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Abstract

Power-line communications can be used for the transfer of data across electrical net-

works in applications such as automatic meter reading in smart grid technology. As

the power-line channel is harsh and plagued with non-Gaussian noise, robust forward

error correction schemes are required. This research is a comparative study where a

Luby transform code is concatenated with power-line communication systems provided

by an up-to-date standard published by électricité Réseau Distribution France named

G3 PLC. Both decoding using Gaussian elimination and belief propagation are imple-

mented to investigate and characterise their behaviour through computer simulations

in MATLAB. Results show that a bit error rate performance improvement is achiev-

able under non worst-case channel conditions using a Gaussian elimination decoder.

An adaptive system is thus recommended which decodes using Gaussian elimination

and which has the appropriate data rate. The added complexity can be well tolerated

especially on the receiver side in automatic meter reading systems due to the network

structure being built around a centralised agent which possesses more resources.
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Chapter 1

Chapter 1: Introduction

Power-line communications (PLC) is a technique which involves the implementation

of a communication system over existing electrical supply installations [1]. These PLC

systems are cost effective as a new architecture does not need to be installed for the

communication medium and they can be utilised worldwide.

Two types of PLC categories generally exist namely broadband PLC operating at

frequencies greater than 500 kHz and narrowband PLC operating at frequencies lower

than or equal to 500 kHz. Narrowband PLC finds its uses in communications over

long ranges with lower data rates and is therefore useful for applications involving both

the monitoring and control of electrical systems [2]. On the monitoring side, as the

demand for smart power management increases, techniques such as automatic meter

reading (AMR) have been developed and are being actively researched to provide an

efficient smart grid backbone [3–6]. An example of an application on the control side

includes smart distribution grids over the medium voltage network where narrowband

PLC can be responsible for the communications and the control of different devices such

as switching certain systems on or off for the purpose of energy saving [7].

In an attempt to universalise narrowband PLC implementations, several standards

have been developed. It can be observed that these standards tend to be very similar to

the standards used in wireless systems. As an example, both the électricité Réseau Dis-

tribution France (eRDF) G3 PLC [8] and wifi 802.16-2004 standards [9] possess the same

forward error correction (FEC) chain. As both communication channels are different

(air interface versus power-lines) and possess different characteristics, it could possibly

lead to inefficient systems. This is thus the motivation behind trying new schemes over

the PLC channel such as presented in this research.
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Chapter 1

Forward error correction techniques fitting the category of time diversity can be used

to protect the communication system over power lines from burst errors [10, 11]. Exam-

ples include using repetition codes (RC) which are of low implementation complexity

or more complex schemes such as fountain codes. This research is focussed on rateless

fountain codes named Luby transform (LT) codes which can generate any number of

packets n from k input packets [12]. In the context of broadband PLC applications such

as the distribution of high quality video, LT codes can provide an increase in perfor-

mance [13, 14]. Further development in fountain codes resulted in the creation of raptor

codes which provides a further increase in performance by precoding the input data

with a high rate low-density parity-check (LDPC) code allowing both the encoding and

decoding operations to be performed in linear time [15]. By using the LDPC code as

an inner code as opposed to an outer code such as in raptor codes, performance can be

increased further over the PLC channel [16]. This improvement stems from properties

of LDPC codes which can be used to pinpoint packets that have been received in error

and therefore discard them resulting in a lower chance of errors propagating during

the decoding process. As faulty packets get dropped, the LT code then operates on a

channel which acts as an approximation to an erasure channel.

Further research on this topic can be performed with regards to applying LT codes

to systems provided by current day standards such as G3 PLC systems [8]. G3 PLC

systems can be used for the communication requirements of AMR in smart grid appli-

cations. As G3 smart meter systems are already implemented in several areas [17, 18],

an advantage is that the task of performing the modification on live systems is more

practical should it prove to be beneficial. Secondly, in G3 systems, inner codes are

short especially when compared to LDPC codes which require much larger codes for a

significant increase in performance. Smaller packets therefore have increased protection

which means that a smaller amount of data can get corrupted when a burst type error

occurs.
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1.1 Problem Statement

Narrowband communications in the lower frequency range is difficult due to the high

level of noise in the PLC channel. From the literature, it has been stipulated that PLC

systems could be improved through the use of time diversity techniques such as fountain

coding and specifically LT codes. The problem is thus to investigate the performance

of LT codes when concatenated with systems provided by up-to-date standards and

determine what the complexity trade-off is.

The main research question answered within this dissertation can be stated as follows:

“Can systems provided by current narrowband PLC standards be made more robust

through the use of fountain codes, specifically LT codes, such that a new system operates

at a similar or better bit error rate value and how does this modification affect the

complexity of the system?”

1.2 Research Significance

Topics in the field of narrowband PLC technology are expected to develop further

in the coming years with the advancement and need for smart grid applications such

as power distribution and management [19]. This is especially true in developing coun-

tries where both the generation of power and installation of new communication system

infrastructures in rural areas can be problematic such as in South Africa. If new PLC

products need to be created for such scenarios the research that has been performed

around various topics involving PLC can be used.

A further motivation and contribution of this research is that as G3 systems already

exist in the field [17, 18], it would be more practical to perform this modification on live

systems should the modification prove to be beneficial. Since the new modified systems

must adhere to constraints specified in the standard and only involves the addition of a

new concatenated section, it also means that it results in systems which are backwards

compatible and therefore more applicable in various situations.

Finally, a component that makes this research significant is the fact that this new

FEC scheme is original to the best knowledge of the author as no publications analysing

3
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this specific communication system layout over the PLC channel have been published.

The set-up recommendations provided based on the obtained results can be used for

further research into LT-modified G3 systems which could eventually lead into the

development of new and updated standards.

1.3 Scope and Research Objectives

This research focuses on improving communications over the PLC channel which can

be used in the communication aspect of systems related to power delivery. A new orig-

inal system is investigated in an attempt to improve the performance of PLC systems

provided by an up-to-date standard called the G3 PLC standard [8]. This technology

therefore meets the requirements for the communication section in the AMR component

of smart grid applications.

In the first objective of the research, a link between the values of the fountain code

parameters and the system performance is analysed. Knowledge of this relationship

then allows PLC system designers to optimise the design according to different system

specification requirements and channel situations or allow for the creation of an adap-

tive fountain coding scheme if channel estimation is available to the transceiver. Firstly,

the encoder in the code encodes data packets according to the number of input packets

available to the system as well as a probabilistic distribution named the robust Soliton

distribution which possesses parameters that affect the behaviour of the system. Sec-

ondly, once these parameters are selected, the number of encoded packets sent by the

encoder which determines the code rate must be selected as the system operates with a

frame size limitation as discussed in chapter 4.

In the second objective of the research, the knowledge gathered in the first objective

is applied as a proof of concept to assess the performance of the new systems. For an

in depth analysis, two sets of systems using the same PLC channel model are imple-

mented in a software environment to run simulations for the gathering of data required

for the research. The first set of systems used as benchmark systems are programmed

according to the specifications provided in one of the currently existing narrowband

PLC standards (G3 PLC) and covers the range of systems from best to worst-case set-

4
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ups. This thus allows for the research results to be applicable within the narrowband

PLC industry. The second set of systems which are implemented are modified versions

of the same previous systems but which makes use of a different time diversity tech-

nique called fountain coding. Specifically, G3 systems are concatenated with an LT

code which is used as an outer code instead of the specified RC. These systems are all

tested with several channel conditions which also cover the range of noise parameters

which are typically to be expected in real life PLC applications. The simulation of these

systems operating over the PLC channel allows for the gathering of data such as bit

error rate (BER) performances as well as the value of message overhead (fountain code

rate) required for decoding during each iteration. This data is then used to determine

any trade-offs which can exist between the encoding/decoding complexity of the systems

and both the error rate performances and overall data rates.

Enough information is provided for the knowledgeable reader to fully understand all

components of the research. Further data from testing as well as arguments are provided

to explain the obtained results as well as how they could possibly lead to future research

and be improved.

1.4 Dissertation Organisation

An overview of this masters dissertation is provided within this section in order for

the reader to have a clear idea of what to expect and thus gain a better understanding

of the research.

1.4.1 Literature Review (Chapter 2)

This chapter presents the information that has been discovered during the literature

review component at the start of the research. This information allows the research

to be contextualised and presents the work that has been done in the field up to the

point of writing of this document. This includes topics about research that has been

previously completed and which can be related to this topic. The first theme covered

includes several current day narrowband PLC standards provided by various professional

institutions and which have been adopted internationally. The second theme covered

includes the PLC channel modelling and the methods that have been used to achieve a

5
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model which is accurate for the purpose of computer simulations. In the third theme

different time diversity techniques are explored focussing on the research that has been

done when they are applied to the field of PLC, especially when including the use of

fountain coding. The final theme discusses various software that can be used for the

purpose of simulating a telecommunication system in a personal computer environment.

1.4.2 Research Methodology (Chapter 3)

The research methodology is presented which describes the three major components

of the research that are implemented in software i.e. the chosen channel model parame-

ters, the benchmark systems transceiver layout and the LT-modified systems transceiver

layout. This includes an in depth explanation into the way in which the LT code

encoder and decoder operate as well as the various other components present in the

system including a Reed-Solomon (RS) encoder/decoder, a convolutional code (CC)

encoder/decoder, an interleaver, a repetition code encoder/decoder and the orthogonal

frequency-division multiplexing (OFDM) transmitter/receiver with associated modula-

tion schemes.

1.4.3 Comparative Study of a Time Diversity Scheme Applied to G3 Sys-

tems for Narrowband Power-Line Communications (Chapter 4)

The results of the paper covering this topic which has been submitted to the IEEE

Transactions on Consumer Electronics is shown in this chapter. The simulation results

are presented and analysed which allow for the successful completion of the objectives

listed in Section 1.3 and thus answer the research question. Firstly, simulations are

performed for a range of benchmark systems operating under various channel conditions

to obtain an idea of how current day systems are able to perform on the PLC channel.

Secondly, a method for an LT codec design is presented and implemented which allows

for the simulation of the performance of LT-modified systems under the same conditions

as that of the previous tests, allowing for a fair comparison. In this chapter a complexity

analysis is also given which shows that the increase in complexity added by the addition

of the LT code can be well tolerated in applications where it would be used such as

AMR in smart grids.
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1.4.4 Conclusion (Chapter 5)

A conclusion is drawn which summarises and wraps up the findings of this research

in the final chapter. This includes recommendations and possible future work which

could be further explored in future research.
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Chapter 2: Literature Review

2.1 Narrowband PLC Regulations and Standards

Several standards have been created by various associations in an attempt to stan-

dardise the implementation of narrowband PLC systems with frequencies lower than

500 kHz. These standards typically define both the physical (PHY) and media access

control (MAC) layer protocols as well as the electromagnetic compatibility and regula-

tions for coexistence with other systems. The main up to date standards used in the

narrowband PLC industry are introduced below.

2.1.1 EN 50065-1

The Comité Européen de Normalisation Électrotechnique (CENELEC) released a

standard first published in 2001 specifying the allowable transmitter signal power in the

3 kHz to 148.5 kHz narrowband frequency range [20]. The power limit is usually in the

range of 120 dB µV in an attempt to prevent electromagnetic interference with other

systems. This limit can be considered low, resulting in challenges for communication

system implementations. This standard splits this frequency range into the four bands

shown in Table 1.

The CENELEC A band lends itself to be the most appropriate band for the imple-

mentation of smart grid narrowband PLC services and is thus the one utilised in most

narrowband PLC standards.

2.1.2 Iberdrola PRIME

The PoweRline Intelligent Metering Evolution (PRIME) alliance project from Iber-

drola developed their standard for interoperability of smart grid applications over the

power grid on the CENELEC A band since the year 2007 [21]. This specification
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Table 1: CENELEC frequency band division.

Band Frequency Range (kHz) Band Utilisation

A 9-95 Energy monitoring/controlling

B 95-125 Consumer channel

C 125-140 Consumer channel,

requires the use of CSMA

D 140-148.5 Consumer channel

attempts to achieve high data rates over low voltage networks. The specification of

interest is the PHY layer specification which specifies the modulation scheme as using

orthogonal frequency division multiplexing (OFDM) defined in the ITU-T G.9904 stan-

dard [22] in combination with m-ary differential phase-shift keying schemes (DBPSK,

DQPSK and D8PSK). PRIME systems make use of the 42 kHz to 89 kHz range in the

CENELEC bands and can use frequencies in the 10 kHz to 490 kHz range if it is used

in the frequency bands defined by the Federal Communications Commission (FCC) in

the USA or 10 kHz to 450 kHz range in Japan where the bands are governed by the

Japan Association of Radio Industries and Businesses (ARIB) [23]. The FEC scheme is

defined as using a half-rate convolutional encoder with repetition code, scrambler and

bit interleaving.

2.1.3 eRDF G3

Électricité Réseau Distribution France (eRDF) developed their own standard in 2011

which is very similar to the PRIME standard involving smart grid services. The G3

systems are also implemented on the CENELEC A, FCC and ARIB bands but they

target lower data rates on the medium voltage network with increased robustness. This

standard specifies an OFDM based communication scheme which can use either BPSK,

DBPSK or DQPSK depending on the channel conditions and the channel rate required.

The frequency range used is from 36 kHz to 91 kHz. G3 systems use the same FEC
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chain as the PRIME standard but with an added Reed-Solomon (RS) code as an outer

code increasing its performance for a trade-off in increased system complexity.

2.1.4 IEEE 1901.2

The IEEE 1901.2 standard gives the specification for devices operating at frequencies

less than 490 kHz [24]. It is OFDM based and meant to be compatible with both the

G3 PLC and PRIME standards when used in the CENELEC A band. The modulation

schemes supported are DBPSK, DQPSK, D8PSK, BPSK, QPSK, 8PSK and 16-QAM.

The forward error correction used is identical to its G3 counterpart with the use of an 8

or 16 byte parity RS outer code with a convolutional inner code, 4 or 6 times repeater,

time and frequency interleaver as well as a scrambler. Furthermore, this standard also

makes use of adaptive tone mapping which selects the sub-carriers to be used in the

communication depending on the currently estimated channel characteristics.

2.2 PLC Channel Modelling

In this section the literature concerned with accurate PLC channel modelling in a

software environment is reviewed. Since the power line channel is shared amongst many

electrical systems it is known to be very harsh. Research has thus been conducted to try

and characterise it [25, 26]. From measurements taken in various settings it has been

found that the dominant types of noise present are classified as background noise (BN),

narrowband interference (NBI) as well as impulse noise (IN) [27]. The combination

of these types of interference result in a non-Gaussian channel which exhibits bursty

characteristics where a burst error is considered to be a sequence of bits or symbols that

get received in error. For example, in (1), a burst of length 4 is observed in the received

binary sequence considering that 13 consecutive 0's were sent over the channel.

r = [0001011000000] (1)

This is due in part to the allowable transmitting power being quite low (120-134 dB

(µV)) [20] with respect to the impulsive noise and narrowband interference components

which take over the signal when they occur. During this time, the channel can be

considered to be unusable where even standard FEC techniques may not be enough

for successful recovery of the data as the received packets get completely corrupted.

10
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Generally, two different approaches can be employed to model the PLC channel. The

first is a signal approach where the additive noise signals are simulated and added to

the transmitted signal. The second is a probabilistic approach which usually makes

use of stochastic models such as Markov chain models characterising the channel with

different states. Both of these approaches are described next.

2.2.1 Signal Approach

Background noise: The source of this type of noise can be attributed to envi-

ronmental factors and thermal noise from the front-end amplifiers of the receiver as in

most communication systems. BN is usually more severe on the MV channel than on

the low voltage channel [28]. It is usually coloured on the PLC channel but is often

assumed to be modelled as additive white gaussian noise (AWGN). As such, this noise

can be modelled by the following procedure [29]. The noise generated is dependent on

the signal to noise ratio (SNR) selected by first determining the noise power spectral

density No as shown

No = Eb × 10
−SNRdB

10 (2)

where Eb is the energy per information bit. The average noise power can then be

determined from

σ2
noise =

No × fs
2

(3)

where fs is the sampling frequency. The noise to be added at every sample point of the

signal is then obtained by

n(kT ) =
√
σ2
noise × u (4)

where u is a normally distributed random number of mean zero, variance one and

standard deviation of one. It should be noted that for a channel which is only affected

by AWGN, the simulation should be run until a minimum of 100 errors have occurred

for statistical significance. When channels can be considered as AWGN channels, closed

form formulas can be used for the analysis of most communication systems over it. For

example, in the case of DBPSK and DQPSK, the bit error rates (BER) can be analysed
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according to the two following formulas respectively [30]

ps = pb = 2Q

(√
2Eb
No

)
− 2Q2

(√
2Eb
No

)
(5)

ps = 4Q

(√
2Eb
No

)
− 8Q2

(√
2Eb
No

)
+ 8Q3

(√
2Eb
No

)
− 4Q4

(√
2Eb
No

) (6)

where ps represents the probability of symbol error, pb the probability of bit error, Eb

the energy per bit, No is the noise power spectral density and Q(x) is the Q function as

defined

Q(x) =
1√
2π

∫ inf

x

e
−t2
2 dt. (7)

It should be noted that due to the non-Gaussian noises presented next, that these for-

mulas may not be used for the overall performance over the PLC channel and that in

this case no readily made formula is available for simple analysis.

Narrowband interference: Signals from wireless transmission can leach into the

PLC channel resulting in NBI [31]. One of the causes resulting in this type of signal

leakage arises when the electrical conductors used in the communication system act

as antennas which can pick up ambient signals. This type of noise can be emulated

by generating modulated sinusoidal noise with a varying central frequency [32]. The

frequencies of these components are typically dictated by central radio broadcasting sta-

tions and television screening frequencies or by their harmonics. This can be represented

mathematically by a slightly modified version of the equation described in [33]

sNBI(t) =
N∑
i=1

Ai(t)sin(2πfi + θi)imp

(
t− tarr,i
tw,i

)
(8)

where the N NBI waveforms are defined by five parameters, namely the NBI amplitudes

Ai(t), the NBI centre frequencies fi, the NBI phases θi, the NBI arrival times tarr,i and

the NBI durations tw,i. It should also be noted that imp(t) is a generalised impulse
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function which has an amplitude value of one and a width of one.

Impulse noise: Noise appearing in the form of impulses appear both synchronously

and asynchronously to the mains voltage as well as at apparently random timings in

the power line channel. The impulses found to be synchronous with the mains can be

attributed to circuit components such as silicon-controlled rectifiers [25]. In the case of

impulse noises asynchronous with the mains, switching regulators can be found to be

a possible cause. Finally, random impulses occur due to human interactions with the

electrical network when elements such as light switches or thermostats get switched on.

This type of noise can be represented mathematically as [33]

sIN(t) =
∑
i

Ai imp

(
t− tarr,i
tw,i

)
(9)

where the three parameters used to define the impulse noises are the amplitudes Ai, the

impulse durations (width) tw,i, the impulse arrival times tarr,i and the impulse function

imp(t) as previously defined. The inter-arrival rate (time between impulses) and thus the

arrival rate can be modelled as a random variable generated from the inverse transform

sampling of a Poisson Process exponential cumulative distribution function (CDF)

F (t) = 1− eλt (10)

where λ is the rate parameter determining how often an impulse occurs. An alternative

approach for impulse noise modelling in the PLC environment is through the use of

the Middleton Class-A model [34–36]. This model is defined by the probability density

function (PDF)

p(n) =
∞∑
j=0

Pj
1√

2πσ2
j

e
− n2

2σ2
j (11)

where Pj and σ2
j are defined as:

Pj =
e−CCj

j!
(12)

σ2
j = σ2

i

j

C
+ σ2

noise (13)
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where the parameter C is defined as the impulsive index and controls the severity of the

impulses, σ2
i is the IN variance and σ2

noise is the Gaussian noise variance. The amplitude

of impulses in the PLC channel are found to have a maximum value of 50 dB above the

BN floor [25]. The width of the impulses which affects how many symbols get corrupted

by each impulse is found to be uniformly distributed in the range of 10 µs to 1 ms [37].

Multipath Model: Due to the topology of the PLC channel, multipath signal

propagation and signal attenuation further degrades the transmitted signal [38]. The

multipath propagation is due to the possibility of there being any number of cable paths

branching off the main path from the transmitter to the receiver. Wave reflections thus

occur when the signal travels between mediums with different characteristic impedances.

A model of the channel transfer function which has been developed is defined by [38]

H(f) =
N∑
i=1

gi · e−(a0+a1f
z)Di · e−j2πfτi (14)

where N is the number of paths, gi is the weighting factor of every individual path, a0

and a1 are attenuation parameters, Di is the distance of every individual path and z is

the exponent factor coefficient. The variable τi is the delay of each path determined by

the function

τi =
Di
√
εr

c0
(15)

where ε is the dielectric constant of the insulating material and c0 is the speed of light.

A problem with the provided parameter values is that they only apply to the frequency

range from 500 kHz to 20 MHz which is above that of the one used by G3 systems.

For this model to be used, new channel measurements would therefore be needed for

a good simulation accuracy. On the other hand, G3 systems also perform equalisation

and it is thus assumed that filter characteristics of the channel are effectively cancelled

out removing the need for a multipath model in the system.

2.2.2 Probabilistic Approach

As opposed to the signal approach which involves creating additive noise signals

which are added to the transmitted signal, the probabilistic approach involves generat-
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ing a binary error vector which can be XOR’ed with the binary vector to be transmitted.

These types of model can therefore act directly on a binary stream and operate at a

higher level by combining the channel as well as the modulator and demodulator into a

single module.

Gilbert-Elliott Model

To model bursty channels, partitioned Markov chains such as the Gilbert-Elliott

model may be used [39, 40]. This technique describes the system using both a good state

and a bad state that introduce memory to the system which can then characterise burst

errors. The model is defined by its state transition probability matrix and probability

of transmission error within both states. pgb is defined as the transition probability

of going from the good state to the bad state and pbg is the transition probability of

going from the bad state to the good state. Typically it is assumed that no or few

errors occur within the good state, i.e. the probability of error pe = 0 and that worse

channel characteristics such as a probability of error pe = 0.5 occur in the bad state.

The graphical representation of this model can be seen in Figure 2.1.

Good Bad

pgb

pbg

1− pbg1− pgb

Figure 2.1: Gilbert-Elliott Markov chain channel model.
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Fritchman Model

From the literature it is seen that a more precise partitioned Markov chain model

named the Fritchman model [41] can be used to model bursty channels. The Fritchman

model is obtained by including more than two different states and partitioning them

into K good and N-K bad states as shown in Figure 2.2.

1 2 N − 1 N

p1,1 p2,2 pN,N

p1,N

pN,1

p2,N

pN,2

pN−1,N

pN,N−1

pN−1,N−1

Figure 2.2: Fritchman Markov chain model.

Different model orders can then be generated where the order signifies how many pre-

ceding states influence the current state. These Markov models are then fully defined by

three parameters: the state transition probability matrix, the initial state probability

matrix and the output symbol probability matrix. A method was developed to find

the parameters required for the definition of both a first and second order Fritchman

model applied to a PLC channel [42]. To accomplish this, a physical communication

system must be implemented and used either over existing power lines or a test bed

which approximates it. To implement this physical system, software defined radios such

as Universal Software Radio Peripherals (USRP) can be used to obtain and measure

data. The state transition probabilities are then obtained by using the Baum-Welch

algorithm on the error sequence obtained from those measurements.

Using any of these two previously stated probabilistic methods to generate an error

sequence has the advantage of accelerating the simulation speed and acquiring results
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faster. This is due in part to the number of binary data being smaller than the number

of time signal sampling points as well as the fact that the XOR operation required to

combine the transmitted binary sequence and error binary sequence can be performed

quicker than signal processing which might be needed when simulating at the signal

level. On the other hand, the major drawback with these methods is that different

values for the error probabilities and state transition probabilities are required for every

SNR values which are to be simulated. As stated previously, the statistical values of

the Markov models can be obtained from data obtained from physical measurements.

This is a lengthy process and is outside the scope of this research, therefore a signal

level simulation approach will be used in this research.

2.3 Time Diversity Techniques

Time diversity schemes offer a reliable way of combating the packet loss problem

inherent to the non-Gaussian PLC channel in broadband power-line communications

with reduced encoding/decoding time and complexity [13, 14]. This idea has been

explored further by applying it in the context of narrowband power-line communications

[10, 11]. Furthermore it has been shown that fountain codes are an efficient method

for combating burst errors by treating faulty packets as erasures [16]. Time diversity

includes techniques such as interleaving, rateless erasure codes named fountain codes

and repetition codes.

2.3.1 Interleaving

Bit interleaving is a technique which involves breaking down several codewords and

mixing them up such that several parts of a codeword are spread through time. The

codewords then get re-assembled once they arrive at the receiver. Interleaving tech-

niques can generally be split into two broad categories: deterministic interleaving (such

as block interleaver, Berrou-Glavieux interleaver, etc) and random interleaving (such as

pseudo-random interleavers, semi-random interleavers, etc). Two types of interleaving

techniques commonly used are block interleaving and convolutional interleaving. Block

interleaving requires the storage of several codewords into an array with Λ rows and nint

columns representing the number of bits in each codeword. The data then gets read

out in a different order. This thus results in burst errors being spread across Λ different
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codewords where Λ is defined as the interleaving depth. This procedure is shown in

Figure 2.3 with a Λ value of 4 and nint of 4.

nint

Λ

S1,1 S1,2 S1,3 S1,4

S1,4S1,3S1,2S1,1

S1,1 S1,2 S1,3 S1,4

S2,1 S2,2 S2,3 S2,4

S2,1 S2,2 S2,3 S2,4

S2,1 S2,2 S2,3 S2,4

S3,1 S3,2 S3,3 S3,4

S3,1 S3,2 S3,3 S3,4

S3,1 S3,2 S3,3 S3,4 S4,1 S4,2 S4,3 S4,4

S4,1 S4,2 S4,3 S4,4

S4,1 S4,3 S4,4S4,2

a)

b)

c)

Figure 2.3: Block interleaving with Λ value of 4 and nint value of 4. a) Original binary
sequence with 4 codewords. b) Interleaving array. c) Transmitted binary sequence with
4 interleaved codewords.

Convolutional interleaving on the other hand involves multiplexing a codeword onto

different branches which contain a varying number of shift registers. Both methods

introduce considerable latency to the system due to the use of a buffer and the fact

that the memory must first be filled before being read out at both the transmitter and

receiver.

2.3.2 Repetition Codes

RCs function by repeating every codeword input to the encoder a certain amount of

times such that each repeated codeword is usually affected differently by the channel

(since they travel through the channel at different times). The advantage of an RC

is that both the encoder and decoder are simple to implement and require few logic

components, however they usually require a rate less than or equal to 1
3
. The decoding
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can be performed by a majority logic decoder where the bit that occurs the most at a

certain location in all the repeated codewords is selected as the transmitted binary digit.

In the case of a tie, a bit can be selected at random or the position can be taken as

an erasure. It should be noted that RC provides no performance increase over channels

affected by AWGN only and actually performs worse as the repetition factor increases

[43]. The strength of this code is therefore against impulse noise which may affect only

a subset of the repetitions.

In the context of narrowband PLC, it is shown that a communication system can

be well protected by the addition of an RC in a coding scheme [11]. In this case, an

RC is concatenated with a permutation code using M-ary frequency-shift keying (FSK)

allowing for the detection of IN and NBI. The advantage of this scheme is that a good

performance is achieved with a low increase in complexity considering that RCs can

be decoded using majority logic decoding. For a further increase in performance it is

advised that an additional outer code may be used. It is interesting to note that the

G3 standard uses a similar set-up in robust mode with an RC concatenated with two

different outer codes (RS and CC code).

2.3.3 Fountain Codes

Fountain codes are rateless codes that are typically used with packets at the net-

work layer over erasure channels. They are characterised by the term rateless due to

the fact that they can generate any number of encoded packets n for a set of source

packets k. They function by allowing the recovery of the k original packets when the

receiver correctly receives a certain number of packets usually only slightly larger than k.

Luby Transform Code: Luby Transform (LT) codes operate by sending a stream

of packets generated by the XOR operation performed on d packets randomly selected

from the original packets list [12]. The integer value d is generated from a discrete distri-

bution which is typically the robust Soliton distribution derived from the ideal Soliton

distribution. Several parameters of this distribution can be optimised depending on

what is required in the system.
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Raptor Code: Raptor codes are a type of fountain code which differ from LT codes

in the sense that the packets are pre-coded (typically by an LDPC code) before being

put into an LT encoder [15]. Due to the pre-coding section, they are more efficient than

LT codes since they can be both encoded and decoded in linear time, however the trade-

off is that an increase in circuit logic complexity is required. The most common raptor

code implementations encountered are the RaptorQ code [44] and its predecessor, the

Raptor 10 code [45].

The strength of fountain codes in PLC applications is that when a packet gets cor-

rupted by impulse noise, the information it contains can be recovered by being redun-

dantly contained in other packets that get successfully recovered. A scheme using a

fountain code has been successfully shown to work when it is used as an outer code

in combination with permutation coding [10]. A further advantage is that fountain

codes can achieve better data rates when compared to repetition codes. Further proof

is available which shows considerable increase in performance over channels affected by

IN [13, 14, 16]. The best performance is achieved when an LT code is used as an outer

code whilst an LDPC code is used as an inner code (raptor code with the code order

flipped). A question which might arise from these results is whether fountain codes

are also applicable to channels that also get affected by AWGN as this is not explicitly

covered in the surveyed literature.

2.4 Telecommunication System Simulation

To gather the data needed to successfully answer the research question, the simula-

tion of PLC telecommunication systems must be implemented either in a software or

hardware environment. Advantages and disadvantages exist to both methods which are

discussed below.

2.4.1 Hardware Implementation

Physical PLC system simulations can be implemented through the use of hardware

such as USRPs or Arduino boards using the Mamba Narrowband PLC shield [46, 47].

In the case of PLC systems, a communication channel test bed must also be built

such that the receiver and transmitter may be connected to it and communicate. This
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test bed must be built with electrical wires which can take on various different network

topologies and must have various electrical apparatuses connected to it. These electrical

apparatuses are required to attempt and produce interference which would normally be

encountered on a real PLC channel. As the implementation of a physical system is

beyond the scope of this research, a software implementation approach for simulation

purposes is instead chosen.

2.4.2 Software Implementation

Implementing a telecommunication system in software requires the coding of many

individual parts which are then combined to create the whole system. For example, the

components of the transmitter, receiver and channel can separately be implemented and

then connected together. This can be achieved using programming language such as

C or C++ but can also be implemented with scripting languages such as MATLAB or

GNU Octave. The advantage of using MATLAB is that it possesses various toolboxes

such as the signal processing toolbox and the communications systems toolbox [48, 49].

These toolboxes contain pre-made functions which can be used in this research and

therefore accelerate its completion. Due to these advantages MATLAB is chosen as the

implementation tool for this research. The disadvantage that should be noted is that

simulation times will be greater when compared to C or C++ implementations as the

functions operate at a higher level of abstraction.
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Chapter 3: Research Methodology

This chapter describes the research background required for understanding the re-

search. The individual components of every system used in the research are therefore

described here.

3.1 Experimental Systems

3.1.1 G3 PLC Benchmark System

The base system used for performance comparison is the communication system stip-

ulated in the G3 standard which can be seen in block diagram form in Figure 3.1.

Reed-Solomon
Encoder

Convolutional
Encoder

Interleaver
OFDM

Modulator

OFDM
DemodulatorDeinterleaverViterbi

Decoder

Berleykamp-
Massey
Decoder

Input
Bit

Stream

Output
Bit

Stream

Input
Bit

Stream

Noise

Repetition
Encoder

Repetition
Decoder

Figure 3.1: G3 PLC system block diagram.

The motivation behind this choice is the focus on FEC within this research and that

according to simulation results, it is deemed that G3 systems contain a stronger and

more complex FEC section than their PRIME counterparts due to the extra RS code

layer [50]. It should be noted that the transmitter and encoder sections are well defined

in the standards but that the receiver and decoder implementations are not therefore

leaving the implementation decision to the author. As can be seen in Figure 3.1, this

system is composed of a concatenated scheme containing an RS code followed by a

CC, RC and interleaver being fed into an OFDM transmission system. G3 systems can
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operate in two different modes: normal mode and robust mode. The RC is only active

in robust mode and is thus this is the mode selected for this research. The transmitted

signal then goes through a PLC channel which is affected by different additive noises.

3.1.2 LT-modified G3 Systems

In the prototype systems used as a proof of concept, the repetition code from the G3

system is replaced by an LT code which is concatenated with the FEC chain. The RS

and CC encoder as well as the interleaver are maintained in the design as it allows for

the correction of random errors and can provide information to the outer LT code [16].

This configuration therefore has the effect of allowing the LT code to operate under

conditions approximating a binary erasure symmetric channel by dropping corrupted

packets in instances where errors can successfully be detected. To make the system

comparisons fair, these inner codes as well as their associated rates are kept constant

between the G3 and LT-modified G3 systems. On top of this, the RS code provides

feedback as to which received packets are correctly decoded or which are still faulty and

thus should be avoided by the LT decoder. Figure 3.2 shows the new modified system.

Reed-Solomon
Encoder

Convolutional
Encoder

Interleaver
OFDM

Modulator

OFDM
DemodulatorDeinterleaverViterbi

Decoder

Berleykamp-
Massey
Decoder

Input
Bit

Stream

Output
Bit

Stream

Input
Bit

Stream

Noise

LT Encoder

LT Decoder

Figure 3.2: LT-modified G3 PLC system.

3.2 Forward Error Correction

This section explains the encoders and decoders which are used in all the systems

of the research. Encoders which are present in the G3 benchmark system follow the

specifications provided in the standard [8]. Decoders on the other hand are not specified

by the standard and must therefore be chosen for this research. The criteria for the

selection of decoders is based on simplicity of implementation for the codes which are
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common to both sections i.e. RS code, CC and RC as this research is not focused on

different implementations of these decoders.

3.2.1 LT Code

LT Code Encoder: LT codes can produce any value n of encoded packets from a

value k of initial source packets [12]. At each iteration, a new encoded packet is produced

by the XOR operation of d source packets picked at random from a uniform distribution.

A random encoded packet degree d must thus be generated at each iteration. This value

is generally produced from a probabilistic distribution. The first distribution designed

with this process in mind is the ideal Soliton distribution which is defined by the PDF

[12]

p(1) =
1

k
(16)

p(d) =
1

d(d− 1)
for d = 2, 3...k (17)

This distribution is typified by a spike at a low degree value signifying that most en-

coded packets are composed of a low number of packets. An example of this distribution

with a k value of 50 and a spike at a value of 2 can be seen in Figure 3.3.

Due to the instability of this distribution in practice during the decoding process, it

can be modified such that a second spike appearing at a larger value Q occurs, resulting

in encoded packets containing more if not all of the original packets. This therefore

decreases the chance of one of the initial packets not being included in any of the

encoded packets. This new distribution µ(d), named the robust Soliton distribution,

is obtained by performing the following modification on the ideal Soliton distribution

PDF [51]
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Figure 3.3: Ideal Soliton Distribution with k = 50.

τ(d) =
1

iQ
for i = 1, 2, ..., Q− 1 (18)

τ(d) =
ln(R

δ
)

Q
for i = Q (19)

τ(d) = 0 for i = Q+ 1, ..., k (20)

Z =
k∑
d=1

p(d) + τ(d) (21)

µ(d) =
p(d) + τ(d)

Z
(22)

It should be noted that Z is a normalisation factor ensuring the sum of the PDF is

equal to one as per the PDF definition, δ is the probability of decoding failure and R is

equal to k
Q

. An example of this distribution with a k value of 50, Q value of 10 and a δ

value of 0.05 is shown in Figure 3.4.

Another variable which needs to be specified for the LT code is the length, l, of the

LT packets. The variable l is selected such that it is as small as possible and thus divide
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Figure 3.4: Robust Soliton Distribution with k = 50, Q = 10 and δ = 0.05.

a given amount of input data into as many source packets as possible. On the other

hand, it must be large enough such that the possible packet space, which is of size 2l,

is greater than the number of source packets. This condition must be met in order to

avoid linearly dependent packets which provide no new information during the decoding

process, i.e. resulting in matrix rows being equal to 0.

LT Code Decoder: LT codes can be decoded by an iterative message passing

algorithm such as belief propagation (BP) or with techniques involving Gaussian Elimi-

nation (GE) [52]. The choice of using BP or GE for the LT decoding procedure involves

a trade-off between performance and complexity [53]. Decoding using both BP and GE

are implemented in this research so that they may be compared. In both cases, for the

decoding operation to begin, information about which source packets have been com-

bined in each received encoded packet is required. This information can be transmitted

alongside the information data but a risk is that it can then get corrupted. Transmitting

this packet combination data also slows down the data rate. For this reason, it is as-

sumed that both transmitter and receiver have access to this prior information available

to them, either generated by a pseudorandom number generator with a common seed

or in the form of matching lookup tables in memory.

26



Chapter 3

For BP decoding, at each iteration a new LT packet yj, where j ∈ {1, 2, ..., n}, is

received. The first step is to identify if the packet is of degree 1 at which point it

is then considered to be a decoded packet corresponding to a source packet xi, where

i ∈ {1, 2, ..., k}. Packets xi which have been decoded are then XOR’ed with any newly

received or stored packets yj that may contain it. Following this step, if the degree

of any packet yj becomes 1, the process is repeated. If the degree of a newly received

packet results in a value being greater than 1, the packet is stored in a buffer for later

processing. Finally if at any stage of the decoding procedure the degree of a received

packet yj becomes 0, it is deemed to be a linearly dependent packet that provides no

new information to the receiver and is discarded. Decoding halts when all packets xi are

recovered or when there are no more packets yj of degree 1. This process is illustrated

in Figure 3.5.

x1
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xk

y1

y2

y3

yn

x1

x2

xk

y1

y2

y3
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x2
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(a) (b)

(c)

Figure 3.5: BP decoding procedure illustrated as a series of bipartite graphs. (a) y1
identified as packet of degree 1. (b) x1 recovered and removed from all packets yj which
contain it, y2 identified as new packet of degree 1. (c) Decoding process terminated, all
source packets recovered.

Contrary to decoding using BP, the GE method does not have the constraint of

requiring packets of degree 1 at each iteration of the decoding procedure. Instead, de-

coding can be accomplished once k linearly independent encoded packets are received.

A set of equations is first set up in the form Ax = b. The elements of matrix A are 1

if packet xi, where i ∈ {1, 2, ..., k}, is part of encoded packet yj, where j ∈ {1, 2, ..., n},
and are 0 if it is not. The vector x represents all the source packets xi and the vector

b represents the encoded packets yj. An example of the GE procedure using the same
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source and encoded packet set-up as in Figure 3.5 is shown in Figure 3.6.

(a)
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(b)
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Figure 3.6: GE decoding procedure overview. (a) Received packets inserted into matrix.
(b) A matrix is triangulated and (c) back-substitution is performed to obtain original
source packets.

3.2.2 Reed-Solomon Code

RS Encoder: RS codes are a type of block code which generate codewords com-

posed of nRS symbols from an input message containing kRS symbols [43]. The number

of bits contained in a single symbol depends on the Galois Field order i.e. an RS symbol

composed of m bits is constructed over GF (2m). The field generator polynomial is a

primitive polynomial used to generate all of the α values and is given by [8]

p(x) = 1 +X2 +X3 +X4 +X8 (23)

The G3 system can use two different RS code versions, namely a (255, 239, 8) code

or a (255, 247, 4) code which are both implemented in systematic form. Systematic

form means that the message used to obtain a codeword is contained within it without

modifications, i.e. parity bits are simply appended at pre-decided locations to form the
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codeword. In the code description brackets, the third value is the parameter t which is

the error correcting capability of the code and which is obtained by calculating t = n−k
2

.

The generator polynomial used to generate the codewords is then [8]

g(X) =
2t∏
i=1

(x− αi). (24)

The nRS − kRS parity bits to be appended to the message for a codeword in systematic

form are then obtained by computing the remainder as follows:

s(X) = m(X) ·X(nRS−kRS) mod g(X) (25)

where m(X) is the message polynomial to be encoded. The multiplication byX(nRS−kRS)

serves as a shift to change the message position. The encoded message can then be

obtained by adding the remainder and shifted message

c(X) = s(X) + m(X) ·X(nRS−kRS) (26)

RS Decoder: There are various methods which can be used to decode RS codes

which can either be of a soft or hard decoding nature. A hard decision decoder using

the Berleykamp-Massey algorithm is used in the implementation as this component is

common to all systems being tested and is not the focus of the research for an improve-

ment in performance. Furthermore, this results in a simpler coding implementation. In

this algorithm, both the error locations as well as their values must be identified which

allows for the correcting of errors provided only t or less symbols have been affected.

This code is good for both random errors and burst errors as each symbol covers a

sequence of m bits.

RS Code Shortening: A technique known as code shortening is used to increase

the data rate of the system depending on the throughput required. An example of RS

shortening taken from one of the benchmark system case used for this research is the

following: kshort bytes of data (235 bytes) to be transmitted is appended with a sequence

of zeros until a new sequence of length kRS (239 bytes) is obtained. This new sequence is

then encoded using the RS (255, 239, 8) encoder which generates a systematic codeword.

The zeros that have been appended are then removed followed by the transmission of
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the original data and new parity bits. Once arrived at the receiver, zero padding is

once again added such that decoding can be performed by the RS (255, 239, 8) decoder.

Once the decoding operation has been completed, the zeros are removed to obtain the

final decoded data. This sequence of events is illustrated in Figure 3.7.

B1, B2, ..., B235Step 1: Pad data with 0s 0236, 0237, 0238, 0239

Step 2: Encode P1, P2, ..., P16B1, B2, ..., B235

Step 3: Remove padding
and transmit

B1, B2, ..., B235 P1, P2, ..., P16

Step 4: Receive and add
padding

P1, P2, ..., P16B1, B2, ..., B235

Step 5: Decode

Step 6: Remove 0 padding

B1, B2, ..., B235

B1, B2, ..., B235

0236, 0237, 0238, 0239

0236, 0237, 0238, 0239

0236, 0237, 0238, 0239

Figure 3.7: RS code shortening procedure.

The drawback of this method is that the overall performance of the system decreases

as the code shortening is increased [54]. This performance trade-off is due to the fact

that the error correcting capabilities of the code remains the same, i.e. t = 8 for both

the shortened and non-shortened code, but that the shortened code then operates on a

smaller number of binary information data, i.e. a higher Eb/N0 value is required for a

shortened code to have equal performance as a non-shortened code when the Es/N0 is

normalised by the code rate.

3.2.3 Convolutional Code

CC Encoder: As opposed to block codes such as RS which operate on chunks of

binary data of a specific size, CC operate on a bit stream which can be of any size [55].

Similarly to other types of codes, CC possess a code rate where nCC bits are generated

from an input of kCC bits. On the other hand, their performance can be improved

through the increase of a variable L (memory order + 1) representing the constraint

length of the system which has no effect on the rate of the code but increases complexity.

In the G3 system, the convolutional code used is a half-rate code which has a constraint
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length L value of 7 (memory order of 6) and is defined by the generator polynomials

g(0) = (1 1 1 1 0 0 1) (27)

g(1) = (1 0 1 1 0 1 1) (28)

In the generator polynomials, binary digits with the value of 1 signify an active connec-

tion from the stored data to the XOR operation and a value of 0 signifies the lack of a

connection. A generator polynomial is defined for every output bit of the encoder. The

block diagram of the G3 CC encoder can be seen in Figure 3.8.

Z−1 Z−1 Z−1 Z−1 Z−1 Z−1Input Data

Output bit 1

Output bit 2

Figure 3.8: Half-Rate convolutional encoder with L value of 7 and generator
g = [171 133] in octal form.

The free distance dfree of this code is 10 resulting in an error correcting capability

t of 4 within a reasonable frame size since t = bdfree−1
2
c. This code is thus not good

at correcting errors that are closely grouped together such as in the event of a burst

error but rather is potent at correcting random errors which are spread out. In this

implementation zero-termination is used which means that at the end of the binary

sequence to be encoded is padded a sequence of L − 1 all zero bits. This trailing

sequence is added such that the encoder can be reset to the all zero state every time

the encoding procedure is terminated. This allows the initial state of the encoder to be

known by the receiver at the beginning of each frame. Because zero termination is used,
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special care needs to be taken when normalising to obtain the BER vs Eb/N0 curve.

The new effective rate is calculated as follows [56]

Reffective = R

(
1− L− 1

r + L− 1

)
(29)

where r is the size of the un-padded bit stream frame input to the convolutional en-

coder and L is as previously defined. From (29) it can be seen that the fractional rate

loss decreases the larger the value of r is. This therefore makes the fractional rate loss

negligible when a large number of bits is used such as in G3 systems where r varies

between 168 and 1128 which results in Reffective ≈ 1
2

in this case.

CC Decoder: Decoding of convolutional codes can be achieved by various tech-

niques but is typically performed using the Viterbi algorithm [43]. Viterbi algorithm

decoding is a maximum likelihood decoding algorithm which can be implemented either

with hard or soft decision decoding. The reason for this decoder algorithm choice is that

it is simple to implement and binary sequences can be decoded quickly provided that

L is not too high. As stated previously, the criteria for the decoder implementation

selection is simplicity since this code is used in both the benchmark G3 system and

LT-modified G3 system resulting in hard decision decoding being used. To accelerate

the speed performance of the Viterbi algorithm, it can be made to act on a truncated

part of the whole binary sequence which is to be decoded [43]. It has been shown that

a significant increase in speed can be achieved with minimal loss in performance when

a truncation window also known as the traceback length equal to 5 times the constraint

length L is used [57].

3.2.4 Repetition Code

RC Encoder: RCs operate by repeating binary data that enters the encoder a

specified amount of nrep times. The rate of RCs is thus 1
nrep

. In the case of G3 systems,

the amount of repetition is 4 for the information data and 6 for the frame control header

(FCH). As control messages are not required for the purpose of this research, a (4, 1) RC

is used as it is assumed that only information data is being transmitted. For example,

let the binary vector
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u = {u0, u1, u2, u3} (30)

of length 4 bits be input to the (4, 1) RC encoder. The output vector which is produced

by the encoder is then

v = {u10, u20, u30, u40, u11, u21, u31, u41, u12, u22, u32, u42, u13, u23, u33, u43} (31)

where the superscript represents the repetition index.

RC Decoder: RCs can be decoded by a soft or hard decision majority logic decoder

[58]. Majority logic decoders operate by looking at the sequence of bits in a codeword

and selecting the binary digit that occurs the most. In the case of a tie, it can be

assumed that either an erasure has occurred or a bit can be selected at random. As the

G3 system functions with an nrep value of 4, the decoding logic for this case is shown

in Table 2.

3.2.5 Interleaver

Encoder: The G3 interleaver interleaves data both in time across OFDM symbols

and in frequency across OFDM subcarriers [8] as opposed to the typical block interleaver

described in Section 2.3.1 which interleaves the data in time only. Given a matrix

of dimension Nsc · Nsym, the new interleaved coordinates (I, J) of a bit with original

coordinate (i, j), where i ∈ {0, 1, ..., Nsc−1}, and where j ∈ {0, 1, ..., Nsym−1}, is given

by

J = (j · nj + i · ni) mod Nsym (32)

I = (i ·mi + J ·mj) mod Nsc (33)

where for successful operation ni, nj, mi and mj are selected such that the following

conditions hold:
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Table 2: (4, 1) repetition code majority logic decoding rule.

Received binary Decoded binary

sequence sequence

0000 0

0001 0

0010 0

0011 random/erasure

0100 0

0101 random/erasure

0110 random/erasure

0111 1

1000 0

1001 random/erasure

1010 random/erasure

1011 1

1100 random/erasure

1101 1

1110 1

1111 1

ni, nj < Nsym (34)

mi,mj < Nsc (35)

GCD (mi, Nsc) = GCD (mj, Nsc) = GCD (ni, Nsym) = GCD (nj, Nsym) = 1 (36)

An example with an Nsym value of 4, Nsc value of 4, ni value of 1, nj value of 3, mi

value of 3 and mj value of 1 is given in Figure 3.9.

Decoder: The de-interleaver functions by reversing the process of the interleaver.

Namely, it reverses the process by going from Figure 3.9 b) to Figure 3.9 a).
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Figure 3.9: G3 block interleaving example. a) Original binary data. b) Interleaved
binary data.

3.3 Channel Model

The PLC channel block takes as input the signal transmitted from the transmitter

and outputs a noisy version of the signal which is then sent to the receiver. In order to

simulate a noisy PLC channel, two of the noises described in Section 2.2, namely BN

and IN are implemented in the block. NBI is not implemented as it is assumed that

it can be avoided. This assumption is made from the fact that NBI occurs at specific

frequencies such as TV scanning frequencies which means that they affect a subset of

the total OFDM sub-carriers. NBI can be avoided by the adaptive tone mapping feature

of G3 systems which specifies the sub-carriers to be used following channel estimation.

Furthermore, signal attenuation which is dependent on cable length between transmitter

and receiver is also ignored as it is assumed that perfect repeaters and channel estimation
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are used to counteract this problem in order to simplify the simulation.

3.3.1 Background Noise

Background noise is generated from the method described in Section 2.2.1. As the

performance measurement is based on the Eb/N0 values, careful attention must be

given for this type of noise to ensure correctness of the results. The plots of BER vs

Eb/N0 for simple systems such as ones using no FEC and systems only using RS only

were obtained from simulations and compared to theoretical BER curves obtained from

standard communications textbooks and found to match. Once the noise signal n(t) is

generated over the same time period as the clean signal s(t), the result is a signal of the

form

snoisy(t) = s(t) + n(t) (37)

Once this step is completed, the composite signal is ready to be sent to the impulse

noise generating module.

3.3.2 Impulse Noise

The impulses are generated from (9) where each variable in the equation is randomly

generated during each simulation run. The impulse arrival times, tarr,i, are calculated

based on the inter-arrival times generated from a Poisson process in which the λ pa-

rameter takes values between 67 and 334 [16]. This results in an average inter-arrival

time between impulses ranging between 0.015 s and 0.003 s for a worst case scenario.

The set of impulse amplitudes Ai are generated by the similar process used to generate

the BN but instead can take an amplitude 50 dB greater than that of the BN thus

overpowering the signal. Finally, the impulse width tw,i is uniformly distributed with a

duration between 10 µs and 1 ms. Once the impulses have been generated for the same

amount of time as the noisy transmitted signal, they are added together resulting in the

following signal sent to the receiver.

r(t) = s(t) + n(t) + sIN(t) (38)
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3.4 Digital Modulation

Information data can be transferred across a medium by modulating a waveform that

can traverse it such as electromagnetic waveforms in the case of radio communications or

a voltage waveform in the case of PLC. Thus to transmit data through the PLC channel,

a modulation scheme is required which converts the binary data to be transferred into a

voltage signal s(t) in time suitable for travelling across copper conductors. In the case

of G3 systems, this is achieved through the use of an OFDM transmitter and receiver

in conjunction with BPSK, DBPSK or DQPSK depending on the chosen settings.

3.4.1 Single Carrier Modulation

Single carrier modulation involves varying characteristics of a carrier waveform such

as its amplitude A, its phase θ, its frequency f or a combination of those [59]. In the case

of G3 systems, this is achieved by varying θ which results in phase-shift keying (PSK).

Phase modulation can either be of a differential or non-differential nature and has a

varying modulation order value M . The baseband representation of M-PSK signals is

Di = ejθ+
j2πmi
M mi = 0, 1, ...,M − 1 (39)

For the BPSK modulation used in the G3 system, the M value is therefore 2 with two

possible phase outputs seperated by 180◦. This can be represented visually in the form

of a constellation diagram as shown in Figure 3.10.

0 1

Figure 3.10: BPSK constellation diagram.

In the case of M-DPSK, the first symbol is represented using the same equation as

for M-PSK modulation, i.e. (39), but the subsequent symbols each depend on the phase

of the previous symbols and are thus mathematically represented in baseband form as

Di = (ejθ+
j2πmi
M )(ejθ+

j2πmi−1
M ) mi = 0, 1, ...,M − 1 (40)

As with the M-PSK modulation scheme, M-DPSK can be represented under the form
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of a constellation diagram. The DBPSK constellation is identical to that of BPSK in

Figure 3.10, but DQPSK contains an extra two points as shown in Figure 3.11.

01

11

10

00

Figure 3.11: DQPSK constellation diagram.

It can be seen that Gray encoding is used where adjacent points on the constellation

only have a single bit difference in order to minimise errors during decoding. In this

research, DBPSK modulation is used as it is the modulation type specified for systems

which are more robust and which make use of a time diversity technique. The drawback

is that this results in systems with a slower data rate. The advantage on the other hand

is that these systems have a better performance since the points on the constellation are

separated by a larger Euclidean distance when assuming that the transmission power

remains the same.

3.4.2 Orthogonal Frequency-Division Multiplexing

As opposed to single carrier modulation which obtains higher data rates by increasing

the bandwidth or modulation order used for the communication, OFDM uses multiple

orthogonal carriers in parallel spread across the available bandwidth [60]. OFDM can

thus be regarded as the parallel concatenation of several different single carrier modu-

lation schemes operating at different central frequencies which are orthogonal to each

other. This is useful in the case where channels have a varying frequency response

as each carrier then operates on a smaller bandwidth which can be considered linear.

Carriers operating in the frequency region affected by deep fading can also be ignored

therefore maximising the usage of the available power and bandwidth. The typical

OFDM time signal representing a single OFDM symbol unaffected by noise is
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s(t) =
1√
N

Nsc−1∑
i=0

Sie
2πfit (41)

where Nsc is the number of sub-carriers in the system, fi is the central frequency of the

ith sub-carrier and Si is a set of complex values representing the single carrier baseband

modulated symbols. A G3 system typically transmits frames which possess a varying

number of consecutive OFDM symbols Nsym taking discrete values in the range of 40 to

252 symbols resulting in data rates from 2423 bit/s to 5592 bit/s. The block diagram

representing the modulator and demodulator can be seen in Figure 3.12 and Figure 3.13

respectively.

Serial to
parallel

Symbol
mapping

IFFT Cyclic
prefix

Parallel
to serial

Binary
input

Signal
output

Shaping
filter

Figure 3.12: OFDM modulator block diagram.

Serial to
parallel

Symbol
demodu-

lation

Cyclic
prefix

removal

Parallel
to serial

Binary
output

Signal
input

FFT

Figure 3.13: OFDM demodulator block diagram.

Modulator: The first step in the OFDM modulator is a serial to parallel converter

which takes as an input a binary stream from the FEC section and which distributes

it evenly according to the number of sub-carriers used. In the case of G3 systems, this

amounts to a total of 36 sub-carrier channels. In the symbol mapping section, each

parallel stream is then modulated according to the single carrier modulation scheme of

choice which is DBPSK in this case. The DBPSK system configuration is chosen as

it is the one which results in the most robust system options possible. The baseband

modulated signals are then fed to the 256 inputs of the IFFT where each input of the

IFFT represents one of the sub-carriers. IFFT inputs associated with sub-carriers which

are not in use are simply fed with an all 0 input and ignored during the demodulation

process. Following the IFFT, the time points generated from the IFFT are converted

from a parallel stream to a serial stream according to the sampling rate fs equal to 0.4
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MHz used in the system. In the cyclic prefix step, a cyclic prefix extension of length

Ncp is added between each OFDM symbol to prevent inter symbol interference (ISI).

In this case, it is achieved by copying the last 30 time samples of the current OFDM

symbol and pre-pending them to it. In the final step of the OFDM modulator, Nwin

sample points at the edge of each OFDM symbol are shaped according to a raised co-

sine window for reduction of the side-lobes in the frequency domain and the out of

band emissions. The raised cosine window is performed in the time domain by multi-

plying the first and last 8 samples of each OFDM symbol by the values shown in Table 3.

Table 3: G3 raised cosine window sample multipliers.

Sample number Front sample multiplier Tail sample multiplier

1 0 0.9619

2 0.0381 0.8536

3 0.1464 0.6913

4 0.3087 0.5

5 0.5 0.3087

6 0.6913 0.1464

7 0.8536 0.0381

8 0.9619 0

It should be noted that in a real world communication system, the signal would then

be up-converted to the required frequency range by the transmitter and down-converted

back to baseband by the receiver. This up and down conversion process is not necessary

for the purpose of this research thus resulting in the simulations being performed at

baseband.

Demodulator: The OFDM demodulator operates by performing the inverse process

performed by the OFDM modulator, i.e. transforming the received time signal back into

binary data. Theoretically, the first step would consist of performing carrier recovery

and symbol synchronisation due to carrier frequency offsets and symbol timing offset

that might be caused by the channel characteristics. As both of these processes are
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outside the scope of this research, they are ignored, i.e. it is assumed that perfect

symbol synchronisation and carrier frequency information are available to the receiver

at all times. In the simulation, the first step is therefore to remove the cyclic prefix

by discarding the first 30 samples of each symbol. The time sample points are then

converted into parallel format such that they may be fed to the inputs of the FFT block

which reverses the operation performed by the IFFT. This is because

FFT(IFFT(Si)) = Si (42)

Demodulation of every output from the FFT block can then be performed according

to the modulation scheme used in the system which is DBPSK in this case. It should

be noted that the FFT outputs representing the sub-carriers which are not in use are

simply ignored. In the final stage, the binary data obtained from the symbol demodu-

lation block is converted from a parallel stream to a serial stream ready to be decoded

by the receiver. The overall OFDM transceiver characteristics used in this research are

summarised in Table 4.

Table 4: OFDM transceiver specifications summary.

Specification Value Symbol

FFT size 256 Nfft

Cyclic prefix length 30 samples Ncp

Sampling rate 0.4 MHz fs

Sub-carriers 36 Nsc

Windowing Raised cosine -

Window length 8 samples Nwin

Symbols per frame 40 - 252 Nsym

Modulation Scheme DBPSK -
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Chapter 4: Comparative Study of a Time Diversity

Scheme Applied to G3 Systems for Narrowband

Power-Line Communications

The results of the journal article which has been submitted to the IEEE Transactions

on Consumer Electronics are presented in this chapter. Herewith, the performance and

complexity of narrowband PLC systems provided by the G3 PLC standard are analysed

when concatenated with an LT code. It is shown that an improvement in BER is ob-

tainable under non worst-case channel conditions with an increase in system complexity.

It is then demonstrated that this increase in complexity is higher on the receiver side

whilst being negligible on the transmitter side signifying that it can be well tolerated

in systems which utilise it such as AMR systems. This is due to the star topology of

the network meaning that the receiver which comes with more built-in resources can

accommodate the increase in complexity. The reference to the paper is currently the

following until acceptance by the peer-review process:

Y.F. Rivard and L. Cheng, “Comparative Study of a Time Diversity

Scheme Applied to G3 Systems for Narrowband Power-Line Communi-

cations”, currently submitted to the IEEE Transactions on Consumer

Electronics for the peer-review process as of 23/05/2016.

The main research idea was derived from a joint effort of Y.F. Rivard and Prof.

Ling Cheng, inspired by his previous works on PLC. The software implementation used

for the collection of data was fully coded by Y.F. Rivard. The journal article was

written by Y.F. Rivard whilst Prof. Ling Cheng supervised the research and ensured

the journal article met the required high quality standards for international publication.
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4.1 Current Industry Standard G3 Simulation Performance Analysis

To establish a baseline, simulations are first run with G3 systems provided by the

standards. Three different G3 systems are tested to cover the range of system specifica-

tions containing time diversity under the form of RC. These systems are therefore based

on implementations with an Nsym value of 40, 56 and 252 OFDM symbols resulting in

data rates of 2423 bit/s, 3257 bit/s and 5592 bit/s respectively. The G3 systems are

then tested over three PLC channels which have different impulse rate characteristics

i.e. worst case scenario (λ = 1/0.003), best case scenario (λ = 1/0.015) and the mid-

point (λ = 1/0.009). The benchmark results can be seen in Figure 4.1, Figure 4.2 and

Figure 4.3.
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Figure 4.1: BER vs Eb/N0 for G3 system with 40 OFDM symbols and (21, 13) RS over
PLC channel with varying impulse rate parameter.

From these results, it can be concluded that the presence of IN in the PLC channel re-

sults in a performance behaviour different from channels with AWGN only. Specifically,

a noise floor is present following the initial waterfall region which occurs at different

Eb/N0 and bit error rate (BER) values depending on the system code specifications. As

λ increases, the occurrence of impulses increases resulting in a worse performance. As

the NSYM value decreases, so does the performance. This behavior is due to the fact

that as NSYM is lowered, the code rate of the RS code gets lowered whilst the error
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Figure 4.2: BER vs Eb/N0 for G3 system with 56 OFDM symbols and (30, 22) RS over
PLC channel with varying impulse rate parameter.
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Figure 4.3: BER vs Eb/N0 for G3 system with 252 OFDM symbols and (141, 133) RS
over PLC channel with varying impulse rate parameter.

correcting capability stays the same therefore resulting in a smaller energy per bit value

Eb and thus worsening the performance [54].
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4.2 LT-Modified G3 System Performance Analysis

Simulations are performed to determine the behaviour of this new scheme on the PLC

channel under the same conditions as those used previously i.e. Nsym values of 40, 56

and 252 with λ values of 1/0.015, 1/0.009 and 1/0.003 whilst keeping the RS code rates

associated with systems of different OFDM symbol lengths constant. To implement

these systems, the number of LT source packets k and the robust Soliton distribution

variables must first be selected. Generally, it is proven that LT codes perform better as

the amount of source packets k is increased [16]. In the case of G3 systems, this could

be achieved by splitting data from the LT transmitter across multiple frames but the

drawback would be added non-negligible latency. To prevent this and adhere to the G3

specifications as much as possible, LT encoded data is restricted to a single frame. It

should be kept in mind that due to this constraint the number of total available bits

per frame is dictated by the frame size which is of Nsc · Nsym ·M bits. For the robust

Soliton distribution, a δ value of 0.02 is typically chosen [16] with a spike value Q de-

pendent on the number of source packets chosen in each system. In these scenarios,

the Q values resulting in the best performance occur at 10, 20 and 50 for the systems

with an NSYM value of 40, 56 and 252 respectively. The smallest practical l value in all

system cases is of 10. Following this, the optimal LT data rates must then be selected

for all systems. As performance is analyzed based on the BER vs Eb/N0 values, there

exists a relation between performance and data rates for both decoder implementations

as shown in Figure 4.4 and Figure 4.5.

As observed, for the LT modified G3 system with an NSYM value of 252 and using

BP, the best code rate found that can be used is 1/1.4. For the LT modified G3 system

using GE it is 1/1.05. The sharp increases and decreases observed are due to a trade-off

between the amount of available LT packets and the ratio of Es/N0. The same process

must be repeated for every system with a different NSYM value as this varies in each

case. To understand the difference in behavior of the two decoding methods, tests are

performed by collecting samples of how many packets are required at every iteration for

successful decoding when packets are being continuously transmitted. From this data

the CDF of the decoding probability depending on the code rate is plotted. An example

of the results obtained from systems with 252 OFDM symbols and 304 LT source packets
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Figure 4.4: Performance depending on code rate at various Eb/N0 values for LT-modified
G3 system with 252 OFDM symbols, (141, 133) RS code, λ value of 1/0.015 and a Q
value of 50 using a BP decoder.
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Figure 4.5: Performance depending on code rate at various Eb/N0 values for LT-modified
G3 system with 252 OFDM symbols, (141, 133) RS code, λ value of 1/0.015 and a Q
value of 50 using a GE decoder.

for both decoder implementations are shown in Figure 4.6 and Figure 4.7 for comparison.
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Figure 4.6: Decoding probability based on LT code rate for LT-modified G3 system
with 252 OFDM symbols, (141, 133) RS code, λ value of 1/0.015 and a Q value of 50
using a BP decoder.
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Figure 4.7: Decoding probability based on LT code rate for LT-modified G3 system
with 252 OFDM symbols, (141, 133) RS code, λ value of 1/0.015 and a Q value of 50
using a GE decoder.

This series of graphs represent 3 points along the Es/N0 range where the waterfall

occurs. Es/N0 values lower than those shown result in an unusable system with a BER
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of 0.5 whilst higher values result in a CDF with a faster rise time. It should be reminded

that in this example due to the frame size limitations and the selected source packet

value k of 304, that code rate values greater than 1/1.4 cannot be used as this would

result in the LT code data being sent through multiple frames, but has been shown here

for the understanding that this would further increase the decoding probability for a

given Es/N0 value. In the curves different identifiable steps can be noticed. This is

explained by the fact that new LT packets arrive in bulk which are the size of a RS de-

coded codeword. In this new system, each frame contains 4 RS codewords since the RS

code is kept constant and the removed RC has a rate of 1/4. As seen, the GE method

has a probability of decoding from a much lower packet number (even when the code

rate is 1) when compared to the BP algorithm decoder. This is thus the reason why

the GE decoder is expected to outperform the BP algorithm decoder and why the best

found data rate is at a higher value. The more gradual rise of the BP algorithm can be

explained from the fact that packets are decoded progressively as encoded packets get

received whilst for the GE algorithm it all gets decoded at once by solving the system

of linear equations. Following this procedure for both decoder implementations the LT-

modified simulation results can be observed in Figure 4.8, Figure 4.9 and Figure 4.10.

The results are summarised in Table 5 where in each row representing a different test

condition the best system is highlighted.

When compared to the results of the G3 systems from Figure 4.1, Figure 4.2 and

Figure 4.3, a few things can be said. Firstly, it is observed that for 2 of the 18 cases,

a non-negligible coding gain is observed. Both of the cases with positive results occur

under the best case channel conditions with a λ value of 1/0.015 and GE decoding. The

first is for the OFDM system with 252 symbols where a coding gain of up to about

1 dB can be observed followed by the OFDM system with 56 symbols where a coding

gain of up to about 0.5 dB is obtained. For the rest of the systems noise floors can be

examined which occur earlier than those of the unmodified G3 systems. It should also

be noted that for lower values of λ, systems start performing worse as the number of

OFDM symbols NSYM is decreased. This behavior is once again due to the worsening

performance of shortened RS codes as is the case with the benchmark systems. For

cases with a higher value of λ, the situation changes and systems with a higher NSYM
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Figure 4.8: BER vs Eb/N0 for LT-modified systems with 40 OFDM symbols, (21, 13)
RS and Q value of 10 over PLC channel with varying impulse rate parameter.
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Figure 4.9: BER vs Eb/N0 for LT-modified systems with 56 OFDM symbols, (30, 22)
RS and Q value of 20 over PLC channel with varying impulse rate parameter.

value can start performing worse. The reason behind this behavior is that as the NSYM

value increases and thus RS codeword length increases, so does the probability of there

being multiple impulses per codeword which results in a threshold of packets being cor-

rupted beyond the decoding capability of the decoder. Finally, in some cases it can be
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Figure 4.10: BER vs Eb/N0 for LT-modified systems with 252 OFDM symbols,
(141, 133) RS and Q value of 50 over PLC channel with varying impulse rate parameter.

seen that some systems using BP algorithm decoders slightly outperform systems using

GE decoders for a given value of λ. This is due to the fact that for the BP algorithm,

some packets which reach degree 1 get decoded even in the event of an overall decoding

failure. On the other hand for the GE decoder, a decoding failure mostly results in a

BER of 0.5. Thus for regions where decoding failures occur but some clean packets are

available, the BP algorithm decoder is favorable.

The core of the problem resulting in a worse performance in most of the test cases is

twofold: Firstly, the inner code is not strong enough to correct the errors and allow for

the LT code to operate successfully. Secondly, not enough information is provided by the

inner code for the LT decoder to pinpoint which packets have been corrupted in a batch

of packets the size of a RS codeword, resulting in too many packets being discarded.

Nevertheless, should it be deemed to be a worthwhile upgrade, it is recommended that

an adaptive system be implemented. In this adaptive system, an LT code should be

used when the channel conditions are deemed to be better than a certain threshold

and the original RC should be used when the channel conditions are below that same

threshold, resulting in a system which has the best available performance according to

the results presented. This topic can therefore be researched further to determine what
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Table 5: G3 and LT-modified G3 performance comparison.

System Eb
N0

G3 LT-modified G3 System

Specifications System BP GE

NSYM = 40 - - - -

λ = 1/0.003 16 4 · 10−3 3 · 10−1 3 · 10−1

λ = 1/0.009 16 1.5 · 10−4 9.6 · 10−2 1.7 · 10−1

λ = 1/0.015 13.5 1.2 · 10−4 6.1 · 10−2 7.5 · 10−3

NSYM = 56 - - - -

λ = 1/0.003 13 2.2 · 10−2 3.6 · 10−1 3 · 10−1

λ = 1/0.009 13 6.3 · 10−3 2.3 · 10−1 1 · 10−1

λ = 1/0.015 12 1.8 · 10−3 1.7 · 10−1 1.1 · 10−4

NSYM = 252 - - - -

λ = 1/0.003 13 1.5 · 10−3 4.5 · 10−1 5 · 10−1

λ = 1/0.009 12.5 1.3 · 10−4 2.5 · 10−1 2.2 · 10−1

λ = 1/0.015 9.5 9.8 · 10−2 7.5 · 10−2 1.2 · 10−3

the threshold conditions should be. It is theorised that the addition of a high rate LDPC

code either as an outer code as is done in raptor codes [15] or as an inner code [16] would

improve the performance problems in most cases but would also present the trade-off

of adding further complexity.

4.3 System Complexity Comparison

Differences in complexity between the G3 and LT-modified G3 systems originate

from the components that are not shared between them. Specifically, the differences in

complexity reside in the LT code component which has been concatenated as the RS

code, CC code and interleaver components are kept constant amongst implementations

which use the same number of OFDM symbols NSYM .

Encoding of LT codes is performed by the XOR of O(ln(k
δ
)) input packets on average

as this is the average degree of an encoded packet [12]. Each symbol XOR operation

is composed of l individual XOR operations resulting in an encoding cost of the order

O(log k) after simplification[53]. On the other hand for the decoder using BP, successful
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decoding can be achieved by k+O(
√
k · ln2 k

δ
) received encoded symbols with probability

1− δ which should require the XOR of O(k · ln(k
δ
)) packets on average [12]. In this case,

due to the frame size limit this number of symbols is not reached in most cases and

therefore decoding is usually performed with less operations. The upper bound of the

average cost for the decoding process using BP is therefore of the order O(k log k).

On the other hand, the decoder implementation with GE has an increased complexity

where a matrix with k rows is solved with costs the order of O(k3) [61].

As can be seen from the analysis, concatenating G3 systems with an LT code increases

performance under certain conditions but has the drawback of increasing complexity es-

pecially on the receiver side. The transmitter is considered to be of low complexity as

XOR operations are cheap to perform. AMR systems are typically asymmetric as they

are built as a network composed of several nodes (electrical/gas/water meters) commu-

nicating through the PLC channel with a centralised agent which then processes the

data [62]. This can be seen as a star network topology. Modification through the use of

LT codes would thus be well tolerated by the system as the receiver which has higher

complexity would be implemented in the centralised agent component which possesses

more available resources whilst only the transmitters with lower complexity would need

to be installed on the individual meter nodes.

During the decoding process, another variable that needs to be considered is the

delay brought on by the decoder. Specifically, decoding using GE can add considerable

delay as decoding only starts once at least k packets have been received which are then

all processed as a batch. Each time the process fails, a new received packet is added to

the matrices and the whole GE process restarts again. It has been shown that this delay

can be reduced by modifying the GE algorithm to process the received packet as they

arrive and not restart the GE process when decoding is unsuccessful if more packets are

still to be available [52, 63].

4.4 Conclusion from Simulation Results

It has been shown that current day systems provided by up-to-date standards such as

the G3 standard can be improved under certain conditions by concatenating them with
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a type of fountain code named LT code. This concept is demonstrated to successfully

improve the performance of G3 systems, by providing a non-negligible coding gain in 2 of

the 18 scenarios when using a GE LT decoder. An adaptive system is thus recommended

which changes based on the channel conditions and which uses GE decoding with an

optimal data rate based on the system used. The modification results in a complexity

trade-off which is investigated. It is noted that the added complexity can be well

tolerated considering that it resides mainly in the receiver and that in the context of

smart grid AMR applications the receiver is the centralised system which possesses more

available resources than the smaller units attached to the meters being monitored.
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Chapter 5: Conclusion

5.1 Research Summary

This research centres around the question “Can systems provided by current narrow-

band PLC standards be made more robust through the use of fountain codes, specifically

LT codes, such that a new system operates at a similar or better bit error rate value and

how does this modification affect the complexity of the system?”. Firstly, the literature

review is presented which examines what the various existing standards for narrowband

PLC are, what the various methods for modelling the PLC channel are, what time

diversity techniques exists and where they have been used in the context of PLC, and

finally what methods exist for simulating PLC systems. This includes discussions on

the advantages and disadvantages of each component as well as the reasoning behind

the choices made for this research. Secondly in Chapter 3, background information is

provided which allows for a better understanding of the research. This includes a de-

scription of all the individual components which are present in the PLC system such

as the various FEC schemes, modulation techniques and channel model. From these

components, two sets of systems are implemented where one is based on G3 systems

operating in robust mode and the other set is based on a modification of the G3 systems

which use an LT code as opposed to an RC code. Thirdly, the results of the paper which

has been submitted to the IEEE Transactions on Consumer Electronics are shown in

chapter 4. From these results, it is seen that it is indeed possible to improve some of

the robust G3 systems through the use of LT codes provided that the channel impulse

conditions are better than a certain threshold. Finally, a conclusion is drawn in this

chapter.
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5.2 Recommendations and Possible Future Work

Following the results of this research several new directions could be taken for the ad-

vancement of knowledge. Firstly, a physical implementation of the G3 and LT-modified

G3 systems using the hardware mentioned in Section 2.4.1 could be used to verify the

obtained results. Secondly, further test programs could be implemented to determine

the exact λ threshold values at which point LT-modified G3 systems start being out-

performed by the original G3 systems. This would give a boundary condition which

the adaptive scheme could rely on following channel estimation. Thirdly, an LDPC

code could be added to the FEC chain either before or after the LT code to determine

whether the performance problem could be overcome. A further complexity analysis

would then need to be performed on the modified system to identify what the new

complexity trade-offs would be.

5.3 Conclusion

The answer to the research question “Can systems provided by current narrowband

PLC standards be made more robust through the use of fountain codes, specifically LT

codes, such that a new system operates at a similar or better bit error rate value and how

does this modification affect the complexity of the system?” is as follows: Yes, current

narrowband PLC standards can be made more robust through the use of LT codes

using GE decoding with an appropriate code rate but not under worst case channel

conditions. There exists an impulse rate parameter λ threshold value from which LT-

modified G3 systems start being outperformed by the original G3 systems which use RC

when comparing BER vs Eb/N0 performances. Performing this modification does have

a complexity trade-off as the addition of an LT encoder and decoder to the FEC chain

increases complexity. It is observed that this complexity increase is more prominent

on the receiver side as the transmitter component mostly uses the XOR operation

which is not considered to be a costly operation. As this type of communication is

typically used in AMR applications, the complexity can be well tolerated. This is due

to the fact that AMR systems are usually built around a star network topology where

a centralised receiver node which possesses more processing resources is connected to

several measurement nodes which transmit data to it. The LT decoder would therefore

be implemented on this centralised receiver whilst the measurement nodes with less
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processing capability would only be fitted with an LT encoder. An adaptive scheme is

thus recommended which makes use of either LT codes with GE decoding or an RC

depending on the channel conditions.
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Appendix A: Derivation of Inverse CDF Sampling

Formula for Exponential Distribution

The PDF of the exponential distribution is defined as follows:

fX(x) =

λe
−λx x ≥ 0

0 x < 0

The CDF of the exponential distribution can then be obtained by integrating the PDF

FX(x) = P [X ≤ x] =

∫ x

−∞
fX(x) =

∫ x

0

fX(x) (43)

∫ x

0

fX(t)dt =

∫ x

0

λe−λtdt (44)∫ x

0

λe−λtdt = e−λt|x0 = −e−λx − (−e−λ0) (45)

Which results in

FX(x) =

1− e−λx x ≥ 0

0 x < 0

Inverse CDF sampling functions by generating random samples uniformly distributed

between 0 and 1 to then find the matching X along the curve. Let U be this uniformly

generated random variable.
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Appendix A: Derivation of Inverse CDF Sampling Formula for Exponential
Distribution

U = 1− e−λX (46)

1− U = e−λX (47)

ln(1− U) = −λX (48)

ln(1− U) = −λX (49)

X = − ln(1− U)

λ
(50)

Samples can then be generated by generating new samples U and substituting them

into (50).
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