖ ≤ l, ‖T2‖ ≤ 1 and T = T2 ◦T1,

as required.

(c)⇒(a) Suppose (c) holds and let (xi) ⊂ E+ be an unconditionally summable

sequence. Since T1 ≥ 0 we have (T1xi) ⊂ L+ and, since L is an AL-space,∑∞
i=1 ‖T1xi‖ = ‖

∑∞
i=1 T1xi‖. By the Hahn Banach Theorem, there exists x∗ ∈ L∗,

with ‖x∗‖ ≤ 1, such that∥∥∥∥∥
∞∑
i=1

T1xi

∥∥∥∥∥ =

〈 ∞∑
i=1

T1xi, x
∗

〉
=

〈 ∞∑
i=1

xi, T
∗
1 x

∗

〉
≤ l

∥∥∥∥∥
∞∑
i=1

xi

∥∥∥∥∥ .
Using the fact that ‖T2‖ ≤ 1, we obtain

∞∑
i=1

‖Txi‖ =
∞∑
i=1

‖T2T1xi‖ ≤
∞∑
i=1

‖T1xi‖ =

∥∥∥∥∥
∞∑
i=1

T1xi

∥∥∥∥∥ ≤ l

∥∥∥∥∥
∞∑
i=1

xi

∥∥∥∥∥ .
Thus, T is cone absolutely summing with ‖T‖cas ≤ l.

To complete the proof, assume E is separable. Then, by [92, Chapter II, §6,

Proposition 6.2], there exists a quasi-interior point 0 ≤ e ∈ E. Since the map given

by (3.2) is a Riesz homomorphism with dense range, it follows by [92, Chapter II,

§6, Proposition 6.4] that T1e is a quasi-interior point of L. But L is an AL-space

and is thus order continuous. Hence, T1e is also a weak order unit of L by [92,

Chapter II, §6, Proposition 6.5] and [76, Theorem 2.4.2]. It follows by Kakutani’s

representation theorem for AL-spaces (cf. [57] or [72, Theorem 1.b.2]) that L is Riesz

and isometrically isomorphic to L1(µ), where (Ω,Σ, µ) may be chosen to be finite.

ut

Proposition 3.5.4 Let E be a Banach lattice with order continuous dual and Y a

Banach space. Suppose that (Ti) is a BL-filtration on E and (T̂i) is the BS-filtration
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on Lcas(E, Y ) induced by (Ti). If (Fi, T̂i) ∈ M(Lcas(E, Y ), T̂i), then there exists

0 ≤ (f∗i , T
∗
i ) ∈M(E∗, T ∗i ) such that ‖Fix‖ ≤ 〈|x|, f∗i 〉 for each x ∈ E and i ∈ N.

Proof. By Lemma 3.5.3 there exists, for each Fi, a positive functional x∗Fi
∈ E∗ with

‖x∗Fi
‖ ≤ supi∈N ‖Fi‖cas := l and ‖Fix‖ ≤ 〈|x|, x∗Fi

〉 for each x ∈ E and i ∈ N. Define

s∗i ∈ E∗+ by

〈x, s∗i 〉 = 〈Tix, x
∗
Fi
〉

for each x ∈ E and i ∈ N. Then, supi∈N ‖s∗i ‖ < l and, since x∗Fi
≥ 0, we get

‖Fix‖ = ‖T̂iFix‖ = ‖FiTix‖ ≤ 〈|Tix|, x∗Fi
〉 ≤ 〈Ti|x|, x∗Fi

〉 = 〈|x|, s∗i 〉 (3.3)

for all x ∈ E and i ∈ N. We now show that (s∗i , T
∗
i ) is a submartingale. Let i ≤ j

and x ∈ E+. Then, by (3.1),

〈x, T ∗i s∗j 〉 = 〈Tix, s
∗
j 〉 = 〈TjTix, x

∗
Fj
〉 = 〈Tix, x

∗
Fj
〉

= sup

{ ∞∑
n=1

‖Fjxn‖ : (xn) ∈ (`1⊗̃εE)+,
∞∑

n=1

xn = Tix

}

≥ sup

{ ∞∑
n=1

‖FjTixn‖ : (xn) ∈ (`1⊗̃εE)+,
∞∑

n=1

xn = Tix

}

= sup

{ ∞∑
n=1

‖T̂iFjxn‖ : (xn) ∈ (`1⊗̃εE)+,
∞∑

n=1

xn = Tix

}

= sup

{ ∞∑
n=1

‖Fixn‖ : (xn) ∈ (`1⊗̃εE)+,
∞∑

n=1

xn = Tix

}
= 〈Tix, x

∗
Fi
〉

= 〈x, s∗i 〉.

Since s∗i (x) ≤ T ∗i s
∗
j (x) for all x ∈ E+, it follows that s∗i ≤ T ∗i s

∗
j . Consequently,

(s∗i , T
∗
i ) is a submartingale. Since E∗ is order continuous, it follows that E∗ has the

KB-property (cf. [76, Theorem 2.4.14]). Consequently, by Proposition 3.3.9, there

exists a unique least martingale 0 ≤ (f∗i , T
∗
i ) ∈ M(E∗, T ∗i ) that dominates the

submartingale (s∗i , T
∗
i ), with supi∈N ‖f∗i ‖ ≤ supi∈N ‖s∗i ‖ ≤ l. By (3.3),

‖Fix‖ ≤ 〈|x|, s∗i 〉 ≤ 〈|x|, f∗i 〉

for all x ∈ E, and the proof is complete. ut

Theorem 3.5.5 Let E be a Banach lattice with order continuous dual and Y a

Banach space. Suppose that (Ti) is a BL-filtration on E and (T̂i) is the BS-filtration

on Lcas(E, Y ) induced by (Ti). Then Mf(Lcas(E, Y ), T̂i) = M(Lcas(E, Y ), T̂i).
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Proof. The inclusion Mf(Lcas(E, Y ), T̂i) ⊂ M(Lcas(E, Y ), T̂i) is obvious. For the

reverse inclusion, let (Fi, T̂i) ∈M(Lcas(E, Y ), T̂i). By Proposition 3.5.4, there exists

0 ≤ (f∗i , T
∗
i ) ∈M(E∗, T ∗i ) such that ‖Fix‖ ≤ 〈|x|, f∗i 〉 for each x ∈ E and i ∈ N. Let

supi∈N ‖f∗i ‖ := l and define f∗ :
⋃∞

i=1R(Ti) → R by

〈x, f∗〉 = lim
i→∞

〈x, f∗i 〉

for each x ∈
⋃∞

i=1R(Ti). Observe that f∗ is well defined. Indeed, for x ∈
⋃∞

i=1R(Ti)

there exists i ∈ N such that x ∈ R(Ti). Consequently, i ≤ j implies

〈x, f∗i 〉 = 〈x, T ∗i f∗j 〉 = 〈Tix, f
∗
j 〉 = 〈x, f∗j 〉.

Thus, 〈x, f∗〉 = limi→∞〈x, f∗i 〉 exists for each x ∈
⋃∞

i=1R(Ti). Evidently, f is posi-

tive, linear and the inequality

|〈x, f∗〉| = lim
i→∞

|〈x, f∗i 〉| ≤ lim
i→∞

‖f∗i ‖‖x‖ = l‖x‖

shows that f∗ is also bounded with norm ‖f∗‖ ≤ l.

Now define a map F :
⋃∞

i=1R(Ti) → Y by

Fx = lim
i→∞

Fix

for each x ∈
⋃∞

i=1R(Ti). The map F is well defined because, for each x ∈
⋃∞

i=1R(Ti),

there is some i ∈ N for which x ∈ R(Ti). Thus, i ≤ j implies

Fix = T̂iFjx = FjTix = Fjx

so that Fx = limi→∞ Fix exists for each x ∈
⋃∞

i=1R(Ti). It is now evident that F

is linear. Moreover, since
⋃∞

i=1R(Ti) is a Riesz subspace of E, we have

‖Fx‖ = lim
i→∞

‖Fix‖ ≤ lim
i→∞

〈|x|, f∗i 〉 = 〈|x|, f∗〉 ≤ l‖x‖

for all x ∈
⋃∞

i=1R(Ti). Thus, F is bounded. Let f∗ and F denote the unique con-

tinuous extensions of f∗ and F respectively to the Banach sublattice
⋃∞

i=1R(Ti) of

E. Then we have ‖Fx‖ ≤ 〈|x|, f∗〉 for all x ∈
⋃∞

i=1R(Ti). Consequently, Lemma

3.5.3 implies F ∈ Lcas(
⋃∞

i=1R(Ti), Y ). By Theorem 2.2.7, F possesses an extension

F∞ ∈ Lcas(E, Y ) with ‖F‖cas = ‖F∞‖cas. Finally,

T̂iF∞x = FTix = lim
j→∞

FjTix = lim
j→∞

T̂iFjx = Fix

for all x ∈ E and i ∈ N. Thus, (Fi, T̂i) ∈Mf(Lcas(E, Y ), T̂i). ut
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We continue our preparations with the next lemma, which is a simple restatement

of well known facts about order continuity of the norm in dual Banach lattices. We

recall that a Banach space Y is said to have the Schur property if every weakly

convergent sequence also converges in norm. The space `1 has the Schur property,

by Schur’s Theorem (cf. [36, Theorem 1.7]).

Lemma 3.5.6 Let E be a Banach lattice such that E∗ has order continuous norm.

If T : E → `1 is a positive linear operator, then T is compact.

Proof. Let T : E → `1 be a positive operator. Denote the restriction of T ∗ to c0

by T ∗|c0 . Then T ∗|c0 : c0 → E∗ is positive. But E∗ is a KB-space by [76, Theorem

2.4.14]; thus, T ∗|c0 is weakly compact (cf. [92, Chapter II, §5, Proposition 5.15]).

Consequently, (T ∗|c0)∗ : E∗∗ → `1 is compact because `1 has the Schur property.

Hence, T = (T ∗ |c0)∗ |E is compact. ut

Lastly, we need the following characterization of the l tensor product, which is shown

in [69, Theorem 5.2].

Theorem 3.5.7 Let E be a Banach lattice, Y a Banach space and T ∈ L(E, Y ).

Then T ∈ E∗⊗̃lY if and only if there exist 0 ≤ S ∈ L(E, `1) and R ∈ L(`1, Y ) such

that S is compact and T = R ◦ S; further, ‖T‖cas = inf ‖R‖ ‖S‖ where the infimum

is taken over all such factorizations of T .

We are now prepared to characterize the Radon Nikodým property:

Theorem 3.5.8 Let Y be a Banach space. Then the following statements are equiv-

alent:

(a) Y has the Radon-Nikodým property.

(b) E∗⊗̃lY = Lcas(E, Y ) for all separable Banach lattices E with order continuous

dual.

(c) M(E∗⊗̃lY, T
∗
i ⊗l idY ) = Mf(E∗⊗̃lY, T

∗
i ⊗l idY ) for all separable Banach lattices

E with order continuous dual and all BL-filtrations (Ti) on E.

(d) M(E∗⊗̃lY, T
∗
i ⊗l idY ) = Mnc(E∗⊗̃lY, T

∗
i ⊗l idY ) for all separable Banach lat-

tices E with order continuous dual and all complemented, strictly positive BS-

filtrations (Ti) on E.

(e) M(E∗⊗̃lY, T
∗
i ⊗l idY ) = Mnc(E∗, T ∗i )⊗̃lY for all separable Banach lattices E

with order continuous dual and all complemented, strictly positive BS-filtrations

(Ti) on E.
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(f) M(E⊗̃lY, Ti ⊗l idY ) = M(E, Ti)⊗̃lY for all separable reflexive Banach lattices

E and all complemented, strictly positive BS-filtrations (Ti) on E.

(g) M(E⊗̃lY, Ti ⊗l idY ) = Mnc(E⊗̃lY, Ti ⊗l idY ) for all separable reflexive Banach

lattices E and all complemented, strictly positive BS-filtrations (Ti) on E.

Proof. We prove the implications (a)⇒(b)⇒(c)⇒(d)⇒(e)⇒(f)⇒(g)⇒(a).

(a)⇒(b) Let E be a separable Banach lattice with order continuous dual. Let

T ∈ Lcas(E, Y ). By Lemma 3.5.3, there exist a finite measure space (Ω,Σ, µ) and

operators 0 ≤ T1 ∈ L(E,L1(µ)) and T2 ∈ L(L1(µ), Y ) such that T = T2 ◦ T1

where ‖T1‖ ≤ ‖T‖cas and ‖T2‖ ≤ 1. Since Y has the Radon-Nikodým property,

the Lewis-Stegall Theorem (Theorem 1.3.6) guarantees the existence of operators

0 ≤ S1 ∈ L(L1(µ), `1) and S2 ∈ L(`1, Y ) such that T2 = S2 ◦ S1. Since E∗ is order

continuous, the positive operator S1 ◦ T1 : E → `1 is compact by Lemma 3.5.6.

Hence, T ∈ E∗⊗̃lX by Theorem 3.5.7.

(b)⇒(c) Suppose E is a separable Banach lattice with order continuous dual and

(Ti) is a BL-filtration on E. Let (fi, T
∗
i ⊗l idY ) ∈ M(E∗⊗̃lY, T

∗
i ⊗ idY ). By (b),

E∗⊗̃lY is isometric to Lcas(E, Y ) under the continuous extension of the canonical

isometry E∗ ⊗l Y → Lcas(E, Y ), given by u 7→ Lu, where Lu =
∑n

i=1〈 · , x∗i 〉yi

for u =
∑n

i=1 x
∗
i ⊗ yi. Let (Fi) ⊂ Lcas(E, Y ) for which fi 7→ Fi for each i ∈ N.

Suppose i ≤ j and select a sequence (uk) ⊂ E∗ ⊗l Y such that limk→∞ uk = fj .

Then, we also have limk→∞ Luk
= Fj . For each k ∈ N, choose a representation

uk =
∑nk

i=1 x
∗ (k)
i ⊗ y

(k)
i and observe that

(T ∗i ⊗ idY )uk 7→
nk∑
i=1

〈 · , T ∗i x
∗ (k)
i 〉yk

i = Luk
◦ Ti = T̂iLuk

for all k ∈ N. Taking the limit as k → ∞ yields (T ∗i ⊗l idY )fj 7→ T̂iFj . On the

other hand, (T ∗i ⊗l idY )fj = fi 7→ Fi. Thus, T̂iFj = Fi from which (Fi, T̂i) ∈
M(Lcas(E, Y ), T̂i) follows. By Theorem 3.5.5, there exists F∞ ∈ Lcas(E, Y ) such

that T̂iF∞ = Fi for each i ∈ N. Let f∞ ∈ E∗ ⊗l Y such that f∞ 7→ F∞. A similar

argument to the above shows that (T ∗i ⊗l idY )f∞ 7→ T̂iF∞ = Fi for each i ∈ N.

Consequently, (T ∗i ⊗l idY )f∞ = fi for each i ∈ N, implying that (fi, T
∗
i ⊗l idY ) ∈

Mf(E∗⊗̃lY, T
∗
i ⊗l idY ).

(c)⇒(d) If (Ti) is a complemented, strictly positive BS-filtration on a Banach lat-

tice E, then the dual filtration (T ∗i ) is also a complemented, strictly positive BS-

filtration on E∗. Hence, (T ∗i ) is a complemented BL-filtration on E∗. Consequently,

(T ∗i ⊗l idY ) is a complemented BS-filtration on E∗⊗̃lY , by Corollary 3.4.7. Thus,

the implication follows immediately from Proposition 3.2.11.
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(d)⇒(e) Since M(E∗⊗̃lY, T
∗
i ⊗l idY ) = Mnc(E∗⊗̃lY, T

∗
i ⊗l idY ) holds and (T ∗i ) a

BL-filtration on E∗, we have

Mnc(E∗⊗̃lY, T
∗
i ⊗l idY ) = Mnc(E∗, T ∗i )⊗̃lMnc(Y, idY ) = Mnc(E∗, T ∗i )⊗̃lY

by Corollary 3.4.6. Thus, (e) follows immediately.

(e)⇒(f) Since E is a separable reflexive Banach lattice, E∗∗ is order continuous and

E∗ is separable (cf. [92, Chapter II, §5, Theorem 5.16]). By (e) and the reflexivity

of E, it follows that

M(E⊗̃lY, Ti ⊗l idY ) = M(E∗∗⊗̃lY, T
∗∗
i ⊗l idY )

= Mnc(E∗∗, T ∗∗i )⊗̃lY

= Mnc(E, Ti)⊗̃lY.

By the reflexivity of E and Corollary 3.2.13, Mnc(E, Ti) is Riesz and isometrically

isomorphic to M(E, Ti). Consequently, M(E⊗̃lY, Ti ⊗l idY ) = M(E, Ti)⊗̃lY , as

required.

(f)⇒(g) As above, Mnc(E, Ti) is Riesz and isometrically isomorphic to M(E, Ti).

Another application of Corollary 3.4.6 reveals that

M(E, Ti)⊗̃lY = Mnc(E, Ti)⊗̃lMnc(Y, idY ) = Mnc(E⊗̃lY, Ti ⊗l idY ).

Thus, M(E⊗̃lY, Ti ⊗l idY ) = Mnc(E⊗̃lY, Ti ⊗l idY ) by (f).

(g)⇒(a) For all finite measure spaces (Ω,Σ, µ) and 1 < p < ∞, the Banach lat-

tice Lp(µ) is separable and reflexive. By (g), it follows that M(Lp(µ, Y ), Σi) =

Mnc(Lp(µ, Y ), Σi) for every filtration (Σi). Thus, Y has the Radon Nikodým prop-

erty by Theorem 1.3.10. ut

The above theorem allows us to generalize Theorem 1.3.7, which characterizes

the ‘Asplund spaces’. A Banach space Y is called an Asplund space if Y ∗ has the

Radon Nikodým property.

Theorem 3.5.9 Let Y be a Banach space. Then Y is an Asplund space if and only

if E∗⊗̃lY
∗ = (E⊗̃lY )∗ for all separable Banach lattices E with order continuous

dual.

Proof. By Theorem 3.5.8, Y ∗ has the Radon Nikodým property if and only if

E∗⊗̃lY
∗ = Lcas(E, Y ∗) for all separable Banach lattices E with order continuous

dual. But Theorem 2.3.5 implies that E∗⊗̃lY
∗ = Lcas(E, Y ∗) = (E⊗̃lY )∗, which

completes the proof. ut
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It is important to note that the above theorem does not include the case E =

L1(µ). However, by Theorem 1.3.7, Y is an Asplund space if and only if L1(µ, Y )∗ =

L∞(µ, Y ∗) for all finite measure spaces (Ω,Σ, µ).

3.6 Notes and remarks

At the beginning of the chapter, we bifurcated the results of Troitsky in [101];

Section 3.2 contained results that relied on norm structure only (i.e. the theory of

BS-filtrations) and Section 3.3 contained results that required an additional order

structure (i.e. the theory of BL-filtrations). In Section 3.4, we exploited the properties

of left order uniformity and left order injectivity to study the tensor product of BL-

filtrations with BS-filtrations. In Theorem 3.4.5 and Corollary 3.4.6, we showed that

the space of norm convergent martingales distributes over the l-tensor product. This

result features heavily in Chapter 5 and Chapter 7. As mentioned, the proof of this

result relies on the definition of the l-norm. However, a second glance at the proof

reveals that these results also hold for any left order uniform, left order injective

crossnorm that is smaller than the l-norm.

Let 1 < p < ∞ and Y be a Banach space. As we have seen, we have the

isometric embedding Lp(µ, Y ) ↪→ Lcas(Lq(µ), Y ) where 1
p + 1

q = 1. By Theorem

3.5.5, every Lp(µ, Y )-bounded martingale, 1 < p < ∞, is fixed on some element in

Lcas(Lq(µ), Y ). This fact is somewhat surprising and gives new insight into Theorem

1.3.10. Indeed, when Y has the Radon Nikodým property, the space Lcas(Lq(µ), Y )

collapses down to Lp(µ, Y ) (see Theorem 3.5.8), forcing every Lp(µ, Y )-bounded

martingale to be fixed on an element in Lp(µ, Y ). Consequently, every Lp(µ, Y )-

bounded martingale must converge.

It is natural to ask whether an analogue of Theorem 3.5.8 exists for the UMD

property. This is tantamount to asking:

• If Y is a UMD space, for which Banach lattices E does every ±1-transform of

every bounded martingale in E∗⊗̃lY converge?

Unfortunately, we have not made much progress in answering this question. We

suspect that the only Banach lattices E that satisfy the above question are separable

abstract Lp-spaces, 1 < p <∞. Another related question is:

• If Y is a UMD space, for which Banach lattices E do we have E∗⊗̃lY =

Lcas(E, Y )?

Since every UMD space already has the Radon Nikodḿ property, the class of sep-

arable Banach lattices with order continuous dual will satisfy the above question,
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by Theorem 3.5.8. Given that the UMD property is substantially stronger than the

Radon Nikodým property, is it possible to extend this class of Banach lattices?



4

Intermission

4.1 A description of `p
strong(Y )

The technique used in the previous chapter of factorizing operators in the charac-

terization of the Radon Nikodým property also has other applications. In this brief

interlude, we use these techniques to produce a Grothendieck style characterization

of the space of p-summable sequences in a Banach space.

Let Y be a Banach space, 1 ≤ p <∞ and 1
p + 1

q = 1. Denote the space of weakly

p-summable sequences by

`pweak(Y ) =
{

(yn) : yn ∈ Y and (〈yn, y
∗〉) ∈ `p ∀ y∗ ∈ Y ∗

}
,

endowed with the norm εp, given by

εp
(
(yn)

)
=

 sup
{

(
∑

n |〈yn, y
∗〉|p)1/p : ‖y∗‖ ≤ 1

}
, 1 ≤ p <∞;

sup {supn∈N |〈yn, y
∗〉| : ‖y∗‖ ≤ 1} , p = ∞.

Then `pweak(Y ) is a Banach space (cf. [36] and [55, §19.4]). The space

(c0)weak(Y ) =
{

(yn) : yn ∈ Y and
(
〈yn, y

∗〉
)
∈ c0 ∀ y∗ ∈ Y ∗

}
is a closed subspace of `∞weak(Y ) (cf. [36] and [55, §19.4]). The following description

of `pweak(Y ) was formulated by Grothendieck (cf. [36]):

Theorem 4.1.1 Let Y be a Banach space and 1
p + 1

q = 1. Then

(a) `pweak(Y ) is isometrically isomorphic to L(`q, Y ) for 1 < p ≤ ∞ and `1weak(Y ) is

isometrically isomorphic to L(c0, Y ).

(b) `pweak(Y ∗) is isometrically isomorphic to L(Y, `p) for 1 ≤ p ≤ ∞ and (c0)weak(Y ∗)

is isometrically isomorphic to L(Y, c0).

In (a) the isomorphism is given by Γ , defined by
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Γ : (yn) 7→ T(yn), T(yn)

(
(λn)∞n=1

)
=

∞∑
n=1

λnyn, (λn) ∈ `q.

In (b) the isomorphism is given by Θ,

Θ : (y∗n) 7→ T(y∗n), T(y∗n)(x) = (〈y, y∗n〉)
∞
n=1 , y ∈ Y.

The reader is referred to [12, 70] for an order analogue of the above, for the case

where Y is a Banach lattice.

Motivated by the operator description of `pweak(Y ) as stated in Theorem 4.1.1, we

proceed to describe `pstrong(Y ) in terms of the cone absolutely summing operators.

Here,

`pstrong(Y ) =

{
(yi) : yi ∈ Y,

∞∑
i=1

‖yi‖p <∞

}

is the Banach space of all absolutely p-summable sequences (yn) in Y with respect

to the norm

∆p((yi)) =

( ∞∑
i=1

‖yi‖p

)1/p

(cf. [34, 35, 36]).

Since the finite sequences in `pstrong(Y ) form a dense subset of `pstrong(Y ) we have

that `pstrong(Y ) isometrically isomorphic to lp⊗̃∆pY . Moreover, by Theorem 2.3.1,

we have that ∆p = ‖ · ‖l on `p ⊗ Y . The isometric isomorphism is obtained as the

continuous extension of the linearization of the bilinear map ψ : `p×Y → `pstrong(Y ),

defined by ψ((λn)∞n=1, y) =
∑∞

n=1 λny.

We want to show that the canonical embeddings `1⊗̃lY ↪→ Lcas(c0, Y ) and

`p⊗̃lY ↪→ Lcas(`q, Y ), where 1
p + 1

q = 1 and 1 ≤ p < ∞, are surjective isome-

tries. To achieve this objective, we will need to re-examine Lemma 3.5.3. In an effort

to minimize the turning of pages, we restate this lemma.

Lemma 4.1.2 Let E be a Banach lattice, Y a Banach space and l ∈ R+. Then the

following statements are equivalent for T ∈ L(E, Y ).

(a) T ∈ Lcas(E, Y ) with ‖T‖cas ≤ l.

(b) There exists x∗ ∈ E∗+ such that ‖x∗‖ ≤ l and ‖Tx‖ ≤ x∗(|x|) for all x ∈ E.

(c) There exist an AL-space L, T1 ∈ L+(E,L) and T2 ∈ L(L, Y ) such that T = T2◦T1

where ‖T1‖ ≤ l and ‖T2‖ ≤ 1.

By the L-space theorem of Kakutani, every AL-space is Riesz and isometrically iso-

morphic to some L1(µ)-space, where (Ω,Σ, µ) is some measure space (cf. [57, 58, 72,
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92]). Let (Ω,Σ, µ) be a σ-finite measure space, 1 ≤ p <∞ and T ∈ Lcas(Lp(µ), Y ).

We claim that the AL-space in the factorization of T in Lemma 4.1.2(c) can be taken

as L1(µ); i.e., a different measure space does not have to be introduced:

To substantiate our claim, it follows from Lemma 4.1.2(b) that there exists f ∈
Lq(µ)+, where 1

p + 1
q = 1, such that ‖f‖q ≤ l and for all g ∈ Lp(µ),

‖Tg‖ ≤
∫

Ω
|g|f dµ =

∫
Ω
|g|dµf ,

with dµf = f dµ. Let Ωf := {ω ∈ Ω : f(ω) 6= 0)} and let PB be the band projection

of L0(µ) := {f : Ω → R : f is µ-measurable} onto the band consisting of all functions

in L0(µ) which vanish on Ω\Ωf . Since∫
Ω
|PBg|dµf =

∫
Ω
|g|f dµ ≤ ‖f‖q ‖g‖p for all g ∈ Lp(µ),

the map PB maps Lp(µ) into L1(µf ) and has norm ‖f‖q ≤ l. Using the fact that

PBg = g µf -almost everywhere, one sees that the image of Lp(µ) is an ideal in

L1(µf ). Its closure is a band in L1(µf ) and is in fact equal to L1(µf ), because the

image of a weak order unit in Lp(µ) (which exists by the σ-finiteness of the measure

space) is a weak order unit in L1(µf ). Define T ∗2 : PB(Lp(µ)) → Y by T ∗2 h = Th for

all h ∈ PB(Lp(µ)). Then

‖T ∗2 h‖ = ‖Th‖ ≤
∫

Ω
|h|f dµ =

∫
Ω
|h|dµf = ‖h‖L1(Ω,µf )

and so we can extend T ∗2 by continuity to L1(µf ) and the extended operator is of

norm less than or equal to one.

We have thus shown that the AL-space L in Theorem 4.1.2(b) can be taken to

be the space L1(µf ).

Using Ando’s theorem (cf. [6], [71, Lemma 1.b.9] or [92, Chapter III, §11, Theorem

11.4]), one can do better and show that L can be taken to be the space L1(µ). To

see this, consider the multiplication operator Mf : L1(µf ) → L1(µ), defined by

Mfg = fg for all g ∈ L1(µ). Using the fact that f ≥ 0, it readily follows that

Mf is an isometric Riesz isomorphism (into). By Ando’s theorem, there exists a

contractive projection PA of L1(µ) onto the closed Riesz subspace Mf (L1(µf )) and

so the identity operator I on L1(µf ) has the factorization I = M−1
f ◦ PA ◦ Mf .

This shows that T has the factorization claimed in Lemma 4.1.2(c) with L = L1(µ),

T1 = Mf ◦PB|Lp(µ) and T2 = T ∗2 ◦M
−1
f ◦PA, where PB|Lp(µ) denotes the restriction

of PB to Lp(µ). This completes the proof of our claim. We are now able to prove

our main result.
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Lemma 4.1.3 Let Y be a Banach space. Then the canonical injections `1⊗̃lY ↪→
Lcas(c0, Y ) and `p⊗̃lY ↪→ Lcas(`q, Y ), for 1

p + 1
q = 1 and p 6= 1, are surjections and

therefore surjective isometric isomorhpisms.

Proof. Consider the case p = 1. Let T ∈ Lcas(c0, Y ). Since c0 is a Banach sublattice

of `∞, T has an extension S ∈ Lcas(`∞, Y ) such that ‖T‖cas = ‖S‖cas, by Theorem

2.2.7. But then S has a factorization S = S2 ◦ S1, where S1 ∈ L+(`∞, `1) and

S2 ∈ L(`1, Y ), by the remarks following Lemma 4.1.2. Since (`∞)∗ is an AL-space,

it has order continuous norm so that S1 is compact, by Lemma 3.5.6. But then T

has a factorization T = S2 ◦ (S1|c0), where S1|c0 is compact. So, by Theorem 3.5.7,

T ∈ `1⊗̃lY .

The case 1 < p < ∞ is similar, but without the complication of first making an

extension as in the case p = 1. ut

Theorem 4.1.4 Let Y be a Banach space and 1
p + 1

q = 1. Then

(a) `1strong(Y ) is isometrically isomorphic to Lcas(c0, Y ).

(b) `pstrong(Y ) is isometrically isomorphic to Lcas(`q, Y ) for 1
p + 1

q = 1 and p 6= 1.

Proof. Since `pstrong(Y ) is isometrically isomorphic to `p⊗̃lY , as mentioned above,

the proof of the result is completed by applying Lemma 4.1.3. ut

The reader is referred to [23] for more on the interplay between sequence spaces

and cone absolutely summing operators, as well as strongly majorizing operators.

Our techniques differ from those used in [23].
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Convergent martingales

5.1 Introduction

In this chapter, we provide some explicit characterizations of convergent martingales

in the l-tensor product. The main ingredient in these characterizations are represen-

tation theorems for elements of the completed l-tensor product E⊗̃lY , of a Banach

lattice E and a Banach space Y .

In Section 5.2, we present a representation theorem for elements in the l-tensor

product that is analogous to the well known representation theorem for elements in

the projective tensor product (see for instance [90, Proposition 2.7]). The l-tensor

product version of this result is considerably more difficult and appears in [69]. Our

presentation of this result is adapted from this paper.

In Section 5.3, the representation theorem in Section 5.2 is used, in conjunc-

tion with the distributive result for the space of norm convergent martingales on

the l-tensor product (Theorem 3.4.5), to prove a complete description of convergent

martingales in the l-tensor product. Combining this description with the martin-

gale characterizations of the Radon Nikodým property, studied in Chapter 3, yields

another form of the Radon Nikodým property. This description can be also be ap-

plied to martingale difference sequences. As a consequence, when we specialize to

the Lebesgue-Bochner spaces, we obtain a description of the UMD property. The

results is this section are original and some of them appear in [26].

One drawback to the representation theorem, studied in Section 5.2, is that there

are uncountably many representations for an element in the l-tensor product. Conse-

quently, the description theorem for convergent martingales in the l-tensor product,

offered in Section 5.3, has uncountably many representations. To improve this situ-

ation, we examine the notion of a basis with ‘vector-valued coefficients’ in Section

5.4. This concept is considered by Figiel and Wojtaszczyk in [46] and is the origin

of our presentation. We identify an easy criterion for a basis in a Banach lattice E
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to be a so called ‘Y-basis’ for the l-tensor product E⊗̃lY . With mild assumptions

on E, this provides a unique way to represent elements of E⊗̃lY .

In Section 5.5, the theory of bases with vector-valued coefficients is used to pro-

vide another description of norm convergent martingales in the l-tensor product. In

contrast to the results in Section 5.3, the description shown here is unique. Ana-

logues of the descriptions of the Radon Nikoým property and the UMD property,

given in Section 5.3, are deduced.

5.2 Representing the elements in the l-tensor product

We present a characterization of elements of E⊗̃lY , as can be found in [69], which

will allow us to describe norm convergent martingales in the l-tensor product. We

start with a lemma from [69, Theorem 3.2].

Lemma 5.2.1 Let E be Banach a lattice and Y a Banach space. Then,

‖u‖∆ = inf

{∥∥∥∥∥
n∑

i=1

|xi|

∥∥∥∥∥ sup
1≤i≤n

‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}

for all u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ Y .

Proof. Let u =
∑n

i=1 xi ⊗ yi. Then∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

|xi|

∥∥∥∥∥ sup
1≤i≤n

‖yi‖.

Thus,

‖u‖∆ ≤ inf

{∥∥∥∥∥
n∑

i=1

|xi|

∥∥∥∥∥ sup
1≤i≤n

‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}
.

On the other hand,

u =
n∑

i=1

‖yi‖xi ⊗
yi

‖yi‖
;

and clearly∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ sup
1≤i≤n

∥∥∥∥ yi

‖yi‖

∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

‖yi‖ |xi|

∥∥∥∥∥ .
Consequently,
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inf

{∥∥∥∥∥
n∑

i=1

|xi|

∥∥∥∥∥ sup
1≤i≤n

‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}

≤

∥∥∥∥∥
n∑

i=1

‖yi‖ |xi|

∥∥∥∥∥ sup
1≤i≤n

∥∥∥∥ yi

‖yi‖

∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

‖yi‖ |xi|

∥∥∥∥∥ ,
so that

inf

{∥∥∥∥∥
n∑

i=1

|xi|

∥∥∥∥∥ sup
1≤i≤n

‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}
≤ ‖u‖∆.

Thus,

‖u‖∆ = inf

{∥∥∥∥∥
n∑

i=1

|xi|

∥∥∥∥∥ sup
1≤i≤n

‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}
.

ut

The following result is adapted from [69, Theorem 4.1]

Theorem 5.2.2 Let E be a Banach lattice and Y a Banach space. Then, u ∈ E⊗̃lY

if and only if u =
∑∞

i=1 xi ⊗ yi, where (|xi|) ⊂ E is an unconditionally summable

sequence and (yi) ⊂ Y is a null sequence. Moreover,

‖u‖l = inf

{∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥ sup
i∈N

‖yi‖ : u =
∞∑
i=1

xi ⊗ yi,∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥ <∞, lim
i→∞

‖yi‖ = 0

}
.

Proof. Let (|ai|) ⊂ E be an unconditionally summable sequence and (yi) ⊂ Y be

a null sequence. By Proposition 2.2.4, we have ‖(|ai|)‖ε = ‖
∑∞

i=1 |ai|‖ < ∞. Let

ur =
r∑

i=1
ai ⊗ yi. Then, for each q, r ∈ N with q ≤ r we have, by Lemma 5.2.1,

‖ur − uq‖∆ ≤

∥∥∥∥∥∥
r∑

i=q+1

|ai|

∥∥∥∥∥∥ sup
q+1≤i≤r

‖(yi)‖ → 0

as q, r → ∞. Thus, (ur) is a Cauchy sequence that converges to u :=
∞∑
i=1

ai ⊗ yi in

E⊗̃∆Y . Moreover, ‖ur‖∆ ≤ ‖
∑∞

i=1 |ai|‖ supi∈N ‖yi‖ for each r ∈ N. Thus,

‖u‖∆ ≤

∥∥∥∥∥
∞∑
i=1

|ai|

∥∥∥∥∥ sup
i∈N

‖yi‖. (5.1)

Conversely, let u ∈ E⊗̃∆Y and ε > 0 be given. Then, there exists a sequence

(un) in E ⊗ Y such that

‖u− ui‖∆ < (1/2)2i+1ε
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for i = 0, 1, 2, . . . . Then

‖ui+1 − ui‖∆ ≤ ‖ui+1 − u‖∆ + ‖u− ui‖∆ < (1/4)iε

for i = 0, 1, 2, . . . . Hence, by Lemma 5.2.1, ui+1 − ui has a representation

ui+1 − ui =
ni+1∑
n=1

a(i+1)
n ⊗ y(i+1)

n ,

with a
(i+1)
n ∈ E, y(i+1)

n ∈ Y ,∥∥∥∥∥
ni+1∑
n=1

∣∣∣a(i+1)
n

∣∣∣∥∥∥∥∥ sup
1≤n≤ni+1

∥∥∥y(i+1)
n

∥∥∥ < (1/4)iε,

∥∥∥∥∥
ni+1∑
n=1

∣∣∣a(i+1)
n

∣∣∣∥∥∥∥∥ ≤ [(1/4)iε
]1/2

and

sup
1≤n≤ni+1

∥∥∥y(i+1)
n

∥∥∥ ≤ [(1/4)iε
]1/2

.

Since ‖u0‖∆ ≤ ‖u‖∆ + ‖u− u0‖∆ < ‖u‖∆ + ε/2, by Lemma 5.2.1, there is a repre-

sentation

u0 =
n0∑

n=1

a(0)
n ⊗ y(0)

n

with a
(0)
n ∈ E, y(0)

n ∈ Y ,∥∥∥∥∥
n0∑

n=1

∣∣∣a(0)
n

∣∣∣∥∥∥∥∥ sup
1≤n≤n0

∥∥∥y(0)
n

∥∥∥ < ‖u‖∆ + ε/2,

∥∥∥∥∥
n0∑

n=1

∣∣∣a(0)
n

∣∣∣∥∥∥∥∥ ≤ (‖u‖∆ + ε/2)1/2

and

sup
1≤n≤n0

∥∥∥y(0)
n

∥∥∥ ≤ (‖u‖∆ + ε/2)1/2 .

From the choices of the representations of ui+1 − ui, it follows that, for any k ∈ N,∥∥∥∥∥u−
k∑

i=0

ni∑
n=1

a(i)
n ⊗ y(i)

n

∥∥∥∥∥
∆

= ‖u− uk‖∆ < (1/2)2k+1ε;

i.e. the series
∑∞

i=0

∑ni
n=1 a

(i)
n ⊗ y

(i)
n converges to u in E⊗̃∆Y . At this point, it is

less cumbersome to relabel some of the sequences. Consider the composed sequences

given by
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(ai) :=
(
a

(0)
1 , . . . , a(0)

n0
, a

(1)
1 , . . . , a(1)

n1
, a

(2)
1 , . . .

)
and

(yi) :=
(
y

(0)
1 , . . . , y(0)

n0
, y

(1)
1 , . . . , y(1)

n1
, y

(2)
1 , . . .

)
.

Let n′k = n0 + n1 + · · ·+ nk for each k ∈ N ∪ {0}. Then, for each k ∈ N ∪ {0},∥∥∥∥∥∥
n′k∑
i=1

|ai|

∥∥∥∥∥∥ ≤
k∑

i=0

∥∥∥∥∥
ni∑

n=1

∣∣∣a(i)
n

∣∣∣∥∥∥∥∥ ≤ (‖u‖∆ + ε/2)1/2 + ε1/2

and, similarly,

sup
1≤i≤n′k

‖yi‖ ≤
k∑

i=0

sup
1≤n≤ni

‖y(i)
n ‖ ≤ (‖u‖∆ + ε/2)1/2 + ε1/2.

Also, for each k ∈ N ∪ {0},

k∑
i=0

ni∑
n=1

a(i)
n ⊗ y(i)

n =
n′k∑
i=1

ai ⊗ yi.

Thus, the series
∞∑
i=1

ai ⊗ yi converges to u in E⊗̃∆Y .

To show that (|ai|) is unconditionally summable, let

ξi :=

{
(1/2k)1/2, for n′k + 1 ≤ i ≤ n′k+1, k ∈ N ∪ {0}
1, for 1 ≤ i ≤ n′0

and let āi := ai/ξi for all i ∈ N. Clearly, (ξi) ∈ c0. For large m,n ∈ N with m < n,

select j, l ∈ N such that n′j < m < n ≤ n′j+l. Then,

‖(|āi|)n
i=1 − (|āi|)m−1

i=1 ‖ε = sup

{
n∑

i=m

|〈|āi|, x∗〉| : x∗ ∈ E∗, ‖x∗‖ ≤ 1

}

≤
j+l∑
k=j

sup


n′k+1∑

i=n′k+1

|〈|āi|, x∗〉| : x∗ ∈ E∗, ‖x∗‖ ≤ 1

 .

By the definition of (ξi) and Proposition 2.2.4 it follows that
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j+l∑
k=j

sup


n′k+1∑

i=n′k+1

|〈|āi|, x∗〉| : x∗ ∈ E∗, ‖x∗‖ ≤ 1


=

j+l∑
k=j

2k/2

∥∥∥∥∥∥
n′k+1∑

i=n′k+1

|ai|

∥∥∥∥∥∥
=

j+l∑
k=j

2k/2

∥∥∥∥∥
nk+1∑
n=1

∣∣∣a(k+1)
n

∣∣∣∥∥∥∥∥
≤

j+l∑
k=j

2k/2
[
(1/4)kε

]1/2
= ε1/2

j+l∑
k=j

(1/2)k/2

≤ ε1/2

(
1 +

1√
2

)
.

Thus, (|āi|) is unconditionally summable. Consequently, by Theorem 1.4.2(e), (|ai|) =

(ξi|āi|) is also unconditionally summable.

We now show limi→∞ ‖yi‖ = 0. As before, let ȳi := yi/ξi for all i ∈ N. For large

m,n ∈ N with m < n, select j, l ∈ N such that n′j < m < n ≤ n′j+l. Then,

‖(ȳi)n
i=1 − (ȳi)m−1

i=1 ‖`∞(Y ) = sup
m≤i≤n

‖ȳi‖ ≤
j+l∑
k=j

(
sup

n′k+1≤i≤n′k+1

‖ȳi‖

)
.

By the definition of (ξn), it follows that
j+l∑
k=j

(
sup

n′k+1≤i≤n′k+1

‖ȳi‖

)
=

j+l∑
k=j

2k/2

(
sup

n′k+1≤i≤n′k+1

‖yi‖

)

=
j+l∑
k=j

2k/2

(
sup

1≤n≤nk+1

∥∥∥y(k+1)
n

∥∥∥)

≤
j+l∑
k=j

2k/2
[
(1/4)kε

]1/2
= ε1/2

j+l∑
k=j

(1/2)k/2

≤ ε1/2

(
1 +

1√
2

)
.

Thus, (ȳi) is a bounded sequence. Consequently, limi→∞ ‖yi‖ = limn→∞ ‖ξiȳi‖ = 0

because (ξi) ∈ c0. Furthermore,∥∥∥∥∥
∞∑
i=1

|ai|

∥∥∥∥∥ ≤ (‖u‖∆ + ε/2)1/2 + ε1/2

and

sup
i∈N

‖(yi)‖ ≤ (‖u‖∆ + ε/2)1/2 + ε1/2.

Hence,
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∞∑
i=1

|ai|

∥∥∥∥∥ sup
i∈N

‖(yi)‖ ≤ ‖u‖∆ + f(ε), (5.2)

where f is a positive real valued function with f(ε) → 0 as ε → 0. It follows from

(5.1) and (5.2) that the norm equality holds. Theorem 2.3.1 completes the proof.

ut

We also have the following corollary (cf. [69, Corollary 4.2])

Corollary 5.2.3 The sequence (xi) in Theorem 5.2.2 can be chosen such that (xi) ⊂
E+.

Proof. If u =
∑∞

i=1 xi ⊗ yi ∈ E⊗̃lY with (|xi|) ⊂ E unconditionally summable and

(yi) ⊂ Y a null sequence, then

u =
∞∑
i=1

(x+
i − x−i )⊗ yi =

∞∑
i=1

(x+
i ⊗ yi + x−i ⊗ (−yi)),

with (x+
1 , x

−
1 , x

+
2 , x

−
2 , . . . ) ⊂ E+ unconditionally summable by Lemma 2.2.4 and

(y1,−y1, y2,−y2, . . . ) ⊂ Y a null sequence. ut

5.3 A description of convergent martingales in the l-tensor product

In this section, we are concerned with representation theorems for convergent mar-

tingales in the Lebesgue-Bochner spaces. For added convenience in proving our first

result, we restate Theorem 5.2.2: If E is a Banach lattice and Y a Banach space,

then u ∈ E⊗̃lY if and only if u =
∑∞

i=1 xi ⊗ yi, where∥∥∥∥∥
∞∑
i=1

|xi|

∥∥∥∥∥
E

<∞ and lim
i→∞

‖yi‖Y = 0. (5.3)

We now prove:

Theorem 5.3.1 Let (Sn) be a BL-filtration on a Banach lattice E and (Tn) a BS-

filtration on a Banach space Y . For a martingale M = (fn, Sn ⊗l Tn)∞n=1 in E⊗̃lY ,

the following statements are equivalent:

(a) M is convergent in E⊗̃lY .

(b) For each i ∈ N, there exist convergent martingales (x(n)
i , Sn)∞n=1 and (y(n)

i , Tn)∞n=1

in E and Y respectively such that, for each n ∈ N, we have

fn =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i ,
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where∥∥∥∥∥
∞∑
i=1

∣∣∣ lim
n→∞

x
(n)
i

∣∣∣∥∥∥∥∥ <∞ and lim
i→∞

∥∥∥ lim
n→∞

y
(n)
i

∥∥∥ = 0.

Proof. (a)⇒(b) Let M = (fn, Sn ⊗l Tn)∞n=1 be a convergent martingale in E⊗̃lY.

Then, by Theorem 3.4.5, M corresponds to an element

f ∈
∞⋃
i=1

R(Si ⊗l Ti) =
∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti)

and thus, by the remark preceding this theorem, we have f =
∑∞

i=1 xi ⊗ yi where

(5.3) holds. Then, for each n ∈ N, we have fn = (Sn ⊗l Tn)(
∑∞

i=1 xi ⊗ yi). Now let

x
(n)
i := Sn(xi) and y

(n)
i := Tn(yi) for each i ∈ N. Then, by Corollary 3.2.7,

fn =
∞∑
i=1

Sn(xi)⊗ Tn(yi) =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i

where (x(n)
i , Sn)∞n=1 and (y(n)

i , Tn)∞n=1 are convergent martingales in E and Y , with

limits xi and yi respectively, so that∥∥∥∥∥
∞∑
i=1

∣∣∣ lim
n→∞

x
(n)
i

∣∣∣∥∥∥∥∥ <∞ and lim
i→∞

∥∥∥ lim
n→∞

y
(n)
i

∥∥∥→ 0

hold.

(b)⇒(a) For each i ∈ N, let xi = limn→∞ x
(n)
i and yi = limn→∞ y

(n)
i . Then the

sequences (xi) and (yi) satisfy (5.3) so that Theorem 3.4.5 implies

f :=
∞∑
i=1

xi ⊗ yi ∈
∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti) =
∞⋃
i=1

R(Si ⊗l Ti).

Then, for each n ∈ N, we have

fn =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i =

∞∑
i=1

Sn(xi)⊗ Tn(yi) = (Sn ⊗l Tn)f.

It now follows that M := (fn, Sn⊗l Tn)∞n=1 is a convergent martingale, by Corollary

3.2.7. ut

Note that a symmetrical result holds for the m-norm. This result can be special-

ized to the Lebesgue-Bochner spaces as follows.

Corollary 5.3.2 Let (Ω,Σ, µ) denote a finite measure space, (Σn)∞n=1 a filtration,

Y a Banach space and 1 ≤ p < ∞. For a martingale (fn, Σn)∞n=1 in Lp(µ, Y ), the

following statements are equivalent:
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(a) (fn, Σn)∞n=1 is convergent in Lp(µ, Y ).

(b) For each i ∈ N, there exist a convergent martingale (x(n)
i , Σn)∞n=1 in Lp(µ) and

yi ∈ Y such that, for each n ∈ N, we have

fn =
∞∑
i=1

x
(n)
i ⊗ yi,

where∥∥∥∥∥
∞∑
i=1

∣∣∣ lim
n→∞

x
(n)
i

∣∣∣∥∥∥∥∥
Lp(µ)

<∞ and lim
i→∞

‖yi‖ = 0.

Proof. In the case where E = Lp(µ) (1 ≤ p < ∞), Sn = E( · |Σn) (where (Σn) is a

filtration in the classical sense) and Tn = idY for each n ∈ N, the proof now follows

as a simple consequence of Theorem 5.3.1. ut

Combining Theorem 5.3.1 with Theorem 3.5.8, we obtain the following charac-

terization of the Radon Nikodým property.

Theorem 5.3.3 Let Y be a Banach space. Then the following conditions are equiv-

alent:

(a) Y has the Radon Nikodým property.

(b) For every separable reflexive Banach lattice E and every complemented, strictly

positive BS-filtration (Si) on E, we have (fn) ∈M(E⊗̃lY, Sn⊗l idY ) if and only

if for each i ∈ N, there exist (x(n)
i , Sn)∞n=1 ∈ Mnc(E,Si) and yi ∈ Y such that,

for each n ∈ N, we have

fn =
∞∑
i=1

x
(n)
i ⊗ yi,

where∥∥∥∥∥
∞∑
i=1

∣∣∣ lim
n→∞

x
(n)
i

∣∣∣∥∥∥∥∥ <∞ and lim
i→∞

‖yi‖ = 0.

Corollary 5.3.2 can be restated to characterize convergence of martingale differ-

ence sequences:

Theorem 5.3.4 Let (Ω,Σ, µ) denote a finite measure space, (Σn) a filtration, Y a

Banach space and 1 ≤ p <∞. For a martingale difference sequence (dk) ⊂ Lp(µ, Y )

relative to (Σn), the following statements are equivalent:

(a) The series
∑∞

k=1 dk converges in Lp(µ, Y ).
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(b) For each i ∈ N, there exist a martingale difference sequence (d(i)
k )∞k=1 ⊂ Lp(µ)

relative to (Σn), with
∑∞

k=1 d
(k)
i convergent, and yi ∈ Y such that, for each k ∈ N,

we have

dk =
∞∑
i=1

d
(k)
i ⊗ yi,

where∥∥∥∥∥
∞∑
i=1

∣∣∣∣∣
∞∑

k=1

d
(k)
i

∣∣∣∣∣
∥∥∥∥∥

Lp(µ)

<∞ and lim
i→∞

‖yi‖ = 0.

Proof. (a)⇒(b) Suppose that
∑∞

k=1 dk converges in Lp(µ, Y ). Define fn =
∑n

k=1 dk,

then (fn, Σn) is a convergent martingale. By Theorem 5.3.2, for each i ∈ N, there

exist a convergent martingale (x(n)
i , Σn)∞n=1 in Lp(µ) and yi ∈ Y such that, for each

n ∈ N, we have

fn =
n∑

k=1

dk =
∞∑
i=1

x
(n)
i ⊗ yi =

∞∑
i=1

n∑
k=1

(
x

(k)
i − x

(k−1)
i

)
⊗ yi,

where∥∥∥∥∥
∞∑
i=1

∣∣∣∣∣
∞∑

k=1

(
x

(k)
i − x

(k−1)
i

)∣∣∣∣∣
∥∥∥∥∥

Lp(µ)

<∞ and lim
i→∞

‖yi‖ = 0.

Here, we use the convention of x(0)
i = 0 for each i ∈ N. Define d(k)

i = (x(k)
i − x

(k−1)
i )

for each i, k ∈ N. Then (d(k)
i )∞k=1 ⊂ Lp(µ) is a martingale difference sequence relative

to (Σn) for each i ∈ N. Consequently,

dk = (E( · |Σk)− E( · |Σk−1))(fn)

= (E( · |Σk)− E( · |Σk−1))

( ∞∑
i=1

n∑
k=1

d
(k)
i ⊗ yi

)

=
∞∑
i=1

d
(k)
i ⊗ yi,

for all k ≤ n and n ∈ N, where∥∥∥∥∥
∞∑
i=1

∣∣∣∣∣
∞∑

k=1

d
(k)
i

∣∣∣∣∣
∥∥∥∥∥

Lp(µ)

<∞ and lim
i→∞

‖yi‖ = 0.

(b)⇒(a) Define x(i)
n =

∑n
k=1 d

(i)
k for each i ∈ N. Then (x(i)

n , Σn)∞n=1 is a martingale

in Lp(µ) for each i ∈ N. Thus,

fn :=
n∑

k=1

dk =
n∑

k=1

∞∑
i=1

d
(k)
i ⊗ yi =

∞∑
i=1

(
n∑

k=1

d
(k)
i

)
⊗ yi =

∞∑
i=1

x(i)
n ⊗ yi,
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where∥∥∥∥∥
∞∑
i=1

∣∣∣ lim
n→∞

x
(n)
i

∣∣∣∥∥∥∥∥
Lp(µ)

<∞ and lim
i→∞

‖yi‖ = 0

hold. By Theorem 5.3.2,
∑n

k=1 dk = fn converges in Lp(µ, Y ). ut

Corollary 5.3.5 Let (Ω,Σ, µ) denote a finite measure space, (Σn) a filtration, Y a

Banach space and 1 ≤ p <∞. For a martingale difference sequence (dk) ⊂ Lp(µ, Y )

relative to (Σn), the following statements are equivalent:

(a) The series
∑∞

k=1 dk is unconditionally convergent.

(b) For any choice of signs (θk) there exist, for each i ∈ N, a martingale difference

sequence (d(i)
k )∞k=1 ⊂ Lp(µ) relative to (Σn), with

∑∞
k=1 d

(k)
i convergent, and yi ∈

Y such that, for each k ∈ N, we have

dk =
∞∑
i=1

θkd
(k)
i ⊗ yi,

where∥∥∥∥∥
∞∑
i=1

∣∣∣∣∣
∞∑

k=1

d
(k)
i

∣∣∣∣∣
∥∥∥∥∥

Lp(µ)

<∞ and lim
i→∞

‖yi‖ = 0.

Proof. Suppose (a) holds, then
∑∞

k=1 θkdk converges for every choice of signs (θk).

Thus, (b) follows directly from Theorem 5.3.4. Conversely, suppose (b) holds. An-

other application of Theorem 5.3.4 shows that
∑∞

k=1 θkdk must converge for every

choice of signs (θk). Thus, (a) holds by Theorem 1.4.2. ut

The above corollary can now be used to characterize the UMD property:

Theorem 5.3.6 Let 1 < p < ∞ and Y be a Banach space. Then the following

statements are equivalent:

(a) Y is a UMD space.

(b) For every choice of signs (θk) and every martingale difference sequence (dk) ⊂
Lp(µ, Y ) with supn∈N ‖

∑n
k=1 dk‖p <∞, there exist for each i ∈ N, a martingale

difference sequence (d(k)
i )∞k=1 ⊂ Lp(µ), with

∑∞
k=1 d

(k)
i convergent, and yi ∈ Y

such that, for each k ∈ N, we have

dk =
∞∑
i=1

θkd
(k)
i ⊗ yi,

where∥∥∥∥∥
∞∑
i=1

∣∣∣∣∣
∞∑

k=1

d
(k)
i

∣∣∣∣∣
∥∥∥∥∥

Lp(µ)

<∞ and lim
i→∞

‖yi‖ = 0.
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Proof. (a)⇒(b) Suppose that Y is a UMD-space and that (dk) ⊂ Lp(µ, Y ) is a

martingale difference sequence with supn∈N ‖
∑n

i=1 di‖ <∞. It follows from Theorem

1.5.4 that
∑∞

i=1 di converges unconditionally in Lp(µ, Y ). Thus, by Corollary 5.3.5,

(b) must hold.

(b)⇒(a) By Corollary 5.3.5, every martingale difference sequence (dk) ⊂ Lp(µ, Y )

with supn∈N ‖
∑n

k=1 dk‖p < ∞ converges unconditionally. Thus, Y is a UMD space

by Theorem 1.5.4. ut

5.4 Bases with vector-valued coefficients

The disadvantage of Theorem 5.3.2 is that the representation of a convergent mar-

tingale in Lp(µ, Y ) is not unique. A glance at Theorem 5.2.2 reveals that there are

uncountably many representations. To remedy this problem, we need to be able to

represent elements of E⊗̃lY uniquely. To achieve this, we use the notion of a ba-

sis with ‘vector valued coefficients’ outlined in [46, pp. 588-590]. We specialize the

definition to suit our purposes.

Definition 5.4.1 Let E be a Banach lattice and Y a Banach space.

(a) A sequence (fi) ⊂ E is said to be a basis with vector coefficients for E⊗̃lY ,

or simply a Y -basis of E⊗̃lY , provided that for each u ∈ E⊗̃lY there exists a

unique sequence (yi) ⊂ Y such that u =
∑∞

i=1 fi ⊗ yi.

(b) The Y -basis (fi) ⊂ E is said to be unconditional if u =
∑∞

i=1 fi ⊗ yi converges

unconditionally for each u ∈ E⊗̃lY .

In the same manner as for bases, we define the natural projections (P̂n) on E⊗̃lY ,

associated to the Y -basis (fi), by

P̂n

( ∞∑
i=1

fi ⊗ yi

)
=

n∑
i=1

fi ⊗ yi

for all u =
∑∞

i=1 fi ⊗ yi ∈ E⊗̃lY and n ∈ N. By the Principle of Uniform Bounded-

ness, we have that

bc((fi), E, Y ) := sup
n∈N

‖P̂n‖ <∞.

The quantity bc((fi), E, Y ) is referred to as the basis constant for the Y -basis (fi) ⊂
E with respect to Y .

If (fi) is an unconditional Y -basis, (θi) any choice of signs and σ ⊂ N, the

Closed Graph Theorem assures us that the operators M̂θ : E⊗̃lY → E⊗̃lY and

P̂σ : E⊗̃lY → E⊗̃lY , defined respectively by
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M̂θ

( ∞∑
i=1

fi ⊗ yi

)
=

∞∑
i=1

θifi ⊗ yi

and

P̂σ

( ∞∑
i=1

fi ⊗ yi

)
=
∑
i∈σ

fi ⊗ yi,

for each u =
∑∞

i=1 fi ⊗ yi ∈ E⊗̃lY , are bounded. The Principle of Uniform Bound-

edness implies supθ ‖M̂θ‖ < ∞ and supσ ‖P̂σ‖ < ∞. We define the unconditional

constant of the Y -basis (fi) ⊂ E, with respect to Y , to be

ubc((fi), E, Y ) = sup
θ
‖M̂θ‖.

Notice that we have bc((fi), E, Y ) ≤ supσ ‖P̂σ‖ ≤ ubc((fi), E, Y ) ≤ 2 supσ ‖P̂σ‖.
It follows from the same argument as for bases that (fi) is a Y -basis (or unconditional

Y -basis) for E⊗̃lY if and only if bc((fi), E, Y ) (or ubc((fi), E, Y )) is finite.

Since the l-norm is a left uniform, left injective crossnorm, it follows that the

space E⊗̃lY is ‘regular’ in the sense of [46, p. 588]. Thus, if Y0 is a closed subspace

of Y , we have bc((fi), E, Y0) ≤ bc((fi), E, Y ) and ubc((fi), E, Y0) ≤ ubc((fi), E, Y ).

In particular, we have that (fi) ⊂ E is a basis (or unconditional basis) of E if

(fi) ⊂ E is a Y -basis (or unconditional Y -basis) of E⊗̃lY .

It is readily verified that the natural projections (P̂n) on E⊗̃lY , associated with

the Y -basis (fi) ⊂ E, are given by maps Pn⊗l idY : E⊗̃lY → E⊗̃lY , where (Pn) are

the natural projections associated to the basis (fi) of E. Consequently, we have the

formula

bc((fi), E, Y ) = sup
n∈N

‖Pn ⊗l idY ‖.

Similarly, if (fi) is an unconditional Y -basis, then we also have

ubc((fi), E, Y ) = sup
θ
‖Mθ ⊗l idY ‖,

where Mθ : E → E is defined by Mθ(
∑∞

i=1 αifi) =
∑∞

i=1 θiαifi for all
∑∞

i=1 αifi ∈ E
and every choice of signs θ = (θi).

In view of the above discussion, the following question arises: Given a basis (fi)

of a Banach lattice E, for which Banach spaces Y is (fi) a Y -basis of E⊗̃lY ? The

following lemma provides a partial answer (cf. [46, Lemma 32]):

Proposition 5.4.2 Let 1 ≤ p < ∞ and E = Lp(µ). Let Y be a Banach space

isometric to a subspace of a quotient space of an Lp-space. If T : E → E is a

bounded linear operator, then T ⊗l idY : Lp(µ)⊗̃lY → Lp(µ)⊗̃lY is bounded with

norm less than or equal to ‖T‖.
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The above proposition implies that any basis of Lp(µ) is also a Y -basis of

Lp(µ, Y ), where Y is a subspace of quotient space of a Lp-space. By placing a re-

striction on the basis (fi) ⊂ E, we can substantially increase the class of Banach

spaces Y for which (fi) is a Y -basis of E⊗̃lY .

Theorem 5.4.3 Let E be a Banach lattice and (fi) ⊂ E a basis. If the natural

projections (Pi) associated to (fi) are positive then, for any Banach space Y , (fi) is

a Y -basis for E⊗̃lY .

Proof. Let Y be any Banach space, then (fi) ⊂ E is a Y basis if and only if

bc((fi), E, Y ) <∞. Since the l-norm is a left uniform crossnorm, it follows that

bc((fi), E, Y ) = sup
n∈N

‖Pn ⊗l idY ‖ = sup
n∈N

‖Pn‖ <∞,

and the proof is complete. ut

Corollary 5.4.4 Let 1 ≤ p < ∞, then any basis of Lp(µ), which is also a martin-

gale difference sequence (e.g. the Haar system), is a Y -basis for Lp(µ, Y ) for every

Banach space Y .

Proof. The result follows from Theorem 5.4.3 and the fact that the associated natural

projections are conditional expectations, which are positive. ut

If 1 < p < ∞, it follows from Proposition 1.4.12 that a Banach space Y has

the UMD property if and only if the Haar system is an unconditional Y -basis of

Lp(µ, Y ).

5.5 A unique representation for convergent martingales in the

l-tensor product

We can now prove a unique representation result for convergent martingales in the

l-tensor product.

Theorem 5.5.1 Let E be a Banach lattice and (hi) ⊂ E be a basis so that the

associated natural projections are positive. Let (Sn) be a complemented BL-filtration

on E and (Tn) a BS-filtration on any Banach space Y . Then, for a martingale

M = (fn, Sn ⊗l Tn)∞n=1 in E⊗̃lY , the following statements are equivalent:

(a) M is convergent in E⊗̃lY .
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(b) For each i ∈ N, there exist unique convergent martingales (x(n)
i , Sn)∞n=1 and

(y(n)
i , Tn)∞n=1 in E and Y respectively such that, for each n ∈ N, we have

fn =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i ,

where x(n)
i = Sn(hi) for each i, n ∈ N and the series

∑∞
i=1 hi ⊗

(
limn→∞ y

(n)
i

)
converges in E⊗̃lY .

In the case where (hi) is normalized, the sequence (limn→∞ y
(n)
i )∞i=1 ⊂ Y is weakly

null.

Proof. (a)⇒(b) Let M = (fn, Sn ⊗l Tn)∞n=1 converge to f ∈ E⊗̃lY . Theorem 5.4.3

implies that f has a unique representation f =
∑∞

i=1 hi ⊗ yi. We claim that (yi) ⊂⋃∞
i=1R(Ti). Indeed, Corollary 3.2.7, Theorem 3.4.5 and the left injectivity of the

l-norm imply

f ∈
∞⋃
i=1

R(Si ⊗l Ti) =
∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti) ↪→ E ⊗̃l

∞⋃
i=1

R(Ti).

Another application of Theorem 5.4.3 shows that f also has a unique representation

f =
∑∞

i=1 hi ⊗ ŷi ∈ E ⊗̃l
⋃∞

i=1R(Ti). Since E ⊗̃l
⋃∞

i=1R(Ti) is a closed subspace of

E ⊗̃l Y , it follows that ŷi = yi for each i ∈ N and (yi) ⊂
⋃∞

i=1R(Ti).

For each n ∈ N, we have fn = (Sn ⊗l Tn)(
∑∞

i=1 hi ⊗ yi). Now let x(n)
i := Sn(hi)

and y
(n)
i := Tn(yi) for each i, n ∈ N. Then

fn =
∞∑
i=1

Sn(hi)⊗ Tn(yi) =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i

where (x(n)
i , Sn)∞n=1 ∈ Mnc(E, Ti) by Proposition 3.2.11 and, by Corollary 3.2.7,

(y(n)
i , Tn)∞n=1 ∈ Mnc(Y, Si) for each i ∈ N. Since limn→∞ y

(n)
i = yi for each i ∈ N,

the series
∑∞

i=1 hi ⊗ (limn→∞ y
(n)
i ) converges in E⊗̃lY .

(b)⇒(a) For each i ∈ N, let yi = limn→∞ y
(n)
i . Then

∑∞
i=1 hi ⊗ yi converges in

E⊗̃lY . Corollary 3.2.7 implies that (yi) ⊂
⋃∞

i=1R(Ti). Assume (Si) is complemented

in E by the contractive projection S∞ : E → E. By the left injectivity of the l-norm,⋃∞
i=1R(Si) ⊗̃l

⋃∞
i=1R(Ti) is a closed subspace of E⊗̃lY . Thus, Lemma 3.4.1 and

Theorem 3.4.5 imply

f :=
∞∑
i=1

(S∞hi)⊗ yi

= (S∞ ⊗l idY )

( ∞∑
i=1

hi ⊗ yi

)
∈

∞⋃
i=1

R(Si) ⊗̃l

∞⋃
i=1

R(Ti) =
∞⋃
i=1

R(Si ⊗l Ti).
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Also, for each n ∈ N, we have

fn =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i =

∞∑
i=1

Sn(S∞hi)⊗ Tn(yi) = (Sn ⊗l Tn)f.

It now follows from Corollary 3.2.7 that M := (fn, Sn ⊗l Tn)∞n=1 is a convergent

martingale.

To complete the proof, let ε > 0. Because the series
∑∞

i=1 hi ⊗ (limn→∞ y
(n)
i )

converges in E⊗̃lY , there exists N > 0 so that n ≥ m ≥ N implies∥∥∥∥∥
n∑

i=m

〈(
lim

n→∞
y

(n)
i

)
, y∗
〉
hi

∥∥∥∥∥ ≤
∥∥∥∥∥sup

{∣∣∣∣∣
n∑

i=m

〈(
lim

n→∞
y

(n)
i

)
, y∗
〉
hi

∣∣∣∣∣ : ‖y∗‖ ≤ 1

}∥∥∥∥∥ < ε

for each y∗ ∈ Y , ‖y∗‖ ≤ 1. Since infi∈N ‖hi‖ > 0, it follows that (limn→∞ y
(n)
i )∞i=1 is

a weakly null sequence (cf. [93, Chapter I, §3, Lemma 3.1]). ut

The above result can be specialized to:

Theorem 5.5.2 Let (Ω,Σ, µ) denote a finite measure space, (Σn)∞n=1 a filtration,

Y a Banach space, 1 ≤ p <∞ and (hi) any m.d.s. basis of Lp(µ). For a martingale

(fn, Σn) ⊂ Lp(µ, Y ), the following statements are equivalent:

(a) (fn, Σn) is convergent in Lp(µ, Y ).

(b) For each i ∈ N, there exists a unique yi ∈ Y such that, for each n ∈ N, we have

fn =
∞∑
i=1

E(hi |Σn)⊗ yi,

where the series
∑∞

i=1 hi ⊗ yi converges in Lp(µ, Y ).

In the case where (hi) is normalized, the sequence (yi) ⊂ Y is weakly null.

Proof. In the case where E = Lp(µ) (1 ≤ p < ∞), Sn = E( · |Σn) (where (Σn) is a

filtration in the classical sense) and Tn = idY for each n ∈ N, the proof follows as a

simple consequence of Theorem 5.5.1. ut

The above result bears a strong resemblance to Corollary 3.2.7, but with the

added structure of a Y -basis. With the above characterization of convergent mar-

tingales at hand, we can produce an analogue of Theorem 5.3.3, which characterizes

the Radon Nikodým property.

Theorem 5.5.3 Let Y be a Banach space. Then the following statements are equiv-

alent.

(a) Y has the Radon Nikodým property.



5.5 A unique representation for convergent martingales in the l-tensor product 121

(b) For every reflexive Banach lattice E possessing a basis (hi) ⊂ E with positive

natural projections, and every complemented strictly positive BS-filtration (Si)

on E, we have (fn) ∈ M(E⊗̃lY, Sn ⊗l idY ) if and only if, for each i ∈ N, there

exist unique (x(n)
i , Sn)∞n=1 ∈ Mnc(E,Si) and yi ∈ Y such that, for each n ∈ N,

we have

fn =
∞∑
i=1

x
(n)
i ⊗ y

(n)
i ,

where x(n)
i = Sn(hi) for each i, n ∈ N and the series

∑∞
i=1 hi ⊗ yi converges in

E⊗̃lY .

Proof. (a)⇒(b) Suppose that Y has the Radon Nikodým property. By Theorem

3.5.8, it follows that M(E⊗̃lY, Si⊗l idY ) = Mnc(E⊗̃lY, Si⊗l idY ) for every separable

reflexive Banach lattice E and every complemented, strictly positive BS-filtration

(Si) on E. Certainly, if E possesses a basis, then it is separable. Thus, (b) holds by

Theorem 5.5.1.

(b)⇒(a) By Theorem 5.5.1, M(E⊗̃lY, Si⊗l idY ) = Mnc(E⊗̃lY, Si⊗l idY ) for every

reflexive Banach lattice E possessing a basis (hi) ⊂ E with positive natural projec-

tions, and every complemented, strictly positive BS-filtration (Si) on E. Since Lp(µ)

is a reflexive Banach lattice for 1 < p <∞, possessing such a basis, (a) follows im-

mediately from Theorem 1.3.10. ut

Using similar reasoning as in the proof of Theorem 5.3.6, one can deduce an

analogous characterization of the UMD property.

Theorem 5.5.4 Let 1 < p < ∞ and Y be a Banach space. Then the following

statements are equivalent:

(a) Y is a UMD space.

(b) For every choice of signs (θk) and every martingale difference sequence (dk) ⊂
Lp(µ, Y ), with supn∈N ‖

∑n
k=1 dk‖p <∞, there exist for each i ∈ N, a martingale

difference sequence (d(k)
i )∞k=1 ⊂ Lp(µ), with

∑∞
k=1 d

(k)
i convergent, and unique

yi ∈ Y such that, for each k ∈ N, we have

dk =
∞∑
i=1

θkd
(k)
i ⊗ yi,

where d(k)
i = E(hi |Σk)−E(hi |Σk−1) for each i, k ∈ N and the series

∑∞
i=1 hi⊗yi

converges in Lp(µ, Y ).
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5.6 Notes and remarks

Let E denote a Banach lattice, Y a Banach space and suppose that (hi) ⊂ E is a

Y -basis of E⊗̃lY .

Although Theorem 5.5.1 provides a unique description of convergent martingales,

it is not as descriptive as its non-unique counterpart, Theorem 5.3.1. To make The-

orem 5.5.1 more informative, we need a characterization of the sequences (yi) ⊂ Y

for which the series
∑∞

i=1 hi ⊗ yi converges in E⊗̃lY .

In the case where (hi) is normalized (or semi-normalized), it is necessary that (yi)

be weakly null, by Theorem 5.5.1. This, however, is far from a sufficient condition

for the convergence of
∑∞

i=1 hi ⊗ yi in E⊗̃lY . Indeed, if (yi) is weakly null, then

(θiyi) is weakly null for every choice of signs (θi). Consequently, if ‘(yi) weakly null’

were to be a sufficient condition for the convergence of
∑∞

i=1 hi ⊗ yi in E⊗̃lY , then

every
∑∞

i=1 hi ⊗ yi ∈ E⊗̃lY would converge unconditionally. Thus, any normalized

Y -basis of E⊗̃lY would be unconditional. In the case of the normalized Haar system,

Corollary 5.4.4 would imply that every Banach space is a UMD space, which is false.

On the other hand, define ĥi = (2−i/‖hi‖)hi for each i ∈ N. Then (ĥi) ⊂ E is

a Y -basis of E⊗̃lY and
∑∞

i=1 |ĥi| converges in E. By Theorem 5.2.2, it follows that

if (yi) ⊂ Y is a null sequence, then
∑∞

i=1 ĥi ⊗ yi converges in E⊗̃lY . In fact, there

exists an injective linear operator Φ : c0(Y ) → E⊗̃lY , of norm less than one, defined

by Φ(yi) =
∑∞

i=1 ĥi ⊗ yi.

Now suppose that E is a (separable) reflexive Banach lattice and Y is a reflexive

Banach space. Since E is a separable Banach lattice with order continuous dual and

Y has the Radon Nikodým property, we have (E⊗̃lY )∗ = E∗⊗̃lY
∗, by Theorem

3.5.9. Consider the adjoint Φ∗ : E∗⊗̃lY
∗ → `1(Y ), defined by f 7→ (Tfhi)∞i=1, where

f 7→ Tf denotes the canonical isometry (E⊗̃lY )∗ → Lcas(E, Y ∗). The map Φ∗ bears

a resemblance to the operator T : X∗ → `1 in Theorem 1.4.2(i). However, unlike T ,

Φ∗ does not always enjoy the property of compactness. The compactness of T arises

from the Schur property of `1. In constrast, it is necessary for Y to have the Schur

property in order for `1(Y ) to have the Schur property.

By taking the double adjoint of Φ and applying Theorem 3.5.9 again, we may

extend Φ to Φ∗∗ : `∞(Y ) → E⊗̃lY . Consequently, if (yi) ∈ `∞(Y ), then the series∑∞
i=1 ĥi⊗yi converges unconditionally in E⊗̃lY . Thus, the condition ‘(yi) a bounded

sequence’ is not necessary for the convergence of
∑∞

i=1 ĥi ⊗ yi in E⊗̃lY .
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Martingale difference sequences

6.1 Introduction

We turn our attention to generalized martingale difference sequences. In Section 6.2,

we study the notion of a martingale difference sequence (m.d.s. ) in a Banach space Y .

This notion is slightly stronger than that of a basic sequence, since every martingale

difference sequence is a basic sequence, but a basic sequence is only a martingale

difference sequence in its closed linear span. Our aim is to study unconditional

martingale difference sequences.

In section 6.3, we introduce the space of ‘m.d.s. multipliers’, associated with a

m.d.s. (di) ⊂ Y . This is the sequence space

A(di) :=

{
(αi) ⊂ R :

∞∑
i=1

αidi converges in Y

}

endowed with the norm ‖ · ‖A(di) , defined by ‖(αi)‖A(di) = supn∈N ‖
∑n

i=1 αidi‖ for

each (αi) ∈ A(di). The unit vectors (ei) form a basis of A(di) that is equivalent to

(di). Using the martingale techniques developed in Chapter 3, we are able to show

that (di) is an unconditional m.d.s. if and only if A(di) can be renormed so that it

becomes an order continuous Banach lattice under the ordering (αi) ≥ 0 ⇔ αi ≥ 0,

for each i ∈ N. We denote this Banach lattice again by A(di) and call it ‘the Banach

lattice of unconditional m.d.s. multipliers’.

Next, in Section 6.4, we consider the l-tensor product of two martingale differ-

ence sequences. Using the technique of Gelbaum and Gil de Lamadrid in [49], we

are able to show that if (ξi) is a m.d.s. in the Banach lattice E, relative to a positive

BS-filtration, and (ηj) is a m.d.s. in the Banach space Y , then (ξi⊗ηj) is a m.d.s. in

E⊗̃lY , provided the sequence (ξi ⊗ ηj) is ordered in an appropriate manner. Conse-

quently, if 1 ≤ p <∞, (di) ⊂ Lp(µ) is a classical m.d.s. basis and (yj) ⊂ Y a basis,

then (di ⊗ yj) is a basis of Lp(µ, Y ).
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If (di) is an unconditional m.d.s. in a Banach lattice E, then A(di) is a Banach

lattice whose order structure may differ from that of E. In Section 6.5, we study

the relationship between the ordering in A(di) and the ordering in E. To this end,

we identify a property possessed by a large class of martingale difference sequences,

called ‘random positive equivalence’. We show, using the Maurey-Khinchin inequal-

ity (cf. [74, 36, 72]), that every unconditional m.d.s. in a Banach lattice with cotype

q < ∞ has random positive equivalence. In this case, there exists a regular, order

continuous mapping R : A(di) → `q(E), defined by Rei = ei ⊗ di for each i ∈ N.

The regular map R : A(di) → `q(E) is useful when we consider the l-tensor

product of unconditional martingale difference sequences in Section 6.6. As already

mentioned, Aldous showed in [1] that, if Lp(µ, Y ) (1 < p < ∞) possesses an un-

conditional basis, then Y must be a UMD (and thus, reflexive) space. This result

suggests that if (ξi) is an unconditional m.d.s. in the Banach lattice E, relative to

a positive BS-filtration, and (ηj) is an unconditional m.d.s. in the Banach space Y ,

then (ξi ⊗ ηj) need not be an unconditional m.d.s. in E⊗̃lY . In view of this, we

consider the the space A(ξi)⊗̃lA
(ηj).

Using the result of Popa (Theorem 2.5.2), we are able to show that (ei ⊗ ej)

is an unconditional basis of A(ξi)⊗̃lA
(ηj), provided (ξi) ⊂ E and (ηj) ⊂ Y are

unconditional. Consequently, the basis (ei⊗ej) ⊂ A(ξi)⊗̃lA
(ηj) need not be equivalent

to the m.d.s. (ξi ⊗ ηj) ⊂ E⊗̃lY . However, if (ξi) is also a boundedly complete basis

of E, and E has type p and cotype q, then we have continuous embeddings

`p(E)⊗̃lY ⊃ [(ei ⊗ ξi)⊗ ηj ] → A(ξi)⊗̃lA
(ηj) → [(ei ⊗ ξi)⊗ ηj ] ⊂ `q(E)⊗̃lY,

defined by (ei ⊗ ξi) ⊗ ηj 7→ ei ⊗ ej 7→ (ei ⊗ ξi) ⊗ ηj for each i, j ∈ N. The sequence

((ei ⊗ ξi) ⊗ ηj) is an unconditional m.d.s. in both `p(E)⊗̃lY and `q(E)⊗̃lY , but

does not span either of these spaces. In the case when E has type and cotype 2,

the m.d.s. ((ei ⊗ ξi) ⊗ ηj) ⊂ `2(E)⊗̃lY is equivalent to the unconditional basis

(ei ⊗ ej) ⊂ A(ξi)⊗̃lA
(ηj).

The results in this chapter are original and have appeared in [29]. We warn the

reader that [29] contains a mathematical error. Consequently, a corrigendum [27]

has been published. See the Notes and remarks section at the end of this chapter

for more information on where we went wrong.
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6.2 Martingale difference sequences in a Banach space

The filtrations that we encounter in this chapter are not necessarily uniformly

bounded by 1, but by some constant K. We, therefore, need generalized notions

of a BS-filtration and a BL-filtration, as introduced in Chapter 3.

Definition 6.2.1 Let E be a Banach lattice and Y a Banach space.

(a) A sequence (Ti) of projections on Y with the property that Ti∧j = TiTj , for each

i, j ∈ N, is called a K-BS-filtration on Y if supi∈N ‖Ti‖ = K < ∞. Note that

1-BS-filtration is simply a BS-filtration.

(b) A sequence (Ti) of positive projections on E, with R(Ti) a closed Riesz subspace

of E and Ti∧j = TiTj for each i, j ∈ N, is called a M -BL-filtration on E if

supi∈N ‖Ti‖ = M <∞. Note that 1-BL-filtration is simply a BL-filtration.

(c) If (Ti) is a K-BS-filtration (M -BL-filtration) on Y (on E), then (fi, Ti) is called

a K-martingale (M -martingale) on Y (on E) if Tifj = fi for all i ≤ j. A 1-

martingale will simply be referred to as a martingale.

The notions of a ‘positive’ and ‘strictly positive’ K-BS-filtration on a Banach

lattice are defined in a similar manner to Definition 3.3.1. The above definition

extends to collections of projections indexed by any directed set, in an obvious

manner. In Chapter 7, we will encounter M -BL-filtrations indexed by directed sets

of stopping times.

A notational change in the proofs of Proposition 3.2.6 and Corollary 3.2.7 shows

that the same results hold for K-BS-filtrations and K-martingales, namely:

Proposition 6.2.2 Let Y be a Banach space and (Ti) a K-BS-filtration on Y . Then

f ∈
⋃∞

i=1R(Ti) if and only if limi→∞ ‖Tif − f‖ → 0.

Corollary 6.2.3 Let Y be a Banach space and (fi, Ti) a K-martingale in Y . Then

(fi, Ti) converges to f if and only if f ∈
⋃∞

i=1R(Ti) and fi = Tif for all i ∈ N.

We now recall the classical definition of a martingale difference sequence. Let

(di) ⊂ Lp(µ) be a sequence and σ(d1, . . . , di) denote the smallest σ-algebra allowing

d1, . . . , di to be measurable. Then, as mentioned earlier, (di) is called a martingale

difference sequence (m.d.s. ) if

E(di+1 | σ(d1, . . . , di)) = 0 (6.1)

for each i ∈ N. Notice that (σ(d1, . . . , di))∞i=1 is a filtration and

di+1 ∈ R
(

E
(
· | σ(d1, . . . , di+1)

)
− E

(
· | σ(d1, . . . , di)

))
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for each i ∈ N. Conversely, if (Σi) is a filtration and (gi) ⊂ Lp(µ) is a sequence such

that gi+1 ∈ R(E( · | Σi+1)−E( · | Σi)) for each i ∈ N, then it follows from (1.2) that

0 =
∫

A
E(gi+1 | Σi)dµ =

∫
A

E(gi+1 | σ(g1, . . . , gi))dµ for all A ∈ σ(g1, . . . , gi),

which implies (gi) satisfies (6.1) and is, therefore, an m.d.s. . Using this characteri-

zation, we introduce an abstract notion for a m.d.s. in a Banach space.

Let (Ti) be a K-BS-filtration and i < j, then Tj − Ti is a projection due to the

fact that the Ti’s commute. This justifies the following definition.

Definition 6.2.4 Let (Ti) be a K-BS-filtration on a Banach space Y . Then the

difference projections (Di) relative to (Ti) are given by D1 = T1 and Di = Ti − Ti−1

for i ≥ 2.

It is then clear that Ti =
∑i

k=1Dk for each i ∈ N and that DiDj = 0 whenever

i 6= j.

Definition 6.2.5 Let (Di) be the difference projections relative to a K-BS-filtration

(Ti) on a Banach space Y . Then a sequence (di) is called a K-martingale difference

sequence (K-m.d.s. ) relative to (Ti) if di ∈ R(Di) for each i ∈ N. A 1-m.d.s. will

simply be referred to as a m.d.s. .

A sequence (di) ⊂ Lp(µ) obeying (6.1) will be called a classical m.d.s. and is

clearly a special case of a m.d.s. in the above definition.

Notice that Didj = dj whenever i = j andDidj = 0 whenever i 6= j. The sequence

of partial sums fi =
∑i

k=1 dk, for each i ∈ N, form a K-martingale with respect to

(Ti). Conversely, if (fi, Ti) is a K-martingale then the sequence of differences, defined

by d1 = f1 and di = fi − fi−1 for i ≥ 2, forms a K-m.d.s. relative to (Ti).

If (Di) is the sequence of difference projections relative to a K-BS-filtration (Ti)

on a Banach space Y with
⋃∞

i=1R(Ti) = Y then, for each x ∈ Y , Proposition 6.2.2

asserts that (
∑i

k=1Dk)x = Tix → x as i → ∞. Thus
∑∞

k=1Dkx = x, which gives

Y = ⊕∞i=1R(Di).

Suppose that (di) is a K-m.d.s. in a Banach space Y relative to (Ti) and that (αi)

is a sequence of scalars. Then the partial sums fi =
∑i

k=1 αkdk form a K-martingale

with respect to (Ti). If i < j, then

‖fi‖ =

∥∥∥∥∥
i∑

k=1

αkdk

∥∥∥∥∥ =

∥∥∥∥∥Ti

(
j∑

k=1

αkdk

)∥∥∥∥∥ ≤ K

∥∥∥∥∥
j∑

k=1

αkdk

∥∥∥∥∥ = K‖fj‖.

Hence, (di) is a basic sequence with basis constant K. On the other hand, if (xi) is a

basic sequence in a Banach space Y with basis constant K, then (xi) is a K-m.d.s. in
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[xi], relative to the associated natural projections (Pi) on [xi]. In short, we have the

following result:

Proposition 6.2.6 Every K-m.d.s. in a Banach space is a basic sequence with basis

constant K. Also, every basic sequence in a Banach space with basis constant K is

a K-m.d.s. in its closed linear span.

If (di) is a K-m.d.s. relative to (Ti), it is easily observed that [di] ⊂
⋃∞

i=1R(Ti)

which is, in general, necessarily strict. Indeed, consider the m.d.s. of Rademacher

functions (ri) in Lp(µ) for 1 ≤ p <∞. Since (ri) is a block basis of the Haar system,

it follows that
⋃∞

i=1R(E( · |σ(r1, . . . , ri))) = Lp(µ). On the other hand, it follows

from Khinchin’s inequality (Theorem 1.4.6), that [ri] is isomorphic to `2, in which

case, the inclusion [ri] ⊂
⋃∞

i=1R(E( · |σ(r1, . . . , ri))) is certainly strict. The next

result characterizes the situation.

Proposition 6.2.7 Let (di) be a K-m.d.s. in a Banach space Y relative to (Ti).

Then [di] =
⋃∞

i=1R(Ti) if and only if rank (Ti) = i for each i ∈ N.

Proof. Suppose [di] =
⋃∞

i=1R(Ti) and let (Di) be the difference projections relative

to (Ti), then it follows from the above discussion that
⋃∞

i=1R(Ti) = ⊕∞i=1R(Di).

On the other hand, for f ∈ [di], we have a unique basis expansion so that f =∑∞
i=1 αidi =

∑∞
i=1Dif . The uniqueness of both these expansions implies αidi = Dif

for each i ∈ N so that Tif =
∑i

k=1 αkdk. Thus, (Ti) are just the natural projections

associated to the basic sequence (di). But then rank (Ti) = i for each i ∈ N.

Conversely, it is sufficient to show
⋃∞

i=1R(Ti) ⊂ [di], since the reverse inclusion

is always true. Since the Ti’s have increasing ranges and rank (Ti) = i for each i ∈ N,

the difference projections (Di) relative to (Ti) are all of rank one. As before, f ∈⋃∞
i=1R(Ti) has a unique expansion f =

∑∞
i=1Dif . The fact that dim (R(Di)) = 1

implies there exists a scalar αi such that Dif = αidi for each i ∈ N. It follows that∑n
i=1Dif =

∑n
i=1 αidi ∈ span (di) for each n ∈ N, which completes the proof. ut

It is apparent from the above proof that, in the case where [di] ⊂
⋃∞

i=1R(Ti), the

restriction Ti|[di] of Ti to [di] is just the i-th natural projection on [di], associated to

the basic sequence (di), for each i ∈ N.

In view of the fact that every K-m.d.s. is a basic sequence, we formulate the

analogous notion of an unconditional K-m.d.s. .

Definition 6.2.8 Let (di) be a K-m.d.s. in a Banach space Y . Then (di) is said

to be unconditional if there exists a constant M > 0 such that for every choice of

scalars (αi), signs (θi) and natural numbers n, we have
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n∑

i=1

θiαidi

∥∥∥∥∥ ≤M

∥∥∥∥∥
n∑

i=1

αidi

∥∥∥∥∥ .
The smallest constant M for which the above inequality holds is called the uncon-

ditional constant of (di).

Note that M in the above definition is never smaller than K. It is evident that if

(di) is an unconditional K-m.d.s. , then it forms an unconditional basis of [di] with

unconditional constant M .

6.3 The Banach lattice of unconditional m.d.s. multipliers

Our goal in this section is to characterize the unconditionality of a K-m.d.s. in terms

of a sequence space. We first recall some basic definitions from [93].

Definition 6.3.1 Let X and Y be Banach spaces.

(a) A sequence (xi) ⊂ X is said to dominate a sequence (yi) ⊂ Y provided for all

sequences of scalars (αi) we have

∞∑
i=1

αixi converges ⇒
∞∑
i=1

αiyi converges.

In this case we shall use the notation (xi) < (yi).

(b) We shall say that (xi) strictly dominates (yi) if there exists a bounded linear

mapping T : [xi] → [yi] such that Txi = yi for each i ∈ N. In this case we shall

write (xi) � (yi).

(c) The sequences (xi) and (yi) are said to be equivalent if (xi) < (yi) < (xi) and

strictly equivalent if (xi) � (yi) � (xi). In these cases, we shall use the notations

(xi) ∼ (yi) and (xi) ≈ (yi) respectively.

It is immediate that if (xi) ≈ (yi) then [xi] is isomorphic to [yi] under the bounded

linear map that takes xi to yi for each i ∈ N. Strict domination clearly implies domi-

nation and strict equivalence clearly implies equivalence, but the reverse implications

need not be true (cf. [93, pp. 69–74]). The following result is taken from [93, Chapter

I, §8, Theorem 8.1].

Proposition 6.3.2 Let X and Y be Banach spaces and (xi) ⊂ X, (yi) ⊂ Y be

sequences. Then the following statements hold:

(a) We have (xi) � (yi) if and only if there exists a constant K > 0 such that

‖
∑n

i=1 αiyi‖ ≤ K‖
∑n

i=1 αixi‖ holds for every choice of scalars α1, α2, . . . , αn.
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(b) If (xi) is a basic sequence, then (xi) < (yi) if and only if (xi) � (yi).

(c) If (xi) and (yi) are both basic sequences, then (xi) ∼ (yi) if and only if (xi) ≈ (yi).

Proof. (a) Suppose (xi) � (yi), then there exists a bounded linear map u : [xi] →
[yi] such that u(xi) = yi for each i ∈ N. Thus, ‖

∑n
i=1 αiyi‖ ≤ K‖

∑n
i=1 αixi‖ holds

for every choice of scalars α1, α2, . . . , αn with K = ‖u‖.
Conversely, define a linear map u : span (xi) → [yi] by u(

∑n
i=1 αixi) =

∑n
i=1 αiyi.

Then u is well defined since
∑n

i=1 αixi = 0 implies ‖u(
∑n

i=1 αixi)‖ = ‖
∑n

i=1 αiyi‖ ≤
K‖

∑n
i=1 αixi‖ = 0. Moreover, for arbitrary

∑n
i=1 αixi ∈ span (xi), we have

‖u(
∑n

i=1 αixi)‖ ≤ K‖
∑n

i=1 αixi‖ so that u is bounded. Taking the unique con-

tinuous extension of u to [xi] completes the proof of (a).

(b) Only the implication (xi) < (yi) ⇒ (xi) � (yi) requires a proof. Since (xi) is a

basis of [xi], we have the convergence of u(x) :=
∑∞

i=1 αiyi for each x =
∑∞

i=1 αixi ∈
[xi]. The map u : [xi] → [yi] defined in this manner is linear and maps xi to yi for

each i ∈ N. Moreover, we have u(x) = limn→∞ un(x), where un(x) :=
∑n

i=1 αiyi for

all x =
∑∞

i=1 αixi ∈ [xi]. Each un is continuous because

‖un(x)‖ =

∥∥∥∥∥
n∑

i=1

x∗i (x)yi

∥∥∥∥∥ ≤
n∑

i=1

|x∗i (x)|‖yi‖ ≤

(
n∑

i=1

‖x∗i ‖‖yi‖

)
‖x‖.

Here, (x∗i ) ⊂ [xi]∗ denotes the functionals biorthogonal to the basis (xi), i.e.

〈xi, x
∗
j 〉 = δij for all i, j ∈ N. Consequently, an application of the Principle of Uniform

Boundedness shows that u is continuous.

(c) Apply (b) to (xi) < (yi) < (xi). ut

Definition 6.3.3 Let (xi) be a sequence in a Banach space Y such that xi 6= 0 for

each i ∈ N. We define the normed linear space of sequences of coefficients of (xi) to

be

A(xi) =

{
(αi) ⊂ R :

∞∑
i=1

αixi converges in Y

}
,

endowed with the norm ‖ · ‖A(xi) , defined by ‖(αi)‖A(xi) = supn∈N ‖
∑n

i=1 αixi‖ for

each (αi) ∈ A(xi).

The following result is taken from [93, Chapter I, §3, Proposition 3.1] and [93,

Chapter I, §8, Proposition 8.1].

Theorem 6.3.4 Let (xi) be a sequence in a Banach space Y such that xi 6= 0 for

each i ∈ N. Then the following statements hold:
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(a) A(xi) is a Banach space.

(b) The unit vectors ei = (δik)∞k=1 (i = 1, 2, . . .) constitute a basis of A(xi) such that

(ei) ∼ (xi) and (ei) � (xi).

Proof. (a) Observe that, for (αi) ∈ A(xi), the sequence (‖
∑n

i=1 αixi‖)∞n=1 con-

verges. Therefore, ‖(αi)‖A(xi) is finite. Moreover, since xi 6= 0 for each i ∈ N, it

follows that ‖(αi)‖A(xi) = 0 ⇔ (αi) = 0 so that ‖ · ‖A(xi) is indeed a norm.

Select a Cauchy sequence ((α(k)
i ))∞k=1 from A(xi). For every ε > 0, there exists

N ∈ N such that m ≥ k ≥ N implies∥∥∥(α(m)
i )− (α(k)

i )
∥∥∥

A(xi)
= sup

n∈N

∥∥∥∥∥
n∑

i=1

(α(m)
i − α

(k)
i )xi

∥∥∥∥∥ < ε.

Consequently,

∥∥∥(α(m)
n − α(k)

n )xn

∥∥∥ ≤ ∥∥∥∥∥
n∑

i=1

(α(m)
i − α

(k)
i )xi

∥∥∥∥∥+

∥∥∥∥∥
n−1∑
i=1

(α(m)
i − α

(k)
i )xi

∥∥∥∥∥ < 2ε.

Since xi 6= 0 for each i ∈ N, we may write∣∣∣(α(m)
n − α(k)

n )
∣∣∣ < 2ε/‖xn‖

for each n ∈ N. Thus, for each n ∈ N, the sequence (α(k)
n )∞k=1 is convergent to a

scalar, αn say. Since ‖
∑n

i=1(α(m)
i −α(k)

i )xi‖ < ε for each n ∈ N it follows, by taking

the limit as m→∞, that∥∥∥∥∥
n∑

i=1

(αi − α
(k)
i )xi

∥∥∥∥∥ < ε

for each n ∈ N. Then, for k ≥ N and l ∈ N, we obtain∥∥∥∥∥
n+l∑

i=n+1

αixi

∥∥∥∥∥ =

∥∥∥∥∥
n+l∑

i=n+1

(αi − α
(k)
i )xi +

n+l∑
i=n+1

α
(k)
i xi

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

i=1

(αi − α
(k)
i )xi

∥∥∥∥∥+

∥∥∥∥∥
n+l∑
i=1

(αi − α
(k)
i )xi

∥∥∥∥∥+

∥∥∥∥∥
n+l∑

i=n+1

α
(k)
i xi

∥∥∥∥∥
< 2ε+

∥∥∥∥∥
n+l∑

i=n+1

α
(k)
i xi

∥∥∥∥∥ .
Since Y is complete and the series

∑∞
i=1 α

(k)
i xi converges, it follows that the series∑∞

i=1 αixi also converges, so that (αi) ∈ A(xi). Lastly, by the above,

∥∥∥(αi)− (α(k)
i )
∥∥∥

A(xi)
= sup

n∈N

∥∥∥∥∥
n∑

i=1

(α(k)
i − αi)xi

∥∥∥∥∥ ≤ ε
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and the proof of (a) is complete.

(b) If (αi) ∈ A(xi), then
∑∞

i=1 αixi converges and∥∥∥∥∥(αi)−
m∑

i=1

αiei

∥∥∥∥∥ = sup
m+1≤n<∞

∥∥∥∥∥
n∑

i=m+1

αixi

∥∥∥∥∥→ 0

as m → ∞. Thus, the series
∑∞

i=1 αiei converges to (αi). On the other hand, if∑∞
i=1 αiei = 0, then

‖(αi)‖A(xi) = sup
n∈N

∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥ ≤ lim
n→∞

sup
1≤k≤n

∥∥∥∥∥
k∑

i=1

αixi

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥
n∑

i=1

αiei

∥∥∥∥∥
A(xi)

=

∥∥∥∥∥
∞∑
i=1

αiei

∥∥∥∥∥
A(xi)

= 0,

so that αi = 0 for each i ∈ N. Thus, every (αi) ∈ A(xi) has a unique expansion∑∞
i=1 αiei. Consequently, (ei) is a basis of A(xi).

We have already seen that the convergence of
∑∞

i=1 αixi implies the convergence

of
∑∞

i=1 αiei. For the reverse implication, observe the inequality∥∥∥∥∥
n+m∑

i=n+1

αixi

∥∥∥∥∥ ≤ sup
n+1≤k≤n+m

∥∥∥∥∥
k∑

i=n+1

αixi

∥∥∥∥∥ =

∥∥∥∥∥
n+m∑

i=n+1

αiei

∥∥∥∥∥
A(xi)

for each n,m ∈ N. Thus, the convergence of
∑∞

i=1 αiei implies the convergence of∑∞
i=1 αixi by the completeness of Y . Thus, (ei) ∼ (xi). An application of Proposition

6.3.2(b) completes the proof. ut

Definition 6.3.5 If Y is a Banach space and (xi) ⊂ Y is a sequence, then the map

from A(xi) into Y , given by (αi) 7→
∑∞

i=1 αixi, will be referred to as the co-ordinate

map.

It is evident that the co-ordinate map for any sequence is linear and of norm

one. If (xi) is a basic sequence, Theorem 6.3.4 and Proposition 6.3.2(c) imply that

(ei) ≈ (xi). Thus, A(xi) is isomorphic to [xi] under the co-ordinate map. We shall

mainly consider A(di) where (di) is a K-m.d.s. (and thus a basic sequence).

Definition 6.3.6 Let (di) be a K-m.d.s. in a Banach space. The order on A(di),

defined by

(αi) ≥ 0 ⇐⇒ αi ≥ 0 for each i ∈ N,

is called the sequential ordering induced by (di). The set

A
(di)
+ := {(αi) ∈ A(di) : (αi) ≥ 0}

is called the positive cone induced by (di).
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Evidently, λA(di) ⊂ A(di) where λ ∈ R+, A(di) + A(di) ⊂ A(di) and A
(di)
+ ∩

(−A(di)
+ ) = {0}. Thus, (A(di), A

(di)
+ ) is a partially ordered vector space.

Lemma 6.3.7 Suppose that (di) is an unconditional K-m.d.s. , then A(di) is a

Dedekind complete Riesz space under the sequential ordering. Furthermore, A(di)

can be renormed so that it becomes a Dedekind complete Banach lattice with the unit

vectors (ei) as an unconditional basis.

Proof. Let (αi) ∈ A(di). By Theorem 1.4.2, the unconditional convergence of∑∞
i=1 αidi ∈ [di] implies that the series

∑∞
i=1 |αi|di,

∑∞
i=1 α

+
i di and

∑∞
i=1 α

−
i di

also converge in [di], where α+
i := max{0, αi} and α−i := max{0,−αi}. Hence,

(|αi|), (α+
i ), (α−i ) ∈ A(di). It is clear from the definition of the sequential ordering

that

|(αi)| = (αi) ∨ (−(αi)) = (αi ∨ (−αi)) = (|αi|) ∈ A(di).

Consequently, A(di) is a Riesz space. In addition, we have (αi) = (α+
i ) − (α−i ) and

(α+
i )∧ (α−i ) = 0, thus (αi)+ = (α+

i ) and (αi)− = (α−i ). Moreover, the unconditional

convergence of
∑∞

i=1 αidi ∈ [di] also implies the convergence of
∑∞

i=1 γidi whenever

|γi| ≤ |αi| for each i ∈ N (cf. [71, Proposition 1.c.6.]). Thus, (γi) ∈ A(di) provided

that |γi| ≤ |αi| for each i ∈ N. It is now evident from the Dedekind completeness of

R that (A(di), A
(di)
+ ) is a Dedekind complete Riesz space.

Since (ei) ≈ (di), with (di) an unconditional basic sequence, it follows that (ei)

is an unconditional basis of A(di). It follows from Proposition 1.4.9 that, for all

(αi) ∈ A(di) and (λi) ∈ `∞, we have ‖
∑∞

i=1 λiαiei‖ ≤ M‖(λi)‖∞ ‖
∑∞

i=1 αiei‖ where

M is the unconditional constant of (ei). Thus, if (αi), (βi) ∈ A(di) with |(αi)| ≤ |(βi)|,
it follows that ‖(αi/βi)‖∞ ≤ 1. Consequently,∥∥∥∥∥

∞∑
i=1

αiei

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
i=1

(αi/βi)βiei

∥∥∥∥∥ ≤M

∥∥∥∥∥
∞∑
i=1

βiei

∥∥∥∥∥ .
Thus, |(αi)| ≤ |(βi)| implies ‖(αi)‖ ≤ M‖(βi)‖, i.e. A(di) is a partially ordered

Banach space. Define ‖ · ‖0 on A(di) by

‖(αi)‖0 = sup{‖(βi)‖ : |(βi)| ≤ |(αi)|},

for each (αi) ∈ A(di). Then it is readily verified that ‖ · ‖0 is an equivalent norm on

A(di) and (A(di), A
(di)
+ , ‖ · ‖0) is a Dedekind complete Banach lattice. ut

If (di) is an unconditional K-m.d.s. in a Banach lattice E, we shall denote the

Dedekind complete Banach lattice obtained by renorming A(di) again by A(di). Note
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that, after renorming, the unit vectors (ei) are now an unconditional basis of A(di)

with unconditional constant one and the co-ordinate map from A(di) onto [di] is still

of norm one. We refer to A(di) as the Banach lattice of m.d.s. multipliers. It should

be clear that A(di) is isomorphic to [di] but not necessarily Riesz isomorphic; in fact,

[di] need not even be a Riesz subspace of E.

Theorem 6.3.8 Let (di) be a K-m.d.s. in a Banach space Y , then (di) is uncondi-

tional if and only if A(di) is an order continuous Banach lattice.

Proof. Suppose that (di) is an unconditional K-m.d.s. . Then Lemma 6.3.7 asserts

that A(di) is a Dedekind complete Banach lattice. It is now sufficient to show that

every positive, order bounded, disjoint sequence in A(di) converges in norm to zero

(cf. [106, Theorem 17.14]).

To this end, let (xk) ⊂ A(di) be a positive disjoint sequence which is order

bounded. By the Dedekind completeness of A(di), it follows that supk xk ∈ A(di).

Let s = supk xk and define the sequence of partial sums (sj) by sj =
∑j

k=1 xk. Since

(xk) is disjoint, we have that sj =
∨j

k=1 xk for each j ∈ N with sj ↑ s. We claim

that sj → s in norm. To see this, for each j ∈ N let

σj =
⋃

1≤k≤j

{
i ∈ N : xk = (α(k)

i ), α(k)
i 6= 0

}
and define the family of projections (Pσj ) on A(di) by Pσj ((γi)) =

∑
i∈σj

γiei for

each (γi) ∈ A(di). By Lemma 6.3.7, we have that (ei) is an unconditional basis of

A(di). Thus, (Pσj ) is a BS-filtration. Now observe

xj ∧ xk = (α(j)
i ) ∧ (α(k)

i ) = (α(j)
i ∧ α(k)

i ) = 0

for j 6= k. Hence α(j)
i ∧ α(k)

i = 0, giving either α(j)
i = 0 or α(k)

i = 0 for each i ∈ N.

Thus, the sequence (α(k)
i )∞k=1 has at most one non-zero element for each i ∈ N.

As a consequence, (sj , Pσj ) is a martingale and Pσj (s) = sj for each j ∈ N, with

s ∈
⋃∞

j=1R(Pσj ). An appeal to Corollary 3.2.7 gives sj → s in norm, which proves

the claim. It is now evident that ‖xk+1‖ = ‖sk+1 − sk‖ → 0, since (sk) is a Cauchy

sequence.

Conversely, suppose that A(di) is an order continuous Banach lattice under the

sequential ordering. Note that the order continuity of the norm on A(di) implies that

A(di) is Dedekind complete. Since A(di) is a Riesz space, we may decompose any

element uniquely as the difference of two disjoint positive elements and so we need

only consider positive elements.
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To this end, let f =
∑∞

i=1 αiei ∈ A
(di)
+ and let (nr)∞r=1 be a strictly increasing

sequence of natural numbers. For each k ∈ N, define xk =
∑k

r=1 αnrenr . Then (xk)

is an increasing sequence which is bounded above by f . The Dedekind completeness

of A(di) implies that xk =
∑k

r=1 αnrenr ↑
∑∞

r=1 αnrenr := x ∈ A(di)
+ . Now (x− xk) ↓

0 and the order continuity of the norm implies ‖x − xk‖ → 0. Hence, the series∑∞
r=1 αnrenr is summable, from which we deduce the unconditional summability of

f =
∑∞

i=1 αiei by Theorem 1.4.2. Thus, (ei) is an unconditional basis of A(di) with

(ei) ≈ (di), which completes the proof. ut

As an immediate consequence of this result, we obtain a familiar characterization

of an unconditional basis that can be found in [93, Chapter II, §16, Proposition 16.2.].

Corollary 6.3.9 Let Y be a Banach space and (xi) ⊂ Y be a basic sequence. Then

(xi) is an unconditional basic sequence if and only if [xi] can be renormed so that it

is an order continuous Banach lattice with order induced by the cone

C
(xi)
+ :=

{ ∞∑
i=1

αixi ∈ [xi] : αi ≥ 0 for each i ∈ N

}
.

Proof. We have that (xi) is a K-m.d.s. in [xi], relative the associated natural pro-

jections. Since (ei) is a basis of A(xi) with (ei) ≈ (xi), it follows that ([xi], C
(xi)
+ )

is Riesz isomorphic to (A(xi), A
(xi)
+ ), provided that (xi) is unconditional. The result

now follows by inducing the (equivalent) norm ‖ · ‖A(xi) on [xi]. ut

6.4 The l-tensor product of martingale difference sequences

Using the idea of Gelbaum and Gil de Lamadrid in [49] for constructing the tensor

product basis with respect to a uniform crossnorm, we construct the l-tensor product

of two martingale difference sequences. This construction resembles the earlier work

on product Schauder decompositions in Section 1.6.

Definition 6.4.1 Let (ξi) and (ηj) be sequences in the Banach spaces X and Y

respectively. Define the square ordering on the sequence of tensors (ξi ⊗ ηj) to be

the ordering of the indices (i, j) along along the squares, i.e., (i1, j1) ≤ (i2, j2) when

one of the following conditions hold:

(a) max{i1, j1} < max{i2, j2},
(b) max{i1, j1} = max{i2, j2} and i1 < i2 or

(c) max{i1, j1} = max{i2, j2} = i1 = i2 and j1 ≥ j2.
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The square ordering on (ξi ⊗ ηj) is illustrated by the diagram after Definition 1.6.2.

Again, we shall use the notation Sk for the set consisting of the first k ordered pairs

of indices (i, j) in the square ordering.

Let E be a Banach lattice and Y a Banach space. Suppose that (ξi) ⊂ E and

(ηj) ⊂ Y are basic sequences with [ξi] a Riesz subspace of E. Since the l-norm is a

reasonable crossnorm, it follows that [ξi]⊗̃l[ηj ] = [ξi ⊗ ηj ]. Moreover, the left order

injectivity of the l-norm implies that [ξi]⊗̃l[ηj ] is a closed subspace of E⊗̃lY .

Proposition 6.4.2 Let (Si) be a positive K1-BS-filtration on the Banach lattice E,

(Tj) be a K2-BS-filtration on the Banach space Y and define the sequence (Pk) by

Pk =


Si ⊗l Ti ; k = i2

Si ⊗l Ti + Sk−i2 ⊗l (Ti+1 − Ti) ; i2 < k ≤ i2 + i+ 1

Si+1 ⊗l Ti+1 − (Si+1 − Si)⊗l T(i+1)2−k ; i2 + i+ 1 < k < (i+ 1)2

for each k ∈ N. Then (Pk) is a K-BS-filtration on E⊗̃lY where K ≤ 3K1K2.

Moreover, if (ξi) and (ηj) are martingale difference sequences relative to (Si) and

(Tj) respectively, then the sequence (ξi⊗ηj) with the square ordering is a K-m.d.s. in

E⊗̃lY relative to (Pk).

Proof. Since (Si) is a positive K-BS-filtration and (Tj) is a K-BS-filtration we have,

for each i ∈ N, that

‖Si ⊗l Ti‖ = ‖Si‖‖Ti‖ ≤ K1K2,

‖Sk−i2 ⊗l (Ti+1 − Ti)‖ = ‖Sk−i2‖‖(Ti+1 − Ti)‖ ≤ 2K1K2

and

‖(Si+1 − Si)⊗l T(i+1)2−k‖ ≤ ‖Si+1 ⊗l T(i+1)2−k‖+ ‖Si ⊗l T(i+1)2−k‖

= ‖T(i+1)2−k‖(‖Si+1‖+ ‖Si‖)

≤ 2K1K2,

from which we deduce supk∈N ‖Pk‖ ≤ 3K1K2. Hence, (Pk) is uniformly bounded on

E⊗̃lY .

Using the fact that (Si) and (Tj) are K-BS-filtrations, we first show that Pk is

a projection for each k ∈ N. The case where k is a perfect square is trivial. For the

case i2 < k ≤ i2 + i+ 1, for some i ∈ N, we have
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P 2
k = (Si ⊗l Ti + Sk−i2 ⊗l (Ti+1 − Ti))

2

= (Si ⊗l Ti)2 + (Si ⊗l Ti)(Sk−i2 ⊗l (Ti+1 − Ti)) +

(Sk−i2 ⊗l (Ti+1 − Ti))(Si ⊗l Ti) + (Sk−i2 ⊗l (Ti+1 − Ti))2

= Si ⊗l Ti + (SiSk−i2)⊗l (TiTi+1 − T 2
i ) +

(Sk−i2Si)⊗l (Ti+1Ti − T 2
i ) + Sk−i2 ⊗l (Ti+1 − Ti)

= Si ⊗l Ti + 0 + 0 + Sk−i2 ⊗l (Ti+1 − Ti)

= Pk.

For the case i2 + i+ 1 < k < (i+ 1)2, for some i ∈ N, we have

P 2
k = (Si+1 ⊗l Ti+1 − (Si+1 − Si)⊗l T(i+1)2−k)2

= (Si+1 ⊗l Ti+1)2 − (Si+1 ⊗l Ti+1)((Si+1 − Si)⊗l T(i+1)2−k)−

((Si+1 − Si)⊗l T(i+1)2−k)(Si+1 ⊗l Ti+1) + ((Si+1 − Si)⊗l T(i+1)2−k)2

= Si+1 ⊗l Ti+1 − (S2
i+1 − Si+1Si)⊗l Ti+1T(i+1)2−k −

(S2
i+1 − SiSi+1)⊗l T(i+1)2−kTi+1 + (Si+1 − Si)⊗l T(i+1)2−k

= Si+1 ⊗l Ti+1 − 2(Si+1 − Si)⊗l T(i+1)2−k + (Si+1 − Si)⊗l T(i+1)2−k

= Si+1 ⊗l Ti+1 − (Si+1 − Si)⊗l T(i+1)2−k

= Pk.

To prove that (Pk) is a K-BS-filtration, we need only show that Pk = PkPk+1 =

Pk+1Pk for each k ∈ N. This presents us with five cases for each i ∈ N: k = i2,

i2 < k < i2 + i+ 1, k = i2 + i+ 1, i2 + i+ 1 < k < (i+ 1)2 − 1 and k = (i+ 1)2 − 1.

The verification of these cases is a tedious but trivial exercise and will be omitted.

For the last part of the proof, it follows from the definition of the square ordering

that

Pn

 ∑
(i,j)∈Sm

ξi ⊗ ηj

 =
∑

(i,j)∈Sn

ξi ⊗ ηj

for n ≤ m. This gives ξi⊗ηj ∈ R(Pk−Pk−1) for each k ∈ N, where {(i, j)} = Sk\Sk−1.

Here, P0 is defined to be zero and S0 to be the empty set. ut

In the case where (Si) and (Tj) are the natural projections associated with the

bases (ξi) and (ηj) respectively, it is evident that (Pk) are the natural projections

associated with the basic sequence (ξi ⊗ ηj) with the square ordering, and so we

obtain the following corollary.

Corollary 6.4.3 Let be E be a Banach lattice with a basis (ξi) possessing the prop-

erty that the natural projections associated with (ξi) are positive. If Y is a Banach
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space with basis (basic sequence) (ηj), then the sequence (ξi ⊗ ηj) with the square

ordering is a basis (basic sequence) of E⊗̃lY .

Proof. The case where (ηj) is a basis for Y follows from Proposition 6.4.2 and the

fact that [ξi⊗ηj ] = E⊗̃lY . For the case where (ηj) is a basic sequence in Y , it follows

from the first part of the proof that (ξi ⊗ ηj) is a basis of E⊗̃l[ηj ]. The left order

injectivity of the l-norm now implies that E⊗̃l[ηj ] is a closed subspace of E⊗̃lY .

Thus, (ξi ⊗ ηj) is a basic sequence in E⊗̃lY . ut

In particular, when 1 ≤ p <∞ and E = Lp(µ), we obtain the following result:

Corollary 6.4.4 Let 1 ≤ p < ∞ and (yj) be a basic sequence in a Banach space

Y . If (di) is a classical m.d.s. in Lp(µ), then the sequence (di ⊗ yj) with the square

ordering is a basic sequence in Lp(µ, Y ). If, in addition, we have [di] = Lp(µ) then

the sequence (di ⊗ yj) with the square ordering is a basis of Lp(µ, Y ) provided (yj)

is a basis of Y .

Proof. Since (di) is a m.d.s. relative to a positive K-BS-filtration, the result follows

from Proposition 6.4.2, Corollary 6.4.3 and the fact that Lp(µ, Y ) is isometric to

Lp(µ)⊗̃lY . ut

Note that the Haar system is an example of a classical m.d.s. for which the linear

span is dense in Lp(µ), thus Lp(µ, Y ) has a basis if Y has a basis and 1 ≤ p <

∞. Aldous showed in [1, Proposition 3] that if a classical m.d.s. formed a basis of

Lp(µ, Y ) for a Banach space Y , then Y is necessarily one dimensional. This result

can be generalized to the l-tensor product as follows:

Proposition 6.4.5 Let E be a Banach lattice and Y a Banach space. If there exists

a BL-filtration on E so that (Ti⊗l idY −Ti−1⊗l idY ) is a Schauder decomposition of

E⊗̃lY with rank ((Ti ⊗l idY )− (Ti−1 ⊗l idY )) = 1 for each i ∈ N, then dim(Y ) = 1.

Proof. Note that for any BL-filtration (Ti) on E, (Ti ⊗l idY ) is a BS-filtration on

E⊗̃lY by Theorem 3.4.2. Moreover, if (Ti) is a BL-filtration that is dense in E, then

(Ti⊗l idY ) is a BS-filtration that is dense in E⊗̃lY . Thus, (Ti⊗l idY −Ti−1⊗l idY ) is

a Schauder decomposition of E⊗̃lY . Now suppose that rank ((Ti ⊗l idY )− (Ti−1 ⊗l

idY )) = 1 for each i ∈ N. By Lemma 3.4.1,

dim(R(Ti ⊗l idY )) = dim(R(Ti)⊗̃lY ) = i

for each i ∈ N. Thus,
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dim(R(Ti)) dim(Y ) = dim(R(Ti)⊗ Y ) ≤ dim(R(Ti)⊗̃lY ) = i,

so that dim(Y ) ≤ i/ dim(R(Ti)) ≤ i for all i ∈ N. Consequently, we must have

dim(Y ) = 1. ut

It is important to note that the definition of a K-m.d.s. determines a larger

class of sequences than the definition of a classical m.d.s. . In the latter case, it is

therefore possible to have a K-m.d.s. as a basis of Lp(µ, Y ) for which Y could be

infinite dimensional.

6.5 Martingale difference sequences with random positive

equivalence

For an unconditional K-m.d.s. (di) in a Banach lattice E, we are faced with the prob-

lem of relating the sequential ordering on A(di) to the ordering on E. We introduce

the following property for a K-m.d.s. in a Banach lattice.

Definition 6.5.1 Let E be a Banach lattice and (ri) denote the sequence of

Rademacher functions. A K-m.d.s. (di) in E is said to have random positive equiv-

alence if L2(µ,E) ⊃ (ri ⊗ di) ∼ (di) ∼ (ri ⊗ |di|) ⊂ L2(µ,E).

There is a special class of Banach lattice for which every unconditional K-

m.d.s. has random positive equivalence. Before we can define this class, we need to

give meaning to the expression (
∑n

i=1 |xi|p)1/p for 1 ≤ p <∞ and x1, x2, . . . , xn ∈ E,

where E is an arbitrary Banach lattice. To achieve this, we use the functional cal-

culus of Krivine (cf. [60, 72]):

Proposition 6.5.2 Let x1, x2, . . . , xn be elements of a Banach lattice E.

(a) For 1 ≤ p < ∞, (
∑n

i=1 |xi|p)1/p = sup
{∑n

i=1 αixi : (
∑n

i=1 |αi|q)1/q ≤ 1
}
, where

1
p + 1

q = 1.

(b) sup1≤i≤n |xi| = sup {
∑n

i=1 αixi :
∑n

i=1 |αi| ≤ 1}.

The above proposition is consistent with the meaning of (
∑n

i=1 |xi|p)1/p and

sup1≤i≤n |xi| when E is a scalar-valued function space. In view of the above func-

tional calculus, the following definition is justified:

Definition 6.5.3 Let E be a Banach lattice and 1 ≤ p, q ≤ ∞.

(a) E is called p-convex if there is a constant M > 0 so that
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(

n∑
i=1

|xi|p
)1/p

∥∥∥∥∥∥ ≤M

(
n∑

i=1

‖xi‖p

)1/p

, if 1 ≤ p <∞

or ∥∥∥∥ sup
1≤i≤n

|xi|
∥∥∥∥ ≤M sup

1≤i≤n
‖xi‖, if p = ∞

for every choice of vectors x1, x2, . . . , xn ∈ E. The smallest value of M for which

the above holds is denoted by M (p)(E).

(b) E is called q-concave if there is a constant M > 0 so that(
n∑

i=1

‖xi‖q

)1/q

≤M

∥∥∥∥∥∥
(

n∑
i=1

|xi|q
)1/q

∥∥∥∥∥∥ , if 1 ≤ q <∞

or

sup
1≤i≤n

‖xi‖ ≤M

∥∥∥∥ sup
1≤i≤n

|xi|
∥∥∥∥ , if q = ∞

for every choice of vectors x1, x2, . . . , xn ∈ E. The smallest value of M for which

the above holds is denoted by M (q)(E).

In [36, Theorem 16.17], it is shown that a Banach lattice E has finite concavity

if and only if it has finite cotype. It is important to note that, although a Banach

lattice may have cotype q <∞ and concavity q′ <∞, the constants q and q′ are not

necessarily equal (cf. [36, p. 332]). We are interested in Banach lattices with finite

concavity, the reason being, the following generalization of the Khinchin inequality

(cf. [36, Theorem 16.11] and [74, 72]):

Theorem 6.5.4 (The Maurey-Khinchin Inequality) Let 1 ≤ q <∞. If E is a

q-concave Banach lattice, then for each 0 < p <∞, there are constants C1, Cp,q > 0

so that, for every choice of n ∈ N and x1, x2, . . . , xn ∈ E, we have

C1

∥∥∥∥∥∥
(

n∑
i=1

|xi|2
)1/2

∥∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ri ⊗ xi

∥∥∥∥∥
∆p

≤ Cp,q

∥∥∥∥∥∥
(

n∑
i=1

|xi|2
)1/2

∥∥∥∥∥∥ .
Here, (ri) denotes the sequence of Rademacher functions.

It can be shown that the above inequality holds in a Banach lattice E if and

only if E has finite concavity (or cotype). We can now show that any unconditional

K-m.d.s. in a Banach lattice with finite concavity has random positive equivalence.

Proposition 6.5.5 Let E be a Banach lattice with concavity q < ∞. Then ev-

ery unconditional K-m.d.s. in E has random positive equivalence. In fact, we have

L2(µ, Y ) ⊃ (ri ⊗ di) ≈ (di) ≈ (ri ⊗ |di|) ⊂ L2(µ, Y ).
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Proof. Let (ri) denote the Rademacher functions and suppose that (di) is an un-

conditional K-m.d.s. in E with unconditional constant M . The Maurey-Khinchin

inequality, for p = 2, yields

C1

∥∥∥∥∥∥
(

n∑
i=1

|αidi|2
)1/2

∥∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

αi(ri ⊗ di)

∥∥∥∥∥
∆2

≤ C2,q

∥∥∥∥∥∥
(

n∑
i=1

|αidi|2
)1/2

∥∥∥∥∥∥
and

C1

∥∥∥∥∥∥
(

n∑
i=1

|αidi|2
)1/2

∥∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

αi(ri ⊗ |di|)

∥∥∥∥∥
∆2

≤ C2,q

∥∥∥∥∥∥
(

n∑
i=1

|αidi|2
)1/2

∥∥∥∥∥∥
for all scalars α1, . . . , αn. Consequently, by Proposition 6.3.2(a), we have (ri⊗ di) ≈
(ri ⊗ |di|). Moreover, using the unconditionality of (di), we obtain

C1M
−1

∥∥∥∥∥∥
(

n∑
i=1

|αidi|2
)1/2

∥∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

αidi

∥∥∥∥∥ ≤MC2,q

∥∥∥∥∥∥
(

n∑
i=1

|αidi|2
)1/2

∥∥∥∥∥∥
for all scalars α1, . . . , αn. Thus, L2(µ, Y ) ⊃ (ri ⊗ di) ≈ (di) ≈ (ri ⊗ |di|) ⊂ L2(µ, Y )

by Proposition 6.3.2(a), and the proof is complete. ut

The spaces Lp(µ) have type min{2, p} and cotype max{2, p} for each 1 ≤ p <∞
(cf. [4, pp. 126–127] or [72]). Moreover, Burkholder (and Gundy) showed in [13,

Theorem 9] that every classical m.d.s. in Lp(µ), for 1 < p < ∞, is unconditional.

Thus, every classical m.d.s. in Lp(µ) has random positive equivalence provided 1 <

p <∞.

Theorem 6.5.6 Let E be a Banach lattice with cotype q < ∞ and (di) ⊂ E an

unconditional K-m.d.s. . Then, the map R : A(di) → `q(E), defined by R(ei) = ei⊗di

for each i ∈ N, is regular and order continuous.

Proof. Since E has finite cotype, it also has finite concavity. Consequently, Proposi-

tion 6.5.5 implies that (di) has random positive equivalence so thatA(di) = A(ri⊗di) =

A(ri⊗|di|) (as sets). Moreover, Proposition 6.5.5 implies

L2(µ,E) ⊃ (ri ⊗ di) ≈ (di) ≈ (ri ⊗ |di|) ⊂ L2(µ,E).

Consequently, A(di), A(ri⊗di), and A(ri⊗|di|) are all isomorphic to each other. More-

over, since E is of cotype q <∞, it follows from Proposition 6.3.2(a) that

L2(µ,E) ⊃ (ri ⊗ di) � (ei ⊗ di) ⊂ `q(E)

and
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L2(µ,E) ⊃ (ri ⊗ |di|) � (ei ⊗ |di|) ⊂ `q(E).

Consequently, the maps R1, R2 : A(di) → `q(E), defined by

R1((αi)) =
1
2

( ∞∑
i=1

αiei ⊗ |di|+
∞∑
i=1

αiei ⊗ di

)

and

R2((αi)) =
1
2

( ∞∑
i=1

αiei ⊗ |di| −
∞∑
i=1

αiei ⊗ di

)

for all (αi) ∈ A(di), are well defined, linear and bounded.

It follows from R1((αi)) =
∑∞

i=1 αiei ⊗ (d+
i ), R2((αi)) =

∑∞
i=1 αiei ⊗ (d−i ) and

(R1 −R2)((αi)) =
∞∑
i=1

αiei ⊗ (d+
i )−

∞∑
i=1

αiei ⊗ (d−i ) =
∞∑
i=1

αiei ⊗ di = R((αi))

for each (αi) ∈ A(di), that R = R1 − R2, where R1 and R2 are positive; i.e. R is

regular.

Since Theorem 6.3.8 implies that A(di) has order continuous norm, the regularity

of R implies that R is order continuous. ut

To apply the above result, we consider the l-tensor product of unconditional

K-m.d.s. ’ s.

6.6 The l-tensor product of unconditional martingale difference

sequences

If (ξi) is an unconditional K1-m.d.s. in a Banach lattice E, relative to a positive

K-BS-filtration, and (ηj) is an unconditional K2-m.d.s. in a Banach space Y , then

it does not follow that (ξi ⊗ ηj) is an unconditional K-m.d.s. in E⊗̃lY . Indeed,

let E = Lp(µ), (χi) denote the Haar system in E, Y = `1 and (ej) denote the unit

vector basis in Y . Note that (χi) is an unconditional m.d.s. in E relative to a positive

BS-filtration and (ej) is an unconditional m.d.s. in Y . By the result of Aldous in [1,

Theorem 1], Y is super reflexive if Lp(µ, Y ) possesses an unconditional basis. This

fact and Corollary 6.4.4 imply that if (χi⊗ej) were an unconditional K-m.d.s. , then

`1 would be reflexive, which is certainly not the case. In sight of this, we pursue a

weaker result.

Recall that if E and F are Banach lattices. We denote the projective cone of

E ⊗ F by
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E+ ⊗ F+ :=

{
n∑

i=1

xi ⊗ yi : (xi, yi) ∈ E+ × F+

}
.

Moreover, Theorem 2.4.6 asserts that E⊗̃lF is a Banach lattice and that the positive

cone of E⊗̃lF is the l-closure of the projective cone E+ ⊗ F+. Also, the theorem of

Popa (Theorem 2.5.2) implies that E⊗̃lF is an order continuous Banach lattice if

E and F are order continuous Banach lattices. We use these results in the following

proposition.

Proposition 6.6.1 Let X and Y be Banach spaces. If (ξi) ⊂ X and (ηj) ⊂ Y are

both unconditional K-m.d.s. ’s, then (ei⊗ej) is an unconditional basis of A(ξi)⊗̃lA
(ηj)

with unconditional constant one.

Proof. By Lemma 6.3.7, we have that (ei) and (ej) are unconditional bases of the

respective Banach lattices A(ξi) and A(ηj). It follows from the above remarks that

A(ξi)⊗̃lA
(ηj) is a Banach lattice with positive cone the l-closure of the projective

cone A(ξi)
+ ⊗A(ηj)

+ . Corollary 6.4.3 implies that the sequence (ei⊗ej) with the square

ordering is a basis of A(ξi)⊗̃lA
(ηj). We claim that

(A(ξi)⊗̃lA
(ηj))+ =

∑
i,j∈N

αij(ei ⊗ ej) : αij ≥ 0 for each i, j ∈ N

 . (6.2)

Indeed, it is clear that αij ≥ 0 for each i, j ∈ N implies that
∑

i,j∈N αij(ei ⊗ ej) ≥ 0.

Conversely, suppose
∑

i,j∈N αij(ei ⊗ ej) ≥ 0, we wish to show that αij ≥ 0 for each

i, j ∈ N. Let i, j, r, s ∈ N and assume j 6= s. Using the fact that ⊗ is a Riesz

bimorphism, i.e. |x⊗y| = |x|⊗|y| for all (x, y) ∈ E×F (cf. [47] and [69]), we deduce

(ei ⊗ ej) ∧ (er ⊗ es) = 0 from the mutual disjointness of (ej) ⊂ A(ηj). Similarly, if

i 6= r, then (ei⊗ej)∧(er⊗es) = 0 follows from the mutual disjointness of (ei) ⊂ A(ξi).

Thus, (ei ⊗ ej) is a mutually disjoint set so that

∑
i,j∈N

αij(ei ⊗ ej) =

∣∣∣∣∣∣
∑
i,j∈N

αij(ei ⊗ ej)

∣∣∣∣∣∣ =
∑
i,j∈N

|αij |(ei ⊗ ej),

giving αij ≥ 0 for each i, j ∈ N. This proves (6.2).

By Theorem 6.3.8 we have that A(ξi) and A(ηj) are order continuous Banach

lattices. Thus, by the theorem of Popa, A(ξi)⊗̃lA
(ηj) is also an order continuous

Banach lattice. It now follows from (6.2) and Corollary 6.3.9 that (ei ⊗ ej) is an

unconditional basis of A(ξi)⊗̃lA
(ηj).

To see that the unconditional constant of (ei ⊗ ej) is one, let θ = (θij) be any

choice of signs and
∑

i,j∈N αij(ei⊗ ej) ∈ A(ξi)⊗̃lA
(ηj). Then, using the fact that ‖ · ‖l

is a Riesz norm on A(ξi)⊗̃lA
(ηj), we obtain
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∑
i,j∈N

αij(ei ⊗ ej)

∥∥∥∥∥∥
l

=

∥∥∥∥∥∥
∑
i,j∈N

θijαij(ei ⊗ ej)

∥∥∥∥∥∥
l

=

∥∥∥∥∥∥
∑
i,j∈N

|αij |(ei ⊗ ej)

∥∥∥∥∥∥
l

=

∥∥∥∥∥∥
∑
i,j∈N

αij(ei ⊗ ej)

∥∥∥∥∥∥
l

.

Hence, {Mθ} is uniformly bounded by one. This completes the proof. ut

For the unit vector basis (ei) ⊂ `p, we have A(ei) = `p for all 1 ≤ p < ∞. Thus,

we have the following corollary.

Corollary 6.6.2 Let Y be a Banach space and (yj) ⊂ Y be an unconditional basis

(basic sequence). Then (ei ⊗ yj) is an unconditional basis (basic sequence) of `p(Y )

for all 1 ≤ p <∞.

Since the spaces `2⊗̃π`
2 and `2⊗̃ε`

2 are not Banach lattices, we obtain the fol-

lowing negative result, found in [49]:

Corollary 6.6.3 The sequence (ei⊗ej) is not an unconditional basis of `2⊗̃π`
2 nor

`2⊗̃ε`
2.

From the above discussion, it follows that the basis (ei ⊗ ej) ⊂ A(χi)⊗̃l`
1 is

not equivalent to the basis (χi ⊗ ej) ⊂ Lp(µ, `1). The reason is that the order

structure of Lp(µ) differs from the order structure of A(χi), and plays a large role

in calculating the l-norm. This leaves us with a question: What is the relationship

between A(χi)⊗̃l`
1 and Lp(µ, `1)? In the results that follow, we will provide some

partial answers.

Theorem 6.6.4 Let E be a Banach lattice with cotype q < ∞ and Y a Banach

space. Assume (ξi) ⊂ E is an unconditional K1-m.d.s. , then for any sequence

(ηj) ⊂ Y we have

A(ξi)⊗̃lA
(ηj) ⊃ (ei ⊗ ej) � ((ei ⊗ ξi)⊗ ηj) ⊂ `q(E)⊗̃lY.

Moreover, if (ξi) is an unconditional K1-m.d.s. relative to a positive K1-BS-filtration

and (ηj) ⊂ Y is an unconditional K2-m.d.s. , then (ei⊗ej) is an unconditional basis

of A(ξi)⊗̃lA
(ηj) and ((ei ⊗ ξi)⊗ ηj) ⊂ `q(E)⊗̃lY is an unconditional K-m.d.s. .

Proof. Let (ηj) ⊂ Y be a sequence. Let S denote the linear map from A(ξi) into `q(E)

with S(ei) = ei ⊗ ξi for each i ∈ N and T denote the co-ordinate map from A(ηj)

into Y . Note that T has norm one. By Theorem 6.5.6, we have that S is bounded
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and regular. Thus S = S1−S2 where S1 and S2 are positive maps. Since the l-norm

is a left order uniform crossnorm, the map

S ⊗ T : A(ξi) ⊗l A
(ηj) → `q(E)⊗l Y

is bounded because ‖S⊗T‖ = ‖S1⊗T−S2⊗T‖ ≤ ‖S1‖‖T‖+‖S2‖‖T‖ = ‖S1‖+‖S2‖.
Thus, the unique continuous extension

S ⊗l T : A(ξi)⊗̃lA
(ηj) → `q(E)⊗̃lY (6.3)

has the properties (S ⊗l T )(ei ⊗ ej) = (ei ⊗ ξi)⊗ ηj for each i, j ∈ N and

‖S ⊗l T‖ ≤ ‖S1‖+ ‖S2‖ := KS <∞. (6.4)

This shows that (ei ⊗ ej) � ((ei ⊗ ξi)⊗ ηj).

To complete the proof, assume (ηj) ⊂ Y is an unconditional K2-m.d.s. , (ξi) ⊂ E

is an unconditional K1-m.d.s. relative to a positive K1-BS-filtration (Ti) and let (Pn)

denote the natural projections associated with the basis (ei) ⊂ `q. Then, Theorem

3.4.4 implies that (Pi⊗Ti) is a positive K1-BS-filtration on `q(E). It is evident that

(ei ⊗ ξi) ⊂ `q(E) is a K1-m.d.s. relative (Pi ⊗l Ti). Hence, Proposition 6.4.2 implies

that ((ei ⊗ ξi)⊗ ηj), with the square ordering, is a K-m.d.s. in `q(E)⊗̃lY . To prove

unconditionality, observe that

`q(E)⊗̃lY ⊃ ((ei ⊗ ξi)⊗ ηj) ≈ ((ei ⊗ ξi)⊗ ej) ⊂ `q(E)⊗̃lA
(ηj),

and (ei ⊗ ξi)⊗ ej) is a mutually disjoint sequence in `q(E)⊗̃lA
(ηj).

Lastly, Proposition 6.6.1 implies that (ei ⊗ ej) is an unconditional basis of

A(di)⊗̃lA
(yj). ut

Corollary 6.6.5 Let 1 < p <∞ and (di) be a classical m.d.s. in Lp(µ) and (yj) ⊂ Y

be a basic sequence. Then there exists a constant K > 0 for which∑
i∈N

‖di‖p

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥
max{2,p}


1/ max{2,p}

≤ K

∥∥∥∥∥∥
∑
i∈N

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥ di

∥∥∥∥∥∥
p

holds for any choice of finitely supported scalars (αij).

Proof. Since (di) is a classical m.d.s. in Lp(µ), it follows that (di) is an unconditional

m.d.s. relative to a positive BS-filtration. Also, recall that Lp(µ) is a Banach lattice

with cotype max{2, p}. Hence, the conditions of the above theorem are satisfied and

we have

A(di)⊗̃lA
(yj) ⊃ (ei ⊗ ej) � ((ei ⊗ di)⊗ yj) ⊂ `max{2,p}(Lp(µ))⊗̃lY.
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More precisely, let S denote the map from A(di) into `max{2,p}(Lp(µ)) defined by

ei 7→ ei ⊗ di for each i ∈ N, T denote the co-ordinate map from A(yj) into Y and

U denote the co-ordinate map from A(di) into E. By the above theorem, the map

S⊗lT given by (6.3) is bounded. Note that ‖S⊗lT‖ is less than the constant KS > 0

defined in (6.4). Thus,∥∥∥∥∥∥
∑
i,j∈N

αij((ei ⊗ di)⊗ yj)

∥∥∥∥∥∥
l

≤ KS

∥∥∥∥∥∥
∑
i,j∈N

αij(ei ⊗ ej)

∥∥∥∥∥∥
l

(6.5)

for every choice of finitely supported scalars (αij). The result now follows from

calculating the l-norm in the above inequality. Indeed, let n = min{k ∈ N : (i, j) ∈
Sk ∀ αij 6= 0}, then we may write∑

(i,j)∈Sn

αij((ei ⊗ di)⊗ yj) =
m∑

i=1

m∑
j=1

αij((ei ⊗ di)⊗ yj),

where m = max(Sn \ Sn−1) and αij = 0 for each (i, j) ∈ Sm2 \ Sn. On the left hand

side of inequality (6.5) we have, by Theorem 2.3.1(b) and the mutual disjointness of

(ei ⊗ di), that∥∥∥∥∥∥
∑

(i,j)∈Sn

αij((ei ⊗ di)⊗ yj)

∥∥∥∥∥∥
l

=

∥∥∥∥∥∥
m∑

i=1

(ei ⊗ di)⊗

 m∑
j=1

αijyj

∥∥∥∥∥∥
l

=

∥∥∥∥∥∥sup


∣∣∣∣∣∣

m∑
i=1

〈
m∑

j=1

αijyj , y
∗

〉
(ei ⊗ di)

∣∣∣∣∣∣ : ‖y∗‖ ≤ 1


∥∥∥∥∥∥

`max{2,p}(Lp(µ))

=

∥∥∥∥∥∥
m∑

i=1

∥∥∥∥∥∥
m∑

j=1

αijyj

∥∥∥∥∥∥ (ei ⊗ |di|)

∥∥∥∥∥∥
`max{2,p}(Lp(µ))

=

 m∑
i=1

‖di‖p

∥∥∥∥∥∥
m∑

j=1

αijyj

∥∥∥∥∥∥
max{2,p}


1/ max{2,p}

.

Similarly, by Theorem 2.3.1(b) and the positive mutual disjointness of (ei) in A(di),

we obtain from the right hand side of inequality (6.5)

KS

∥∥∥∥∥∥
∑

(i,j)∈Sn

αij(ei ⊗ ej)

∥∥∥∥∥∥
l

= KS

∥∥∥∥∥∥
m∑

i=1

ei ⊗

 m∑
j=1

αijej

∥∥∥∥∥∥
l

= KS

∥∥∥∥∥∥sup


∣∣∣∣∣∣

m∑
i=1

〈
m∑

j=1

αijej , y
∗

〉
ei

∣∣∣∣∣∣ : ‖y∗‖ ≤ 1


∥∥∥∥∥∥

A(di)

= KS

∥∥∥∥∥∥
m∑

i=1

∥∥∥∥∥∥
m∑

j=1

αijej

∥∥∥∥∥∥
A(yj)

ei

∥∥∥∥∥∥
A(di)

≤ KS‖U−1‖‖T−1‖

∥∥∥∥∥∥
m∑

i=1

∥∥∥∥∥∥
m∑

j=1

αijyj

∥∥∥∥∥∥ di

∥∥∥∥∥∥
p

.
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Setting K = KS‖U−1‖‖T−1‖ completes the proof. ut

Corollary 6.6.6 Let 1 < p <∞ and (di) be a classical m.d.s. in Lp(µ). Then there

exists a constant K > 0 for which∑
i∈N

‖di‖p

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥
max{2,p}


1/ max{2,p}

≤ K

∥∥∥∥∥∥
∑
i,j∈N

‖αijyj‖ di

∥∥∥∥∥∥
p

holds for any sequence (yi) ⊂ Y and choice of finitely supported scalars (αij).

Proof. Let (yi) ⊂ Y denote any sequence. Using the same notation as in the proof

of Theorem 6.6.5, there is a constant KS > 0 given by (6.4) such that (6.5) holds for

every choice of finitely supported scalars (αij). Since KS depends only on the map

S and not on the map T , a moment’s reflection reveals that KS is independent of

the sequence (yi) ⊂ Y . Thus, (6.5) holds for any sequence (yi) ⊂ Y and choice of

finitely supported scalars (αij). As in the proof of the above theorem, the result now

follows from calculating the l-norm in inequality (6.5), but with one small difference.

Indeed, the left hand side of (6.5) is calculated in the same manner as in Theorem

6.6.5. For the right hand side of (6.5), use the positive mutual disjointness of (ei) in

A(di) to obtain

KS

∥∥∥∥∥∥
∑
i,j∈N

αij(ei ⊗ ej)

∥∥∥∥∥∥
l

= KS

∥∥∥∥∥∥
m∑

j=1

(
m∑

i=1

αijei

)
⊗ ej

∥∥∥∥∥∥
l

≤ KS

∥∥∥∥∥∥
m∑

j=1

∣∣∣∣∣
m∑

i=1

αijei

∣∣∣∣∣ ‖ej‖A(yj)

∥∥∥∥∥∥
A(di)

= KS

∥∥∥∥∥∥
m∑

j=1

(
m∑

i=1

|αij |ei

)
‖yj‖

∥∥∥∥∥∥
A(di)

= KS

∥∥∥∥∥∥
m∑

i=1

 m∑
j=1

‖αijyj‖

 ei

∥∥∥∥∥∥
A(di)

≤ KS‖U−1‖

∥∥∥∥∥∥
m∑

i=1

 m∑
j=1

‖αijyj‖

 di

∥∥∥∥∥∥
p

= KS‖U−1‖

∥∥∥∥∥∥
∑
i,j∈N

‖αijyj‖di

∥∥∥∥∥∥
p

.

Since the constant KS‖U−1‖ is independent of the choice of sequence (yi) and scalars

(αij), setting K = KS‖U−1‖ completes the proof. ut

In particular, suppose 1 < p < ∞ and (di) ⊂ Lp(µ) is a classical m.d.s. . Then

there is a constant K > 0 such that(
n∑

i=1

(‖yi‖‖di‖p)max{2,p}

)1/ max{2,p}

≤ K

∥∥∥∥∥
n∑

i=1

‖yi‖di

∥∥∥∥∥
p

holds for every choice of finite sequence y1, y2, . . . , yn. To access a similar, reverse

inequality we resort to a duality argument.
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Definition 6.6.7 Let Y be a Banach space and (xi) ⊂ Y be a basis.

(a) The functionals (x∗i ) ⊂ Y ∗ defined by 〈xi, x
∗
j 〉 = δij for each i, j ∈ N are said to

be biorthogonal to (xi).

(b) The basis (xi) is said to be shrinking if (x∗i ) is a basis of Y ∗.

(c) The basis (xi) is said to be boundedly complete if for every sequence of scalars

(αi) such that supn∈N ‖
∑n

i=1 αixi‖ <∞, the series
∑∞

n=1 αixi converges.

Observe that if (xi) is a basis of a Banach space Y , then the functionals (x∗i )

biorthogonal to (xi) form a K-m.d.s. relative to the dual filtration (T ∗i ), where K

is the basis constant of (xi). Although (x∗i ) is a basic sequence, (x∗i ) need not be a

basis of Y ∗. Indeed, in order for (x∗i ) to be a basis of Y ∗, it is necessary for Y ∗ to

be separable. So, if Y = `1, then the functionals biorthogonal to (ei) are not a basis

of `∞.

It can be shown that if (xi) is a shrinking basis of the Banach space Y , then

the functionals (x∗i ), biorthogonal to (xi), form a boundedly complete basis of Y ∗.

Moreover, if (xi) is a boundedly complete basis of Y , then Y is the dual of a Banach

space with a shrinking basis and (xi) is biorthogonal to this basis (cf. [71, Proposition

1.b.4]). Combining the notions of shrinking and boundedly complete, one can show:

A Banach space Y with basis (xi) is reflexive if and only if (xi) is both shrinking

and boundedly complete (cf. [71, Theorem 1.b.5]).

Proposition 6.6.8 Let Y be a Banach space, (xi) ⊂ Y a shrinking unconditional

basis and (x∗i ) ⊂ Y ∗ denote the functionals biorthogonal to (xi). Then

A(x∗i ) ⊃ (ei) ≈ (e∗i ) ⊂ (A(xi))∗,

where (e∗i ) ⊂ (A(xi))∗ denotes the functionals biorthogonal to the unconditional basis

(ei) ⊂ A(xi). Moreover, the isomorphism A(x∗i ) → (A(xi))∗, defined by ei 7→ e∗i for

each i ∈ N, is a surjective Riesz isomorphism between Banach lattices.

Proof. Let S denote the co-ordinate map from A(xi) onto Y and consider its adjoint

S∗ : Y ∗ → (A(xi))∗. Then

〈ej , S∗x∗i 〉 = 〈Sej , x∗i 〉 = 〈xj , x
∗
i 〉 = δij = 〈ej , e∗i 〉

for each i, j ∈ N shows that S∗x∗i = e∗i for each i ∈ N. Thus, Y ∗ ⊃ (x∗i ) � (e∗i ) ⊂
(A(xi))∗. Similarly, the bounded linear map (S−1)∗ : (A(xi))∗ → Y ∗ has the property

(S−1)∗e∗i = x∗i for each i ∈ N. Consequently, Y ∗ ⊃ (x∗i ) ≈ (e∗i ) ⊂ (A(xi))∗. Thus,

A(x∗i ) ⊃ (ei) ≈ (x∗i ) ≈ (e∗i ) ⊂ (A(xi))∗.
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Since (xi) is unconditional, (x∗i ) is an unconditional K-m.d.s. in Y ∗. Conse-

quently, A(x∗i ) and (A(xi))∗ are Banach lattices by Theorem 6.3.8. Let T : A(x∗i ) →
(A(xi))∗ be the isomorphism onto [e∗i ] defined by Tei = e∗i for each i ∈ N.

We now show that T is a Riesz isomorphism between Banach lattices. It is evident

that 0 ≤
∑∞

i=1 αie
∗
i ∈ (A(xi))∗ when αi ≥ 0 for each i ∈ N, since e∗i ≥ 0 for each

i ∈ N. Conversely, let 0 ≤ f∗ ∈ (A(xi))∗. Then

〈x, f∗〉 =

〈 ∞∑
i=1

αiei, f
∗

〉
=

〈
x,

∞∑
i=1

f∗(ei)e∗i

〉

for each x =
∑∞

i=1 αiei ∈ A(xi). Thus, f∗ =
∑∞

i=1 f
∗(ei)e∗i converges in the weak*

topology, with f∗(ei) ≥ 0 for each i ∈ N. Since (xi) is a shrinking basis, so is

(ei) ⊂ A(xi). Consequently, [e∗i ] = (A(xi))∗ and f∗ =
∑∞

i=1 f
∗(ei)e∗i converges in the

norm topology. It follows that 0 ≤
∑∞

i=1 αie
∗
i ∈ (A(xi))∗ if and only if αi ≥ 0 for

each i ∈ N. Thus, T is a Riesz isomorphism from A(x∗i ) onto (A(xi))∗. ut

Theorem 6.6.9 Assume E is a Banach lattice with type p and cotype q where 1 <

p ≤ 2 ≤ q < ∞. Let (ξi) ⊂ E be a boundedly complete unconditional basis and Y a

Banach space. Then, for any basic sequence (ηj) ⊂ Y , we have

`p(E)⊗̃lY ⊃ ((ei ⊗ ξi)⊗ ηj) � (ei ⊗ ej) � ((ei ⊗ ξi)⊗ ηj) ⊂ `q(E)⊗̃lY,

where (ei ⊗ ej) is the basis of A(ξi)⊗̃lA
(ηj). In particular, if p = q = 2, then

A(ξi)⊗̃lA
(yj) ⊃ (ei ⊗ ej) ≈ ((ei ⊗ ξi)⊗ ηj) ⊂ `2(E)⊗̃lY.

Proof. Since (ξi) ⊂ E is a boundedly complete basis, E has a predual F with a

shrinking basis (bi) so that (ξi) is biorthogonal to (bi). Since E has type p, it follows

that F ∗∗ and F have cotype p∗ where 1
p + 1

p∗ = 1.

Let S denote the linear map from A(bi) into `p
∗
(F ∗∗) with S(ei) = ei⊗bi for each

i ∈ N. By Theorem 6.5.6, we have that S is bounded and regular. Thus, S = S1−S2

where S1 and S2 are positive maps. Consequently, S∗|`p(E) : `p(E) → (A(bi))∗ is

regular, because S∗ = (S1 − S2)∗ = S∗1 − S∗2 where S∗1 and S∗2 are positive. Since

〈ei, S∗(ej ⊗ ξj)〉 = 〈Sei, ej ⊗ ξj〉 = 〈ei ⊗ bi, ej ⊗ ξj〉 = δij = 〈ei, e∗j 〉

for all i, j ∈ N, we have S∗|`p(E)(ei ⊗ ξi) = e∗i for each i ∈ N, where (e∗i ) ⊂ (A(bi))∗

are the functionals biorthogonal to the basis (ei) ⊂ A(bi). Proposition 6.6.8 implies

the existence of a positive bounded linear map U : (A(bi))∗ → A(ξi) with Ue∗i = ei

for each i ∈ N. Consequently, the map U ◦ S∗|`p(E) : `p(E) → A(ξi) is regular with

(U ◦ S∗|`p(E))(ei ⊗ ξi) = ei for each i ∈ N.
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Now choose any basic sequence (ηj) ⊂ Y and let T denote the co-ordinate map

from A(ηj) onto [ηj ]. Since the l-norm is a left order uniform crossnorm, the map

(U ◦ S∗|`p(E))⊗ T−1 : `p(E)⊗l [ηj ] → A(ξi) ⊗l A
(ηj)

is bounded because

‖(U ◦ S∗|`p(E))⊗ T−1‖ = ‖(U ◦ S∗1 |`p(E))⊗ T−1 − (U ◦ S∗2 |`p(E))⊗ T−1‖

≤ ‖U‖‖T−1‖(‖S1‖+ ‖S2‖).

Thus, the unique continuous extension

(U ◦ S∗|`p(E))⊗l T
−1 : `p(E)⊗̃l[ηj ] → A(ξi)⊗̃lA

(ηj)

has the properties ((U ◦ S∗|`p(E))⊗ T−1)((ei ⊗ ξi)⊗ ηj) = (ei ⊗ ej) for each i, j ∈ N.

Since `p(E)⊗̃l[ηj ] is a closed subspace of `p(E)⊗̃lY , this shows that

`p(E)⊗̃lY ⊃ ((ei ⊗ ξi)⊗ ηj) � (ei ⊗ ej) ⊂ A(ξi)⊗̃lA
(ηi).

Lastly, since E has cotype q, it follows from Theorem 6.6.4 that A(ξi)⊗̃lA
(ηj) ⊃

(ei ⊗ ej) � ((ei ⊗ ξi)⊗ ηj) ⊂ `q(E)⊗̃lY . ut

Using the proof of Corollary 6.6.5 and, bearing in mind that Lp(µ) has type

min{2, p} and cotype max{2, p}, Theorem 6.6.9 specializes easily to the following

corollary.

Corollary 6.6.10 Let (di) be a m.d.s. basis of Lp(µ) where 1 < p <∞. If (yj) ⊂ Y

is a basic sequence, then there exists a constant K > 0 for which

K−1

∑
i∈N

‖di‖p

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥
max{2,p}


1/ max{2,p}

≤

∥∥∥∥∥∥
∑
i∈N

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥ di

∥∥∥∥∥∥
p

≤ K

∑
i∈N

‖di‖p

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥
min{2,p}


1/ min{2,p}

holds for any choice of finitely supported scalars (αij).

If (di) is a normalized m.d.s. basis of Lp(µ), then the above inequality becomes

K−1

∑
i∈N

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥
max{2,p}


1/ max{2,p}

≤

∥∥∥∥∥∥
∑
i∈N

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥ di

∥∥∥∥∥∥
p

≤ K

∑
i∈N

∥∥∥∥∥∥
∑
j∈N

αijyj

∥∥∥∥∥∥
min{2,p}


1/ min{2,p}

,

which is consistent with inequalities (1.9) and (1.10) in [4, p. 128].
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6.7 Notes and remarks

We regret to announce that there is a mathematical error in [29, p. 1300], which

adversely effects the Abstract, Theorems 5.2 and 7.2, and Corollaries 7.3 and 7.4 of

that paper.

We recall that if X and Y are Banach spaces, a sequence (xi) ⊂ X is said to

be equivalent to a sequence (yi) ⊂ Y provided, for all scalar sequences (αi), we

have
∑∞

i=1 αixi convergent ⇔
∑∞

i=1 αiyi convergent. If (xi) ⊂ X is a basic sequence

that is equivalent to a sequence (yi) ⊂ Y , then there exists a constant K such that

‖
∑n

i=1 αiyi‖ ≤ K‖
∑n

i=1 αixi‖ for any choice of scalars α1, . . . , αn and n ∈ N (see

Theorem 6.3.2).

We noted in [29, p. 1300] that the following inequality holds: For any un-

conditional basic sequence (xn) ⊂ Lp(µ) with unconditional constant M , where

1 ≤ p <∞, there exist constants K1 and Kp (Kp dependent on p) for which

K1(MKp)−1

∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
Lp(µ)

≤
∫ 1

0

∥∥∥∥∥
n∑

i=1

ri(t)αi|xi|

∥∥∥∥∥
Lp(µ)

dt

≤ K−1
1 (MKp)

∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
Lp(µ)

holds for all scalars α1, . . . , αn (where (ri) denotes the sequence of Rademacher

functions). Using the unconditionality of (xi) and the above inequality, we con-

cluded (incorrectly) that (xi) is equivalent to (|xi|). This conclusion arose from our

erroneous interpretation of the word ‘equivalent’ used in [4, p. 128]. Our conclusion

is easily seen to be true when (xi) is a mutually disjoint sequence. But, in general,

this is hardly the case, as the following simple counterexample shows.

Let (ri) ⊂ L2(µ) denote the sequence of Rademacher functions. Since (ri) is

equivalent to the unit vector basis of `2, it follows that (ri) is an unconditional basic

sequence. If our claim were true, then there exists a constant K > 0 such that∥∥∥∥∥
n∑

i=1

αi|ri|

∥∥∥∥∥
2

≤ K

∥∥∥∥∥
n∑

i=1

αiri

∥∥∥∥∥
2

for any choice of scalars α1, . . . , αn and n ∈ N. But then

n =

∥∥∥∥∥
n∑

i=1

1

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

|ri|

∥∥∥∥∥
2

≤ K

∥∥∥∥∥
n∑

i=1

ri

∥∥∥∥∥
2

= K

(
n∑

i=1

∫ 1

0
r2i (t) dt

)1/2

= Kn1/2

for all n ∈ N, which is absurd.

The above note appears in the corrigendum [27]. The results in Section 6.5 and

Section 6.6 serve as a correction to [29].
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Stopping times

7.1 Introduction

An important notion in probability theory is that of a stopping time (cf. [45, 44]). In

this chapter, we add the notion of a stopping time to Troitsky’s theory of martingales

in Banach lattices (cf. [101]). Bounded stopping times in Riesz spaces have been

studied in [62]. Our aim is to extend this theory to unbounded stopping times in

the Banach lattice setting. To achieve this, we use the results of Witvliet, studied in

Sections 1.5 and 1.6.

In Section 7.2, we recall the classical definitions of a stopping time (adapted

to a filtration) and a stopped process. After reviewing some basic properties of

these definitions, a generalized definition of a stopping time in a Banach lattice,

adapted to a positive BS-filtration, is deduced. Our definition of a stopping time

differs slightly from the definition in [62]. We also consider a stopped process in a

Banach lattice, with respect to a stopping time adapted to a positive BS-filtration. A

natural ordering on the set of all stopping times, adapted to a positive BS-filtration,

is discussed. This allows us to consider nets of stopped processes in a Banach lattice.

Section 7.3 contains the connection between stopping times in a Banach lat-

tice and the theory of Schauder decomposition and multipliers. It is shown that a

stopping time in an order continuous Banach lattice is an unconditional Schauder de-

composition. Thus, using the multiplier theorem of Witvliet (Theorem 1.5.8), we are

able to define a stopped martingale in an order continuous Banach lattice, with re-

spect to an unbounded stopping time, adapted to a positive R-bounded BS-filtration.

This gives rise to an optional stopping theorem for unbounded stopping times. For

positive R-bounded BS-filtrations, this theorem states that a net of stopped martin-

gales in an order continuous Banach lattice, indexed by a directed set of unbounded

stopping times, is again a martingale. The section concludes with a characterization

of convergent nets of stopped martingales in an order continuous Banach lattice.
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The theory of unbounded stopping times is restricted to positive R-bounded filtra-

tions. By the Stein inequality (Corollary 1.6.7), classical filtrations on Lp(µ) are

R-bounded when 1 < p <∞.

The theory in Section 7.3 is formulated on an order continuous Banach lattice

E. In Section 7.4, we extend this theory to the l-tensor product E⊗̃lY , where Y is

a Banach space. With an optional stopping theorem for E⊗̃lY at hand, we are able

to characterize convergent nets of stopped martingales in E⊗̃lY in a similar fashion

to the results in Section 5.3.

Lastly, in Section 7.4, we apply the above techniques to unconditional Schauder

decompositions in the Lebesgue-Bochner spaces. Bourgain noted in [9] that if Y

is a UMD space with an unconditional basis, then Lp(µ, Y ) has an unconditional

basis for 1 < p < ∞. We generalize this result to stopping times. We show that if

Y is a UMD lattice possessing a stopping time, then the Schauder decomposition

of Lp(µ, Y ), formed from the product of any martingale decomposition of Lp(µ, Y )

with this stopping time, is unconditional. The results in this chapter are original

and have appeared in [30].

7.2 Stopping times in Banach lattices

We first recall some basic definitions and results on stopping times from [44, 45].

Throughout, let (Ω,Σ, µ) denote a finite measure space.

Definition 7.2.1 Let (Σi) denote a filtration and 1 ≤ p <∞.

(a) A stopping time adapted to (Σi) is a map τ : Ω → N ∪ {∞} such that

τ−1({1, ..., i}) ∈ Σi for each i ∈ N. A stopping time τ is said to be bounded

if there exists n ∈ N such that τ(ω) ≤ n almost everywhere on Ω, i.e. up to sets

of measure zero, τ−1({1, ..., n}) = Ω.

(b) If τ is a bounded stopping time and (fi) ⊂ Lp(µ) is a sequence, both adapted to

a filtration (Σi), then the stopped process is the pair (fτ , Στ ) where

fτ =
∑

i

χτ−1({i})fi and Στ =
{
A ⊂ Ω : A ∩ τ−1({i}) ∈ Σi ∀ i ∈ N

}
.

(c) The set of all stopping times adapted to the filtration (Σi) is denoted by T∗. The

subset of T∗ consisting of all bounded stopping times is denoted T.

We define a partial ordering on T∗ as follows: If σ, τ ∈ T∗, define σ ≤ τ if and

only if σ(ω) ≤ τ(ω) for almost all ω ∈ Ω. It is easily verified that if σ, τ ∈ T are

(bounded) stopping times, then σ∨ τ and σ∧ τ are again (bounded) stopping times.
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Doob’s optional stopping theorem (cf. [86, 100]) asserts that for a martingale

(fi, Σi) in Lp(µ) and σ, τ ∈ T with σ ≤ τ , we have fσ = E(fτ |Σσ). Consequently, if

D ⊂ T is a directed set, the sequence (fτ , Στ )τ∈D is a martingale.

There is a correspondence between a bounded stopping time τ adapted to a

filtration (Σi) and a commuting sequence (Pi) of linear band projections on Lp(µ),

as was established in [62].

Indeed, for f ∈ Lp(µ), define the projection Pif = f ·χτ−1({1,...,i}) for each i ∈ N.

Then, for i ≤ j and 0 ≤ f ∈ Lp(µ), the inequality 0 ≤ Pif ≤ Pjf ≤ f gives

0 ≤ Pi ≤ Pj ≤ idLp(µ), which implies (Pi) is an increasing sequence of (contractive)

band projections on Lp(µ).

Also, notice that τ−1(N) = Ω. Hence, supi Pif = supi χτ−1({1,...,i})f = χΩf = f

for all 0 ≤ f ∈ Lp(µ). Moreover, (Pi) satisfies PiPj = Pi∧j . This follows directly

from identity

χτ−1({1,...,i}) · χτ−1({1,...,j}) = χτ−1({1,...,i})∩τ−1({1,...,j}) = χτ−1({1,...,i∧j}).

Lastly, since τ−1({1, ..., i}) ∈ Σi for each i ∈ N, it follows from (1.2) that

PiE(f |Σj) = χτ−1({1,...,i})E(f |Σj) = E(χτ−1({1,...,i})f |Σj) = E(Pif |Σj)

for all i ≤ j and f ∈ Lp(µ).

Thus, a stopping time τ adapted to a filtration (Σi) is an increasing sequence

(Pi) of commuting band projections on Lp(µ) for which TjPi = PiTj for all i ≤ j,

where each Tj := E( · |Σj). Furthermore, if τ is bounded, then there exists n0 such

that Pi = idLp(µ) for all i ≥ n0.

Motivated by the above observations, we formulate a definition for a stopping

time on a Banach lattice:

Definition 7.2.2 Let E be a Banach lattice with the projection property and let

(Ti) be a positive BS-filtration on E. A stopping time on E adapted to (Ti) is a

sequence of band projections P = (Pi) satisfying the following properties:

(a) PiPj = Pi∧j for all i, j ∈ N,

(b) TjPi = PiTj for all i ≤ j, and

(c) Pif ↑ f for all f ∈ E+.

We say that P is a bounded stopping time if there exists an n0 ∈ N such that Pi = idE

for all i ≥ n0. We say P stops at m ∈ N if m is the least natural number for which

Pm = idE . For ease of notation, we will always assume P0 = 0.
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Note that a stopping time is nothing more than a specialized BL-filtration. Let

(fi) be a sequence adapted to (Σi) and consider the stopped process (fτ , Στ ) where

τ is a bounded stopping time. For each i ∈ N and A ∈ Στ , it follows from (1.2) that∫
A
χτ−1({i})E(f |Σi) dµ =

∫
A∩τ−1({i})

E(f |Σi) dµ =
∫

A∩τ−1({i})
f dµ

=
∫

A
χτ−1({i})f dµ =

∫
A

E(χτ−1({i})f |Στ ) dµ.

Hence, E(χτ−1({i})f |Στ ) = χτ−1({i})E(f |Σi) = E(χτ−1({i})f |Σi) almost every-

where. Thus, for each f ∈ Lp(µ), we obtain

E(f |Στ ) = E

( ∞∑
i=1

χτ−1({i})f

∣∣∣∣Στ

)
=

∞∑
i=1

E(χτ−1({i})f |Στ )

=
∞∑
i=1

χτ−1({i})E(f |Σi) =
∞∑
i=1

(Pi − Pi−1)Tif (see also [62]).

This observation leads to a natural definition for a stopped process in a Banach

lattice.

Definition 7.2.3 Let E be a Banach lattice with the projection property and let

(fi) ⊂ E be a sequence adapted to a positive BS-filtration (Ti) on E.

(a) We denote the set of all stopping times adapted to (Ti) by T∗ and the set of all

bounded stopping times adapted to (Ti) by T ⊂ T∗.
(b) Let P ∈ T. We define the stopped process to be the pair (fP , TP), where

fP =
∞∑
i=1

(Pi − Pi−1)fi

and TP is the bounded linear operator defined by

TPf =
∞∑
i=1

(Pi − Pi−1)Tif for all f ∈ E.

This definition also applies to P ∈ T∗, if (fP , TP) exists.

The partial ordering on the set of all stopping times T∗ adapted to some positive

BS-filtration translates to the following: If P = (Pi),Q = (Qi) ∈ T∗, then

P ≤ Q ⇐⇒ Qi ≤ Pi for each i ∈ N.

Indeed, if τ, σ ∈ T∗ with τ(ω) ≤ σ(ω) almost everywhere, then {ω ∈ Ω : σ(ω) ≤
i} ⊂ {ω ∈ Ω : τ(ω) ≤ i}, showing that χσ−1({1,...,i}) ≤ χτ−1({1,...,i}) for all i ∈ N.

Thus, P ∨Q = (PiQi) and P ∧Q = (Pi +Qi − PiQi) (cf. [73, Theorem 30.1]). It is
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easy to verify that T∗ is a lattice with respect to this partial ordering, and that T is

a sublattice of T∗.
It is obvious that TP is a positive projection. In the case where E = Lp(µ),

TP = E( · |Στ ) is also a contractive projection. This implies that supP∈T ‖TP‖ = 1.

It is not clear that this property holds in a general Banach lattice. We, therefore,

make additional assumptions.

7.3 R-bounded filtrations on Banach lattices

If (Ti) is a positive BS-filtration on a Banach lattice E, we at least require the

collection {TP}P∈T be uniformly bounded. To achieve this, we pass to the theory of

unconditional Schauder decompositions.

Proposition 7.3.1 Let E be a Banach lattice with order continuous norm and (Pi)

a (not necessarily bounded) stopping time adapted to some positive BS-filtration on

E. Define the sequence of operators (Di) on E by Di = Pi − Pi−1 for each i ∈ N.

Then (Di) is an unconditional Schauder decomposition with unconditional constant

one.

Proof. Due to the fact that PiPj = Pi∧j for all i, j ∈ N, the Di’s are bounded linear

projections with DiDj = 0 whenever i 6= j. Since (Pi) is a stopping time, Pif ↑ f
for all f ∈ E+. Thus, by the order continuity of E, we have ‖f − Pif‖ → 0 for all

f ∈ E+. For f ∈ E, note that
∑i

k=1Dkf = Pif = Pif
+ − Pif

− → f+ − f− = f as

i→∞. Thus, (Di) is a Schauder decomposition.

For unconditionality, let (kj) denote a strictly increasing sequence of natural

numbers. For f ∈ E+, we have the increasing sequence (
∑i

j=1Dkj
f)∞i=1 bounded

above by f . Since order continuity implies Dedekind completeness, it follows that

supi

∑i
j=1Dkj

f ∈ E. Using the order continuity of E again yields ‖ supn

∑n
j=1Dkj

f−∑i
j=1Dkj

f‖ → 0 as i → ∞. From this, we infer that
∑∞

i=1Dif is sub-series

summable for every f ∈ E. The unconditionality of (Di) follows from Theorem

1.4.2.

Lastly, let (θk) denote any choice of signs. Notice that Di = Pi−Pi−1 ≤ Pi ≤ idE

for each i ∈ N. Hence, (Di) is also a sequence of band projections. It follows from

[106, Corollary 32.4] that, for any f ∈ E, |Dif | ∧ |Djf | = Di|f | ∧ Dj |f | = 0 for

i 6= j. Thus, |
∑i

k=1 θkDkf | =
∑i

k=1 |θkDkf | =
∑i

k=1 |Dkf | = |
∑i

k=1Dkf |. Since

the norm on E is a Riesz norm, ‖
∑i

k=1 θkDkf‖ = ‖
∑i

k=1Dkf‖, which completes

the proof. ut
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Classical examples of Banach lattices with order continuous norm are the spaces

Lp(µ) for 1 ≤ p <∞.

It is impossible to have dimR(Di) = 1 for all i ∈ N when 1 ≤ p <∞, unless the

underlying measure space is purely atomic.

Indeed, for 1 < p < ∞ (p 6= 2), it would imply that Lp(µ) has an unconditional

basis with unconditional constant one. This contradicts the fact that the Haar system

is the unconditional basis of Lp(µ) with smallest unconditional constant p∨ ( p
p−1)−

1 > 1 for p 6= 2 (cf. [15, 17, 18]). When p = 2, the divergence of
∑∞

i=1 θiDif in Lr(µ)

for some choice of signs (θi), 1 < r < p and f ∈ Lr(µ) implies divergence in L2(µ).

The case p = 1 is covered by [71, Proposition 1.d.1], which asserts that L1(µ) is not

isomorphic to any subspace of a Banach space with unconditional basis.

In what follows, we will consider stopping times adapted to positive R-bounded

BS-filtrations on order continuous Banach lattices. Recall that if (Σi) is a classical

filtration, then Corollary 1.6.7 implies that the sequence of operators (E( · |Σi)) on

Lp(µ) is R-bounded when 1 < p < ∞. This is sufficient for the convergence of a

stopped process with respect to an unbounded stopping time. For convenience, we

recall Theorem 1.5.8.

Theorem 7.3.2 (Clément-de Pagter-Sukochev-Witvliet) Let (Di) be an

unconditional Schauder decomposition of the Banach space Y , with unconditional

constant K. Suppose that T ⊂ L(Y ) is R-bounded with R-bound M . If (Ti) ⊂ T is

such that TiDi = DiTiDi for all i ∈ N, then the series

Sx :=
∞∑
i=1

TiDix

is convergent in Y for all x ∈ Y , and defines a bounded linear operator S : Y → Y

with ‖S‖ ≤ K2M .

In the context of stopping times on order continuous Banach lattices, the following

theorem is now immediate:

Theorem 7.3.3 Let E be an order continuous Banach lattice and (Ti) a positive

R-bounded BS-filtration on E with R-bound M . If P = (Pi) is a (not necessarily

bounded) stopping time adapted to (Ti), then

TPf :=
∞∑
i=1

(Pi − Pi−1)Tif

for all f ∈ E defines a bounded linear projection with ‖TP‖ ≤ M . Consequently,

supP∈T∗ ‖TP‖ ≤M .
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Proof. The proof is a direct consequence of Proposition 7.3.1 and the fact that Ti is

a projection that commutes with Pj for all i ∈ N and j ≤ i. ut

This yields an optional stopping theorem for unbounded stopping times:

Theorem 7.3.4 Let E be a Banach lattice and (Ti) a positive BS-filtration on E.

Then the following statements hold:

(a) If E is order continuous and (Ti) is R-bounded, then TP = TPTQ = TQTP for

P,Q ∈ T∗ with P ≤ Q.

(b) If E has the projection property and (fi) is a martingale relative to (Ti), then

fP = TPfQ for P,Q ∈ T with P ≤ Q.

(c) If E is order continuous, (Ti) R-bounded and (fi) a fixed martingale relative to

(Ti), then fP , fQ ∈ E and fP = TPfQ for P,Q ∈ T∗ with P ≤ Q. Moreover,

supP∈T∗ ‖fP‖ <∞.

Proof. (a) Let P = (Pi),Q = (Qi) ∈ T∗ with P ≤ Q. Since E has the projection

property, it follows that

(Pj − Pj−1)(Qi −Qi−1) = (Qi −Qi−1)(Pj − Pj−1)

for all i, j ∈ N (cf. [106, Theorem 32.1]). Moreover, since P ≤ Q and m ≤ n imply

Qm ≤ Pn, it follows that PnQm = QmPn = Qm for all m,n ∈ N with m ≤ n.

Consequently, for i+ 1 ≤ j, we have

(Qi −Qi−1)(Pj − Pj−1) = QiPj −Qi−1Pj −QiPj−1 +Qi−1Pj−1

= Qi −Qi−1 −Qi +Qi−1

= 0.

These observations, together with the identities

• TiPj = PjTi,

• Ti(Qi −Qi−1) = (Qi −Qi−1)Ti,

• Tj(Pj − Pj−1) = (Pj − Pj−1)Tj and

• TiTj = TjTi = Tj ,

for all i, j ∈ N with j ≤ i, yield
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i=1

(Qi −Qi−1)Ti

)( n∑
j=1

(Pj − Pj−1)Tj

)
f

=
n∑

i=1

n∑
j=1

(Qi −Qi−1)Ti(Pj − Pj−1)Tjf =
n∑

i=1

n∑
j=1

Ti(Qi −Qi−1)(Pj − Pj−1)Tjf

=
n∑

i=1

i∑
j=1

Ti(Qi −Qi−1)(Pj − Pj−1)Tjf =
n∑

i=1

i∑
j=1

(Qi −Qi−1)(Pj − Pj−1)TiTjf

=
n∑

i=1

n∑
j=1

(Qi −Qi−1)(Pj − Pj−1)Tjf =
( n∑

i=1

(Qi −Qi−1)
)( n∑

j=1

(Pj − Pj−1)Tj

)
f

= Qn

( n∑
j=1

(Pj − Pj−1)Tj

)
f,

for all n ∈ N and f ∈ E. Taking the limit as n→∞, Theorem 7.3.3 and Proposition

7.3.1 imply TQTPf = TPf . Similar reasoning yields( n∑
j=1

(Pj − Pj−1)Tj

)( n∑
i=1

(Qi −Qi−1)Ti

)
f

=
n∑

i=1

i∑
j=1

Tj(Pj − Pj−1)(Qi −Qi−1)Tif =
n∑

i=1

i∑
j=1

TjTi(Pj − Pj−1)(Qi −Qi−1)f

=
n∑

i=1

n∑
j=1

Tj(Pj − Pj−1)(Qi −Qi−1)f =
( n∑

j=1

(Pj − Pj−1)Tj

)( n∑
i=1

(Qi −Qi−1)
)
f

=
( n∑

j=1

(Pj − Pj−1)Tj

)
Qnf,

for all n ∈ N and f ∈ E. Taking the limit as n→∞, another application of Theorem

7.3.3 and Proposition 7.3.1 shows TPTQf = TPf . Consequently,

TQTPf = TPf = TPTQf

for all f ∈ E. This completes the proof of (a).

(b) If Q stops at n ∈ N, then P stops at m ∈ N for some m ≤ n. Thus, for a

martingale (fi) relative to (Ti), it follows from the proof of (a) that

TPfQ = TP

∞∑
i=1

(Qi −Qi−1)fi = TP

∞∑
i=1

(Qi −Qi−1)Tifn = TPTQfn = TPfn

=
∞∑
i=1

(Pi − Pi−1)Tifn =
∞∑
i=1

(Pi − Pi−1)fi = fP .

(c) Assume for some f ∈ E, fi = Tif for each i ∈ N. Then,
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fQ =
∞∑
i=1

(Qi −Qi−1)fi =
∞∑
i=1

(Qi −Qi−1)Tif = TQf ∈ E,

by Theorem 7.3.3. Similarly, fP = TPf ∈ E. By (a) we have fP = TPf = TPTQf =

TPfQ. Lastly, observe that supP∈T∗ ‖fP‖ = supP∈T∗ ‖TPf‖ ≤ supP∈T∗ ‖TP‖‖f‖ <
∞, by Theorem 7.3.3. ut

Corollary 7.3.5 Let E be an order continuous Banach lattice and (Ti) a positive

R-bounded BS-filtration on E with R-bound M . Then for any directed set D ⊂ T∗

we have that {TP}P∈D is a M -BS-filtration on E.

The uniform boundedness of {TP}P∈T is essential for the next convergence result,

which resembles Corollary 3.2.7.

Theorem 7.3.6 Let E be an order continuous Banach lattice and (Ti) a positive

R-bounded BS-filtration on E with R-bound M . Then the following statements hold:

(a) If D ⊂ T∗ is a directed set, then limP∈D ‖TPf − f‖ = 0 if and only if f ∈⋃
P∈DR(TP).

(b) If (fi) is a martingale relative to (Ti) and D ⊂ T is a directed set, then

limP∈D ‖fP − g‖ = 0 if and only if g ∈
⋃
P∈DR(TP) and fP = TPg for each

P ∈ D. Moreover, if (fi) is fixed, we may take D ⊂ T∗.

Proof. (a) Suppose that limP TPf = f . It readily follows from TPf ∈ R(TP) for

each P ∈ D that f ∈
⋃
P∈DR(TP). Conversely, suppose that f ∈

⋃
P∈DR(TP).

Then, for each ε > 0, there exists fε ∈
⋃
P∈DR(TP) such that ‖fε−f‖ < ε/(M +1).

From Theorem 7.3.4(a) we may infer the existence of a P0 ∈ D with the property

fε ∈ R(TP) for all P ≥ P0. Hence, for all P ≥ P0, it follows from Theorem 7.3.3

that

‖TPf − f‖ ≤ ‖TPf − fε‖+ ‖fε − f‖

= ‖TP(f − fε)‖+ ‖fε − f‖

≤M‖f − fε‖+ ‖fε − f‖

< Mε/(M + 1) + ε/(M + 1)

= ε,

which completes the proof of (a).

(b) Suppose (fP) converges to g, then it is clear that g ∈
⋃
P∈DR(TP). Also,

by Theorem 7.3.4(b), we have TPfQ = fP for all P,Q ∈ D with P ≤ Q. Thus,

limQ∈D TPfQ = TPg = fP . Conversely, by part (a), we have ‖TPg−g‖ = ‖fP−g‖ →
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0, as required. For the case where (fi) is fixed and D ⊂ T∗, it is enough to observe

Theorem 7.3.4(c). ut

7.4 A Characterization of convergent nets of stopped processes in

vector-valued Lp-spaces

We start with a lemma:

Lemma 7.4.1 Let E be an order continuous Banach lattice and Y a Banach space.

Suppose (Ti) is a R-bounded BL-filtration on E, with R-bound M . Then the following

statements hold for E⊗̃lY :

(a) If P ∈ T∗, then TP : E → E is positive and R(TP) is a closed Riesz subspace of

E. Consequently, TP ⊗l idY : E⊗̃lY → E⊗̃lY is a bounded linear projection with

range R(TP)⊗̃lY ; moreover, supP∈T∗ ‖TP ⊗l idY ‖ ≤M .

(b)
⋃
P∈DR(TP) a closed Riesz subspace of E, for any directed set D ⊂ T∗.

(c)
⋃
P∈DR(TP)⊗̃lY =

⋃
P∈DR(TP ⊗l idY ), for any directed set D ⊂ T∗.

Proof. (a) Since (Pi − Pi−1) is a band projection and Ti is positive for each i ∈ N,

the positivity of TP follows easily. Now let f ∈ R(TP). Observing that |Tif | = Ti|Tif |
for each i ∈ N and |

∑n
i=1(Pi − Pi−1)Tif | =

∑n
i=1(Pi − Pi−1)|Tif | for each n ∈ N, it

follows that

TP |f | = TP |TPf | = TP

∣∣∣∣∣
∞∑
i=1

(Pi − Pi−1)Tif

∣∣∣∣∣ = TP

∞∑
i=1

(Pi − Pi−1)|Tif |

=
∞∑
i=1

(Pi − Pi−1)Ti|Tif | =
∞∑
i=1

(Pi − Pi−1)|Tif | =

∣∣∣∣∣
∞∑
i=1

(Pi − Pi−1)Tif

∣∣∣∣∣
= |TPf | = |f |.

Hence, |f | ∈ R(TP), proving that R(TP) is a Riesz space. Since TP is a projection,

it follows R(TP) is also closed in E. The fact that TP ⊗l idY : E⊗̃lY → E⊗̃lY is a

bounded linear projection with range R(TP)⊗̃lY and norm ‖TP‖ now follows from

Lemma 3.4.1. Consequently, supP∈T∗ ‖TP ⊗l idY ‖ ≤M , by Theorem 7.3.3.

(b) The proof of (b) is a trivial consequence of (a).

(c) Let y ∈
⋃
P∈DR(TP ⊗l idY ) and ε > 0 be given. Select y0 ∈ R(TP ⊗l idY )

for some P ∈ D, such that ‖y − y0‖l < ε. Part (a) and the left order injectivity of

the l-norm imply that y0 ∈ R(TP ⊗l idY ) = R(TP)⊗̃lY ↪→
⋃
P∈DR(TP)⊗̃lY . Thus,

y ∈
⋃
P∈DR(TP)⊗̃lY .
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For the reverse inclusion, let y ∈
⋃
P∈DR(TP)⊗̃lY and ε > 0 be given. Select

y0 ∈
⋃
P∈DR(TP)⊗ Y such that

‖y − y0‖l < ε/2.

Let y0 =
∑n0

i=1 ai ⊗ yi, where ai ∈
⋃
P∈DR(TP) and yi ∈ Y. Select bi ∈

⋃
P∈DR(TP)

such that

‖ai − bi‖ < ε/

(
2

n0∑
i=1

‖yi‖

)
.

Let z =
∑n0

i=1 bi ⊗ yi. Then, by part (a), z ∈
⋃
P∈DR(TP ⊗l idY ). Also,

y0 − z =
n0∑
i=1

(ai − bi)⊗ yi,

‖y0 − z‖l ≤ ‖
n0∑
i=1

‖yi‖ |ai − bi|‖ < ε/2

and

‖y − z‖l ≤ ‖y − y0‖l + ‖y0 − z‖l < ε/2 + ε/2 = ε.

Thus, y ∈
⋃
P∈DR(TP ⊗l idY ). ut

Corollary 7.4.2 Let E be an order continuous Banach lattice and (Ti) a R-bounded

BL-filtration on E with R-bound M . Then for any directed set D ⊂ T∗ we have that

{TP}P∈D is a M -BL-filtration on E.

As already mentioned, if (Ti) is a BL-filtration on E, then it may be extended to

E⊗̃lY by considering (T ⊗l idY ). Similarly, if P = (Pi) ∈ T∗, it is easy to check that

P extends to E⊗̃lY by considering (Pi ⊗l idY ). The next lemma shows that TP can

be extended to E⊗̃lY in the same manner, under some additional assumptions.

Lemma 7.4.3 Let E be an order continuous Banach lattice and Y a Banach space.

Suppose (Ti) is a positive R-bounded BS-filtration on E, with R-bound M . If P =

(Pi) ∈ T∗, then

T̂Pf :=
∞∑
i=1

[
(Pi ⊗l idY )− (Pi−1 ⊗l idY )

]
(Ti ⊗l idY )f

converges for each f ∈ E⊗̃lY and defines a bounded linear projection on E⊗̃lY with

‖T̂P‖ ≤M .
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Proof. Let u =
∑n

j=1 xj ⊗ yj ∈ E ⊗ Y and observe that

(TP ⊗ idY )u =
n∑

j=1

TPxj ⊗ yj =
n∑

j=1

∞∑
i=1

(Pi − Pi−1)Tixj ⊗ yj

=
n∑

j=1

∞∑
i=1

[
(Pi ⊗l idY )− (Pi−1 ⊗l idY )

]
(Ti ⊗l idY )(xj ⊗ yj)

=
∞∑
i=1

[
(Pi ⊗l idY )− (Pi−1 ⊗l idY )

]
(Ti ⊗l idY )u

= T̂Pu.

Hence, by taking the unique continuous extension of the bounded operator TP⊗ idY ,

we obtain TP ⊗l idY = T̂P on E⊗̃lY . An application of Lemma 7.4.1(a) completes

the proof. ut

As a consequence of the above lemma, the assertions of Theorem 7.3.4 and The-

orem 7.3.6 trivially extend to E⊗̃lY . In what follows, the distinction between these

theorems and their extended counterparts will be implicit.

We recall Theorem 5.2.2 again for convenience: if E is a Banach lattice and Y a

Banach space, then u ∈ E⊗̃lY if and only if u =
∑∞

i=1 xi ⊗ yi, where∥∥∥ ∞∑
i=1

|xi|
∥∥∥

E
<∞ and lim

i→∞
‖yi‖Y = 0. (7.1)

Using this representation theorem and the above results, we can now give a descrip-

tion of convergent nets of stopped processes in the l-tensor product, namely:

Theorem 7.4.4 Let E be an order continuous Banach lattice and Y a Banach

space. Suppose (Ti) is a R-bounded BL-filtration on E. In addition, suppose that

(fi) ⊂ E⊗̃lY is a martingale relative to the BS-filtration (Ti ⊗l idY ), and D ⊂ T is

a directed set. Then the following statements are equivalent:

(a) The net of stopped processes {fP}P∈D is convergent in E⊗̃lY .

(b) For each i ∈ N, there exist a yi ∈ Y and a fixed martingale (x(i)
j , Tj)∞j=1 ⊂ E with

{x(i)
P }P∈D ⊂ E convergent, so that fP =

∑∞
i=1 x

(i)
P ⊗ yi for each P ∈ D, where∥∥∥∥∥

∞∑
i=1

∣∣∣∣ limP∈D
x

(i)
P

∣∣∣∣
∥∥∥∥∥ <∞ and limi→∞ ‖yi‖ = 0.

Moreover, if (fi) ⊂ E⊗̃lY is fixed, we may take D ⊂ T∗.

Proof. Suppose {fP}P∈D is convergent in E⊗̃lY . Then, by Theorem 7.3.6(b) and

Lemma 7.4.1(c), it follows that
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lim
P∈D

fP ∈
⋃
P∈D

R(TP ⊗l idY ) =
⋃
P∈D

R(TP)⊗̃lY.

By the remark preceding this theorem, limP∈D fP =
∑∞

i=1 xi⊗ yi where (7.1) holds.

By Theorem 7.3.6(b), fP = (TP ⊗l idY )(
∑∞

i=1 xi ⊗ yi) for each P ∈ D. For each

i ∈ N, define x(i)
j = Tjxi, for each j ∈ N. Then (x(i)

j )∞j=1 is a fixed martingale relative

to (Tj), so that x(i)
P = TPxi ∈ E for each i ∈ N. Hence,

fP =
∞∑
i=1

TPxi ⊗ yi =
∞∑
i=1

x
(i)
P ⊗ yi,

where {x(i)
P }P∈D is convergent in E, by Theorem 7.3.6(b). Thus,

∥∥∥∑∞
i=1

∣∣∣limP∈D x
(i)
P

∣∣∣∥∥∥ <
∞ and limi→∞ ‖yi‖ = 0 hold.

Conversely, for each i ∈ N, let xi = limP∈D x
(i)
P . Theorem 7.3.6(b) implies x(i)

P =

TPxi for each i ∈ N and (xi) ⊂
⋃
P∈DR(TP). Also, (xi) and (yi) satisfy (7.1) so that

Lemma 7.4.1(c) implies

f :=
∞∑
i=1

xi ⊗ yi ∈
⋃
P∈D

R(TP)⊗̃lY =
⋃
P∈D

R(TP ⊗l idY ).

Then, for each P ∈ D,

fP =
∞∑
i=1

x
(i)
P ⊗ yi =

∞∑
i=1

TP(xi)⊗ yi = (TP ⊗l idY )f.

It now follows from Theorem 7.3.6(b) that {fP}P∈D is convergent.

Lastly, if (fi) is fixed, then {fP}P∈D ⊂ E⊗̃lY for D ⊂ T∗, by Theorem 7.3.4(c).

Thus, the result also holds in this case. ut

The above result specializes the following:

Theorem 7.4.5 Let (Ω,Σ, µ) be a finite measure space, 1 < p < ∞, and Y a

Banach space. Suppose that (fi, Σi) ⊂ Lp(µ, Y ) is a convergent martingale and D a

directed set of (not necessarily bounded) stopping times adapted to (Σi). Then the

following statements are equivalent:

(a) The net of stopped processes {fτ}τ∈D is convergent in Lp(µ, Y ).

(b) For each i ∈ N, there exist a yi ∈ Y and a convergent martingale (x(i)
j , Σj)∞j=1 ⊂

Lp(µ) with {x(i)
τ }τ∈D convergent, so that fτ =

∑∞
i=1 x

(i)
τ (ω)yi for each ω ∈ Ω and

τ ∈ D, where∥∥∥∥∥
∞∑
i=1

∣∣∣∣limτ∈D
x(i)

τ

∣∣∣∣
∥∥∥∥∥ <∞ and limi→∞ ‖yi‖ = 0.
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The above equivalence holds for 1 ≤ p <∞ with (fi, Σi) ⊂ Lp(µ, Y ) not necessarily

convergent, provided D is a directed set of bounded stopping times.

Proof. In the case E = Lp(µ), where 1 < p < ∞ and D ⊂ T∗, it follows that E is

order continuous and the BL-filtration (Ti) on E given by (E( · |Σi)) (where (Σi)

is a classical filtration) is R-bounded by Corollary 1.6.7. The result now follows by

noting that any martingale in Lp(µ) or Lp(µ, Y ), relative to (Σi), is fixed if and only

if it is convergent.

For the case p = 1 and D ⊂ T, we have supτ∈D ‖E( · |Στ )‖ ≤ 1 even though

(E( · |Σi)) is not necessarily R-bounded. Consequently, the result holds for 1 ≤ p <

∞ and (fi, Σi) ⊂ Lp(µ, Y ) not necessarily convergent, provided that D is a directed

set of bounded stopping times. ut

7.5 Unconditional Schauder decompositions in vector-valued

Lp-spaces

In this section, we give an application of the above techniques to a result concerning

the existence of unconditional Schauder decompositions in vector-valued Lp-spaces.

Recall that Aldous showed in [1, Proposition 4] that if Lp(µ, Y ) possesses an

unconditional basis, then Y is a UMD space. Conversely, if Y is a UMD space with

unconditional basis, then Lp(µ, Y ) has unconditional basis, as was noted by Bourgain

in [9]. We now generalize this converse to unconditional Schauder decompositions in

Lp(µ, Y ).

Theorem 7.5.1 Let 1 < p <∞ and Y be a Banach lattice. If (Ei) is a martingale

decomposition of Lp(µ) and (Pj) any stopping time on Y , then{
(Ei − Ei−1)⊗∆p(Pj − Pj−1)

}
i,j∈N

is an unconditional Schauder decomposition of Lp(µ, Y ), provided that Y possesses

the UMD property. In particular, if Y is a Banach space with unconditional basis,

then Lp(µ, Y ) has an unconditional basis, provided Y possesses the UMD property.

Proof. Define the bounded operators Di = (Ei−Ei−1)⊗∆p idY and D′
j = idLp(µ)⊗∆p

(Pj −Pj−1) on Lp(µ, Y ) for all i, j ∈ N. Then it is easily verified that DiD
′
j = D′

jDi

for all i, j ∈ N.

Assume Y has the UMD property. Then Y is reflexive, and thus has the Radon-

Nikodým property (cf. [37]). This implies Y is an order continuous Banach lattice

(cf. [45, p. 74]). Hence, Lp(µ, Y ) is also an order continuous Banach lattice.
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Moreover, (idLp(µ)⊗∆p Pj)f ↑ f for all f ∈ Lp(µ, Y )+ so that (idLp(µ)⊗∆p Pj) is a

stopping time adapted to the BS-filtration (Ei⊗∆p idY ) on Lp(µ, Y ). By Proposition

7.3.1, (D′
j) is an unconditional Schauder decomposition of Lp(µ, Y ). On the other

hand, the UMD property of Y implies that (Di) is also an unconditional Schauder

decomposition of Lp(µ, Y ).

By Theorem 1.6.8, it remains to show that Lp(µ, Y ) has property (α). It is re-

marked in [103, Remark 2.3.2] that any Banach lattice with finite cotype has prop-

erty (α) (cf. [84, Proposition 2.1] and [36, Theorem 14.1]). In our case, Lp(µ, Y ) is

a UMD Banach lattice. However, Banach spaces that possess the UMD property

already have finite cotype, as was noted by Aldous in the proof of [1, Proposition 2].

In particular, if Y is a Banach space possessing an unconditional basis, it can be

renormed so that it becomes an order continuous Banach lattice Y0 (see Theorem

6.3.8 and its corollary). The natural coordinate projections (Pj) on Y0 constitute a

stopping time. It follows from the above that {DiD
′
j} is an unconditional decom-

position on Lp(µ, Y0) with dim(DiD
′
j) = 1, whenever dim(Di) = 1. Since Lp(µ, Y )

is isomorphic to Lp(µ, Y0) and the latter has an unconditional basis, the proof is

complete. ut

7.6 Notes and remarks

Theorem 7.4.4 may be considered as an extension of Theorem 5.3.1 when the Banach

lattice E is order continuous and the BL-filtration (Ti) on E is R-bounded. Indeed,

consider the sequence of stopping times on E, adapted to (Ti), defined by P1 =

(idE , idE , idE , . . .), P2 = (0, idE , idE , . . .), P3 = (0, 0, idE , . . .), . . .. Since TPi = Ti for

each i ∈ N, it is evident that Theorem 7.4.4 reduces to Theorem 5.3.1. Of course,

we have assumed that the filtration on Y is the trivial filtration. However, Theorem

7.4.4 can easily be improved to accommodate any BS-filtration on Y .
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Appendix

A.1 Riesz spaces

The material in this section can be found in [73, 105, 106, 76, 92]. We focus on a

special class of vector space endowed with partial ordering.

Definition A.1.1 Let X be a partially ordered set.

(a) If every subset of X consisting of two elements has a supremum and an infimum

then X is called a lattice.

(b) We denote sup{x, y} by x ∧ y and inf{x, y} by x ∨ y for all x, y ∈ X.

(c) If X is a lattice, then X is called a distributive lattice if x∧(y∨z) = (x∧y)∨(x∧z)
for all x, y, z ∈ X.

Definition A.1.2 Let E be a real vector space.

(a) If E has a partial ordering so that

(i) f ≤ g ⇒ f + h ≤ g + h for every f, g, h ∈ E and

(ii) f ≥ 0 ⇒ αf ≥ 0 for every non-negative α ∈ R,

then E is called an ordered vector space.

(b) Let E be an ordered vector space, then the subset CE = {f ∈ E : f ≥ 0} is

called the positive cone of E. An ordered vector space E with its positive cone

CE is denoted (E,CE). The cone CE is said to be generating if E = CE − CE ,

proper if CE ∩ (−CE) = {0} and Archimedean if it follows from y−nx ∈ CE for

all n ∈ N, with y ∈ CE and x ∈ E, that −x ∈ CE .

(c) Let E be an ordered vector space, then for f, g ∈ E with f ≤ g we define an

order interval [f, g] by [f, g] := {h ∈ E : f ≤ h ≤ g}.
(d) If E is an ordered vector space and a lattice, then E is called a Riesz space. We use

the notation E+ for the positive cone of a Riesz space E. If E+ is Archimedean,

then E is called an Archimedean Riesz space.
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(e) Let E be a Riesz space, then for all f ∈ E we have the notations f+ = f ∨ 0,

f− = (−f) ∨ 0 = −(f ∧ 0) and |f | = f ∨ (−f). We call f+ and f− the positive

and negative parts of f respectively.

We collect some elementary consequences of the above definitions, the proofs of

which can be found in [106, Theorems 5.1, 5.2, 5.5 and 6.1].

Proposition A.1.3 Let E be a Riesz space and f, g ∈ E. Then the following state-

ments hold:

(a) f+, f− ∈ E+ and | − f | = |f |.
(b) f = f+ − f−, f+ ∧ f− = 0 and |f | = f+ + f−, moreover E+ is proper and

generating.

(c) f ∨ g = 1
2(f + g) + 1

2 |f − g| and f ∧ g = 1
2(f + g)− 1

2 |f − g|.
(d) ||f | − |g|| ≤ |f + g| ≤ |f |+ |g|.
(e) E is an infinitely distributive lattice.

The decomposition f = f+ − f− is unique in the sense that f = u − v with

u ∧ v = 0, u ≥ 0 and v ≥ 0 if and only if u = f+ and v = f− (cf. [106, Theorem

5.6]). This is known as the minimal decomposition, for if f = u− v with u ≥ 0 and

v ≥ 0, then f+ ≤ u and f− ≤ v (cf. [106, Theorem 5.6]).

It is evident from (c) in the above proposition that E is a Riesz space if and only

if f ∈ E implies |f | ∈ E. We look at some algebraic structures found in Riesz spaces.

Definition A.1.4 Let E be a Riesz space.

(a) R ⊂ E is called a Riesz subspace if R is a linear subspace of E and for all x, y ∈ R
we have x ∧ y ∈ R and x ∨ y ∈ R.

(b) S ⊂ E is called solid if f ∈ S ⇒
[
-|f |, |f |

]
⊂ S.

(c) A ⊂ E is called an ideal if A is a solid linear subspace.

(d) An ideal B ⊂ E is called a band when the supremum (if it exists) of every subset

of B that is bounded above is an element of B.

From the above definition we can deduce that A ⊂ E is an ideal if and only if A

is a linear subspace, f ∈ A⇔ |f | ∈ A and 0 ≤ g ≤ f ∈ A⇒ g ∈ A. It is also worth

noting that any ideal A ⊂ E is a Riesz subspace of E and that the intersection or

algebraic sum of any two ideals is again an ideal.

The statements in the next definition are justified by [76, Propositions 1.2.5 and

1.2.6].

Definition A.1.5 Let E be a Riesz space and D ⊂ E.
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(a) The ideal AD generated by D is the smallest ideal containing D and can be

expressed as

AD =
⋃{

n
[
-y, y

]
: n ∈ N, y = |x1| ∨ . . . ∨ |xr|, x1, . . . , xr ∈ D

}
.

In the case where D = {f} we denote AD by Af . We call Af the principle ideal

generated by f and it can be expressed as

Af =
⋃{

n
[
-|f |, |f |

]
: n ∈ N

}
.

We also use the notation Ef to denote Af , as is customary in some of the

literature.

(b) The band BA generated by an ideal A is the smallest band containing A and can

be expressed as

BA =
{
g ∈ E : |g| = sup

([
0, |g|

]
∩A

)}
.

The band generated by the principle ideal Af is called the principle band gener-

ated by f and is denoted by Bf , which can be expressed as

Bf =
{
g ∈ E : |g| = sup

{
|g| ∧ n|f | : n ∈ N

}}
.

(c) An element 0 < e ∈ E+ is called a strong order unit if Ae = E.

(d) An element 0 < e ∈ E+ is called a weak order unit if Be = E. Note that

0 < e ∈ E+ is a weak order unit of E if and only if for every f ∈ E+ we have

that f = sup{f ∧ ne : n ∈ N}.

It is shown in [76, Corollary 1.2.14] that a positive element of a Banach lattice is

a strong order unit if and only if it is an interior point of E+.

Definition A.1.6 Let E be a Riesz space. We say that f, g ∈ E are disjoint if

|f | ∧ |g| = 0 and we write f⊥g. If D is a non empty subset of E, then the set

Dd = {f ∈ E : f⊥g ∀ g ∈ D} is called the disjoint complement of D. If D1 and D2

are both non empty subsets of E such that d1⊥d2 for all d1 ∈ D1 and d2 ∈ D2, then

D1 and D2 are said to be disjoint and is denoted D1⊥D2.

Mutually disjoint elements exhibit some important properties which are listed

below (cf. [106, Theorems 8.1, 8.2 and 8.4]).

Proposition A.1.7 Let E be a Riesz space and D be non empty subset of E. Then

the following statements hold:
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(a) If f0 = supD and for f ∈ E we have f⊥g for all g ∈ D, then f⊥f0.

(b) If {f1, . . . , fn} is a mutually disjoint set of non-zero elements, then this set is

linearly independent.

(c) For f, g ∈ E with f⊥g we have |f+g| = |f−g| = |f |+ |g| = ||f |−|g|| = |f |∨ |g|.
(d) Dd is a band.

(e) D ⊂ Ddd, Dd = Dddd and Dd ∩Ddd = {0}.

We turn our attention to sequences and nets.

Definition A.1.8 Let E be a Riesz space and (fn) be a sequence in E.

(a) If (fn) is an increasing (decreasing) sequence, we shall write fn ↑ (fn ↓), moreover

if f = supn fn (f = infn fn) exists in E, then we shall write fn ↓ f (fn ↑ f).

(b) We say (fn) converges in order to f if there exists a sequence (pn) in E such

that pn ↓ 0 and |f − fn| ≤ pn for all n ∈ N. We denote this by fn → f (ord).

(c) Let 0 < u ∈ E. Then (fn) is said to converge u-uniformly to f if given ε > 0,

there exists Nε such that n ≥ Nε ⇒ |f − fn| < εu. We denote this fn → f

(u-un).

(d) If E is Archimedean, E is said to be uniformly complete if for every u > 0 in E,

every u-uniform Cauchy sequence has a limit in E.

In general, we are not guaranteed unique u-uniform limits in a Riesz space unless

it is Archimedean, in this case u-uniform convergence implies order convergence.

Definition A.1.9 A non-empty subset D in a Riesz space E is said to be upwards

(downwards) directed if for any two elements f and g in D there exists an element h

in D such that h ≥ f ∨ g (h ≤ f ∧ g). We denote this as D ↑ (D ↓) and if f0 = supD

(f0 = inf D) exists in E we shall write D ↑ f0 (D ↓ f0).

If D is an arbitrary set which is bounded above (below), then by adjoining all

finite suprema (infima) to D, we can turn D into an upwards (downwards) directed

set without altering the set of upper (lower) bounds of D.

Definition A.1.10 Let E be a Riesz space.

(a) A Riesz space E is said to be Dedekind complete if the supremum of every subset

of E that is bounded above is an element of E and Dedekind σ-complete if the

supremum of every countable subset of E that is bounded above is an element

of E.

(b) Any band B in E satisfying B ⊕Bd = E is called a projection band.
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(c) If every band in E is a projection band, then E is said to have the projection

property.

(d) If every principle band in E is a projection band, then E is said to have the

principle projection property.

The next important structural result is called the main inclusion theorem and

can be found in [106, Theorem 12.3].

Theorem A.1.11 Let E be a Riesz space, then

(a) E Dedekind complete ⇒ E has the projection property ⇒ E has the principle

projection property ⇒ E is Archimedean.

(b) E Dedekind complete ⇒ E Dedekind σ-complete ⇒ E has the principle projection

property ⇒ E is Archimedean.

We conclude this section with Freudenthal’s Spectral Theorem. We first state

some auxiliary definitions and results, which can be found in [106, 76, 92]

Definition A.1.12 Let E be a Riesz space with 0 < e ∈ E. We call p ∈ E+ a

component of e if p ∧ (e− p) = 0.

Note in the above definition that p is a component of e if and only if (e− p) is a

component. The proof of the next result can be found in [106, Theorem 3.7].

Proposition A.1.13 Let E be a Riesz space with 0 < e ∈ E. The set Ce := {p ∈
E+ : e ∧ (p − e) = 0} of components of e is a lattice with respect to the ordering

inherited from E.

Definition A.1.14 Let E be a Riesz space with 0 < e ∈ E and suppose K =

{k1, . . . , kp} is a set of non-zero, mutually disjoint components of e such that e =∑p
i=1 ki. By a disjoint refinement of K we mean a set M = {m1, . . . ,mr} (where

p ≤ r) of non-zero, mutually disjoint components of e such that

e =
r∑

i=1

mi and ki =
∑

ms≤ki
1≤s≤r

ms for each 1 ≤ i ≤ p.

Proposition A.1.15 Let E be a Riesz space with 0 < e ∈ E. Suppose K =

{k1, . . . , kp} and L = {l1, . . . , lq} are sets each consisting of non-zero, mutually dis-

joint components of e such that e =
∑p

i=1 ki =
∑q

j=1 lj. Then there exists a disjoint

refinement M of both K and L.
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Definition A.1.16 Let E be a Riesz space with 0 < e ∈ E. Any s ∈ E for which

there exist pairwise disjoint components p1, p2, . . . , pn of e and α1, α2, . . . , αn ∈ R
such that s =

∑n
i=1 αipi, is called an e-step-function. We may assume without loss

of generality that
∑n

i=1 pi = e, in this case s =
∑n

i=1 αipi is known as the standard

representation of s and is not unique.

We note that although standard representations are not unique, the αi’s are

uniquely determined for a particular standard representation. It follows from Propo-

sition A.1.15 that any two e-step functions may be written as a linear combination

of the same components.

Proposition A.1.17 Let E be a Riesz space with 0 < e ∈ E. The set of all e-step-

functions

S(E) :=

{
n∑

i=1

αipi : pi a component of e, αi ∈ R, n ∈ N

}

is a Riesz subspace of E.

The proof of the next result can be found in [106, Theorem 33.2].

Theorem A.1.18 (Freudenthal’s Spectral Theorem) Let E be a Riesz

space with the principle projection property and let 0 < e ∈ E. Then for any f ≥ 0 in

the principle ideal Ae, there exist sequences (sn) and (tn) of positive e-step-functions

such that sn ↑ f and tn ↓ f hold e-uniformly.

A.2 Normed Riesz spaces and Banach lattices

In this section we introduce the notion of a norm on a Riesz space in a compatible

manner and look at some related results and properties. The material in this section

can be found in [7, 106, 76, 92].

Definition A.2.1 Let X be a real vector space.

(a) A map ‖ · ‖ : X → R is called a norm if

(i) ‖f‖ > 0 for all f ∈ X and ‖f‖ = 0 if and only if f = 0,

(ii) ‖αf‖ = |α|‖f‖ for all f ∈ X and α ∈ R and

(iii) ‖f+g‖ ≤ ‖f‖+‖g‖ for all f , g ∈ X (this is known as the triangle inequality).

(b) The pair (X, ‖ · ‖) is called a normed space.

(c) If (X, ‖·‖) is complete with respect to the norm, i.e. every norm Cauchy sequence

has a limit in X, then (X, ‖ · ‖) is called a Banach space.
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(d) The set ball(X) := {x ∈ X : ‖x‖ ≤ 1} is called the closed unit ball in X.

An order structure can be added to the normed structure in a compatible way.

Definition A.2.2 Let E be a Riesz space

(a) If E is equipped with a norm ‖ · ‖, then ‖ · ‖ is called a Riesz norm if for all

f, g ∈ E with |f | ≤ |g|, we have that ‖f‖ ≤ ‖g‖.
(b) A Riesz space E equipped with a Riesz norm is called a normed Riesz space.

(c) If a normed Riesz space E is complete with respect to the norm, then E is called

a Banach lattice.

Note that every normed Riesz space is Archimedean. In general, the normed

topology does not coincide with the order topology. We establish some relationships

between the different modes of convergence (cf. [106, Theorems 10.3, 15.3, 15.4 and

15.7]).

Proposition A.2.3 Let E be a normed Riesz space and (fn) a sequence in E. Then

the following statements hold:

(a) fn → f (u-un) implies fn → f (ord).

(b) fn → f (u-un) implies fn → f (norm).

(c) fn ↑ and fn → f (norm) implies fn ↑ f .
(d) fn → g (ord) and fn → f (norm) implies f = g.

(e) If D is an upwards directed set in E such that D converges in norm to f0, then

f0 = supD.

Definition A.2.4 Let E be a Riesz space.

(a) E is said to be order separable if every subset of E possessing a supremum in E

contains a finite or countable subset having the same supremum.

(b) E is said to be super Dedekind complete if E is order separable and Dedekind

complete.

(c) The normed Riesz space E is said to have order continuous norm if for any

subset D ↓ 0 in E, we have inf{‖f‖ : f ∈ D} = 0. The norm is said to be σ-order

continuous if for any sequence fn ↓ 0 in E we have ‖fn‖ ↓ 0.

It is evident that sequences that converge in the order topology of a Banach

lattice with order continuous norm, also converge in the norm topology. The next

result can be found in [106, Theorem 17.8].
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Theorem A.2.5 Any Banach lattice having order continuous norm is super Dedekind

complete.

We list some important characterizations of Banach lattices with order continuous

norm (cf. [106, Theorems 17.9 and 17.14]).

Theorem A.2.6 For a Banach lattice E the following conditions are equivalent:

(a) E has order continuous norm.

(b) E has σ-order continuous norm and E is Dedekind σ-complete.

(c) Every sequence in E which is increasing and bounded above converges in norm.

(d) Every order bounded disjoint sequence in E converges in norm to zero.

We present some special types of Banach lattice which are commonly found in

mathematical analysis.

Definition A.2.7 Let (E, ‖ · ‖) denote a normed Riesz space.

(a) (E, ‖ · ‖) is called an L-normed space if ‖ · ‖ satisfies ‖x+ y‖ = ‖x‖+ ‖y‖ for all

x, y ∈ E+. An L-normed Banach lattice is called an AL-space.

(b) (E, ‖ · ‖) is called an M -normed space if ‖ · ‖ satisfies ‖x∨ y‖ = ‖x‖ ∨ ‖y‖ for all

x, y ∈ E+. An M -normed Banach lattice is called an AM -space.

Every non-zero positive element in a Banach lattice can generate an AM -space,

as the next proposition shows (cf. [92, Chapter II, §7, Proposition 7.2]).

Proposition A.2.8 Let E be a Banach lattice. For each e ∈ E+ the gauge function

of [−e, e], given by

pe(x) := inf{λ ∈ R : λe ≤ x ≤ λe} for all x ∈ E,

is an M -norm on the principle ideal Ee so that (Ee, pe) is an AM -space with order

unit e and unit ball [−e, e]. Moreover, the canonical inclusion Ee → E is continuous.

A.3 Operator theory on normed spaces

The reader is referred to [7, 24, 89] for a comprehensive presentation of the material

in this section.

Definition A.3.1 Let X and Y be vector spaces.

(a) We shall call a map T : X → Y a linear operator if we have T (αx + βy) =

αT (x)+βT (y) for each α, β ∈ R, x, y ∈ X. Note that we sometimes denote T (x)

by Tx.
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(b) A linear operator P : X → X is called a projection if P 2x = P (Px) = Px for all

x ∈ X.

(c) We shall denote by idZ : Z → Z the identity operator on a vector space Z, which

is defined by idZ(x) = x for all x ∈ Z.

Definition A.3.2 Let X and Y be vector spaces and T : X → Y be a linear

operator.

(a) We denote the range of T by R(T ) = {y ∈ Y : ∃ x ∈ X so that Tx = y}. We

note that R(T ) is a vector subspace of Y .

(b) We denote the kernel or null space of T by N (T ) = {x ∈ X : Tx = 0}. We note

that N (T ) is a vector subspace of X.

(c) We define the rank of a linear operator to be the dimension of R(T ) as a vector

space.

(d) We define the nullity of a linear operator to be the dimension of N (T ) as a vector

space.

Definition A.3.3 Let X and Y vector spaces.

(a) We shall denote by L(X,Y ) the vector space of all linear operators from X into

Y . If X = Y then we shall write L(X,X) as L(X).

(b) In the case where Y = R, we shall write L(X,Y ) as X#. The elements of X#

are called linear functions and X# is called the algebraic dual of X.

(c) X## = (X#)# is called the algebraic bidual of X.

We note that a vector space X can be canonically embedded as a subspace of its

bidual under the injective linear mapping iX : X → X## defined by 〈x#, iX(x)〉 =

〈x, x#〉 for all x ∈ X and x# ∈ X#. We may view this as an abstract containment

and denote this as X ⊂ X##.

Definition A.3.4 Let X and Y denote normed spaces, and T : X → Y denote a

linear operator.

(a) T : X → Y is called bounded if there exists a constant C > 0 such that ‖Tx‖ ≤
C‖x‖ for all x ∈ X.

(b) T : X → Y is called open if T (O) is open in Y for every open set O ⊂ X.

(c) T : X → Y is called an isometry if ‖Tx‖ = ‖x‖ for all x ∈ X.

(d) T : X → Y is called an isomorphism if the exists a K > 0 such that K−1‖x‖ ≤
‖Tx‖ ≤ K‖x‖ for all x ∈ X.
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(e) T : X → Y is called a metric surjection if T is surjective and

‖y‖ = inf{‖x‖ : x ∈ X, Tx = y}

for every y ∈ Y . Metric surjections are sometimes referred to as quotient opera-

tors.

It is easily shown that a linear operator is bounded if and only if it is continuous,

therefore we will use these terms interchangeably.

Note that part (e) in the above definition is equivalent to T : X → Y mapping the

open unit ball of X onto the open unit ball of Y . This implies that Y is isometrically

isomorphic to the quotient space X/N (T ).

Definition A.3.5 Let X and Y be normed spaces.

(a) We define the normed space L(X,Y ) by L(X,Y ) := {T ∈ L(X,Y ) : T is

bounded} together with the operator norm ‖ · ‖ defined by ‖T‖ = sup{ ‖Tx‖ :

‖x‖ ≤ 1} for all T ∈ L(X,Y ). If X = Y then we shall write L(X,X) as L(X).

(b) In the case where Y = R, we shall write L(X,Y ) as X∗. The elements of X∗ are

called linear functionals and X∗ is called the continuous dual of X.

(c) We call X∗∗ = (X∗)∗ the continuous bidual of X.

If X is a normed space and Y is a Banach space, then L(X,Y ) is also a Banach

space with respect to the operator norm. In particular, we have that X∗ is a Banach

space.

We note that a normed space X can be canonically embedded as a subspace of

its bidual under the isometry iX : X → X∗∗ defined by 〈x∗, iX(x)〉 = 〈x, x∗〉 for

all x ∈ X and x∗ ∈ X∗. Again, we see this as an abstract containment where the

normed structure is preserved and we denote this as X ↪→ X∗∗. The elements of

X ↪→ X∗∗ are sometimes referred to as induced linear functionals on X∗. Since X∗∗

is always a Banach space, the closure of X in X∗∗ is complete, which shows every

normed space has a completion.

We now state some fundamental results from functional analysis.

Theorem A.3.6 (a) (Open Mapping Theorem) A bounded linear surjection act-

ing between Banach spaces is open.

(b) (Closed Graph Theorem) A linear operator between acting Banach spaces is

bounded if and only if its graph is closed.

(c) (Principle of Uniform Boundedness) Let X and Y be Banach spaces and

S ⊂ L(X,Y ). If sup{‖Tx‖ : T ∈ S} < ∞ for all x ∈ X, then sup{‖T‖ : T ∈
S} <∞.
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(d) (Hahn-Banach) If f is a bounded linear functional on a subspace of a normed

space, then f extends to the whole space with preservation of norm.

Corollary A.3.7 (Hahn-Banach)

(a) If X is a normed linear space and x ∈ X, then there exists x∗ ∈ X∗ of norm 1

such that x∗(x) = ‖x‖.
(b) If X is a normed space, then for all x ∈ X we have ‖x‖ = sup{|x∗(x)| : ‖x∗‖ ≤

1, x∗ ∈ X∗}.
(c) If X is a normed space and x∗(x) = 0 for all x∗ ∈ ball(X∗), then x = 0; i.e.

ball(X∗) separates the points in X.

Definition A.3.8 Let X and Y be normed spaces.

(a) Let T ∈ L(X,Y ). We define the adjoint T ∗ : Y ∗ → X∗ by

〈x, T ∗y∗〉 = 〈Tx, y∗〉

for all y∗ ∈ Y ∗ and x ∈ X.

(b) For T ∈ L(X,Y ), we call T ∗∗ : X∗∗ → Y ∗∗ the second adjoint of T .

We collect some useful results involving adjoints.

Proposition A.3.9 Let X and Y be normed spaces, then the following statements

hold:

(a) The mapping T 7→ T ∗ is an isometry of L(X,Y ) into L(Y ∗, X∗).

(b) The second adjoint T ∗∗ : X∗∗ → Y ∗∗ is a unique continuous extension of T :

X → Y ; if X is reflexive, then T ∗∗ = T .

(c) T : X → Y is an isometry if and only if T ∗ : Y ∗ → X∗ is a metric surjection.

(d) T : X → Y is a metric surjection if and only if T ∗ : Y ∗ → X∗ is an isometry.

(e) If X and Y are Banach spaces, then a bounded linear operator T : X → Y has

closed range if and only if T ∗ : Y ∗ → X∗ has closed range.

We define other weaker-than-norm topologies that exist on Banach spaces and

their duals.

Definition A.3.10 Let X be a normed space.

(a) The topology on X generated by the norm is called the strong topology on X.

(b) The weakest topology on X allowing all the linear functionals in X∗ to be con-

tinuous is called the weak topology on X, and is denoted by σ(X,X∗).

(c) The weak topology on X∗ is denoted by σ(X∗, X∗∗).
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(d) The weakest topology on X∗ allowing all the induced linear functionals in X to

be continuous is called the weak* topology on X∗, and is denoted by σ(X∗, X).

Evidently σ(X∗, X) is weaker than σ(X∗, X∗∗).

(e) A normed space X is called reflexive if X = X∗∗, in this case the weak and the

weak* topologies on X∗ coincide.

Theorem A.3.11 (Banach-Alaoglu) If X is a normed space, then the closed

unit ball of X∗ is σ(X∗, X) compact.

The above theorem implies that every sequence in the closed unit ball of X∗ has

a weak* convergent subsequence.

A.4 Operator theory on Riesz spaces

In this section, we identify various classes of operators between (normed) Riesz

spaces. The material in this section is taken from [106, 76, 92].

Definition A.4.1 Let E and F denote Riesz spaces and T ∈ L(E,F ).

(a) T is called positive if T (E+) ⊂ F+. If T is positive we write T ≥ 0 and we denote

the space of positive operators by L+(E,F ). It is clear that L(E,F ) becomes an

ordered vector space under the ordering defined by T1 ≥ T2 ⇔ T1 − T2 ≥ 0 for

all T1, T2 ∈ L(E,F ).

(b) T is called regular if T = T1 − T2 with T1, T2 ∈ L+(E,F ). We denote the space

of regular operators by Lr(E,F ), which is a vector subspace of L(E,F ). Note

that L+(E,F ) is a proper and generating positive cone of Lr(E,F ).

(c) T is called order bounded if T maps any order interval in E into an order interval

in F . We denote the space of order bounded operators by Lb(E,F ), which is a

vector subspace of L(E,F ).

(d) T is called order continuous if T is regular and for any downwards directed set

D ⊂ E with D ↓ 0 we have inf{|Tf | : f ∈ D} = 0 in F . The vector space of all

order continuous operators in Lr(E,F ) is denoted by Ln(E,F ).

(e) T is called σ-order continuous if T is regular and for any sequence (fn) in E

with fn ↓ 0 we have inf{|Tfn| : n ∈ N} = 0 in F . The vector space of all σ-order

continuous operators in Lr(E,F ) is denoted by Lc(E,F ).

(f) T is called a Riesz homomorphism if for all f, g ∈ E we have T (f ∨ g) = T (f) ∨
T (g). A Riesz isomorphism is an injective Riesz homomorphism.
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Note that ψ is a Riesz homomorphism if and only if |ψ(f)| = ψ(|f |) for all f ∈ E.

Riesz homomorphisms are necessarily positive.

The next theorem collects some fundamental structural results involving oper-

ators defined above. These results can be found in [106, Theorems 18.3, 18.4 and

20.2] and [76, Proposition 1.3.9] respectively.

Theorem A.4.2 (a) For the Riesz spaces E and F , we have the inclusion

Ln(E,F ) ⊂ Lc(E,F ) ⊂ Lr(E,F ) ⊂ Lb(E,F ) ⊂ L(E,F ).

(b) Let E be a Banach lattice and F be a normed Riesz space, then we have the

inclusion Lr(E,F ) ⊂ Lb(E,F ) ⊂ L(E,F ).

(c) For E and F Riesz spaces with F Dedekind complete, we have

Lr(E,F ) = Lb(E,F ).

Moreover, we have that Lr(E,F ) is a Dedekind complete Riesz space with

L+(E,F ) as positive cone.

(d) For E and F Riesz spaces with F Dedekind complete, we have that Ln(E,F ) and

Lc(E,F ) are bands in the Dedekind complete Riesz space Lr(E,F ).

In view of (b) in the above theorem, we shall denote L+(E,F ), Lr(E,F ) and

Lb(E,F ) by L+(E,F ), Lr(E,F ) and Lb(E,F ) respectively whenever E is a Banach

lattice and F is a normed Riesz space. The next proposition can be found in [76,

Proposition 1.3.6].

Proposition A.4.3 Let E and F be Banach lattices. For every T ∈ Lr(E,F ) we

define the r-norm of T by

‖T‖r = inf{‖S‖ : S ∈ L+(E,F ), |Tx| ≤ S|x| ∀ x ∈ E+}.

(Lr(E,F ), ‖·‖r) is a Banach space. Moreover, ‖T‖ ≤ ‖T‖r for every regular operator

T : E → F . If F , in addition, is Dedekind complete, then (Lr(E,F ), ‖ · ‖r) is a

Banach lattice such that ‖T‖r = ‖ |T | ‖ for every regular operator T : E → F .

We now turn our attention to dual spaces.

Definition A.4.4 Let E be a Riesz space.

(a) We define the order dual of E to be E∼ = Lb(E,R).

(b) We define the order continuous dual of E to be E∼n = Ln(E,R).

(c) We define the σ-order continuous dual of E to be E∼c = Lc(E,R).
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Note that E∼ is a Dedekind complete Riesz space and that E∼n and E∼c are bands

in E∼. It is clear that E∼n ⊂ E∼c ⊂ E∼. The next result explains the relationships

between the normed dual and order dual on a normed Riesz space. The proofs can

be found in [106, Theorems 25.8 and 25.10].

Proposition A.4.5 Let E be a normed Riesz space, then the following statements

hold:

(a) E∗ is an ideal in E∼.

(b) E∗ is a Dedekind complete Banach lattice with respect to the ordering inherited

from E∼. Moreover, if G is an upwards directed set of positive elements in E∗

such that G ↑ ϕ0, then {‖ϕ‖ : ϕ ∈ G} ↑ ‖ϕ0‖.
(c) If E is a Banach lattice, then E∼ = E∗.

(d) If E is a Banach lattice with order continuous norm then E∼ = E∼n = E∗.

The canonical embedding iE : E → E∗∗ is in fact a Riesz homomorphism, as well

as an isometry, as the next result indicates. The following theorem is easily derived

from the above proposition and [106, pp. 204–205].

Theorem A.4.6 Let E be a normed Riesz space and iE : E → E∗∗ be the canon-

ical embedding defined by 〈x∗, iE(x)〉 = 〈x, x∗〉 for all x∗ ∈ E∗. Then the following

statements are true.

(a) iE : E → E∗∗ is a Riesz homomorphism and an isometry whose range is con-

tained in (E∗)∼n .

(b) iE : E → E∗∗ preserves arbitrary suprema and infima if and only if E∗ ⊂ E∼n .

In particular, this is true when E is an order continuous Banach lattice.

AM -spaces and AL-spaces share a duality. The proof of the next proposition can

be found in [92, Chapter II, §9, Proposition 9.1].

Proposition A.4.7 The dual of each M -normed space is an AL-space, and the dual

of each L-normed space is an AM -space.

A.5 Tensor products of vector spaces

The material in this section is taken from [50, 90]. Throughout this section let X,

Y and Z denote real vector spaces.

Definition A.5.1 A map ϕ : X × Y → Z is called bilinear if we have
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(a) ϕ(αx+ βy, z) = αϕ(x, z) + βϕ(y, z) for each α, β ∈ R, x, y ∈ X and z ∈ Y and

(b) ϕ(x, γy + ηz) = γϕ(x, y) + ηϕ(x, z) for each γ, η ∈ R, x ∈ X and y, z ∈ Y .

Definition A.5.2 We writeB(X×Y, Z) for the vector space of all bilinear mappings

from X×Y into Z. If Z is R, then we just write B(X×Y ). The elements of B(X×Y )

are called bilinear forms.

Definition A.5.3 The tensor product X⊗Y of the vector spaces X and Y is defined

to be the vector subspace of B(X × Y )# generated by the set{
x⊗ y ∈ B(X × Y )# : ∃ (x, y) ∈ X × Y

such that 〈ϕ, x⊗ y〉 = ϕ(x, y) ∀ ϕ ∈ B(X × Y )
}
.

An element u ∈ X ⊗ Y is called a tensor and is of the form u =
∑n

i=1 xi ⊗ yi where

xi ∈ X, yi ∈ Y and i = 1, . . . n.

It is easy to see that the map ⊗ : X × Y → X ⊗ Y , defined by (x, y) 7→ x ⊗ y,

is bilinear and thus exhibits properties of a multiplication. For any u ∈ X ⊗ Y with

u 6= 0 there exists a smallest number n ∈ N such that u =
∑n

i=1 xi⊗yi where the xi’s

and the yi’s are linearly independent. Note that this representation is not unique.

Definition A.5.4 If u ∈ X⊗Y with u 6= 0 and u =
∑n

i=1 xi⊗yi where n is minimal,

then n is called the rank of u. A tensor of rank one (i.e. u = x ⊗ y) is called an

elementary tensor. Note that 0⊗ y = x⊗ 0 = 0 and has rank zero.

We provide a means of identifying the zero tensor. This result can be found in

[90, Proposition 1.2].

Proposition A.5.5 The following statements are equivalent for u =
∑n

i=1 xi⊗yi ∈
X ⊗ Y :

(a) u = 0.

(b)
∑n

i=1 x
#(xi)y#(yi) = 0 for all x# ∈ X# and y# ∈ Y #.

(c)
∑n

i=1 y
#(yi)xi = 0 for all y# ∈ Y #.

(d)
∑n

i=1 x
#(xi)yi = 0 for all x# ∈ X#.

The main purpose of tensor products is linearize bilinear maps. The following

result can be found in [90, Proposition 1.4].

Proposition A.5.6 Let X, Y and Z be arbitrary vector spaces, then L(X ⊗ Y, Z)

is isomorphic to B(X×Y, Z) under the mapping f 7→ f ◦⊗ for all f ∈ L(X⊗Y, Z).

In particular, if Z is R, then we have B(X × Y ) = (X ⊗ Y )#.
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It follows that every bilinear map ϕ from X × Y into Z induces a unique linear

map ϕ` from X ⊗ Y into Z so that the following diagram commutes:

X × Y Z

X ⊗ Y

-ϕ

?

⊗

�
�

�
���

ϕ`

An important consequence of the this result is that the tensor product X ⊗ Y of

vector spaces X and Y always exists and is unique up to isomorphism. This result

also enables us to characterize a tensor by means of embedding X ⊗ Y into some

familiar vector spaces.

Consider the bilinear map Φ : X × Y → B(X# × Y #) defined by

〈(x#, y#), Φ(x, y)〉 = x#(x)y#(y)

for all (x, y) ∈ X × Y and (x#, y#) ∈ X#× Y #. Linearizing, we obtain an injection

Φ` : X ⊗ Y → B(X# × Y #) where 〈(x#, y#), Φ`(x ⊗ y)〉 = x#(x)y#(y) for all

x⊗ y ∈ X ⊗Y and (x#, y#) ∈ X#×Y #. This enables us to view a tensor in X ⊗Y
as a bilinear form on X# × Y # whose action is defined by

〈(x#, y#), u〉 =

〈
(x#, y#),

n∑
i=1

xi ⊗ yi

〉
=

n∑
i=1

x#(xi)y#(yi)

for all u ∈ X ⊗ Y and (x#, y#) ∈ X# × Y #. Thus, we have a canonical embedding

X ⊗ Y ⊂ B(X# × Y #).

Analogous to the above, the bilinear map Φ : X# × Y # → B(X × Y ) defined by

〈(x, y), Φ(x#, y#)〉 = x#(x)y#(y) for all (x#, y#) ∈ X# × Y # and (x, y) ∈ X × Y

yields a canonical embedding X# ⊗ Y # ⊂ B(X × Y ) = (X ⊗ Y )#.

We can induce two more useful embeddings in the following way. Define the

bilinear map Φ : X × Y → L(X#, Y ) by

〈x#, Φ(x, y)〉 = x#(x)y

for all (x, y) ∈ X×Y and x# ∈ X#. Linearizing, we obtain an injection Φ` : X⊗Y →
L(X#, Y ) where 〈x#, Φ`(x⊗y)〉 = x#(x)y for all x⊗y ∈ X⊗Y and x# ∈ X#. This

enables us to view a tensor in X ⊗ Y as a linear operator from X# into Y whose

action is defined by
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〈x#, u〉 =

〈
x#,

n∑
i=1

xi ⊗ yi

〉
=

n∑
i=1

x#(xi)yi

for all u ∈ X ⊗ Y and x# ∈ X#. Thus, we have a canonical embedding X ⊗ Y ⊂
L(X#, Y ). By a symmetrical argument we obtain another embedding X ⊗ Y ⊂
L(Y #, X). We summarize these embeddings in the following proposition.

Proposition A.5.7 For the vector spaces X and Y we have the following embed-

dings:

(a) X ⊗ Y ⊂ B(X# × Y #),

(b) X# ⊗ Y # ⊂ B(X × Y ) = (X ⊗ Y )#,

(c) X ⊗ Y ⊂ L(X#, Y ) and

(d) X ⊗ Y ⊂ L(Y #, X).

This justifies the following definition.

Definition A.5.8 Let X and Y be vector space and u ∈ X ⊗ Y .

(a) We denote the bilinear form in B(X# × Y #) induced by u by Bu.

(b) We denote the two linear operators induced by u by Lu and Ru respectively

where Lu ∈ L(X#, Y ) and Ru ∈ L(Y #, X).

It is worth noting that the rank of a tensor u ∈ X ⊗ Y and the rank of the

induced operators Lu and Ru coincide.

A.6 Tensor products of Banach spaces

In this section we look at some ways of equipping the tensor product of two Banach

spaces with a norm, in particular we look at the projective and injective norms. The

material in this section is taken almost exclusively from [90].

Definition A.6.1 Let X, Y and Z be normed spaces.

(a) We call a bilinear mapping ϕ : X × Y → Z bounded if there exists a constant

C > 0 such that ‖ϕ(x, y)‖ ≤ C‖x‖‖y‖ for all x ∈ X and y ∈ Y .

(b) We define the normed vector space

B(X × Y, Z) = {ϕ ∈ B(X × Y, Z) : ϕ is bounded }

with the norm ‖ · ‖ defined by ‖ϕ‖ = sup{‖ϕ(x, y)‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1} for

all ϕ ∈ B(X × Y, Z). If Z is R, then we just write B(X × Y ). The elements of

B(X × Y ) are called bounded bilinear forms.
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If X, Y are normed spaces and Z is a Banach space, then B(X×Y, Z) is a Banach

space with respect to ‖ · ‖. In particular, we have that B(X × Y ) is a Banach space.

The following proposition is clear.

Proposition A.6.2 For the Banach spaces X and Y , we have the following embed-

dings:

(a) X ⊗ Y ↪→ B(X∗ × Y ∗).

(b) X∗ ⊗ Y ∗ ↪→ B(X × Y ).

(c) X ⊗ Y ↪→ L(X∗, Y ).

(d) X ⊗ Y ↪→ L(Y ∗, X).

Definition A.6.3 Let X and Y be Banach spaces.

(a) If we equip X ⊗ Y with a norm α, we shall denote the normed space (X ⊗ Y, α)

by X ⊗α Y and its norm completion by X⊗̃αY . We shall sometimes use the

notation αX,Y (u) to denote the norm of a tensor u in the tensor product X ⊗ Y
if there is a chance of ambiguity.

(b) We say a norm α on X ⊗ Y is a reasonable crossnorm if it has the following

properties

(i) α(x⊗ y) ≤ ‖x‖‖y‖ for all x ∈ X and y ∈ Y and

(ii) for all x∗ ∈ X∗ and y∗ ∈ Y ∗, the linear functional x∗ ⊗ y∗ on X ⊗ Y is

bounded and ‖x∗ ⊗ y∗‖ ≤ ‖x∗‖‖y∗‖.
(c) We define the projective norm on X ⊗ Y to be

π(u) = inf

{
n∑

i=1

‖xi‖‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}
for all u ∈ X ⊗ Y .

(d) We define the injective norm on X ⊗ Y to be ε(u) = ‖Lu‖ for all u ∈ X ⊗ Y

where Lu is the induced linear operator in L(X∗, Y ).

In view of the fact that the norm of Lu and the norms of the induced maps

Ru ∈ L(Y ∗, X) and Bu ∈ B(X∗ × Y ∗) coincide, we have that

ε(u) = sup

{∥∥∥∥∥
n∑

i=1

x∗(xi)yi

∥∥∥∥∥ : ‖x∗‖ ≤ 1

}

= sup

{∥∥∥∥∥
n∑

i=1

y∗(yi)xi

∥∥∥∥∥ : ‖y∗‖ ≤ 1

}

= sup

{∣∣∣∣∣
n∑

i=1

y∗(yi)x∗(xi)

∣∣∣∣∣ : ‖x∗‖ ≤ 1, ‖y∗‖ ≤ 1

}
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for all u =
∑n

i=1 xi ⊗ yi ∈ X ⊗ Y .

Note that X⊗̃εY is just the closure of X ⊗ Y in L(X∗, Y ) with respect to the

operator norm. The next result can be found in [90, Propositions 2.1, 2.3 and 3.1].

Proposition A.6.4 Let X and Y be Banach spaces. Then π and ε are reasonable

crossnorms on X ⊗ Y and ε(u) ≤ π(u) for all u ∈ X ⊗ Y .

Reasonable crossnorms are characterized by the following result which can be

found in [90, Proposition 6.1].

Proposition A.6.5 Let X and Y be Banach spaces.

(a) A norm α on X⊗Y is a reasonable crossnorm if and only if ε(u) ≤ α(u) ≤ π(u)

for all u ∈ X ⊗ Y .

(b) If α is a reasonable crossnorm on X ⊗ Y , then α(x⊗ y) = ‖x‖‖y‖ for all x ∈ X
and y ∈ Y .

(c) If α is a reasonable crossnorm on X ⊗ Y , then for all x∗ ∈ X∗ and y∗ ∈ Y ∗

we have that the norm of the linear functional x∗ ⊗ y∗ on (X ⊗ Y, α) satisfies

‖x∗ ⊗ y∗‖ = ‖x∗‖‖y∗‖.

Definition A.6.6 Let W , X, Y , Z be Banach spaces.

(a) Let S ∈ L(X,W ) and T ∈ L(Y, Z). Then the tensor product of S and T is the

unique linear mapping S ⊗ T : X ⊗ Y → W ⊗ Z, defined by S ⊗ T (x ⊗ y) =

(Sx)⊗ (Ty) for all x ∈ X and y ∈ Y .

(b) We call a reasonable crossnorm α on X ⊗ Y a uniform crossnorm if for any

bounded linear operators S : X → W , T : Y → Z we have that the operator

S ⊗ T : X ⊗α Y → W ⊗α Z is bounded and ‖S ⊗ T‖ ≤ ‖S‖‖T‖. We denote the

unique continuous (norm preserving) extension of S ⊗ T by S ⊗α T : X⊗̃αY →
W ⊗̃αZ.

Note that the norms ε and π are uniform crossnorms.

Definition A.6.7 Let X and Y be Banach spaces.

(a) We call a reasonable crossnorm α on X ⊗ Y injective if whenever E and F are

subspaces of X and Y respectively, the norm induced on E ⊗ F by the norm on

X ⊗α Y coincides with the norm on E ⊗α F .

(b) We call a reasonable crossnorm α on X ⊗ Y projective if whenever W and Z

are quotients of X and Y respectively with quotient operators Q : X → W and

R : Y → Z, we have that Q⊗αR : X⊗αY →W ⊗αZ is also a quotient operator.

That is to say that W ⊗α Z is a quotient of X ⊗α Y .
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As is evident from their names, the uniform crossnorms ε and π are respectively

injective and projective.

Definition A.6.8 Let X and Y be Banach spaces and α be a reasonable crossnorm

on X ⊗ Y . The transpose map u 7→ tu from X ⊗ Y onto Y ⊗ X is given by u =∑n
i=1 xi ⊗ yi 7→ tu :=

∑n
i=1 yi ⊗ xi. The transpose of α, denoted by tα, is the

reasonable crossnorm on X ⊗ Y defined by tα(u) = α(tu) for all u ∈ Y ⊗ X. The

norm α is called symmetric if α(u) = tα(u) for all u ∈ X ⊗ Y and asymmetric if it

is not symmetric.

In the above definition, the transpose map defines a canonical isometric isomor-

phism between X ⊗ Y and Y ⊗X.

Definition A.6.9 A uniform crossnorm α is called finitely generated if for pair of

Banach spaces X and Y and every u ∈ X ⊗ Y , we have

αX,Y (u) = inf{α(u;M ⊗N) : u ∈M ⊗N, dimM <∞, dimN <∞}.

A tensor norm is defined to be a finitely generated uniform crossnorm.

Thus, the behavior of a tensor norm is completely determined by its values on

tensor products of finite dimensional spaces. The norms ε and π are both symmetric

tensor norms.
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