

LIST OF FIGURES

Fi	Figure	
	CHAPTER 1	
1	Diagrammatic representation of the cyclical changes in the female sex hormones that characterise the various menstrual phases	4
	•	
2	Summary of the effects of progesterone (A) and oestrogen (B) on	
	carbohydrate metabolism	26
3	Summary of the proposed influence of oestrogen and progesterone	
	on fat metabolism during submaximal exercise as supported by most	
	published observations	38
4	Summary of gender variation in fat metabolism during exercise	39
5	Serum creatine kinase activity at rest and following 20 min of	
	downhill running in eumenorrhoeic women who participated during	
	one of three menstrual phases and in male subjects	50
6	Necessity of the venous-arterial sampling model for constant infusion	
	tracer estimates of FFA Ra	59
7	Background carbon-13 enrichment in expired carbon dioxide samples	
	at rest and during prolonged moderate intensity cycling exercise	
	in a non fasted female subject, with corresponding RER values at each	
	time interval	64
8	Diagrammatic representation of Sidossis et al. (1995b) Figure 5,	
	presenting the rate of decay of the carbon label in plasma palmitate	

	and in expired carbon dioxide after stopping the infusion of a carbon-labelled palmitate, carbon-labelled sodium bicarbonate	
	and carbon-labelled acetate tracer during exercise	65
9	The main possible sites of carbon label fixation in metabolic	
	intermediate reactions or points of recovery as carbon dioxide	
	following entry of the carbon label into the tricarboxylic acid cycle	67
10	Relationship between the acetate correction factor and energy	
	expenditure during exercise as described by Sidossis et al. (1995a)	71
	CHAPTER 2	
1	The respiratory exchange ratio at rest and during 90 min of	
	submaximal exercise during the early follicular, late follicular and	
	mid-luteal phases of the menstrual cycle	85
	CHAPTER 3	
1	(a) The relationship between the change in glycerol concentration over	
	early follicular (EF) phase values and log oestrogen in the second	
	menstrual phase. (b) Plasma glycerol concentration over time during	
	exercise in the EF and mid-luteal (ML) phase	104
2	(a) Relationship of the change in average FFA concentration from EF	
	phase and log oestrogen (E). (b) Plasma free fatty acid (FFA)	
	concentration over time during exercise in the EF and mid-	
	luteal (ML) phase	105
3	The relationship between the change in (a) Ra, (b) Rd and (c) MCR	
	from EF phase values and log of the ratio of oestrogen to	
	progesterone (E/P)	106

4	(FFA) (a) rate of appearance (Ra), (b) rate of disappearance (Rd) and (c)	
	metabolic clearance rate (MCR) over EF phase values	107
5	(a) Epinephrine and (b) norepinephrine concentration over time during	
	exercise in the early follicular (EF) and mid-luteal (ML) phase and	
	the relationship between norepinephrine concentration and	
	(c) log oestrogen or (d) log progesterone	109
6	(a) Fractional contribution of carbohydrate (CHO), fat and protein to	
	total energy expenditure (TEE). The relationship between (b) the change	
	in the percentage of CHO contribution to TEE and the increase in	
	progesterone (P-fold) from the EF phase and (c) the change in the	
	percentage of protein contribution to TEE and the increase in oestrogen	
	(E-fold) from the EF phase	110
7	The relationship between total carbohydrate (CHO) oxidation and log	
	progesterone (P) across the menstrual cycle	111
8	The relationship between the change in total protein utilised from the EF	
	phase and (a) log oestrogen (E), (b) the increase in oestrogen over EF	
	phase levels (E-fold), and (c) the log oestrogen to progesterone ratio	112
	CHAPTER 4	
1	Carbon-13 enrichment in expired carbon dioxide during continuous	
	infusion of either $K^{+}[1^{-13}C]$ palmitate bound to HP- β -CD or	
	$K^{+}[1-^{13}C]$ palmitate bound to human serum albumin during submaximal	
	evercise	135

CHAPTER 5

l	Comparison of the following ventilatory parameters: minute	
	ventilation; respiratory rate; tidal volume; and oxygen consumption,	
	at rest and during prolonged submaximal exercise between either	
	the early follicular (EF) and late follicular (LF) or EF and	
	mid-luteal (ML) phases	146
2	Significant correlations identified between the change in minute	
	ventilation from the early follicular (EF) to mid-luteal (ML) phase	
	during submaximal exercise and the magnitude of increase in oestrogen	
	concentration from the EF to ML phase (E-fold) (a); logarithmic	
	function of oestrogen concentration (b); and logarithmic function	
	of progesterone concentration (c) in the ML phase	147
3	Significant correlations identified between the change in respiratory	
	rate from the early follicular (EF) to mid-luteal (ML) phase during	
	submaximal exercise and the logarithmic function of progesterone	
	concentration (a) and the logarithmic function of the oestrogen to	
	progesterone (E/P) ratio (b) in the ML phase	147
	CHAPTER 6	
1	Time to complete the a) 15 km and b) 30 km cycling time trial during	
	the early follicular, late follicular and mid-luteal phase, in the untrained	
	and trained group, respectively	155
2	Combined trained and untrained cycling time trial finishing times	
	during each menstrual phase	155