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Abstract

In this paper, a set of new Real-Coded Genetic Algorithms (RCGAs) with local and global
exploratory search capabilities are proposed. The search capabilities are based on the inclusion
of a modified crossover procedure and a new global exploratory method in RCGA. The global
exploratory method is based on vector projection while the modified crossover procedure is based
on a limited version of the pattern search (PS) method. Thesemodifications are introduced to
increase the efficiency and robustness of RCGAs through better local and global exploration of
the search region. An experimental study of the new algorithms was carried out using a set of
57 test problems. Statistical analyses and comparisons of the new algorithms with standard real
coded genetic algorithm (SRCGA) and some recent global optimization algorithms were carried
out. Results obtained show that the modifications remarkably improve the performance of RCGAs
across the test problems.

Keywords: Global Optimization, Genetic Algorithms, Pattern Search, Projection.

1 Introduction

Unconstrained global optimization problems can be represented as:
Givenf : S → R whereS ⊂ R

n, find x∗ ∈ S for which,

f(x∗) ≤ f(x), ∀x ∈ S. (1)

The variablex∗ is called the global minimizer off and f(x∗) is called the global minimum
value off . Global optimization problems are frequently found in manypractical applications
in engineering, physics, economics, systems biology and other scientific applications. They are
known as nonlinear programming problems and are generally very difficult problems [1, 2, 3, 4, 5].

Over the last four decades, efficient algorithms have been developed for solving global opti-
mization problems within a reasonable time frame. These algorithms include Evolutionary Pro-
gramming (EPs) [6], Evolution Strategies (ESs) [7], Genetic Algorithms (GAs) [8] and Differen-
tial Evolution (DE) [9]. They are popularly known as evolutionary algorithms (EAs). EAs are
a class of direct and probabilistic algorithms based on the Darwinian notion of natural selection.
They are robust, simple to implement and have recorded greatsuccesses in search and optimiza-
tion because of their ability to exploit information accumulated from an initially unknown search
space [6, 10].

∗Corresponding author’s email: tundesawyerr@yahoo.com
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In recent years, RCGAs have received a lot of attention within the EA research community
where many researchers have solved continuous optimization problems with RCGAs [1, 6, 10, 11,
12, 13, 14]. RCGAs offer several advantages over the binary coded genetic algorithms (BCGAs)
because they are better adapted to numerical optimization of continuous problems. They can
also be easily hybridized with other search methods. Despite their advantages over BCGAs,
RCGAs are prone to premature convergence (partly due to lackof population diversity and high
selection pressure) and slow convergence as GAs do not exploit the local basins of solutions in
the population [11].

The inability of GAs to effectively exploit the local basinsof the search region led to their
hybridization with other algorithms, especially with local optimization algorithms. Hybridization
has become an important approach in overcoming the shortcomings of GAs. GAs have been
hybridized with other optimization methods to improve their search capability, for example GA
with Nelder-Mead simplex method [15, 16], GA with particle swarm optimization [17], GA with
self organizing migrating algorithm [18], and GA with quadratic approximation [19]. Hybrid
GAs have been used to solve real-life problems and they have recorded impressive improvements
especially in maintaining population diversity throughout the search process. Population diversity
ensures that a rich variety of solution points are maintained in a GA population set thus leading to
the exploration of a wider scope of the solution landscape. Population diversity also prevents the
algorithm from converging prematurely to local optima.

However, the possibilities of developing more efficient androbust GAs still abound. Therefore
the main objective of this paper is to introduce new ways of improving the performance of RCGAs
by incorporating a feature from another algorithm that addscomplementary strength to RCGAs,
and by introducing a new exploratory feature to RCGAs.

In this paper, three new algorithms are proposed. They consist of either a modified crossover
procedure using ‘limited pattern search’ and /or vector projection-based exploratory search. These
algorithms are labeled as RCGA-PS (real coded genetic algorithm with pattern search), RCGA-P
(real coded genetic algorithm with projection), and RCGA-PS-P (real coded genetic algorithm
with pattern search and projection).

The remaining part of the paper is organized as follows: Section 2 provides a brief introduc-
tion to genetic algorithms. Section 3 presents the new real coded genetic algorithms with full
descriptions of the proposed modifications. A brief introduction to pattern search method and
vector projection-based search method is also provided. Section 4 provides the experimental set-
tings and parameter selection while Section 5 presents the results, comparisons and discussion.
Finally, Section 6 concludes with some remarks.

2 Genetic Algorithms (GAs)

The genetic algorithm was developed by John Holland in 1975 (then called adaptive or reproduc-
tive plans) [8]. GAs are defined as search algorithms based onthe mechanics of natural selection
and natural genetics. They combine survival of the fittest strategy among string structures with
ordered yet randomized information exchange to form a robust global exploration algorithm. At
every generationt, a new set of solution points,Pt = {x1,t, x2,t, . . . , xN,t}, is created using bits
and pieces of the fittest parent solutions and an occasional new part is sampled. While random-
ized, GAs ingeniously exploit historical information to consider new search points with expected
superior performance [20]. Several variations to the original GA [8] have been developed, us-
ing different representation schemes, selection, crossover, mutation and elitism operators [3, 10].
RCGA is a GA that uses floating point representation for holding values of the solution points. A
typical solution or chromosome is a vector of floating point numbers [10, 15].

At each generationt, the standard real coded genetic algorithm (SRCGA) performs selection,
crossover, mutation and elitism to update the current population setPt. In this study, the linear
ranked selection is used as suggested by James Baker [21, 22]to create the mating pool,̂Pt =
{x1,t, x2,t, . . . , xm,t}, m ≤ N [20], which in turn is transformed by crossover, mutation and
elitism into the population,Pt+1, for the next generation. Linear ranked selection consistsof two
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parts: (1) determination ofxi,t’s expected value,Ev(xi,t), and (2) conversion of the expected
value to discrete numbers of offspring. The expected value,Ev(xi,t), of xi,t is a real number
indicating the average number of offspring thatxi,t should receive, where

∑N
i=1 Ev(xi,t) = N

[22].
Linear selection is implemented by sorting the solutions inthe population according to their

fitness and each solution is assigned a rank in the sorted population. The best solution gets the first
position, i.e. ranked number1 while the worst solution receives the last rank,N , in the population.
The rank ofxi,t is used to calculateEv(xi,t) by a linear function,

Ev(xi,t) = Max −
2 × (Max − 1.0) × (i − 1)

N − 1
, (1.0 ≤ Max ≤ 2.0), (2)

whereMax is the expected value distribution for the linear function.Max = 1.1 (as recommended
in [21, 22]) andm = N (as recommended in [20]) are used. Then stochastic universal sampling
algorithm (SUS) is used to convert the expected number,Ev(xi,t), of xi,t to discrete numbers of
xi,t. These discrete numbers are used by SUS to select the corresponding numbers of points,xi,t,
that would be placed in̂Pt [22].

Crossover is applied pairwise with probability,pc, to all members ofP̂t. If the probability
of crossover is successful then arithmetic crossover (AC) is carried out on a pair(xi,t, xi+1,t) as
follows

yj
i,t = αjxj

i,t + (1 − αj)xj
i+1,t,

yj
i+1,t = αjxj

i+1,t + (1 − αj)xj
i,t, (3)

whereαj is uniform in [-0.5,1.5], i.e.αj ∼ Unif([−0.5, 1.5]) for eachj, j = 1, 2, . . . , n. The
new pair (yi,t, yi+1,t) is then copied to the setCt. If on the other hand, crossover probability is
unsuccessful, then the pair(xi,t, xi+1,t) is copied toCt. Without loss of generality, we writeCt

as

Ct = {y1,t, y2,t, . . . , ym,t} . (4)

We then apply mutation to the components of each member ofCt with probability,pµ. If the
probability of mutation is successful at a componentyj

i,t of yi,t ∈ Ct, then random mutation [10]
is carried out as follows

zj
i,t = yj

i,t + βj(uj − lj), (5)

whereβj ∼ Unif([−0.01, 0.01]) for eachj, j = 1, 2, . . . , n, uj andlj are the upper and lower
boundaries ofx ∈ S, respectively. On the other hand, if the mutation probability is unsuccessful
at componentyj

i,t of yi,t ∈ Ct, thenyj
i,t is retained. The resultantzi,t ∈ Mt consists of both

mutated and non mutated components. We denoteMt by

Mt = {z1,t, z2,t, . . . , zm,t} , (6)

where

zj
i,t =

{

yj
i,t + βj(uj − xj

i,t), if yj
i,t is mutated

yj
i,t, otherwise.

(7)

If m < N thenm points inMt replacem worst points inPt to createPt+1. In this paper,
we usem = N . After the creation ofPt+1, elitism is applied to preserve the elite solutions. The
elitism is applied when the best point inPt is better than the best point inPt+1. The elitism is
carried out to replace the worst point in inPt+1 with the best point inPt [23]. We now present a
step by step description of the standard real coded genetic algorithm:
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Algorithm 1: The SRCGA Algorithm

1. Randomly initialize and evaluateN uniformly distributed solution points in population set
Pt = {x1,t, x2,t, . . . , xN,t} from search spaceS. Set the generation countert = 0.

2. While necessary stopping condition is not met, do steps 3 -7.

3. Selectm ≤ N solutions fromPt as parents using linear-ranked selection to form a mating
pool P̂t.

4. Select pairs of parents sequentially from̂Pt and use arithmetic crossover with probability
pc to create offspring solutions. Save the offspring inCt.

5. Using random mutation, perform mutation on each component of yi,t ∈ Ct with a low
probability,pµ, to createMt.

6. UpdatePt by replacingm solutions inPt with the solutions inMt to createPt+1.

7. If m = N , then elitism is applied.

3 New Genetic Algorithms

Three new RCGAs are presented in this section. The motivation for designing these algorithms
is based on the quest for developing practical global optimization algorithms that can solve a
greater number of global optimization problems in reasonable time. These new algorithms are
specifically designed to address the shortcomings of SRCGA.RCGA-PS incorporates a limited
version of pattern search in the crossover procedure while RCGA-P applies the projection based
(P-based) exploratory search on the set of solutions after crossover and mutation operators have
been used. RCGA-PS-P incorporates both PS-based crossoverand P-based exploratory search.

3.1 Pattern Search based Local Exploration

Pattern search is a class of direct local search methods thatexplore sample points around the
current point, sayxi,t ∈ P̂t [24, 25]. It consists of two major components namely, the SEARCH
step and the POLL step [24, 25, 26]. For a detailed description of the PS method see [24, 26].
The version of PS used in this study consists of only a modifiedPOLL step (MPS). It has been
used to augment simulated annealing in [26]. It is simple, effective and different from the one
used in [27] because only a unit coordinate vectordk is selected randomly from the direction
coordinate matrixD = {d1, d2, . . . d2n} = {a1, a2, . . . , an,−a1,−a2, . . . ,−an}, whereak is
thekth unit coordinate vector inRn. The selecteddk is used to search for a better solution point
within the neighborhood ofxi,t. MPS starts by generating a trial pointyi,t around the current
solutionxi,t by randomly selecting a poll coordinate vectordk ∈ D from uniform distribution,
i.e. dk ∼ Unif(D), and using it to generate an intermediate point:

ŷi,t = xi,t + ∆tdk, (8)

where∆t is a step size parameter. The operation in equation (8) is themain step in PS [24, 26].
We call this step as single pattern search step and denote it by SPS. MPS does not calculate the
function value at̂yi,t, instead it calculates trial pointyi,t using:

yi,t = ŷi,t + rU, (9)

whereŷi,t is from equation (8),r = η∆t, is a step size andU = (U1, U2, . . . , Un)T is a directional
cosines with random components

Uj = Rj/(R
2
1 + . . . + R2

n)
1

2 , j = 1, 2, . . . , n. (10)

4
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Rj ∼ Unif([−1, 1]) andη is a step factor. There are cases when the components of the trial
point yi,t = (y1

i,t, y
2
i,t, . . . , y

n
i,t) generated by equation (9) fall outside the search spaceS during

the search. In these cases, the components ofyi,t are regenerated using,

yj
i,t =

{

xj
i,t + λ(uj − xj

i,t), if yj
i,t > uj

xj
i,t + λ(xj

i,t − lj), if yj
i,t < lj.

(11)

whereλ ∼ Unif([0, 1]) andxj
i,t is the corresponding component of the current solutionxi,t ∈ P̂t.

The operations used to createyi,t within the neighborhood of the current point in equations (8)
and (9) are presented in Figure 1.

Figure 1:The generation of a trial point,yi,t, by MPS

In Figure 1, the current pointxi,t is treated as the POLL position. Then the intermediate point
ŷi,t is found by equation (8) and then the trial pointyi,t is found by equation (9).

MPS has a parameter∆t which is initialized at the beginning of RCGA. Att = 0, ∆t, is
initialized by:

∆0 = τ × max{uj − lj| j = 1, 2, . . . , n}, (12)

whereτ ∈ [0, 1]. For this study, the value chosen forτ is0.2 because it provides an initial step size
that is not too large or too small. The step size1, ∆0, is initially set to a fraction of the length of the
search region. The idea of using equation (12) to generate the initial step length is to accelerate
the search by starting with a suitably large step size to quickly traverse the search space and as the
search progresses the step size is adaptively adjusted.

Note that MPS used in this study is not applied iteratively onthe pointxi,t ∈ P̂t but it is
applied in a single iteration toxi,t to produceyi,t via equations (8) and (9) within the modified
crossover operator. Hence, the iteration counter of MPS is not required.

The MPS-based crossover operation introduced here is applied to each memberxi,t of P̂t to
produce the correspondingyi,t ∈ Ct. At the end of each generation,t, of RCGA, the parameter
∆t is updated as follows.

A set of q distinct points,Ω = {x1, x2, . . . , xq} ⊂ Pt are randomly selected and the mean
x̄ = 1

q

∑q
i=1 xi of the points inΩ is calculated. Then the distancesd(x̄, xi) between̄x and each

xi ∈ Ω are also calculated. A comparison of all the distancesd(x̄, xi) is made andK nearest
solutions tox̄ are selected. Without loss of generality, the set ofK nearest distances tōx is
denoted by

{

γ1, γ2, . . . , γK
}

, and∆t+1 is updated by,

∆t+1 =
1

K

K
∑

i=1

γi. (13)

1∆0 can be considered component wise for problems where(uj − lj) varies significantly from componentj to com-
ponentk. However, this is not needed for the problems considered in this paper.
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The method (13) uses population statistics to determine therate of change of the step size∆t

(i.e. the solutions inPt at timet are used to determine the step size for timet + 1). This is a new
idea that is introduced to utilize the population statistics of RCGA. A study of the behavior of this
method is underway. During the implementation of MPS for adjusting∆t, the median of the set
{γ1, γ2, · · · , γK} was also tried but the overall results were inferior.

3.2 The RCGA-PS Algorithm

This section describes the RCGA-PS algorithm. RCGA-PS is a real coded genetic algorithm with
pattern search incorporated into its crossover procedure.The resulting crossover operator is called
modified crossover(MC). An iteration of RCGA-PS consists of selection, crossover, mutation and
elitism.

At generationt, RCGA-PS creates a mating poolP̂t by using equation (2) in Section 2 as
in SRCGA. After the mating pool,̂Pt, is created, MC is applied to each member ofP̂t. Hence,
there is no need to implement the crossover probability,pc, as in SRCGA. MC uses a probability
distribution over a set of crossover operators, e.g. over the set{MPS, PSAC}, where PSAC is a
crossover operator that combines SPS defined by equation (8)with AC in equation (3). MC uses
MPS with a probabilityρ and PSAC with probability1 − ρ. If MC uses MPS atxi,t ∈ P̂t, then
the correspondingyi,t is created using equations (8) and (9). On the other hand, if MC uses PSAC
at xi,t ∈ P̂t, then another pointxj,t ∈ P̂t, is selected at random and SPS is applied to bothxi,t

andxj,t and two corresponding pointŝyi,t and ŷj,t are created using equation (8). Then AC is
applied toŷi,t andŷj,t resulting iny1,t andy2,t. The best pointyi,t = arg min {f(y1,t), f(y2,t)} is
considered as the crossover point corresponding toxi,t ∈ P̂t. Whetheryi,t is created via MPS or
PSAC, it then competes with the correspondingxi,t ∈ P̂t. If f(yi,t) < f(xi,t) thenyi,t is copied
to Ct elsexi,t is copied toCt.

Mutation is applied to the components of eachxi,t ∈ Ct with probability,pµ, see equation (5).
This results inMt. Mt replacesPt to createPt+1 and elitism is applied as in SRCGA.

RCGA-PS combines the complementary strengths of GAs and PS to form a strong, efficient
and robust algorithm. It has the ability to explore both the global and local regions of the search
space. It performs local search through MPS and global search through its crossover and mutation
operators. With these properties RCGA-PS becomes more robust and superior to SRCGA. A step
by step description of the RCGA-PS algorithm is presented below:

Algorithm 2: The RCGA-PS Algorithm

1. Randomly initialize and evaluateN uniformly distributed solution points in population set
Pt = {x1,t, x2,t, . . . , xN,t} from search spaceS. Set the generation countert = 0.

2. While necessary stopping condition is not met, do steps 3 -8.

3. Selectm ≤ N solutions fromPt as parents using linear-ranked selection to form a mating
pool P̂t.

4. Perform crossover using modified crossover (MC)

(a) For eachxi,t ∈ P̂t, i = 1, 2, . . . ,m do

Select MPS with probabilityρ and PSAC with probability1 − ρ.
If MC = MPS then

• Use the POLL step in equation (8) to generateŷi,t fromxi,t

• Perturb the coordinate direction using equations (9) and (10) to createyi,t from
ŷi,t

else if MC = PSAC then

• Randomly select a partnerxj,t for xi,t from the setP̂t

• Use the POLL step in equation (8) on parentsxj,t andxi,t to produceŷj,t and
ŷi,t respectively

6
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• Perform AC on̂yj,t and ŷi,t to create{y1,t, y2,t}

• The best pointyi,t = arg min {f(y1,t), f(y2,t)} is chosen

(b) If f(yi,t) < f(xi,t) thenyi,t is copied toCt elsexi,t is copied toCt

5. Using random mutation, perform mutation on each component of xi,t ∈ Ct with a low
probability,pµ, to createMt = {x1,t, x2,t, . . . , xm,t}.

6. UpdatePt by replacingm solutions inPt with Mt to createPt+1.

7. If m = N , then elitism is applied.

8. Adjust∆t adaptively using equation (13)

Remarks

1. Algorithm 2 is similar to Algorithm 1 except step 4 which ishighlighted in bold.

2. Step 4 replaces AC with MC. MC probabilistically uses MPS and PSAC. This step distin-
guishes RCGA-PS from SRCGA which simply uses AC.

3.3 Projection-based Exploration

The projection-based exploration search method is based onthe concept of orthogonal projection
of vectorx on vectory. This concept is not new in linear algebra, but its application to evolution-
ary computation especially in genetic algorithm is new. To the best of our knowledge, there has
been no application of this concept in global optimization.

Vector projection is used in this work to enhance the exploration of points in the search space
by using two solution points to locate a better point in the solution landscape. It is a two-parent
operator that produces only one offspring. Suppose two solutionsx andy are randomly selected
from Pt and are evaluated, iff(x) is better thanf(y) then we projecty on x otherwise projectx
ony.

For any twon dimensional vectors, the projection ofx ony generates a vector̂y defined by:

ŷ =
xT y

yT y
y =

xT y

‖y‖2 y =

(

‖x‖ cos(θ)

‖y‖
y

)

. (14)

Note that the projected vectorŷ (the offspring) will be in the same direction asy unlessπ
2 < θ <

3π
2 in which case the angle,θ, between the two vectors is such thatcos(θ) < 0. As a result, the

projected vector is in the opposite direction (the reflection of y about the origin).

3.4 The RCGA-P Algorithm

In this section, a projection-based RCGA (RCGA-P) is presented. Structurally, SRCGA and
RCGA-P are similar, except that RCGA-P incorporates the projection based exploration mech-
anism at the end of each generation,t, of SRCGA. After RCGA-P createŝPt, the crossover
operation in equation (3) is used to createCt. ThenMt is created fromCt by mutation using
equation (5).

Now the projection-based operation is used to transformMt to Φt. For eachzi,t ∈ Mt, (i =
1, 2, . . . ,m), a pair of points,(zi,t, zj,t), is selected at random fromMt and a projected point
si,t ∈ Φt is created. HenceΦt = {s1,t, s2,t, . . . , sm,t}.

Sometimes the componentssj
i,t of the trial pointsi,t may fall outside the search spaceS.

In such cases, the corresponding componentsj
i,t is regenerated using equation (11). After the

projected vector is generated, its fitness valuef(si,t) is determined. A new population,Pt+1, is
created withxi,t, where,

xi,t =

{

si,t if f(si,t) < f(zi,t), zi,t ∈ Mt

zi,t otherwise.
(15)
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Elitism is applied as in SRCGA.
This exploratory search is found to be highly efficient by making RCGA take big jumps in the

search space. Below is a step by step description of the RCGA-P algorithm.

Algorithm 3: The RCGA-P Algorithm

1. Randomly initialize and evaluateN uniformly distributed solution points in population set
Pt = {x1,t, x2,t, . . . , xN,t} from search spaceS. Set the generation countert = 0.

2. While necessary stopping condition is not met, do steps 3 -8.

3. Selectm ≤ N solutions fromPt as parents using linear-ranked selection to form a mating
pool P̂t.

4. Select pairs of parents sequentially from̂Pt and use arithmetic crossover (AC) with proba-
bility pc to create offspring solutions. Save the offspring inCt.

5. Using random mutation, perform mutation on each component of yi,t ∈ Ct with a low
probability,pµ to createMt.

6. For each zi,t ∈ Mt(i = 1, 2, . . . ,m) generate the pair (zi,t, zj,t), zi,t, zj,t ∼ Unif(Mt),
create si,t(i = 1, 2, . . . ,m) by projection and generate Φt = {s1,t, s2,t, . . . , sm,t}.

7. UpdatePt by replacingm solutions inPt with the solutions inΦt to createPt+1.

8. If m = N , then elitism is applied.

Remarks

3. Algorithm 3 is structurally similar to algorithm 1 exceptfor step 6 which is highlighted in
bold.

3.5 The RCGA-PS-P Algorithm

This section presents the RCGA-PS-P algorithm. RCGA-PS-P is very similar to RCGA-PS except
for the P-based exploration incorporated at the end of each iteration of RCGA-PS-P in the same
way RCGA-P incorporates projection.

At generationt, RCGA-PS-P creates a mating pool,P̂t, by using equation (2). After the
mating pool,P̂t, is created, MC is applied to each member ofP̂t with a probability distribution
over the set of crossover operators{MPS, PSAC} to createyi,t. yi,t then competes with the
correspondingxi,t ∈ P̂t. If f(yi,t) < f(xi,t) thenyi,t is copied toCt elsexi,t is copied toCt.
Mutation is applied to the components of eachxi,t ∈ Ct with probability,pµ, to createMt. These
operations are the same as in RCGA-PS. In addition, the set,Φt, is created using the projection-
based operation. For eachzi,t ∈ Mt, a pair of points,(zi,t, zj,t), is selected at random fromMt

and a projected pointsi,t ∈ Φt is created, whereΦt = {s1,t, s2,t, . . . , sm,t}.
Equation (11) is used to adjust components ofsi,t that fall outside the search space. After the

projected vector is generated, its fitness valuef(si,t) is determined and a new population,Pt+1,
created using equation (15). Elitism is applied as in SRCGA.

The motivation for this modification is based on the good performances of RCGA-PS and
RCGA-P. The incorporation of MPS and projection-based exploratory mechanism in RCGA pro-
duces a robust algorithm that combines the complementary properties of GAs, PS and projection.
Below is a step by step description of RCGA-PS-P:

Algorithm 4: The RCGA-PS-P Algorithm

1. Randomly initialize and evaluateN uniformly distributed solution points in population set
Pt = {x1,t, x2,t, . . . , xN,t} from search spaceS. Set the generation countert = 0.

2. While necessary stopping condition is not met, do steps 3 -9.
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3. Selectm ≤ N solutions fromPt as parents using linear-ranked selection to form a mating
pool P̂t.

4. Perform crossover using modified crossover (MC)

(a) For eachxi,t ∈ P̂t, i = 1, 2, . . . ,m do

Select MPS with probabilityρ and PSAC with probability1 − ρ.
If MC = MPS then

• Use the POLL step in equation (8) to generateŷi,t fromxi,t

• Perturb the coordinate direction using equations (9) and (10) to createyi,t from
ŷi,t

else if MC = PSAC then

• Randomly select a partnerxj,t for xi,t from the setP̂t

• Use the POLL step in equation (8) on parentsxj,t andxi,t to produceŷj,t and
ŷi,t respectively

• Perform AC on̂yj,t and ŷi,t to create{y1,t, y2,t}

• The best pointyi,t = arg min {f(y1,t), f(y2,t)} is chosen

(b) If f(yi,t) < f(xi,t) thenyi,t is copied toCt elsexi,t is copied toCt

5. Using random mutation, perform mutation on each component of xi,t ∈ Ct with a low
probability,pµ to createMt = {x1,t, x2,t, . . . , xm,t}.

6. For each zi,t ∈ Mt(i = 1, 2, . . . ,m) generate the pair (zi,t, zj,t), zi,t, zj,t ∼ Unif(Mt),
create si,t(i = 1, 2, . . . ,m) by projection and generate Φt = {s1,t, s2,t, . . . , sm,t}.

7. UpdatePt by replacingm solutions inPt with the solutions inΦt to createPt+1.

8. If m = N , then elitism is applied.

9. Adjust∆t adaptively using equation (13)

Remark

4. RCGA-PS-P is structurally similar to RCGA-PS except for step 6, which makes it different
from RCGA-PS.

4 Experimental Settings

To compare the performance of the proposed algorithms with SRCGA and some recent GAs, a
set of 57 benchmark problems from [5] was used. All the problems are minimization problems
of continuous variables with their dimensions ranging from2 to 20 with different degrees of dif-
ficulty. There are many local optima and/or saddles in the solution spaces of these test problems.
Detailed description of the problems can be found in [5].

All algorithms were implemented in Microsoft Visual Studio2005 integrated development
environment using C#.NET programming language on Windows Vista business operating system
running on an Intel core 2 CPU at 1.66GHz with 1GB of RAM.

4.1 Parameter Selection

All the RCGAs use the same basic parameter values which are supplied by the user through
the graphical user interface. These parameters include; the sizeN of the population setPt, the
maximum number of generationT , mutation probabilitypµ, crossover probabilitypc, number of
elitist solutionsE, the linear-ranked selection expected value distributionMax and the probability
ρ used by MPS in RCGA-PS and RCGA-PS-P. Table 1 below shows the parameter settings.

All the values shown in Table 1 are standard parameter settings that have been successfully
used in literature [6, 11]. Other parameters used in RCGA-PSand RCGA-PS-P are: (i)∆t,
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Table 1:Parameter Settings for the Experiment
Sno. Parameter Value

1 Population size(N) 10 × n, (n is the problem dimension)
2 Maximum number of generation(T ) 10, 000
3 Mutation probability(pµ) 0.001
4 Crossover probability(pc) 0.6
5 Probability of selecting MPS(ρ) 0.4
6 Elitism (E) 1
7 Linear selection’s expected value distribution(Max) 1.1

initialized by equation (12) and adaptively adjusted by equation (13), (ii)τ , the constant used in
calculating∆0 in equation (12), (iii)q the size ofΩ is set to15 and (iv) K the number of the
nearest neighbors to the meanx̄ of points inΩ is set to10 (see Section 3.1).

5 Experimental Results

The results obtained from the experiments performed on the new RCGAs and SRCGA using 57
test problems are presented. These results are the performance measurements. They are used
to determine the efficiency and effectiveness of the new algorithms over SRCGA. Performance
evaluation of stochastic algorithms can be done using threemajor criteria. These criteria are the
test for: convergence, speed and robustness of the algorithm [30]. The convergence measure
provides a scientific means of determining how effective an algorithm converges to the desired
solution. Equation (16) is used to test for convergence on all four algorithms. In the experiment,
a run is terminated when the algorithm converges to a good solution i.e. if the best function value
fmin found so far satisfies

|fmin − f(x∗)| ≤ ǫ, ǫ = 10−4, (16)

or when the maximum number of generationT is reached.
The speed of an algorithm is determined by counting the number of function evaluations of

the algorithm. The number of function evaluations is chosenas a measure of speed since it is
independent of the type of machine used. The number of function evaluations can be used to
compare algorithms irrespective of the machine used for implementation. For each algorithm, the
mean number of function evaluations (MFE) for solving a testproblem is obtained by averaging
the number of function evaluations over the total number of trial runs.

The MFE is used for comparing all the proposed algorithms with SRCGA and the comparison
of the best performing RCGA with recent GAs from the literature. The MFE of an algorithm is
used for comparison if and only if the algorithm’s success rate (SR) is at least 1. That is if an
algorithm is run 100 times on a problem and SR≥ 1, then MFE is obtained using 100 runs. If for
a problem, SR = 0 for all independent runs then this is denotedby ‘- ’, see Table 3.

Lastly, the robustness of an algorithm (the third criterion) is determined by comparing SR of
the algorithms. SR of an algorithm is the number of successful runs (i.e. number of times that a
problem is solved) of the algorithm out of a predefined numberof runs, e.g 100 runs. It can also
be described as the number of times an algorithm finds the optimal solution. A run is counted
successful if the best solution,fmin, found in a run satisfies

|f(x∗) − fmin| ≤ 0.009. (17)

Any algorithm that solves a wide range of problems is considered a robust algorithm, i.e. the
algorithm is not specific to some problems. This measure is animportant criterion for GAs since
GAs are reputed to be robust. Each algorithm was run independently for 100 trials on each of
the 57 benchmark problems to determine its success rate. There are 57 problems, hence there
are 5,700 runs in total for each algorithm. The algorithms collectively solved 54 problems except
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for Epistatic Michalewicz, Odd Square and Price’s Transistor Modeling problems whose global
minima could not be located by all the algorithms within the maximum number of iterations.
Therefore results for the three problems are not presented.

The best fitness values (Min), mean best fitness values (MBF),mean function evaluations
(MFE), success rate (SR), standard deviations (STD), p-values from analysis of variance (ANOVA)
test, box-plots and multiple comparison (MCx) graphs are used in the comparison of the algo-
rithms.

In addition, we used the Success Performance (SP ) criterion introduced in [28] to reconfirm
our results by estimating the expected number of function evaluations for successful runs.SP is
defined by:

SP = mean(FEs) ×

(

TR

SR

)

(18)

where FEs = function evaluations of successful runs, TR = number of total runs and SR = number
of successful runs [29]. The normalizedSP of an algorithm is calculated by dividing the algo-
rithm’s SP by theSP of the best algorithm (SPbest). Experimental results from recent literature
[30, 31] are also used for comparison.

Table 2:Comparison of MFEs and SR of SRCGA and the New RCGAs for Problems with Dimensions 2 - 4
Pno. Problem name n Mean Function Evaluations (MFE) Success Rate (SR)

SRCGA RCGA-PS RCGA-PS-P RCGA-P SRCGA RCGA-PS RCGA-PS-P RCGA-P
1 Aluffi-Pentini 2 1,449 988 911 969 100 100 100 100
2 Becker and Lago 2 1,602 5,373 6,413 1,761 100 100 100 100
3 Bohachevsky 1 2 2,927 1,567 819 630 100 100 100 100
4 Bohachevsky 2 2 20,598 1,606 816 558 91 100 100 100
5 Branin 2 4,358 6,517 8,478 1,374 100 100 100 100
6 Camel Back-3 2 1,204 1,041 513 275 100 100 100 100
7 Camel Back-6 2 1,253 2,535 3,713 1,700 100 100 100 100
8 Cosine Mixture 2 697 849 346 248 100 100 100 100
9 Dekkers and Aarts 2 10,270 4,765 7,111 222,544 100 100 100 85

10 Easom 2 2,136 1,202 1,197 1,718 100 100 100 100
11 Goldstein and Price 2 11,688 1,576 1,704 106,406 97 100 100 92
12 Hosaki 2 1,015 756 740 848 100 100 100 100
13 McCormick 2 1,446 1,063 1,176 2,996 100 100 100 100
14 Modified Rosenbrock 2 104,570 211,046 78,495 81,904 81 100 100 100
15 Multi-Gaussian 2 95,028 64,111 2,040 802 53 89 100 100
16 Periodic 2 71,366 59,389 1,014 374 65 90 100 100
17 Schaffer 1 2 200020 404,963 10,256 745 7 28 99 100
18 Schaffer 2 2 200020 554,458 722,392 376,127 16 83 100 100
19 Shubert 2 7,738 80,796 48,590 48,381 99 99 100 89
20 Gulf Research 3 252,118 232,275 418,314 400,839 100 100 100 99
21 Hartman 3 3 3,115 2,353 1,832 24,471 100 100 100 100
22 Helical Valley 3 3,903 3,393 2,738 111,348 100 100 100 100
23 Levy and Montalvo 1 3 2,473 2,593 2,391 6,823 100 100 100 100
24 Meyer and Roth 3 177,738 4,897 11,798 304,354 100 100 100 100
25 Cosine Mixture 4 3,420 3,250 428 256 100 100 100 100
26 Kowalik 4 550 919 670 421 100 100 100 100
27 Miele and Cantrell 4 19,650 1,980 3,189 87,350 100 100 100 100
28 Neumaier 2 4 400,040 923,869 1,267,658 800,040 41 100 100 35
29 Powell’s Quadratic 4 88,887 7,338 1,300 435 100 100 100 100
30 Shekel 5 4 187,988 108,896 6,604 5,263 54 91 100 100
31 Shekel 7 4 136,878 40,962 20,184 44,325 67 97 99 95
32 Shekel 10 4 82,353 7,053 20,274 68,124 81 100 99 92
33 Wood 4 400,040 178,309 230,927 758,378 7 100 100 35

Total : 2,498,538 2,922,688 2,885,031 3,462,787 2,759 3,177 3,297 3,122

5.1 Comparisons of new RCGAs with SRCGA

In this section, experimental results and their statistical analyses are summarized in Tables 2, 3,
and appendices I, II and III. Table 2 Table 2 provides MFE SR for all algorithms for problems
with n = 2 to 4 while Table 3 provides MFE and SR for problems withn = 5 to 20. The test
problems are numbered serially in column 1 of the two tables.The problem names are also listed
in column 2, MFE in columns 3 to 6 and their corresponding SR inthe last four columns of Tables
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Table 3:Comparison of MFEs and SR of SRCGA and the New RCGAs for Problems with Dimensions 5 - 20
Pno. Problem name n Mean Function Evaluations (MFE) Success Rate (SR)

SRCGA RCGA-PS RCGA-PS-P RCGA-P SRCGA RCGA-PS RCGA-PS-P RCGA-P
34 Levy and Montalvo 2 5 18,036 4,786 4,917 630,803 98 100 100 38
35 Salomon 5 - 1,387,240 1,874 450 0 1 100 100
36 Shekel’s Foxholes 5 5 466,254 1,150,774 1,881,333 - 7 18 1 0
37 Hartman 6 6 92,323 27,783 4,813 12,421 86 99 100 100
38 Storn’s Tchebychev 9 9 180 342 433 270 100 100 100 100
39 Ackley 10 1,000,100 49,618 1,988 1,276 100 100 100 100
40 Exponential 10 16,506 12,105 484 308 100 100 100 100
41 Griewank 10 1,000,100 2,374,582 1,455 878 2 52 100 100
42 Levy and Montalvo 2 10 70,913 14,524 204,220 1,887,732 96 100 95 6
43 Modified Langerman 10 - 2,181,129 3,537,542 - 0 23 7 0
44 Neumaier 3 10 999,510 120,170 153,944 326,904 100 100 100 100
45 Paviani 10 132,825 655,504 1,226,774 445,250 100 100 100 100
46 Rastrigin 10 - 2,634,645 1,239 758 0 6 100 100
47 Rosenbrock 10 1,000,100 2,779,964 3,799,916 - 1 81 35 0
48 Salomon 10 - - 1,804 1,136 0 0 100 100
49 Schwefel 10 - 1,668,610 2,600,115 - 0 41 32 0
50 Shekel’s Foxholes 10 10 - 2,717,235 - - 0 3 0 0
51 Sinusoidal 10 10 39,602 15,646 13,162 349,758 100 100 100 87
52 Spherical 10 30,913 15,074 714 446 100 100 100 100
53 Storn’s Tchebychev 17 17 340 644 817 510 100 100 100 100
54 Sinusoidal 20 20 1,396,882 53,946 50,008 3,889,840 100 100 100 3

Total : 6,264,584 17,864,321 13,487,552 7,548,740 1,190 1,424 1,670 1,334

2 and 3. The total MFE, SR and SR ratio (in round brackets) for the algorithms are presented in
Table 4. SR ratio is calculated by dividing SR by the total number of runs, i.e. 100. Tables 2 and 3
show that each of RCGA-PS and RCGA-PS-P solved 53 problems. RCGA-P and SRCGA solved
49 and 48 problems, respectively.

Total SR in Table 4 shows that RCGA-PS-P is superior to RCGA-PS, RCGA-P and SRCGA
by 366, 511 and 1,018 successes, respectively. RCGA-PS is superior to RCGA-P and SRCGA by
145 and 652 successes, respectively. RCGA-P is superior to SRCGA by 507 successes. Clearly,
RCGA-PS-P is the best performer and RCGA-PS is the runner up followed by RCGA-P with
respect to SR. This is reflected in the success ratio which shows that RCGA-PS-P is the best
algorithm with92% success, followed by RCGA-PS, RCGA-P and SRCGA with85%, 83% and
73% successes, respectively.

Table 4:Total results of MFE and SR from Tables 2 and 3
Measure SRCGA RCGA-PS RCGA-PS-P RCGA-P
MFE 8,763,122 20,787,009 16,372,583 11,011,527
SR 3949 (0.73) 4601 (0.85) 4967 (0.92) 4456 (0.83)

Total MFE of SRCGA seems superior to the total MFE of all the new algorithms in Table 4,
but taking a closer look at columns 3 to 6, of Tables 2 and 3, onewould observe that SRCGA has
not solve 6 problems that RCGA-PS and RCGA-PS-P are able to solve. By excluding MFE of
all the algorithms for problems that at least one algorithm is not able to solve, a different picture
emerges. These problems are; Modified Langerman, Rastrigin, Rosenbrock, Salomon 5, Salomon
10, Schwefel, Shekel’s foxholes 5 and Shekel’s foxholes 10.After excluding MFE of these 8
problems, the remaining 46 problems are used to determine a new set of results for comparing the
performances of the algorithms. The new results are summarized in Table 5.

Table 5:Comparison of SRCGA and the New RCGAs using total results for46 test problems
Measure SRCGA RCGA-PS RCGA-PS-P RCGA-P
MFE 7,296,768 6,267,412 4,548,760 11,009,183
SR 3941 (0.86) 4428 (0.96) 4592 (0.99) 4156 (0.90)

In Table 5, RCGA-PS-P emerged as the best algorithm with a total of 4592 SR out of 4600
runs, followed by RCGA-PS, RCGA-P and SRCGA with 4428, 4156,3941 respectively. In terms
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of MFE, RCGA-PS-P is also the best with the smallest MFE. RCGA-P has the highest MFE
because it performed badly on problems 24 and 51. If we compare the total results by excluding
these two problems then RCGA-P becomes superior to SRCGA by 597,362 MFE.

The normalizedSP of the four algorithms are presented in Appendix I.SP of the best algo-
rithm (SPbest) is listed in column 2, while normalizedSP for all algorithms are listed in columns
3 - 6. The symbol ‘- ’ is used to indicate nil. The normalizedSP ’s printed in bold from Appendix
I indicate the best performing algorithm(s) for the corresponding problem. From Appendix I,
RCGA-PS-P emerged the best with the least normalizedSP , after excluding theSP for prob-
lems where at least one algorithm has noSP . The runner-up is RCGA-P, followed by RCGA-PS
and SRCGA respectively.

In appendix II, 50 out of 52 ANOVA p-values in the last column indicate that there are signif-
icant differences between MFE of the algorithms. ANOVA testwas not carried out for problems
52 and 53 because the algorithms have the same MBF values of 0.0. The symbol ‘- ’ is used to in-
dicate nil. This statistical information provides a clear evidence that the algorithms differ in their
performances. These differences on some selected problemscan be seen graphically in Figures
2(a-c) and Figure 3(a-c) in appendix IV and V. These figures are discussed later on in this section.

The best fitness values (Min) and the worst fitness values (WF)for each algorithm for all the
test problems are presented in appendix III. Algorithms whose Min values are printed in bold
outperformed the others. A careful study of appendix III shows that RCGA-PS-P is the most
superior and robust algorithm because it is able to accurately locate 45 out of 46 global minima.
RCGA-PS, RCGA-P and SRCGA are able to locate, accurately, 43, 40 and 36 global minima
respectively.

Next, the algorithms are compared graphically using the boxplots and multiple comparisons
from the ANOVA test on some representative problems. Figures 2(a-c) show the box plots for
the algorithms on Ackley, Griewank and Modified Langerman. Figures 2(a-b) show that the MBF
of RCGA-PS-P and RCGA-P are closest to the global minimum with very small solution spread
around their means. The worst algorithm on Ackley and Griewank problems is SRCGA with a
wide dispersion of solutions. On the other hand Figure 2(c) shows that RCGA-PS is the best
algorithm on Modified Langerman (a problem with multi modal and non symmetrical properties)
but with a wide spread of solutions. It is followed by RCGA-PS-P.

Figures 3(a-c) show the multiple comparisons between the algorithms on the same problems.
They show that the algorithms are significantly different. From the multiple comparison plots
in Figures 3(a-b), we see that RCGA-PS-P and RCGA-P performed better than the other two
algorithms. Figure 3(c) shows that RCGA-PS outperformed the other algorithms.

Finally, we now rank the algorithms using total MFE and SR from Table 5 andSP from
Appendix I. The rankings are presented in Table 6 which clearly shows the superiority of RCGA-
PS-P.

Table 6:Rank order of SRCGA and the New RCGAs
Rank 1

st
2
nd

3
rd

4
th

MFE RCGA-PS-P RCGA-PS SRCGA RCGA-P
SR RCGA-PS-P RCGA-PS RCGA-P SRCGA
SP RCGA-PS-P RCGA-P RCGA-PS SRCGA

Finally, we study the performance of the algorithms presented in this papers on a number of
scalable functions2 e.g. Ackley, Rastrigin, Rosenbrock and Schewfel. We have tested our al-
gorithms on these problem forn = 10, 20 and30 and the summarized results are presented in
Tables 7 and 8. Tables 7 and 8 show that Ackley, Rastrigin and Spherical problems were consis-
tently solved by all the new algorithm proposed. The algorithms however failed for Rosenbrock
and Schwefel problems. Table 8 also shows that MFE increaseswith n. However, this increase
in MFE is not quite significant in the new algorithms proposed. This clearly shows that the best
performing algorithm has a role to play in global optimization.

2Griewank is also a scalable function but this problem becomes easier as its dimension increases, see ([32]). Our
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Table 7:Comparison of Min and SR of SRCGA and the New RCGAs on scalableproblems
Dimension = 10

Pno. f(x∗) Min SR
SRCGA RCGA-PS RCGA-PS-P RCGA-P SRCGA RCGA-PS RCGA-PS-P RCGA-P

39 0.0000 8.08E-04 5.50E-05 0.00E+00 1.00E-06 100 100 100 100
46 0.0000 9.95E-01 2.50E-05 0.00E+00 0.00E+00 0 6 100 100
47 0.0000 7.75E-03 9.20E-05 1.12E-03 1.64E+00 1 81 35 0
49 -4189.8289 -3.62E+03 -4.19E+03 -4.19E+03 -3.42E+03 0 41 32 0
52 0.0000 4.20E-05 1.50E-05 0.00E+00 0.00E+00 100 100 100 100

Dimension = 20
39 0.0000 1.21E-02 8.20E-05 0.00E+00 0.00E+00 0 100 100 100
46 0.0000 4.98E+00 2.98E+00 0.00E+00 0.00E+00 0 0 100 100
47 0.0000 1.12E+00 4.19E-02 3.30E-01 1.14E+01 0 0 0 0
49 -8379.6578 -6.03E+03 -8.38E+03 -8.26E+03 -5.56E+03 0 1 0 0
52 0.0000 5.90E-05 4.80E-05 0.00E+00 0.00E+00 100 100 100 100

Dimension = 30
39 0.0000 2.65E-02 2.37E-04 1.00E-06 0.00E+00 0 100 100 100
46 0.0000 1.49E+01 9.95E+00 0.00E+00 0.00E+00 0 0 100 100
47 0.0000 6.73E+00 1.28E-03 8.12E+00 2.12E+01 0 2 0 0
49 -12569.4867 -8.56E+03 -1.21E+04 -1.23E+04 -8.13E+03 0 0 0 0
52 0.0000 7.00E-05 6.20E-05 0.00E+00 0.00E+00 100 100 100 100

Table 8:Comparison of MBF and MFE of SRCGA and the New RCGAs on scalable problems
Dimension = 10

Pno. f(x∗) MBF of successful runs MFE of successful runs
SRCGA RCGA-PS RCGA-PS-P RCGA-P SRCGA RCGA-PS RCGA-PS-P RCGA-P

39 0.0000 2.57E-03 9.00E-05 3.40E-05 4.00E-05 1,000,100 49,618 1,988 1,276
46 0.0000 - 6.83E-05 2.00E-05 2.50E-05 - 42,062 1,239 758
47 0.0000 7.75E-03 4.84E-04 6.62E-03 - 1,000,100 2,775,232 3,799,851 -
49 -4189.8289 - -4.19E+03 -4.19E+03 - - 40,401 50,023 -
52 0.0000 8.50E-05 7.20E-05 1.70E-05 2.60E-05 30,913 15,074 714 446

Dimension = 20
39 0.0000 - 9.60E-05 3.70E-05 3.90E-05 - 1,834,080 2,044 1,252
46 0.0000 - - 2.50E-05 3.10E-05 - - 1,311 739
47 0.0000 - - - - - - - -
49 -8379.6578 - -8.38E+03 - - - 234,214 - -
52 0.0000 9.20E-05 8.50E-05 2.20E-05 2.40E-05 202,580 25,961 732 448

Dimension = 30
39 0.0000 - 6.23E-04 3.60E-05 3.60E-05 - 2,799,978 1873 1126
46 0.0000 - - 2.20E-05 2.80E-05 - - 1212 730
47 0.0000 - 1.34E-03 - - - 2,800,846 - -
49 -12569.4867 - - - - - - - -
52 0.0000 9.60E-05 9.10E-05 1.50E-05 1.90E-05 762,717 41,550 700 412

5.2 Comparison of RCGA-PS-P with recent GAs

In this section, the best performing algorithm, RCGA-PS-P,is compared with some recent genetic
algorithms from the literature. The results of the comparisons are summarized in Tables 9 and 10.
The problem numbers used in Tables 2 and 3 are used to represent the problems used in Tables 9
and 10. We use the test problems that are common to the test problems we have used and the ones
used in [30, 31]. For the purpose of fair comparison, we used the same parameters that were used
in [30, 31]. These parameter settings are provided below.

The parameter settings used for solving the problems taken from [31] areN (given in Table
9), andT = 3000. GAs used in [31] are classical genetic algorithm (CGA) and a hybrid RCGA
with quasi-simplex technique (RCGAQS).

Table 9:Comparison of RCGA-PS-P with two GA algorithms from [31] on common problems
Pno N f(x∗) Min STD

RCGA-PS-P RCGAQS CGA RCGA-PS-P RCGAQS CGA
39 110 0.0000 4.4408E-16 3.9697E-01 3.6244E+00 0.00E+00 6.5006E-01 1.9395E-03
41 165 0.0000 0.00E+00 3.4927E-02 7.8300E-01 0.00E+00 1.7985E-02 6.3444E-02
52 110 0.0000 4.5639E-241 3.2030E-29 9.70E+00 0.00E+00 1.0128E-28 3.8623E-01

numerical results also confirmed this.
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The results in Table 9 show that RCGA-PS-P outperforms RCGAQS and CGA with respect
to the number of problems solved. The best solutions in Table9 are printed in bold. The STD for
RCGA-PS-P is zero for all problems. This means that all the solutions found by RCGA-PS-P are
better than the ones found by RCGAQS and CGA.

Next, we compare RCGA-PS-P with GAs presented in [30]. Theseare standard binary coded
genetic algorithm (SBGA) and enhanced binary coded geneticalgorithm (EBGA). Again, for a
fair comparison we useN=200 (fixed for all problems in [30]) andT = 500 to obtain our results.
The comparison is presented in Table 10.

Table 10:Comparison of RCGA-PS-P with two GA algorithms from [30] on nine common test problems
Pno f(x∗) Min MFE SR

RCGA-PS-P SBGA EBGA RCGA-PS-P SBGA EBGA RCGA-PS-P SBGA EBGA
5 0.39789 0.39789 0.39789 0.39791 7,133 8,125 2,040 100 81 100
7 -1.03163 -1.03163 -1.03163 -1.03163 4,459 1,316 1,316 100 98 100

11 3.00000 3.00000 3.00000 3.00028 11,211 8,185 4,632 100 59 100
19 -186.73091 -186.73091 -186.73100 -186.72802 125,062 6,976 2,364 100 93 100
21 -3.86278 -3.86270 -3.86249 -3.86114 5,544 1,993 1,680 100 94 100
30 -10.15320 -10.15316 -10.13490 -10.14866 25,675 7,495 36,388 100 1 97
31 -10.40294 -10.40293 -10.16770 -10.38253 22,201 - 36,774 100 0 98
32 -10.53641 -10.53639 -10.40340 -10.51404 19,239 - 36,772 100 0 100
37 -3.32237 -3.32236 -3.30652 -3.31383 11,476 19,452 53,792 100 23 92

Total : 232,000 53,542 175,758 900 449 887

Table 10 shows the best function values, mean function valueand success rate of RCGA-PS-P,
SBGA and EBGA [30]. The algorithm that performed the best hasits results printed in bold. Table
10 shows that RCGA-PS-P is the best performer with respect tothe quality solutions than SBGA
and EBGA. In terms of MFE, EBGA performed better in 5 problems, but at the cost of sacrificing
accuracy in some lower dimensional problems. RCGA-PS-P becomes superior in terms of MFE
as the problem dimension increases. It performed better in problems 31, 32 and 37. Although
SBGA has the lowest MFE, its overall performance is the worstamong the algorithms presented
in Table 10.

In terms of SR, RCGA-PS-P is superior to EBGA and SBGA by 13 and451 success respec-
tively. Overall comparisons show that RCGA-PS-P is superior, more reliable and more robust
than the other algorithms.

5.3 Discussion

In the last two sections, we have compared the new algorithmswith SRCGA. We have also com-
pared the best performer, RCGA-PS-P, with recent genetic algorithms from the literature. The new
algorithms were also compared with SRCGA using scalable problems. The comparison of SR-
CGA, RCGA-PS, RCGA-P and RCGA-PS-P shows that each of PS-based crossover and P-based
exploratory search improved the performance of RCGA, but their combination in RCGA-PS-P
is the best. The multiple comparison plots also illustrate significant differences between the new
algorithms and SRCGA. We have also shown that RCGA-PS-P performed better than the recent
algorithms from the literature.

We attribute the performance of the new algorithms to the inclusion of the PS-based crossover
operation and the P-based exploratory search method in RCGA. The PS-based crossover operation
enhances the local exploitation of the solution space. The P-based exploratory search property, on
the other hand, is used to explore a wider range of the search region when the solution points in
the population set are far apart. As soon as the solution points are within a local basin, it intensify
the search within the local neighborhood of the solutions.

6 Conclusion

We have proposed three new versions of real coded genetic algorithm and tested their perfor-
mances on a large set of test problems. Numerical comparisonhave shown that all new versions
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are better than standard real coded genetic algorithm. We have also demonstrated the superiority
of the new versions over the standard real coded genetic algorithm using graphs and p-values from
ANOVA.

Finally, we have compared the best performing real coded genetic algorithm with two versions
of genetic algorithms from the literature. This comparisonagain confirmed the superiority of the
new real coded genetic algorithm over its recent competitors.

We have discussed the new features introduced in the geneticalgorithm and shown that the
features are contributory to the superior performance. Thenew algorithms can be implemented at
ease for solving continuous global optimization problems.

New research is underway to design an efficient real coded genetic algorithm for constrained
global optimization.
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Appendix I : Comparison of Normalized SP of SRCGA and the New RCGAs

Pno. SPbest SRCGA RCGA-PS RCGA-PS-P RCGA-P
1 911 1.5906 1.0845 1.0000 1.0637
2 1602 1.0000 3.3539 4.0031 1.0993
3 630 4.6460 2.4873 1.3000 1.0000
4 558 5.6186 2.8781 1.4624 1.0000
5 1374 3.1718 4.7431 6.1703 1.0000
6 275 4.3782 3.7855 1.8655 1.0000
7 1253 1.0000 2.0231 2.9633 1.3567
8 248 2.8105 3.4234 1.3952 1.0000
9 4765 2.1553 1.0000 1.4923 47.2134

10 1197 1.7845 1.0042 1.0000 1.4353
11 1576 3.8359 1.0000 1.0812 55.7789
12 740 1.3716 1.0216 1.0000 1.1459
13 1063 1.3603 1.0000 1.1063 2.8184
14 78495 1.2925 2.6887 1.0000 1.0434
15 802 4.5241 3.9816 2.5436 1.0000
16 374 8.6014 11.2121 2.7112 1.0000
17 745 80.2685 29.1323 3.6337 1.0000
18 376127 3.3237 1.7724 1.9206 1.0000
19 5854.55 1.0000 13.1051 8.2995 9.2852
20 232275 1.0854 1.0000 1.8009 1.7344
21 1832 1.7003 1.2844 1.0000 13.3575
22 2738 1.4255 1.2392 1.0000 40.6676
23 2391 1.0343 1.0845 1.0000 2.8536
24 4897 36.2953 1.0000 2.4092 62.1511
25 256 13.3594 12.6953 1.6719 1.0000
26 421 1.3064 2.1829 1.5914 1.0000
27 1980 9.9242 1.0000 1.6106 44.1162
28 923869 1.0561 1.0000 1.3721 2.3248
29 435 204.3379 16.8690 2.9885 1.0000
30 5263 2.5872 1.8539 1.2548 1.0000
31 4790.53 2.2622 1.6314 1.0616 1.0000
32 4869.57 1.9861 1.4484 1.0629 1.0000
33 178309 32.0503 1.0000 1.2951 10.9121
34 4786 1.7481 1.0000 1.0274 15.5866
35 450 - 25879.5556 4.1644 1.0000
36 85527.8 2.8824 1.0000 21.4761 -
37 4813 2.3357 2.3287 1.0000 2.5807
38 180 1.0000 1.9000 2.4056 1.5000
39 1276 783.7774 38.8856 1.5580 1.0000
40 308 53.5909 39.3019 1.5714 1.0000
41 878 56953.3030 4340.4372 1.6572 1.0000
42 14524 2.3092 1.0000 1.0831 146.0801
43 472487 - 1.0000 1.4857 -
44 120170 8.3175 1.0000 1.2811 2.7203
45 132825 1.0000 4.9351 9.2360 3.3522
46 758 - 924.8461 1.6346 1.0000
47 3426212 29.1897 1.0000 3.1688 -
48 1136 - - 1.5880 1.0000
49 98539 - 1.0000 1.5864 -
50 1205067 - 1.0000 - -
51 13162 3.0088 1.1887 1.0000 9.0084
52 446 69.3117 33.7982 1.6009 1.0000
53 340 1.0000 1.8941 2.4029 1.5000
54 50008 27.9332 1.0787 1.0000 214.3210

Total 58,384.8516 31,414.1359 128.9949 719.0070
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Appendix II : Comparison of the Means, Standard Deviations and p-valuesof SRCGA and the New RCGAs
Pno. Problem name n f(x∗) Mean Best Fitness value (MBF) Standard Deviations (STD) p-value

SRCGA RCGA-PS RCGA-PS-P RCGA-P SRCGA RCGA-PS RCGA-PS-P RCGA-P
1 Aluffi-Pentini 2 -0.3523 -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-01 6.00E-05 5.50E-05 5.30E-05 5.80E-05 1.42E-03
2 Becker and Lago 2 0.0000 5.10E-05 4.80E-05 4.40E-05 4.70E-05 3.00E-05 3.30E-05 2.90E-05 2.80E-05 4.19E-01
3 Bohachevsky 1 2 0.0000 5.10E-05 4.00E-05 2.40E-05 3.30E-05 3.00E-05 2.90E-05 2.60E-05 3.00E-05 1.72E-09
4 Bohachevsky 2 2 0.0000 1.97E-02 7.02E-07 2.70E-05 2.60E-05 6.25E-02 2.80E-05 2.90E-05 2.70E-05 2.98E-06
5 Branin 2 0.3979 3.98E-01 3.98E-01 3.98E-01 3.98E-01 2.90E-05 3.00E-05 3.10E-05 2.90E-05 4.02E-03
6 Camel Back-3 2 0.0000 5.30E-05 4.10E-05 3.50E-05 2.60E-05 2.90E-05 2.90E-05 3.20E-05 2.90E-05 5.93E-09
7 Camel Back-6 2 -1.0316 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 3.80E-05 3.80E-05 4.10E-05 3.80E-05 2.69E-04
8 Cosine Mixture 2 -0.2000 -2.00E-01 -2.00E-01 -2.00E-01 -2.00E-01 3.10E-05 3.10E-05 2.80E-05 2.90E-05 5.19E-09
9 Dekkers and Aarts 2 -24776.5183 -2.48E+04 -2.48E+04 -2.48E+04 -2.48E+04 4.00E-05 2.90E-05 3.00E-05 1.12E-01 3.37E-03

10 Easom 2 -1.0000 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 3.00E-05 3.00E-05 3.00E-05 3.10E-05 2.81E-02
11 Goldstein and Price 2 3.0000 3.81E+00 3.00E+00 3.00E+00 5.16E+004.61E+00 3.00E-05 3.10E-05 7.32E+00 1.05E-03
12 Hosaki 2 -2.3458 -2.35E+00 -2.35E+00 -2.35E+00 -2.35E+00 3.30E-05 3.10E-05 3.10E-05 3.40E-05 1.79E-03
13 McCormick 2 -1.9133 -1.91E+00 -1.91E+00 -1.91E+00 -1.91E+00 7.00E-06 7.00E-06 6.00E-06 7.00E-06 9.20E-04
14 Modified Rosenbrock 2 0.0000 5.16E-03 2.64E-03 7.87E-04 1.53E-03 6.66E-03 3.52E-03 2.21E-03 2.95E-03 2.01E-12
15 Multi-Gaussian 2 -1.2969 -1.26E+00 -1.29E+00 -1.30E+00 -1.30E+00 4.02E-02 2.51E-02 2.90E-05 3.10E-050.00E+00
16 Periodic 2 0.9000 9.35E-01 9.10E-01 9.00E-01 9.00E-01 4.77E-02 3.00E-02 2.60E-05 2.80E-050.00E+00
17 Schaffer 1 2 0.0000 7.82E-02 7.01E-03 1.32E-04 3.40E-05 9.80E-03 4.34E-03 9.64E-04 3.00E-050.00E+00
18 Schaffer 2 2 0.0012 6.25E-02 4.91E-03 1.07E-03 4.17E-04 9.98E-02 5.29E-03 1.25E-03 2.41E-040.00E+00
19 Shubert 2 -186.7309 -1.86E+02 -1.87E+02 -1.87E+02 -1.80E+026.28E+00 3.18E-03 2.63E-04 1.98E+01 1.12E-06
20 Gulf Research 3 0.0000 9.73E-04 9.30E-05 9.40E-05 6.39E-04 1.14E-03 3.50E-05 4.60E-05 1.41E-03 1.43E-13
21 Hartman 3 3 -3.8628 3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 2.60E-05 2.70E-05 2.70E-05 2.70E-05 2.19E-02
22 Helical Valley 3 0.0000 6.70E-05 5.90E-05 5.40E-05 6.30E-05 2.70E-05 2.50E-05 2.90E-05 3.40E-05 7.60E-03
23 Levy and Montalvo 1 3 0.0000 6.10E-05 6.10E-05 5.40E-05 6.60E-05 2.60E-05 2.80E-05 2.70E-05 3.10E-05 1.97E-02
24 Meyer and Roth 3 0.0019 2.36E-03 1.97E-03 1.97E-03 2.35E-03 6.77E-04 2.30E-05 2.40E-05 6.98E-04 2.45E-12
25 Cosine Mixture 4 -0.4000 -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-01 2.40E-05 2.50E-05 2.40E-05 2.70E-050.00E+00
26 Kowalik 4 0.0003 3.73E-04 3.70E-04 3.69E-04 3.75E-04 2.40E-05 2.50E-05 2.50E-05 2.30E-05 3.05E-01
27 Miele and Cantrell 4 0.0000 9.20E-05 5.30E-05 6.50E-05 9.60E-05 1.10E-05 2.90E-05 2.80E-05 1.00E-050.00E+00
28 Neumaier 2 4 0.0000 1.89E-02 6.37E-04 5.51E-04 1.87E-02 1.64E-02 1.06E-03 6.62E-04 1.48E-020.00E+00
29 Powell’s Quadratic 4 0.0000 8.10E-05 6.90E-05 2.90E-05 2.30E-05 2.20E-05 2.60E-05 2.60E-05 2.80E-050.00E+00
30 Shekel 5 4 -10.1532 -6.78E+00 -9.70E+00 -1.02E+01 -1.02E+013.68E+00 1.45E+00 2.90E-05 2.40E-050.00E+00
31 Shekel 7 4 -10.4029 -8.11E+00 -1.02E+01 -1.03E+01 -1.01E+013.30E+00 9.02E-01 6.65E-01 1.46E+000.00E+00
32 Shekel 10 4 -10.5364 -9.25E+00 -1.05E+01 -1.05E+01 -9.96E+002.67E+00 2.70E-05 6.67E-01 1.97E+00 1.17E-07
33 Wood 4 0.0000 1.70E+00 9.20E-05 9.10E-05 1.19E+002.25E+00 1.30E-05 1.60E-05 2.12E+000.00E+00
34 Levy and Montalvo 2 5 0.0000 2.92E-04 6.50E-05 6.50E-05 2.87E-02 1.53E-03 2.30E-05 2.30E-05 4.23E-020.00E+00
35 Salomon 5 0.0000 1.06E-01 9.89E-02 4.20E-05 3.90E-05 2.37E-02 9.93E-03 3.00E-05 2.60E-050.00E+00
36 Shekel’s Foxholes 5 -10.4056 -3.11E+00 -4.14E+00 -2.80E+00 -2.67E+002.04E+00 2.95E+00 7.82E-01 1.29E-01 6.31E-10
37 Hartman 6 6 -3.3224 -3.31E+00 -3.32E+00 -3.32E+00 -3.32E+00 4.13E-02 1.85E-03 2.10E-05 2.20E-05 7.53E-09
38 Storn’s Tchebychev 9 0.0000 0.00E+00 0.00E+00 0.00E+00 0.00E+000.00E+00 0.00E+00 0.00E+00 0.00E+00 -
39 Ackley 10 0.0000 2.57E-03 9.00E-05 3.40E-05 4.00E-05 7.49E-04 8.00E-06 2.60E-05 2.90E-050.00E+00
40 Exponential 10 -1.0000 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 1.20E-05 1.80E-05 1.40E-05 1.30E-050.00E+00
41 Griewank 10 0.0000 6.25E-02 9.58E-03 2.00E-05 2.30E-05 3.54E-02 8.65E-03 2.40E-05 2.70E-050.00E+00
42 Levy and Montalvo 2 10 0.0000 5.21E-04 7.50E-05 6.20E-04 1.13E-01 2.14E-03 1.70E-05 2.38E-03 1.29E-010.00E+00
43 Modified Langerman 10 -0.9650 -1.89E-01 -6.11E-01 -4.53E-01 -1.77E-01 1.45E-01 2.31E-01 1.84E-01 1.22E-010.00E+00
44 Neumaier 3 10 -210.0000 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 3.51E-04 7.00E-06 1.50E-05 9.00E-060.00E+00
45 Paviani 10 -45.7780 -4.58E+01 -4.58E+01 -4.58E+01 -4.58E+01 1.52E-04 2.08E-04 2.24E-04 1.83E-04 2.10E-06
46 Rastrigin 10 0.0000 7.06E+00 2.59E+00 2.00E-05 2.50E-053.30E+00 1.42E+00 2.70E-05 2.80E-050.00E+00
47 Rosenbrock 10 0.0000 1.24E+01 5.81E-01 9.83E-03 2.04E+003.34E+01 1.38E+00 2.87E-03 1.91E-01 1.37E-07
48 Salomon 10 0.0000 1.16E-01 9.99E-02 3.80E-05 4.00E-05 3.67E-02 0.00E+00 2.90E-05 2.70E-050.00E+00
49 Schwefel 10 -4189.8289 -2.86E+03 -4.07E+03 -4.05E+03 -2.36E+032.89E+02 1.28E+02 1.36E+02 3.27E+020.00E+00
50 Shekel’s Foxholes 10 -10.2088 -1.48E+00 -1.85E+00 -1.48E+00 -1.48E+00 2.19E-02 1.51E+00 2.50E-02 0.00E+000.00E+00
51 Sinusoidal 10 -3.5000 -3.50E+00 -3.50E+00 -3.50E+00 -3.36E+00 1.30E-05 1.80E-05 1.80E-05 4.05E-010.00E+00
52 Spherical 10 0.0000 8.50E-05 7.20E-05 1.70E-05 2.60E-05 2.19E-05 1.70E-05 2.50E-05 3.00E-050.00E+00
53 Storn’s Tchebychev 17 0.0000 0.00E+00 0.00E+00 0.00E+00 0.00E+000.00E+00 0.00E+00 0.00E+00 0.00E+00 -
54 Sinusoidal 20 -3.5000 -3.50E+00 -3.50E+00 -3.50E+00 -1.07E+00 1.20E-05 1.00E-05 1.10E-05 4.26E-01 4.93E-07
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Appendix III : Comparison of the Best Min Fitness values and Worst Fitnessvalues of SRCGA and the New RCGAs
Sno. Problem name n f(x∗) Minimum Best Fitness value (Min) Worst Fitness Value (WF)

SRCGA RCGA-PS RCGA-PS-P RCGA-P SRCGA RCGA-PS RCGA-PS-P RCGA-P
1 Aluffi-Pentini 2 -0.3523 -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-01
2 Becker and Lago 2 0.0000 2.00E-06 1.00E-06 1.00E-06 1.00E-06 9.90E-05 9.90E-05 1.00E-04 9.90E-05
3 Bohachevsky 1 2 0.0000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.90E-05 1.00E-04 9.80E-05 1.00E-04
4 Bohachevsky 2 2 0.0000 0.00E+00 1.00E-06 0.00E+00 0.00E+00 2.18E-01 9.90E-05 9.80E-05 1.00E-04
5 Branin 2 0.3979 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
6 Camel Back-3 2 0.0000 1.00E-06 0.00E+00 0.00E+00 0.00E+00 1.00E-04 9.60E-05 9.80E-05 1.00E-04
7 Camel Back-6 2 -1.0316 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
8 Cosine Mixture 2 -0.2000 -2.00E-01 -2.00E-01 -2.00E-01 -2.00E-01 -2.00E-01 -2.00E-01 -2.00E-01 -2.00E-01
9 Dekkers and Aarts 2 -24776.5183 -2.48E+04 -2.48E+04 -2.48E+04 -2.48E+04 -2.48E+04 -2.48E+04 -2.48E+04 -2.48E+04

10 Easom 2 -1.0000 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00
11 Goldstein and Price 2 3.0000 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+01 3.00E+00 3.00E+00 3.00E+01
12 Hosaki 2 -2.3458 -2.35E+00 -2.35E+00 -2.35E+00 -2.35E+00 -2.35E+00 -2.35E+00 -2.35E+00 -2.35E+00
13 McCormick 2 -1.9133 -1.91E+00 -1.91E+00 -1.91E+00 -1.91E+00-1.91E+00 -1.91E+00 -1.91E+00 -1.91E+00
14 Modified Rosenbrock 2 0.0000 4.00E-06 0.00E+00 0.00E+00 0.00E+00 3.70E-02 8.27E-03 7.42E-03 7.42E-03
15 Multi-Gaussian 2 -1.2969 -1.30E+00 -1.30E+00 -1.30E+00 -1.30E+00-1.21E+00 -1.22E+00 -1.30E+00 -1.30E+00
16 Periodic 2 0.9000 9.00E-01 9.00E-01 9.00E-01 9.00E-01 1.00E+00 1.00E+00 9.00E-01 9.00E-01
17 Schaffer 1 2 0.0000 2.00E-06 0.00E+00 0.00E+00 0.00E+00 1.14E-02 9.72E-03 9.72E-03 9.90E-05
18 Schaffer 2 2 0.0012 4.15E-04 4.14E-04 6.90E-05 0.00E+00 5.15E-01 2.41E-02 3.57E-03 1.29E-03
19 Shubert 2 -186.7309 -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02 -1.24E+02 -1.87E+02 -1.87E+02 -1.24E+02
20 Gulf Research 3 0.0000 7.00E-06 1.70E-05 1.00E-06 5.00E-06 6.39E-03 3.22E-04 3.65E-04 1.11E-02
21 Hartman 3 3 -3.8628 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00
22 Helical Valley 3 0.0000 0.00E+00 2.00E-06 1.00E-06 0.00E+00 9.90E-05 1.00E-04 1.00E-04 1.24E-04
23 Levy and Montalvo 1 3 0.0000 0.00E+00 2.00E-06 1.00E-06 1.00E-06 1.00E-04 1.00E-04 9.80E-05 1.00E-04
24 Meyer and Roth 3 0.0019 1.95E-03 1.90E-03 1.91E-03 1.93E-03 5.14E-03 2.00E-03 2.00E-03 4.68E-03
25 Cosine Mixture 4 -0.4000 -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-01
26 Kowalik 4 0.0003 3.21E-04 3.10E-04 3.10E-04 3.17E-04 4.07E-04 4.07E-04 4.06E-04 4.07E-04
27 Miele and Cantrell 4 0.0000 3.70E-05 0.00E+00 1.00E-06 2.60E-05 1.00E-04 9.90E-05 1.00E-04 1.00E-04
28 Neumaier 2 4 0.0000 1.33E-04 6.50E-05 2.40E-05 5.30E-05 7.36E-02 7.27E-03 4.11E-03 7.79E-02
29 Powell’s Quadratic 4 0.0000 1.90E-05 4.00E-06 0.00E+00 0.00E+00 1.00E-04 1.00E-04 9.70E-05 9.70E-05
31 Shekel 5 4 -10.1532 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -2.63E+00 -5.06E+00 -1.02E+01 -1.02E+01
32 Shekel 7 4 -10.4029 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -2.75E+00 -5.09E+00 -3.72E+00 -3.72E+00
30 Shekel 10 4 -10.5364 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -2.87E+00 -1.05E+01 -3.84E+00 -2.42E+00
33 Wood 4 0.0000 3.95E-04 2.10E-05 2.00E-06 7.50E-05 7.87E+00 1.00E-04 1.00E-04 7.88E+00
34 Levy and Montalvo 2 5 0.0000 1.60E-05 1.20E-05 1.20E-05 1.20E-05 1.10E-02 1.00E-04 1.00E-04 2.09E-01
35 Salomon 5 0.0000 9.99E-02 7.80E-05 0.00E+00 0.00E+00 2.00E-01 9.99E-02 9.80E-05 9.90E-05
36 Shekel’s Foxholes 5 -10.4056 -1.04E+01 -1.04E+01 -1.04E+01 -2.70E+00 -1.61E+00 -1.83E+00 -1.94E+00 -2.11E+00
37 Hartman 6 6 -3.3224 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.20E+00 -3.20E+00 -3.32E+00 -3.32E+00
38 Storn’s Tchebychev 9 0.0000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
39 Ackley 10 0.0000 8.08E-04 5.50E-05 0.00E+00 1.00E-06 4.29E-03 1.00E-04 9.30E-05 1.00E-04
40 Exponential 10 -1.0000 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00
41 Griewank 10 0.0000 2.22E-03 3.60E-05 0.00E+00 0.00E+00 2.35E-01 3.94E-02 9.10E-05 9.90E-05
42 Levy and Montalvo 2 10 0.0000 2.70E-05 2.70E-05 2.80E-05 8.30E-05 1.10E-02 1.00E-04 1.10E-02 7.89E-01
43 Modified Langerman 10 -0.9650 -5.13E-01 -9.65E-01 -9.65E-01 -5.13E-01 -2.81E-02 -5.32E-02 -5.32E-02 -1.49E-02
44 Neumaier 3 10 -210.0000 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02
45 Paviani 10 -45.7780 -4.58E+01 -4.58E+01 -4.58E+01 -4.58E+01-4.58E+01 -4.58E+01 -4.58E+01 -4.58E+01
46 Rastrigin 10 0.0000 9.95E-01 2.50E-05 0.00E+00 0.00E+00 1.79E+01 6.96E+00 9.80E-05 9.90E-05
47 Rosenbrock 10 0.0000 7.75E-03 9.20E-05 1.12E-03 1.64E+00 2.53E+02 4.73E+00 1.66E-02 2.52E+00
48 Salomon 10 0.0000 9.99E-02 9.99E-02 2.00E-06 0.00E+00 2.00E-01 9.99E-02 1.00E-04 9.90E-05
49 Schwefel 10 -4189.8289 -3.62E+03 -4.19E+03 -4.19E+03 -3.42E+03 -1.96E+03 -3.72E+03 -3.60E+03 -1.62E+03
50 Shekel’s Foxholes 10 -10.2088 -1.48E+00 -1.02E+01 -1.60E+00 -1.48E+00 -1.26E+00 -1.35E+00 -1.26E+00 -1.48E+00
51 Sinusoidal 10 -3.5000 -3.50E+00 -3.50E+00 -3.50E+00 -3.50E+00 -3.50E+00 -3.50E+00 -3.50E+00 -1.00E+00
52 Spherical 10 0.0000 4.20E-05 1.50E-05 0.00E+00 0.00E+00 1.00E-04 1.00E-04 9.30E-05 1.00E-04
53 Storn’s Tchebychev 17 0.0000 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
54 Sinusoidal 20 -3.5000 -3.50E+00 -3.50E+00 -3.50E+00 -3.50E+00 -3.50E+00 -3.50E+00 -3.50E+00 -1.00E+00
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Appendix IV
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Figure 2:A set of box plots (a) to (c) showing the differences between the mean function values of SRCGA
and the new RCGAs on Ackley, Griewank and Modified Langerman,respectively.
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Appendix V
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Figure 3:Multiple comparison graphs (a) to (c) showing the difference between the means of SRCGA and the
new RCGAs on Ackley, Griewank and Modified Langerman, respectively.
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