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ABSTRACT

The cluster analysis of gene expression data is an important unsupervised learning method
that is commonly used to discover the inherent structure in the large amounts of data
generated by microarray measurements. The focus of this research is to develop a novel
clustering algorithm that adheres to the definition of unsupervised learning whilst min-
imising any sources of bias. The developed diffractive clustering algorithm is based on
the fundamental diffraction properties of light, which presents a novel view and frame-
work for clustering data. The algorithm is tested on multiple cancerous tissue data sets
that are well established in the literature. The overall result is a clustering algorithm
that outperforms the conventional clustering algorithms, such as k-means and fuzzy c-
means, by 10% in terms of accuracy and more than 30% in terms of cluster validity. The
diffraction-based clustering algorithm is also independent of any parameters and is able
to automatically determine the correct number of clusters in the data.
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1 INTRODUCTION

The DNA microarray is a recently developed technology which enables biologists to mea-
sure gene expression profiles for thousands of genes simultaneously. The manufacturing
of a DNA microarray commonly involves placing spots onto a glass film, where each spot
represents a gene. A quantitative measurement is obtained from the number of comple-
mentary DNA (cDNA) hybridisations to the microarray. The number of hybridisations
can be estimated using fluorescent markers attached to the cDNA samples together with
laser imaging techniques [1].

The two main types of commercially available microarrays are cDNA chips and oligonu-
cleotide chips, with the difference being in the manufacturing technique. The initial
experiments performed using these chips have suggested that genes of similar function
have similar expression profiles [2]. The data obtained from microarray experiments
however is still accumulating and the biological importance being assessed.

Microarray measurements, which are currently being developed for cancer patients, allow
for faster and more accurate diagnosis than previous clinical methods [3]. The genome
however is large and as a result the amount of collected data is large. This, together with
only a small number of samples presents a data analysis problem that is well suited for
clustering [3–6]. The initial step therefore is to find patterns, assuming they exist in the
genome, and then build classifiers from which more accurate and faster diagnoses can be
achieved.

A problem with cluster analysis is determining the correct number of clusters in a high-
dimensional data such as those obtained from microarrays. The purpose of this work is
to develop a clustering algorithm that can automatically determine the correct number
of clusters whilst successfully clustering the data. The developed unsupervised algorithm
is also expected to cluster arbitrarily shaped clusters, which is commonly absent for most
other clustering algorithms. The high-dimensional space also remains a challenge since
the distance metrics, such as the Euclidean metric, are not as effective when the dimension
increases [7].

A common solution to the dimensionality problem involves reducing the dimensions of
the data prior to cluster analysis using an appropriate mapping technique. The most
recognised and used technique is principal component analysis (PCA). It has however
been shown that PCA performs inadequately for clustering gene expression data [8]. The
idea of using non-linear reduction techniques on expression data, such as isometric map-
ping (ISOMAP), has been tested with surprising results that outperform linear techniques
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like PCA [9].

The large amount of information embedded in the genome is hard to analyse statistically
and is often compounded with noise from external factors like laboratory equipment.
The supervised learning techniques, along with selecting feature genes to aid analysis,
have been shown to perform exceedingly well in the literature [10–12]. The problem
is that supervised learning techniques, like feature gene selection, make use of a priori
information and in a sense are biased towards what information is used and how it is
used. The benefit of unsupervised techniques is that the bias is minimised as much as
possible, since the techniques do not require any predetermined information pertaining
to the data.

The clustering analysis is focused on microarray data particularly those obtained from
cancerous tissue samples. The data sets analysed are the Golub, Microarray Innovations
in LEukaemia (MILE), Khan, Shipp and the Pomeroy data set [10,13–16]. The aforemen-
tioned data sets cover acute myeloid leukaemias, acute lymphoblastic leukaemias, small
round blue-cell tumours, diffuse large B-cell lymphomas and central nervous system can-
cers respectively. The data sets therefore cover a number of cancers which allows for the
robustness of the developed clustering algorithm to be examined.

A flow diagram, shown in figure 1.1, illustrates the various steps involved in analysing
microarray data. The data representing the gene expression levels is often normalised to
correct for background effects and random noise due to different microarray chips. After
the data is normalised gene selection or clustering is performed to filter down and select
the most important features of the data. The selected genes can then be used to train
a classifier for making predictions and diagnosing a patient. The other possible route,
which is used in this dissertation, is to automatically discover subtypes in the data.

It is also common to validate the functions of the selected genes and test their biological
significance using an ontology. The gene ontology (GO) is a collaborative effort which
has standarised the vocabularies describing gene products in terms of biological processes,
cellular components and molecular functions [17]. The use of the GO for profiling groups
of genes, and testing the statistical significance of the results produced, is currently an
active area of research [18].

The research goal is to accurately predict subtypes in cancerous tissue data in an unbi-
ased and unsupervised autonomous fashion. The various techniques that are capable of
preforming in this manner are to be tested using well known data sets on cancerous tissue
samples. The results obtained are also to be validated by using appropriate methods and
comparison criteria.
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Figure 1.1: Various steps involved in analysing microarray data.

A novel technique was discovered which was derived using a physical and mathematical
framework based on light diffraction. The author derived the technique independently of
any sources and only later discovered its surprising similarity to scale-space clustering,
which is derived using a probabilistic framework [19]. To the best knowledge of the author,
this dissertation represents the first use of the scale-space algorithm (and obviously by
virtue of its novelty, the diffraction clustering algorithm) on gene expression data.

The dissertation is organised in the following manner: Chapter 2 provides the necessary
background on the biology and technology for measuring gene expression levels, an ex-
planation on supervised learning classifiers with a description on unsupervised clustering
algorithms that are used for comparison. Chapter 3 provides the tools used for standar-
dising and transforming the data to a lower dimensional space. Chapter 4 outlines the
various performance measurements and indices for validating the clustering results.

In Chapter 5 the derivation of the novel diffraction based clustering algorithm, which
represents a contribution of this dissertation, is presented. Chapter 6 presents the results
obtained from the various algorithms and data sets. Chapter 7 summarises the important
findings and suggestions for future development of the algorithm and work.
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2 BACKGROUND

In order to understand the problem of clustering gene expression data an overview of
the relevant biology, employed technology and commonly used statistical methods are
covered. The visualisation tools used on the results of microarray experiments are also
presented in order to illustrate the various representations of the data. A brief description
on some of the main supervised learning techniques and networks is also presented. The
focus of the research however is cluster analysis and as such a comprehensive descrip-
tion explaining the terminology, distance metrics and different clustering algorithms is
provided.

2.1 Description of Relevant Biology

In order to understand the volume and nature of the data pertaining to gene expressions,
the biology of cells and their mechanism to replicate and code information should be
understood. A cell can be divided into two classes prokaryotic and eukaryotic, with the
latter containing a "true" nucleus i.e. has a nuclear membrane. A simplified diagram of
a eukaryotic cell is shown in figure 2.1.

The cell is enclosed and protected by a phospholipid bilayer with the nucleus embedded
in the cell’s cytoplasm. The nucleus has its own nuclear envelope with nuclear pores
sited around it to allow for the DNA (deoxyribonucleic acid) to interact with the rest
of the machinery in the cytoplasm. The DNA molecule is a double helix of comple-
mentary strands with nitrogenous bases: adenine, cytosine, guanine and thymine. The
complementary bases adenine and thymine are joined by hydrogen bonds, similarly for
the complementary bases cytosine and guanine.

The cell uses DNA to transmit its hereditary information to the next generation via
segments of the DNA called a gene [20]. The information transmitted by the DNA
pertains to the construction of proteins, which are the functional units of life. All proteins
consist of about 20 different amino acids that are covalently bonded in a sequence. The
DNA molecule therefore acts as a linear translation platform in which triplet sequences
of nucleotides code for every amino acid.

The genome is all the genetic material and collection of genes that is required by an
organism to produce its proteins [20]. The human genome has about 30 000 to 40 000
genes whereas a simple yeast cell has about 6 000 genes [20]. The remarkable fact of life
is that every multicellular organism has its entire genome contained in every cell [3]. The
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Figure 2.1: Relevant features pertaining to the eukaryotic cell.

cells of different tissues however can differ in terms of the amount and type of proteins
produced in the cells.

A gene is said to be expressed if the protein which it codes for is produced or synthe-
sized [3]. In an average human there are expression levels for about 10 000 different genes,
which is collectively referred to as the expression profile of the cell [3]. A large number
of genes located in all the cells of an organism share common functions, metabolism be-
ing such an example. The various internal and external factors however can adjust the
amount of some gene expressions in different cells and even in the same cell.

The ribosomes are the protein synthesizing factories for the cell. As illustrated in fig-
ure 2.1 the ribosomes are situated outside the nucleus in the cytoplasm whereas the DNA
is protected inside the nuclear envelope. The direct interaction is therefore broken be-
tween the ribosomes and genes. The communication occurs via a linear molecule called
messenger ribonucleic acid (mRNA), which is an exact copy of the gene that is being
expressed.

The mRNA is transcribed inside the nucleus and transported out to the ribosomes where
it is translated into amino acids and subsequently into protein. A single gene is able to
produce numerous identical protein molecules by manufacturing multiple copies of the
corresponding mRNA molecule, as illustrated in figure 2.2.

The amount of protein produced can differ for a cell in which case the expression level for
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Figure 2.2: Transcription and translation of mRNA into protein.

each gene is regulated by what is known in current research as regulatory networks. The
transcription process of the gene into mRNA is regulated by factors known as transcrip-
tion factors [3]. The transcription factors bind to upstream promoter elements (UPEs) or
an enhancer which increases the accuracy and rate of mRNA synthesis respectively [20].
The transcription factors can also be used to repress the expression of a certain gene.
The gene expression profile therefore provides information about the biological state of
the cell, and is measurable through the concentration of the respective mRNA molecules
produced by a cell.

The direct proportionality between mRNA molecules and the amount of proteins ex-
pressed is an assumption. The relationship is in fact more complicated as there are
several post-translational steps involved which affect the ratio of mRNA to protein con-
centration. The assumption however is used and validated by the numerous measurements
performed thus far on the human genome. The following section deals with the technol-
ogy and devices that are used to capture and measure the gene expression profile for a
cell.

2.2 The DNA Microarray

The essentials of the microarray device, and the respective microarray experiments, are
discussed in order to understand the capabilities of this technology. A brief discussion

15



on the fabrication process is also provided and includes the two most common types of
microarrays.

The importance of this technology lies in the fact that microarrays can measure the ex-
pression levels for thousands of genes simultaneously during essential biological processes
across collections of related samples [1]. Specifically the microarray measures the amount
of mRNA in a cell, which is quantitatively related to the amount of protein synthesised [1].
The amount of mRNA for various genes is assumed to be directly proportional to the
gene expression levels [4].

The various applications for microarray include: the comparison of different tissues, ef-
fects of drugs on a cell and understanding aging or fetal growth development [4]. A list
of some of the fields that also benefit from this technology include: drug development,
comparative genomics, diagnosis and functional genomics [4].

The basic structure of the DNAmicroarray, shown in figure 2.3, consists of a substrate (sil-
icon, glass or plastic) onto which single stranded DNA molecules, each with different se-
quences, are deposited [4]. The single stranded DNA molecules are referred to as probes,
and are arranged in a regular grid-like pattern on the substrate [21]. The types of probes
deposited on the substrate depends on the purpose of the array. An array for example
can be deposited with an arbitrary set of probes to uncover a general set of queries [4].

Labelled cDNA

mRNA

Target Tissue

Probe

DNA Microarray

SubstrateHybridised DNA
Microarray

Figure 2.3: Illustration of the DNA microarray.

16



The two main types of microarray fabrication include in situ synthesis and the deposi-
tion of pre-synthesized single-sided DNA fragments [22]. The latter fabrication process
involves either the deposition of polymerase chain reaction amplified cDNA probes or the
printing of pre-synthesized oligonucleotides [22]. The former technique employed for in
situ synthesis of probes is usually a photochemical process known as photolithography [1].

The advantage of in situ synthesis is that the probe sequences are known exactly in
contrast to the pre-synthesized technique. The disadvantage however of in situ synthesis
is that the size of the probes are usually limited, which results in a target gene having to
be represented by about 20 probes [4].

The Affymetrix technology, which can measure up to 20 000 genes, follows the in situ type
fabrication process, together with a match/mismatch probe strategy [4]. The millions of
deposited perfect match probes (25 nucleotides in length) are made identical to the target
sequence or gene, whereas the mismatch probes also 25 nucleotides in length, have a single
nucleotide changed at the centre position.

The mismatch probes are used to estimate the lack of hybridization or background inten-
sity of the captured image. The average difference is commonly used by the Affymetrix
software, and is defined for N probes per gene as

Gene Expression Value =

N∑
i=1

(Pi −Mi)

N
, (1)

where Pi and Mi denote the ith perfect match and mismatch probe respectively. The
average difference in equation 1 provides a quantitative measure for the gene expressions
across the 20 probe pairs for each gene [4].

The procedure for measuring gene expressions firstly involves extracting the mRNA
molecules of a biological sample and then reverse transcribing them into complemen-
tary DNA (cDNA) sequences. The sample containing these cDNA molecules is often
referred to as the target [4]. The target sample is then transcribed back to cRNA that
is labelled with biotin. The solution is then placed onto the array where it diffuses and
hybridises to the corresponding probes. The mixture is then washed, stained and finally
exposed to an appropriate light source with the correct wavelength for excitation of the
dye. The image captured contains multiple features, or hybridised spots, with the inten-
sity of each feature related to the amount of mRNA [1]. The various steps of a microarray
expression study are shown in figure 2.4.
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Figure 2.4: Oligonucleotide array with the steps involved in an expression study.

The two different types of microarray expression studies include single-channel and multi-
channel experiments. In a single-channel type experiment only one sample target is
labeled and measured. In a two-channel experiment, for instance, there are two target
samples each with a unique colour dye for labelling. The advantage of a two-channel
experiment is that it only requires a single microarray for the comparison of two different
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samples and is therefore more cost effective [4].

The format of the data collected from an experiment is usually expressed as a matrix
Ng×Ns, whereN represents the number of genes or samples [3]. The entries of the matrix,
Egs, represent the expression level for gene g and sample s. The size of an expression
matrix is considerably large especially when one considers that a typical experiment
involves 7 000 genes with a 100 samples.

The DNA microarray is therefore a useful and capable tool for measuring the large
amounts of data embedded in the human genome. The most important aims when
analysing a gene expression experiment, as mentioned by Domany [3], can be summarised
as follows:

1. Identifying the genes, using their expression profiles, that are associated with can-
cers and other important processes.

2. Partition tumors into classes based on their expression profiles and in familiar clin-
ical classification. Expression profile classification can be used as a diagnostic or
therapeutic tool.

3. Use the data analysis to obtain information relating to the unknown functions of
certain genes.

2.3 Statistical Analysis and Feature Selection

The DNA microarray, unfortunately, is not immune from the variety of noise sources that
compound to the variability of the gene expression measurements. The variation caused
by the laboratory procedure and protocols for example makes it difficult to distinguish the
inherent variation due to differentially expressed genes. The sources of noise due to the
laboratory procedure include: mRNA preparation, transcription, labelling, hybridization
parameters (temperature, time etc.) and contaminants that effect the image analysis.

2.3.1 Statistical testing

The classical approach to analysing microarrays involves defining the type of problem
based on two different criteria [4]. The criteria are given as:

1. Number of samples

2. A priori knowledge of the distribution
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The number of samples can range from one to many samples. The second criterion
includes parametric testing and non-parametric testing. A test is parametric if the data
are assumed to have a specific distribution in contrast to a non-parametric test where
there is no a priori knowledge of the distribution [4].

The statistics commonly used on the microarray data include the F -statistic, the chi-
square statistic and the Student’s t-statistic [4]. The F -statistic can be used to determine
if the variance of the control subjects is different from the variance of the patients [4].
The chi-square is also another variance testing statistic that can be used to evaluate the
performance of new microarray technology [4].

t-Statistic

The t-statistic is used on two different samples in order to evaluate whether the samples
have a distribution with the same mean, and is defined as

t =

(
X̄1 − X̄2

)
− (µ1 − µ2)√

s2
1
n1

+ s2
2
n2

, (2)

where, for the ith sample of size ni, the population mean is given as µi, the sample mean
as X̄i and si as the sample standard deviation.

The t-statistic in the context of microarray analysis is often used to determine whether
a gene expression is stochastic or regulated between cancer and healthy patients for
example. The F -distribution is also used prior to calculating the t-statistic in order to
determine if the samples have the same variance [4].

The t-statistic, however, is limited when there are multiple parallel comparisons to be
made, which is a typical procedure performed in a microarray experiment. The problem
occurs because of the chosen significance level and applying the t-test multiple times to
each gene separately. A microarray, for example, can have up to 10 000 genes, which
implies that for a significance level of 5% that 500 genes will appear to be regulated,
when in fact they could have changed randomly [4].

ANOVA

The testing paradigm called analysis of variance (ANOVA), another classical statistical
tool, is able to avoid the increase in error introduced from multiple group comparisons [4].
The basic operations and steps involved in ANOVA are described as follows:

20



1. ANOVA calculates the mean for each group (e.g. cancer type).

2. The overall mean is calculated across all groups.

3. The within-group variation is calculated, which is the difference between each point
and the group mean.

4. The between-group variation is calculated, which is the deviation between the group
mean and the overall mean.

5. The final calculation is the ratio of the between-group variation to the within-group
variation, which is known as the F -statistic.

The ANOVA test has two types of models with each model either being a one-way or
two-way model. The type I model specifically compares each condition for a difference
in expression, whereas a type II model treats the conditions as random [4]. The one-way
model only considers a single factor to contribute to the variability of the results, namely
the genes [4].

In a two-way ANOVA model more than one factor is considered to affect the variability
of the data, the genes and the microarray platforms [4]. The difference between model
types I and II for the ANOVA tests is illustrated by the partitioned sum-of-squares

St = Sc + Se, (3)

St = Sc + Sa + Se, (4)

where St is the total sum, Sc is the condition sum, Se is the error sum and Sa the array
sum [4]. The aforementioned sum-of-square terms can be defined, for sample Xij with k
number of genes and n number of conditions, as follows

St =
k∑
i=1

n∑
j=1

(Xij −X..)2 , (5)

Sc =
k∑
i=1

n∑
j=1

(
X̄i. − X̄..

)2
, (6)

Se =
k∑
i=1

n∑
j=1

(
X̄ij − X̄i.

)2
, (7)

Sa =
k∑
i=1

n∑
j=1

(
X̄.j − X̄..

)2
, (8)

X.. =
k∑
i=1

n∑
j=1

Xij. (9)

21



The ANOVA procedure determines whether a gene is statistically significant and therefore
differentially expressed in any of the multiple conditions tested, however it does not
indicate which specific condition(s). The post hoc tests, as described in table 2.1, can be
used with ANOVA to determine which conditions are statistically significantly different
from one another.

Table 2.1: Post hoc tests used to determine which conditions are significant.

Test Description
Tukey Means for each condition are ranked in order of magni-

tude, lowest mean gets a value of 1. The pairwise differ-
ences between means are tabulated between each group
pair and divided by the standard error. The resulting q
value is compared to a studentised range critical value,
and if the q value is larger then it is deemed statistically
significant.

Student-Newman-Keuls Similar to the Tukey test with exception of the critical
value. All the q values are compared to a different crit-
ical value which makes the test less conservative com-
pared to the Tukey test.

Multiple testing corrections

Multiple testing correction procedures are able to mitigate the problem encountered by
the statistical tests, which is the increase in false positives as the number of comparisons
increases. The main problem in statistical tests is selecting a suitable confidence level
known as the p-value. A typical p-value is 5% which is the probability of a false positive
occuring (1 in 20).

The choice of the p-value however ultimately depends on the stringency of the experiment
and expected quality for the results. The following information on the methods for
multiple testing correction is summarised from the manual describing Agilent technologies
for gene expression analysis [23].

The four main types of multiple testing correction techniques are listed as follows:

1. Bonferroni

2. Bonferroni-Holm step-down

3. Westfall and Young Permutation

4. Benjamini and Hochberg false-discovery rate
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The list is ordered in terms of the technique’s stringency level; for example the Bonfer-
roni method is the most stringent compared to the Benjamini and Hochberg correction
method. The stringency of the method determines the false-discovery rate and therefore
how many false positives are encountered. The obvious trade-off is that as the stringency
increases, a lower selected p-value, the false negative rate increases i.e. more significant
genes fail hypothesis test.

Bonferroni The Bonferroni method multiplies the p-value for each gene by the total
number of genes Ng. The resulting number is compared to the error rate (assumed to be
0.05), as shown in the relation

Corrected p-value = p-value×Ng < 0.05. (10)

If the result is smaller than 0.05 the gene is selected as it is deemed to be significant. An
example is that if there are 10 000 genes then the corrected p-value will have to be below
5× 10−6 for it to be considered significant.

Bonferroni-Holm step-down The Bonferroni-Holm step-down approach is similar
to the Bonferroni method, however the stringency is reduced by altering the correction
factor as listed in the following steps:

1. Genes are ordered from smallest to largest according to their p-values.

2. The first gene is tested using equation 10.

3. The second gene is tested using the relation

Corrected p-value = p-value× (Ng − 1) < 0.05. (11)

4. The rest of the genes are tested using similar formula with the Ng term altered by
the gene’s position in the ranking.

The method continues along the list of genes until there are no more genes found signifi-
cant or until a certain user-selected number of genes is reached.

Westfall and Young permutation The Bonferroni and Holm methods are called
single-step procedures as each p-value is corrected independently. The Westfall and Young
method uses the fact of dependence between genes and permutes all the genes at once.
The Westfall and Young procedure is similar to that of the Holm step-down method
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except that it also permutes the genes to find the distribution, as listed in the following
steps:

1. The p-values of the original data set are found and ranked according to their
size (base test).

2. An artificial data set is created by permuting the genes into either a control or
treatment set.

3. The p-values are recalculated for the pseudo-data set and ranked.

4. The minimal p-values are retained and compared to the original p-values.

5. The process is performed multiple times with the final adjusted p-values consisting
of those which were lower than the base test by some proportion.

The Westfall and Young method however is the slowest technique especially for large
permutations of the data set.

Benjamini and Hochberg false discovery rate The Benjamini and Hochberg false
discovery rate is the least stringent method, and as a result tolerates more false positives.
The method however still minimises the number of false negative genes to a respectable
amount. The procedure is outlined as follows:

1. The p-values are ordered from smallest to largest.

2. The largest p-value remains the same.

3. The second largest p-vale is multiplied byNg, divided by its rank and then compared
to the threshold using the relation

Corrected p-value = p-value× Ng

Ng − 1 < 0.05. (12)

4. The remaining genes are tested using similar formula with the correction factor
altered by the gene’s position in the ranking.

The Benjamini and Hochberg method is a good alternative to the other family-wise error
rate techniques. The difference being that the false discovery rate method determines the
percentage of genes selected as significant that occurred by chance i.e. false positives. The
Benjamini and Hochberg method is the recommended technique as it is the least stringent
and offers a good balance between statistically significant genes and false positives.
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2.3.2 Feature selection

A significant and crucial problem to solve in microarray data analysis is selecting genes
that are highly correlated with a specific phenotype or class. The data obtained from
microarrays also contains a large number of irrelevant and redundant genes that can be
filtered out in order to reduce the dimensionality of the gene feature space. The filtering
of the genes should also be performed before feature selection, as it reduces the number
of false positives.

To clarify the previous statement an analogy of say splitting 50 people into two random
groups is often used [24]. The characteristics of the people (height, weight, age etc)
are endlessly measured such that many differences arise between the two groups. The
differences may reflect real biological changes, in terms of the microarray experiment, but
many will be a result of chance. The requirement therefore is to filter out genes before
analysis is carried out in order to reduce the number of false positives [24].

It is shown in literature that not more than 10% of the genes commnoly used in acute
lymphoblastic leukemia studies are actually related to cancer classification [10]. It is
therefore necessary to search for those genes which distinguish the biological process
under investigation. The main task of feature selection is therefore to reduce the dime-
nensionality of the data as much as possible whilst retaining the most relevant genes of
the different conditions.

The reason for reducing the dimensionality using feature selection is that it can improve
classification predictors and the performance of clustering algorithms. The other benefits
of a low-dimensional space include improvement in visualisation of the data and significant
improvement of the signal-to-noise ratio.

The two common procedures for achieving dimension reduction are called feature selec-
tion and feature extraction [11]. In feature selection a test is performed whereby the
features (genes) that contribute the most to the class separability are chosen. The test
can either be a univariate approach whereby the features are ranked, or multivariate
where a criterion function is optimised.

The other approach, feature extraction, deals with the linear or non-linear mapping of the
data set from the original high-dimensional feature space to a lower-dimensional feature
space. The transformation operation can also be supervised or unsupervised, where in
the former case some criterion of separability or predictability is maximised, as shown by
Bair et al [25].

The feature selection problem is more formally defined as the subset of features p that,
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given m set of features and n labeled samples, maximises and contributes the most to
class discrimination. The number of possible subsets representing the feature space is the
following choose function

(
m
p

)
. The total number of subsets is therefore large even for

reasonable values of m and p.

To overcome a large feature space, heuristic techniques such as sequential forward or
backward selection have been developed [11]. The techniques use an objective function
which is maximised each time a feature is either added or removed respectively. The
feature selection techniques can be categorised into three main groups depending on how
they are integrated with the classifier: filter methods, wrapper methods and embedded
methods [11].

The filter method utilises a statistic or an informative criterion, such as the Pearson
correlation coefficient defined as

RXY =

n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
(n− 1)σXσY

, (13)

from which a rank for the features or genes can be determined.

The top p ranking genes are selected and used to train or test the classifier. In wrapper
methods a search strategy is implemented, such as sequential forward or backward selec-
tion, for the best subset of features. The performance of a classifier is used to evaluate
the feature selection and as such is wrapped around the algorithm of the classifier [11].
Embedded methods however are those that are built into the classifier architecture, with
the features selected as part of the particular classifier [11].

2.4 Microarray Data Visualisation

The visualisation of microarray data can be accomplished using a variety of techniques.
The form of the microarray data however is important and determines which technique
is used for visualisation. The three major forms of gene expression data include: time
series, identical parameters and non-identical parameters [26]. The time series data are a
collection of gene expression profiles that are taken over specific time intervals. The iden-
tical parameter data are obtained when the samples from different patients are arranged
in a two-dimensional grid and compared. The non-identical parameter data are obtained
when there are parameters for many different sets of observations or conditions [26].

The various visualisation tools and techniques are summarised, as shown in table 2.2,
from the findings of Prasad and Ahson [26]. The abbreviated applications in table 2.2
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stand for the following: Self-Organising Map (SOM), Support Vector Machine (SVM),
Principal Component Analysis (PCA) and Hierarchical Clustering (HC).

Table 2.2: Visualisation techniques for microarray data.

No. Visualisation Tool Description Application
1 Clustering view (tem-

poral)
Waves illustrate the genes
across the time sequence.

SOM, SVM, k-means,
HC and PCA

2 Heat map Colour display for variation
in expression intensity

SOM, k-means, SVM
and HC

3 Dendrogram Gene tree, array tree and
colour coded bands of gene
expression.

HC

4 Scatter plot Plots genes after PCA. Data
points are plotted on axes.

PCA

5 Box plot Box representing interquar-
tile range and median

Raw and preprocessed
data

The clustergram or dendrogram is often used to visualise the hierarchical clustering results
of gene expression data. The Golub data set was filtered using a one-way ANOVA test
with a p-value cutoff of 3%, the results of which are shown in figure 2.5. It is clear from
the vertical colour separation in figure 2.5 that there are two distinct classes of cancer,
which for this data set are the acute myelod leukaemia (AML) and acute lymphoblastic
leukaemia (ALL) classes [10].

The red coloured blocks in the dendrogram illustrate genes that are expressed above the
mean, which is coloured black, and green for genes that are below the mean for the data
set. The tree diagram or hierarchical structure of the genes and samples are shown on the
vertical and horizontal axis respectively. The genes can also be annotated as is illustrated
by the gene accession numbers on the vertical axis in figure 2.5. The genes and samples
are arranged such that similar expression values are situated next to each another, which
allows for a clear representation of the distinct classes.
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Figure 2.5: Dendrogram of the Golub data set using 51 ANOVA-selected feature genes.

The most common representation of raw and preprocessed expression data is a diagram
called a box plot. The box plot for a generic example is shown in figure 2.6, where the
line in the middle of the box represents the median. The superior edge of the box is the
upper quartile (75%) and the inferior edge is the lower quartile (25%). The box has two
tails defined as one and a half times the interquartile range, with the data points outside
the tails referred to as outliers [4].

The measured data can also be visualized using a scatter plot, whereby the gene ex-
pressions for the first experiment or condition are represented by the horizontal axis and
the expressions for the second experiment or condition are represented by the vertical
axis [4]. The scatter plot is also useful for displaying the principal components of the
data set. An example of a scatter plot for the first two principal components of the Golub
data set is shown in figure 2.7. The principal component analysis is unable to recover
the distinct classes in two dimensions, as shown in figure 2.7. An enhanced method such
as isometric mapping (ISOMAP) is better suited for recovering embedded structure in a
high-dimensional space, as discussed in section 3.2.3.
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Figure 2.6: A box plot for gene expressions under two conditions.
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Figure 2.7: Scatter plot using the first two principal components of the Golub data set.
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2.5 Supervised Learning

In supervised learning the class labels are supplied as a training data set which is used
to build up a model. A signal therefore exists that is used to train and test the classifier.
The most common supervised learning techniques are artificial neural networks, support
vector machines and naïve Bayes [27].

The statistical analysis of class prediction is an important problem involving gene ex-
pressions and has received considerable attention in recent times [27]. The problem is
essentially to predict the diagnostic category of the patient using their gene expression
profile. The challenges of supervised learning in the context of microarray studies are:

1. The gene or feature space is large.

2. The number of samples or training set is relatively small.

3. Finding feature genes, without bias, that contribute significantly to the different
classes.

A brief discussion on the three main types of classifiers is given in order to illustrate the
similarities and processes involved in supervised learning methods.

2.5.1 Artificial neural networks

A data set can be used to train a classifier using algorithms such as gradient descent
or particle swarm optimization. The most common and best performing architecture is
usually an adaptation of the artificial neural network (ANN) [28]. An illustration of a
generic layered artificial neural network is shown in figure 2.8.

The number of hidden layers add complexity to the network, with the overall size of
the network related to the dimensions in the sample space [29]. The artificial neural
network, and its numerous variations, have been proven to be a valuable network for the
classification of gene expressions [30].

The use of stochastic networks is also an attractive field, and includes the Hopfield model
and the Boltzmann machine [29]. The computing units are treated with stochastic be-
haviour such that each unit computes at different times, with the result of computation
provided at a variable amount of time [29]. The minimization of an energy function can
also be used to express the solution of the problem domain. The introduction then of
thermal noise into these types of networks can prevent the network from reaching local
minima.
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Figure 2.8: A generic layered ANN, adapted from Rojas [29].

2.5.2 Support vector machines

Considering a gene expression experiment in which there are n genes and m experiments,
a m-element vector xi can be constructed for the ith gene, where 1 ≤ i ≤ n. A binary
classifier simply constructs a hyperplane which separates class members and non-class
members. The problem is that in most circumstances a hyperplane, that separates the
two classes, does not exist [31]. A solution to this inseparability problem is to map the
data to higher-dimensions and construct a plane in that space [31].

The drawbacks associated with mapping the data to a higher-dimensional (feature) space
include the problem becoming computationally expensive and trivial solutions overfitting
the data. Support vector machines however overcome these problems by choosing a maxi-
mum margin separating plane that prevents overfitting. Also by using a decision function
that only uses vector dot products the requirement of defining the vectors explicitly in
the high-dimensional space is removed [31].

The support vector machine consists of a kernel function, which acts as the dot product in
the feature space, and a stringency parameter for the margin of the separating plane [31].
The parameters are usually dependent on the data set. The simplest kernel function that
can be defined for genes x and y [31], is given by

k (x,y) = x · y, (14)

=
m∑
l=1

xlyl. (15)

The kernel function defined in equation 14 is adjusted to k (x,y) + 1, for technical rea-
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sons [31]. The kernel can also be raised to a general power d to obtain a polynomial
separating surface, and is given as

k (x,y) = (x · y + 1)d . (16)

The radial kernel, using the Gaussian function, is also commonly used and is defined as

k (x,y) = e
−‖x−y‖2

2α2 , (17)

where α is the width of the Gaussian. A kernel matrix can be defined K which is usually
modified to alleviate erroneous classifications produced from noise in the data [31]. The
noise can be reduced by shifting the diagonal of the matrix by some constant, as shown
in the following

Kij := Kij + Iλ
(
n+

N

)
, (18)

where n+ is the number of positive training examples, N is the total number of training
examples and λ is a scale factor [31]. The support vector machine has been shown to be
successful at classifying gene expressions, however, in the case of Brown (et al) the classes
that were selected prior to analysis formed clusters in the input space [31]. The process
is therefore open to various sources of bias which should be illustrated and examined.

2.5.3 Naïve Bayes networks

The naïve Bayes is a probabilistic classifier as opposed to neural networks and support
vector machines which are both deterministic. The naïve Bayes classifier is based on
Bayes’ theorem with naïve independence assumptions [32], as shown by the following

P (C|F1, ..., Fn) = 1
Z
P (C)

n∏
i=1

P (Fi|C) , (19)

where Z is a normalisation factor that depends on the features Fi, 1 ≤ i ≤ n, and C

being the dependent class variable. The naïve Bayes classifier maximises the conditional
probability defined in equation 19. The classifier is able to avoid the high-dimensional
feature space as it only uses the products of the assumed independent features.
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2.6 Unsupervised Learning

The different types of machine learning generally include supervised learning, reinforce-
ment learning and unsupervised learning [33]. In supervised learning the correct output
is supplied along with the input data to the network, with the error between the sets
used for adjusting the weights of the network. In reinforcement learning the machine is
rewarded or punished based on the actions that affect the state of its environment. In
unsupervised learning there are neither target outputs nor rewards from the environment.

The goal of a network that undergoes unsupervised learning is to build representations
of the input space [33]. The representations or patterns of the input space can be used
for predicting future inputs and decision making. An example of unsupervised learning
includes dimensionality reduction, which is usually implemented using neural networks
such as the multilayer perceptron [33].

The most frequently used multivariate technique to analyse gene expression data is the
field of unsupervised learning called clustering [4]. Clustering problems consist of finding
data points that are similar to one another in their cluster and dissimilar to points in
other clusters [5]. The main advantage of clustering is that no a priori knowledge is
needed about the data.

The classic types of clustering algorithms are categorised into hierarchical and non-
hierarchical clustering. The hierarchical clustering algorithms group the objects through
an agglomerative or divisive process and provide a natural graphical representation of
the data, called a dendrogram [4]. The non-hierarchical algorithms partition the objects
into k clusters, such that objects in the same cluster are similar compared to objects in
other clusters [5].

The complex type of clustering algorithms include those that do not define a hard or
crisp membership for the objects belonging to a cluster. An example of a complex clus-
tering algorithm is fuzzy c-means which relates each object to a given cluster centroid
with different degrees of membership [5]. The other form of complex clustering is called
probabilistic or model-based clustering in which the data are assumed to be a mixture of
underlying probability distributions, such as Gaussian mixture models [5]. The limita-
tion however of probabilistic clustering is that is relies on the assumption that the dataset
follows a specific distribution, which may not always be true [34].

In the context of gene expression data, clusters can be formed using the genes or the
samples that exhibit similar behaviours or patterns. In gene-based clustering the genes
are treated as objects and the samples as features in contrast to sample-based clustering.
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Gene-clustering offers further insight and understanding of gene function, gene regulation
and cellular processes of an organism [5]. Sample-based clustering can be used to distin-
guish between samples that are possibly indistinguishable using classical morphological
approaches [5].

The underlying principal for any unsupervised or clustering technique is that only the
data is used to measure the similarity between points. A similarity measure is therefore
usually defined which provides a quantitative relationship between data points. The
stronger this relationship the more likely the data points belong in the same cluster. The
similarity measures can usually operate in the high-dimensional spaces associated with
microarray experiments but have limitations regarding outliers and noise.

2.7 Distance Metrics

In order to measure the similarity between groups of genes or samples, a measure of
similarity or distance needs to be defined. The various measures can be defined for
several types of data such as: numerical, categorical, binary and mixed-typed data. The
data type obtained from microarray experiments is numerical and as such the focus is on
the numerical distance measure.

A metric follows an axiomatic definition, such that a distance d(·, ·) between two vectors,
say x and y ∈ Rn, has the following properties:

1. d(x,y) ≥ 0 d(x,y) = 0 i.f.f x = y,

2. d(x,y) = d(y,x),

3. d(x,y) ≤ d(x, z) + d(z,y).

2.7.1 Euclidean distance

The Euclidean distance is the most common and widely used distance measure for numer-
ical data [6]. The Euclidean distance between vectors x and y elements of a n-dimensional
real space Rn is defined as

deuc (x,y) =
[
n∑
i=1

(xi − yi)2
] 1

2

. (20)
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2.7.2 Manhattan distance

The Manhattan distance, also known as the city block distance, considers the distance
between the two vectors, x and y ∈ Rn, to be the sum of all the vector attributes or
components [6]. The Manhattan distance is defined to be

dman (x,y) =
n∑
i=1
|xi − yi| . (21)

2.7.3 Maximum distance

The maximum distance, or supremum distance, is defined to be the maximum of the
distances between elements x and y ∈ Rn [6], as shown by

dmax (x,y) = max︸ ︷︷ ︸
1≤i≤n

|xi − yi| . (22)

2.7.4 Minkowski distance

The distance measure can be generalised to a to the Minkowski distance [6], such that
for x,y ∈ Rn [6] the Minkowski distance is defined as

dmin (x,y) =
(

n∑
i=1
|xi − yi|r

)1/r

, (23)

where r ≥ 1 and is called the order of the Minkowski distance. When r = 2, 1 and∞ the
distance is simply the Euclidean, Manhattan and maximum distance respectively. The
distance has been found work suitably for clusters that are isolated and compact, however
in other situations the performance is often degraded by large scale attributes [6].

2.7.5 Mahalanobis distance

The Mahalanobis distance is often used to reduce the distortion created by the linear
combinations of attributes [6]. The distance is defined as

dmah (x,y) =
√

(x− y) Σ−1 (x− y)T , (24)
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where Σ is the covariance matrix of the data set, and is given by, for d objects in data
set V with n variables ν1, ν2, ..., νn, as

Σ =


c11 c12 · · · c1n

c21 c22 · · · c2n
... ... . . . ...
cn1 cn2 · · · cnn

 (25)

where for variables j and k the covariance is given by

cjk = 1
d

d∑
i=1

(νij − ν̄j) (νik − ν̄k) , (26)

with the mean of the pth variable given by

ν̄p = 1
n

d∑
i=1

νip. (27)

The Mahalanobis distance therefore uses a weighted scheme applied to the data, which
reduces the distortion in most instances [6]. The Mahalanobis distance however requires
high computation as the covariance matrix is computed using all of the data points [6].

2.8 Gene Expression Data Clustering

The methods for selecting feature genes are generally biased supervised techniques since
they require the class descriptors a priori. As such the feature selection methods produce
results that are favourable only when the information about each sample is known. A
problem exists however when it is required to determine the features or new partitions
of a large data set when no a priori information is provided. The unbiased and unsuper-
vised approach is commonly known as clustering which involves discovering the inherent
structure in the data.

The purpose of cluster analysis is to discover and investigate relationships between objects
in order to decide if the data can be represented by a small number of clusters of similar
objects [21]. The objective of clustering is to assign the n objects in the data set such
that objects in the same group are as similar as possible, while being dissimilar to objects
of different groups [21].

The problem of clustering can be stated more formally as: given n data points xi, where
i = 1, 2, ..., n, in a d-dimensional space, identify the underlying structure of the data [3].
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The result of clustering is to partition the n data points into m clusters such that points
in a cluster are more similar compared to points in other clusters. The problem in
clustering is that the similarity measure is selected arbitrarily and the results depend on
the resolution at which the data set is viewed.

Cluster analysis techniques can be used to identify biologically relevant groups of genes
and samples, and also provide insight into the function and regulation of genes [21]. The
two main types of clustering in the context of microrarray data are called gene-based
clustering and sample-based clustering. In gene-based clustering the genes are treated
as objects and the samples as features, whereas in sample-based clustering the opposite
occurs [34].

2.8.1 Gene-based clustering

The purpose of gene-based clustering is to cluster co-expressed genes which indicate co-
function and co-regulation [34]. The requirements for gene-based clustering are specified
as:

1. Cluster analysis is the first step in data mining and knowledge discovery. Prior
knowledge is therefore usually limited and a clustering algorithm that estimates the
correct number of clusters without requiring the number of predetermined clusters
is favoured.

2. The noise in microarray experiments is large and an algorithm should be capable
of extracting as much useful information from a high level of background noise as
possible.

3. Provide some graphical representation of the cluster structure.

4. Extract interconnected gene expression profiles.

In some sense the large number of genes used in a microarray experiment makes the
clustering task easier as apposed to clustering only a few samples. The problem however
is that a large proportion of the gene sets used are randomly distributed across the
samples, which makes the clustering task challenging.

2.8.2 Sample-based clustering

The gene-expression profiles obtained from microarray experiments are usually associated
with several particular macroscopic phenotypes [34]. The purpose of sample-based clus-
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tering is to find the phenotype structures or substructures of the microrarray samples [34].
The large number of genes and inherent noise requires a reduction in dimensionality or
choosing a subset of genes to discriminate the classes for good quality and reliable re-
sults. The genes used for this purpose are called informative genes [34]. The two main
categories for selecting informative genes fall into supervised analysis and unsupervised
analysis [34].

The supervised approach is similar to the feature selection methods covered in sec-
tion 2.3.2. In supervised gene selection the samples are labelled according to the phe-
notype attached on the sample. The major steps involved in training a classifier of this
nature include [34]:

1. Selecting a training sample set, which is normally the same size as the original
sample set.

2. Informative gene selection, such that the selected genes with their expression profiles
can distinguish different phenotypes. Methods include neighbourhood analysis,
support vector learning and ranking-based methods.

3. Sample clustering of all the samples using the selected informative genes as features.

In the case of unsupervised sample-based clustering the information connecting the pheno-
type and the sample does not exist. Unsupervised clustering offers a premise of automat-
ically discovering the phenotypes of samples and the discovery of unknown substructures
in the sample space [34]. The following two challenges, as described by Jiang et al, make
it difficult to detect phenotypes of samples and select informative genes [34]:

1. The number of samples is relatively low compared to the number of features (genes),
which makes the high-dimensional space very sparse. Detecting distinct class struc-
tures becomes difficult especially for density-based approaches.

2. A large proportion of the genes measured are irrelevant and contribute significantly
to the noise in the data. About 10% of the genes measured are informative, but are
covered in the large noise component of the data set. The selection of informative
genes in such data is therefore difficult and remains a challenging task.

An interesting solution to the challenges stated is to realise that the processes in feature
selection and sample clustering are in fact interrelated [34]. The first step in interrelated
clustering is to partition the data set using a clustering algorithm, and then use a ranking
method, such as the t-statistic, to score each gene according to their relevance to the
partition [34]. The top ranking genes are then selected and the process repeated, with
each iteration converging to the true sample structure and the final subset of genes being
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the best group of informative features.

2.9 Clustering Algorithms

The most common algorithms used to cluster gene expression data are presented in order
to understand their strengths and drawbacks. The algorithms can be used to cluster both
the genes or samples depending on what information is required from the experiment.
The algorithms covered constitute a variety of clustering types such as partitional and
hierarchical algorithms. The algorithms also can be defined in terms of how the data
points belong to each cluster i.e. crisp and soft clustering. The three conventional hard or
crisp algorithms are hierarchical clustering, k-means and the self-organising map (SOM).
A soft or complex type of clustering algorithm includes the fuzzy c-means in which each
data point belongs to a cluster with a certain degree of membership.

2.9.1 Hierarchical clustering

The main principle behind hierarchical clustering is to group the data into a tree structure
through either a divisive or agglomerative process [5]. In agglomerative clustering, called
a bottom-up approach, each data point is initially its own cluster and subsequently each
datum is merged based on the pairwise distance until there is a single remaining cluster.
In divisive clustering all the data points start in the same cluster and divided until each
datum forms its own cluster. An illustration of the two types of hierarchical clustering is
shown in figure 2.9.
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Figure 2.9: The two paradigms of hierarchical clustering, adopted from [5].

39



The agglomerative approach is based on a linkage metric in which there are three types:
single, complete and average linkage. The single linkage metric determines the distance
between two clusters as the distance between their closest elements [5]. The complete
linkage metric uses the largest distance between the members of two clusters. In average
linkage the cluster centroids are used to determine the distance between clusters. The
divisive approach generates (2N − 2) possible two-subset divisions for a single cluster
with N objects, and is therefore too computationally expensive in most applications [5].

The hierarchical representation of the clustering results allows for the recognition and vi-
sualisation of any global patterns in the expression profiles [5]. The hierarchical clustering
approach however has several issues such as robustness to noise, high-dimensionality and
sensitivity to outliers [5]. The algorithm is also vulnerable and computationally expen-
sive for large data sets, which are common in the analysis of gene expressions. The two
approaches in hierarchical clustering, agglomerative and divisive, also follow a greedy
strategy which does not allow for the refinement of clusters once they have been discov-
ered [5].

2.9.2 k-means

The k-means is a commonly used partitioning algorithm, and has been used extensively
in clustering gene expression data. The steps involved in the algorithm are outlined as
follows:

Algorithm: k-means

1. k data points are randomly chosen as the cluster centroids.

2. The remaining data points are assigned to the closest centroid.

3. The new cluster mean or centroid is calculated and the algorithm reassigns the data
points.

4. The algorithm then terminates when there is no significant change in the cluster
boundaries.

The k-means algorithm therefore minimises the distance between the data points and the
selected number of k centroids, as illustrated in figure 2.10. The objective function that
the k-means algorithm minimises is the within-cluster sum-of-squares W , and is defined
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as

W =
k∑
i=1

∑
x∈Ci
‖x− x̄i‖2 , (28)

where

k = Number of clusters,

x̄i = Mean of cluster Ci.

The advantages of k-means is that it can converge to the local optimum in only a few
iterations and is therefore efficient for large data sets [5].
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Figure 2.10: Illustration of the iterative steps involved in the k-means algorithm.

The major drawback of the k-means algorithm is that the user is required to specify
the parameter k i.e. the number of expected clusters. The other disadvantage is that
the intialisation process for the centroids is random which could lead to different results
when the algorithm is repeated on the data set. The lack of information about gene
expression data usually results in the user iteratively applying k-means to analyse the
clusterings in order to determine the optimal parameter for k. The k-means algorithm is
also susceptible to outliers and noise, since the centroid is calculated as the mean in the
algorithm.

2.9.3 Self-organising map

The self-organising map (SOM) is the most commonly known unsupervised neural net-
work learning algorithm, and was first developed by Kohonen in 1984 [5]. A Kohonen
network or self-organising map is a type of clustering tool. The SOM divides the input
patterns into similar groups without any a priori knowledge of the correct output and is
thus identical to other clustering algorithms in this regard.
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The SOM, however, unlike k-means and hierarchical clustering conveys information about
the relationships and original positioning of the input patterns [4]. The architecture is
unique in that it is able to reduce the dimensionality of the problem whilst maintaining
the topology of the input space [4]. An illustration of a two dimensional SOM is shown
in figure 2.11.
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Figure 2.11: A two-dimensional self-organising map.

The SOM consists of a n×m grid of units (neurons), with each unit µ connected to all of
the input vectors and represented by the prototype vector pµ = [pµ1, ..., pµd]. The input
connection has an associated weighting, which is used to determine the similarity between
the unit and the input. A neuron is activated if the distance between its input and weight
vector is minimal, with the Best Matching Unit (BMU), denoted pb, calculated from

‖x− pb‖ = min︸︷︷︸
µ

‖x− pµ‖ . (29)

The weighting of the activated neuron is adjusted and is proportional to the difference
between the input and initial weighting. The neighbouring units are also adjusted, how-
ever, the distance between the neighbouring unit and the activated unit is factored into
the amount of weight correction, as discussed by Vesanto and Alhoniemi [35], and given

42



as

pµ(t+ 1) = pµ(t) + α(t)hbµ(t) [x− pµ(t)] , (30)

where

t = Time,

α(t) = Learning coefficient,

hbµ(t) = Neighbouring kernel centred on BMU.

The training is completed when the adjustment of the weight vectors is diminished and
the clusters are then identified by mapping the data points to the output neurons, shown
in figure 2.11. The propagation of the neurons to the distributed clusters is shown in
figure 2.12. The SOM units, which are nearest to a specific cluster, are attracted to the
centre of that cluster until there is negligible change in the SOM structure.
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Figure 2.12: Rearrangement of the SOM units during trainging phase.

The benefit of the self-organising map, being a vector quantised approach, is that the
high-dimensional data of gene expressions can easily be mapped to a lower dimension and
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visualised [5]. The neural network type architecture also makes the SOM more robust to
noise in the data.

The disadvantages of the SOM are similar to that of k-means as the user must specify the
number of clusters as well as the topology of the neurons. The SOM can also converge to
a local optimum rather than the global optimum if the initial weighting of the neurons
is not correctly selected [5]. The reason for suboptimal convergence is a result of the
unspecified values selected for the learning rate and topology of the neurons.

2.9.4 Fuzzy c-means

The fuzzy c-means algorithm is the most popular soft type clustering algorithm for gene
expression analysis [5]. The fuzzy c-means algorithm uses a similar approach to the k-
means algorithm in optimising the cluster centroids. In fuzzy c-means, however, each
gene is considered a member of all the clusters with varying amounts of membership.
The membership is closely related to the distance or similarity measure between a gene
and a given cluster centroid [5]. The closer a gene is to a given cluster centre the closer
the membership is to 1, otherwise the value is closer to 0.

The parameters of the fuzzy c-means algorithm include the number of predefined clusters
c, fuzzification parameter 1 ≤ m <∞ and a small positive number ε [5]. The algorithm
iteratively updates the membership matrix and centroid positions until the change in the
memberships are less than ε.

The fuzzy c-means algorithm is also based on the minimisation of an objective function
similar to that of equation 28. The difference however of the fuzzy c-means objective
function to equation 28 is a weighting or membership term for each data point and its
corresponding cluster. The iterative steps involved in the fuzzy c-means algorithm are
described as follows:

Algorithm: Fuzzy c-means

1. Initialise membership matrix U = [uij].

2. Calculate the centroid vectors cj using the following equation

cj =

N∑
i=1

umijxi
N∑
i=1

umij

. (31)
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3. Update the membership matrix U , using

uij = 1
c∑

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

. (32)

4. If ‖U(k + 1)− U(k)‖ < ε then terminate, else go to step 2.

The advantage of the fuzzy c-means algorithm is that it can uncover the complex rela-
tionships between genes in regulatory pathways. The disadvantage of the fuzzy c-means
algorithm is the fact that it is a local heuristic search algorithm that is likely to get
trapped in local sub-optima [5].

2.10 Summary

The biology, technology and statistical methods used for understanding and analysing
gene expression data have been covered. The feature gene selection methods although
important for supervised learning techniques, such as the support vector machine, do not
factor into unsupervised cluster analysis. The focus of this research is to test the various
clustering algorithms on gene expression data obtained from oligonucleotide microarrays
and compare it to the developed diffractive clustering algorithm.

The various microarray visualisation techniques have been covered in order to understand
the different representations of gene expression data and the clustering results. The plots
that are of importance in the study pertain to the clustering analysis of gene expression
data, and plots that are independent of time, such as the scatter plot. The objective of
this study is to overcome the challenges presented by unsupervised clustering analysis
i.e. to overcome the high-dimensionality and develop a clustering algorithm that is not
susceptible to noise.

The various clustering algorithms that are used for comparison include k-means which is
a classical partitioning algorithm, hierarchical clustering, SOM which is a neural network
type architecture and the fuzzy c-means algorithm which is a non-crisp clustering type
algorithm. The aforementioned algorithms each have a unique quality which is integrated
into the design of the diffractive clustering algorithm.
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3 DATA STANDARDISATION
AND TRANSFORMATION

Data standardisation and transformation are important aspects of gene expression clus-
ter analysis. The distance metrics used in clustering algorithms are usually sensitive to
and dependent on the scale, location and dimensionality of the data. The transformation
process allows the high-dimensional data to be transformed to a lower more manage-
able space. The standardisation techniques include methods such as the z-score method,
which normalises the data to unit variance and zero mean. Linear and non-linear trans-
formation algorithms are also discussed with the ISOMAP algorithm selected and used
in conjunction with the developed diffractive clustering algorithm.

3.1 Data Standardisation

Standardisation refers to the process of shifting and scaling the data to some dimensionless
quantity [6]. Standardisation of the raw data is commonly performed before cluster
analysis is undertaken. The metrics used to measure the dissimilarity between data
points, an example being the Euclidean distance, are usually sensitive to differences in
magnitude or scales of the input data [6].

The two main approaches to the standardisation of the raw data include: global standard-
isation and within-cluster standardisation [6]. The latter approach is more difficult to
implement since the clusters are unknown prior to standardisation. An iterative solution
to this problem, proposed by Klett, obtains clusters based on overall estimates, with the
estimated clusters then used to determine the within-group variances for standardisation
from a second cluster analysis [6].

It is noted in literature that the adopted standardisation procedure usually depends on
the convention of the particular field of study [6]. The general formula to standardise the
raw data set is shown in equation 33. The various standardisation methods are obtained
by selecting the different definitions for the variables Lj and Mj for the standardisation
equation, which is defined as

xij =
x∗ij − Lj
Mj

, (33)
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where

i = Object (1 ≤ i ≤ n) ,

j = Dimension (1 ≤ j ≤ d) ,

xij = Raw data point,

x∗ij = Standardised data point,

Lj = Location measure,

Mj = Scale measure.

The most common normalisation methods are the mean, median, standard deviation,
range, Huber’s estimate, Tukey’s biweight estimate and Andrew’s wave estimate [6]. The
different methods of normalisation are shown in table 3.1, where x̄∗j , R∗j and σ∗j are defined
using the following equations

x̄∗j = 1
n

n∑
i=1

x∗ij, (34)

R∗j = max︸ ︷︷ ︸
1≤i≤n

x∗ij − min︸︷︷︸
1≤i≤n

x∗ij, (35)

σ∗j =
[

1
n− 1

n∑
i=1

(
x∗ij − x̄∗j

)2
] 1

2

. (36)

Table 3.1: Data normalisation methods, obtained from [6].

Method Lj Mj

z-score x̄∗j σ∗j
USTD 0 σ∗j

Maximum 0 max︸ ︷︷ ︸
1≤i≤n

x∗ij

Mean x̄∗j 1
x∗n+1

2 j
if n is odd

Median 1
1
2

(
x∗n

2 j
+ x∗n+2

2 j

)
if n is even

Sum 0 ∑n
i=1 x

∗
ij

Range min︸︷︷︸
1≤i≤n

x∗ij R∗j

The first standardisation method in table 3.1 is the z-score, which is used to transform
normal variants to the standard score form [6]. The z-score method normalises data
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such that it has a mean of 0 and a variance of 1 which results in the location and
scale information of the original data being lost. An important and commonly used
standardisation involves the range of the data set, which is defined in equation 35. The
range methods however have been found to be sensitive to outliers [6]. The other approach
to standardisation involves using the rank of the data matrix as scores, which has been
found to be more insensitive to outliers [6].

3.2 Data Transformation

Data transformation specifically deals with the whole data set as apposed to standard-
isation which concentrates on the individual data points. In microarray experiments
the number of genes can exceed thousands, while the sample size is usually less than a
hundred. The gene, or feature, space therefore has a large number of dimensions which
makes it difficult to visualise the structure of the data set and uncover interesting pat-
terns [21]. The solution is to capture as much of the variation in the data as possible
whilst projecting the data to a lower, typically two or three, dimensional space.

3.2.1 Principal component analysis

Principal component analysis belongs to a class of dimensionality reduction techniques
called projection methods [21]. Linear projection methods select one or more linear com-
binations of the original variables to maximise some measure of interest [21]. Linear
discriminant analysis (LDA) is often employed as it maximises the ratio of the between-
class scatter and within-class scatter [36], described in section 4. The problem with LDA
is that the sample classes need to be known a priori which defeats using cluster analysis.

In the case of PCA the goal is to reduce the large dimensionality whilst retaining as much
of the variation in the high dimensional space as possible. The principal components
obtained from PCA are variables that are linearly dependent on the original variables
but are uncorrelated, with the first few components capturing the most variation [6].

The derivation of the principal components follows that presented by Gan, Ma andWu [6].
Defining v = (υ1, υ2..., υd)T to be a vector of d random variables. The initial step is to
find a linear function aT1 v that maximises the variance, where a1 is a d-dimensional vector
(a11, a12, ..., a1d)T . The function aT1 v is defined as

aT1 v =
d∑
i=1

a1iυi. (37)
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The next step is to find a linear function aTj v that is uncorrelated to aT1 v, aT2 v, ...., aTj−1v
and has maximum variance. After d steps there will be be d linear functions that meet
the imposed criteria. The jth derived variable aTj v is the jth principal component. For
j = 1, 2, ..., d it can be shown that the jth principal component is provided by zj = aTj v,
where aj is an eigenvector of the covariance matrix Σ that corresponds to the jth largest
eigenvalue λj. The first procedure is to define the optimization problem formally, which
is stated in the following

max
[
var

(
aT1 v

)]
, (38)

which is subject to aT1 a = 1, and the variance of first principal component calculated
from var

(
aT1 v

)
= aT1 Σa.

The technique of Lagrange multipliers is employed in order to solve the above optimisation
problem, where λ is defined as the Lagrange multiplier. By rearranging equation 38 and
multiplying the second term by λ, the result obtained is

aT1 Σa − λ
(
aT1 a − 1

)
. (39)

Differentiating equation 39 with respect to a1 leads to

Σa1 − λa1 = 0, (40)
(Σ− λId) a1 = 0, (41)

where Id is the d× d identity matrix.

The result obtained by solving the optimisation problem shows that λj is in fact the jth

eigenvalue of the covariance matrix and aTj is the jth eigenvector of the covariance matrix
Σ, as shown in equation 41. The use of PCA to reduce the high dimensionality of the
gene feature space is commonly employed before cluster analysis. It was shown however
through an empirical study that PCA can produce misleading results and degrade the
quality of the resulting clusters [8].

3.2.2 Singular value decomposition

Singular value decomposition (SVD) is another data transformation method that is
widely used in data compression and is in fact identical to PCA [6]. The linear pro-
jection technique SVD is derived similarly to the method shown by Gan [6]. Defining
D = {x1,x1, ...,xn} to be a numerical data set in d-dimensional space. The data set D
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can then be represented by an n× d matrix X, which is defined as

X = (xij)n×d , (42)

where xij is the j-component value of xi.

Defining µ̄ = (µ̄1, µ̄2, ..., µ̄d) to be the column mean of matrix X, and for j = 1, 2, .., d is
given as the following

µ̄j = 1
n

n∑
i=1

xij. (43)

The vector en is defined as a column vector of length n with all the elements equated to
one. The SVD method then expresses X − en as the following

USV T = X − enµ̄, (44)

where U is an n×n column orthonormal matrix, S is an n×d diagonal matrix containing
the singular values, and V is a d × d unitary matrix. The columns of matrix V are the
eigenvectors of the covariance matrix C of X, which is expressed as

C = 1
n
XTX − µ̄T µ̄ = V ΛV T . (45)

The matrix C is a positive semidefinite matrix and as such has non-negative eigenvalues
and orthonormal eigenvectors. The singular values are related to the eigenvalues and
expressed for j = 1, 2, ..., d as

s2
j = nλj. (46)

The benefit of singular value decomposition is that it avoids using the explicit form of the
covariance matrix, which becomes ill conditioned for a large number of features compared
to samples [37]. The principal component scores Z can be obtained from the following
expression

Z = US. (47)

3.2.3 ISOMAP

The PCA and SVD methods for reducing the dimensionality of the feature space are both
linear techniques i.e. they construct a lower dimensional space using a linear function of
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the original higher dimensional space. A recent article written by Shi and Luo explored
the use of a non-linear dimensionality technique on cancer tissue samples called isomet-
ric mapping (ISOMAP) [9]. The technique replaces the usual Euclidean distance with
geodesic distance, which has the ability to capture and characterise the global geometric
structure of the data [9]. The ISOMAP technique is also able to deal with non-linear
relationships between data points as it is based on manifold theory [9].

The ISOMAP technique makes use of the geodesic distance between data points, which
is the path of minimal curvature on the embedded manifold. The setup for the algorithm
is based on a data matrix D with dimension n × m, where the rows are co-ordinate
vectors and approximate geodesic distances are calculated to estimate their relative rela-
tionship [9]. The three main steps of Tenenbaum’s ISOMAP algorithm are:

1. Construction of the neighborhood graph G, which is achieved by defining the neigh-
bourhood points with k nearest neighbours, or within a radius ε. Connection of
neighbouring points using the Euclidean distance as the edge length.

2. Computation of the geodesic distance for the pairs of points. The geodesic distance
between two points dG (Pi, Pj) is the shortest path on G. The geodesic distance
for neighbouring points is the Euclidean distance, whereas for distant points it is
calculated using the Dijkstra algorithm [38]. The geodesic matrix can be obtained
using DG = [d2

G (Pi, Pj)]ni,j=1.

3. Construct the d-dimensional embedding by applying the multidimensional scaling
(MDS) algorithm to the geodesic matrix DG [39].

The steps of the ISOMAP algorithm are summarised next.

Algorithm: ISOMAP

Input:
Pairwise Euclidean distance, d (Pi, Pj), between points in the input data matrixD. Neigh-
bouring parameter k and embedding dimension p.

Output:
Reduced data matrix n× p.

1. Assignment of k neighbours to data points.

2. Construct neighbourhood graph G by connecting neighbourhood points (Pi, Pj)
with edge length d (Pi, Pj).

3. Initialisation of geodesic distance dG (Pi, Pj) = d (Pi, Pj) for neighbouring pairs,
otherwise dG (Pi, Pj) =∞.
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4. Determine minimum path distance in DG by replacing entries dG (Pi, Pj) by
min {dG (Pi, Pj) , dG (Pi, Pl) + dG (Pl, Pj)}, where l = 1, 2, ..., n.

5. Apply the MDS algorithm to DG to obtain the p-dimensional embedding.

The ISOMAP algorithm was compared to the PCA dimensionality technique by Shi and
Luo [9]. The main differences between the two methods are highlighted and summarised
as follows

1. PCA uses the Euclidean distance as a similarity measure, whereas ISOMAP is a
non-linear dimensionality reduction technique that uses the geodesic distance. The
geodesic distance is a generalisation of the Euclidean distance on a high-dimensional
manifold space. Gene expressions represent a high-dimensional and non-linear com-
plex process, which is better represented by non-linear dimensionality reduction
techniques such as ISOMAP.

2. PCA finds an orthogonal reduced space that is a linear combination of the original
variables. The ISOMAP technique however preserves the global geometric struc-
ture of the gene expression data, which allows the inherent cluster structure to be
maintained.

3. In terms of complexity the PCA technique has to compute and decompose the
covariance matrix, and it was found by Shi and Luo that the computational time
of ISOMAP was much faster than PCA [9].

4. PCA has no parameters which inhibits flexibility, whereas ISOMAP has two, the
neighbourhood number and embedding dimension, that if chosen correctly allow for
superior performance.

To illustrate the ability of the ISOMAP algorithm a three dimensional logarithmic spiral
was constructed and shown in figure 3.1. The Euclidean distance (dashed line) between
two points is different to the geodesic distance (solid line) along the manifold, of which
the points are embedded, as indicated in figure 3.1.

The residual variance, defined as

ep = 1−R2 (DG, Dλ) , (48)

is a measure of the error produced from dimensionality reduction. The standard linear
correlation coefficient R, shown in equation 48, takes all the entries of the geodesic matrix
DG andDλ, where the latter term represents the Euclidean distance matrix in the reduced
p-dimensional space [40].
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The change in the residual variance as the number of dimensions increases, shown in
figure 3.2, provides information pertaining to the intrinsic dimensionality of the data. It
is suggested by Tenenbaum et al, that the dimension at which the "elbow" of the residual
variance curve is observed, is the correct dimension [41]. The elbow, or point of inflection,
represents where the residual variance starts to decrease linearly instead of exponentially.
The point of inflection also indicates where there is significant preservation of structure
in the original space.
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Figure 3.1: Logarithmic spiral illustrating properties of ISOMAP.

The ISOMAP algorithm can also be used to correctly determine the dimension to project
the data onto from the non-linear manifold of which it is embedded. The spiral data
set, shown in figure 3.1, is an example where the algorithm and the resulting change in
residual variance indicate that the correct dimension to project the data is in fact two
dimensions.

The ambiguity, however, still exists around the precise value to choose for the number
of neighbours k or the radius ε. An iterative scheme could be implemented whereby the
value of k, or ε, is changed and the resulting residual variance curve observed for distinct
regions, such as the point of inflection.
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Figure 3.2: Residual variance of the ISOMAP algorithm as dimensionality increases.

3.3 Summary

The normalisation of data is important particularly in gene expression cluster analysis.
The various techniques each have their advantages, such as the amount of sensitivity
to outliers in the data set. The linear mapping techniques, examples being principal
component analysis and singular value decomposition, play important roles in cluster
analysis of gene expression data. Recent studies however have shown that a non-linear
mapping technique called ISOMAP outperforms the classical linear mapping techniques.

The other benefit, although present in PCA, is that the ISOMAP residual variance curve
can be used to detect the inherent dimensionality of the data set. The unsupervised
clustering approach is coherent with this procedure as no a priori information is required
for analysis. The ISOMAP algorithm is also able to conserve the non-linear geodesic
distance between data points, which is suitable for analysing complex interacting genes
in microarray data.

The overall benefit is that standard units are established for each dimension using the
standardisation procedure, along with a solution to the curse of dimensionality by trans-
forming the high-dimensional data to a lower-dimensional space. The reduced space
complements the clustering analysis as it reduces the sensitivity and problems associated
with distance metrics in high-dimensional spaces.
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4 CLUSTER VALIDATION

The purpose of cluster analysis is to partition a data set into K distinct groups based on
specific features. The data points within a group are selected such that they are more
similar to each other than data points situated in different groups [34]. The number
and type of clusters however can vary significantly for different clustering algorithms.
The k-means algorithm for example depends on random initialization which can produce
different types of clusters each time the algorithm is run. It is therefore important to
validate the reliability and quality of the different partitions or sets of clusters produced
by the various algorithms.

4.1 Internal Criteria

The purpose of using internal criteria is to evaluate the resulting clustering structure using
the quantities and features inherent in the data set [6]. A common quantity that is used
to measure the data set and validate the resulting cluster is the proximity matrix [42].
The cophenetic correlation coefficient can be used to measure the degree of similarity
between the cophenetic matrix Pc and the proximity matrix P [42].

The cophenetic matrix is defined, using the similarity matrix, as the minimum distance at
which each object merges during the clustering process. The coefficient is used to measure
the reliability of the pairwise distances of a dendrogram produced by some hierarchical
algorithm compared to the similarity matrix of the data. The (i, j) elements of P and Pc
are given as dij and cij respectively. The range of the cophenetic correlation coefficient
C is between -1 and 1, with large values indicating greater similarity between P and Pc,
and is defined as

C =
1
M

n−1∑
i=1

n∑
j=i+1

dijcij − µPµC√√√√( 1
M

n−1∑
i=1

n∑
j=i+1

d2
ij − µ2

P

)(
1
M

n−1∑
i=1

n∑
j=i+1

c2
ij − µ2

C

) , (49)
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where

M = n (n− 1)
2 ,

µP = 1
M

n−1∑
i=1

n∑
j=i+1

dij,

µC = 1
M

n−1∑
i=1

n∑
j=i+1

cij.

4.2 External Criteria

The external criteria approach evaluates the resulting cluster partition C by comparing
it to a prespecified structure that is imposed on the data set P [6]. The partition P
is usually defined from expert knowledge of the data set and the expected clustering
structure. The two general approaches are

1. Compare the resulting cluster structure C to independent partition P.

2. Compare the proximity matrix Q to the partition P.

The first approach is used extensively in research when it is known what the clustering
structure should be in a gene expression data set. The resulting clustering structure is
defined as C = {C1, ..., Cm}, with the imposed partition defined as P = {P1, ..., Ps}. The
following list of variables are used to calculate some of the commonly used indices, which
are shown in table 4.1.

1. a is the number of pairs of data points which are in same cluster of C and in the
same cluster of P.

2. b is the number of pairs of data points which are in same cluster of C but in different
clusters of P.

3. c is the number of pairs of data points which are in different clusters of C but in
the same cluster of P.

4. d is the number of pairs of data points which are in different clusters of C and in
different clusters of P.

5. M = a+ b+ c+ d = n(n−1)
2 .

The range for the three indices in table 4.1 is R, J, F ∈ [0, 1]. The higher the values for
these indices the greater the similarity between C and P [6].
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Table 4.1: Common indices that measure the similarity between partitions C and P.

Index Formula

Rand statistic R = a+d
M

Jaccard coefficient J = a
a+b+c

Folkes and Mallows index F =
√

a
a+b ·

a
a+c

The second approach compares the proximity matrix Q to the partition P [6]. The Γ
statistic or normalised Γ statistic is computed using the information in the proximity
matrix Q and the matrix Y, where Y is defined as

Yij =

 1 if g(xi) 6= g(xj), for i, j = 1, 2, ..., n;
0 otherwise.

The function g maps the data elements to the cluster number introduced by partition P.
The Hubert’s Γ statistic is defined to be

Γ = 1
M

n−1∑
i=1

n∑
j=i+1

XijYij, (50)

and is described in detail by Gan et al [6]. The elements Xij represent the pairwise
distances in the similarity matrix Q. The range for the Hubert’s statistic is also [0, 1],
with large values indicating a strong correlation between the two matrices.

4.3 Relative Criteria

The fundamental idea of relative criteria is to select the best clustering result out of a set
of defined schemes according to a predefined criterion [6]. If there are a set of parameters
for a clustering algorithm, denoted Palg, then the set of defined schemes is produced by
using different parameters in Palg [6]. The problem, as described by Gan et al [6], is
divided into two parts depending on whether the number of clusters nc is a parameter or
not:

1. nc /∈ Palg: The optimal choice for the parameters is determined by varying the
parameters over a wide range, and then identifying the largest range where nc
remains constant i.e. has the longest lifetime.

2. nc ∈ Palg: The optimal choice for the number of clusters and algorithm parameters
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are decided using the best value produced by a validity index. The validity index
values are calculated by incrementing the cluster number and varying the algorithm
parameters.

4.4 Cluster Validity Indices

The validation and measure of the quality of the clusters produced by an algorithm is
usually achieved using a cluster index. The three fundamental criteria to investigate
cluster validity are external criteria, internal criteria and relative criteria [6]. The first
two approaches, external and internal criteria, depend on statistical testing which is
computationally expensive, as apposed to using relative criteria. It was found in literature
that some cluster validity indices also perform better for compact clusters, but not for
arbitrary shaped clusters commonly discovered in gene expression data [6]. The four
main types of indices that exist are the: Davies-Bouldin Index (IB), Dunn’s Index (ID),
Calinski Harabasz Index (IC) and a recently developed index I [43].

4.4.1 Davies-Bouldin index

The Davies-Bouldin index measures the within scatter with respect to the between-cluster
separation [43]. The scatter within a cluster Si is defined as

Si = 1
|Ci|

∑
x∈Ci
‖x− zi‖2 . (51)

The distance between clusters is defined as di, and stated as

di = ‖zi − zj‖2 , (52)

where zi is the ith cluster centre. The Davies-Bouldin index is the sum of the ratio
between the scatter and cluster separation as shown by the following

IB = 1
K

K∑
i=1

Ri,q, (53)

where Ri,q is defined as

Ri,q = max︸ ︷︷ ︸
j,j 6=i

{
Si,q + Sj,q

di,j

}
. (54)
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The Davies-Bouldin index should be minimised as much as possible which is indicative
of a proper clustering solution.

4.4.2 Dunn’s index

The Dunn’s index takes the ratio of cluster separation to the within cluster scatter. Let
the ith cluster be defined as Ci in the N -dimensional real space RN . The diameter ∆ of
a cluster is defined as

∆ (Ci) = max︸ ︷︷ ︸
x,y∈Ci

{d (x, y)} . (55)

The separation distance δ between clusters is given by

δ (Ci, Cj) = min︸︷︷︸
x∈Ci,y∈Cj

{d (x, y)} , (56)

where the variable d (x, y) is the Euclidean distance between points x and y. The Dunn’s
index is stated as

ID = min︸︷︷︸
1≤i≤K

 min︸︷︷︸
1≤j≤K,j 6=i


δ (Ci, Cj)

max︸ ︷︷ ︸
1≤k≤K

{∆ (Ck)}


 . (57)

The larger the Dunn’s index the better quality the clusters, with the solution that max-
imises ID taken to be the optimal number of clusters in the data set [43].

4.4.3 Calinski Harabasz index

The Calinski Harabasz index is defined similarly to the Dunn’s index as the ratio of the
cluster separation to the within cluster scatter. The index is calculated as

IC = traceB/ (K − 1)
traceW/ (n−K) , (58)
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for n data points and K clusters. The trace of the between and within cluster scatter
matrices B and W are defined respectively as

traceB =
K∑
k=1

nk ‖zk − z‖2
2 , (59)

traceW =
K∑
k=1

nk∑
i=1
‖xi − zk‖2

2 . (60)

The Calinski Harabasz index in complete form is

IC =

[∑K

k=1 nk‖zk−z‖
2
2

K−1

]
[∑K

k=1

∑nk
i=1‖xi−zk‖

2
2

n−K

] , (61)

where the larger the Calinski Harabasz index value the better the clustering algorithm.

4.4.4 I index

The I index for K clusters is defined as follows

I =
( 1
K
× E1

EK
×Dk

)p
, (62)

where

EK =
K∑
k=1

n∑
j=1

ukj ‖xj − zk‖2 , (63)

DK = Kmax︸ ︷︷ ︸
i,j=1

‖zi − zj‖2 . (64)

The factor p is used to control the contrast between different clusters [43]. The number
K that maximises I is considered to be the correct number of clusters [43].

4.5 Summary

The main source of validation comes from external criteria, such as the rand index, which
requires a priori classification of the data or samples that are to be clustered. The external
criteria measure the similarity of the clustering solution between the actual classification
and calculated results from the algorithm.
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The other main type of cluster validation, which is based on relative criteria, relies on
the inherent structure of the data and the clustering solution. The validity indices utilise
metrics or distances of the within cluster scatter and the between-cluster separation.
The validity indices each weight the distances differently, which gives rise to performance
characteristics that depend on the type and shape of clusters within the data.

The number of clusters and the quality of the clustering solution can be determined using
a validity index. The definition however of clustering remains ambiguous and as such each
index value can differ significantly. The individual variation in results produced by the
indices can be corrected by averaging the set of results.

The accuracy of the clustering results can also be calculated using the a priori classifica-
tion of the samples. The accuracy is simply the difference between the actual clustering
solution and the algorithm results. The accuracy closely corresponds to external criteria
as both measure the similarity between the actual and algorithm results.

61



5 DIFFRACTIVE CLUSTERING

The following clustering algorithm derivation is the main contribution of the research and
proposes a different view and solution for clustering sampled data. The algorithm with
its derivation were formulated in the absence of any similar algorithms or contributing
sources. The algorithm is based on the diffractive principals of light and the Fourier
relationship found between the aperture and object image. The developed algorithm
assumes that each data point is a point source or impulse of light which can be filtered
as the aperture function is adjusted.

A hierarchy of filtered images results, for data that is represented in two dimensions, with
the inherent structure of the data captured at a specific resolution. The algorithm has
been designed to be complementary to each of the classical algorithms. The algorithm
however is different in the sense that it does not require the predetermined number of
clusters, which in most unsupervised applications is not specified.

5.1 Fundamental Theory of Diffraction

The underlying property of diffraction follows that if an opaque object is placed between
a point light source and a white screen, the shadow cast by the object would not have
perfect sharpness at the boundaries as predicted by geometrical optics [44]. The smearing
effect observed at the boundaries of the shadow is closely related to the spreading of light
after passing through a small aperture [44]. The overall name given to these observations
and related behaviour of light is called diffraction. The famous Fresnel-Kirchoff integral
formula is used to derive the relationship between the observed diffraction pattern and
the aperture through which the light is passed [44].

The Fresnel-Kirchoff integral formula is obtained from Kirchoff’s integral theorem, which
is stated as

UP = − 1
4π

∫ ∫ (
U∇n

eikr

r
− eikr

r
∇nU

)
dA, (65)

where ∇n is the normal component of the gradient at the surface of integration. The
theorem relates the value of any scalar wave function at any point P inside an arbitrary
closed surface to the value of the wave function at the surface [44]. The Fresnel-Kirchoff
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integral formula describes the scenario illustrated in figure 5.1, and is defined as

UP = −ikU0e
−iωt

4π

∫ ∫ eik(r+r′)

rr′
[cos (n, r)− cos (n, r)] dA, (66)

where the scalar wave function U represents spherical monochromatic waves traveling
outward from the source S [44].

Aperture

S P

n

r’ r

Surface

Figure 5.1: Geometrical setup for the Fresnel-Kirchoff formula.

The two main types of diffraction patterns that can occur are known as Fraunhofer
diffraction and Fresnel diffraction [44]. In a qualitative sense Fraunhofer diffraction occurs
when the incident and diffracted waves are approximately planar. The approximation
is valid when the source and receiving point are both at large distances from the the
aperture, as the curvatures of the waves can be neglected. The approximation however
fails when the distances are small and the curvature of the wave is significant resulting
in Fresnel diffraction. The Fraunhofer type diffraction is used for the rest of the analysis
as it has a simpler mathematical representation.

5.1.1 Fraunhofer diffraction

The physical layout that is usually employed for observing Fraunhofer diffraction is il-
lustrated in figure 5.2. The aperture is coherently illuminated from a monochromatic
point source and a collimating lens [44]. The setup ensures that both the incident and
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diffracted waves are planar. The following assumptions are made before applying the
Fresnel-Kirchoff formula (equation 66) to the calculation of the diffraction patterns [44]:

1. The obliquity factor [cos(n, r)− cos(n, r′)] is negligible.

2. The quantity eikr
′

r′
is approximately constant and is taken outside the integral.

3. The variation of the factor eikr

r
is approximately eikr with the term 1/r averaged

out of the integral.

The consequence of applying the specified assumptions leads to a simplified version of
the Fresnel-Kirchoff formula, as stated in the following

Up = C
∫ ∫

eikrdA. (67)

The assumptions produce factors in the integral which are lumped into the constant C.
The simplified equation describes the resulting diffraction pattern as a result of the phase
factor eikr integrated over the aperture.

S

P

Collimating Lens Focusing Lens

Figure 5.2: Physical setup for observing Fraunhofer diffraction.

5.1.2 The Fourier transform and diffraction

The next procedure is to consider a setup for an aperture with an arbitrary shape located
in the x–y plane and the diffraction pattern produced at a point P on the X–Y plane,
which is located at a relatively large distance. The rays are therefore assumed to be
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parallel and are shown in figure 5.3 leaving the aperture at the origin O and Q in the x–y
plane.

n̂

δr

R

O

Q

Figure 5.3: Two parallel light rays originating from points O and Q in the xy plane.

The path difference δr between the parallel rays is given by the component of vector
R = x̂i + ŷj in the direction of the unit vector n̂ = α̂i + β ĵ + γk̂, using the following

δr = R · n̂

= xα + yβ

= x
X

L
+ y

Y

L
. (68)

The direction of the rays are specified by the direction cosines α, β and γ. Using a focal
length L for the lens, the X and Y coordinates can be approximated by Lα and Lβ

respectively.

Using the fundamental diffraction integral, defined in equation 67, the intensity over the
X–Y plane is given by

U (X, Y ) =
∫ ∫

eikδrdA =
∫ ∫

eik(xX+yY )/Ldxdy. (69)

The previous equation holds for an uniform aperture, and by introducing the aperture
function g(x, y) can be extended for an arbitrarily shaped aperture. Using the definition
for the aperture function and changing variables kX/L and kY/L into spatial frequencies
µ and ν respectively, equation 69 can be rewritten in the following form

U (µ, ν) =
∫ ∫

g(x, y)ei(µx+νy)dxdy. (70)

The equation is important since it illustrates the Fourier transform relationship between
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U(µ, ν) and g(x, y). The diffraction pattern, produced under the Franhofer conditions, is
therefore simply the Fourier transform of the aperture through which the light is passed.
The knowledge of this fact allows one to filter and reshape the diffraction pattern by
altering the aperture. The technique is called spatial filtering and adjusts the diffrac-
tion pattern U(µ, ν) by multiplying it by a transfer function T (µ, ν) [44]. The resulting
aperture function is obtained by taking the inverse Fourier transform, as demonstrated
by

g′(x, y) =
∫ +∞

−∞

∫ +∞

−∞
T (µ, ν)U (µ, ν) e−i(µx+νy)dµdν. (71)

5.2 Formalisation of Clustering Algorithm

The formalisation of the clustering algorithm is based on the diffraction properties of
light. The first step is to define a space, in this case a real d-dimensional Euclidean space
R
d. Defining a vector function a(x), where x ∈ Rd, to be an impulse function located at

each datum point p1, . . . ,pn. The function a(x) is defined and shown in equation 72

a(x) =
n∑
i=1

δ (x− pi) . (72)

In terms of the diffraction setup a(x) represents the aperture function, with the diffrac-
tion pattern A(ξ) obtained using the Fourier transform over the aperture. Using the
spatial filtering technique the aperture function can be altered (apodised) using a suit-
able filtering function G(ξ). The result of the filtered diffraction pattern Y (ξ) is given
by

Y (ξ) = A(ξ)G(ξ), (73)

=
n∑
i=1

e−2πi(ξ·pi)G(ξ).

Using the Fourier transform properties of a shifted delta function, the filtered aperture
function is obtained

y(x) =
n∑
i=1

g (x− pi) . (74)

The chosen filter function is a d-dimensional Gaussian filter, which is represented as

G (ξ) = e−σ‖ξ‖
2
2 . (75)
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The choice of a Gaussian filter satisfies the criteria that the optimal (Wiener) filter must
be the derivative of a symmetric low-pass filter under the assumption that the noise on
the data set is white i.e. constant across all frequencies [19]. The Gaussian filter also
fulfills the requirement on the form of the maximum likelihood solution, as described by
Roberts [19]. The Gaussian function is variable separable and as such each dimension
can be treated and filtered separately.

The Gaussian filter is justifiable as it is commonly used in scale-space and information
theory where it satisfies important axioms for the former and maximises the entropy
for a given covariance in the latter [45]. The Gaussian distribution for each data point
maximises the entropy, which is stated as

H (y) = −
∫
Rd
y(x)log(y(x))dx. (76)

The Gaussian kernel is also found to satisfy the diffusion equation which describes how
point particles disperse with uncertainty in their locations [45].

The Fourier transform pair is taken to be unitary, which means that the inverse Fourier
transform of a transformed function is the function itself. The definition for the d-
dimensional Fourier transform pair used in the analysis is given by

F {f(x)} =
∫
Rd
f(x)eix·ξdx, (77)

and

F−1 {F (ξ)} = 1
(2π)d

∫
Rd
F (ξ)e−ix·ξdξ. (78)

The inverse Fourier of the Gaussian filter is itself, a Gaussian function with the width
determined by the inverse of the parameter σ, as stated by the following

g(x, σ) = 1
(4πσ) d2

e
−‖x‖22

4σ . (79)

The apodised aperture function, as a result of the Gaussian filter, is given by

y(x, σ) = 1
(4πσ) d2

n∑
i=1

e
−‖x−pi‖2

2
4σ . (80)

The filtering operation on the diffraction pattern using the Gaussian function eliminates
any spurious data points and smooths the aperture function, which allows for the asso-
ciation of the peaks of the aperture function with the cluster centroids. The peaks, or
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cluster centres, of the filtered aperture function are found by taking the spatial derivative
of equation 80 and setting the result to zero, as shown by

∂y

∂x
= 1

2σ (4πσ)
d
2

n∑
i=1

(pi − x)e
−‖x−pi‖2

2
4σ = 0. (81)

5.2.1 Hierarchical diffractive clustering

As the parameter σ increases the width of the Gaussian filter decreases and as such higher
frequencies in the measured data are removed. The resulting evolution of the parameter
σ leads to the entire data set becoming a single cluster. The following theorem, as proved
by Roberts [46], ensures that their is no splitting as σ increases. The theorem therefore
satisfies the requirement that the number of turning points must not increase as the
parameter σ increases.

Theorem: Define Φ(σ) to be the number of zero crossings at cutoff σ. The number of
turning points of the function y(x, σ) at σ1, Φ(σ1), is greater or equal to the number of
turning points at σ2, Φ(σ2), provided that σ1 < σ2.

The form of the dendrogram that results as the parameter σ evolves is similar to that of
a hierarchical clustering method. The two main types of hierarchical clustering methods
are nested and non-nested hierarchical clustering. In nested hierarchical clustering each
data point at σ = 0 represents a single cluster. As σ increases the cluster centres merge
and form new clusters, which in the nested case, are the union of the data points that
belonged to the previous clusters. The nested form of hierarchical clustering has been
critiqued by the fact that once a cluster is formed its members cannot subsequently be
removed.

The non-nested form of hierarchical clustering eliminates the problem of nested hier-
archical clustering by assigning each data point to the nearest centroid each time the
parameter σ increases. The nested form of hierarchical clustering however has a more
elegant and clear hierarchical structure, while the non-nested form has a more natural
and consistent representation of the clustering procedure.
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5.2.2 Numerical clustering solution

The presented clustering algorithm can be implemented by treating equation 81 as a
gradient dynamic system, which is stated as follows

dx
dt

= ∇xy(x, σ) = 1
2σ (4πσ)

d
2

n∑
i=1

(pi − x)e
−‖x−pi‖2

2
4σ . (82)

The derivative can be approximated using the Euler difference method to solve the equa-
tion and find the solutions for the cluster peaks, which are located at points νk. The
evolution of the solutions as the parameter σ changes is given by

x[n+ 1] = x[n] + h∇xy(x[n], σ), (83)

where h is a small number that can be decreased each iteration to ensure convergence.

The determination of the cluster centres and association of the data points to those centres
is achieved by comparing the length between two points to a small, arbitrarily chosen,
positive number ε. A data point x[n+1] is considered a centre point if ‖x[n+ 1]− x[n]‖ <
ε. If two cluster centroids satisfy ‖x1 − x2‖ < ε, then it is considered that the two centres
have merged and form a single cluster centre.

5.2.3 Algorithm implementation

The implementation of the clustering algorithm deals with the discretisation of the pa-
rameter σ and an iterative scheme. The clustering algorithm is given as two types,
non-nested and nested hierarchical clustering, as presented below.

Algorithm: Nested Hierarchical Clustering

1. Initialize σi = 0 for i = 0.

2. At σi = 0 each datum is a cluster.

3. Set i = 1.

4. Cluster data, using equation 83, at σi by finding the new cluster centres using the
old cluster centres at σi−1. Take the union of the data points whose cluster centres
at σi−1 arrive at the same location.

5. If the number of clusters is greater than one let i := i+ 1 and go to step 4.

6. Stop if the number of clusters is one.
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Algorithm: Non-Nested Hierarchical Clustering

1. Initialize σi = 0 for i = 0.

2. At σi = 0 each datum is a cluster.

3. Set i = 1.

4. Cluster data, using equation 83, at σi by finding the new cluster centres using the
old cluster centres at σi−1. If two cluster centres arrive at the same point then a
new cluster is formed and the old clusters disappear.

5. If the number of clusters is greater than one let i := i+ 1 and go to step 4.

6. Stop if the number of clusters is one.

To reduce the computational costs only the cluster centres are traced along the maximal
curves. The solution to equation 83 for σi is therefore found by substituting x[0] = νi−1,
where νi−1 is the cluster centre obtained at σi−1.

5.2.4 Cluster number selection

An important aspect of the algorithm is to determine the correct number of clusters.
The suggested and commonly used method involves using the σ-lifetime for a cluster as
a validity criterion [47]. The definition of the cluster σ-lifetime, as stated by Leung et al,
follows [47].

Definition: Cluster Lifetime
The σ-lifetime of a cluster is the range of σ values over which a cluster survives and does
not merge i.e. it is the difference in σ values between the point of cluster formation and
cluster merging.

It is noted in literature that the logarithmic difference for testing the lifetime of a cluster
is preferred, as shown in detail by Leung et al [47]. The justification for using the
logarithmic scale is that the number of clusters or zero-crossing points as a function of
scale σ tends to be an exponential decay for data that is distributed uniformly [19] i.e.
π(σ) = π(0)e−βσ, where π(σ) is the number of solutions to equation 81.

The parameter β is a function of the dimensionality and is usually unknown [47]. If the
logarithmic scale k = π(0)log

(
σ
ε

)
is used, where ε is a small positive constant, then the

plot of π(σ) is approximately linear and free of the parameter β [47]. The reason for
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changing the scale to logarithmic is that it is much simpler to discern if the plot is linear
as apposed to an exponential with the unknown parameter β.

The major steps in selecting the valid cluster structure in a data set are summarised in
the following five steps.

1. Observe the plot of π(σ) and if it is constant over a wide range of σ values then
structure exists in the data set, otherwise the data set is uniformly distributed.

2. If the data has an inherent structure then the lifetime can determine the correct
number of clusters and the corresponding clustering.

3. Find a clustering that has the longest σ-lifetime together with the smallest ratio of
cluster separation to within cluster scatter, as discussed in section 4.

4. The validity of the cluster can be determined by the lifetime and other defined
validity indices.

5. If required the measure of outlierness can be used to detect any spurious points or
outliers in the data set.

5.2.5 Classification

The assumption for classification is that a significant partition exists and can be found
at some resolution σ∗. The problem is to assign each iterated data point xi to each of the
π(σ∗) partitions [19]. The proposed method is based on the metric used by Roberts [19],
which is stated for the kth cluster as

P (xi|Ck) = 1
2

(
1 +

〈
∇xy(x, σ∗)
‖∇xy(x, σ∗)‖ ,

di,k
‖di,k‖

〉)
× e

−‖di,k‖2
2

4(σ∗) , (84)

where

di,k = x̄k − xi.

The exponential distance is chosen since it has been found to perform superior to the
commonly used Euclidean distance, as shown in the study performed by Yao [48]. The
datum points can be assigned to a specific partition by finding which partition produces
the maximum value for the metric defined in equation 84.
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5.2.6 Algorithm illustration and properties

The clustering algorithm and its properties are presented by using a simple data set in
two dimension with three well defined clusters for clarity purposes, as shown in figure 5.4.
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Figure 5.4: Artificial data set used to illustrate the properties of diffractive clustering.

As illustrated in figure 5.4 the data set has three separate clusters and has been normalised
using the range as the scale measure with the minimum of the data set as the location
measure. The following step determines the cluster number that has the longest lifetime
and the corresponding σ value. The value for the constant π(0) using the logarithmic
scale is chosen to be the same as Leung et al i.e. a value of π(0) = 1

log(1.05) , whereas the
constant ε = 1 × 10−4. A plot of the number of clusters as a function of logarithmic σ
scale is shown in figure 5.5.

The plot in figure 5.5 shows that π(σ) approximately decreases linearly for k < 45. At
k = 45, known as the critical point, the filtering parameter σ is large enough to expose the
inherent structure in the data set. In this case the longest lifetime, as shown in figure 5.5,
occurs when the cluster number is three. The σ value is either chosen to be the minimum

72



20 40 60 80 100 120 140
1

2

3

4

5

6

7

8

9

10

11

X: 92
Y: 3

Logarithmic Scale (k)

C
lu
st
er

N
um

be
r

Figure 5.5: Logarithmic scale plot of the cluster number π(σ).

point or the middle point of the longest lifetime, which in this case is 8.9× 10−3.

The aperture function for the data set at σ = 8.9 × 10−3 is shown in figure 5.6. The
aperture function has three distinctive peaks which are indicative of the cluster centres
and the spread of each peak covering the points associated with the cluster centres.

The diffraction-based algorithm tracks the centres of the clusters which significantly re-
duces the computational effort. The evolutionary tree of the cluster centres as the pa-
rameter σ increases is shown in figure 5.7. The evolutionary tree shows how the cluster
centres merge into a single cluster as σ increases. The longest σ time is three, as shown
in the evolutionary tree diagram.

The transformation of the aperture function as σ increases is shown in figure 5.8. Initially
all the data points are separate clusters but as σ increases the points begin to merge to
form an aperture function with a single peak.
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Figure 5.6: Aperture function for the artificial data set for σ = 8.9× 10−3.

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

X = 0.5379
Y = 0.5442
Z = 0.1204

Dimension 1
Dimension 2

Si
gm

a

Figure 5.7: Evolutionary tree diagram illustrating the convergence of the cluster centres.
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σ = 5× 10−5 σ = 7× 10−5 σ = 9.2× 10−5

σ = 1.24× 10−4 σ = 1.74× 10−4 σ = 2.58× 10−4

σ = 4.12× 10−4 σ = 7.09× 10−4 σ = 1.32× 10−3

σ = 2.7× 10−3 σ = 5.99× 10−3 σ = 1.44× 10−2

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

0
0.5
1

00.51
0 0.5 1

Figure 5.8: Sigma evolution of the aperture function.

5.3 Summary

The diffractive clustering algorithm together with its properties were derived from the
basic principals of light and applied to an artificially generated data set to illustrate its
operation. The diffractive clustering algorithm is able to resolve the data at different
scales, determine and then cluster the inherent structure without any bias or a priori
information. The algorithm is well suited for gene expression analysis since there is a
large amount of information unknown about genes with their complex interactions. The
proposed and developed clustering algorithm therefore offers a new exploratory tool for
microarray data analysis.

The algorithm includes two paradigms namely nested and non-nested hierarchical cluster-
ing, with the latter preferred, since the data points are able to change cluster membership
as the free parameter evolves. The algorithm is also modified such that only the cluster
centres are traced, which significantly reduces the amount of iterations and computational
time. The exponential distance metric used to classify the data points to their respective
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clusters is also well suited for the gradient ascent method in the diffractive clustering
algorithm.

The overall result is a clustering algorithm that utilises metrics and methodologies similar
to those found in successful clustering algorithms. The main difference being that the
diffractive clustering algorithm is unbiased in the sense that it does not require the number
of clusters like the k-means algorithm. The diffraction principal of light also offers a novel
derivation and view of the processes involved during clustering.
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6 CLUSTERING RESULTS AND ANALYSIS

The developed diffractive clustering technique is tested on the following gene expression
data sets pertaining to cancerous tissue samples. The results obtained are compared to
commonly applied clustering techniques which include: hierarchical clustering, k-means,
self-organising map and the fuzzy c-means algorithm. The methods for data normalisation
and evaluation of the clustering algorithms are kept the same throughout the analysis.
The main focus of the algorithm is that of class discovery i.e. determining the number of
classes assuming no a priori knowledge of the data set. The two main issues associated
with class discovery are:

1. Developing a clustering algorithm.

2. Testing that the putative results are meaningful and valid.

The focus is primarily on clustering the samples and comparing the results to a specified
structure which is imposed on the data. The clustering algorithms are also evaluated using
relative criteria to determine their performance assuming that no a priori knowledge of
the data set exists.

The clustering algorithms were all implemented in Matlab 7.6.0 (R2008a) on a Intel
Pentium 2.3 GHz, 4 GB RAM, computer. An additional toolbox was downloaded to im-
plement the self-organising clustering algorithm called the SOM toolbox for Matlab [49].

6.1 Golub Data Set

The Golub (et al) data set is a well known and established data set for testing classi-
fiers and class discovery algorithms. The data set is comprised of acute lymphoblastic
leukaemia (ALL) samples and acute myeloid leukaemia (AML) samples. Patient samples
are currently classified using techniques such as histochemistry, immunophenotyping and
cytogenetic analysis [10]. The Golub data set was classified by classical observation of
the nuclear morphology, enzyme-based histochemical analysis and antibody attachment
to specific surface molecules pertaining to either lymphoid or myeloid cells.

The data set is divided into two types one for training and one for testing the classifier.
The initial training set contains 38 samples of which 27 are ALL and 11 are AML samples.
The independent testing set contains 34 samples of which 20 are ALL and 14 are AML
samples. The RNA was prepared from bone marrow mononuclear cells with the samples
hybridised to a high-density oligonucleotide Affymetrix array containing 6 817 probes.
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The expression profile for each sample was then recorded and quantified using quality
control standards [10].

The Golub data was first filtered using the call markers to find genes that were present
more than 1% out of all the samples. The dimensionality of the data was then reduced
using the ISOMAP algorithm to a suitable dimension. The residual variance of the data
set is shown in figure 6.1. The residual variance plot shows that the correct dimension is
two as this is where the curve begins to linearly decay.
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Figure 6.1: Residual variance of the ISOMAP algorithm for the Golub data set.

The data was normalised using the range as the scale measure and the minimum as the
location measure. The a priori classification of the samples is shown in figure 6.2, with
the red markers indicating the ALL subtypes and the green samples indicating the AML
subtypes. The first two dimensions of the data set are labelled using X and Y, as shown
in figure 6.2.

The diffractive clustering algorithm was applied to the filtered two dimensional Golub
data set for optimal results. The lifetime curve for the clustering algorithm is shown in
figure 6.3. The lifetime curve shows that the inherent number of clusters matches the
expected amount. The value of σ was selected to be the minimum value of the range
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Figure 6.2: Scatter plot of the a priori classification for the Golub data set.

where the cluster number remains constant for the longest time, in this case the value of
σ is 9.2× 10−3.

The performance of the clustering algorithms are determined using three main measures:
average external criterion, average validity index and accuracy. The average external
criterion is the average of the three main external criteria, covered in section 4.2, and
defined as

Average External Criterion = J +R + F

3 , (85)

where

J = Jaccard Coefficient,

R = Rand Score,

F = Folkes and Mallows Index.
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Figure 6.3: Cluster lifetime plot for the two dimensional Golub data set.

The average validity index is the average of the four main indices, as covered in section 4.4,
and is given as

Average Validity Index =
1
IB

+ ID + IC + I

4 , (86)

where

IB = Davies-Bouldin Index,

ID = Dunn’s Index,

IC = Calinski Harabasz Index,

I = I Index.

It is noted in equation 86 that the Davies-Bouldin index is inverted, since the index is
minimised when there is a suitable clustering result. The average validity index should
therefore be maximised for a good clustering result.
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The accuracy of the clustering results are determined using a simple misclassification
ratio as shown by

Accuracy = Ns −Nm

Ns

× 100 %, (87)

where Ns is total number of samples and Nm is the total number of misclassified samples
produced by the algorithm.

The diffractive clustering algorithm results were compared to the other main clustering
schemes, as shown in table 6.1. The k-means algorithm was used with the number
of expected clusters equated to two, similarly for the fuzzy c-means algorithm. The
hierarchical clustering algorithm implemented used the standard Euclidean distance with
single linkage as the merging measurement. The topology of the self-organising map was
2× 1, such that two cluster centroids could be found [10].

Table 6.1: Comparison of the clustering results for the Golub data set.

Algorithm Average External
Criterion

Average Validity
Index

Accuracy (%)

Diffractive clustering 87.5 73.5 94.4

k-means 76.1 62.6 88.9

Fuzzy c-means 76.1 57.3 88.9

Hierarchical clustering 59.3 63.7 63.9

Self-organising map 60.5 12.6 65.3

The results, as shown in table 6.1, demonstrate that the diffractive clustering algorithm
outperforms the other algorithms in terms of accuracy and validity. An accuracy of 94.4%
for diffractive clustering implies that only 4 samples were misclassified, whereas in fuzzy
c-means and k-means 8 samples were misclassified which is double that of the diffractive
clustering algorithm.

The SOM and hierarchical clustering algorithms both perform relatively poorly compared
to the other algorithms. The reason being that perhaps the incorrect choice of neurons
and topology for the SOMwas used, or the cutoff level for the hierarchical dendrogram was
not optimal. The main problem with these algorithms is the choice for the parameters and
determining the cluster number a priori. The diffractive clustering algorithm bypasses
these problems by plotting the lifetime for the cluster number, which gives the optimal
parameter choice for clustering the selected data set.
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6.2 MILEs Data Set

The Microarray Innovations in LEukaemia (MILE) study is a collection of 204 analyses
from an international standardisation programme that was conducted in 11 laborato-
ries [13]. The study analyses 16 subtypes of leukemia, myelodysplastic syndrome (MDS)
and normal bone marrow tissue in over 4 000 patients. The samples were classified a
priori using gold standard techniques such as morphology, cytogenetics, immunopheno-
typing etc [13].

The main subtypes of acute lymphoblastic leukaemia (ALL) that are analysed follow
those from the study by Li et al and include: t(4;11)MLL-rearrangement, t(9;22)BCR-
ABL, T-ALL, t(12;21)TEL-AML1, t(1;19)E2A-PBX1 and Hyperdiploid > 50 [12]. The
number of samples were evenly distributed as much as possible resulting in 276 samples
with a total of 54 675 genes. The number of samples was also limited by the memory
capacity in Matlab. The lymphoblastic leukaemias result from the failed differentiation
of the haematopoietic cells, specifically the lymphoid stem cells [13]. The occurrence and
risk associated with each subtype is shown in table 6.2.

Table 6.2: The six major subtypes of ALL, obtained from [12].

Subtype Occurrence (%) Clinical Nature

t(4;11)MLL 5-8 Infant ALL high risk

t(9;22)BCR-ABL 2-3 High risk

T-ALL 10-13 Moderate risk

t(12;21)TEL-AML1 16-22 Low risk

t(1;19)E2A-PBX1 5 Low risk

Hyperdiploid > 50 25-35 Low risk

The dimensionality of the MILEs dataset was reduced to three using the ISOMAP algo-
rithm and the information provided by the residual variance curve, as shown in figure 6.4.
The figure shows that the inherent dimensionality is three as the curve begins to decay
linearly at that point.

The data was background corrected and normalised using the robust multiarrary aver-
age (RMA) technique. The data was then normalised again using the range method such
that the gene expression values range was [0, 1]. The a priori classification of the data
set is shown in the figure 6.5, with each of the six subtypes designated their own specific
coloured marker.
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Figure 6.4: Residual variance of the ISOMAP algorithm for the MILEs data set.

The lifetime curve for the Miles data set is shown in figure 6.6. The curve shows that the
cluster number stays constant at six for a large range of σ. The graph is not complete
since the cluster number stays fixed at six for more than one order of magnitude in σ,
and is therefore assumed to be the correct cluster number. The chosen value of σ is
the minimum value at which the cluster number stays constant, which in this case is
17.3× 10−3.

The results of the diffractive clustering algorithm were compared to the other clustering
algorithms, as shown in table 6.3. The number of expected clusters in the k-means
algorithm was equated to six, similarly for the fuzzy c-means algorithm. The hierarchical
clustering algorithm used the standard Euclidean distance with single linkage as the
merging measurement and a maximum cluster level of six. The topology of the self-
organising map was set to 6× 1 such that six cluster centroids could be found.

The results show that the diffractive clustering algorithm outperforms the other algo-
rithms in terms of validity and accuracy. The fuzzy c-means algorithm is the closest to
the diffractive clustering algorithm with an accuracy of 71.4%. The fuzzy c-means algo-
rithm is similar to the k-means algorithm in the sense that there is random initialisation
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Figure 6.5: Scatter plot of the a priori classification for the MILEs data set.

and minimisation of intra-cluster variance [50]. The problem is that the minimum found
by these algorithms is generally not the global minimum, which seems to be the case in
this study.

Table 6.3: Comparison of the clustering results for the MILEs data set.

Algorithm Average External
Criterion

Average Validity
Index

Accuracy (%)

Diffractive clustering 66.6 179.0 73.1

k-means 59.1 152.6 61.6

Fuzzy c-means 62.9 171.4 71.4

Hierarchical clustering 47.7 64.2 47.1

Self-organising map 46.1 10.6 47.1
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Figure 6.6: Cluster lifetime plot for the three dimensional MILEs data set.

The fuzzy c-means and k-means algorithm also both require the a priori number of
clusters, which defeats the purpose of unsupervised clustering. The resulting accuracy is
low when compared to the Golub data set, as 74 out of the 276 samples are misclassified.
The reason for this low accuracy is attributable to the large number of different subtypes
and the high-dimensionality in which the samples are situated [7].

6.3 Khan Data Set

The Khan data set was obtained from the study performed on classifying small, round
blue-cell tumors (SRBCT) of childhood [14]. The tumors belong to four distinct diag-
nostic categories which present challenges for clinical diagnostics [14]. The four classes
are neuroblastoma (NB), rhabdomyosarcoma (RMS), Burkitt’s lymphoma (BL) and the
Ewing family of tumors (EWS). The correct diagnosis of which class the tumor belongs is
important since treatment options, responses to therapy and prognoses vary significantly
depending on the diagnosis [14].
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The gene-expression data was obtained from cDNA microarrays that each contained 6 567
genes, and a sample size of 83. The data was normalised to a range of [0, 1] using the min-
imum as the location measure and the range as the scale measure. The dimensionality for
the data set was reduced using the ISOMAP algorithm with the resulting residual vari-
ance curve shown in figure 6.7. The dimensionality for the rest of the analysis was chosen
to be three, since the residual variance decays linearly at this point. The predetermined
classes of SRBCT tumors are shown in figure 6.8.
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Figure 6.7: Residual variance of the ISOMAP algorithm for the Khan data set.

The correct number of clusters for the unsupervised diffractive clustering algorithm was
determined using the lifetime plot in figure 6.9. The plot shows that the longest lifetime
corresponds to the correct number of classes which is four. The value of σ used in the
diffractive clustering algorithm is determined from the minimum of the longest lifetime
plot which is 9.9× 10−3.

The diffractive clustering (DC) algorithm was compared to the clustering algorithms for
the Khan data set, as shown in table 6.4. The results show that the diffractive clustering
algorithm is able to accurately separate the data into four distinct classes. The average
validity index of the diffractive clustering algorithm is also relatively high indicating a
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Figure 6.8: Scatter plot of the a priori classification for the Khan data set.

suitable clustering solution.

The DC algorithm was able to correctly classify 58 out of the 83 samples as apposed to
the fuzzy c-means algorithm which only classified 54 out of the 83 samples correctly. A
reason being that the fuzzy c-means algorithm possibly found a local minimum for its
cost function as apposed to a global minimum.

Table 6.4: Comparison of the clustering results for the Khan data set.

Algorithm Average External
Criterion

Average Validity
Index

Accuracy (%)

Diffractive clustering 53.3 98.4 70.0

k-means 49.1 105.7 63.0

Fuzzy c-means 50.9 113.7 65.1

Hierarchical clustering 40.7 79.8 43.2

Self-organising map 46.3 15.7 54.2
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Figure 6.9: Cluster lifetime plot for the three dimensional Khan data set.

6.4 Shipp Data Set

The Shipp data set is a study performed on diffuse large B-cell lymphoma (DLBCL),
which is the most common malignancy in adults and is curable in less than 50% [15].
The experiment performed by Shipp et al indentified tumours in a single B-cell lineage,
specifically the distinction of DLBCL from a related germinal centred B-cell lymphoma,
follicular lymphoma (FL) [15].

The clinical distinction of the two types of lymphomas is usually difficult as FLs acquire
the morphologic and clinical characteristics of DLBCLs over time [15]. The micorarray
transcription study, containing 6 817 genes, of the lymphomas was performed on 77
patients, of which 58 were diganosed with DLBCL and other 19 with FL.

The dimensionality of the Shipp data set was reduced to two dimensions as suggested
by the linear decay of the resulting residual variance curve, which is produced by the
ISOMAP algorithm and shown in figure 6.10. The a priori classification of the 77 samples
in two dimensions is shown in figure 6.11. The similarity of the tumour lineage between
DLBCLs and FLs is evident by the amount of mixing of the different data points, as
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shown in figure 6.11.
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Figure 6.10: Residual variance of the ISOMAP algorithm for the Shipp data set.

The cluster number used for the diffractive clustering algorithm was determined using the
lifetime plot as shown in figure 6.12. The lifetime plot suggests that the correct number
of clusters is two, which corresponds to the correct a priori number of clusters in the
data set. The value for σ in the DC algorithm is 7.3 × 10−3, which is the minimum of
the longest lifetime range in figure 6.12.

The diffractive clustering algorithm, applied to the Shipp data set, was compared to the
other main types of clustering algorithms. The clustering results are shown in table 6.5,
with the most accurate and valid results pertaining to the novel diffractive clustering
algorithm.

The diffractive clustering algorithm correctly classifies 49 out of the 77 samples, as ap-
posed to the SOM and hierarchical clustering algorithm which correctly classify only 41
out of the 77 samples. The accuracy however of the diffractive algorithm, although 10%
larger than the rest, is still relavitily low.
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Figure 6.11: Scatter plot of the a priori classification for the Shipp data set.

The low accuracy is a result of the lymphomas being inherently indistinguishable due to
their similar B-cell lineage. The genes could be filtered using supervised techniques, such
as the t-statistic, to obtain better results, however the price of requiring prior classification
would be incurred.

Table 6.5: Comparison of the clustering results for the Shipp data set.

Algorithm Average External
Criterion

Average Validity
Index

Accuracy (%)

Diffractive clustering 55.5 160.6 63.6

k-means 48.0 79.7 51.9

Fuzzy c-means 48.7 82.0 51.9

Hierarchical clustering 51.1 112.2 53.3

Self-organising map 47.7 14.7 53.3
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Figure 6.12: Cluster lifetime plot for the two dimensional Shipp data set.

6.5 Pomeroy Data Set

The Pomeroy data set is a study performed on embryonal tumours of the central ner-
vous system (CNS) [16]. Medulloblastomas, a highly malignant brain tumour that
originates in the cerebellum or posterior fossa, are most common in pediatrics with
very little known about their response to treatment and pathogenesis [16]. The study
performed by Pomeroy et al analysed the transcription levels of 99 patients to iden-
tify any expression differences between medulloblastomas (MED), primitive neuroec-
todermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs), malignant
gliomas (MAL) and normal tissue [16].

The Pomeroy study analyses the DNA from 99 patients on oligonucleotide microarrays
with 6 817 genes. The data was also split into three data sets with varying amounts of
samples. The data set known as A2 is used in this clustering analysis and contains 90
samples, of which 60 are MED, 10 are MAL, 10 are AT/RTs, 6 are PNETs and 4 are
normal [16].
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The dimensionality of the data set was reduced prior to cluster analysis using the ISOMAP
algorithm. The residual variance curve, as shown in figure 6.13, produced by the algo-
rithm illustrates that the correct dimension is two. The a priori classification of the
samples using clinical methods is shown in figure 6.14
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Figure 6.13: Residual variance of the ISOMAP algorithm for the Pomeroy data set.

The cluster number was determined using the cluster lifetime plot produced by the diffrac-
tive clustering algorithm, which is shown in figure 6.15. The longest lifetime once again
corresponds to the correct cluster number which is five. A value for σ = 2.81 × 10−3 is
used in the DC algorithm as it is the minimum of the longest lifetime range.

A cluster analysis was performed on the Pomeroy data set using the diffractive clustering
algorthm and compared to the other main types of clustering algorithm. The results are
shown in table 6.6 with the most accurate and valid results pertaining to the diffractive
clustering algorithm. The DC algorithm correctly classifies 61 out of the 90 samples as
apposed to the hierarchical clustering algorithm which only classifies 51 out of the 90
samples correctly.

The validity of the clustering solution produced by the DC algorithm is also remarkably
high compared to the other algorithms. The main reason for the accuracy being low,
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Figure 6.14: Scatter plot of the a priori classification for the Pomeroy data set.

although high relative to the other clustering results, is the unbalanced distribution of
samples, which is a result of the large number of medulloblastoma samples in the data
set. The clustering solution can also be improved if feature genes are selected prior to
analysis, however this will require the a priori classification of the samples which defeats
the definition of unsupervised learning.

Table 6.6: Comparison of the clustering results for the Pomeroy data set.

Algorithm Average External
Criterion

Average Validity
Index

Accuracy (%)

Diffractive clustering 63.1 258.7 67.8

k-means 42.7 173.6 48.9

Fuzzy c-means 39.9 154.6 43.3

Hierarchical clustering 49.8 256.2 56.7

Self-organising map 41.2 13.7 44.4
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Figure 6.15: Cluster lifetime plot for the two dimensional Pomeroy data set.

6.6 Summary

The results show that overall the diffractive clustering (DC) algorithm outperforms the
other clustering algorithms: k-means, fuzzy c-means (FC), hierarchical clustering (HC)
and the self-organising map (SOM). The results were averaged across all the data sets for
each algorithm and for each performance measure, as shown in figure 6.16. The overall
results in figure 6.16 show that the diffractive clustering algorithm is higher in terms of
all three criteria.

The average performance across all data sets for the diffractive clustering algorithm was
65.2% for the average external criterion, 154 for the average validity index and 73.8%
for the accuracy. The numbers are relatively good when compared to the second highest
scoring algorithm the fuzzy c-means with 55.7% for the average external criterion, 115.8
for the average validity index and 64.1% for the accuracy. The diffractive clustering
algorithm is therefore 10% higher in terms of accuracy and more than 30% higher in
terms of validity than the fuzzy c-means algorithm.
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Figure 6.16: Overall performance results of the clustering algorithms.

The success of the diffractive clustering algorithm is due to the ability of algorithm to
deal with non-spherical or arbitrarily shaped clusters, and in this sense is similar to the
popular density-based clustering algorithms. The k-means and fuzzy c-means algorithm
also both require the predetermined number of clusters which in itself can sometimes
produce erroneous results.

The k-means and fuzzy c-means algorithms also minimise intra-cluster variance and as a
result the global minimum is not always discovered. The other problem associated with
k-means and fuzzy c-means is that the initial conditions are randomly selected which can
result in different solutions each time the algorithm is run.

The overall performance of the diffractive clustering algorithm is noticeably better than
the other main clustering algorithms such as the SOM and hierarchical clustering. The
diffractive clustering algorithm although better still has computational issues in terms of
time due to the complexity of the algorithm. The computational time however can be
reduced significantly using lower-level programming languages such as c++.
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7 CONCLUSION AND RECOMMENDATIONS

A summary of the research together with the work performed on developing and testing
the diffractive clustering algorithm is given. The future development and applications of
the algorithm is also provided with insight into some fundamental problems that should
be investigated.

7.1 Discussion

The recent development in microarray technology has given rise to a large amount of data
on the genetic expressions of cells. The parallel processing of this technology however
has a disadvantage in that there is too much information to analyse. The statistical tools
for dealing with the large amounts of data have proven useful, however the low number
of samples still remains a serious problem. The feature selection techniques combined
with supervised learning frameworks although successful continue to have serious bias
and dependency on acquired knowledge of the genome and its functions. The supervised
techniques fail when there is no a priori information about the samples or genes under
investigation.

A solution to this problem of discovery and analysis in gene expression data is the ap-
plication of unsupervised techniques such as cluster analysis. The clustering of samples
allows one to find the inherent structure in the genome without filtering or representing
the data with only a select few genes. The clustering of genes however remains an issue
since the amount of probes on a microarray is typically above 6 000, which reduces the
signal-to-noise ratio significantly.

The validation and performance of the clustering results, although poorly defined, can
be addressed successfully with relative and external criteria. The number of clustering
algorithms is large and as such the choice of the correct or preferred algorithm remains
ambiguous. The languid approach is usually to choose the fastest algorithm such as
the k-means algorithm. The classical algorithms although fast lack the insight to the
clustering process, and rely on the predetermined, usually biased number of clusters to
work.

The solution to this problem of determining the correct number of clusters is to use
a hierarchical scheme in which there exist multiple solutions. The problem then is to
determine the correct solution, which fortunately the developed diffractive clustering
algorithm manages to achieve. The cluster number that survives the longest is chosen
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indicating that the selected partitioning is indeed the inherent structure in the data set.
The idea or hypothesis that the cluster number which survives the longest is the correct
cluster number was tested using multiple cancerous tissue data sets with the results for
each indicating the validity of the hypothesis.

The diffractive clustering algorithm is therefore independent of the number of clusters
as the algorithm searches the space and requires no other form of feedback. The results
in terms of accuracy and validity also outperformed the other classical algorithms with
10% difference in accuracy and external criteria, as well as more than 30% difference in
terms of validity. The algorithm is therefore well suited for the cluster analysis of gene
expression data.

The success of the diffractive clustering algorithm is due to the ability of the algorithm
to cluster arbitrarily shaped clusters, and resolve the data at multiple scales. The only
drawback is the computational time which could easily be solved using a more basic pro-
gramming language such as C++. It was also found during the analysis of gene expression
data that it is exceptionally hard not to include bias such as a favoured dimension or
preferred set of feature genes which can lead to outstanding results. The diffractive clus-
tering algorithm therefore utilised the ISOMAP algorithm which bypassed the need for
arbitrarily selecting the number of genes or the dimension of the clustering space.

7.2 Future Work

The diffractive clustering algorithm, including the other clustering algorithms, often per-
form poorly in a high-dimensional space. The reason being is expressed by the relative
contrast between data points, x ∈ Rd, in the following equation

lim
d→∞

max(‖x‖p)−min(‖x‖p)
min(‖x‖p)

→ 0, (88)

where ‖x‖p is the Lp norm [7]. The stated equation shows that the relative contrast
between data points is degraded and has no meaning in a high-dimensional space. A
solution to this problem is to use a norm that performs better in a higher dimension,
such as the fractional norm [7].

The problem of the norm was further investigated using exponential metrics and the
fractional norm with surprising results. The results showed significant improvement in
the relative contrast and suggested that an improvement could be made to the current
diffraction-based clustering algorithm.

97



The diffraction clustering algorithm also uses the Euclidean norm to measure the sim-
ilarity between cluster centres and iteration points. An improvement can therefore be
made by replacing the Euclidean norm with the exponential and fractional norm. The
results from Aggarwal suggest that this improvement is possible, since it was found that
the k-means algorithm significantly improved when the fractional norm was implemented
in place of the Euclidean norm [7].

The application of the diffractive clustering algorithm to the clustering of genes instead of
samples remains unknown and an interesting question. The application to other scientific
fields is also untested and should be investigated. The diffractive clustering algorithm
is in theory applicable to the other aforementioned fields since the framework of the
algorithm is general and consistent.

The other improvement which could be made to the diffractive clustering algorithm is
the searching algorithm used for locating the maxima of the aperture functions. The
current gradient ascent method using the Euler approximation ,although accurate, is not
the fastest. Quasi-Newton gradient search algorithms therefore could possibly improve
the computational speed of the algorithm.
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