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ABSTRACT 

Common species that are found in the flue gas of many coal burning industries are 

sulphur dioxide (SO2) and carbon monoxide (CO). The current flue gas 

desulphurisation techniques used in practice are undesirable as they are 

uneconomical (they have high capital and operating costs) and they generate 

waste.  

Many results in the literature show that if gold (Au) is finely divided and 

supported on metal oxide, it is effective as a catalyst for oxidising CO. However, 

there have not been many studies involving the reduction of SO2 by CO over a 

gold catalyst. The main objective of this research project was to determine 

whether a gold catalyst supported on titania would be suitable for the reduction of 

SO2 by CO. 

Titania (TiO2) was used as the metal oxide support and the gold catalysts were 

prepared by the deposition-precipitation method. Other gold catalysts were 

prepared by impregnating promoter ions (K
+
, Na

+
, SO4

2-
, PO4

3-
) onto the TiO2 

before the gold was added. The effect of TiO2 calcined at 400°C without the 

addition of gold was also investigated for this reaction.  

Since this work is novel, as the reduction of SO2 by CO has hardly been 

performed over this type of catalyst before, the experimental method required 

screening several catalysts over a range of temperatures. The method used for 

screening the catalysts was the temperature “stepping method” where the reaction 

temperature was stepped in equal intervals of 25°C from a minimum temperature 

of 50°C to a maximum of 200°C. The results were analysed by integrating the 

SO2 adsorption peaks. 

It was found that a gold catalyst is in fact suitable for this application. TiO2 

without gold was effective at adsorbing SO2, although it was not as effective as 

the gold catalysts supported on titania.  

A catalyst time on stream experiment using the 0.8wt% Au/TiO2 catalyst was 

used to understand the chemistry of the full reaction. It was observed that initially 
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the SO2 blocks the active sites at the interface between the gold and the titania. 

The SO2 gets adsorbed onto the surface of the catalyst and after some time the 

SO2 molecule dissociates. After the S-O bond has been broken the active sites at 

the Au – TiO2 perimeter are no longer blocked and SO2 reduction occurs and CO 

oxidation decreases with time which suggests irreversible desorption of SO2 

reduction products on CO oxidation sites. 
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1 LITERATURE REVIEW 

1.1  Background 

All fuels contain some amount of sulphur. The amount of sulphur depends on the 

composition of fuel. De Nevers (2000) lists the following examples: wood has a 

sulphur content of 0.1 % or less, whereas most coals have between 0.5 to 3 % 

sulphur. The sulphur content in oils is between that of wood and coal. 

When any fuel that contains sulphur is burned under oxidising conditions, sulphur 

dioxide (SO2) will be formed. Sulphur dioxide is a harmful gas that attacks the 

throat and lungs and can cause respiratory illness. Stern, Boubel, Turner and Fox 

(1984) note that for concentrations of 2000 µg/m
3
 and above of SO2 in the air, 

healthy people will have symptoms that affect them in their normal daily lives. In 

ill and elderly people, such high concentrations can cause untimely death. At SO2 

concentrations of 800 – 1599 µg/m
3
, people with heart or lung disease will not be 

able to endure much exercise. The particulates, SO2 and nitrogen oxides contained 

within the airborne emissions are responsible for respiratory disorders. Sulphur 

dioxide is not only harmful to people but to the atmosphere too; being one of the 

major contributors to acid rain.  

Spalding-Fecher and Matibe (2003) highlight the fact that in 1999 there were 49 

power stations in South Africa and 20 of these power stations were coal-fired. The 

paper by Spalding-Fecher and Matibe (2003) states that while SO2 emissions have 

increased by 29 per cent, relative emissions (emissions/kWh) have declined. 

Eskom has made progress in reducing emissions by having high smoke stacks to 

disperse emissions more widely, and all power stations now have electrostatic 

precipitators to reduce particulate emissions. 

Furthermore, Spalding-Fecher and Matibe (2003) note that a concern with SO2 

emissions are acid deposition which “affects human health, corrodes materials, 
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reduces crop yields and causes eutrophication in fresh water bodies”. However, 

they argue that the extent to which acid deposition is a problem depends on the 

“levels and concentrations, dispersion patterns, and sensitivity to acid deposition”. 

They therefore conclude that acid deposition will be a problem in the long-term 

but mainly from low-stack-height industrial applications where the dispersion is 

much lower.  

There are a number of methods that are used at present that can deal with 

removing SO2 from the atmosphere but which generate waste. The type of method 

used depends upon how much sulphur dioxide is produced in the gas stream and 

also whether the process is economically viable. Some of the major issues to 

consider when deciding on a suitable SO2 removal process is the cost of the 

process, the capital cost of setting up the plant and the operating cost and whether 

it is therefore feasible to set up the plant. Other considerations include the 

efficiency of the process, how much SO2 will actually be removed in the process 

and lastly whether there will be a large amount of waste left from the process. 

Some methods are briefly explained in the next section. After evaluating these 

methods it will be clear why new technology is required. This study proposes the 

use of gold catalysis for SO2 abatement as an alternative to existing 

desulphurisation technologies. 

Before the late 1980’s, there was little research into the area of gold catalysis. 

This is because bulk metallic gold is a non-reactive metal. In a pioneering paper 

by Haruta, Kobayashi, Sano and Yamada (1987) it was shown that when gold 

nanoparticles are finely divided on a metal support, these particles act as a good 

catalyst especially for CO oxidation at temperatures below 0°C. There has been an 

extensive amount of research into the field of gold catalysis since then. Some 

researchers have focussed on the chemistry of gold catalysis (Meyer, Lemire, 

Shikhutdinov and Freund, 2004) whilst others have studied different preparation 

techniques (Bond and Thompson, 1999; Haruta, 2004; and Moreau and Bond, 

2007) the effect of pre-treatment on gold catalysts (Tanielyan and Augustine, 

1992; Tsubota, Nakamura, Tanaka and Haruta, 1998), different metal oxide 

supports (Okumura, Nakamura, Tsubota, Nakamura, Azuma and Haruta, 1998; 
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Schubert, Plzak, Garche and Behm, 2001a) and more recently enhanced supports 

for gold catalysts (Ma, Brown, Overbury and Dai, 2007; Moma, Scurrell and 

Jordaan, 2007). 

1.1.1 Problem identification 

SO2 abatement technologies include: absorption, wet scrubbing (such as limestone 

scrubbing) and dry scrubbing. There are also other alternatives that can be used 

prior to combustion or gasification of the coal. Some alternatives include: 

changing the amount of sulphur in the coal or using low sulphur coal. 

Most of the existing methods of flue gas desulphurisation (FGD) have proven to 

be uneconomical. Not only do these processes generate waste, they also require a 

chemical feedstock, the cost of which contributes to operating expenses. For 

example, limestone scrubbing produces gypsum. If this waste is not a saleable 

product then there will be a further cost involved in disposal of this waste. 

Another reason that FGD is not usually viable is because the capital cost of 

building and operating a treatment facility would result in the plant no longer 

being economically competitive.  

In addition, using coal with a lower percentage of sulphur is not desirable for 

certain processes such as in aluminium smelting where the anodes  (that are 

produced from the coal) will be consumed more rapidly in the process and will 

increase the frequency with which they have to be replaced. In other words the 

SO2 released to the atmosphere per unit production of aluminium would increase 

and this is also an added cost to the plant. Also, as McMullan, Williams and Sloan 

(1997) mention, it is not always possible to use low sulphur coal as some of the 

existing coal resources have high sulphur content and it would be inefficient not to 

use these existing resources. There are a number of problems with the existing 

technology for removing sulphur from coal and for removing SO2 from burned 

coal. Therefore, new research into this problem is required. 
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A process which may overcome the disadvantages mentioned above is the 

catalytic reduction of SO2 to sulphur. Gold is thought to be one of the few 

catalysts resistant to sulphur poisoning and would be suitable for this application. 

Therefore, this project aims to investigate the use of a supported gold catalyst and 

carbon monoxide (CO) to reduce the SO2 into elemental sulphur.  

1.2 Current SO2 Abatement Technologies 

De Nevers (2000) states that all organic fuels contain some sulphur. Sulphur can 

be contained in the fuel in different forms. For example, De Nevers (2000) notes 

how in natural gas the sulphur is in the form of hydrogen sulphide and is easily 

separated from the other components in the gas, while in oil sulphur is chemically 

combined with hydrocarbons and therefore the chemical bonds have to be broken 

before the sulphur can be separated. In coal the sulphur is chemically bound but 

some can also be in the form of iron pyrite. Therefore, some sulphur in the coal 

may be easy to separate while the chemically bound sulphur may be more difficult 

to remove. The fuel always forms sulphur dioxide when burned in an oxidic 

environment, irrespective of the form of the sulphur in the fuel. Equation 1.1 

shows the reaction that takes place when fuel is burned. 

  ..................................................................................... (1.1) 

There are three places in a fossil fuel combustion gasification process where SO2 

can be removed. The first place is where the sulphur is removed from the coal (in 

other words before the coal is burned). Since SO2 emissions are usually 

proportional to the amount of sulphur in the fuel (except for the case where some 

of the sulphur is retained in the ash) this method would seem the simplest for 

reducing emissions. This can be achieved by coal beneficiation, i.e. chemical and 

biological methods. 

Secondly, SO2 can be removed during the combustion stage which is seldom used 

as it is difficult to incorporate such a method into an existing process and is also 
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not energy efficient. There are two main methods used for this purpose: fluidized 

bed combustion and integrated gasification combined cycle system. 

Thirdly, the SO2 can be treated after combustion of the fuel. Three main processes 

that Armor (1992) explains for removal of sulphur dioxide after combustion of the 

fuel are limestone scrubbing, the Wellman-Lord Process and catalytic oxidation. 

Probably the most common process used in industry is limestone scrubbing; 

although it has disadvantages there appears to be no process that has been able to 

replace it as a suitable means for removing SO2 from the atmosphere. These 

processes will be explained in more detail together with some of the advantages 

and disadvantages of the processes and why there is a need for a new improved 

process for abatement of SO2 emissions. 

This project concentrates on abatement, which is treating the SO2 after 

combustion of the fuel. However, treatment in the first two process stages will be 

described briefly. 

1.2.1 Reduction of sulphur in coal prior to combustion  

For certain processes, such as, aluminium smelting it is not always possible to 

remove the sulphur prior to combustion. However, for processes where it is 

possible, reduction of sulphur in coal prior to combustion offers certain 

advantages. The main advantage being that the sulphur is treated before burning 

and so very little treatment is required after burning. The biggest disadvantage of 

chemical pre-treatment is the energy intensive processes and the chemical 

reagents that are required both of which are expensive therefore rendering the 

process unfeasible. Biological pre-treatment also has disadvantages: it is not 

entirely efficient and it requires large residence time. Therefore, both chemical 

and biological processes have little to no practical application. 



Literature Review 

L. A. Chalom University of the Witwatersrand, Johannesburg                    6 

 

Chemical processes 

Karaca, Akyürek and Bayrakçeken (2003) name the three most common chemical 

processes for pyritic sulphur removal from coal. These are sulphur oxidation in 

the coal where the product is soluble sulphates, sulphur reduction where the 

elemental sulphur that is produced is then vaporised or the sulphur is removed by 

organic solvents. The last process is the reaction of the coal with hydrogen where 

H2S is formed in the gaseous state. Karaca et al. (2003) list the following reagents 

that have been used in these chemical processes. These include nitric acid, 

hydrogen peroxide, ozone, oxygen, chlorine, potassium dichromate and ferric 

salts.  

For their research, Karaca et al. (2003) used nitric acid as a reagent for the 

removal of sulphur in the coal. Karaca et al. (2003) found that due to varying 

process conditions, there are various chemical reactions that can occur between 

the nitric acid (HNO3) and the pyrite. Two of these chemical reactions are shown 

by Equation 1.2 and 1.3. 

…………………… (1.2) 

………………………… (1.3) 

From their investigations it was found that an increase in process temperature and 

an increase in concentration of nitric acid increased the amount of pyritic sulphur 

that was removed. The coal had to be crushed to a finer particle size to achieve 

improved sulphur removal. The speed at which the coal – nitric acid solution were 

stirred had little effect on the amount of sulphur that was removed from the coal. 

In his thesis, Koper (2004) notes that chemical processes have mostly been 

investigated on a lab scale because the technology is interesting, however it is not 

practical. He gives two reasons why it is not practical, the first being that it is an 

energy intensive process, the second being that chemical reagents will be required 

to treat the coal. In both cases, the cost outweighs the benefit of the process.  
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Section 2.3 of The National Environmental Management Act (1998) states that 

“development must be socially, environmentally and economically sustainable”, 

from this statement, chemical processes would not be feasible because the process 

is not environmentally sustainable due to the large amount of energy required to 

drive the process and secondly, it is not economically sustainable because the 

energy input required and the cost of the raw materials would outweigh the benefit 

of the process. Furthermore, Section 4.4 (a)(vi) of the Act (1998) states “that the 

development, use and exploitation of renewable resources and the ecosystems of 

which they are part do not exceed the level beyond which their integrity is 

jeopardised”. Again this emphasises that chemical processes would not be feasible 

due to the energy requirements.  

Biological processes 

Malik, Dastidar and Roychoudhury (2001) used a bio-desulphurisation process 

that required three stages. During the first stage the bacteria gets attached to the 

pyrite and the pyrite undergoes direct oxidation. Then, during the second stage, 

direct bacterial oxidation and indirect chemical oxidation takes place. Near the 

end of this stage, the attached bacteria became coated with a layer of sulphur and 

the direct oxidation slowed down. The desulphurisation rate slowed down during 

the final stage of the process. Finally, precipitation of jarosites and hydrated ferric 

sulphate occurs. This results in a decrease of ferric iron, which stops the indirect 

chemical oxidation. The process takes a total of 50 days to complete. Since the 

process is slow, it would not be practical for industrial application. 

Malik et al. (2001) found that the rate limiting factors of the bio-desulphurisation 

process are availability of fresh pyrite, ferric/ferrous ratio and level of toxic 

minerals in the leachate. These three factors have to be controlled simultaneously 

to increase the rate of the reaction.  

Malik, Dastidar and Roychoudhury (2004) mention that bio-desulphurisation is a 

low energy process and therefore should be suitable for reducing the harmful 

effect of combustion of high sulphur coal. However, it is not a feasible process 
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due to the slow rate of reaction. Malik et al. (2004) identified some rate limiting 

factors of some materials but in a commercial process there may be other 

substances that have not been studied that slow the reaction down and it is 

impossible to identify each and every substance that would limit the rate of the 

reaction. 

According to Juszczak, Domka, Kozlowski and Wachowska (1995), since the 

biological process can operate at atmospheric temperature and pressure it has an 

advantage over other technologies such as chemical processes that require a large 

amount of energy and are therefore expensive. Furthermore, Juszczak et al. (1995) 

state that biological processes can remove both the organic and inorganic sulphur 

in the coal whereas, physical methods remove only the inorganic sulphur and 

chemical methods remove only the organic sulphur. 

Juszczak et al. (1995) list a number of factors that determine the success of the 

biological processes. Some of these factors include the type of microorganism, the 

type of coal, surface area that is available, temperature, the pH value and the 

number of bacteria per unit mass of coal. Juszczak et al. (1995) suggest that 

before this method can be used on an industrial scale, further studies need to be 

conducted to establish which of these parameters are dependent on each other and 

also studies on the growth of microorganisms.  

Coal beneficiation 

The purpose of coal beneficiation is to reduce the size of the particles – in order 

for the coal to be processed further, to remove impurities (such as sulphur) and 

improve the quality of the coal. This will result in a reduction of harmful 

emissions after burning the coal.  

Coal beneficiation employs physical methods to remove impurities from the coal. 

It is based on differences between coal and mineral matter. These differences can 

be with respect to density, surface activity (froth flotation, oil agglomeration), 
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magnetic and optical properties. There are many methods that have been proven to 

work and that are also operational in industry. 

There are two broad categories that coal beneficiation can be classified into, that 

is wet or dry processes. Lockhart (1984) mentions that the main problem with the 

wet process is the large amount of water that is consumed. Much of this water is 

not recovered or gets evaporated while the water that remains is polluted and 

cannot be recycled. Also, the products from the process pollute the water further. 

Lockhart (1984) established that the benefits of dry coal beneficiation are that the 

tailings are easier to dispose of because they do not require treatment before 

disposal like the products from the wet process require. If the climate is very dry, 

the feed materials may require little or no pre-treatment and if the feedstock did 

require pre-treatment it would be easier than treating the wet feed materials. Dry 

beneficiation does not require expensive resources such as thickeners, flotation 

reagents, flocculants, cyclones, centrifuges and filtering equipment that may be 

required for the wet process. Lastly, the dry coal cleaned by air is able to flow 

freely and does not absorb water while it is being transported or stored. 

Lockhart (1984) lists some of the drawbacks of dry beneficiation being inferior 

separation, non-routine operation, lack of adjustability, high sensitivity to changes 

in the feed (rate, size, moisture), need for drying, greater attention to dust control 

and safety and the need for pre-screening into narrow size fractions and low 

capacities. 

1.2.2 Removal of sulphur during combustion 

McMullan et al. (1997), state that to minimise the environmental impact of coal-

fired power stations, the overall plant efficiency should be maximised while the 

emissions of SO2 and NOx should be minimised.  
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Fluidised bed combustion 

In fluidised bed combustion the coal and limestone are first crushed before being 

fed at the top of the bed (McMullan et al., 1997). The bed is made up of unburned 

coal and ash and an inert bed material. Air is injected into the bottom of the bed, 

fluidising the bed. The air also acts as an oxidising agent for the combustion of the 

coal. The particles are in continuous motion and this allows for the reaction to 

happen at relatively low temperature of between 800 – 900°C. At this 

temperature, the limestone is calcined and therefore captures the sulphur from the 

coal. In this temperature range NOx is also less likely to form. Steam is generated 

during the process from combustion and this steam is used to generate power via a 

steam cycle.  

There are two types of fluidised bed combustion processes. The first is the 

bubbling process. In this process, low air velocities are used so that when the bed 

expands it remains steady and the reaction takes place in or just above the bed. 

The second process, circulating fluidised bed combustion uses higher air 

velocities. Most of the particles are carried out of the bed and then re-circulated 

back into the bed via a high-temperature cyclone. The advantage of this process is 

that there is good mixing which allows for better contact between the gas and the 

solid. This improves efficiency and the amount of sulphur that is captured. 

The process is usually operated at atmospheric pressure but can also take place at 

higher pressures. The advantage being that the hot gases from combustion are at 

high pressures and can therefore convert the energy from these gases into 

electricity. Only the bubbling fluidised bed combustion process is used in practice 

at high pressures but theoretically, the circulating process should work too. 

Integrated gasification combined cycle system 

McMullan et al. (1997) describe the integrated gasification combined cycle 

(IGCC) as a process whereby the coal is burned in a limited air supply chamber 
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and the fuel gas that ensues is then burned with air in the combustion chamber of 

a gas turbine. The impurities that are formed throughout the gasification process 

are in a reduced form and therefore the impurity from the sulphur is in the form of 

hydrogen sulphide (H2S). The H2S can then be removed by any common process 

such as the Claus process or any other scrubbing process. Again, a problem with 

this technology is that it cannot be used on its own; a further technology is 

required to remove the H2S.  

There are three types of gasifier namely, fluidized bed, entrained flow and fixed 

bed gasifiers. These three types of gasifier differ in the way in which the fuel 

supply and oxidant are brought into contact with each other. 

In the fluidized bed gasifier, the dry fuel enters the column where it comes into 

contact with an absorbing material such as limestone. The limestone allows some 

of the sulphurous compounds to remain in the bed while the fuel becomes 

fluidized by the oxygen and is in a more pure state. The column operates at very 

high temperatures and pressures. McMullan et al. (1997) note that the temperature 

can be up to 1050°C and the pressure can be near 25 bar. McMullan et al. (1997) 

argue that this is feasible because the limestone can remove 90 – 95 per cent of 

the sulphur in the coal. However, this process is energy intensive while also 

requiring the sorbent material (limestone) to be purchased. This will prove to be a 

costly process. 

The entrained flow gasifier is similar to the fluidized bed gasifier in that the solid 

fuel particles are also suspended in high-velocity jets. McMullan et al. (1997) 

state that the oxygen-blown operation is preferable to the air-blown operation as 

the oxygen ensures that the reaction occurs quickly and is complete in as short a 

residence time as possible. An advantage to the reactor is the short residence time. 

The short residence time leads to a high throughput rate and McMullan et al. 

(1997) comment that it probably has the highest throughput rate of any of the 

available systems. 
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A fixed bed gasifier is a reactor that has a metal grate on the bottom which 

supports the coal (McMullan et al., 1997). Oxygen is fed in the bottom of the 

reactor. The oxygen rises up through the grate and passes in between the coal 

particles. A reaction takes place between the coal and the oxygen and the product 

is a “residual char”. This char contains ash and unburned carbon which needs to 

be removed to ensure steady operation. As the oxygen rises and the reaction takes 

place, the coal slowly moves downwards and the ash is removed. The reactor 

operates in a relative counter-current operation. It is relative since the coal moves 

down slower than the oxygen rises. McMullan et al., 1997 define efficiency as 

“the level of pollutants per unit of electricity generated”. Efficiency was measured 

as grams of pollutant per kWh of electricity generated. Since the product is a gas 

at a relatively low temperature (between 450 – 600°C) the thermodynamic 

efficiency of the gas is high and this promotes a higher overall efficiency. A fixed 

bed gasification process is shown in Figure 1.1. 

McMullan et al. (1997) compared the efficiency of various flue gas 

desulphurisation processes. The highest efficiency was less than 50 percent. The 

process has high capital and operating costs but there is no real benefit to this cost 

since the efficiencies are low. This just proves that this technology is not the most 

economical and an improved technology is required to lower the sulphur dioxide 

emissions. 
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Figure 1.1 Schematic Representation of a Fixed Bed Gasification Process 

(Adapted from McMullan et al., 1997)  

1.2.3 Removal of sulphur after combustion  

Scrubbing processes 

Scrubbing is usually a single unit counter-current operation. A common scrubbing 

agent that is used is limestone. The limestone then converts the SO2 into calcium 

sulphate (CaSO4). The CaSO4 is less harmful than the SO2. 

Armor (1992) describes the two stages in limestone scrubbing. In the first stage, 

fly ash is removed by passing the flue gas through an electrostatic precipitator 

(ESP). Then, the SO2 is absorbed by a slurry of wet limestone. A reaction takes 

place between the SO2 and limestone and CaSO3.5H2O is formed. This product is 

then oxidized and gypsum (CaSO4.2H2O) is formed. The gypsum can be 

recovered in two forms, either as a wet sludge or as a dry product. The greatest 

disadvantage of this process is the large quantities of gypsum that are formed and 
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then have to be disposed of. Armor (1992) lists two options for the gypsum 

problem; either the product can be sold and used to make wallboard or it can be 

buried at a landfill site. The most difficult aspect in selling gypsum is that it is 

available in abundance and finding a market for it will be difficult and therefore it 

will not be profitable. Disposing of the gypsum at a landfill will also be costly. 

Armor (1992) goes on to list two other alternative methods to this process. The 

first process is lime (CaO) spray-drying. A slurry containing CaO that has been 

finely atomized is brought into contact with the flue gas. The mixture of slurry 

and flue gas is then completely evaporated and a dry powder is formed. This 

powder and the fly ash are then separated as solids and then disposed of or reused 

in the process. The two disadvantages with this process are that the process is not 

as efficient as limestone scrubbing and it is an expensive process that is used 

mainly by small operations or where low sulphur coal is used. 

The second method that Armor (1992) describes is the Claus Process. This 

process can be represented by Equation 1.4: 

 ...............................................................  (1.4) 

Armor (1992) argues that the difficulty is finding a use for the sulphur produced 

from this process. Armor (1992) states that most refineries in the US supply 

sulphur for other processes so they no longer require the sulphur as a feed from 

other sources. Some of the sulphur can be used to produce sulphuric acid which is 

then used to produce fertilizer and some of the sulphur is buried.  

For certain processes such as aluminium smelting, a certain percentage of sulphur 

in the zero oxidation state is required in the coal so that the cathode is not used up 

rapidly during the process. The sulphuric acid market has been saturated in the 

last few decades by the petrochemical industry and so it could be argued that 

elemental sulphur would not be useful for this application any longer. 
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Meikap, Kunda and Biswas (2002) developed a model to represent a “modified 

multi-stage bubble column scrubber”. The work that they conducted showed that a 

high efficiency of SO2 removal could be achieved due to the many stages in the 

scrubber. Furthermore, Meikap et al. (2002) showed that the air-SO2 mixture 

required no additives or pre-treatment. 

Wei and Davis (2000) comment that new smelters do not use wet scrubbers to 

control emissions as there are many disadvantages. Some of the disadvantages 

include corrosion, scaling and the fact that the sulphide or fluoride would have to 

be recovered before it could be recycled into the process. The only advantage is 

that some of the sulphur dioxide in the off-gases can be removed. 

An additional problem with scrubbing is that if the process is a “throwaway” 

process as described by De Nevers (2000), the reagent is used once and then 

thrown away. Therefore, this means that the reagent constantly needs to be 

purchased and disposed of. In other words an emission is turned into a solid waste 

after adding a chemical feedstock. 

The other type of scrubbing process is dry scrubbing. De Nevers (2000) explains 

that in this process, a dry alkaline reagent is introduced into the gas stream. The 

SO2 molecules attach onto the scrubbing agent and are removed by filtering or 

using some other “particle collection device”. Again, a reagent has to be supplied 

constantly. This process is used at aluminium smelters but usually to scrub 

hydrogen fluoride (HF) from the waste gases emitted from the potlines. A 

scrubbing agent would have to be found that could simultaneously scrub HF and 

SO2. 

Wellman-Lord process 

This process is explained in detail by Smith (2005). The process takes place in 

two stages. During the first stage, a dilute gas stream of SO2 is sent to a scrubber 

where a solution of sodium sulphite Na2SO3 is sprayed into the scrubber, the SO2 

and Na2SO3 react according to Equation 1.5: 
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 .................................................... (1.5) 

The product, sodium bisulphite (NaHSO3) is then heated either by an evaporator 

or a crystallizer to form a more concentrated stream of SO2 as shown by Equation 

1.6, 

 .................................................... (1.6) 

Then, the concentrated SO2 is catalytically reduced to sulphur either by methane 

as shown by Equations 1.7 and 1.8 (Armor, 1992) or with H2S in the Claus 

Process shown by Equation 1.4. 

 ...................................................... (1.7) 

 .................................... (1.8) 

The Na2SO3 crystals can be regenerated in the process by dissolving them in water 

and returning them to the scrubber in the first stage. Smith (2005) summarises this 

process well by saying that a dilute gaseous stream of SO2 produces a 

concentrated stream of SO2. This concentrated stream then has to be treated 

further to remove the SO2. 

Catalytic oxidation processes 

The most popular catalyst that has been used for this purpose is a vanadium 

pentoxide catalyst (V2O5). Dust and other particles are removed from the flue gas 

using an electrostatic precipitator. The gas is then oxidized over the catalyst where 

SO3 is produced. The SO3 is then treated with water to form H2SO4. Armor (1992) 

names a number of companies that all use technology similar to this. Monsanto 

which is one of these companies had to eventually stop this operation as the 

operating costs became too high. 
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1.3 The Reaction 

1.3.1 Favourable reactions based on thermodynamics 

If the SO2 could be captured from the stack and then converted into elemental 

sulphur, in the reverse of Equation 1.1 it would be a very simple process. 

However, on further investigation of the thermodynamics, it was noted that 

sulphur oxidation (Equation 1.1) is very thermodynamically favourable and that 

the reverse reaction is not favourable at practicable conditions. Intuitively, this 

should be apparent but for illustrative purposes this is represented by Figure 1.2. 

In Figure 1.2, the straight line representing the oxidation of elemental sulphur 

shows that at the temperature range of 50 - 250°C, the natural logarithm of the 

equilibrium constant is negative, indicating that the reaction is likely to take place 

at low temperatures. This is reinforced by the fact that the slope of the line is 

positive. A positive slope shows that the enthalpy of reaction is negative and that 

the reaction is exothermic. Exothermic reactions favour low reaction 

temperatures. The converse is true for the reverse reaction. The temperature of 

reaction would therefore have to be high for the reverse reaction. Since the 

reaction is highly endothermic, this temperature may be so high that the reaction 

no longer becomes practical.  
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Figure 1.2 Illustration of a thermodynamically favourable reaction and an 

unfavourable reaction 

There are three thermodynamic properties that characterise a reaction as either 

favourable or unfavourable. These three properties are the standard state Gibbs 

free energy of reaction (ΔGºrxn), the standard enthalpy of reaction (ΔHºrxn) and the 

chemical equilibrium constant (Keq). The general form of the equation for 

calculation of ΔHºrxn is shown in Sandler (1999) as: 

 .................. (1.9) 

Similarly, ΔGºrxn is: 

  ............... (1.10) 

When the reaction occurs at temperatures other than 25°C then, the enthalpy for 

each species is given by (Sandler, 1999): 

 ............................... (1.11) 
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Where, the general form of the constant pressure heat capacity equation is: 

 ........................................... (1.12) 

The definition of the equilibrium constant is (Sandler, 1999): 

 ..................................................................... (1.13) 

The variation of Keq with temperature can be derived using the definition of Keq. 

The final equation is known as the van’t Hoff equation (Sandler, 1999). 

 

 

 

 ............. (1.14) 

After integration of the van’t Hoff equation, a simplified equation can be obtained 

for the variation of Keq with constant temperature (Sandler, 1999). 

 ..................................................... (1.15) 

Figure 1.3 shows two thermodynamically favourable reactions, the reduction of 

SO2 by H2S (Equation 1.4) and the reduction of SO2 by CO (Equation 1.16). 

 ................................................................ (1.16) 

Figure 1.3 shows that both reactions are exothermic, therefore both are favourable 

at low reaction temperatures. Equation 1.4 is favoured at temperatures below 

approximately 75°C, while Equation 1.16 is favoured at temperatures below 

approximately 100°C. Equation 1.16 has a steeper slope than Equation 1.4 in the 
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low temperature range (temperatures below 150°C). This indicates that Equation 

1.16 is more favourable than Equation 1.4 at these temperatures. At higher 

temperatures Equation 1.4 should be more favourable than Equation 1.16 

however, at these temperatures the value of the equilibrium constant is less than 1 

indicating that the enthalpy of reaction and the Gibbs free energy are both positive 

and so both reactions are not favoured at these temperatures. 

 

Figure 1.3 The van't Hoff Plot 

The reaction that will be studied for this research project will be Equation 1.16. 

The first reason is that SO2 reduction by CO is more favourable than SO2 

reduction by H2S at lower temperatures as shown by Figure 1.3. The second 

reason is that both SO2 and CO are present when coal is burned and so this would 

be practical in coal burning industries.  

1.3.2 Reducing agents for SO2 

Flytzani-Stephanopoulos, Zhu and Li (2000) found that when methane was used 

to reduce SO2 to elemental sulphur, the conversion of SO2 could be increased by 

increasing the ratio of CH4:SO2 in the feed. However, this decreased the catalyst 
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selectivity to elemental sulphur. Above 650°C no decrease in selectivity was 

observed. The reaction temperature could be decreased while the SO2 conversion 

and the selectivity were at an optimal level if excess methane was used. 

The use of CO as a reducing agent for SO2 is a good choice when considering 

burning coal as some CO is present in the gas emissions and therefore can be used 

as a reducing agent (Lee and Han, 2002). In other words, no further reagent will 

have to be added. Furthermore, Flytzani-Stephanopoulos et al. (2000) found that 

the reaction light-off temperature was 200°C lower than when CH4 was used as a 

reducing agent.  

In addition, Lee and Han (2002) found that the ratio of CO to SO2 in the feed 

determined not only the conversion but also the amount of carbonyl sulphide 

(COS), the reaction intermediate that is formed. They found that when the molar 

ratio of CO to SO2 was 2 a conversion of 97% was achieved and when the ratio 

was 3 a conversion of 99.8% was achieved. However, with molar ratios larger 

than the stoichiometric ratio, the concentration of COS increased by a large 

amount. The reduction of SO2 by CO has practical applications and it is possible 

to achieve high conversions at low reaction temperatures. Therefore many 

researchers have studied this reaction and tried to optimise it. 

1.3.3 Possible catalysts for the reaction 

Khalafalla, Foerster and Haas (1971) investigated the use of a mixed alumina-iron 

catalyst. In their investigation they found that the reaction is extremely slow even 

at temperatures as high as 950°C. When iron and alumina were tested separately, 

the reaction did not proceed to a great extent. However, when the bi-functional 

iron-alumina catalyst was used with 41% iron in the mixture and 4.7% SO2 in the 

feed, a conversion of 78% could be achieved at 500°C. This conversion is not 

optimal but at the time it was a large improvement on the conversions that were 

achievable and it made the reaction more attractive for use in industrial 

applications, as the reaction had not been used in practice before. 
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Alumina has also been combined with other transition metals such as Cu/Al2O3 

(Querido and Short, 1973) where SO2 was used to convert to elemental sulphur 

with CO as a reducing agent. They found that temperatures of about 380°C were 

needed to reduce 90% of the SO2 in the feed. Furthermore, Querido and Short 

(1973) realized that for high rates (short contact times) temperatures greater than 

about 425°C were required. The maximum SO2 removal efficiency was 97% 

when the CO ratio was 1.03. However, as the CO ratio and temperature were 

increased, COS production also increased. 

It is evident that if alumina is used as a catalyst it is not effective for converting 

the SO2 into elemental sulphur. However, if the alumina is combined with 

transition metal elements and used as the support for the catalyst, the reaction 

proceeds with much larger amounts of SO2 converted into elemental sulphur.  

Lee and Han (2002) investigated γ-Al2O3 supported catalysts of Ni and LaNi 

sulphide with different metal loadings. They had a number of important findings. 

First, they found that SO2 conversion increased with increasing temperature. 

When the 2La8Ni/Al2O3 catalyst was used, 97% of the SO2 was converted at 

temperatures above 400°C. Another important finding by Lee and Han (2002) is 

that when a small amount of La was added to the catalyst the SO2 conversion 

increased at 350°C. Lee and Han (2002) propose that the effectiveness of their 

NiS2/Al2O3 catalyst may be due to the bi-functional effect of each individual 

active component. 

Ma, Fang and Lau (1997) report that when using a La2O2S catalyst, in the above 

reaction, over 98% conversion and selectivity of SO2 could be achieved when the 

temperature was above 500°C, the ratio of CO to SO2 in the feed was 2:1 (i.e., in 

stoichiometric proportions) and when the space velocity was 21,600 cm
3
g

-1
h

-1
. 

The results that Baglio (1982) presents demonstrates that the perovskite LaCoO3 

decomposes when used as a catalyst for the reduction of SO2 by CO. The 

decomposition products are La2O2S and CoS2. Also, Baglio (1982) found that any 
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un-reacted COS formed during the reaction can be removed by using either a rare 

earth oxide or oxysulphide only as the catalyst. 

Ma et al. (1997) found that lanthanum oxysulphide alone was capable of reducing 

SO2 to elemental sulphur with CO as a reducing agent. The work of Ma et al. 

(1997) disputes the work by Baglio (1982) because Baglio (1982) proposed that 

the lanthanum oxisulphide was incapable of reducing the SO2 when CO was used 

as the reducing agent. However, the lanthanum oxysulphide could reduce the SO2 

when the reaction intermediate, COS was used as a reducing agent. 

Bazes, Caretto and Nobe (1975) investigated three catalysts for the reduction of 

SO2 with CO as a reducing agent. The three catalysts are LaCoO3 (the perovskite-

type catalyst), CuCo2O4 (the mixed oxide) and the oxide mixture CeO2-Co2O4. 

They showed that when the stoichiometric ratio of SO2 to CO in the feed was 

doubled, the CeO2-Co2O4 catalyst was the most active out of all three catalysts 

tested and the mixed oxide CuCo2O4 was the least active catalyst. Furthermore, 

Bazes et al. (1975) found that for complete reduction of SO2 the selectivity of all 

the catalysts was similar.  

In a more recent study, Kim, Park, Woo, and Chung, (1998) considered the 

catalyst Co3O4-TiO2 which is also a mixture of oxides. Kim et al. (1998) had two 

important findings. The first was that complete conversion of SO2 was achieved 

above temperatures of 400°C. This temperature was between 50 and 150°C less 

than the temperature that Ma, Fang and Lau (1996a) achieved with their CoS2-

La2O2S catalyst. The second important finding is that a synergistic effect exists 

between the components of the catalyst and this allows for a much higher 

conversion of SO2 at 350°C with less COS being produced during the reaction of 

SO2 and CO. As temperature increases the synergistic effect decreases. 

Wang, Wang, Li, Wang, Liu and Zhang (2006) considered four different supports 

for an iron oxide (Fe2O3) catalyst used to reduce SO2 to elemental sulphur with 

CO as a reducing agent. In the study by Wang et al. (2006) the four supports used 

were γ-alumina (γ-Al2O3), HZSM-5 (a zeolite), silica (SiO2) and magnesia (MgO). 
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They found that the Fe2O3/γ-Al2O3 was the most active of the catalysts, followed 

by Fe2O3/HZSM-5, Fe2O3/SiO2 and Fe2O3/MgO. The most favourable result 

obtained by Wang et al. (2006) was 99.31% SO2 conversion and a 99.17% 

sulphur yield. This was achieved with an iron content of 20 wt%, presulfidation at 

500°C for 2 hours, a CO/SO2 ratio of 2:1 at 380°C with a Fe2O3/γ-Al2O3 catalyst. 

Flytzani-Stephanopoulos et al. (2000) tested the activity/selectivity of the 

following catalysts: 10at. % La-doped ceria, Ce(La)Ox and Cu- or Ni-containing 

Ce(La)Ox for the reduction of SO2 by CO to elemental sulphur. They had some 

important findings for these catalysts.  

The first was that by adding 5 at. % (~2.5 wt %) Cu or Ni to the Ce(La)Ox 

catalyst, the low-temperature activity of the catalyst in the presence of 10 mol% 

water improved.  

Secondly, the Ni-CeOx catalyst gives a higher sulphur yield than the other 

catalysts which can be interpreted as a higher SO2 conversion. They propose that 

this happens since the available CO adsorption sites on the metal are not poisoned 

by the water vapour. 

Flytzani-Stephanopoulos et al. (2000) conclude that the CO-SO2 reaction is 

favoured over the Ni- or Cu containing ceria due to enhanced redox activity of the 

ceria in the presence of nickel. 

1.3.4 Carbonyl sulphide as a reaction intermediate 

In the review by Bartholomaeus and Haritos (2005), they report that carbonyl 

sulphide (COS), is a colourless, odourless (when pure) gas. They also report that 

while COS is poorly soluble in water at 0 – 20°C (3.56-1.49 g/L); it is very 

soluble in toluene at 22°C (37 g/L). It has a boiling point of -50°C and 

Bartholomaeus and Haritos (2005) rank it as a relatively stable gas. Furthermore, 

Bartholomaeus and Haritos (2005) report that COS is “highly toxic at high 

atmospheric concentrations”. Flytzani-Stephanopoulos et al. (2000) notes that 
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COS is more toxic than SO2. Therefore, since COS forms part of the reaction 

mechanism of reducing SO2 to CO, it is necessary to minimise its concentration 

by optimising the selectivity.  

Bazes et al. (1975) found that the amount of COS formed during the reduction of 

SO2 by CO could be reduced by ensuring that the ratio of CO to SO2 in the feed is 

kept at 2 (the stoichiometric value). Lee and Han (2002) established that with a 

molar ratio of CO to SO2 of 2 the concentration of COS was 3% but when the 

molar ratio was 3 the concentration of COS increased to 23%. Therefore, this 

shows that the reaction is sensitive to small changes in the molar ratio. Lee and 

Han (2002) also support the earlier findings of Bazes et al. (1975). Furthermore, 

Lee and Han (2002) found that when small amounts of La were added to their Ni 

alumina catalyst, the COS yield decreased at 350°C. 

Wang et al. (2006) support the theory that the optimal feed ratio of CO to SO2 is 

2:1 and they went on to test how different feed concentrations in this ratio affect 

the SO2 conversion and sulphur yield. They found that at low feed concentrations, 

there is a higher reduction rate and yield. A conversion of 94.5% could be 

achieved with a CO and SO2 concentrations of 5000 and 2500 ppm respectively at 

340°C. Furthermore, at 380°C a high SO2 conversion and sulphur yield were 

obtained at any feed concentrations that they used. 

Ma et al. (1996a) found that there is synergism between La2O2S and CoS2 for the 

reduction of SO2 by CO to form elemental sulphur. Furthermore, Ma et al. 

(1996a) established that the synergism was a result of the co-operation between 

the individual active components and is based on the COS intermediate 

mechanism. The COS intermediate mechanism as presented by Ma et al. (1996a) 

is as follows: 

 ............................................................... (1.17) 

 .............................................................. (1.18) 

 .............................................................................. (1.19) 
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The experimental results of Ma et al. (1996a) show that when the catalyst is a 

mixture of La2O2S and CoS2 the activity and selectivity increases. 

Flytzani-Stephanopoulos et al. (2000) propose a similar mechanism for the 

reduction of SO2 using CO (as a reducing agent) over a cerium-oxide catalyst 

(enhanced with approximately 2.5 wt% copper or nickel). Although they propose 

that the Reaction 1.20 occurs before Reaction 1.17.  

 ............................................................ (1.20) 

In other words, Ma et al. (1996a) propose that the CO is converted to COS on the 

surface of the metal sulphide catalyst, whereas Flytzani-Stephanopoulos et al. 

(2000) propose that the sulphur is first formed by the reduction of SO2 by CO, the 

CO then reacts with the sulphur to form COS and lastly, the COS reacts with the 

SO2 to form sulphur gas and CO2.  

Furthermore, Ma et al. (1996a) found that 450°C was the critical temperature and 

below this temperature, COS was produced more rapidly but above this 

temperature, COS levels became depleted. The reaction rate between COS and 

SO2 increased above 450°C. 

In a further study, Ma et al. (1996b) found that lanthanum oxide can be activated 

to act as a catalyst in the reduction reaction where SO2 is reduced to elemental 

sulphur by CO. The lanthanum oxide is pre-treated and then activated by a 

gas/solid sulphidization reaction between the gas-mixture of SO2 and CO. The 

active phase of the catalyst after sulphidization was found to be lanthanum 

oxysulphide, La2O2S. 

The catalyst support is also important for determining the amount of COS that is 

formed during the reaction. Flytzani-Stephanopoulos et al. (2000) comment that 

certain metal oxide catalysts (Cu, Fe, Mn, Cr, Ni, Pd, Ag, etc.) supported on 

alumina showed large concentrations of COS being formed relative to La2O2S 

(Ma et al., 1996a) perovskite mixed oxides at temperatures above 380°C and CO 
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to SO2 feed ratio of 2.5 times the stoichiometric value (Bazes et al., 1975), and 

decomposed perovskite, LaCoO3 which forms the active catalysts, La2O2S and 

CoS2 (Baglio, 1982), Co3O4-TiO2 (Kim et al. 1998) and cerium oxide catalysts 

with 1 – 5 wt.% Cu, Ni or Co (Flytzani-Stephanopoulos et al., 2000).  

1.4 Gold as a Catalyst 

In 1987, Haruta et al. identified that the need for a low temperature CO oxidation 

catalyst. Other catalysts that were in use at the time were either intolerant towards 

water, required water vapour for the reaction to take place, or only worked at high 

temperatures or for dilute CO concentrations. Haruta et al. (1987) documented 

that a new gold catalyst that they developed was more active and stable than the 

catalysts available at the time. Also, complete oxidation of CO was achieved at a 

temperature of -70°C. Haruta, Yamada, Kobayashi and Iijima (1989) improved 

the activity of their catalysts by adding α-Fe2O3, Co3O4, or NiO.  

Also, Haruta et al. (1987) established that the gold particles were more finely 

divided when co-precipitation was used to prepare the catalysts instead of 

impregnation and, most importantly, “the high dispersion of gold brought about 

the extremely high activity for CO oxidation at temperatures below 0°C.” 

At the time, no researcher could have predicted how much the field of gold 

catalysis was going to grow, or how many new applications for gold catalysts 

would be developed. Today, Haruta and his co-workers are seen as the pioneers in 

the field, along with other researchers such as Bond, Thompson, Hutchings, and 

Scurrell to name a few. 

Bond and Thompson (2000) reported that in 1999 there were about 60 published 

works on the topic of gold catalysis and at least half of the papers published 

involved the oxidation of carbon monoxide.  

Bond and Thompson (2000) cite a number of aspects of gold catalysis that 

researchers are in agreement about. One aspect is that unsupported gold and large 
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supported gold particles show poor activity for CO oxidation whereas small gold 

particles that are dispersed on a metal oxide support show much higher activities. 

The support that is used, the method used to prepare the catalyst and the manner 

in which the catalyst is pre-treated are important in obtaining an efficient and 

active catalyst.  

There are however, a number of aspects to gold catalysis that researchers have not 

yet been able to agree on. This has been made more difficult by the fact that the 

proof given is not always conclusive due to the varying characterization 

techniques that have been used. Therefore, there are a number of aspects that 

cannot yet be generalised for all gold catalysts. So, although the method of 

preparation is important, and it seems that deposition-precipitation is a robust 

method, a number of authors have used other methods of preparation that have 

yielded similar results. Also, there is not yet agreement as to what pre-treatment 

conditions are optimal. There have also been various views on the role of the 

support.  

Armor (2005) warns scientists and engineers not to claim to have an industrially 

viable catalyst without testing conditions that would occur in an industrial plant. 

Armor (2005) provides insight into the criteria which are necessary for 

determining if a catalyst is “better” in industrial applications. These criteria can be 

broken down into three broad categories namely, process conditions, the catalyst 

and cost. Process conditions such as temperature, pressure and feed composition 

are necessary to know and understand the process and to make an informed 

decision about whether a particular catalyst is correct for the reaction. Once the 

catalyst is determined, certain criteria need to be optimised for the highest 

activity. These include: kinetics, the use of promoters, catalyst life, and shape or 

form of the catalyst as well as stability of the catalyst. In industrial processes, the 

deciding factor can sometimes be economic and so therefore cost is also 

important. 

The message that Armor (2005) wanted to convey to researchers is that sometimes 

it is easy to conclude that the catalyst that has been developed in a particular lab is 
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the best that is available. However, that catalyst was only the best at those 

particular process conditions and it is therefore not always possible to draw a 

general conclusion for all the conditions for a specific catalyst but the catalyst is 

specific for a specific application. Perhaps this could explain why there are so 

many differing opinions when it comes to the field of gold catalysis. 

By using Armor’s (2005) perspective and the results obtained by various 

researchers, this literature survey aims to outline the various arguments and 

perhaps decide which is more probable for the work completed for this 

dissertation. 

1.4.1 Preparation methods and particle size 

Before the study was completed by Haruta et al. (1987), gold was considered to 

be a poor catalyst. This can be attributed to the fact that the size of the gold 

particles used for catalysis had diameters greater than 10 nm. Haruta et al. (1987) 

discovered that by depositing ultra-fine gold particles onto a metal oxide support, 

the chemistry was changed to a large extent. 

Haruta (1997) notes that it is important to take care with respect to the following 

when preparing gold catalysts: the size of the gold particles, the support used and 

the method used in preparing the catalyst. 

According to Haruta (1997), the method used to prepare a gold catalyst influences 

the size of the metal particles and therefore, influences the activity of the catalyst.  

Haruta (1997) mentions that the performance of a supported platinum catalyst was 

almost unaffected by the method in which it was prepared.  

Haruta (2004) names up to eight different methods that can be used to prepare 

highly dispersed gold catalysts. The type of method used depends on the support 

material that is used and also what type of gold catalyst is needed for the specific 

application. For this dissertation, however, only three of the most commonly used 
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methods will be explored. The three methods are co-precipitation, impregnation, 

and deposition-precipitation. 

Haruta et al. (1989) describe the process for co-precipitation. In the first step an 

aqueous solution of HAuCl4 and a transition metal nitrate are added to an aqueous 

solution of sodium carbonate. During this step the solution is continuously stirred. 

The precipitate that is formed is then washed and vacuum dried before being 

calcined at 400°C for 4 hours. 

Li, Comotti and Schüth (2006) describe the procedure used to prepare Au/TiO2 

catalysts using impregnation. The first stage is the suspension of the TiO2 support 

in the hydrogen tetrachloroaurate (HAuCl4) aqueous solution. This is done by 

adding the HAuCl4 solution drop wise to the TiO2 support whilst stirring. Then 

the sample is treated with ammonia to achieve stable Au(OH)3. The solution is 

then heated in an oven at 50°C for 4 hours before filtering it with deionized water 

to remove the residual chloride ions. The final step involves drying the catalyst at 

50°C for 16 hours. 

Haruta (2004) presents two arguments for why impregnation should not be used to 

prepare gold catalysts. The first being that gold nanoparticles have a lower 

melting point and lower affinity for metal oxides than platinum group metals and 

are therefore more difficult to deposit on the support. The second reason is that 

during calcination, the chloride ion (that results from the HAuCl4) increases 

agglomeration of the gold particles. 

The method for deposition-precipitation is described by both Haruta (1997) and 

Bond and Thompson (1999). The method described below is a summary of the 

method that they have described. The active species (gold) is taken out of an 

aqueous solution of HAuCl4. This is achieved by modifying the pH of the solution 

with NaOH to between 6 and 10 at room temperature. The metal oxide support is 

then added to the solution. According to Moreau and Bond (2007), the addition of 

the metal support decreases the pH further and so more NaOH is added to the 

solution to solve this problem. According to Haruta (1997), if the above 
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mentioned step is performed at the correct temperature and concentration then, 

ageing the solution for approximately 1 hour will result in the deposition of 

Au(OH)3 onto the surface of the metal oxide support. This is a basic outline of the 

deposition-precipitation method but there are many variations. 

Li et al. (2006) support deposition-precipitation for preparation of gold catalysts 

because the catalysts are reproducible. However, three factors are necessary to 

achieve reproducibility. These factors are precise control of pH, precise control of 

the drying conditions and ensuring that during the deposition stage of catalyst 

preparation, the suspension of the TiO2 support must remain at a fixed volume. 

Furthermore, they were able to prepare active catalysts without the calcination 

step. 

Wolf and Schüth (2002) aimed to determine the effect of pH, calcination 

temperature, gold content and washing procedures on the activity of gold 

catalysts. The catalysts were prepared by deposition-precipitation. They also 

wanted to establish how to produce catalysts that were reproducible. Wolf and 

Schüth (2002) found that to reproduce a catalyst, it should be prepared on the 

same day under the same synthesis conditions. Reproducibility was not enhanced 

by pH adjustment, variation of the precipitation agent, temperature during 

precipitation or by changing the aging period.  

From X-Ray diffraction (XRD), Wolf and Schüth (2002) deduced that the particle 

size of the gold is reduced when the pH values during precipitation are increased, 

resulting in higher activity of the gold catalysts. The highest activity according to 

Wolf and Schüth (2002) was recorded when the pH was in the range of 7.8 – 8.8 

during precipitation. Their explanation for this increase in activity is that the 

percentage of gold deposited on the support is reduced at pH values higher than 

8.8. Therefore, the probability of agglomeration of gold particles is reduced. 

Agglomeration of the gold particles would reduce the activity of the catalyst. Wolf 

and Schüth (2002) observed the same trend with pH for various catalysts that they 

tested. These catalysts included Au/TiO2, Au/Co3O4, Au/Al2O3 and Au/ZrO2. 
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Moreau and Bond (2007) explain the chemistry involved in increasing the pH of 

the HAuCl4 solution during deposition-precipitation. Firstly, AuCl4
-
 is hydrolysed 

as the pH of the solution increases. The higher the pH, the more the AuCl4
-
 is 

hydrolysed. Above pH of 8, all the AuCl4
-
 is converted to Au(OH)4

-
. Similarly, 

the charge on the TiO2 surface is also reliant on pH. Therefore, when the TiO2 is 

added to the HAuCl4 solution, the pH is decreased because the hydrolysed AuCl4
-
 

ions are neutralised.  

So, according to Moreau and Bond (2007), precise control of pH throughout 

catalyst preparation ensures that the gold loading remains between 0.06 and 

2.4wt%. At these low gold concentrations the particle size of the gold remains 

sufficiently small that Moreau and Bond (2007) could not detect a visible XRD 

peak. At temperatures -20°C, Moreau and Bond (2007) could achieve 100 percent 

conversion of CO when the gold loading was 1.9wt%.  

Wolf and Schüth (2002) prepared Au/TiO2 catalysts by deposition-precipitation 

and Au/Co3O4 catalysts by co-precipitation. Their results showed that by 

increasing the gold loading in the Au/TiO2 catalysts, the activity was reduced. 

Again, they attribute this to the size of the gold particles. However, Wolf and 

Schüth (2002) found that the opposite occurred in the Au/Co3O4 catalysts 

suggesting that the percentage of small particles increased with the increased gold 

loading in these catalysts. 

It is known that after depositing the gold onto the support and precipitating the 

catalyst, the catalyst is filtered, washed and then dried. The washing stage of the 

catalyst preparation is necessary to remove chloride ions which are known to 

poison catalysts. Wolf and Schüth (2002) tried to improve the catalysts by 

washing the catalyst a second time after calcination. Their results showed that 

there was no major difference in the activity of the catalyst in the case where 

deposition-precipitation was used. However, for the co-precipitated Au/Co3O4 

catalyst, there was a great improvement in the catalyst activity. 
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Research has shown that the deposition-precipitation method consistently remains 

the most suitable method to prepare gold catalysts. With strict control of pH 

during the deposition-precipitation method the gold particles will remain small 

enough to yield high catalyst activity. Also, careful washing of the catalyst 

guarantees that the chloride ions which are a catalyst poison are removed. Another 

topic that will be explored is calcination temperature and the effect of pre-

treatment on the gold catalyst as researchers have differing opinions about the 

effect that this has on catalyst activity. Also, co-precipitation has also produced 

comparable results to deposition-precipitation. However, there is evidence to 

suggest that impregnation is usually not suitable to prepare gold catalysts as it is 

more difficult to impregnate the gold onto the metal oxide support and the catalyst 

is easily poisoned by chloride ions. 

1.4.2 Effect of pre-treatment on gold catalysts 

As mentioned before, impregnation is not usually the preferred method to produce 

gold catalysts. However, Bollinger and Vannice (1996) prepared catalysts by 

impregnation but pre-treated the samples with high temperature reduction (HTR), 

followed by calcination and finally low temperature reduction (LTR). The HTR 

took place at 500°C in H2 for 1 hour, the calcination took place at 400°C in a 

mixture of 20% O2 in Helium for 1 hour and the LTR took place at 200°C in H2 

for 2 hours. From their results, Bollinger and Vannice (1996) concluded that the 

impregnated catalysts required pre-treatment for them to be most active. The 

impregnated catalysts with an Au particle size of 25 nm had a similar activity to 

the co-precipitated catalysts with an Au particle size of 4.5 nm. 

Another important aspect of preparing the catalyst is the temperature at which the 

catalyst is calcined. Again, many diverse opinions have been put forward. Wolf 

and Schüth (2002) found that at a calcination temperature of 200°C the results of 

the catalysts were consistently improved. However, it is worth mentioning that 

they did pre-treat all their catalysts in air at 150°C for 1 hour so the pre-treatment 

temperature was not that different to that used for the 200°C calcined catalysts. 

The TEM images obtained by Wolf and Schüth (2002) are evidence that for the 
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catalysts calcined at 200°C most of the gold particles are less than 2 nm. 

However, for the catalysts calcined at 300°C, the average particle size was 

between 4 and 8 nm. The catalysts calcined at 400 and 500°C had particle sizes 

higher that 10 and 15 nm. Wolf and Schüth (2002) attribute the reduced activity of 

catalysts that have been calcined at higher temperatures to the increased particle 

size, caused by the agglomeration of the gold particles at higher calcination 

temperatures. 

Tsubota et al. (1998) prepared Au/TiO2 catalysts by deposition-precipitation and 

then calcined the catalysts at temperatures between 200 and 600°C. Their aim was 

to establish what the effect of calcination temperature is on catalyst activity. Their 

results showed that there is a direct relationship between catalyst activity and 

calcination temperature in other words, as the calcination temperature increases, 

so the catalyst activity increases. This result contradicts the findings of Wolf and 

Schüth (2002). The next finding was that when the mixture of gold on titania was 

calcined at 200°C the gold particles had a smaller spherical shape but when the 

calcination temperature was 600°C, the particles were much larger and had an 

irregular shape. Tsubota et al. (1998) found that the uncalcined mixture of 

Au/TiO2 is not catalytically active for CO oxidation but by calcination of the 

mixture of Au/TiO2, the activity is increased and the results are similar to those of 

catalyst prepared by deposition-precipitation. 

The results of Tsubota et al. (1998) show that the gold titania interface is unique 

and that the size of the gold particles is not the only explanation for the high 

activity of the gold particles. Furthermore, it is speculated that calcination 

temperature modifies the interface between the gold and titania, to enhance the 

activity at this interface. 

Tanielyan and Augustine (1992) applied various heat pre-treatments to the gold 

catalysts such as heating in oxygen before cooling in helium or, calcination of the 

catalyst for 4 hours at 380°C. Their most active catalyst was prepared by drying 

the co-precipitated solution containing gold at 95°C and then heating it in oxygen 

at 200°C. They found that the activity of the catalysts differed with different 
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supports. Tanielyan and Augustine (1992) suggested that perhaps a different pre-

treatment method would be required to improve the activity of gold catalysts with 

different supports. They also confirmed that oxygen on the surface of the catalyst 

improved carbon monoxide adsorption. 

Visco, Donato, Milone and Galvagno (1997) prepared an Au/Fe2O3 catalyst by 

impregnation and co-precipitation. The reaction that they investigated was the 

oxidation of CO. They obtained high activity with the co-precipitated catalysts 

that were not pre-treated and therefore decided to calcine the catalysts to 

determine whether this would improve the activity. Visco et al. (1997) found that 

when they calcined the catalysts at 100°C the initial concentration of CO2 was 

lower than that of the catalyst that had not been pre-treated. Also, as the reaction 

progressed, the concentration of CO2 continued to decrease. At 200°C the initial 

concentration of CO2 was higher than the uncalcined sample however, the 

concentration continued to decrease as the reaction proceeded but was higher than 

the sample that was calcined at 100°C. The lowest activity was shown by the 

catalysts that were calcined at 330 and 400°C respectively. Therefore, the two 

important findings were that catalyst activity and catalyst stability both decreased 

when the Au/Fe2O3 catalysts were calcined. 

Visco et al. (1997) explain that the amount of gold present on the catalyst affects 

the stability of the catalyst and is dependent on the pre-treatment methods used. 

Furthermore, they propose that it is hydrated gold oxide that is the active species 

in the catalyst for CO oxidation and that if water is present in the feed to the 

reaction then the catalyst will be more stable. 

Visco et al. (1997) observed that by washing the catalyst prepared by 

impregnation with a solution of NaOH at room temperature, the catalyst activity 

showed a noticeable improvement. This is in agreement with the findings of 

Bollinger and Vannice (1996). The explanation that Visco et al. (1997) provide 

for this is that washing with NaOH leads to “hydrolysis of the Au-Cl bonds with 

the formation of the active hydrated gold oxide.” 
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Finch, Hodge, Hutchings, Meagher, Pankhurst, Siddiqui, Wagner and Whyman 

(1999) propose that gold nanoparticles are not the active species in a supported 

gold catalyst but it is the “synergistic interaction” between AuOOH.xH2O and the 

metal oxide support (in their case ferrihydrite) that provides the activity of the 

catalyst. Furthermore, they found that calcination of their catalysts resulted in 

reduced catalytic activity. Their findings support those of Visco et al. (1997). 

Daté, Okumura, Tsubota and Haruta (2004) determined that even low 

concentrations of water vapour have a significant effect on the oxidation of CO. 

Three supports were investigated in their study namely, alumina, titania and silica. 

The results of Daté et al. (2004) showed that for the Au/Al2O3 catalyst only 

concentrations of moisture above 200 ppm showed an improvement in activity 

whereas for the Au/SiO2 catalyst the activity decreased when the moisture content 

decreased. When the moisture content was increased to 3000 ppm, the Au/TiO2 

catalyst activity was high enough to convert 100 percent of the CO during the 

reaction. For the Au/TiO2 catalyst, Daté et al. (2004) also changed the pH during 

preparation to optimise the catalyst. 

Daté et al. (2004) found that these catalysts behaved differently to what previous 

researchers had reported; for example, catalysts with larger Au particle sizes or 

smaller Au loadings remained active in the presence of moisture. Furthermore, 

they found that when no gold was loaded onto the support material, the activity of 

the support material was not high enough for the reaction and therefore should not 

contribute significantly when the gold is loaded onto the support. This suggests 

that perhaps it is the combination of the gold and the support that accounts for the 

activity of the catalyst as well as the effect that moisture has at enhancing the 

properties of the catalyst that account for the high activity. Two important 

observations were that the presence of moisture during the reaction does not alter 

the reaction mechanism and the nature of the support has a large effect on the 

reaction mechanism. They conclude that there are two functions that moisture has 

during the oxidation of CO over a gold catalyst. The first is that it activates 

oxygen and the second is that it decomposes the carbonate. 
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Therefore, pre-treatment methods can be important to enhance the activity of a 

gold catalyst but they have also been important in providing an understanding of 

the separate roles of gold and the support during the reaction and the synergistic 

effect of the gold and the support. A further understanding of how the gold 

interacts with the support is provided in the next section. 

1.4.3 Metal oxide support 

Haruta (1997) comments, that the selection of the correct support can enhance the 

activity of the gold catalyst. An example given by Haruta (1997) is that in the 

oxidation of CO, the reaction can take place on an unsupported gold catalyst. 

However when the gold catalyst was supported on titania, the catalytic activity per 

unit surface area of gold increased by about 100 times. 

Okumura et al. (1998) had the aim of comparing gold supported on three different 

metal oxides, silica (Au/SiO2), alumina (Au/Al2O3) and titania (Au/TiO2). They 

wanted to determine whether alumina and silica were really inferior supports to 

titania or whether it was merely the weak interaction of the gold with the metal 

oxide support that resulted in poor dispersion and in turn caused these oxides to be 

inferior to titania. The method of investigating this was by using chemical vapour 

deposition (CVD) to deposit gold onto silica and alumina. This was because 

titania had already proven to be effective using this method of preparation. 

Okumura et al. (1998) also used liquid phase methods such as impregnation, co-

precipitation, and deposition-precipitation to prepare the catalysts. The results of 

Okumura et al. (1998) showed that all three catalysts were highly active for CO 

oxidation when the CVD method was used. The activity of the catalysts when the 

co-precipitation method was used depended on the Au loadings. With Au loadings 

above 10 wt% the catalysts were active but when the Au loading was below 5 

wt% the catalysts had a lower activity than when the other methods were used. 

Therefore, Okumura et al. (1998) showed that for the three catalysts, there was no 

major difference in catalytic activities when the CVD method was used. 
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Schubert et al. (2001a) performed a comparative study of various catalysts. The 

catalysts that they investigated were Au/ -Fe2O3, Au/TiO2, Au/CoOx, Au/NiOx, 

Au/Mg(OH)2, Au/CeO2, AuSnO2, Au/MnOx and they used Au/ -Al2O3 as a 

reference catalyst with the reasoning that the alumina is inert at the low reaction 

temperature that they used (80°C). Schubert et al. (2001a) compared the catalytic 

activity, selectivity, deactivation and long-term stability of the catalysts for CO 

oxidation in H2-rich gas.  

Since Schubert et al. (2001a) used different methods to prepare the various 

catalysts, the metal dispersion or particle sizes of the catalysts differed. Therefore 

they wanted to eliminate any effects that this may have had on the catalysts and in 

so doing determined the turnover frequencies (TOF) of all the catalysts under 

investigation. Then, it emerged that three groups of catalysts could be defined 

based on their activity as highly active (TOF>1 s
-1

), less active (initial TOF 

approximately = 1 s
-1

) and least active (TOF < 1 s
-1

). The catalysts that were 

included in the most active group included: Au/ -Fe2O3, Au/CeO2, Au/SnO2, 

Au/TiO2 and Au/Ni2O3. The most active in the group was Au/ -Fe2O3 and the 

least active in the group was Au/Ni2O3. The second group included Au/Mg(OH)2 

and Au/MgO. The explanation given by Schubert et al. (2001a) for these catalysts 

being less active was that the average particle size of these catalysts (Au/MgO 5.8 

nm average particle size) was much larger than the other catalysts (3 nm particle 

size on average). The last group with the least active catalysts included the 

reference catalyst, Au/ -Al2O3 and Au/MnO2. The activity of the Au/MnO2 

catalyst was unexpected since manganese is a reducible transition metal and 

should therefore have shown an activity close that of the catalysts that formed part 

of the first group of highly active catalysts.  

Schubert et al. (2001a) postulated that the difference in activity of the metal oxide 

supports was as a result of the support’s ability to adsorb oxygen and then the ease 

with which the support material could supply the oxygen for the reaction. 
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In the work completed by Schubert et al. (2001a), the catalyst that showed the 

highest selectivity was obtained with Au/Co3O4 (75 – 80%), followed by Au/MgO 

and Mg(OH)2 (65 – 70%), Au/ -Fe2O3 (60 – 65%). The other less selective 

catalysts in descending order are: Au/NiO3, Au/ -Al2O3 and Au/CeO2 

(approximately 55 – 60%), Au/TiO2 (45 – 50%) and Au/SnO2 (30 – 35%). 

Schubert et al. (2001a) did not have a concrete explanation for the different 

selectivities but hypothesized that there could be a competing redox reaction that 

was causing the difference. Schubert et al. (2001a) concluded that the Au/ -Fe2O3 

catalyst showed the best compromise because it showed high activity and high 

selectivity and that the deactivation of the catalyst was reversible. 

On the contrary, Costello, Kung, Oh, Wang and Kung (2002), established during 

their research that the activity of the Au/ -Al2O3 catalyst for CO oxidation has an 

activity that is similar to the activity reported for TiO2 and Fe2O3. The turnover 

frequency that Costello et al. (2002) report for the Au/Al2O3 catalyst is between 

0.17 to 0.46 s
-1

 using the deposition-precipitation method and the particle size of 

the gold is between 3 – 5 nm. Okumura et al. (1998) reported a turnover 

frequency of 1.3 s
-1

 for the Au/TiO2 catalyst that was also prepared using the 

deposition-precipitation method with the average size of the gold particles at 1.7 

nm. Okumura et al. (1998) suggested that a reducible transition metal oxide 

support was essential for a high activity gold catalyst while Costello et al. (2002) 

dispute this argument with the reasoning that the activity of the alumina supported 

gold catalyst is comparable to the activity of the titania supported gold catalyst. 

This seems surprising as the size of the gold particles in the study by Costello et 

al. (2002) were between 3 and 5 nm which was larger than the particle size 

observed by Okumura et al. (1998). Costello et al. (2002) suggest that the 

presence of chloride ions can poison the catalyst and so perhaps by preparing the 

catalyst by deposition-precipitation Costello et al. (2002) were able to remove the 

chloride ions whereas Okumura et al. (1998) were not able to remove the chloride 

ions by using the chemical vapour deposition method. 
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Wolf and Schüth (2002) tested five different supported gold catalysts. The five 

catalysts were Au/TiO2, Au/Co3O4, Au/Al2O3, Au/ZrO2 and Au/SiO2. The 

catalysts were prepared using the deposition-precipitation method. Immediately, it 

was found that the SiO2 support was unsuitable using this method of preparation. 

The Au/Co3O4 catalyst showed better results when the deposition-precipitation 

method was used than when using co-precipitation. An important result was that 

when the Au/TiO2 catalyst was compared with the Au/Al2O3 catalyst, the Au/TiO2 

catalyst was more active. They also ensured that the particle sizes of the gold on 

each catalyst were of a comparable size. Therefore, they concluded that the 

activity of the catalyst is not merely as a result of the size of the particles. Also, 

Wolf and Schüth (2002) found that when the isoelectric point of the catalyst was 

between 6 and 9, and the synthesis conditions were optimized, the gold catalysts 

were highly active suggesting that the type of support is not the only influencing 

factor for the activity of the catalyst. 

There are therefore two schools of thought when it comes to the activity of 

alumina as a support for gold catalysts. Some research has shown that alumina is 

as active or more active than titania and there is other research that has shown that 

alumina is less active than titania as a metal oxide support for gold catalysts. 

Okumura et al. (1998) showed that there was no major difference in activity when 

they compared three supports namely silica, alumina and titania. This result was 

confirmed by Costello et al. (2002). They established that the activity of the 

Au/Al2O3 catalyst was similar to both the Au/TiO2 and Au/Fe2O3 catalysts. 

Schubert et al. (2001a) used the alumina supported gold catalyst as a reference 

catalyst for their experiments; the reasoning was that the catalyst was not active at 

the low reaction temperatures. Wolf and Schüth (2002) showed that when titania 

was used as a support for gold catalysts it was in fact more active than the gold 

supported on alumina. 

Yan, Mahurin, Pan, Overbury and Dai (2005) conducted an experiment whereby 

they deposited gold onto titania via a deposition-precipitation method. The 

nanocrystalline titania was then modified by alumina using a surface sol – gel 

process. According to Yan et al. (2005), a problem encountered with gold 
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catalysts is stability during reaction conditions as the gold catalyst tends to sinter. 

Their major finding was that surface modified supports were less susceptible to 

sintering than gold catalysts with supports that had not been modified. 

Tai, Murakami, Tajiri, Ohashi, Daté and Tsubota (2004) prepared gold catalysts 

supported on titania and titania-coated silica aerogels to oxidize CO. Tai et al. 

(2004) describe an aerogel as a porous material with a large surface area. The 

large pore size enables the reactant molecules to interact with the particles inside 

the pores and the large surface area allows the gel to keep the catalytic 

nanoparticles at a high number density. Their results show that the titania-coated 

composite aerogels had a higher activity (than the non-coated titania aerogel) for 

CO conversion. 

Tai et al. (2004) explain that in the non-coated titania aerogels, the titania gel 

undergoes a structural change after heat treatment and therefore the Au nano-

particles had a larger diameter and were supported on a smaller surface area. In 

the case of the titania coated composites, Tai et al. (2004) explain that the 

amorphous structure of the titania is maintained therefore preventing the gold 

particles from coagulating with each other. With these composite aerogels, the 

size and loading of the gold nanoparticles can be independently controlled which 

is not true for the non-composite gels. 

Schubert, Hackenberg, van Veen, Muhler, Plzak and Behm. (2001b) divide metal 

oxides into two categories namely: “inert” and “active”. The “inert” group are 

made up of irreducible metal oxides such as Al2O3 and MgO. In this group, 

Schubert et al. (2001b) proposes that adsorption and dissociation of oxygen 

occurs directly on the gold. The size of the gold particles has a profound effect on 

the activity of these “inert” catalysts. The “active” group includes Fe2O3, NiOx, 

CoOx and TiO2 and are reducible. Schubert et al. (2001b) assume that these 

“active” supports have a role in the CO reaction. 

Venezia, Liotta, Pantaleo, Beck, Horváth, Geszti, Kocsonya and Guczi (2006), 

also divide metal oxides into “active” and “inert” groups. Their “active” group 
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also includes Fe2O3 and TiO2 in addition to CeO2. Their “inert” group also 

includes Al2O3 in addition to SiO2. The gold nanoparticles are stabilized by the 

stronger metal-support interaction with the active metal oxides. Venezia et al. 

(2006) note that silica does not allow the gold to disperse (therefore gold particles 

are too large) when prepared using traditional methods, rendering the gold catalyst 

inactive. However, they further state that there are properties of silica that would 

aid the activity of the gold catalyst that the titania cannot provide. These 

properties include: large surface area, high thermal stability, mechanical strength 

and simple structure. Although the titania on its own is a better support than the 

silica, the catalyst can be susceptible to sintering during reaction conditions. 

Therefore, Venezia et al. (2006) developed a catalyst by doping silica with 

increasing amounts of titania (between 2.5 and 20 wt% TiO2). The sol gel method 

was then used to deposit the gold onto the modified support. The catalyst only 

proved to be more active when low concentrations of TiO2 were used. 

Although Tai et al. (2004) and Venezia et al. (2006) both found that when coating 

titania with silica, a synergy can exist where the different properties of each 

support can be utilized, it is important to mention that the catalyst would have to 

be optimized before generalizing that gels are proven to give a higher activity for 

CO oxidation. This can be seen from the finding of Venezia et al. (2006) that the 

catalyst was only more active at low TiO2 concentrations. 

Table 1.1 presents a summary of metal supports used for gold catalysis that have 

been mentioned in this section. From the table it is clear that CO oxidation was 

the most studied reaction but the support used and the method to prepare the 

catalysts varied widely. 
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Table 1.1 Summary of metal supports for gold catalysts 

Reference Metal Support Catalyst 

Preparation 

Method 

Test Reaction 

Haruta, 

Kobayashi,  

Sano, and 

Yamada, (1987) 

MnO2, α-Fe2O3, 

Co3O4, NiO, 

CuO, 

Co-Mn 

composite 

oxides. 

 

Co-precipitation CO oxidation 

Haruta, Yamada, 

Kobayashi,  and 

Iijima, (1989) 

α-Fe2O3, Co3O4, 

NiO, 

α-Fe2O3, γ-Al2O3 

SiO2 

Co-precipitation 

Impregnation 

Reduction of 

HAuCl4 with 

dimmonium 

citrate 

H2 oxidation 

CO oxidation 

Li,  Comotti,  

and Schüth, 

(2006) 

TiO2 Deposition-

precipitation 

Impregnation 

CO oxidation 

Wolf, Schüth, 

(2002) 

TiO2, Co3O4, 

Al2O3, ZrO2 

SiO2 (was 

unsuitable) 

Deposition-

precipitation 

Co-precipitation 

CO oxidation 

Moreau, and 

Bond, (2007) 

TiO2 Deposition-

precipitation 

CO oxidation 

Bollinger, and 

Vannice, (1996) 

TiO2 Impregnation 

Deposition-

precipitation 

Co-precipitation 

CO oxidation 

Tsubota, 

Nakamura, 

Tanaka  and 

Haruta, (1998) 

TiO2 Mixture of 

colloidial 

solution of Au 

diluted with 

isopropyl ether 

and TiO2 powder 

and deposition-

precipitation 

CO oxidation 
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Reference Metal Support Catalyst 

Preparation 

Method 

Test Reaction 

Tanielyan and 

Augustine, 

(1992) 

Co3O4, 

Fe2O3,CuO 

Co-precipitation CO oxidation 

Visco, Donato, 

Milone and 

Galvagno, 

(1997) 

Fe2O3 Impregnation 

Co-precipitation 

CO oxidation 

Finch, Hodge, 

Hutchings, 

Meagher, 

Pankhurst, 

Siddiqui, 

Wagner and 

Whyman, (1999) 

Fe(NO3)3.9H2O Co-precipitation CO oxidation 

Daté, Okumura, 

Tsubota, Haruta, 

(2004) 

TiO2, Al2O3, 

SiO2 

Deposition-

precipitation 

CO oxidation 

Okumura, 

Nakamura, 

Tsubota, 

Nakamura, 

Azuma, and 

Haruta, (1998) 

SiO2, Al2O3, 

TiO2 

Chemical 

Vapour 

Deposition 

(CVD), co-

precipitation, 

impregnation, 

deposition - 

precipitation 

CO oxidation 

H2 oxidation 

Schubert, Plzak, 

Garche, and 

Behm, (2001a) 

α-Fe2O3, Ni2O3, 

Mg(OH)2, MgO 

Co-precipitation CO oxidation  in 

H2-rich gas 

α-Fe2O3, CeO2, 

MnO2 

Deposition-

precipitation 

Co3O4, TiO2, γ-

Al2O3, SnO2 

Impregnation 
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Reference Metal Support Catalyst 

Preparation 

Method 

Test Reaction 

Schubert, 

Hackenberg, van 

Veen, Muhler, 

Plzak, and 

Behm, (2001b) 

α-Fe2O3 Deposition-

precipitation 

CO oxidation 

α-Fe2O3, NiOx, 

Mg(OH)2, MgO, 

Fe2O3.MgO 

Co-precipitation 

Al2O3, TiO2, 

CoOx 

Impregnation 

Costello, Kung, 

Oh, Wang, and 

Kung, (2002) 

Al2O3 Deposition-

Precipitation 

CO oxidation 

Yan, Mahurin, 

Pan, Overbury, 

Dai, (2005) 

TiO2 modified 

by Al2O3 using 

surface sol-gel 

process 

Deposition-

precipitation 

CO oxidation 

Tai, Murakami, 

Tajiri, Ohashi, 

Daté, Tsubota, 

(2004) 

TiO2 aerogel and 

TiO2-coated 

SiO2 aerogel 

Prepared aerogel 

support and 

incorporated Au 

into aerogel 

CO oxidation 

Venezia, Liotta, 

Pantaleo, Beck, 

Horváth, Geszti, 

Kocsonya, 

Guczi, (2006) 

SiO2 support 

containing 2.5 to 

20 wt% TiO2 

“controlled sol 

formation 

technique” 

CO oxidation 

Valden, Pak, Lai, 

and Goodman 

(1998) 

TiO2 supported 

on Mo(100) 

Vapour 

deposition 

CO oxidation 

under ultra high 

vacuum (UHV) 

conditions 

1.4.4 Enhancement of Au/TiO2 catalysts 

Solsona, Conte, Cong, Carley and Hutchings (2005) claimed to be the first 

researchers to notice that supported gold catalysts could be augmented by the 

addition of promoters. In their work, Au/TiO2 catalysts were prepared by 

deposition-precipitation and then, various aqueous solutions (sodium nitrate, 

potassium nitrate, sodium acetate or sodium citrate) were added to the catalyst by 

impregnation. Solsona et al. (2005) experiments revealed two major findings, the 

first that promoters do in fact increase the activity of the supported gold catalyst 

and that the catalyst that was treated with nitrate was twice as active as the 

catalyst treated with citrate but containing the same concentration of Na
+
. The 

second major result that Solsona et al. (2005) observed was that the results could 
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only be reproduced if the residual nitrate was removed thoroughly or if nitrate was 

removed in the same way each time so that the activity was the same for each 

experiment. 

Gluhoi, Tang, Marginean and Nieuwenhuys (2006) developed an Au/Al2O3 

catalyst with various alkali (earth) metal oxides such as Li2O, Rb2O, MgO and 

BaO added to the catalyst. The catalyst with BaO showed the highest activity and 

there was 100 percent conversion of CO at room temperature. The presence of 

Rb2O and Li2O also improves the catalytic activity for CO oxidation of the 

Au/Al2O3 catalyst. However, the order in which the Li2O is added to the catalyst 

is important. When the Li2O was added after Au deposition onto the support, there 

was a decrease in catalytic activity when compared with all the other alkali (earth) 

promoted catalysts. A possible explanation of this phenomenon given by Gluhoi 

et al. (2006) is that the interaction between Au and the support is stronger if the 

Li2O is first added to the alumina therefore resulting in a higher catalytic activity.  

Ilieva, Pantaleo, Ivanov, Venezia and Andreeva (2006), studied the effect of gold 

catalysts supported on mixed metal oxides. They studied three catalysts namely, 

gold supported on ceria (Au/CeO2), gold supported on ceria-alumina mixed 

support containing 10 wt% alumina in ceria (Au/CeO2-Al2O3) and 20 wt% 

alumina in ceria (Au/CeO2-Al2O3). The ceria-alumina mixed oxide support was 

prepared by co-precipitation and the gold was loaded by deposition-precipitation 

(while parameters such as pH, temperature and stirring speed were controlled). 

Ilieva et al. (2006) found that adding 10 wt% alumina to the catalyst decreased the 

catalyst activity. While, when 20 wt% alumina was added the catalyst activity 

improved. Their explanation is that when 10 % alumina was added, it caused an 

increase in the average particle size of the gold but with the higher concentration 

of alumina, the ceria was more dispersed while the average particle size of the 

gold was almost unchanged.  

Ilieva et al. (2006) studies agree with the literature reports that the more finely 

divided the gold particles are of a supported gold catalyst, the higher the catalyst 

activity. Another important result obtained by Ilieva et al. (2006), is that the 
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activity of the catalyst for NOx reduction by CO increased as more hydrogen was 

added to the feed. They conclude that hydrogen is active in surface catalyst 

reduction as well as participating in NO reduction. 

Zhang, Zheng, Wei, Lin, Zhang, Li and Cao (2006) also studied the effect of 

mixed metal oxide supports on a gold catalyst (for the water gas shift reaction 

under hydrogen-rich conditions). The catalysts studied by Zhang et al. (2006) 

were gold/iron oxide catalysts promoted with ZrO2 and Nb2O5. Their catalysts 

were prepared by parallel co-precipitation using varying amounts of Nb2O5 and 

fixed amounts of Au and ZrO2. Then, an Au, iron and zirconium solution was co-

precipitated with the Nb2O5 solution. Zhang and co-workers found that the 

catalyst activity was enhanced over a wide temperature range and the difference in 

activity between the mixed metal oxide supported gold catalyst and the Au 

catalysts without promoters was more pronounced at higher temperatures. Zhang 

et al. (2006), ascertained that the increased catalyst activity was due to three main 

reasons: 1) increase in gold dispersion (smaller gold particles), 2) increase in 

specific surface area of the catalyst and 3) smaller magnetite particles. 

Therefore, Ilieva et al. (2006) and Zhang et al. (2006) concur that when metal 

oxides are used as promoters for gold catalysts, they are effective when the gold 

particles are more highly dispersed. Ilieva et al. (2006) found that higher 

concentrations of the promoter (alumina) were needed for the catalyst to be more 

active. This suggests that not all metal oxide promoters enhance the catalytic 

activity of gold catalysts and that the correct concentration of the promoter has to 

be determined to optimise the catalyst. 

Recent studies by Ma et al. (2007) and Moma et al. (2007) have been done to 

determine the effect of integrating ions into Au/TiO2 catalysts.  

The purpose of the work carried out by Ma et al. (2007) was to produce a catalyst 

that remains active at high temperatures as Au/TiO2 catalysts lose activity at 

higher temperatures (above 400°C) due to sintering. The study by Ma et al. (2007) 

investigated the effect of adding phosphate into the gold catalyst. This was done 
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via two methods. The first being to add the phosphate (diluted H3PO4) before the 

gold was loaded onto the titania and the second method was to load the gold onto 

the titania and then incorporate the phosphate (diluted H3PO4) into the prepared 

Au/TiO2 catalyst. 

Ma et al. (2007) found that washing the PO4
3-

/TiO2 before the gold was loaded, 

increased the activity of the catalyst to a level comparable to an Au/TiO2 catalyst 

that has not been modified. Then, using this result Ma et al. (2007) changed the 

temperature at which phosphate was added to the TiO2 and the temperature at 

which the catalyst was calcined. Their results showed that calcination of the 

catalyst at 500°C improved the activity of the catalyst so that the catalyst was 

slightly more active than an Au/TiO2 catalyst calcined at 200°C. Furthermore, Ma 

et al. (2007) found that if higher concentrations of phosphate were added to the 

catalyst, a blocking effect of the active sites was noticed. Therefore, it seems that 

for this catalyst, an extremely controlled procedure is necessary to synthesize this 

catalyst and the activity of the catalyst is then only slightly higher for the 

oxidation of CO than an Au/TiO2 catalyst that has not been modified. 

In the second method of preparation, Ma et al. (2007) again showed that when the 

temperature used to add the phosphate was high, it led to a higher concentration of 

phosphate on the catalyst and therefore, reduced activity. Also, the phosphorus 

content was high if the catalyst was not washed. 

The aim of the work by Mohapatra, Moma, Parida, Jordaan and Scurrell (2007), 

was firstly to establish if preparing the support in different ways affects the 

activity of the catalyst and secondly to determine the effect that the sulphate ion 

has on gold-promoted titania. The first result was that the lower the sulphate 

loading on the catalyst, the higher the activity (compared to the activity of un-

promoted Au/TiO2 catalysts), regardless of the method of preparation that was 

used. 

Mohapatra et al. (2007) observed that over a 10 hour period, the activity of all the 

catalysts that were tested did not show much change (i.e. the sulphate ion did not 
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hinder or improve the stability of the catalyst). In trying to understand the first 

observation, they measured the gold particle size distribution and found that there 

were no major differences again indicating that the sulphate ion was in no way 

involved in the distribution of the gold particles on the surface. However, 

Mohapatra et al. (2007) found that for high sulphate contents, there was some 

increase in surface area of the catalyst and lastly, the gold content in all catalysts 

was similar and close to the target of 1 wt%. 

The conclusion that Mohapatra et al. (2007) reached from their study was that the 

sulphate ion does not cause any physical change to the catalyst and that the 

change must be chemical and so they used two characterization methods, namely 

X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy 

(SIMS) to try to collect more evidence about the interaction of the gold with the 

sulphate ion at the surface of the catalyst. 

From the XPS study, Mohapatra et al. (2007) learnt that there was no major 

change in the binding energy of the gold and hypothesized that perhaps the 

sulphate ions and a small fraction of gold ions have direct interaction or that the 

sulphate ions interact with perimeter sites on the catalyst. Their SIMS study 

showed that there was both Au and S on the surface. 

The suggestion is that the exact interaction between the gold and the sulphate 

anion are unknown due to the small quantities that are interacting (and can 

therefore not be detected by the current characterization techniques) but that there 

is definitely some interaction between the two species causing the catalysts with 

low concentrations of sulphate ions to be more active than the un-promoted 

Au/TiO2 catalysts. 

Moma et al. (2007) tested phosphate, sulphate, chloride, fluoride, lithium, sodium 

and potassium ions added to Au catalysts supported on TiO2. Two methods were 

used to prepare the catalysts. In the first method, the promoter was added to the 

TiO2 before the gold was loaded. While in the second method the anion or cation 

was impregnated into the Au/TiO2 catalyst. 
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Moma, et al. (2007) found that the lower the ion loading, (for all ions that were 

tested and regardless of the method used to add the promoter), the higher the 

activity of the catalyst. There was only evidence in the case of the support that 

was modified with sulphate that there was both gold and sulphur on the surface. 

Moma et al. (2007) conclude that the promotional effect of the sulphate is due to 

the direct interaction between the gold centres and the sulphate. Furthermore, for 

the other modified supports, they found that there was an interaction between the 

support and the ion rather than direct interaction between the ion and the gold 

centres as was the case for the sulphate ion. 

The studies that have been mentioned above have all showed that by modifying 

the support, there is some improvement in the catalytic activity of the gold 

catalyst. The work by Mallick and Scurrell (2003) is therefore interesting because 

when they modified the TiO2 support with ZnO, it was found that not only was the 

modified support less active for CO oxidation, it was also less stable then the 

unmodified Au/TiO2 support. The Au/TiO2 catalyst was prepared by deposition-

precipitation and then filtered to ensure that all the gold particles were supported 

on the TiO2. For the ZnO modified support, the catalyst was prepared by 

depositing the ZnO on the TiO2 before precipitating out the solution. The 

precipitated solution was then filtered. The gold was added in a similar manner as 

for the unmodified Au/TiO2 catalyst. From the diffuse reflectance UV-visible 

spectroscopy (DRS), it was shown that there was no evident chemical interaction 

between the TiO2 and ZnO with the gold particles. The TEM study showed that 

for the modified and unmodified supported gold catalyst, the particle size was less 

than 3 nm for both samples. This ruled out the possibility therefore that the less 

active Au-TiO2-ZnO catalyst was caused by a large difference in the size of the 

particles. As mentioned before, this study showed that when the TiO2 support was 

modified with ZnO the modified catalyst was less active and less stable. However, 

Mallick and Scurrell (2003) have no definite or conclusive reason as to why this is 

so. Their only speculative reason being that “only a fraction of the total amount of 

CO adsorbed is able to participate in the catalytic oxidation process”. 
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Lai, Zhang and Ng (2004) modified the titania support by using zirconium dioxide 

(ZrO2). They prepared various combinations of mixed oxide support, some 

sulphated while others were non-sulphated. Two reagents were used to prepare the 

mixed oxide supports – ammonia and sodium hydroxide (NaOH).  The gold was 

added by the deposition-precipitation method after the mixed oxide support was 

prepared in each case. The results obtained by Lai et al. (2004) showed that when 

the ammonia was used to prepare the catalysts, it caused the gold particles to be 

larger and therefore have a lower activity for CO oxidation. When NaOH was 

used as a reagent to prepare the catalysts, the catalyst was found to be active but 

only when the CO oxidation reaction was conducted at room temperature and with 

moisture present in the air. 

A possible explanation for some researchers finding that modifying the metal 

oxide support (before adding the gold to the catalyst) improves the activity of the 

catalyst could be due to the method used to prepare the metal oxide support or due 

to the particular process conditions that the reaction was performed under. 

However, more work may need to be conducted to investigate whether these so-

called “enhanced” catalysts always prove to be more effective for catalyst activity 

or whether the catalyst is only enhanced under certain conditions. Also, the 

stability of these catalysts will have to be investigated to ensure that small changes 

in either the method of preparation or process conditions will not have a large 

effect on the activity of the catalyst. 

Table 1.2 presents a summary of the enhanced metal supports that have been 

studied in the literature. Again, CO oxidation was the most researched reaction 

while various methods of preparation were used. 
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Table 1.2 Summary of metals used to promote metal oxide supports used for gold 

catalysts 

Reference  Metal 

Support 

Catalyst 

Preparation 

Method 

Test 

Reaction 

Promoter Notes 

Gluhoi, Tang, 

Marginean and 

Nieuwenhuys, 

(2006) 

Al2O3 Homogenous 

deposition-

precipitation 

(HDP) 

CO 

oxidation 

Not promoted BaO had the best 

promoting effect, 

acted as 

structural 

promoters MOx/Al2

O3 

Impregnation CO 

oxidation 

M: Rb, Li, Ba 

Ilieva, Pantaleo, 

Ivanov, Venezia, 

Andreeva, (2006) 

CeO2, 

CeO2-

Al2O3 

Co-

precipitation 

NOx 

reduction 

by CO 

CeO2 Higher 

concentration of 

Al2O3 caused 

CeO2 to be more 

dispersed 

increasing 

catalyst activity 

Zhang, Zheng, 

Wei, Lin, Zhang, 

Li and Cao, 

(2006) 

Fe2O3 Parallel co-

precipitation 

Water gas 

shift 

reaction 

under 

hydrogen 

rich 

conditions 

ZrO2 and 

Nb2O5 

Enhanced 

activity and 

stability. 

Structural 

promoters 

delayed sintering 

of gold catalyst. 

The main reasons 

for the enhanced 

performance are 

that the promoter 

created more 

active gold sites, 

a larger surface 

area and smaller 

magnetite 

particles 

Solsona, Conte, 

Cong, Carley and 

Hutchings, 

(2005) 

TiO2 Deposition-

precipitation 

CO 

oxidation 

Sodium 

nitrate, 

potassium 

nitrate, 

sodium 

acetate or 

sodium citrate 

added by 

impregnation 

Catalyst activity 

was enhanced by 

the addition of 

promoters 
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Reference  Metal 

Support 

Catalyst 

Preparation 

Method 

Test 

Reaction 

Promoter Notes 

Ma, Brown, 

Overbury and 

Dai, (2007) 

TiO2 Deposition-

precipitation 

CO 

oxidation 

PO4
3-

 Calcination 

temperature = 

500°C improved 

activity and 

washing support 

increased activity 

Mohapatra, 

Moma, Parida, 

Jordaan and 

Scurrell, (2007) 

TiO2 Sulphate 

introduced 

into the titania 

by 

impregnation 

with dilute 

H2SO4, then 

the Au was 

added using 

the single step 

borohydride 

method 

CO 

oxidation 

H2SO4 Higher activity 

was recorded 

with the addition 

of the promoter 

Moma, Scurrell 

and Jordaan, 

(2007) 

TiO2 Au 

nanoparticles 

loaded onto 

promoted 

support by 

single step 

borohydride 

(SSBH) 

method 

CO 

oxidation 

PO4
3-

, SO4
3-

, F
-

, Cl
-
 

impregnated 

into titania and 

Li
+
, Na

+
, K

+
 

hydroxides 

used to 

impregnate 

into TiO2  

Addition of ions 

to support before 

gold was added 

resulted in higher 

activity (in most 

cases) whilst 

addition to 

Au/TiO2 resulted 

in lower activity 

Mallick and 

Scurrell, (2003) 

TiO2 Deposition-

precipitation 

CO 

oxidation 

ZnO Surface 

modification of 

TiO2 leads to 

reduced activity 

Lai, Zhang and 

Ng, (2004) 

TiO2-

ZrO2 

Deposition-
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1.4.5  Reaction mechanisms 

There is a question in the literature about the role of the metal oxide support 

during the reaction. According to Schubert et al. (2001b), there is consensus 

among researchers in catalysis that in the CO oxidation reaction over gold 

catalysts, the CO is adsorbed on the gold particles. However, Schubert et al. 

(2001b) mention that what researchers are in disagreement about is the 
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“mechanism for oxygen adsorption and activation”. The reason why this is an 

important issue is that oxygen (at the atomic level) is required for the CO 

oxidation to readily occur. Schubert et al. (2001b) describe the three main 

proposed mechanisms for oxygen adsorption.  

The first mechanism proposes that the oxygen adsorption takes place “directly on 

the gold particles”. This mechanism then assumes that the metal oxide support 

merely stabilizes the gold particles and the gold particles are the reactive species 

in the catalyst. 

The second mechanism assumes that the adsorption of oxygen takes place on the 

support or at the interface between the gold and metal oxide support. This 

mechanism places far more importance on the role of the support within the 

catalyst. 

The last mechanism suggests that the oxygen adsorbs on the support and then 

dissociates immediately. The molecular oxygen can then react either at the 

interface between the support and the gold or react directly on the gold particles. 

In this mechanism the function of the support can change depending on how the 

oxygen is dissociated and whether it came into contact with the interface or the 

gold particle. 

The results published by Haruta et al. (1989) revealed that the catalysts that they 

used had different activities for H2 oxidation and CO oxidation. From their results, 

Haruta et al. (1989) postulated that perhaps the gold particles and the metal oxide 

support react at different stages of the reaction i.e., that there is some 

“bifunctional mechanism”. Furthermore, they proposed that it is likely that the 

gold nanoparticles interact with the metal oxide support in such a way that the 

surface properties of the gold are changed. This changed surface may then be 

good for one reaction while in another reaction the activity of the catalyst may be 

low.  
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Haruta (1997) suggested that the gold particles and the metal oxide support need 

to be in contact in a certain orientation so that the length of the perimeter interface 

is maximised, yielding a high catalyst activity at a low temperature. A reaction 

pathway was proposed by Haruta (1997) where first the CO adsorbs on the surface 

and boundary interface of the gold, then dissociative adsorption of O2 occurs at 

the boundary interface between the Au and the TiO2. The CO then reacts on the 

surface of the Au before reacting on the surface of the metal oxide support. Here 

Haruta (1997) shows that the reaction occurs in two stages but is always on the 

Au surface. 

Valden, Pak, Lai and Goodman (1998) agree with Haruta’s (1997) proposed 

reaction pathway and that the “larger perimeter interface” allows for the Au 

particles to be more dispersed and therefore exhibit a higher activity. Okumura et 

al. (1998) are also in agreement with the conclusion reached by Haruta (1997).  

Bollinger and Vannice (1996) found that depositing TiOx overlayers onto Au 

powder produced high activity. Therefore, they concluded that the size of the gold 

particles is not the main reason for high catalyst activity. Based on their research, 

Bollinger and Vannice (1996) support the theory that the boundary between the 

Au and the TiO2 is unique to this system and this is the reason for the high activity 

these catalysts. 

There is no concrete evidence that proves without a doubt that any one of these 

proposed mechanisms is the correct one. Again, the experiments performed by the 

researchers have been performed at different process conditions and the reaction 

has been examined using various characterization techniques. However, the fact 

that researchers are having the debate about what the role of the metal oxide 

support is means that perhaps these researchers are one step closer to solving this 

question. 
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1.4.6 Interaction of SO2 with TiO2 and Au/TiO2 

Rodriguez, Liu, Jirsak, Hrbek, Chang, Dvorak and Maiti (2002), corroborate the 

findings of Haruta (1997) in their work in that when gold particles are supported 

on titania, the system is more active than either pure gold or pure titania. 

The research conducted by Rodriguez et al. (2002) focussed on how the gold-

titania system breaks the S-O bond in sulphur dioxide. They found that this 

system was effective for adsorbing the SO2 and breaking the S-O bond. Rodriguez 

et al. (2002) notes that titania is the most common catalyst support for the 

removal of SO2 in the petrochemical industry. The reaction proceeds according to 

the Claus Reaction (Equation 1.4). 

Rodriguez et al. (2002) compared the results obtained from using unsupported 

gold as a catalyst and found that bulk metallic gold does not interact with the SO2. 

According to their research the complex interactions between gold and titania 

simultaneously enhance the desulphurisation activity of gold and titania. 

Rodriguez et al. (2002) found that the SO2 molecule is not able to dissociate in the 

presence of an unsupported gold catalyst. The reason is that the SO2 molecule 

forms weak adsorption bonds with the gold as gold is not a reactive metal in the 

bulk form.  

Rodriguez et al. (2002) note that for the reduction of SO2 by H2S in the Claus 

Process, TiO2 is the catalyst that has been used most often. Through their 

research, Rodriguez et al. (2002) established that SO2 does get adsorbed onto 

TiO2 but the molecule only partially dissociated at a temperature of 327°C. 

Therefore they identified that another catalyst was required to completely 

dissociate the SO2 molecule. 

For a gold catalyst supported on titania, Rodriguez et al. (2002) found that SO2 

gets adsorbed and both SO4 and elemental sulphur get deposited on the surface, 

indicating that the SO2 molecule gets dissociated. To obtain a greater dissociation 
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of the SO2 molecule, Rodriguez et al. (2002) state that a high Au surface coverage 

must be obtained on the TiO2. 

Rodriguez et al. (2002) argue that Au adatoms improve the reactivity of the 

system by altering “the rate of exchange of O vacancies between the bulk and 

surface of titania”. Furthermore, that Au/TiO2 is able to easily break the S-O 

bonds. Therefore, Rodriguez et al. (2002) conclude that Au/TiO2 is more 

chemically active than either pure gold or pure titania. 

Ruth, Hayes, Burch, Tsubota and Haruta (2000), mention that H2 oxidation over a 

gold catalyst occurs at the Au surface and therefore the support that is used for the 

catalyst is not so important. However, for the CO oxidation reaction, the support 

that is used is important, indicating that the reaction occurs at the boundary 

between the Au and the support. Ruth et al. (2000) found that SO2 had a 

significant effect on the CO oxidation reaction and they concluded that the 

interaction between the SO2 molecule and the metal oxide surface is stronger than 

the interaction of SO2 with metallic surfaces. Therefore, they concluded that SO2 

blocks the perimeter sites and acts as a poison for the CO oxidation reaction. 

Chen, Jiang, Li, Jin, Tang and Hu (1999), studied the Claus reaction over a TiO2 

catalyst. Chen et al. (1999) found that SO2 does not form strong adsorption states 

on the TiO2 surface and therefore SO2 can easily be transformed into other 

adsorption species that easily desorb from the surface of the TiO2 below 

temperatures of 300°C. The TiO2 surface is therefore more resistant to sulphur 

poisoning. Chen et al. (1999) deduced from their infrared (IR) spectroscopy and 

temperature programmed electronic conductivity (TPEC) experiments that the 

adsorption states of SO2 on the TiO2 surface were S, SO2
-
 and SO3. When Chen et 

al. (1999) pre-treated the TiO2 catalyst with hydrogen gas, SO2 was reduced to 

elemental sulphur. 
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1.5 Concluding Remarks 

In conclusion, a new process is required to convert SO2 to elemental sulphur after 

combustion of coal. The reason being that SO2 is harmful to people and the 

environment. Existing technologies have some advantages but there are also 

disadvantages. The most important factors to consider are the capital and 

operating cost of a chemical plant, the efficiency of the process and how much 

waste will remain that will need to be disposed of. 

Some of the most common problems with the existing SO2 reduction catalysts are 

that: 

 Some are not effective in increasing the rate of the reaction even at 

high temperatures, 

 At CO: SO2 ratios above 2:1, the harmful by-product COS is formed 

and therefore the feed composition needs to be carefully controlled, 

 Some are unable to reduce the selectivity towards the formation of 

COS and 

 Some are intolerant towards water or require water vapour for the 

reaction to occur. 

A gold catalyst offers a possible solution to some of the problems that remain with 

existing technologies, especially since the allure of the gold catalyst is its ability 

to oxidise CO at very low reaction temperatures. Also, gold catalysts could 

possibly increase the selectivity towards CO oxidation and minimise the 

production of COS. Some researchers have also reported that water vapour 

increases the activity of gold catalysts.  



Literature Review 

L. A. Chalom University of the Witwatersrand, Johannesburg                    59 

 

TiO2 has been used as a catalyst industrially in the Claus process. It has been 

shown that SO2 forms weak adsorption states on TiO2 and can therefore easily be 

desorbed and partially dissociated from the TiO2.  

The Au/TiO2 catalyst is able to break the S-O bonds thereby possibly reducing the 

SO2 to elemental sulphur.  

This dissertation provides details of experiments conducted to investigate whether 

a gold catalyst is suitable for SO2 reduction with CO used as a reducing agent.
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2 EXPERIMENTAL PROCEDURE 

2.1 Preparation of Catalysts 

2.1.1 Method used for preparing gold catalyst 

The proposed method for producing the gold catalyst is the deposition-

precipitation (DP) method. The first stage of this method requires depositing the 

gold onto the support. In this project, titania (Degussa P25, with a surface area of 

approximately 50m
2
/g and comprising of 80% anatase and 20% rutile phases) was 

used as a support. First, approximately 150 to 200 ml of deionised water was 

added to a beaker that had a magnetic stirrer placed at the bottom. Six grams (6 g) 

of titana was measured and added to the beaker. Added to the titania was 30 ml of 

0.01 M HAuCl4 solution. Next Chimica supplied the HAuCl4.xH2O for this 

solution and it contained 50.0 ± 0.5% by wt. Au. It was important to add this 

solution drop by drop for uniform dispersion. The solution was then left stirring 

for 2 h. 

The next stage of the procedure was to precipitate the gold. First, the pH of the 

solution was checked to ensure that it was low i.e., the solution was acidic. A few 

drops of 15% NH4OH solution (obtained from SAARCHEM in a concentrated 

form) were added to raise the pH to between 8 and 8.5. It was important to stir the 

solution continuously throughout this stage. Then, the solution was left to stir for 

another 2 hours. 

The last stage in producing the gold catalyst was to filter the catalyst to remove 

excess water. The catalyst was washed with approximately 2 litres of warm water 

to remove any remaining chloride ions as chloride is a poison for the gold catalyst. 

While the catalyst was filtered, care was taken to ensure that the catalyst surface 

was wet. This allowed the water to filter through the catalyst and not through the 

cracks. Then, the catalyst was calcined for two hours at 120°C. 
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After the catalyst was prepared, a purple powder with very fine Au particles was 

formed. The catalyst was then pelletized. The reason for pelletizing the catalyst 

was because the powdered catalyst causes a large pressure drop across the reactor 

and therefore only a small amount of catalyst would lower the pressure drop. 

However, a small amount of catalyst may result in a low conversion of the gas. 

Therefore, a pelletized catalyst has larger particles which reduce the pressure 

drop. 

The catalyst was pelletized by placing 1 g of the powdered catalyst into a 1 cm 

dye. The dye was then positioned underneath a force balance. The catalyst was 

pressed at a force of 5 MPa and a single pellet was formed. The pellet was then 

crushed with a pestle and mortar. The reason for crushing the pellet is that the gas 

would not be able to pass through the single pellet. After crushing the pellet the 

remaining particles were screened. Three screens were used, a 500 μm screen, an 

1180 μm screen and a 1400 μm screen. The particle sizes that were used for the 

reactor were between 500 and 1180 μm. 

2.1.2 Addition of ions into titania support 

The method used to modify the titania support is summarised from the work 

completed by Moma et al. (2007). The ions that were added to the TiO2 were 

PO4
3-

, SO4
2-

, Na
+
 and K

+
. The negative ions were a 0.01M solution of their 

respective dilute acids (A 98% assay of H2SO4 obtained from Glassworld and 

85% pure orthophosphoric acid obtained from Aldrich). The positive ions were a 

0.01M solution of their respective hydroxides (98+ % sodium hydroxide and 85% 

potassium hydroxide both obtained from SAARCHEM). Two concentrations of 

ions were used, 0.1 and 0.4 mol% with respect to TiO2. The method used to add 

the ions to the TiO2 was aqueous impregnation using 0.01 M of each of the ions in 

solution. A mineral acid was used for the anions and a hydroxide was used for the 

cations. The supports were then dried at 120°C and calcined at 400°C for 3 hours. 
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2.1.3 Preparation of titania 

The preparation of the titania was based on the method used by Jalama, Coville, 

Hildebrandt, Glasser, Jewell, Anderson, Taylor, Enache and Hutchings (2007). In 

the preparation of the titania, 1 g of TiO2 (Degussa P25) was added to 50 ml of 

distilled water. The mixture was then stirred for 15 minutes using a magnetic 

stirrer before being filtered and then dried for 1 hour at 120°C. The dried TiO2 

was then calcined in air at 400°C for approximately 16 hours. The powder was 

then pressed using a force balance and then crushed (as explained in Section 

2.1.1). The crushed TiO2 was then sieved to sizes between 500 and 1180 μm.  

2.2 Setup of Experimental Rig 

A glass reactor, 30 cm in length and 12 mm internal diameter (ID) was used for 

the reaction. The reactor was orientated horizontally. This allowed for the design 

of the reactor to be simple i.e. a straight glass tube could be used. This avoided 

having to design something complicated that if broken would take a long time to 

replace i.e., reducing downtime.  The reactor was enclosed by a mild steel casing 

with an ID of 15 mm. The casing enclosed a coil that was needed to heat the 

reactor. The glass tubing was too narrow and would also have been too brittle to 

wrap the coil around. A thin steel sheet was then bent around the coil and 

fibreglass was used to insulate the reactor. The metal casing, coil, steel sheet and 

fibreglass form the heating jacket for the reactor. A temperature probe was used 

between the steel casing and the glass reactor. This is used to measure the outside 

temperature of the reactor. The probe is connected to a proportional-integral-

derivative (PID) controller which keeps the reactor set at a specific temperature 

(the reactor is isothermal). Figure 2.1 shows this probe in red. The reactant gases 

were a mixture of 268 ppm sulphur dioxide (SO2) and 787.7 ppm of carbon 

monoxide (CO) with helium (He) used for the balance of the gas. The gas mixture 

was obtained from Air Liquide. 
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Figure 2.1 Schematic representation of Reactor 
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Figure 2.2 The setup of the experimental rig
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The length of the rig from the gas cylinder to the outlet of the reactor was about 3 

meters. Swagelok fittings were used at the inlet and outlet of the reactor to 

connect the glass reactor to the tubing that was 1/8th of an inch ID. The probe that 

measured the concentration at the outlet to the reactor fitted in the glass with 8 

mm Swagelok fittings. This probe was connected to the flue gas analyser. The gas 

from the reactor passed through this probe and to the analyser. 

There is also a bypass to the reactor. The bypass was used to measure the flow 

rate of the gas. First, the three-way shut-off valve (V3 on Figure 2.1) was opened 

so that gas could only pass through the bypass. The gas flowed to a bubble flow 

meter. The flow rate of the gas was adjusted by a needle valve (V2). The 

volumetric flow rate of the gas through the bypass was measured. This procedure 

was repeated with the V3 opened so that the gas only flowed through the reactor. 

The valve V4 also had to be opened so that all the gas would flow into the flue gas 

analyser and no gas would be able to flow back to the bypass. 

Initially it was decided that stainless steel tubing, 1/8th of an inch ID would be 

used throughout the rig. The stainless steel tubing worked well throughout the rig 

except at 2 points. The first was at the inlet to the reactor (this is shown by point 

A on Figure 2.1). Stainless steel Swagelok fittings were used directly on the glass 

reactor with Teflon ferrules and only tightened finger tight. When the stainless 

steel tubing was connected to the fittings at the inlet to the reactor, it did not allow 

any flexibility which meant that replacing the catalyst would be difficult. When 

the small piece of stainless steel tubing was replaced by Teflon tubing it allowed 

the glass to be removed easily.  

The second point where Stainless Steel tubing could not be used was at the flow 

meter (this is shown by point B in Figure 2.1). Here, silicone tubing was 

connected to the glass and a Swagelok union connected the rubber tubing to the 

stainless steel tubing. 

Two methods were used to test for leaks. In the first method, the gas cylinder was 

opened to a certain pressure and the shut off valves at the inlet and outlet were 



Experimental Procedure 

L. A. Chalom University of the Witwatersrand, Johannesburg                    66 

 

closed. Then, the cylinder valve was closed. The rig was left for 24 hours. A drop 

in pressure indicated that there was a leak in the system. If there was a drop in 

pressure it was shown by a pressure gauge located before the reactor. The gas 

cylinder was opened for the second method and while the gas flowed through the 

rig, a soap water solution was sprayed on all the joins. If the soapy solution started 

to bubble, it indicated that there was a leak at that join. The first method tested for 

leaks in the system but not the location of the leaks. The second method 

determined the location of leaks in the system but not how serious the leaks were. 

Once the rig had been leak tested and all the leaks eliminated, catalyst testing 

could begin. 

2.3 Procedure for Analysis 

2.3.1 Operation of flue gas analyser 

The analyser that was used to measure the outlet gases was a Testo 350XL gas 

analyser. It is a portable device that is usually used for measuring flue gas on site 

at a chemical plant. The motivation for using the analyser was that it is simple to 

operate and it collects the data immediately when in use so there is no long initial 

waiting period like for a gas chromatograph (GC). Also, it measures the 

concentration of SO2 directly using an electrochemical cell.  

The analyser consists of two main parts, the control unit and the analyser box. The 

control unit attaches into the analyser box. The analyser box contains six gas 

sensors: O2, H2S, SO2, CO, NO2 and NO. The gas at the outlet from the reactor 

will pass through the probe and into the analyser box. Only the SO2, CO and O2 

cells were necessary for measuring gases during the experiments conducted for 

this research. The SO2 cell measures the concentration of SO2 directly in the range 

of 0 to 5000 ppm with an accuracy of ±5 % mV in the range of +100 to +2000 

ppm of SO2 which is the range in which the SO2 is measured for the purposes of 

this experiment. The reaction time is 30 s for the SO2 cell. The CO cell measures 

CO in the range of 0 to 10000 ppm. The accuracy of this cell is ±5 % mV in the 

range of 200 to 2000 ppm CO. The CO cell has a reaction time of 40 s. The O2 
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cell measures the volume percent of O2 in the gas outlet stream. The instrument 

can measure O2 volume percent in the range 0 to 25 Vol% O2 with an accuracy of 

±0.8%. The cell has a reaction time of 20 s (Testo 350M/XL User’s Manual, 

2005). 

The sampling probe is 700 mm in length and has a diameter of 8 mm. The 

maximum temperature that it can measure is 1000°C. The sampling probe is able 

to measure the flue gas temperature with its integrated thermocouple. The 

accuracy of the probe is ±0.5°C for -40 to 99.9°C and ±0.5% mV for the 100 to 

1000°C range (Testo 350M/XL User’s Manual, 2005). 

The gas from the reactor passes over the sampling probe. The measured gas pump 

then starts automatically and cools the measuring gas to between 4 and 8°C. The 

condensate is then pumped into a condensation tank at regular intervals. The dry 

gas passes through a particle filter which removes any particles from the gas. 

Water in the system will damage the pump and gas sensors. The filter also acts as 

a water trap. If there is any water present, the pores of the filter will close 

permanently. Then the gas passes through the pump to the gas sensors. Only a 

small amount of the gas diffuses through the membranes to the gas sensors, where 

a signal is given out and recorded using Comsoft (the computer software used 

with the instrument). The excess gas is removed through the exhaust of the 

analyser box (Testo 350M/XL User’s Manual, 2005). 

The analyser was calibrated by the company Unitemp and the cells were replaced 

before the experiments were started. 

2.3.2 Catalyst screening 

Two research topics have been studied extensively in the literature. The first is the 

reduction of SO2 using CO as a reducing agent and the second is CO oxidation 

over a gold catalyst. In Section 1.3.3, the first topic was investigated and it was 

found that what all the researchers’ experiments had in common was that high 

reaction temperatures were required. For instance, Querido and Short (1973) 
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required a temperature of 380
o
C to reduce 90% of the SO2 in the feed and to 

increase the rate further, temperatures greater than 425°C were required 

(increasing the reaction intermediate COS). Ma et al. (1997) required 

temperatures greater than 500°C to achieve 98% conversion of SO2 over their 

La2O2S catalyst, while Kim et al. (1998) required temperatures greater than 400°C 

to achieve complete conversion of SO2 over the Co3O4-TiO2 catalyst. 

However, Haruta et al. (1987) discovered that a gold catalyst showed high activity 

for CO oxidation when the reaction was operated at low temperatures. 

The aim of this research project was to use a gold catalyst for the reduction of SO2 

using CO as a reducing agent. This work is very novel as it combines these two 

research topics that have been studied previously. Therefore, there is little in terms 

of guidelines to suggest likely operating conditions. The principle of this method 

was to screen a number of different Au/TiO2 catalysts at temperatures ranging 

from 20°C (Room Temperature) to 200°C. The temperature was stepped up in 

intervals of 25°C after a fixed period of time. The feed gas of SO2, CO and He 

was used throughout the experiment. If the chosen temperature was too high, not 

enough SO2 would be adsorbed because Au is a low temperature catalyst. 

However, if the temperature is too low, the reaction would be too slow and the 

reactants would not be able to overcome the activation energy required for a 

reaction to take place.  

The flue gas analyser measures the disappearance of the reactants, to determine if 

a reaction is indeed occurring, but it cannot determine if COS is forming or 

whether SO2 is reduced to solid sulphur or S2 gas. 

The gas hourly space velocity (GHSV) for all the catalysts that were screened and 

the TiO2 are shown in Table 2.1. The bulk density of the catalyst was measured to 

be 0.84 g/ml and this was used to calculate the GHSV. The GHSV was between 

14000 and 32000 h
-1

 for all the catalysts that were screened. 
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Table 2.1 Gas hourly space velocity of catalysts that were screened 

 

After the catalysts were screened, an experiment was performed whereby the 

temperature was kept constant at 50°C and the experiment was left for over 50 

hours of run time. The initial adsorption peak indicates the amount that can 

adsorb; the subsequent smaller peaks indicate that a reaction is occurring.  

2.3.3 Interpretation of data 

The experiment was conducted by first allowing gas to flow through the reactor at 

room temperature. The baseline concentration of SO2 was taken as 268 ppm; this 

is also the concentration of SO2 in the cylinder. Thereafter, the temperature was 

increased to 50°C. A peak in the results was seen before the concentration of SO2 

decreased back to the baseline concentration (or within approximately 5% higher 

or lower than the baseline concentration). The temperature was then increased in 

increments of 25°C up to 200°C, the maximum temperature. The desorption peaks 

corresponded to a temperature rise at each fixed time interval. 

Each peak that was formed due to the increase in temperature was integrated to 

establish the number of moles of SO2 that were adsorbed onto the surface of the 

catalyst. First, the start and end of each peak had to be recorded. Therefore the 

starting time and concentration were known and the end time and concentration 

were also known. Since the baseline concentration was not always exactly equal 

where the temperature was “stepped”, the relationship between the start and end 

Catalyst Mass (g) volumetric flow rate (ml/min) GHSV (hr
-1

)

TiO2 0.50 236.85 24160

0.6 wt% Au/TiO2 0.51 246.31 24672

0.8 wt% Au/TiO2 0.42 242.60 29547

1 wt% Au/0.1 mol%Na
+
 TiO2 0.60 228.43 19257

1 wt% Au/0.1 mol%K
+
 TiO2 0.39 247.98 32002

1 wt% Au/0.1 mol%SO4
2-

 TiO2 0.65 238.11 18615

1 wt% Au/0.1 mol%PO4
3-

 TiO2 0.39 240.66 30923

1 wt% Au/0.4 mol%SO4
2-

 TiO2 0.85 239.38 14321

1 wt% Au/0.4 mol%Na
+
 TiO2 0.61 247.62 20703
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was a straight line so the gradient and y-intercept of this line could be established 

from these two points. Equation 2.1 shows how the baseline concentration could 

be calculated at each point: 

 ........................................................................ (2.1) 

Where M is the gradient of the line, c is the y-intercept and t is the time (in 

seconds). 

The number of moles at each point was then calculated by Equation 2.2 as 

follows: 

 ............................. (2.2) 

Where the concentration of SO2 was in ppm, P is the pressure of the system which 

was approximated as air pressure in Johannesburg (84600 Pa), Q is the volumetric 

flow rate (m
3
/min), R is the Universal gas constant (8.314 J/molK), T is the 

temperature (K) and Δt is the change in time between measurements (min). 

The total number of moles at each peak was therefore the sum of the number of 

moles at each point divided by the time difference between the start and end of the 

peak. A detailed example of how the peaks were integrated is shown in Appendix 

A. 

The experiment where 0.8wt% Au/TiO2 was used as a catalyst was repeated 

twice. The peaks were integrated to calculate the number of moles of SO2 per 

gram second that was adsorbed onto the surface of the catalyst at each temperature 

(as described above). From that the mean value and standard deviation was 

calculated per temperature. The standard error was calculated by dividing the 

standard deviation by the square root of 2 (where 2 was the number of 

observations). 
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3 CATALYTIC RESULTS 

3.1 Gold Catalyst Supported on Titania 

Since this work is novel, as the reduction of SO2 by CO has hardly been 

performed over this type of catalyst before, the experimental method required 

screening several catalysts over a range of temperatures. 

The temperature was “stepped” in equal temperature intervals of 25 degrees and 

equal time intervals (which varied between experiments).  Figure 3.1 is the result 

of conducting the reaction over titania whereas Figures 3.2 and 3.3 show the result 

of using 0.6 wt% Au/TiO2 and 0.8 wt% Au/TiO2 respectively. Figures 3.1 to 3.3 

show SO2 adsorption peaks at temperatures ranging from room temperature 

(20°C) to 200°C. 

The valves on the rig were opened so that the feed gas flowed through the catalyst 

bed while results were recorded. The baseline concentration was taken as the 

concentration of SO2 in the gas cylinder, 268 ppm. In the first experiment (Figure 

3.1), it took approximately 45 minutes before the baseline concentration of 268 

ppm was reached. The reaction chamber was open to air before the experiment 

was started each time. After the reactor was closed and the gas cylinder opened, it 

took some time for the air to be completely removed from the reactor.  

The time taken for the first peak to form was recorded. In this experiment it took 

25 minutes from the time the temperature was increased (from room temperature, 

20°C to 25°C) to form the first peak and return back to the baseline concentration. 

Then each subsequent temperature step was recorded for 25 minutes. At 25°C, the 

level of SO2 increased to 368 ppm, at the next three temperature steps, the 

concentration gradually increased up to 374 ppm, 399 ppm and 418 ppm. The 

largest peaks were observed at 125 and 150°C where the level of SO2 reached 511 

and 524 ppm respectively.  
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Figure 3.1 SO2 adsorption peaks observed over titania  

Figures 3.2 and 3.3 show that after about an hour and a half, the SO2 

concentration had not yet reached the baseline concentration. However, the 

concentration had remained stable for some time (20 minutes in Figure 3.2 and 30 

minutes in Figure 3.3) and so the temperature was then “stepped” at this stage. 

The first temperature step was between room temperature and 50°C. This peak 

was the highest observed throughout this experiment. The duration of the 

adsorption peak was 15 minutes. In Figure 3.2, the peak that formed from 50 to 

75°C was at the lowest level (297 ppm) and from there on the level of the peaks 

increased up until 150°C (324 ppm, 365 ppm, 445 ppm) after which the level of 

the peaks trailed off (355 ppm, 323 ppm). In Figure 3.3 the six peaks following 

the first peak were all at a similar level (304, 287, 299, 302, 304, 303 ppm). 
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Figure 3.2 SO2 adsorption peaks observed over a 0.6 wt% Au/TiO2 catalyst 

Figure 3.3 SO2 adsorption peaks observed over a 0.8wt% Au/TiO2 catalyst 
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Figures 3.4 to 3.6 illustrate the CO oxidation reaction over titania and the 0.6 and 

0.8 wt% Au/TiO2 catalysts. At the bottom of each graph is the temperature profile 

throughout the reaction. The most notable feature of all three of these graphs is 

that when the temperature was increased, there was little change in the CO 

concentration. In Figures 3.1 to 3.3 there were obvious peaks that were observed 

in the SO2 concentration whereas in these graphs, in the case of titania the CO 

concentration increases at room temperature (20°C) and then from 25 to 75°C the 

CO decreases before  showing a slight increase for the remaining temperature 

steps. For the case of the gold catalysts, the CO appears to show a slight upward 

trend.  

Figure 3.4 CO oxidation on titania 
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Figure 3.5 CO oxidation over 0.6 wt% Au/TiO2 

Figure 3.6 CO oxidation over 0.8 wt% Au/TiO2 
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3.2 Addition of Promoter Ions onto Titania 

3.2.1 Na
+
 and K

+
 ions 

Figure 3.7 and 3.8 are the result of adding 0.1 mol% Na
+
 and 0.4 mol% Na

+
 to the 

TiO2 support respectively. After more than one hour at room temperature, it 

appeared that the concentration of SO2 did not seem likely to reach the baseline 

concentration and so the temperature was “stepped” at this point. After the 

formation of each peak the SO2 concentration dropped below the baseline 

concentration and only increased again with the increase in temperature. 

In Figure 3.7, the maximum concentration was observed at 50°C where the level 

reached 622 ppm. The concentration dropped to 340 ppm at 75°C before 

increasing gradually up to 519 ppm at 150°C. The last peak was recorded at 

175°C and the concentration fell to 452 ppm.  

Figure 3.7 SO2 adsorption peaks observed over a 1 wt% Au/0.1 mol% Na
+
 - TiO2 

catalyst 
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In Figure 3.8 the maximum SO2 level was also observed at 50°C but the level of 

SO2 was at 519 ppm. The levels of the SO2 peaks observed in Figure 3.8 were 

lower than the levels observed in Figure 3.7. There was also a large drop in 

concentration from 50 to 75°C (in Figure 3.8), where the SO2 peak level dropped 

to 273 ppm. At 100°C and 125°C the SO2 levels were at 359 ppm, increasing to 

402 ppm at 150°C before decreasing to 357 ppm at 175°C and 350 ppm at 200°C. 

Figure 3.8 SO2 adsorption peaks observed over a 1 wt%Au/0.4 mol% Na
+
 - TiO2 

catalyst 

The same experiment was conducted but instead of adding Na
+
 to the TiO2, 0.1 

mol% K
+
 was added. The results of this experiment are shown in Figure 3.9. It 

took just over an hour for the SO2 concentration to reach the baseline 

concentration at room temperature. This graph shows that the concentration of 

SO2 remains at or slightly below the baseline concentration at each temperature 

interval. The largest adsorption peak was observed at 50°C where the SO2 

concentration rose from 268 ppm to 484 ppm. This was followed by the lowest 

peak observed at 75°C where the SO2 concentration rose to 308 ppm. The level of 

0

25

50

75

100

125

150

175

200

225

0

100

200

300

400

500

600

0 30 60 90 120 150 180 210

T
e

m
p

e
ra

tu
re

 (
oC

)

C
o

n
c

e
n

tr
a

ti
o

n
 S

O
2
[p

p
m

v
]

Time (min)

SO2 Concentration Baseline concentration Flue gas temperatureSO2 Concentration



Catalytic Results 

L. A. Chalom University of the Witwatersrand, Johannesburg                    78 

 

the peaks then increased more gradually until 150°C and thereafter the level of the 

peaks reduced at 175 and 200°C. 

Figure 3.9 SO2 adsorption peaks observed over a 1 wt% Au/0.1 mol% K
+
 -TiO2 

catalyst 
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Figure 3.10 CO oxidation over a 1 wt% Au/0.1 mol% Na
+
 -TiO2 catalyst 

Figure 3.11 CO oxidation over a 1 wt% Au/0.4 mol% Na
+
 -TiO2 catalyst 
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Figure 3.12 shows that the CO concentration appears to change more and reduces 

further with each step increase in temperature. 

Figure 3.12 CO oxidation over a 1 wt% Au/0.1 mol% K
+
 -TiO2 catalyst 
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Figure 3.13 SO2 adsorption peaks observed over a 1 wt% Au/0.1 mol% SO4
2-

 -

TiO2 catalyst 

The mol% of the SO4
2-
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Figure 3.14 SO2 adsorption peaks observed over a 1 wt% Au/0.4 mol% SO4
2-

 -

TiO2 catalyst 

Figure 3.15 shows the effect on the SO2 adsorption peaks when 0.1 mol% PO4
3-

 is 
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Figure 3.15 SO2 adsorption peaks observed over a 1 wt% Au/0.1 mol% PO4
3-

 -

TiO2 catalyst 
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Figure 3.16 CO oxidation over a 1 wt% Au/0.1 mol% SO4
2-

 -TiO2 catalyst 

Figure 3.17 CO oxidation over a 1 wt% Au/0.4 mol% SO4
2-

 -TiO2 catalyst 
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Figure 3.18 CO oxidation over a 1 wt% Au/0.1 mol% PO4
3-

 -TiO2 catalyst 

3.3 Time on Stream Experiment 
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Figure 3.19 SO2 Adsorption and reduction over a 0.8 wt% Au/TiO2 catalyst at a 

constant temperature of 50°C 

Figure 3.20 CO oxidation over a 0.8 wt% Au/TiO2 catalyst at a constant 

temperature of 50°C  
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The next step was to determine how much SO2 was adsorbed on each catalyst. 

This was done by integration of each of the peaks at each temperature. Various 

catalysts were then compared and in this way the most suitable catalyst and 

temperature for this application could be determined. A discussion of this analysis 

is presented in Chapter 4. 
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4 DISCUSSION: SO2 ADSORPTION AND CO OXIDATION ON GOLD 

CATALYSTS 

4.1 Background Information on the Catalysts 

Brunauer Emmet and Teller (BET) surface area measurements on TiO2 and the 

0.4mol% PO4
3-

, SO4
2-

, Na
+
, K

+
 modified TiO2 supports with 1wt% Au loading 

were done by Moma (2007). He found the BET surface area of TiO2 to be 50 

m
2
/g. When the TiO2 was modified with 0.4 mol% PO4

3-
 (before gold loading), 

Moma (2007) found that the surface area of the catalyst did not change. Addition 

of 0.4 mol% SO4
2-

 or Na
+
 to the TiO2 (before gold loading) decreased the surface 

area to 47 m
2
/g, whilst addition of the K

+
 to TiO2 (before gold loading) increased 

the surface area to 53 m
2
/g. In all cases, modifying the TiO2 with different ions 

before gold deposition, did not increase or decrease the surface area significantly. 

The TiO2 prepared for this project to be used for comparison with the Au loaded 

catalysts (that is TiO2 that was not modified by addition of ions and without gold 

loading) was calcined at 400°C. At this calcination temperature, Moma (2007) 

found that the BET surface area of TiO2 was 87 m
2
/g. This value is significantly 

higher than the surface area of the uncalcined TiO2 that was used as a support for 

the gold catalysts. 

The target gold loading for the gold catalysts with 0.4mol% modified TiO2 

supports was supposed to be 1wt%. However, Moma (2007) determined by fire 

assay gravimetry that the actual gold loadings were 0.57, 0.73, 0.69 and 0.70 wt% 

for the PO4
3-

, SO4
2-

, Na
+
, K

+
 modified TiO2 supports respectively whereas the 

actual loading of the prepared 1% Au/TiO2 with no promoter ions, calcined at 

400°C was 1.06 wt%. Since the gold loading for each of the promoted catalysts 

was considerably less than 1 wt%, a gold catalyst with an unmodified TiO2 

support was prepared with a lower gold loading of 0.8 wt% for comparison. The 

time on stream analysis shown in Figures 3.19 and 3.20 were performed using this 

0.8 wt%Au/TiO2 catalyst. 
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The average size and size distribution of the catalyst particles was measured with 

high resolution transmission electron microscopy (HRTEM) by Moma (2007). 

The catalyst that he investigated was the Au catalyst with TiO2 support with 0.4 

mol% PO4
3-

 incorporated into the TiO2. He also investigated various other 

catalysts with different concentration of ions incorporated into the TiO2 and 

catalysts where the Au/TiO2 catalyst was first prepared and then modified by 

adding various ions at different concentrations. Those catalysts were not studied 

for this work. The results from the HRTEM showed that most of the Au particles 

had a size range of between 2 – 5 nm and that the size distributions in most cases 

were between 2 – 10 nm. Therefore, Moma (2007) concluded that the size of the 

gold particles was not influenced by the method in which different ions are 

incorporated into the catalyst, in other words whether the support was modified 

before gold was loaded or whether the gold catalyst was prepared and then ions 

were later incorporated into the catalyst.  

4.2 Effect of Adding Gold to TiO2 

Figure 4.1 compares the number of moles of SO2 per gram second adsorbed on 

the surface of titania (P25 Degussa) with the amount adsorbed on 0.6 and 0.8 

weight percent gold catalysts supported on titania. The most obvious observation 

is the comparatively large amount of SO2 adsorbed on the 0.6 wt% Au/TiO2 at 

50°C. This amount is almost 5 times and 1.6 times higher than the amount of SO2 

adsorbed on the TiO2 and 0.8 wt% Au/TiO2 respectively. Haruta et al. (1987) 

found that gold catalysts are low-temperature catalysts and that for the most 

favourable results for CO oxidation, low reaction temperatures were required.  
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Figure 4.1 Amount of SO2 desorbed from the surface of TiO2 and gold-loaded 

catalysts 

The only case where the titania showed a higher adsorption of SO2 than the 0.6 

wt% Au/TiO2 was at 75°C and at this temperature the difference in amount 

adsorbed (per gram second) between the titania and the 0.6 wt% Au/TiO2 was 

small. This confirms the conclusion of Rodriguez et al. (2002), namely that gold 

supported on titania is more active than either pure gold or pure titania. However, 

the concentration of gold loaded onto the catalyst is important for the catalyst 

activity too. 

The 0.8 wt% Au/TiO2 only showed one spike in number of moles of SO2 

adsorbed per gram second of catalyst and that was at 50°C. After that temperature, 

the amount of SO2 adsorbed remained between 4.6 and 5.87 nmol/g.s at a 

temperature of 200°C and 150°C respectively. A possible explanation for this 

could be that the SO2 is more likely to adsorb onto the catalyst at low 

temperatures when the gold loading is higher.  
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From 75°C to 125°C, the amount of SO2 adsorbed on the titania and 0.6 wt% 

Au/TiO2 was very similar. However, at 150°C, there was a spike in the amount of 

SO2 adsorbed onto the 0.6 wt% Au/TiO2 catalyst. The significance is that after 

150°C less and less SO2 adsorbs on the catalyst. At 175°C the amount of SO2 

adsorbed onto the 0.6 wt% Au/TiO2 catalyst halved to 10.21 nmol/g.s and then 

decreased further at 200°C to 6.44 nmol/g.s. At low temperatures it is expected 

that more SO2 will be adsorbed, and as the temperature increases, the amount 

adsorbed decreases. This explains the decrease in SO2 adsorption peaks on the 0.6 

wt% Au/TiO2 catalyst from 150 to 200°C. This means that at temperatures above 

150°C less SO2 is desorbed from the catalyst surface suggesting that less SO2 

adsorbs on the catalyst surface at these temperatures. 

The number of moles of SO2 adsorbed onto the 0.6 wt% Au/TiO2 was consistently 

higher than the SO2 adsorbed onto the 0.8 wt% Au/TiO2. This could be related to 

the size of the gold particles as Wolf and Schüth (2002) discovered that by 

increasing the gold loading in Au/TiO2, the activity of the catalyst decreased and 

that was related to the size of the gold particles. It is known that for gold catalysts 

to be active for CO oxidation, the particle size of the gold must be sufficiently 

small. This result was confirmed by Moreau and Bond (2007) who found that 

when the gold loading was sufficiently low (1.9 wt %) and the temperature was 

low (-20
o
C), 100 percent conversion of CO could be achieved. 

Another important result in comparing the TiO2 with the two gold catalysts is that 

the amount of SO2 desorbed from the surface of the TiO2 remained comparatively 

high throughout the experiment. Chen et al. (1999) investigated the adsorption of 

SO2 on titania. They found that total desorption of SO2 occurred below 300°C. 

Another result from their work was that SO2 “cannot form strongly adsorbed 

states” on TiO2 and this is due to the SO2 being converted into other species and 

those species readily desorb from the surface or that the adsorbed state of SO2 

simply desorbs from the surface. For this reason, TiO2 is more resistant to sulphur 

poisoning than Al2O3. In other words not only is titania good for SO2 adsorption it 

has also been shown that it is a suitable support for this application. 
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Rodriguez et al. (2002) found that only SO4
2-

 was produced when SO2 gas was 

passed over TiO2 at a temperature of 300K. However, when gold was introduced 

into the catalyst, it was able to dissociate the SO2 molecule and elemental sulphur 

was produced. 

Therefore, the addition of gold to the catalyst could be important because it may 

be the gold that promotes the conversion of SO2 to elemental sulphur while the 

TiO2 allows for the adsorption of the SO2 on the surface and for the reaction to 

take place without the catalyst being poisoned by the sulphur.  

Error bars are shown in red on Figure 4.1 for the 0.8wt% Au/TiO2 catalyst. This 

experiment was repeated twice. The error bar shows that at 50°C, where the 

number of moles of SO2 that was adsorbed onto the surface of the catalyst was 

large the potential for error was large. At all the other temperatures, where the 

number of moles adsorbed was lower, the error was lower. 
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4.3 Effect of Integrating Ions into TiO2 Support 

4.3.1 Na
+
 and K

+
 ions 

Figure 4.2 shows that by adding sodium and potassium ions into the TiO2 before 

the addition of the Au, the amount of SO2 adsorption is very similar to the gold 

catalyst supported on TiO2. At 100 and 125°C slightly larger differences in SO2 

adsorption are seen where the modified supports outperform the gold catalyst 

prepared with unmodified TiO2. At 150°C the 0.6 wt% Au/TiO2 catalyst 

outperforms the 1 wt%Au/0.1 mol%K
+
-TiO2 and 1 wt%Au/0.1 mol%Na

+
-TiO2 

catalysts. In all three catalysts, a similar trend in adsorption is seen at the various 

temperature steps. 

Figure 4.2 Addition of positive ions into 1 wt%Au/TiO2 catalyst 

Figure 4.3 shows that the modified titania with the lower concentration of Na
+
 

always has more SO2 adsorbed onto the surface than the catalyst with 0.4 mol% 

Na
+
 added to the TiO2 support. 
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Figure 4.3 Two different concentrations of Na
+
 ions added to Au/TiO2 catalyst 

4.3.2 SO4
2-

 ions 

The most noticeable feature about Figure 4.4 is that more SO2 was adsorbed onto 

the 0.6 wt%Au/TiO2 catalyst than either of the catalysts where sulphate ions were 

added to the titania.  

An important observation in Figure 4.4 is that for all temperatures except 125 and 

150°C, the amount of SO2 that was adsorbed on the surface of the SO4
2-

 modified 

titania was very similar. This could indicate that the concentration of sulphate ions 

introduced into the titania support is immaterial for this particular reaction. The 

sulphate ions appear to block the active sites on the titania where the SO2 would 

usually be adsorbed.  
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Figure 4.4 Comparison of gold catalyst with and without sulphate ions of varying 

concentrations 

Although Moma et al. (2007) and Mohapatra et al. (2007) found that the addition 

of sulphate ions improved the activity of the gold catalyst for CO oxidation, the 

reaction that they studied was CO oxidation.  

For the SO2 reduction reaction by CO, it seems that adding sulphate into the 

Au/TiO2 catalyst reduces the amount of SO2 that can adsorb onto the surface of 

the catalyst. The other important discovery is that for this reaction the amount of 

SO4
2-

 introduced into the catalyst has little effect on the amount of SO2 adsorbed 

onto the surface. 

4.3.3 PO4
3-

 ions 

Figure 4.5 compares the 0.6 wt%Au/TiO2 catalyst and the 1 wt%Au/TiO2 catalyst 

with 0.1 mol% of PO4
3-

 added to the support. An interesting observation from this 

graph is that the two catalysts display a similar trend even though more SO2 is 
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adsorbed on the 0.6 wt%Au/TiO2 catalyst at each temperature step (except at 

75°C where the adsorption of SO2 is almost the same).  

This result is not surprising as Ma et al. (2007) have reported that an Au/TiO2 

catalyst always outperforms an Au/PO4
3-

 - TiO2 catalyst when pre-treated at 

200°C for the CO oxidation reaction. Ma et al. (2007) were able to enhance this 

modified support by pre-treatment at 500°C and also with washing procedures. 

The result for the gold catalyst and the gold catalyst with the enhanced phosphate 

support look similar. This is important because it indicates that the addition of 

phosphate, maintains activity, almost to levels of the unmodified gold catalyst. Ma 

et al. (2007) produced TEM images of Au/TiO2 catalysts and Au/PO4
3-

 - TiO2 

catalysts pre-treated at 500°C. From these images, they found that the catalysts 

with modified supports had gold particles that had sizes in the range of 3-10 nm. 

The unmodified Au/TiO2 catalysts that were pre-treated at 500°C had most of the 

gold particle sizes in the range of 5-30 nm. They concluded that gold catalysts 

with modified titania supports, pre-treated at 500°C remained active at room 

temperature because the gold particles were stabilized from sintering. 

Figure 4.5 Comparison of 0.6wt%Au/TiO2 with 1wt%Au/0.1mol%PO4
3-

TiO2 
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4.4 Time on Stream Experiment and the “Temperature Stepping” Method 

Figure 3.19 showed that after more than 1 hour of the experiment, the SO2 

concentration reached a maximum value of 264 ppmv (point A). After this point, 

the SO2 concentration continued to decrease throughout the reaction. From the 

start of the reaction, it seems as though the SO2 gets adsorbed onto the 0.8 wt% 

Au/TiO2 catalyst. From point A to point B, desorption takes place where the 

concentration decreases back to the level that it was at the start. Then, the SO2 

concentration decreases to almost zero by the end of the reaction. From point B 

onwards, the SO2 reduction reaction takes place and almost all the SO2 reduces 

into either S2 gas or elemental sulphur (that was not determined in this 

experiment). 

Figure 4.6 shows that almost 100 percent conversion of SO2 was achieved during 

the time on stream experiment after about 50 hours of reaction time. 

Figure 4.6 Conversion of SO2 during Time on Stream Experiment 
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In Chapter 1, Section 1.4.5 various reaction mechanisms were discussed. Haruta 

(1997) suggested that for CO oxidation, the following reaction mechanism was 

followed: 

 CO adsorbs on the surface and boundary interface of the Au, 

 Dissociative adsorption of O2 occurs at the boundary interface between 

the Au and TiO2 and then, 

 CO reacts on the surface of the Au before reacting on the surface of the 

metal oxide support. 

Ruth et al. (2000) investigated the effect that SO2 had on CO oxidation. They 

considered platinum (Pt) and gold catalysts. Their results showed that the Au/TiO2 

catalyst was deactivated more by the SO2 than the Pt/TiO2 catalyst. From this 

result they considered that the reaction mechanism for CO oxidation is different 

for each of the catalysts. For the Pt catalyst, Ruth et al. (2000) note that CO 

oxidation occurs on the PtOx surface whereas in the case of the Au catalyst, the 

reaction takes place at the interface between that Au and the TiO2 support. This is 

the reaction mechanism proposed by Haruta (1997). Furthermore, Ruth et al. 

(2000) state that SO2 has a stronger interaction with oxide surfaces than with the 

surface of the metal. They propose that the SO2 in fact blocks the perimeter sites 

by being adsorbed at the interface between the Au and TiO2.  

This explains the result seen in Figure 3.19. From the start of the reaction until 

point B, the SO2 is adsorbed at the interface between the Au and TiO2. The active 

sites for CO to be oxidised become blocked. However, this does not explain why 

the SO2 appears to react after point B. 

Rodriguez et al. (2002) found that Au/TiO2 was effective for adsorbing the SO2 

and breaking the S-O bond. Perhaps this is what happens after point B. After the 

SO2 has been adsorbed at the interface of the Au and TiO2, the SO2 molecule 
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dissociates and the perimeter sites between the Au and the TiO2 are no longer 

blocked and this allows the reaction to take place. 

From this reaction it would appear that this catalyst is suitable for complete 

reduction of SO2 at 50°C. Perhaps, the time taken for the SO2 to completely react 

could be reduced if a different catalyst was used. This is an important result 

because although there was no means to determine what was produced during the 

reaction it answered the question about whether gold catalysts could be used in the 

reduction of SO2 by CO. Now that it is known that gold catalysts are suitable for 

this reaction, the next step would be to confirm what products are formed and then 

to optimise the catalyst (i.e., what gold loading should be used, should the gold 

catalyst be enhanced or modified with anions or cations, are any pre-treatment 

methods necessary) and the process (what temperature should be used, what is the 

maximum conversion that can be achieved, can the time taken for complete 

reaction be optimised) with the guidelines given from the work completed in this 

research project. 

The “temperature stepping” method was a quick method to determine whether 

SO2 would adsorb reversibly onto the surface of the catalyst. The experiments 

showed that SO2 did in fact adsorb onto the surface at various temperatures. From 

those experiments, the amount of SO2 that was adsorbed could be calculated. 

Comparisons could then be made between different catalysts, quantifying the 

amount of SO2 that gets adsorbed onto the catalyst. By running the experiment 

over an extended period it confirmed that an adsorption peak would in fact form 

after some time and that there was only one adsorption peak and thereafter SO2 

reduction occurs and CO oxidation decreases suggesting irreversible adsorption of 

SO2 reduction products on CO oxidation sites. The “temperature step” method did 

not show whether the reaction would occur but merely whether the SO2 would be 

adsorbed onto the surface of the catalyst. 

The results in Chapter 3 show that for the 0.6wt%Au/TiO2, 0.8 wt%Au/TiO2, 1 

wt%Au/0.1 mol%SO4
2-

, 1 wt%Au/0.4 mol%Na
+
-TiO2, 1 wt%Au/0.1 mol%Na

+
-

TiO2 and the 1 wt%Au/0.1 mol%K
+
-TiO2 catalysts, the baseline concentration of 
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SO2 was not reached even after the gas had been passing over the catalyst for an 

extended period of time. Also, the peak at 75°C was always smaller than the peak 

at 50°C. 
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5 RECOMMENDATIONS AND CONCLUSIONS 

The literature shows that gold catalysts prepared using methods that yield small 

gold particles at low gold loading can be effective for complete oxidation of CO 

to CO2. This is dependent on what metal oxide support is used for the catalyst and 

also on the reaction temperature.  

The reaction that was studied for this research was the reduction of SO2 by CO. 

These are species commonly found in the flue gas of many coal burning industries 

such as power plants and aluminium smelters. The main objective of this research 

project was to determine whether a gold catalyst supported on titania would be 

suitable for the catalytic decomposition of SO2. 

The experimental procedure consisted of a number of screening tests at various 

temperatures with different gold catalysts (i.e., different gold loadings and the 

addition of promoter ions to the titania support) to find out firstly whether SO2 

would be adsorbed onto the catalyst and secondly, which gold catalyst would be 

optimal for this application.  

An interesting finding of this work was that TiO2 without gold was effective at 

adsorbing SO2, although it was not as effective as the gold catalysts supported on 

titania. Therefore, it may be worth investigating the effect of incorporating Na
+
, 

K
+
 and PO4

3-
 ions into the TiO2 without gold and to compare the activity with the 

gold loaded catalysts. 

From this work, it was found that a gold catalyst is in fact suitable for this 

application. The following catalysts all show significant SO2 adsorption at 75°C: 

 0.6 wt% Au/TiO2, 

 0.8 wt% Au/TiO2 

 1 wt%Au/0.1 mol%SO4
2-

/TiO2, 
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 1 wt%Au/0.4 mol%Na
+
/TiO2, 

 1 wt%Au/0.1 mol%Na
+
/TiO2,and 

 1 wt%Au/0.1 mol%K
+
/TiO2 

This is evident because none of these catalysts reached the baseline concentration 

before the first temperature step and the second peak is smaller than the first. 

The results from the time on stream experiment show that the 0.8 wt% Au/TiO2 is 

catalytically active at 50°C for SO2 decomposition. 

There was no change in the CO concentration during the screening tests where 

unmodified gold catalysts and titania were used. However when the titania 

supports were modified by adding different ions, CO adsorption peaks similar to 

the SO2 adsorption peaks were observed. When the experiment was run using the 

0.8wt% Au/TiO2 catalyst for an extended period of time, the SO2 was reduced and 

all the SO2 was consumed during the reaction. The CO concentration increased 

during the reaction. From these results it can be deduced that SO2 reduction 

occurs over this catalyst and CO oxidation decreases with time suggesting that 

irreversible adsorption of SO2 reduction products occurs on CO oxidation sites. 
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APPENDIX A: INTEGRATION OF SO2 ADSORPTION PEAKS 

Figure A1 is an enlarged portion of Figure 3.3. It shows only the adsorption peak 

of the SO2 at 50°C for the 0.8 wt% Au/TiO2 catalyst. 

Figure A1 SO2 adsorption peak on 0.8 wt% Au/TiO2 at 50°C 

The blue shaded area is the area that is integrated. The red line represents the 

baseline concentration of the SO2. Each measurement that was recorded by the 

flue gas analyser is shown on the graph. 

Table A1 is a selected portion of the data, the first 5 readings, the middle 5 

readings and the last 5 readings from the flue gas analyser are shown. Since the 

analyser recorded the data each second, there was too much data to be shown in 

this report (900 lines of data for one peak). The analyser had been recording the 

SO2 concentration for some time before the temperature was stepped to 50°C 

therefore the time does not start from 0s.  
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Table A1 Sample data from flue gas analyser 

Time (s) Concentration SO2 (ppmv) Temperature (°C) 

5600 

5601 

5602 

5603 

5604 

. 

. 

. 

6050 

6051 

6052 

6053 

6054 

. 

. 

. 

6496 

6497 

6498 

6499 

6500 

263 

263 

264 

264 

264 

. 

. 

. 

344 

343 

343 

341 

341 

. 

. 

. 

247 

247 

246 

246 

247 

20.4 

20.3 

20.3 

20.3 

20.3 

. 

. 

. 

48.8 

49.1 

49.1 

49.3 

49.3 

. 

. 

. 

62.2 

62.2 

62.2 

62.1 

62.1 

From the data in Table A1 the following values could be calculated: the baseline 

concentration of SO2, the temperature in Kelvin and the number of moles of SO2 

in nmol. Equation 2.1 is the equation of the straight line. To calculate the gradient, 

the following equation was used: 

  .................  ...................................................................................... (A1) 
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Where Δy is the change in concentration of SO2 between the last reading and the 

first and Δx is the corresponding time values in seconds. So for the SO2 

adsorption peak shown in Figure A1, the gradient is:  

 

The y-intercept is calculated by substituting one point on the graph back into 

Equation 2.1. The first point (5600, 263) was used to give a y-intercept of: 

 

Therefore, the equation of the straight line is: 

 .................................... (A2) 

The time that is inputted into the equation must be in seconds. 

To convert the temperature in °C into K, the following conversion formula was 

used: 

 ....................................................................... (A3) 

Equation 2.2 was used to calculate the number of moles of SO2. The pressure in 

Johannesburg was taken as 84600 Pa for all experiments. The value used for the 

universal gas constant was 8.314 J/molK. For this experiment, the volumetric flow 

rate was 0.000242599 m
3
/min. 

An example calculation is presented below for the reading where the time is equal 

to 6052s.The values given above were substituted into Equation 2.2. 
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Therefore, the number of moles of SO2 at time 6052 s is 1.12
-8

 mol and converting 

this into nmol gives 11.2 nmol. 

This calculation was done for each reading. The number of moles of all the 

readings was summed up to give the total number of moles and this total was 

divided by the time taken to form the peak. For this peak, the total number of 

moles was 7.19 μmol. The time taken to form the peak was 900 seconds. 

Therefore the number of moles per second was 0.00799 μmol/s or 7.99 nmol/s. At 

the start and end of the peak, it is possible for the baseline concentration to be 

above the measured concentration. In that case, the calculated number of moles is 

a negative number. All those values that were negative were excluded from the 

calculation. 

Then for comparative purposes the number of moles was divided by the mass of 

each catalyst that was used. The mass of the 0.8 wt%Au/TiO2 catalyst was 0.416 g 

and so the number of moles per gram second of catalyst for this experiment was 

19.2. 


