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;2 Abstract

22 In this paper, a set of new Real-Coded Genetic AlgorithmsGRE) with local and global
23 exploratory search capabilities are proposed. The seaghbilities are based on the inclusion
24 of a maodified crossover procedure and a new global explgratmthod in RCGA. The global
gg exploratory method is based on vector projection while tloelifired crossover procedure is based
27 on a limited version of the pattern search (PS) method. Thesdifications are introduced to
28 increase the efficiency and robustness of RCGAs througlerbettal and global exploration of
29 the search region. An experimental study of the new algostiwvas carried out using a set of
30 57 test problems. Statistical analyses and comparisorteeaidw algorithms with standard real
31 coded genetic algorithm (SRCGA) and some recent globaiigaiion algorithms were carried
gg out. Results obtained show that the modifications remaykaiprove the performance of RCGAs
34 across the test problems.

35

36 Keywords: Global Optimization, Genetic Algorithms, Pattern Seaktojection.

37

38 .

39 1 Introduction

40

41 Unconstrained global optimization problems can be repteseas:

fé Given f : S — R whereS c R", find 2* € S for which,

j;‘ f(z*) < f(z), Vres. )
46 The variablez* is called the global minimizer of and f(z*) is called the global minimum
j; value of f. Global optimization problems are frequently found in mamgctical applications
49 in engineering, physics, economics, systems biology aheratcientific applications. They are
50 known as nonlinear programming problems and are genemilydifficult problemsm:lﬂﬂ:ﬂ 5].
51 Over the last four decades, efficient algorithms have beealalged for solving global opti-
52 mization problems within a reasonable time frame. Theserilgns include Evolutionary Pro-
53 gramming (EPsﬂG , Evolution Strategies (Eﬁ) [7], Genélgorithms (GAS) [E3] and Differen-
2‘51 tial Evolution (DE) [9]. They are popularly known as evohrtary algorithms (EAS). EAs are
56 a class of direct and probabilistic algorithms based on taenihian notion of natural selection.
57 They are robust, simple to implement and have recorded gueaesses in search and optimiza-
58 tion because of their ability to exploit information accuatad from an initially unknown search
59 spaceﬁb|.__1|0].

60
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In recent years, RCGAs have received a lot of attention withe EA research community

where many researchers have solved continuous optimizatablems with RCGA,{H] ﬂ@ll,
@E:k]]ﬁl] RCGAs offer several advantages over the binagiea genetic algorithms (BCGAS)
because they are better adapted to numerical optimizafi@ordinuous problems. They can
also be easily hybridized with other search methods. Despiir advantages over BCGAs,
RCGAs are prone to premature convergence (partly due todfpkpulation diversity and high

selection pressure) and slow convergence as GAs do notiettpdocal basins of solutions in

the population@l].

The inability of GAs to effectively exploit the local basin$ the search region led to their
hybridization with other algorithms, especially with lbogtimization algorithms. Hybridization
has become an important approach in overcoming the sharigsnof GAs. GAs have been
hybridized with other optimization methods to improve thearch capability, for example GA
with Nelder-Mead simplex metho 16], GA with particleaam optimization|[17], GA with
self organizing migrating algorith 8], and GA with quatic approximation/[19]. Hybrid
GAs have been used to solve real-life problems and they lemaeded impressive improvements
especially in maintaining population diversity throughthe search process. Population diversity
ensures that a rich variety of solution points are mainthinex GA population set thus leading to
the exploration of a wider scope of the solution landscapguRtion diversity also prevents the
algorithm from converging prematurely to local optima.

However, the possibilities of developing more efficient amlolist GAs still abound. Therefore
the main objective of this paper is to introduce new ways @irioning the performance of RCGAs
by incorporating a feature from another algorithm that actteplementary strength to RCGAs,
and by introducing a new exploratory feature to RCGAs.

In this paper, three new algorithms are proposed. They sbokeither a modified crossover
procedure using ‘limited pattern search’ and /or vectojgmtion-based exploratory search. These
algorithms are labeled as RCGA-PS (real coded geneticitdgowith pattern search), RCGA-P
(real coded genetic algorithm with projection), and RCG3P (real coded genetic algorithm
with pattern search and projection).

The remaining part of the paper is organized as follows: iS&e& provides a brief introduc-
tion to genetic algorithms. Section 3 presents the new re@éd genetic algorithms with full
descriptions of the proposed modifications. A brief intrcithn to pattern search method and
vector projection-based search method is also providectidbe4 provides the experimental set-
tings and parameter selection while Section 5 presentsethéts, comparisons and discussion.
Finally, Section 6 concludes with some remarks.

2 Genetic Algorithms (GAs)

The genetic algorithm was developed by John Holland in 18vén(called adaptive or reproduc-
tive plans) Eh]. GAs are defined as search algorithms basedeomechanics of natural selection
and natural genetics. They combine survival of the fittesttejy among string structures with
ordered yet randomized information exchange to form a ttodplodal exploration algorithm. At
every generatiom, a new set of solution points), = {z1 ¢, z2,,...,2N4}, iS created using bits
and pieces of the fittest parent solutions and an occasi@valpart is sampled. While random-
ized, GAs ingeniously exploit historical information tormider new search points with expected
superior performancéleZO]. Several variations to the naiGA B] have been developed, us-
ing different representation schemes, selection, cressowtation and elitism operato E] 10].
RCGA is a GA that uses floating point representation for mgjdialues of the solution points. A
typical solution or chromosome is a vector of floating poiumbersHbEJS].

At each generation, the standard real coded genetic algorithm (SRCGA) pedaatection,
crossover, mutation and elitism to update the current @djoul setP;. In this study, the linear
ranked selection is used as suggested by James : 2th @@ate the mating pooP?t =
{z14,224,.. ., Tme}, m < N ], which in turn is transformed by crossover, mutatiord an
elitism into the populationP,;, for the next generation. Linear ranked selection consist®&o
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parts: (1) determination of; ;s expected valuefv(z;,), and (2) conversion of the expected

value to discrete numbers of offspring. The expected valiigz; ;), of z;; is a real number
i{%icating the average number of offspring thai should receive, whergjf\il Ev(ziy) = N

].

Linear selection is implemented by sorting the solutionth& population according to their
fitness and each solution is assigned a rank in the sortedatimpu The best solution gets the first
position, i.e. ranked numbérwhile the worst solution receives the last rank,in the population.
The rank ofz; ; is used to calculaté&v(z; ;) by a linear function,

X (Max —1.0) x (i — 1)
N -1 ’

whereM ax is the expected value distribution for the linear functidiar = 1.1 (as recommended
in [ﬂ,@]) andm = N (as recommended iEIZO]) are used. Then stochastic unisasgling
algorithm (SUS) is used to convert the expected numbe(;; ), of z; ; to discrete numbers of
x;¢. These discrete numbers are used by SUS to select the aordsg numbers of points;; ;,
that would be placed i, [22].

Crossover is applied pairwise with probabilify,, to all members of?,. If the probability
of crossover is successful then arithmetic crossover (&Cpiried out on a paifr; ¢, xiy1,) as
follows

2
Ev(z;t) = Max — (1.0 < Max < 2.0), (2)

yzg,t y— oﬂmit +(1-al)z §+1 t
Yl =g, + (11— a])xZw 3)

wherea’ is uniform in [-0.5,1.5], i.e.a/ ~ Unif([-0.5,1.5]) for eachj, j = 1,2,...,n. The
new pair ¢; ¢, yi+1,) iS then copied to the sét;. If on the other hand, crossover probability is
unsuccessful, then the pdit; ;, z;11,) is copied toC;. Without loss of generality, we writ€’,

as

Cr ={y1.t:Y2.4,- - s Ymt} - 4)

We then apply mutation to the components of each membé€} wfith probability, p,,. If the
probability of mutation is successful at a compon@htof yit € Cy, then random mutanoﬂllO]
is carried out as follows

o=yl AW 1), (5)

where3’ ~ Unif([-0.01,0.01]) for eachj, j = 1,2,...,n, v’ andl’ are the upper and lower
boundaries ofr € S, respectively. On the other hand, if the mutation probgbié unsuccessful
at componen'yj of yi, € Cy, theny! . Is retained. The resultant; € M, consists of both
mutated and non mutated components We denftby

My = {216, 22,85+ Zmyt } 5 (6)
where ' o ' ,
j v, + 0w —al,), if yl,is mutated @)
2 _= ’ 'Y A
bt y!,, otherwise
If m < N thenm points in M, replacem worst points inP; to createP,, ;. In this paper,
we usem = N. After the creation ofP., elitism is applied to preserve the elite solutions. The
elitism is applied when the best point i is better than the best point iR, ;. The elitism is
carried out to replace the worst point in i, with the best point inP; [@] We now present a
step by step description of the standard real coded gerigtiatam:

URL: http:/mc.manuscriptcentral.com/goms
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Algorithm 1: The SRCGA Algorithm

1. Randomly initialize and evaluat€ uniformly distributed solution points in population set
P, ={z14,224,...,2n+} from search spacé. Set the generation countéer= 0.

2. While necessary stopping condition is not met, do steps 3 -

3. Selectn < N solutions fromP; as parents using linear-ranked selection to form a mating
pool ;.

4. Select pairs of parents sequentially frdtnand use arithmetic crossover with probability
p. to create offspring solutions. Save the offspring’in

5. Using random mutation, perform mutation on each compboén;; € C; with a low
probability, p,,, to create)M;.

6. UpdateP; by replacingm solutions inP; with the solutions inV/; to createP; .

7. Ifm = N, then elitism is applied.

3 New Genetic Algorithms

Three new RCGAs are presented in this section. The motivdtiodesigning these algorithms
is based on the quest for developing practical global ogation algorithms that can solve a
greater number of global optimization problems in reastméime. These new algorithms are
specifically designed to address the shortcomings of SRGGXGA-PS incorporates a limited
version of pattern search in the crossover procedure wiGi&R-P applies the projection based
(P-based) exploratory search on the set of solutions aftsisover and mutation operators have
been used. RCGA-PS-P incorporates both PS-based crossal/@-based exploratory search.

3.1 Pattern Search based Local Exploration

Pattern search is a class of direct local search methodsxp&tre sample points around the
current point, say; ; € P, |Z$ . It consists of two major components namely, the REM
step and the POLL steﬂ% 26]. For a detailed descrigifcthe PS method seEt 26].
The version of PS used in this study consists of only a modR@d.L step (MPS). It has been
used to augment simulated annealing@ [26]. It is simpleesctfe and different from the one
used in @7] because only a unit coordinate veecipris selected randomly from the direction
coordinate matrixD = {dy,ds,...ds,} = {a1,a9,...,a,,—ay,—as,...,—a,}, Whereay is
the k' unit coordinate vector ilR™. The selected], is used to search for a better solution point
within the neighborhood of; ;. MPS starts by generating a trial point; around the current
solutionz; ; by randomly selecting a poll coordinate vecthr € D from uniform distribution,
l.e.d ~ Unif(D), and using it to generate an intermediate point:

Uit = g + Dydy, (8)

whereA; is a step size parameter. The operation in equafiion (8) imtie step in P@DG].
We call this step as single pattern search step and denogeSPB. MPS does not calculate the
function value ay; ;, instead it calculates trial point ; using:

Yit = Uiz +1U, 9)
wherey; ; is from equation[(B)y = nA, is a step size antl = (Uy,Us, ..., U,)T is a directional
cosines with random components

Uj=Rj/(R2+.. . +R%)2, j=12,..n (10)
URL: http:/mc.manuscriptcentral.com/goms
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R; ~ Unif([-1,1]) andn is a step factor. There are cases when the components ofighe tr

pointy;: = (y},, 7. - -, y}",) generated by equatiohl(9) fall outside the search sgadering

1 the search. In these cases, the componenjg;afre regenerated using,

2

2 ygt _ wgf + )\(uﬂj— wit‘), ?f ygt > uJ (11)

5 ’ zi,+ )\(xi’t =), if yi, <l

? where\ ~ Unif([0,1]) andxit is the corresponding component of the current solutigne P;.

) The operations used to creatg within the neighborhood of the current point in equatidis (8
9 and [9) are presented in Figulide 1.

10

11 4

12

13

14

15

16

17 «

18 XM

19

20

21

22

23

24 v

25

26 Figure 1:The generation of a trial poing; ;, by MPS

27

gg In Figure[1, the current point; ; is treated as the POLL position. Then the intermediate point
30 7;.¢ is found by equatiorf{8) and then the trial point is found by equatiori{9).

31 MPS has a parameteX, which is initialized at the beginning of RCGA. At= 0, A, is

32 initialized by:

33

gg Ao =7 xmax{u — V| j=1,2,...,n}, (12)
36 wherer € [0, 1]. For this study, the value chosen fois 0.2 because it provides an initial step size
37 that is not too large or too small. The step Biz&,, is initially set to a fraction of the length of the
38 search region. The idea of using equationl (12) to generat@nitial step length is to accelerate
ig the search by starting with a suitably large step size todpicaverse the search space and as the
a1 search progresses the step size is adaptively adjusted. )

42 Note that MPS used in this study is not applied iterativelytlom pointz,; ; € P; but it is
43 applied in a single iteration to; ; to producey; ; via equations[(8) and(9) within the modified
44 crossover operator. Hence, the iteration counter of MP $tisaguired.

45 The MPS-based crossover operation introduced here isegipjglieach member; ; of P; to

j? produce the corresponding; € C;. At the end of each generatiof),of RCGA, the parameter
48 A, is updated as follows.

49 A set of ¢ distinct points,Q? = {z,z2,...,2,} C P, are randomly selected and the mean
50 T = % 7, x; of the points in2 is calculated. Then the distancéis, ;) betweenz and each
o1 x; € Q are also calculated. A comparison of all the distané@s z;) is made and< nearest
52 solutions toz are selected. Without loss of generality, the setikohearest distances to is
gi denoted by{+',~?,...,7% }, andA,; is updated by,

55 ) K

> A= (13)

58 =

59 1A, can be considered component wise for problems where- 17) varies significantly from componeyitto com-
60 ponentk. However, this is not needed for the problems considereisrp@aper.
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The method[{113) uses population statistics to determineatieeof change of the step siZg

(i.e. the solutions i, at timet are used to determine the step size for tirae1). This is a new
idea that is introduced to utilize the population statst€ RCGA. A study of the behavior of this
method is underway. During the implementation of MPS foustipg A,, the median of the set
{y1,~2,---,~% ) was also tried but the overall results were inferior.

3.2 The RCGA-PS Algorithm

This section describes the RCGA-PS algorithm. RCGA-PSésbaoded genetic algorithm with
pattern search incorporated into its crossover procedture resulting crossover operator is called
modified crossoveMC). An iteration of RCGA-PS consists of selection, cra&spmutation and
elitism.

At generationt, RCGA-PS creates a mating paBl by using equation{2) in Section 2 as
in SRCGA. After the mating pool?,, is created, MC is applied to each membetpf Hence,
there is no need to implement the crossover probabjlityas in SRCGA. MC uses a probability
distribution over a set of crossover operators, e.g. ovesgt{MPS, PSAG, where PSAC is a
crossover operator that combines SPS defined by equBtianit{BAC in equation[(B). MC uses
MPS with a probabilityp and PSAC with probability — p. If MC uses MPS atr; ; € B, then
the corresponding; ; is created using equatiorid (8) ahtl (9). On the other handCitises PSAC
atwx;; € P,, then another point; ; € P,, is selected at random and SPS is applied to bgth
andz;, and two corresponding poings; andy;, are created using equatidd (8). Then AC is
applied toy; ; andy; ; resulting iny; ; andys ;. The best poiny; ; = argmin { f(y1+), f(y2,1)} is
considered as the crossover point corresponding 1ae B Whethery; , is created via MPS or
PSAC, it then competes with the corresponding P If fyie) < f(xiy) theny, , is copied
to C; elsex; , is copied toC;.

Mutation is applied to the components of eagh € C; with probability, p,,, see equatior I5).
This results inM;. M; replacesP; to createl; ; and elitism is applied as in SRCGA.

RCGA-PS combines the complementary strengths of GAs and R8r a strong, efficient
and robust algorithm. It has the ability to explore both thabgl and local regions of the search
space. It performs local search through MPS and global lsélarcugh its crossover and mutation
operators. With these properties RCGA-PS becomes morstrahd superior to SRCGA. A step
by step description of the RCGA-PS algorithm is presentdolibe

Algorithm 2: The RCGA-PS Algorithm

1. Randomly initialize and evaluat€ uniformly distributed solution points in population set
P, ={x14,224,..., 2N, } from search spac§. Set the generation counter= 0.

2. While necessary stopping condition is not met, do stef& 3 -

3. Selecjm < N solutions fromP; as parents using linear-ranked selection to form a mating
pool ;.

4. Perform crossover using modified crossover (MC)
(a) Foreachz;; € P,i=1,2,...,mdo

Select MPS with probability and PSAC with probability — p.
If MC = MPS then

e Use the POLL step in equationl (8) to generate from x; ,

e Perturb the coordinate direction using equatiofs (9) dn@)(tb createy; ; from
Uit

else if MC = PSAC then

e Randomly select a partner; ; for z; ; from the set?,

e Use the POLL step in equatiohl (8) on paremtg and z;; to producey; ; and
.+ respectively

URL: http:/mc.manuscriptcentral.com/goms
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€ Yi,t,

e Perform AC ony; ; andy; ; to creat Yot
e The best poiny; ; = argmin { f(y1,¢), f(y2+)} Is chosen

; (b) If f(yit) < f(xi.) theny;, is copied toC; elsez; ; is copied toC;
3 5. Using random mutation, perform mutation on each compboén;; < C; with a low
g probability, p,,, to createM; = {z14, 224, ..., Tm,}-
6 6. UpdateP; by replacingm solutions inP; with M; to createl; ;.
57; 7. Ifm = N, then elitism is applied.
9 8. AdjustA; adaptively using equation (IL3)
10
11
12
13 Remarks
ig 1. Algorithm[2 is similar to Algorithnill except step 4 whichhighlighted in bold.
16 2. Step 4 replaces AC with MC. MC probabilistically uses M8 SAC. This step distin-
17 guishes RCGA-PS from SRCGA which simply uses AC.
18
19 . .
20 3.3 Projection-based Exploration
21
22 The projection-based exploration search method is bas#uearoncept of orthogonal projection
23 of vectorz on vectory. This concept is not new in linear algebra, but its applaratd evolution-
24 ary computation especially in genetic algorithm is new. fi® best of our knowledge, there has
25 been no application of this concept in global optimization.
g? Vector projection is used in this work to enhance the expilmneof points in the search space
28 by using two solution points to locate a better point in thiison landscape. It is a two-parent
29 operator that produces only one offspring. Suppose twdieakir andy are randomly selected
30 from P, and are evaluated, jf(xz) is better thanf(y) then we projecy on x otherwise project:
31 ony.
gg For any twon dimensional vectors, the projectionobny generates a vectgrdefined by:
34 2T T 0

. Y ] || cos
35 g=2Yy o 2y:<\| | ()>‘ (14)
37 Note that the projected vectgr(the offspring) will be in the same direction gsinless < 6 <
38 37 in which case the angld, between the two vectors is such that(d) < 0. As a result, the
39 . .. . . . . .
20 projected vector is in the opposite direction (the reflectvby about the origin).
41
ph 3.4 The RCGA-P Algorithm
44 In this section, a projection-based RCGA (RCGA-P) is preen Structurally, SRCGA and
jg RCGA-P are similar, except that RCGA-P incorporates thé¢eption based gxploration mech-
47 anism at the end of each generatian,of SRCGA. After RCGA-P create®,, the crossover
48 operation in equatiori3) is used to creéte Then M, is created fromC; by mutation using
49 equation[(b).
50 Now the projection-based operation is used to transfdfirto ¢,. For eache; ; € My, (i =
51 1,2,...,m), a pair of points,(z;,z;¢), is selected at random frot/, and a projected point
52 sit € Oy is created. Henc®;, = {s14, 824, -, Smt}-
53 ' . P ’ . " .
54 Sometimes the componenﬁ%t of the trial points;, may fall outside the search spase
55 In such cases, the corresponding compor#pﬁs regenerated using equatidn(11). After the
56 projected vector is generated, its fitness vaf(s; ;) is determined. A new populatiof,, 1, is
g; created withr; ¢, where,
59 sip 1 f(sie) < f(zin),zie € M,
60 ,:L'Zt — Z,t Z,t Z7t I Z,t t (15)

' ziy otherwise
URL: http:/mc.manuscriptcentral.com/goms
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Elitism is applied as in SRCGA.

This exploratory search is found to be highly efficient by mgkRCGA take big jumps in the
search space. Below is a step by step description of the RE@Kyorithm.

Algorithm 3: The RCGA-P Algorithm

1. Randomly initialize and evaluat€ uniformly distributed solution points in population set
P, ={x14,224,..., 2N, } from search spac§. Set the generation counter= 0.

2. While necessary stopping condition is not met, do stef& 3 -

3. Selectn < N solutions fromP; as parents using linear-ranked selection to form a mating
pool ;.

4. Select pairs of parents sequentially frdtnand use arithmetic crossover (AC) with proba-
bility p. to create offspring solutions. Save the offspringin

5. Using random mutation, perform mutation on each compboén,;, < C; with a low
probability, p,, to create);.

6. For each z;; € My(i = 1,2,...,m) generate the pair (z;, 2j¢), zi,t, 2j0 ~ Unif(My),
create s; +(i = 1,2,...,m) by projection and generate ®; = {s1+,52,¢,-..,Smt}-

7. UpdateP; by replacingm solutions inP; with the solutions inb; to createp;, ;.
8. If m = N, then elitism is applied.

Remarks

3. Algorithm[3 is structurally similar to algorithfd 1 excefpr step 6 which is highlighted in
bold.

3.5 The RCGA-PS-P Algorithm

This section presents the RCGA-PS-P algorithm. RCGA-PSyeriy similar to RCGA-PS except
for the P-based exploration incorporated at the end of dacétion of RCGA-PS-P in the same
way RCGA-P incorporates projection.

At generationt, RCGA-PS-P creates a mating pod}, by using equation[{2). After the
mating pool,?;, is created, MC is applied to each membetdfwith a probability distribution
over the set of crossover operatdi8lPS, PSAG to createy;;. y;: then competes with the
correspondingr; ; € P If f(yir) < f(ziy) theny;, is copied toC; elsez;, is copied toC;.
Mutation is applied to the components of eagh € C; with probability,p,,, to createl/;. These
operations are the same as in RCGA-PS. In addition, thabsgis created using the projection-
based operation. For eaef, € M;, a pair of points,z;, z;), is selected at random from,
and a projected poiry; ; € @, is created, wher@; = {s1,52,¢,...,5mt}-

Equation[[I1L) is used to adjust components;gfthat fall outside the search space. After the
projected vector is generated, its fitness vaf(e; ;) is determined and a new populatiaf,, ;,
created using equatiopn (15). Elitism is applied as in SRCGA.

The motivation for this modification is based on the good geeninces of RCGA-PS and
RCGA-P. The incorporation of MPS and projection-based agbbry mechanism in RCGA pro-
duces a robust algorithm that combines the complementapepties of GAs, PS and projection.
Below is a step by step description of RCGA-PS-P:

Algorithm 4: The RCGA-PS-P Algorithm

1. Randomly initialize and evaluat€ uniformly distributed solution points in population set
P, = {z14,224,...,2n+} from search spacé. Set the generation countéer= 0.

2. While necessary stcgppin(t]t condition is not met, do ste® 3 -
URL: http:/mc.manuscriptcentral.com/goms
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3. Selecin < N solutions frompP; as parents using linear-ranked selection to form a mating

pool F,.
; 4. Perform crossover using modified crossover (MC)
3 (a) Foreachz;; € P,i=1,2,...,mdo
g Select MPS with probability and PSAC with probability — p.
6 If MC = MPS then
7 e Use the POLL step in equationl (8) to generate from z; ,
g e Perturb the coordinate direction using equatiops (9) dn@)(tb createy; ; from
10 Yit
11 else if MC = PSAC then
12 e Randomly select a partner; ; for z; ; from the set?,
ﬁ e Use the POLL step in equatiohl (8) on paremtg and z;; to producey; ; and
15 .+ respectively
16 e Perform AC ory;, andy; , to create{y ¢, y2,; }
g e The best poiny; ; = argmin { f(y1,¢), f(y2+)} Is chosen
19 (b) If f(yit) < f(xiq) theny;, is copied toC; elsez; ; is copied toC;
;2 5. Using random mutation, perform mutation on each compboén;; < C; with a low
29 probability, p,, to createM; = {z1, 22, ..., Tm}-
23 6. For each z;; € M;(i = 1,2,...,m) generate the pair (zi¢, 2;.t), zit, 250 ~ Unif(My),
5‘5‘ create s; (i = 1,2,...,m) by projection and generate ®; = {514, 52,4, Sm.}-
26 7. UpdateP; by replacingm solutions inP; with the solutions inb; to createF;, ;.
gg 8. Ifm = N, then elitism is applied.
29 9. AdjustA,; adaptively using equation (IL3)
30
31
32
33 Remark
2‘5" 4. RCGA-PS-P is structurally similar to RCGA-PS except tepss, which makes it different
36 from RCGA-PS.
37
38 . .
39 4 Experimental Settings
40
41 To compare the performance of the proposed algorithms WREBGA and some recent GAs, a
42 set of 57 benchmark problems from [5] was used. All the proisl@re minimization problems
131 of continuous variables with their dimensions ranging frano 20 with different degrees of dif-
45 ficulty. There are many local optima and/or saddles in thet&w spaces of these test problems.
46 Detailed description of the problems can be found in [5].
47 All algorithms were implemented in Microsoft Visual Stud2®05 integrated development
48 environment using C#.NET programming language on Windosg\business operating system
49 running on an Intel core 2 CPU at 1.66GHz with 1GB of RAM.
50
51 _
52 4.1 Parameter Selection
53
54 All the RCGAs use the same basic parameter values which g@@iesd by the user through
55 the graphical user interface. These parameters includesitie N of the population sef;, the
56 maximum number of generatidhi, mutation probabilityp,,, crossover probability., number of
g; elitist solutionsk, the linear-ranked selection expected value distributiti: and the probability
59 p used by MPS in RCGA-PS and RCGA-PS-P. Table 1 below showsatteaneter settings.

60 All the values shown in Tablel 1 are standard parameter gettimt have been successfully

used in Iiteratureﬂd:ild. Other }Jarameters used in RCGAaREG RCGA-PS-P are: (i)\¢,
RL: http:/mc.manuscriptcentral.com/goms
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Table 1:Parameter Settings for the Experiment

Sno. Parameter Value
1 Population siz¢ N 10 x n, (n is the problem dimension)
2  Maximum number of generatiqi’) 10,000
3 Mutation probability(p,,) 0.001
4 Crossover probabilityp..) 0.6
5  Probability of selecting MP%») 0.4
6  Elitism(FE) 1
7  Linear selection’s expected value distributigdifaz) 1.1

initialized by equation[(12) and adaptively adjusted byaaiun [13), (ii) 7, the constant used in
calculating4 in equation [(IPR), (iii))q the size of() is set tol5 and (iv) K the number of the
nearest neighbors to the meanf points in() is set tol0 (see Section 3}1).

5 Experimental Results

The results obtained from the experiments performed on ¢éaeRCGAs and SRCGA using 57
test problems are presented. These results are the perfoenmaeasurements. They are used
to determine the efficiency and effectiveness of the newrithgns over SRCGA. Performance
evaluation of stochastic algorithms can be done using tmaer criteria. These criteria are the
test for: convergence, speed and robustness of the algorithm ]. The convergence measure
provides a scientific means of determining how effective lgoréhm converges to the desired
solution. Equation(16) is used to test for convergence bioat algorithms. In the experiment,
arun is terminated when the algorithm converges to a goadisoli.e. if the best function value
fmin found so far satisfies

’fmin - f(l'*)’ <e¢ €= 10_47 (16)

or when the maximum number of generatibris reached.

The speed of an algorithm is determined by counting the numbtinction evaluations of
the algorithm. The number of function evaluations is chosera measure of speed since it is
independent of the type of machine used. The number of fuma@valuations can be used to
compare algorithms irrespective of the machine used foldmepntation. For each algorithm, the
mean number of function evaluations (MFE) for solving a tgsblem is obtained by averaging
the number of function evaluations over the total numberiaf tuns.

The MFE is used for comparing all the proposed algorithml ®RCGA and the comparison
of the best performing RCGA with recent GAs from the literatuThe MFE of an algorithm is
used for comparison if and only if the algorithm’s succeds (8R) is at least 1. That is if an
algorithm is run 100 times on a problem and SH, then MFE is obtained using 100 runs. If for
a problem, SR = 0 for all independent runs then this is denoyed’, see Tablé B.

Lastly, the robustness of an algorithm (the third criteyimndetermined by comparing SR of
the algorithms. SR of an algorithm is the number of succésghs (i.e. number of times that a
problem is solved) of the algorithm out of a predefined nundfeuns, e.g 100 runs. It can also
be described as the number of times an algorithm finds thenapsolution. A run is counted
successful if the best solutioffi,,i,, found in a run satisfies

|f(x*) = fmin| < 0.009. (17)

Any algorithm that solves a wide range of problems is considi@ robust algorithm, i.e. the
algorithm is not specific to some problems. This measure isngortant criterion for GAs since
GAs are reputed to be robust. Each algorithm was run indegmeydfor 100 trials on each of
the 57 benchmark problems to determine its success ratere Bine 57 problems, hence there
are 5,700 runs in total for each algorithm. The algorithmectively solved 54 problems except

URL: http:/mc.manuscriptcentral.com/goms
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for Epistatic Michalewicz, Odd Square and Price’s Trawsisiodeling problems whose global

minima could not be located by all the algorithms within thaximum number of iterations.
Therefore results for the three problems are not presented.

The best fitness values (Min), mean best fitness values (MBEan function evaluations
(MFE), success rate (SR), standard deviations (STD), pegdtom analysis of variance (ANOVA)
test, box-plots and multiple comparison (MCx) graphs amdus the comparison of the algo-
rithms.

In addition, we used the Success Performaritl)(criterion introduced in@S] to reconfirm
our results by estimating the expected number of functi@uations for successful runs.P is
defined by:

TR
SP = FE — 18
mean(FEs) x (SR) (18)
where FEs = function evaluations of successful runs, TR =bairof total runs and SR = number
of successful runsl.__[i9]. The normalizéd” of an algorithm is calculated by dividing the algo-
rithm’s S P by the S P of the best algorithm{ P,..;). Experimental results from recent literature
[@,] are also used for comparison.

Table 2:Comparison of MFEs and SR of SRCGA and the New RCGAs for Pnableith Dimensions 2 - 4

Pno. | Problem name n Mean Function Evaluations (MFE) Success Rate (SR)
SRCGA RCGA-PS RCGA-PS-P RCGA-P| SRCGA RCGA-PS RCGA-PS-P RCGA-P
1 | Aluffi-Pentini 2 1,449 988 911 969 100 100 100 100
2 | Becker and Lago 2 1,602 5,373 6,413 1,761 100 100 100 100
3 | Bohachevsky 1 2 2,927 1,567 819 63( 100 100 100 100
4 | Bohachevsky 2 2 20,598 1,606 816 554 91 100 100 100
5 | Branin 2 4,358 6,517 8,478 1,374 100 100 100 100
6 | Camel Back-3 2 1,204 1,041 513 275 100 100 100 100
7 | Camel Back-6 2 1,253 2,535 3,713 1,70 100 100 100 100
8 | Cosine Mixture 2 697 849 346 248 100 100 100 100
9 | Dekkers and Aarts 2 10,270 4,765 7,111 222,544 100 100 100 85
10 | Easom 2 2,136 1,202 1,197 1,71 100 100 100 100
11 | Goldstein and Price | 2 11,688 1,576 1,704 106,406 97 100 100 92
12 | Hosaki 2 1,015 756 740 848 100 100 100 100
13 | McCormick 2 1,446 1,063 1,176 2,99¢ 100 100 100 100
14 | Modified Rosenbrock| 2 104,570 211,046 78,495 81,904 81 100 100 100
15 | Multi-Gaussian 2 95,028 64,111 2,040 802 53 89 100 100
16 | Periodic 2 71,366 59,389 1,014 374 65 90 100 100
17 | Schaffer 1 2 200020 404,963 10,256 745 7 28 99 100
18 | Schaffer 2 2 200020 554,458 722,392 376,127 16 83 100 100
19 | Shubert 2 7,738 80,796 48,590 48,381 99 99 100 89
20 | Gulf Research 3 252,118 232,275 418,314 400,839 100 100 100 99
21 | Hartman 3 3 3,115 2,353 1,832 24,471 100 100 100 100
22 | Helical Valley 3 3,903 3,393 2,738 111,348 100 100 100 100
23 | Levyand Montalvo 1| 3 2,473 2,593 2,391 6,82 100 100 100 100
24 | Meyer and Roth 3 177,738 4,897 11,798 304,354 100 100 100 100
25 | Cosine Mixture 4 3,420 3,250 428 256 100 100 100 100
26 | Kowalik 4 550 919 670 421 100 100 100 100
27 | Miele and Cantrell 4 19,650 1,980 3,189 87,350 100 100 100 100
28 | Neumaier 2 4 400,040 923,869 1,267,658 800,040 41 100 100 35
29 | Powell's Quadratic 4 88,887 7,338 1,300 434 100 100 100 100
30 | Shekel 5 4 187,988 108,896 6,604 5,268 54 91 100 100
31 | Shekel 7 4 136,878 40,962 20,184 44,325 67 97 99 95
32 | Shekel 10 4 82,353 7,053 20,274 68,121 81 100 99 92
33 | Wood 4 400,040 178,309 230,927 758,318 7 100 100 35
| Total: | | 2,498,538 2,922,688 2,885,031  3,462,7B7 2,759 3,177 3,297 3122

5.1 Comparisons of new RCGAs with SRCGA

In this section, experimental results and their statisacalyses are summarized in Tallé§12, 3,

and appendices |, Il and IIl. Tablé 2 Table 2 provides MFE SRatbalgorithms for problems
with n = 2 to 4 while Table[3 provides MFE and SR for problems with= 5 to 20. The test
problems are numbered serially in column 1 of the two tablég problem names are also listed

in column 2, MFE in columns 3 to 6 and their corresponding StReénlast four columns of Tables
URL: http:/mc.manuscriptcentral.com/goms
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Table 3:Comparison of MFEs and SR of SRCGA and the New RCGAs for Pnableith Dimensions 5 - 20

Pno. | Problem name n Mean Function Evaluations (MFE) Success Rate (SR)
SRCGA RCGA-PS RCGA-PS-P RCGA-P| SRCGA RCGA-PS RCGA-PS-P RCGA-P
34 | Levy and Montalvo 2 5 18,036 4,786 4,917 630,808 98 100 100 38
35 | Salomon 5 1,387,240 1,874 45(Q 0 1 100 100
36 | Shekel's Foxholes 5 5 466,254 1,150,774 1,881,333 - 7 18 1 0
37 | Hartman 6 6 92,323 27,783 4,813 12,421 86 99 100 100
38 | Storn’s Tchebychev 9 9 180 342 433 270 100 100 100 100
39 | Ackley 10 | 1,000,100 49,618 1,988 1,276 100 100 100 100
40 | Exponential 10 16,506 12,105 484 304 100 100 100 100
41 | Griewank 10 | 1,000,100 2,374,582 1,455 878 2 52 100 100
42 | Levy and Montalvo 2 | 10 70,913 14,524 204,220 1,887,732 96 100 95 6
43 | Modified Langerman | 10 - 2,181,129 3,537,542 0 23 7 0
44 | Neumaier 3 10 999,510 120,170 153,944 326,904 100 100 100 100
45 | Paviani 10 132,825 655,504 1,226,774 445,250 100 100 100 100
46 | Rastrigin 10 - 2,634,645 1,239 758 0 6 100 100
47 | Rosenbrock 10 | 1,000,100 2,779,964 3,799,916 - 1 81 35 0
48 | Salomon 10 - - 1,804 1,136 0 0 100 100
49 | Schwefel 10 - 1,668,610 2,600,115 0 41 32 0
50 | Shekel's Foxholes 10 | 10 - 2,717,235 - - 0 3 0 0
51 | Sinusoidal 10 10 39,602 15,646 13,162 349,758 100 100 100 87
52 | Spherical 10 30,913 15,074 714 444 100 100 100 100
53 | Storn’s Tchebychev 17 17 340 644 817 510 100 100 100 100
54 | Sinusoidal 20 20 | 1,396,882 53,946 50,008 3,889,840 100 100 100 3
| Total : | | 6,264,584 17,864,321 13,487,552 7,548,7]40 1,190 1,424 1,670 1,334

and3. The total MFE, SR and SR ratio (in round brackets)Heralgorithms are presented in
Table[4. SR ratio is calculated by dividing SR by the total benof runs, i.e. 100. Tablé$ 2 dnd 3
show that each of RCGA-PS and RCGA-PS-P solved 53 proble@&ARP and SRCGA solved
49 and 48 problems, respectively.

Total SR in Tablé ¥4 shows that RCGA-PS-P is superior to RCGARCGA-P and SRCGA
by 366, 511 and 1,018 successes, respectively. RCGA-PBésisuto RCGA-P and SRCGA by
145 and 652 successes, respectively. RCGA-P is superidR@GA by 507 successes. Clearly,
RCGA-PS-P is the best performer and RCGA-PS is the runnepllpwved by RCGA-P with
respect to SR. This is reflected in the success ratio whictvshibat RCGA-PS-P is the best
algorithm with92% success, followed by RCGA-PS, RCGA-P and SRCGA witbx, 83% and
73% successes, respectively.

Table 4:Total results of MFE and SR from Tablgs 2 &nd 3
Measure SRCGA RCGA-PS RCGA-PS-P RCGA-P

MFE 8,763,122 20,787,009 16,372,583 11,011,527
SR 3949 (0.73) 4601 (0.85) 4967 (0.92) 4456 (0.83)

Total MFE of SRCGA seems superior to the total MFE of all thes mégorithms in Tabl€l4,
but taking a closer look at columns 3 to 6, of Taliles 2[dnd 3yemad observe that SRCGA has
not solve 6 problems that RCGA-PS and RCGA-PS-P are ablelte.sBy excluding MFE of
all the algorithms for problems that at least one algoritsmat able to solve, a different picture
emerges. These problems are; Modified Langerman, RastRgsenbrock, Salomon 5, Salomon
10, Schwefel, Shekel's foxholes 5 and Shekel's foxholes Afler excluding MFE of these 8
problems, the remaining 46 problems are used to determiew @&t of results for comparing the
performances of the algorithms. The new results are suraathin Tabléb.

Table 5:Comparison of SRCGA and the New RCGAs using total resultd@aest problems
Measure SRCGA RCGA-PS RCGA-PS-P RCGA-P
MFE 7,296,768 6,267,412 4,548,760 11,009,183
SR 3041 (0.86) 4428 (0.96) 4592 (0.99) 4156 (0.90)

In Table[®, RCGA-PS-P emerged as the best algorithm withah 864592 SR out of 4600

runs, followed by RCGA-PS, RCGA-P and SRCGA with 4428, 4138l1 respectively. In terms
URL: http:/mc.manuscriptcentral.com/goms
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of MFE, RCGA-PS-P is also the best with the smallest MFE. R&&Aas the highest MFE

because it performed badly on problems 24 and 51. If we coenib@rtotal results by excluding

1 these two problems then RCGA-P becomes superior to SRCGADBB62 MFE.

2 The normalizedS P of the four algorithms are presented in Appendi$ P of the best algo-
3 rithm (S Pyes) IS listed in column 2, while normalize8l P for all algorithms are listed in columns
g 3-6. The symbol ‘-’ is used to indicate nil. The normaliz€é’s printed in bold from Appendix
6 | indicate the best performing algorithm(s) for the corsging problem. From Appendix I,
7 RCGA-PS-P emerged the best with the least normalig&d after excluding the5 P for prob-

8 lems where at least one algorithm has$8. The runner-up is RCGA-P, followed by RCGA-PS
9 and SRCGA respectively.

10 In appendix Il, 50 out of 52 ANOVA p-values in the last colunmdicate that there are signif-
g icant differences between MFE of the algorithms. ANOVA t&as not carried out for problems
13 52 and 53 because the algorithms have the same MBF values. aftte symbol *- " is used to in-
14 dicate nil. This statistical information provides a cleaidence that the algorithms differ in their
15 performances. These differences on some selected prollmise seen graphically in Figures
16 [2(a-c) and Figurgl3(a-c) in appendix IV and V. These figuresdacussed later on in this section.
17 The best fitness values (Min) and the worst fitness values (@ffach algorithm for all the
ig test problems are presented in appendix Ill. Algorithms sehdlin values are printed in bold
20 outperformed the others. A careful study of appendix lllvetdhat RCGA-PS-P is the most
21 superior and robust algorithm because it is able to acdyriateate 45 out of 46 global minima.
22 RCGA-PS, RCGA-P and SRCGA are able to locate, accurately4d&and 36 global minima
23 respectively.

24 Next, the algorithms are compared graphically using thefots and multiple comparisons
gg from the ANOVA test on some representative problems. Fgjd@-c) show the box plots for
27 the algorithms on Ackley, Griewank and Modified LangermaiguFed 2(a-b) show that the MBF
28 of RCGA-PS-P and RCGA-P are closest to the global minimurh watry small solution spread
29 around their means. The worst algorithm on Ackley and Grgwaroblems is SRCGA with a
30 wide dispersion of solutions. On the other hand Fidgdre 2fows that RCGA-PS is the best
31 algorithm on Modified Langerman (a problem with multi modatlanon symmetrical properties)
gg but with a wide spread of solutions. It is followed by RCGA-PS

34 Figured B(a-c) show the multiple comparisons between tharighms on the same problems.
35 They show that the algorithms are significantly differentori the multiple comparison plots
36 in Figures[B(a-b), we see that RCGA-PS-P and RCGA-P peribrbetter than the other two
37 algorithms. Figurél3(c) shows that RCGA-PS outperformedother algorithms.

38 Finally, we now rank the algorithms using total MFE and SRrfrdable[5 andSP from
39 Appendix I. The rankings are presented in Table 6 which bledows the superiority of RCGA-
40 PS-P.

41

42

43 Table 6:Rank order of SRCGA and the New RCGAs

44 Rank 1st 2nd 3rd 4th

jg MFE RCGA-PS-P RCGA-PS SRCGA RCGA-P

47 SR RCGA-PS-P RCGA-PS RCGA-P SRCGA

48 SP RCGA-PS-P RCGA-P RCGA-PS SRCGA

49

22 Finally, we study the performance of the algorithms presgim this papers on a number of
52 scalable functionf e.g. Ackley, Rastrigin, Rosenbrock and Schewfel. We hasteteour al-
53 gorithms on these problem fer = 10,20 and 30 and the summarized results are presented in
54 TabledY an@]8. Tablé$ 7 ahd 8 show that Ackley, Rastrigin @hei&al problems were consis-
55 tently solved by all the new algorithm proposed. The alfpong however failed for Rosenbrock
56 and Schwefel problems. Taljlé 8 also shows that MFE increaks:. However, this increase
g; in MFE is not quite significant in the new algorithms propasé&tis clearly shows that the best
59 performing algorithm has a role to play in global optimipati

60

2Griewank is also a scalable function but this problem beoessier as its dimension increases, see ([32]). Our
URL: http:/mc.manuscriptcentral.com/goms
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Table 7:Comparison of Min and SR of SRCGA and the New RCGAs on scalaiolelems

Dimension = 10
Pno. f(x*) Min SR
SRCGA | RCGA-PS | RCGA-PS-P RCGA-P | SRCGA | RCGA-PS | RCGA-PS-P | RCGA-P
39 0.0000 8.08E-04 5.50E-05 0.00E+00 1.00E-06 100 100 100 100
46 0.0000 9.95E-01 2.50E-05 0.00E+00 | 0.00E+00 0 6 100 100
47 0.0000 7.75E-03 9.20E-05 1.12E-03| 1.64E+00 1 81 35 0
49 -4189.8289| -3.62E+03| -4.19E+03 -4.19E+03 | -3.42E+03 0 41 32 0
52 0.0000 4.20E-05 1.50E-05 0.00E+00 | 0.00E+00 100 100 100 100
Dimension = 20
39 0.0000 | 1.21E-02 8.20E-05 0.00E+00 | 0.00E+00 0 100 100 100
46 0.0000 | 4.98E+00 2.98E+00 0.00E+00 | 0.00E+00 0 0 100 100
47 0.0000 | 1.12E+00 4.19E-02 3.30E-01| 1.14E+01 0 0 0 0
49 -8379.6578| -6.03E+03| -8.38E+03 -8.26E+03 | -5.56E+03 0 1 0 0
52 0.0000 5.90E-05 4.80E-05 0.00E+00 | 0.00E+00 100 100 100 100
Dimension = 30
39 0.0000 | 2.65E-02 2.37E-04 1.00E-06 | 0.00E+00 0 100 100 100
46 0.0000 | 1.49E+01| 9.95E+00 0.00E+00 | 0.00E+00 0 0 100 100
47 0.0000 | 6.73E+00 1.28E-03 8.12E+00| 2.12E+01 0 2 0 0
49 | -12569.4867| -8.56E+03| -1.21E+04 -1.23E+04 | -8.13E+03 0 0 0 0
52 0.0000 7.00E-05 6.20E-05 0.00E+00 | 0.00E+00 100 100 100 100

Table 8:Comparison of MBF and MFE of SRCGA and the New RCGAs on scalpldblems

Dimension = 10
Pno. flz*) MBF of successful runs MFE of successful runs
SRCGA | RCGA-PS | RCGA-PS-P | RCGA-P SRCGA | RCGA-PS | RCGA-PS-P | RCGA-P
39 0.0000 | 2.57E-03| 9.00E-05 3.40E-05 | 4.00E-05| 1,000,100 49,618 1,988 1,276
46 0.0000 - 6.83E-05 2.00E-05| 2.50E-05 - 42,062 1,239 758
47 0.0000 | 7.75E-03 | 4.84E-04 6.62E-03 - | 1,000,100 2,775,232 3,799,851 -
49 | -4189.8289 - | -4.19E+03 -4.19E+03 - - 40,401 50,023 -
52 0.0000 | 8.50E-05| 7.20E-05 1.70E-05| 2.60E-05 30,913 15,074 714 446
Dimension = 20
39 0.0000 - 9.60E-05 3.70E-05 | 3.90E-05 - 1,834,080 2,044 1,252
46 0.0000 - - 2.50E-05| 3.10E-05 - - 1,311 739
47 0.0000 - - i - - - - -
49 | -8379.6578 - | -8.38E+03 - - - 234,214 - -
52 0.0000 | 9.20E-05| 8.50E-05 2.20E-05| 2.40E-05| 202,580 25,961 732 448
Dimension = 30
39 0.0000 - 6.23E-04 3.60E-05 | 3.60E-05 - 2,799,978 1873 1126
46 0.0000 - - 2.20E-05| 2.80E-05 - - 1212 730
47 0.0000 - 1.34E-03 - - - 2,800,846 - -
49 | -12569.4867 - - - - - - - -
52 0.0000 | 9.60E-05| 9.10E-05 1.50E-05| 1.90E-05| 762,717 41,550 700 412

5.2 Comparison of RCGA-PS-P with recent GAs

In this section, the best performing algorithm, RCGA-P&%Bpmpared with some recent genetic
algorithms from the literature. The results of the compmarssare summarized in Tablgs 9 10.
The problem numbers used in Tallés 2 @hd 3 are used to reptiesgmoblems used in Tableks 9
and 0. We use the test problems that are common to the tédépr®we have used and the ones
used in 1]. For the purpose of fair comparison, we usegdame parameters that were used
in [@ ]. These parameter settings are provided below.

The parameter settings used for solving the problems takem E] areN (given in Table
[9), andT = 3000. GAs used ir@l] are classical genetic algorithm (¢@®d a hybrid RCGA
with quasi-simplex technique (RCGAQS).

Table 9:Comparison of RCGA-PS-P with two GA algorithms fr[31] anumon problems

Pno N | f(z%) Min STD
RCGA-PS-P  RCGAQS CGA | RCGA-PS-P  RCGAQS CGA
39 | 110 | 0.0000 4.4408E-16 3.9697E-01  3.6244E+0( 0.00E+00 6.5006E-01  1.9395E-03
41 | 165 | 0.0000 0.00E+00 3.4927E-02  7.8300E-01 0.00E+00  1.7985E-02  6.3444E-02
52 | 110 | 0.0000 | 4.5639E-241 3.2030E-29 9.70E+0(Q 0.00E+00 1.0128E-28 3.8623E-01

numerical results also confirmed this.
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The results in Table]9 sh that RCGA-PS-P outperforms RCSAQd CGA with respect

to the number of problems solved. The best solutions in Tl printed in bold. The STD for

1 RCGA-PS-P is zero for all problems. This means that all thetiems found by RCGA-PS-P are
2 better than the ones found by RCGAQS and CGA.
2 Next, we compare RCGA-PS-P with GAs presente@ [30]. Thesetandard binary coded
5 genetic algorithm (SBGA) and enhanced binary coded gea#dimrithm (EBGA). Again, for a
6 fair comparison we us&/=200 (fixed for all problems ir@O]) and@ = 500 to obtain our results.
7 The comparison is presented in Tablé 10.
8
9
10 Table 10:Comparison of RCGA-PS-P with two GA algorithms from[?:O] dnenxcommon test problems
11 Pno f(x*) Min MFE SR
RCGA-PS-P SBGA EBGA | RCGA-PS-P  SBGA EBGA | RCGA-PS-P SBGA EBGA

12 5 0.39789 0.39789 0.39789  0.39791 7133 8125 2,040 100 81 100
13 7| -103163 -1.03163  -1.03163  -1.03168 4,459 1,316 1,316 100 98 100
14 11 3.00000 3.00000 3.00000  3.00028 11,211 8,185 4,632 100 59 100
15 19 | -186.73091| -186.73091 -186.73100 -186.72803 125,062 6,976 2,364 100 93 100
16 21| -3.86278 -3.86270  -3.86249  -3.86114 5544 1,993 1,680 100 94 100

30 | -10.15320| -10.15316 -10.13490  -10.14866 25,675 7,495 36,388 100 1 97
17 31 | -10.40294| -10.40293 -10.16770  -10.38253 22,201 - 36,774 100 0 98
18 32 | -1053641| -10.53639 -10.40340  -10.51404 19,239 - 36,772 100 0 100
19 37| -3.32237 -3.32236  -3.30652  -3.31383 11,476 19,452 53,792 100 23 92
20 | [ Total: | [ 232,000 53542 175,758 900 449 887
21
22 Table10 shows the best function values, mean function \aidesuccess rate of RCGA-PS-P,
gi SBGA and EBGAEb]. The algorithm that performed the bestitsagsults printed in bold. Table
o5 [10 shows that RCGA-PS-P is the best performer with respebttquality solutions than SBGA
26 and EBGA. In terms of MFE, EBGA performed better in 5 probleing at the cost of sacrificing
27 accuracy in some lower dimensional problems. RCGA-PS-Brhes superior in terms of MFE
28 as the problem dimension increases. It performed betterablgms 31, 32 and 37. Although
29 SBGA has the lowest MFE, its overall performance is the wansbng the algorithms presented
30 :
31 in Table[10.
32 In terms of SR, RCGA-PS-P is superior to EBGA and SBGA by 134biisuccess respec-
33 tively. Overall comparisons show that RCGA-PS-P is superimre reliable and more robust
34 than the other algorithms.
35
36 . .
37 5.3 Discussion
gg In the last two sections, we have compared the new algorithithsSRCGA. We have also com-
40 pared the best performer, RCGA-PS-P, with recent gengjarithms from the literature. The new
41 algorithms were also compared with SRCGA using scalablbleness. The comparison of SR-
42 CGA, RCGA-PS, RCGA-P and RCGA-PS-P shows that each of P&dlmaessover and P-based
43 exploratory search improved the performance of RCGA, beir ttombination in RCGA-PS-P
jg is the best. The multiple comparison plots also illustrégaiicant differences between the new
46 algorithms and SRCGA. We have also shown that RCGA-PS-Pipeed better than the recent
47 algorithms from the literature.
48 We attribute the performance of the new algorithms to thkigion of the PS-based crossover
49 operation and the P-based exploratory search method in RTBAPS-based crossover operation
50 enhances the local exploitation of the solution space. FThaded exploratory search property, on
g; the other hand, is used to explore a wider range of the seagibrr when the solution points in
53 the population set are far apart. As soon as the solutiortgane within a local basin, it intensify
54 the search within the local neighborhood of the solutions.
55
56 .
57 6 Conclusion
58
59 We have proposed three new versions of real coded geneticithlg and tested their perfor-
60 mances on a large set of test problems. Numerical compahisesm shown that all new versions
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are better than standard real coded genetic algorithm. Weddao demonstrated the superiority

of the new versions over the standard real coded genetidthlgousing graphs and p-values from
ANOVA.

Finally, we have compared the best performing real codedtgealgorithm with two versions
of genetic algorithms from the literature. This comparisgiain confirmed the superiority of the
new real coded genetic algorithm over its recent compstitor

We have discussed the new features introduced in the gealgbathm and shown that the
features are contributory to the superior performance.rigwealgorithms can be implemented at
ease for solving continuous global optimization problems.

New research is underway to design an efficient real codeetigesigorithm for constrained
global optimization.
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Appendix |: Comparison of Normalized SP of SRCGA and the New RCGAs
Pno.  SPyest SRCGA  RCGA-PS RCGA-PS-P RCGA-P
1 911 1.5906 1.0845 1.0000 1.0637
2 1602 1.0000 3.3539 4.0031 1.0993
3 630 4.6460 2.4873 1.3000 1.0000
4 558 5.6186 2.8781 1.4624  1.0000
5 1374 3.1718 4.7431 6.1703  1.0000
6 275 4.3782 3.7855 1.8655 1.0000
7 1253 1.0000 2.0231 2.9633 1.3567
8 248 2.8105 3.4234 1.3952  1.0000
9 4765 2.1553 1.0000 1.4923 47.2134
10 1197 1.7845 1.0042 1.0000 1.4353
11 1576 3.8359 1.0000 1.0812 55.7789
12 740 1.3716 1.0216 1.0000 1.1459
13 1063 1.3603 1.0000 1.1063 2.8184
14 78495 1.2925 2.6887 1.0000 1.0434
15 802 4.5241 3.9816 2.5436  1.0000
16 374 8.6014 11.2121 2.7112 1.0000
17 745 80.2685 29.1323 3.6337 1.0000
18 376127 3.3237 1.7724 1.9206 1.0000
19 5854.55 1.0000 13.1051 8.2995 9.285%
20 232275 1.0854 1.0000 1.8009 1.7344
21 1832 1.7003 1.2844 1.0000 13.3575
22 2738 1.4255 1.2392 1.0000 40.6676
23 2391 1.0343 1.0845 1.0000 2.8536
24 4897 36.2953 1.0000 2.4092 62.1511
25 256 13.3594 12.6953 1.6719 1.0000
26 421 1.3064 2.1829 1.5914 1.0000
27 1980 9.9242 1.0000 1.6106 44.1162
28 923869 1.0561 1.0000 1.3721 2.3248
29 435 204.3379 16.8690 2.9885 1.0000
30 5263 2.5872 1.8539 1.2548 1.0000
31  4790.53 2.2622 1.6314 1.0616 1.0000
32 4869.57 1.9861 1.4484 1.0629 1.0000
33 178309 32.0503 1.0000 1.2951 10.9121
34 4786 1.7481 1.0000 1.0274  15.5866
35 450 - 25879.5556 4.1644  1.0000
36  85527.8 2.8824 1.0000 21.4761 -
37 4813 2.3357 2.3287 1.0000 2.5807
38 180 1.0000 1.9000 2.4056 1.500d
39 1276 783.7774 38.8856 1.5580 1.0000
40 308 53.5909 39.3019 15714 1.0000
41 878 56953.3030 4340.4372 1.6572 1.0000
42 14524 2.3092 1.0000 1.0831 146.0801
43 472487 - 1.0000 1.4857 -
44 120170 8.3175 1.0000 1.2811 2.7203
45 132825 1.0000 4.9351 9.2360 3.3524
46 758 - 924.8461 1.6346 1.0000
47 3426212 29.1897 1.0000 3.1688 -
48 1136 - - 1.5880 1.0000
49 98539 - 1.0000 1.5864 -
50 1205067 - 1.0000 - -
51 13162 3.0088 1.1887 1.0000 9.0084
52 446 69.3117 33.7982 1.6009 1.0000
53 340 1.0000 1.8941 2.4029 1.500q
54 50008 27.9332 1.0787 1.0000 214.3210
Total 58,384.8516 31,414.1359 128.9949 719.0q70
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Appendix Il : Comparisoh of the Means, Standard Deviations and p-va8RCGA and the New RCGAs

Pno. | Problem name n flz*) Mean Best Fitness value (MBF) Standard Deviations (STD) p-value
SRCGA RCGA-PS RCGA-PS-P RCGA-P| SRCGA RCGA-PS RCGA-PS-P RCGA-P

1 | Aluffi-Pentini 2 -0.3523 | -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-Q1 6.00E-05 5.50E-05 5.30E-05 5.80E-05 1.42E-03
2 | Becker and Lago 2 0.0000 5.10E-05 4.80E-05 4.40E-05 4.70E-Q5 3.00E-05 3.30E-05 2.90E-05 2.80E-05 4.19E-01
3 | Bohachevsky 1 2 0.0000 5.10E-05 4.00E-05 2.40E-05 3.30E-Q5 3.00E-05 2.90E-05 2.60E-05 3.00E-05 1.72E-09
4 | Bohachevsky 2 2 0.0000 1.97E-02 7.02E-07 2.70E-05 2.60E-Q5 6.25E-02 2.80E-05 2.90E-05 2.70E-05 2.98E-06
5 | Branin 2 0.3979 | 3.98E-01 3.98E-01 3.98E-01 3.98E-(01 2.90E-05 3.00E-05 3.10E-05  2.90E-05 4.02E-03
6 | Camel Back-3 2 0.0000 | 5.30E-05 4.10E-05 3.50E-05 2.60E-(Q5 2.90E-05 2.90E-05 3.20E-05  2.90E-05 5.93E-09
7 | Camel Back-6 2 -1.0316 | -1.03E+00  -1.03E+00 -1.03E+00 -1.03E+(Q0 3.80E-05 3.80E-05 4.10E-05  3.80E-05 2.69E-04
8 | Cosine Mixture 2 -0.2000 | -2.00E-01 -2.00E-01 -2.00E-01  -2.00E-Q1 3.10E-05 3.10E-05 2.80E-05  2.90E-05 5.19E-09
9 | Dekkers and Aarts 2 | -24776.5183| -2.48E+04  -2.48E+04 -2.48E+04  -2.48E+(4 4.00E-05 2.90E-05 3.00E-05  1.12E-01 3.37E-03
10 | Easom 2 -1.0000 | -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+(Q0 3.00E-05 3.00E-05 3.00E-05 3.10E-05 2.81E-02
11 | Goldstein and Price 2 3.0000 | 3.81E+00 3.00E+00 3.00E+00 5.16E+(004.61E+00 3.00E-05 3.10E-05 7.32E+(Q0 1.05E-03
12 | Hosaki 2 -2.3458 | -2.35E+00 -2.35E+00 -2.35E+00  -2.35E+00 3.30E-05 3.10E-05 3.10E-05 3.40E-05 1.79E-03
13 | McCormick 2 -1.9133 | -1.91E+00 -1.91E+00 -1.91E+00 -1.91E+(Q0 7.00E-06 7.00E-06 6.00E-06 7.00E-06 9.20E-04
14 | Modified Rosenbrock| 2 0.0000 5.16E-03 2.64E-03 7.87E-04 1.53E-03 6.66E-03 3.52E-03 2.21E-03 2.95E-03 2.01E-12
15 | Multi-Gaussian 2 -1.2969 | -1.26E+00 -1.29E+00 -1.30E+00  -1.30E+0Q0 4.02E-02 2.51E-02 2.90E-05 3.10E-050.00E+00
16 | Periodic 2 0.9000 | 9.35E-01 9.10E-01 9.00E-01 9.00E-Q1 4.77E-02 3.00E-02 2.60E-05  2.80E-050.00E+00
17 | Schaffer 1 2 0.0000 | 7.82E-02 7.01E-03 1.32E-04 3.40E-(5 9.80E-03 4.34E-03 9.64E-04  3.00E-050.00E+00
18 | Schaffer 2 2 0.0012 | 6.25E-02 4.91E-03 1.07E-03 4.17E-04 9.98E-02 5.29E-03 1.25E-03  2.41E-040.00E+00
19 | Shubert 2 -186.7309 | -1.86E+02  -1.87E+02 -1.87E+02  -1.80E+(26.28E+00 3.18E-03 2.63E-04 1.98E+(1 1.12E-06
20 | Gulf Research 3 0.0000 | 9.73E-04 9.30E-05 9.40E-05 6.39E-04 1.14E-03 3.50E-05 4.60E-05 1.41E-Q3 1.43E-13
21 | Hartman 3 3 -3.8628 | 3.86E+00 -3.86E+00 -3.86E+00 -3.86E+(00 2.60E-05 2.70E-05 2.70E-05 2.70E-05 2.19E-02
22 | Helical Valley 3 0.0000 6.70E-05 5.90E-05 5.40E-05 6.30E-05 2.70E-05 2.50E-05 2.90E-05 3.40E-05 7.60E-03
23 | Levyand Montalvo 1| 3 0.0000 6.10E-05 6.10E-05 5.40E-05 6.60E-Q5 2.60E-05 2.80E-05 2.70E-05 3.10E-05 1.97E-02
24 | Meyer and Roth 3 0.0019 2.36E-03 1.97E-03 1.97E-03 2.35E-03 6.77E-04 2.30E-05 2.40E-05 6.98E-04 2.45E-12
25 | Cosine Mixture 4 -0.4000 | -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-Q1 2.40E-05 2.50E-05 2.40E-05 2.70E-050.00E+00
26 | Kowalik 4 0.0003 | 3.73E-04 3.70E-04 3.69E-04 3.75E-04 2.40E-05 2.50E-05 2.50E-05  2.30E-05 3.05E-01
27 | Miele and Cantrell 4 0.0000 | 9.20E-05 5.30E-05 6.50E-05 9.60E-(Q5 1.10E-05 2.90E-05 2.80E-05  1.00E-050.00E+00
28 | Neumaier 2 4 0.0000 | 1.89E-02 6.37E-04 5.51E-04 1.87E-(02 1.64E-02 1.06E-03 6.62E-04  1.48E-020.00E+00
29 | Powell's Quadratic 4 0.0000 | 8.10E-05 6.90E-05 2.90E-05 2.30E-Q5 2.20E-05 2.60E-05 2.60E-05  2.80E-050.00E+00
30 | Shekel 5 4 -10.1532 | -6.78E+00 -9.70E+00 -1.02E+01  -1.02E+013.68E+00 1.45E+00 2.90E-05 2.40E-()50.00E+00
31 | Shekel 7 4 -10.4029 | -8.11E+00 -1.02E+01 -1.03E+01 -1.01E+013.30E+00 9.02E-01 6.65E-01 1.46E+(000.00E+00
32 | Shekel 10 4 -10.5364 | -9.25E+00 -1.05E+01 -1.05E+01 -9.96E+002.67E+00 2.70E-05 6.67E-01 1.97E+(Q0 1.17E-07
33 | Wood 4 0.0000 | 1.70E+00 9.20E-05 9.10E-05 1.19E+002.25E+00 1.30E-05 1.60E-05 2.12E+(00.00E+00
34 | Levy and Montalvo 2| 5 0.0000 2.92E-04 6.50E-05 6.50E-05 2.87E-02 1.53E-03 2.30E-05 2.30E-05 4.23E-020.00E+00
35 | Salomon 5 0.0000 1.06E-01 9.89E-02 4.20E-05 3.90E-(Q5 2.37E-02 9.93E-03 3.00E-05 2.60E-050.00E+00
36 | Shekel's Foxholes 5 -10.4056 | -3.11E+00  -4.14E+00 -2.80E+00 -2.67E+(02.04E+00 2.95E+00 7.82E-01 1.29E-01 6.31E-10
37 | Hartman 6 6 -3.3224 | -3.31E+00 -3.32E+00 -3.32E+00  -3.32E+(0 4.13E-02 1.85E-03 2.10E-05  2.20E-05 7.53E-09

38 | Storn’s Tchebychev 9 0.0000 | 0.00E+00 0.00E+00 0.00E+00 0.00E+(00.00E+00 0.00E+00 0.00E+00  0.00E+00 -
39 | Ackley 10 0.0000 | 2.57E-03 9.00E-05 3.40E-05 4.00E-Q5 7.49E-04 8.00E-06 2.60E-05  2.90E-050.00E+00
40 | Exponential 10 -1.0000 | -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+0Q0 1.20E-05 1.80E-05 1.40E-05 1.30E-050.00E+00
41 | Griewank 10 0.0000 | 6.25E-02 9.58E-03 2.00E-05 2.30E-Q5 3.54E-02 8.65E-03 2.40E-05  2.70E-050.00E+00
42 | Levy and Montalvo 2| 10 0.0000 5.21E-04 7.50E-05 6.20E-04 1.13E-Q1 2.14E-03 1.70E-05 2.38E-03 1.29E-010.00E+00
43 | Modified Langerman | 10 -0.9650 | -1.89E-01 -6.11E-01 -4.53E-01 -1.77E-Q1 1.45E-01 2.31E-01 1.84E-01 1.22E-(010.00E+00
44 | Neumaier 3 10 -210.0000| -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+(02 3.51E-04 7.00E-06 1.50E-05 9.00E-060.00E+00
45 | Paviani 10 -45.7780 | -4.58E+01 -4.58E+01 -4.58E+01 -4.58E+(01 1.52E-04 2.08E-04 2.24E-04 1.83E-04 2.10E-06
46 | Rastrigin 10 0.0000 | 7.06E+00 2.59E+00 2.00E-05 2.50E-(53.30E+00 1.42E+00 2.70E-05 2.80E-()50.00E+00
47 | Rosenbrock 10 0.0000 | 1.24E+01 5.81E-01 9.83E-03  2.04E+(03.34E+01 1.38E+00 2.87E-03  1.91E-01 1.37E-07
48 | Salomon 10 0.0000 | 1.16E-01 9.99E-02 3.80E-05 4.00E-Q5 3.67E-02 0.00E+00 2.90E-05  2.70E-050.00E+00
49 | Schwefel 10 -4189.8289| -2.86E+03  -4.07E+03 -4.05E+03  -2.36E+(32.89E+02 1.28E+02 1.36E+02  3.27E+(20.00E+00
50 | Shekel's Foxholes 10 -10.2088 | -1.48E+00 -1.85E+00 -1.48E+00 -1.48E+(0 2.19E-02 1.51E+00 2.50E-02  0.00E+000.00E+00
51 | Sinusoidal 10 -3.5000 | -3.50E+00 -3.50E+00 -3.50E+00 -3.36E+00 1.30E-05 1.80E-05 1.80E-05 4.05E-010.00E+00
52 | Spherical 10 0.0000 8.50E-05 7.20E-05 1.70E-05 2.60E-Q5 2.19E-05 1.70E-05 2.50E-05 3.00E-050.00E+00

53 | Storn’s Tchebychev | 17 0.0000 | 0.00E+00 0.00E+00 0.00E+00 0.00E+(00.00E+00 0.00E+00 0.00E+00  0.00E+(0 -
54 | Sinusoidal 20 -3.5000 1.00E-05 1.10E-05 4.26E-01 4.93E-07
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Appendix lll : Comparison of the Best Min Fitness values and Worst Fituakes of SRCGA and the New RCGAs

Sno. | Problem name n flz*) Minimum Best Fitness value (Min) Worst Fitness Value (WF)
SRCGA RCGA-PS RCGA-PS-P RCGA-P SRCGA RCGA-PS RCGA-PS-P RCGA-P

1 | Aluffi-Pentini 2 -0.3523 | -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-Q1 -3.52E-01 -3.52E-01 -3.52E-01 -3.52E-(

2 | Becker and Lago 2 0.0000 2.00E-06 1.00E-06 1.00E-06 1.00E-0p 9.90E-05 9.90E-05 1.00E-04 9.90E-(

3 | Bohachevsky 1 2 0.0000 | 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.90E-05 1.00E-04 9.80E-05 1.00E-(

4 | Bohachevsky 2 2 0.0000 | 0.00E+00 1.00E-06 0.00E+00 0.00E+00 2.18E-01 9.90E-05 9.80E-05 1.00E-(

5 | Branin 2 0.3979 | 3.98E-01 3.98E-01 3.98E-01 3.98E-0L 3.98E-01 3.98E-01 3.98E-01 3.98E-(

6 | Camel Back-3 2 0.0000 | 1.00E-06 0.00E+00 0.00E+00 0.00E+00 1.00E-04 9.60E-05 9.80E-05 1.00E-(

7 | Camel Back-6 2 -1.0316 | -1.03E+00  -1.03E+00 -1.03E+00 -1.03E+0pP-1.03E+00  -1.03E+00 -1.03E+00  -1.03E+(

8 | Cosine Mixture 2 -0.2000 | -2.00E-01 -2.00E-01 -2.00E-01  -2.00E-OfL -2.00E-01 -2.00E-01 -2.00E-01  -2.00E-Q

9 | Dekkers and Aarts 2 | -24776.5183| -2.48E+04  -2.48E+04 -2.48E+04  -2.48E+0@4 -2.48E+04  -2.48E+04 -2.48E+04  -2.48E+(
10 | Easom 2 -1.0000 | -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+0p -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+(
11 | Goldstein and Price 2 3.0000 | 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+01 3.00E+00 3.00E+00 3.00E+(
12 | Hosaki 2 -2.3458 | -2.35E+00 -2.35E+00 -2.35E+00 -2.35E+0p -2.35E+00 -2.35E+00 -2.35E+00 -2.35E+(
13 | McCormick 2 -1.9133 | -1.91E+00 -1.91E+00 -1.91E+00 -1.91E+(0-1.91E+00 -1.91E+00 -1.91E+00 -1.91E+(
14 | Modified Rosenbrock| 2 0.0000 4.00E-06 0.00E+00 0.00E+00 0.00E+00 3.70E-02 8.27E-03 7.42E-03 7.42E-Q
15 | Multi-Gaussian 2 -1.2969 | -1.30E+00 -1.30E+00 -1.30E+00  -1.30E+(0-1.21E+00 -1.22E+00 -1.30E+00 -1.30E+(
16 | Periodic 2 0.9000 | 9.00E-01 9.00E-01 9.00E-01 9.00E-OL 1.00E+00 1.00E+00 9.00E-01 9.00E-(
17 | Schaffer 1 2 0.0000 2.00E-06 0.00E+00 0.00E+00 0.00E+00| 1.14E-02 9.72E-03 9.72E-03 9.90E-(
18 | Schaffer 2 2 0.0012 4.15E-04 4.14E-04 6.90E-05 0.00E+Q0 5.15E-01 2.41E-02 3.57E-03 1.29E-(
19 | Shubert 2 -186.7309 | -1.87E+02 -1.87E+02 -1.87E+02  -1.87E+0R -1.24E+02 -1.87E+02 -1.87E+02  -1.24E+(
20 | Gulf Research 3 0.0000 | 7.00E-06 1.70E-05 1.00E-06 5.00E-0p 6.39E-03 3.22E-04 3.65E-04 1.11E-(Q
21 | Hartman 3 3 -3.8628 | -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+0P -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+(
22 | Helical Valley 3 0.0000 | 0.00E+00 2.00E-06 1.00E-06 0.00E+00 9.90E-05 1.00E-04 1.00E-04 1.24E-(
23 | Levyand Montalvo 1| 3 0.0000 | 0.00E+00 2.00E-06 1.00E-06 1.00E-0p 1.00E-04 1.00E-04 9.80E-05 1.00E-(
24 | Meyer and Roth 3 0.0019 1.95E-03 1.90E-03 1.91E-03 1.93E-03 5.14E-03 2.00E-03 2.00E-03 4.68E-(
25 | Cosine Mixture 4 -0.4000 | -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-O[L -4.00E-01 -4.00E-01 -4.00E-01 -4.00E-(
26 | Kowalik 4 0.0003 3.21E-04 3.10E-04 3.10E-04 3.17E-04 4.07E-04 4.07E-04 4.06E-04 4.07E-(
27 | Miele and Cantrell 4 0.0000 | 3.70E-05 0.00E+00 1.00E-06 2.60E-0p 1.00E-04 9.90E-05 1.00E-04 1.00E-(
28 | Neumaier 2 4 0.0000 1.33E-04 6.50E-05 2.40E-05 5.30E-05| 7.36E-02 7.27E-03 4.11E-03 7.79E-(
29 | Powell's Quadratic 4 0.0000 | 1.90E-05 4.00E-06 0.00E+00  0.00E+0p 1.00E-04 1.00E-04 9.70E-05 9.70E-(
31 | Shekel 5 4 -10.1532 | -1.02E+01 -1.02E+01 -1.02E+01  -1.02E+0fL -2.63E+00 -5.06E+00 -1.02E+01  -1.02E+(
32 | Shekel 7 4 -10.4029 | -1.04E+01 -1.04E+01 -1.04E+01  -1.04E+0[ -2.75E+00 -5.09E+00 -3.72E+00  -3.72E+(
30 | Shekel 10 4 -10.5364 | -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+0f -2.87E+00 -1.05E+01 -3.84E+00 -2.42E+(
33 | Wood 4 0.0000 3.95E-04 2.10E-05 2.00E-06 7.50E-05| 7.87E+00 1.00E-04 1.00E-04 7.88E+(
34 | Levyand Montalvo 2| 5 0.0000 1.60E-05 1.20E-05 1.20E-05 1.20E-0p 1.10E-02 1.00E-04 1.00E-04 2.09E-(
35 | Salomon 5 0.0000 9.99E-02 7.80E-05 0.00E+00 0.00E+00| 2.00E-01 9.99E-02 9.80E-05 9.90E-(
36 | Shekel's Foxholes 5 -10.4056 | -1.04E+01 -1.04E+01 -1.04E+01 -2.70E+00 -1.61E+00 -1.83E+00 -1.94E+00 -2.11E+(
37 | Hartman 6 6 -3.3224 | -3.32E+00  -3.32E+00 -3.32E+00 -3.32E+0p-3.20E+00  -3.20E+00 -3.32E+00  -3.32E+(
38 | Storn’s Tchebychev 9 0.0000 | 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+(
39 | Ackley 10 0.0000 | 8.08E-04 5.50E-05 0.00E+00 1.00E-06| 4.29E-03 1.00E-04 9.30E-05 1.00E-(
40 | Exponential 10 -1.0000 | -1.00E+00  -1.00E+00 -1.00E+00 -1.00E+0p-1.00E+00  -1.00E+00 -1.00E+00  -1.00E+(
41 | Griewank 10 0.0000 2.22E-03 3.60E-05 0.00E+00 0.00E+00 2.35E-01 3.94E-02 9.10E-05 9.90E-(
42 | Levy and Montalvo 2| 10 0.0000 2.70E-05 2.70E-05 2.80E-05 8.30E-05 1.10E-02 1.00E-04 1.10E-02 7.89E-(
43 | Modified Langerman | 10 -0.9650 | -5.13E-01 -9.65E-01 -9.65E-01 -5.13E-01] -2.81E-02 -5.32E-02 -5.32E-02 -1.49E-(
44 | Neumaier 3 10 -210.0000| -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02| -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+(
45 | Paviani 10 -45.7780 | -4.58E+01 -4 58E+01 -4.58E+01  -4.58E+(1-4.58E+01 -4.58E+01 -4.58E+01 -4.58E+(
46 | Rastrigin 10 0.0000 9.95E-01 2.50E-05 0.00E+00 0.00E+(Q0 1.79E+01 6.96E+00 9.80E-05 9.90E-(
47 | Rosenbrock 10 0.0000 7.75E-03 9.20E-05 1.12E-03 1.64E+Q0 2.53E+02 4.73E+00 1.66E-02 2.52E+(
48 | Salomon 10 0.0000 9.99E-02 9.99E-02 2.00E-06 0.00E+00{ 2.00E-01 9.99E-02 1.00E-04 9.90E-(
49 | Schwefel 10 -4189.8289| -3.62E+03 -4.19E+03 -4.19E+03 -3.42E+03| -1.96E+03 -3.72E+03 -3.60E+03  -1.62E+(
50 | Shekel's Foxholes 10 -10.2088 | -1.48E+00 -1.02E+01 -1.60E+00 -1.48E+00Q -1.26E+00  -1.35E+00 -1.26E+00  -1.48E+(
51 | Sinusoidal 10 -3.5000 | -3.50E+00 -3.50E+00 -3.60E+00 -3.50E+0Q -3.50E+00  -3.50E+00 -3.50E+00 -1.00E+(
52 | Spherical 10 0.0000 4.20E-05 1.50E-05 0.00E+00 0.00E+00 1.00E-04 1.00E-04 9.30E-05 1.00E-(
53 | Storn’s Tchebychev | 17 0.0000 | 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+(
54 | Sinusoidal 20 -3.50000} | -3 B9F 000 - 131206190 rint -2-APEAPP 0 3 GPEAQ0 -3.50E+00  -3.50E+00 -3.50E+00  -1.00E+(
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x107° Ackley Problem
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54 Figure 2: A set of box plots (a) to (c) showing the differences betwdenrhean function values of SRCGA
55 and the new RCGAs on Ackley, Griewank and Modified Langermespectively.
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Figure 3:Multiple comparison graphs (a) to (c) showing the diffeebetween the means of SRCGA and the
new RCGASs on Ackley, Griewank and Modified Langerman, resypagy.
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