DYNAMICAL BYMMETRY-BREAKING AND THE MEAN-FIELD APPROACE IN MECROSCOPIC muckear theory

Edward David Davis

A Thests submitted to the Faculty of Sclence, Dniversity of the Hitwatersrand, Johannesburg, In Fulfiniment of the Requirements for the Degree of Doctor of Philocophy.

ABSTRACT

The "phase transitiona" predicted within finite microscopic systems by Hartree-Fock-Bogoliubov (AFB) and aspects of the use of the associated broken-symmetry bases in che randotaphase approxination (RPA) are considered using solubie models. Evidence $1 s$ presented in support of the conjecture that the success of these techaiques lifes in the fact that they mimic singularities in the dependence on inceraction strengths of the exact solution. This conjesture provides a natural expianation for why such methods fall close to a point where a phase transition occars and indicates possible rituctiotie for faprovement.

Phase dlagrans at both zero and Einite temperature ake detarmined, and simple anelytic expressions for the way in which aritical atrentithe scale with particle number are found. It is shown that the "phase transitiocs ${ }^{\prime \prime}$ predicted at finite temperature are relevart. A connection between the singularities referted to ebove and real phase trangitions found in the thermodynamic 1imit is discussed.

It is found that only stable bases can be used in an RPA calculation. This is in particular true for those RPA modes which are not associated with the onset of instabllity of the basis; these modes do not describe any excited state when the basis is unstable.

Outside transitional regions certain undesirable feacures of HFB are unearthed, nocably that the $H F B$ ground state emergy is not neemssarily an upper bound to the exact ground state anergy. The effactiveness in this regine of the Haxtreempock Seniority approximation as a substitute to projection tathods is: ?, ated.

I declare that this disgertation is my own, unalded work. It is being subritted for the degree of Doctar of Philosophy in the Jniversity of the Witwatersfand, Johanneshurg. It has not been aubmited before for any degree or exaraination in any other univeraity,

icsamis

Edward David Davia
\qquad

To the memory of ndy father

CONTENTS

1 INTRODUCTION 1
2 THE AGASSI MODEL 5
2.1 INGREDIENTS FOR THE EXACT SOLUTION OF THE AGASST MODEL 5
2.2 Qualitative featleres of the solution to the agassi model 13
2.2.1 Behaviour when g and V small. 13
2.2 .2 Behaviour when g and V large 17
APPENDICES
2.1 MATRIX ELEMENTS OF QUASI-SPIN OPERATORS IN THE COLLECTIVE SUBSPAGE 24
2.2 COMNUTATORS OF QUASI-SPIN OPERATORS 28
3 SELF-CONSTSTENT MEAN-FIELDS (at zero temperacure) 31
3.1 RESUNS OF RELEVANT PROPERTIES OF HFB 32
3.2 FORM OF THE HFB TRANSRORLATION 39
3.3 HFH GROUND STATE WHEN $N=\square$ 44
3.4 hfB GROUM State when $N<\Omega$ 49
APPENDICES
3.1 EXPECTATION VALUES OF QMASI-SFIN OPERATORS IN HFB GROUND STATE 56
3.2 FORM OF QUASI-SPIN OPERATORS IN CAMONICAL BASIS 59
4 THERMAL SELF-CONSISTENT MEAN-FIELDS 63
4.1 ESSEHTIAL EEATURES OF THERMAL HFB 65
4.2 APPLICATION OF THERMAL GFB TO THE AGASSI NODEL WKEN \& $=0$ 70
5 EXISTEACE OF PHASE TRANSITIONS 79
5.1 ZERO TEMPERAZURE PHASE TRRANSITIONS 82
5.2 finite traperature phase transitions 99
APPENDIX 5 99
6 THE RANDOM-PHASE APPROXINATION IN SELF-CONSISTENT BASES 102
6.1 FEATURES OF RFA WITHIN A SELF-CONSTSTENT bASIS 103
6.2 APFLICATION OF RPA TO THE AGASSI NODEL 109
6.2.1 The appropriate collective RPA modes 109
6.2.2 Comparison of RPA with exact results 117
-ppendices
6.1 THE APPROPRIATE QJASI-PARTICLE STATES 124
6.2 COEFFTCIENTS IN EQ. (6.10) 128
7 SIDE-EFHECTS OF SXMMETRY-BREAKING AND THEIR TREATMENT 131
7.1 CONSEQUENGES OF BROKEN-PAREICLE NITABER SYMHETRY 132
7.2 HARTREEFFOCK SENIORITY APPROXIMAIION (HFS) 139
APPENDIX 7
MMBER PROJECTJON OF TUE HFG GRUUND STATE 145
8 CONCLUSION 148
REFERENCES 1.51

ACKNOWLEDGEMENTS

I am hsppy to have this opporwunity to thank the many physteiats, fellow graduate stutents, other colleagues, frlends and members of my family who, in different ways, have contributed to this work. I wish to express my indebtedness to, in particuiar:

* Dieter Heiss, my superyigor, for his insightful guidance and unflagging ancouragement;
* Hank Miller, for the mumerous instructive and stimalating discussions, and the salient suggeation to consider finite tempurature "phase transtitons";
* Michasi Gering for his tiverest and the fine axaitple be set;
* Lyn for all her aacrifices on my behalf;
* my Hother for her ouppors.

In addition, access to the computing facilities of the wits-CSIR Schoniand Research Centre for Nuclear Sciences is gratefuily acknowledged.

Finaily, my thanks go to Hester Welmarans and Fhillip Anagnostaras for their efforts in the physical production of this thesis.

Some of the materifal in this thesis appears in two papers, namely (DH 86) (which is based on chapters 2, 3 and 6) and (DM 86) (which is a condensation of chepters 4 and 5).

LIST OF TABLES

2.1 DIMENSIONS OF HAMTLTONIAN SUBMATRICES 30
2.2 GROUND STATE EXPECTATTON VALUES OF QUASI-EPIN OPERATORS (oniy gi $\mathrm{q}_{1} 0$) 30
3 EXPECTATION WALUES OF APPROXIMATE GROUND STATE WHEN $N=8$ 62
A3 defintmion of coeppicients IN Eq. (A3.2a) 62
4 68
A5 ENTRIES IN h 101
6 130
$7 \quad P_{N}(c f, E q,(7,1))$ WREN $\Sigma_{N_{0}} * 1.5$ 147

LIST OF ILLUSTRATIONS

2.1-2.5
$3.1-3.4$
4.1-4.3
$5.1-5.5$
$5.6=5.9$
$5.10=5.12$
$6.1-6.2$
6.3-6.5
7.1-7.5

CHAFTER ONE

INTRODUCTION

A challenge common to many areas of plyates is to understand the properties of an interacting system having large or infinfte numbers of degrees of freedoan. Atong these complex many-body problems, the ground state stacture and jowenergy colifertue dymoiles of atomic nuclei occupy a uridque plice: the wealth of experimental information on nuclear properties makes the nucleus by far the best laboratory for the study of quancal collective phenomena (All 85 and references therein).

The past 35 years have seen the development in importance of the selfconsistent mean-field approximation in the aicroscopic description of the nuclear many-body problen: Beginning with the eariy bawilderment that something like the shell model could be good in a atrongly intexacting system, continuing through the discovery (BL 55, Br 55) of a suitabie creatment of shortmange correlations, and then the discovery (BCS 57, BMP 58) of a suitable tratment of pairing correlations, it was uhtimately establighed shat an adequate quantitative degertption of ground geate propertien can be afforded by a (otatic) self-conaistant mear-field approximation of, in the most general case, che Hartree-FockBogoliubou lype with an effective interaction derived from first principles (NV 72, FN 75). More recently an ambitious programe involving the timedependent generalisation of menn-field theory has been launched (BKN 76, CMM 78, FKW 78) with a view to wropiding a microscopic deneription of nuciear colilisions (at an energy of a feu MaV per nucleon above the Coulomb bartiar and largemanittude enllective motion; coliactive variables and theiz dynamice are fully spe Lffed by the nuclear Hamilconian ard the phystcan procqse under cotisideration, and not decided upon on an ad hoc baste. This theory presentio formiable computational effort en it leads to a get of highly non-linear coupled tintegro-differenttal equations, but the solutions have demonstrated an unexpectediy rieh behaviour and good agreement with experiment has been Sound (Ne 82, DDK 85, KG 85).

The meanufiold approximation does not accomodate energymependent (or dynamic) effecitve interactions. The signifficance and physical
relevance o* dynanic interactions, is well as their proper treatment Within the Green's function formulation of the nany-body problem, have been discussed at length in (EHH 77) and (Ge 85). A formaily important property emerging from these investigations 1 , the arossing-symatry required of an exact four point vertex function F , which reflents the complexity of a many-body system in mathemetical terms. birect attempen to construct a crossing-aymatric r in the general case have been unsuccessful (He 80, 81), but inelght has been gatned from the model study in (GH 84 a), which, in fact, suggests that the fruplementetion of crosaing-symatay becomes important in the region of the "phase transitions" within nucles prediated iy the self-consistent mean-kisid approximation. This elaith rests on the conjecture that the "phase transitions" are related to the presence of branch point aingularities in the dependenc on interaction strenthe of the exact solution. The desire to present ture evilence in support of thls conjecture was the starting point of the present study.

Two topies are exploced in this work. The Etrat concerns the "phase transitions" pradicted by the self-consistent mean-ifid approxiniation When appifed to findte microscopic systems both at zero and at ftaite tamparature. In chapter 5, evidence is presented in support of the conjecture discussed above (which refers to zero semperature phase tranaltiona). In particular attention ta paid to what can rensonably be expested to happen ' he distribution of branch point aingularities as the dimenaions of . . system incraase, apectitically as the particle number $\mathrm{N}+\infty$ (and the thermedynamic limit is attitined), to see whether these singularities can account for (as they must) the occurrence of non-onalytic behaviour in the real phase tramexitions found in this 11 mit.

These investigations imply that, cuntrary to thatindings of (Go 84) and (ERI 85), a "phase trangition" prodicted in : Etaite systom ghould remain visible at finite tomperature. Aecorcts, this issue is almo taken up (again in chapter 5), but, instead of twathag order parametera as in (Go 84) and (RRI 85), the apeciftc hea, V (t) considered; it has the advantage of being a direct measure of thertal fluctuations, which are claimed to be responsible for the "wailing out" of the "phase
transitions", and at the ame time, it behaves in digtinctive (singular) way in real phase transitions.

The second topic In Intinately ratated to the first: appects of the use (at zero temperature) of gelf-consigtent mean-fields with broken synumetry are addressed. The conjectured rejationslifp betreen phase trangitions and branch point singularities is geen to inpiy that brokensywictry bages which are stable (in the sense of section 3.1) sinile appropriately the effects of the singularities. Thua, while they may be inadequate in the vicinity of a phase transition, thetr quality ought to fmprove outside of the tranation region. Confirmation of this is presented in chapter 6, which considers RPA calculations in the vicinity of phase transitiona and beyond. Both stable and unstable bases are employed in order to highitght this.

In chapter 7, some unexpected and undesitabie sonsequences of uaing broken-symuetry bases, which can arise in regions fact removed from phase tranaitions, are diseussed. In addition, the effectiveneas in this regime of an approximate treatment, which has been propased recently (Gp 86) as a substitute to complex projection methods, is evaluated.

To accomplish a.ll this, the exactily soluble Agasel model (Ag 6B, DH 86), which is oimilar to the Pairing-piug-Quadrupole model, is employed, It is chosen because a variaty of phase transtitions can be studied within it. Chapters 2-4 prepare the foundations for the subsequent considerations by discuasing the exace properties of this model. and results of the application of Hartrec-Fock-Bogollubov (HFR) at zero and finite temperature. In chapter 2, the model is described; its exact solution Uaing the quasi-spin method and qualitative features of the solution are discussed. Zero temperature and finite tempatature mbs are applied in chapters 3 and 4, respectively, with the purpose of eatablitaining the approprtate phase diagrans.

Conclusions emerging from this work are presented in chapter 8. With the exception of chapter 8 , asch of the succeding chapters poosoases an introductory section in which the contente of che particular chapter is outiined. These complement the discusaion in this chapter of the global strunture of the thesis by pointing out apecific results which are felt
transitions', and at the ame time, it hehaves in a distinctive (singular) way in res! phase transitions.

The second topic falmelmately nelated to the firat: aspects of the use (at zero temperatura) of self-consistent mean-fieida with broken symm metry are addressed. The conjectured relationchip between phase transitions and branch point aingularities is seen to imply that brokensymutry bases which ara atable (in the sense of section 3.1) minic appropriately the effecte of the singulartices. Thus, while thay may be foadequate in the virinity of a phase transtion, thetir quality ought to improve outside of the transition region. Confirmation of thit is presented in chapter 6, which ronsiders RPA calculations in the vicinaty of phace transitions and beyond. Both stable and unstable bases are employed in ordar to highight this.

In chapter 7, soma unerpected and undesirable consequences of using broken- symetry bases, which can arise in regions Ear ramoved from phase transitions, are diacussed. In addition, the affactiveness in this rec!ne of an approximate treatment, which has been proposed recently (GP 86) as a substitute to complex projection methods, is evaluated.

To accomplish all this, the exactiy soluble Agesst model (Ag 68, Dif 86), Which is gimilar to the Patringmplug-Quadrupole model* is enployed. It Ia chobion because a variety of phase transisions can be studied within it. Chapters 2 - 4 prepare the foundations for the subsequent considexations by diacusaing the exact properties of this model and results of the application of Hartrce-Fock-Bogoliubov (HFB) at zero and Efinte temperature. In chapter 2, the model is described; its exact solution using the quasi-mpin method and qualitative fantures of the solution are dismused. Zero temperature and finite trmperature hFB aye applled in chaptars 3 and 4 , raspectively, with the purpose of astablishing the appropriate phase diagrams.

Concluaions emerging from this work are presented $1 n$ chapter 8, With the excoption of chapter 3, each of the succoeding chaptera possesses an introductory section in which the contenta of the particular chapter is astlined. These complentent the diacussion in this chapter of the global structure of the thesis by pointing out specific results which are felt
to be novel or interesting and by citing, where appropriate, relevant developments 10 the 1 t teratu: 6 . In addition, there are several appendices. As in mogt cesea thedr contents is relevant to no more than one chapter, they have been fomatted to appear as integrai parts of the chapters concerned.

CHAPTER TWO

THE AGASSI MODEL

The Agassi model (Ag 68) consists of N 1dentical fermions which ocsupy two levels, each with degeneracy Ω (Ω even). Adopting the BCS phase convention, the Ramiltonian is

$$
\begin{align*}
& -g_{\sigma, \sigma^{\prime}} c_{c \pi}^{\dagger} c_{\sigma-\mathbb{R}^{\prime}}^{\dagger} c_{\sigma^{\prime}-\mathbb{M}^{\prime}} c_{\theta^{\prime} m^{\prime}} \tag{2.1}\\
& m, m^{\prime \prime}>0
\end{align*}
$$

where o labeis the leveis, m the states within a level and $c_{o \mathrm{f}}^{\frac{\ddagger}{\ddagger}}$ creates a fermion in the single-particle state |ows. In this work σ is taken to be $+1(-1)$ for the upper (lower) level, and in to have the range $\pi= \pm 1$, *2, $\ldots, \pm \Omega / 2$. Also V end g are assumed to be non-negative, and N to be even.

The Agassi model is by design a schematic verston of the phenomenologically successful Pairing-phus-Quadrupole model (KG 84). Thile the pairing interaction (with streegth g) is retained, the complex quadrupole interaction is replaced by the simpler monopole interaction (with strength V) familiar from the LMG model (LMG 65). It is well known (GLM 65, ALM 66) that this interaction is responsible for effects which are formally 3 anthar to those induced by the quadrupole interaction. The two levels togethex may be interpreted as the equivalent of the valence shall in a nucleus. In application of the Pairing-plus-Quadrupole nodel, the singlt-particle levels used are typicaily (CD 66) just those in this shell.

Familiarity with the LMG model and the 2 -Level Pairing model (RR 64) fmediately suggests that the Hamiltontan of the Agass: model can be rewritten as

$$
\begin{equation*}
H=\epsilon_{0}-\frac{\eta}{2}\left(J_{+}^{2}+J_{-}^{2}\right)-g\left(L_{+}+S_{+}\right)\left(L_{-}+S_{-}\right) \tag{2.2}
\end{equation*}
$$

in which

$$
\begin{align*}
& s_{+}=\left\langle s_{-}\right\}^{\dagger}=\sum_{m>0}^{\sum} c_{-1 m}^{\dagger} c_{-1-m}^{\dagger}, \quad L_{+}=\left(L_{-}\right)^{\dagger}=\sum_{m>0} c_{i m}^{\dagger} c_{1-m}^{\dagger}, \\
& J_{+}=\left(J_{-}\right)^{\dagger}=\sum_{m} c_{1 \mathrm{ln}}^{\dagger} c_{-1 n}, \quad J_{0}=L_{0}-s_{0},
\end{align*}
$$

where

The L, S and J operators separately form SU(2) aigebras. Obviously the L and s pperatota commute, Consideration of the commtation relations of the J operatore with the L and S operators shows that a closed Lie algebra is obtained by introducing the operators M_{4} and $M_{-}=\left(M_{+}\right)^{\dagger}$ where

$$
\begin{equation*}
M_{+}=\sum_{\sigma, m}^{\sum>0} c_{\sigma n}^{\dagger} c_{-\sigma-m}^{\dagger} \tag{2,4}
\end{equation*}
$$

The M operators also form an su(2) algebra: the operator M_{0} is given by $x_{0}=x_{0}+S_{0}$.

The non-trivial commutators of the 10 independent operators introduced above are given in Appendix 2.2; they demonstrate that these operators form the Li.e algebre of the group $\mathrm{SO}(5)$ (Pa 65, Ge 81). This means that H can only have a non-zero matrix element between two states if a component of each belongs to the same irreducible representation of so(5). The irreducible representations of $\mathrm{so}(5)$ contain states of different particle numbers. The dinension of the N -particle subspaces within these ixrecucible representations is at nost cubic in N . (by contrest, the dinension of the full Hibert space invoived grows exponeatially with N.) Accordingly, adopting a basis which consists of these N-particle subspaces makes exact diagonalization (by computer) of the entire Hamilomian matrix feasible even then in is quite large,

In succeacing chapters the Agassi model will be considered at both zero and finfte temperatures. The approach edopted at finfte temperature is
however intiuenced by insights arrived at in the zero temperature case. So, this chapter will be devoted to naterial reievant to the exact solutirn at zero tempenature. (The fanite temperature case will be taken up in Chapter 5.)

At zero temperature, only the ground state of the Agassi model and its most collective (low-lying) excitations axe of interest. These are ald spanned by a single irreducible representation of the "quasi-spin" group $S O(5)$, whaterer the value of N. (Recall N is assumed to be ever.) For obvious reasons, the N-paretcie subspace of this irreductble representation will subsequently be referred to as the "collective subspace" of the N-particle system. The dimension of the subspace is a quadratic in N .

The introduction of the quasi-spin group $S O(5)$ drematically simplifies the problem of determining the nost collective states of the Agassi model. The use of $S O(5)$ in the Agassi model is an lliustration of a completely general approach to the nuclear man : roblear. The ratlonale behind this epproach is discussed extens (KCI 82). A spin-off is that it suggests method whereby a wory of exactly soluble but inon-trivial modela can be generated.

The information necessary to construct the Hamiltonian matrix in the collective subspace of the Agassi model is presented in Section 2.1 of this chapter. In particular, the group theoretical basis for the coliective subspace will be considered. While all of this material is fmpifeit in the iiterature (Ag 63, He 53, Fa 65), this discussion makes the thesis self-contained (and serves as an accessible prescription for anyone who would like to use the Agassi model),

Section 2.2 Is devoted to the small and large interaction strength limits of the Agessi model. This discussion establighes what the saldent qualitative features of the exact aolution are. Finaliy, there are two appendices to this chepter. The first contains useful matrix elemants of the operators th the $S(5)$ algebra in the group theoretical basis for the collective subspace, ar: the second, as already mentioned, the non-trivial conmatators of these quasi-spin operators.

The L and S operators introduced in Eq. (2.3) can ba used to construct a set of four commeing operators, namely L^{2}, S^{2}, L_{o} and S_{o}. The mathematically natural choice of hasis for an irreducible represemtation of SO(5) consists of simultancous eigenstater of these four operators (Section 2 in (He 65)). In fact, the elgenvalues of these operators are sufficient to label the members of the basis complacely. Furthermore the maximum values attained within the irreducibie repregantation by the eigenvalues of L_{0} and S_{0} unambiguousiy spectify the representation. If these are denoted by $L_{\text {m }}$ and s_{π}, respectively, then the hasis states are | ($\left.\left.L_{m} S_{m}\right) L, S_{0} M_{L}, M_{S}\right\rangle$, where $M_{L}\left(M_{S}\right)$ is the tastavalue of $L_{0}\left(S_{0}\right)$, and $L(L+1)$ and $S(S+1)$ are the eigenvalues of L^{2} and S^{2} respectively.

The basis used in (RR 64) to diagonalise the 2-Ievel Paising model is very similar. When both levels have the same degeneracy Ω, the states in the basis are

$$
\left|L S N_{L} M_{S}\right\rangle-\left|E M_{L}\right\rangle\left|S H_{S}\right\rangle
$$

where

$$
L=S=\Omega / 4
$$

and

$$
M_{L}=-\cap / 4,-n / 4+1, \ldots,-n / 4+N / 2\left(M_{S}=(N-n) / 2-M_{L}\right) \text {, }
$$

These span the interacting ground state of this model. If the Ihatt (1.e. $V+0$) in which the Agassi model cotncides with the 2-level Pairing model is undform, the irreducible representation of so(5) which containg the collective subspace of the Agassi model must contain states for which $L=8=5 / 4$. This is only posaible if $L_{m}, S_{m} \geq 8 / 4$. On the other hand, from the definitions of L_{0} and S_{0} ir Eq. (2,3), their eigenvalues $M_{L}, M_{S} \leq \Omega / 4$, implying $L_{m}, S_{\pi} \leq \Omega / 4$, Conbining thase inequalities ieads to the result that, for the irreducibla representat ion of interest, $I_{m} m S_{m}=0 / 4$, whatever the value of N.

The assumption required to dertre this conclusion falls away if it can be shown that the irreducible representation selected spans the gruund state of the LMG model. This model possesses the same single-particle Level scheme as the Agassi model but the number of particies present is automatically equal to Ω. An obvious menber of the busis spanifng the ground state is the state in whtch all \cap particlea occupy the lower level. This state is also found in the Irreducible representation with $L_{m} * S_{m}=\Omega / 4$, where it is denoted by
$1(\Omega / 4 \Omega / 4) n / 4, n / 4,-\Omega / 4, \Omega / 4>$.

As the remainder of the basis for the ground state of the LMG model is generated by acting on this state with the "ladder" operator J (irm troduced in Eq. (2.3)), the desired result follows.

Because $L_{m} * S_{m}$ in the irreducible representation of interest, the basis constasts of states in which $L \neq 3$ (Eq. (11) in (He 65)). The range of values of L (and S) is given by $L=n / 4-m / 2$ where $m=0,1,2, \ldots$, n/2. In states containing N particies, the efgenvalues M_{L} and M_{S} aust gatisfy the constraint

$$
\begin{equation*}
M_{L}+M_{S}=(N-\Omega) / 2=\Delta . \tag{2.6}
\end{equation*}
$$

This is possible provided $21=\Omega / 2-m \geq|\Delta|$, or equivalently, m $\leq \operatorname{mi}_{u}$ where

$$
m_{u}=\Omega / 2-|\Delta|= \begin{cases}\mathrm{N} / 2 & N \times \Omega \tag{2.7}\\ (2 \Omega-N) / 2 & N>\Omega\end{cases}
$$

The constraint in Eq. (2.6) tmplies that M_{L} end N_{S} can be written as

$$
\begin{equation*}
M_{L}=\Delta / 2+z, \quad M_{S}=\Delta / 2-z \tag{2+8}
\end{equation*}
$$

where the unconstraited varinble $z=-2 z_{u},-\left(z_{u}-1\right),-\left(z_{u}-2\right), \ldots$, $z_{u}-1, z_{i d}$ whth

$$
\begin{equation*}
2 z_{u}=a_{u}-n_{u} \tag{2,9}
\end{equation*}
$$

Thus the group theoretical basts for the N -particle collective subspace of the Agessi model is the sot of states

$$
\begin{aligned}
& |m, z\rangle \\
& =\left|\left(L_{m}=S_{m}=\Omega / 4\right) L=S=n / 4-n / 2, K_{L}=\Delta / 2+z, K_{s}=\Delta / 2-z\right\rangle
\end{aligned}
$$

where the ranges of m and z are given above. Clearly the dimension of this subspace is

$$
D_{c}={\underset{m}{m^{u}}}_{m_{0}}^{\left(2 z_{u}+1\right)=m_{2}\left(m_{u}+1\right)\left(m_{u}+2\right), ~}
$$

which is e. quadratic in either N or $2 \Omega-N$, whichever is amailes. In circumstances where it is necessary to specify the particle number of the state $|\mathrm{m}, \mathrm{z}\rangle$ ft will be denoted by $\mid \mathrm{m}, \mathrm{z}, \Delta \mathrm{s}$.

Inepection of the Handitontan in Eq, (2.1) shows that it transforms a gtate containing on even nutaber of particlea in the uppor leved into (in general) a linear combination of such atates; a similar result holds for states containing an odd number of particies in the upper level. The formal reason for this property is that the Hamiltonian commutes with the "parity" operator $\mathrm{P}=\exp \left(1 \pi J_{0}\right)$ Eaniliar from the LMG model. States which contain an even/odd number of parcicios in the upper level, and 1inear conbitutions of these states, are satd to possess posirivg/negetive parity, Becausa the state $|m, 2\rangle$ is an eiganstate of L_{0}, it nuth have good parity; in fact it is easily shown that |m,zt has positive parity if m is even and negative parity if u is odd. The partty symm metry of the Agassi Hamlitonian deplies that the Hamiltondan matrix in the bagis $\mid \mathrm{n}, z^{\prime}$ da not of dimension D_{c}. Ensead the constints of two submarifices, one of which couples the positive parity (even m) basis atates, while the ocher couples the negative parity (oda m) basia states. The dimensions of these submatrices are given in Table 2. I, It is olear that the elgenstates whith emerge from the diagonalisation of this Hamiltonian matrix automatically have good parity.

Expressions for the non-zero matrix elements of the Agassi Hamiltonian 1 In the basis |m, $\left.\mathrm{m}_{\mathrm{y}}\right\rangle$ can be deduced from Eqg. (AZ.4) - (A2.7) of Appendix 2.1. The members of the basis are assumed to be ordered so that m Increases from feft-tomsight or cop-to-botton in a matrix and, for given n, z varies in the same way. Since the Gamaltonian matrix is hermitian, only the matrix elements $\left\langle m^{\prime}, z^{\prime}\right| n|m, z\rangle$ in which $\left(m^{\prime}, z^{\prime}\right) \geq(m, z)$, have to be calculated. Expressions for three of these matrix elements can be written down fataediataly fron éqs (12.4) $-(A 2.7)$. They are:
$\langle\pi, z| n|m, z\rangle=\langle n, z| \in J_{0}-g\left(L_{+} L_{-}+S_{4} S_{m}\right)|n, z\rangle$

$$
\Rightarrow 2 z \varepsilon-\left\{\frac{1}{2}\left[\frac{G}{2}-m\right)\left\{\frac{a}{2}-m+2\right\}-2 z^{2}-\Delta\left[\frac{\Delta}{2}-1\right]\right\} g ;
$$

$$
\begin{equation*}
m-(g+b(m) \nabla) a(z+1) a(-z) \tag{2.10b}
\end{equation*}
$$

where

$$
a(x)=4\left(m_{u}-m+2 x\right)^{\frac{1}{2}}\left(n_{u}-m+2|\Delta|+2 x\right)^{\frac{1}{2}}
$$

and

$$
b(m\rangle=(a(m))^{2}+(a(m-1))^{2}
$$

in which

$$
a\{m\rangle=\left\{\frac{2(m+1)(0-m+2)}{(\Omega-2 m)(n-2 m+2)}\right\}^{d} ;
$$

3) $\langle m+2, z+1| n|m, z\rangle=-V / 2\langle n+2, z+1| J_{+}^{2}|m, z\rangle$

$$
\begin{equation*}
=a(n+1) a(m) a(-z) a(-2-1) v \tag{2.10c}
\end{equation*}
$$

The fourth (and final) nonmero matrix elament of H of this type follows from the observation that $\left.u n-2, z+1\left|J_{\psi}^{2}\right| n, z\right\rangle$ is non-zero ($c f$. Eq. (A2.7)), which implies, through hermitian confugation, that

$$
\left\langle\pi+2, z-1 \mid y^{z} ; \pi, z\right\rangle
$$

is non-zero. Thus, usam; the radity of matrix elements of $\mathrm{J}_{ \pm}^{2}$,

$$
\begin{align*}
\langle m+2, z=1| H|n, z\rangle & =-V / 2\langle m+2, z-1| J^{2}|m, z\rangle \\
& \left.=-V / 2<m, z\left|J_{+}^{2}\right| \pi+2, z+1\right\rangle \tag{2.10d}\\
& =-a(m+1\rangle a(n) \alpha(z) a(z-1) V .
\end{align*}
$$

The parity-conserving proparty of B is contained in the fact that $\left\langle m^{\prime}, z^{\prime}\right| \vec{A}\left|m_{s} z\right\rangle$ is nonmaro only if $m^{\prime}-$ a is even.

In che mon-interacting limit, it is obvious the propertios of the
 related to those of the $(\Omega-2 k)$-pazticle system, tif the description of states in the ($\cap+2 k$-particle systom is reformiated in terms of the ($n-2 k$) single-particle states winch are unoccupied. Consideration of Eqs. (2.7) and (2.9) sin.s that the bases $\mid m, ~ z, ~ \Delta u k s$ and $|m, 2, \Delta=-k\rangle$ possess the same ranges of m and z. This suggests a Eumamental comection between the systems aontaining (a - 2k) and $(\Omega+2 k)$ particles persists in the (interacting) Agassi model, Inspecm tion of Eq. $(2,10)$ confirms this suspicion, for it implies

$$
\begin{aligned}
& \left\langle\mathbb{M}^{\prime}, Z^{\prime}, \Delta=k\right| H \mid m, z, \Delta m k
\end{aligned}
$$

which means the two Hamiltonian matrices have exactly the same elgenvectore, while the eiganenergies of the $(\Omega+2 k)$-particle system are obtained by subtracting 2 kg from each of the eigenenergies of the ($\Omega=2 k$) -particle system. Equations (A2.1) - (A2.4) (of Appendix 2.1) demonstrates that the equivalanse of thege two syatems also etabraces the matrik elements of the individued quasi-spin operatose. thus, in what follows, $N \leq 8$ unless otherwise speciffed. Furthermore, as only a 2×2 wincrix hes to be diagonalised when $N=2$, it will be assumed that $n \boldsymbol{n} 4$.

SECTION 2.2: AALITATIVE FEATURES OF THE SOLUTION NWHE AGASSI MODEL

In subsections 2.2 .1 and 2.2 .2 of this section, the solution to the Agessi model for small and large interaction strength respectivaly will be considered. The discussion will take advantage of results available anelyticaliv, Attention will be focusaed on the properties of the ground state, the global scyuctura of the opectrum of excitation ene gies and the matrix elements of quasj-spin operators between the ground state and other states. It is conventent to characterise the ground state by the expectation values of combinations of quasi-spin operatiors. These expectation values convey the essential physics of the grourid state without any redundant information. (In fact, just this is exm ploited in the elegant Sum-ruie alternatyves to full RPA calculations (BLM 79).) In this regard, it is useful to introduce the combinations

$$
J_{s} \geqslant\left(J_{+}+J_{-}\right) / 2, J_{y} \times\left(J_{+}-J_{-}\right) / 21, Y_{ \pm} \not L_{ \pm}+s_{ \pm},(2.11)
$$

which, because the Agassi Himittonian can be written as

$$
\begin{equation*}
H=\varepsilon J_{0}-V\left(J_{x}^{2}-J_{y}^{2}\right)-g Y_{+} Y_{-}, \tag{2.12}
\end{equation*}
$$

are perticularly approptiate to the limits of large g and V.

With regard to notation (here and elsewhere), the elgenstates of H whil be denoced by $\mid 1,7>$. The label π is ofl/-1 for positive/negative parity states; for states of a given parity, j increases with increasing energy, with $f=1$ for the state of lowest energy. For succinctness, the ground stace will wsualiy be denoted by $\{0 \%$, when the particle number of eigenstates is needed, they will be denoted by $|j, \pi, N\rangle$ (or, in the case of the ground atate, $\mid 0, N>$).

2.2.1 Behaviour when g and Y, smail

It is usafui th discussing this regime to distinguish that the part of the pairing interaction thich octs withita a level from the rest (which scatters particles from one level to the other). This tan be dome by introducing, instead of the Agassi Hamiltonian, the more general Hamiltonam

$$
\begin{align*}
\mathrm{B}= & J_{0}-V / 2\left(J_{+}^{2}+J_{-}^{2}\right)=g_{1}\left(L_{+} L_{-}+S_{+} S_{-}\right) \tag{2.13}\\
& -g_{2}\left(L_{+} S_{-}+S_{+} L_{-}\right) .
\end{align*}
$$

From Eq. (2.10), the expressi, for the eigenenergies of H contain teras which ara linear in $g_{1}, M_{2} g_{2}$ and V appear to higher powers. Thus in etudying the limit ef sme' 1 interaction strengths in the Agessi model, a reasonabla first seap da tha set $V=\mathbf{g}_{2}=0$. Thit immediately simpilifies the problem since the states $|n, z\rangle$ are then the elgenstates of A with eigenenergies

$$
\begin{equation*}
E(m, 2)=2 z \varepsilon-\left\{\frac{1}{2}\left(\frac{\pi}{2}-m\right)\left(\frac{\Omega}{2}-m+2\right)-2 z^{2}-\delta\left(\frac{8}{2}+1\right)\right\} g_{1} \tag{2.14}
\end{equation*}
$$

where $\delta=(\Omega-N) / 2 a|\Delta|$. In all of these eigenstates the number of particles in the upper level is a good quantum number. This feature in usualiy eypical of non-interacting systems. These states are however very afferent from those of a non-interacting system, being spacial superpositions (in general) of several slater determinants. (only the

As g_{1} is increased from zero, a level-crossing involying the lowest two positive parity state occurs. For gl less than this value, the state with the lowest energy (i.e. the ground state) is $|0\rangle=\mid \mathrm{mm} 0$, $\left.z=-z_{11}=-\mathbb{N} / 4\right\rangle$. The energies of the rematining states reative to the ground state aze given by

$$
\begin{equation*}
E(m, z)-E(\pi=0, z m-N / 4) \tag{2.15}
\end{equation*}
$$

$$
=\mathrm{m}\left(\varepsilon+(S+1)_{g_{L}}\right)+k\left(2 \varepsilon-(N-2 m-2 k)_{g_{1}}\right)=\Delta E(m, k)
$$

where $k=2+a_{u}=0,1,2, \ldots, N / 2 \cdots \pi$. Figure 2.1 contains a typical fiot of $A \mathbb{A}(m, k)$ for some of the lew-lying exchted staters. If nt and k are smalil in comparison to N, then th is a good approximation so vitite

$$
\begin{equation*}
\Delta E(m, k) \quad \operatorname{m} E_{m o n}^{o}+k E_{p r}^{\Delta} \tag{2,16a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{E}_{\text {mon }}^{\circ}-\varepsilon+(\delta+1) g_{1}, \quad \mathrm{E}_{\mathrm{pr}}^{0}=2 \varepsilon-(N-2) g_{1} \tag{2.16b}
\end{equation*}
$$

Equation (2.16) shows that the spectrum of excited states can be assily underatood if if is supposed that the N-particle system supports two independent vibrational modes: one has a negative parity quanturn of energy $E_{\text {mon }}^{\circ}$ and the other hos a positive parity quantum of energy $E_{p r}^{\circ}$. The exctited wtates conteln ditferent numbers of these two quante. This description also makes the collective nature of the apectrum clear.

The spectrua in Pfg. $2.2 a$ is typical of those found in the fuil Agessi model when $\chi(\equiv(\Omega-1) V / \varepsilon)$ is suall and $\Sigma(\equiv(\Omega-1) \varepsilon / \varepsilon)$ is varied. It is noticeable how stadlar Figs. 2.2 a and 2.1 ara in the range $0 \leqslant \Sigma \leqslant 0.75$. The description of the spectrum in ferms of two vibrational nodes of opposite parity (with onergies $\mathrm{E}_{\text {mon }}$ and E_{pr}) is still feosible in this regime, with the level-repulsions at $E=0.25$ being in effect levelerossinga. Comparison of the energies in Fig, 2, ie in the limit $t+0$ with Eq. (2.16) suggests that, for fingll X, F mon decrenges with increasing X, while $E_{p r}$ is esgentialiy independent of χ. Thig is con-
 varied. Furthermore, it too is vibrational (provided $X \leqslant i$). The two mades of energy $E_{m o n}$ and $E_{p F}$ are the counterparts of the monopole vibration in the LMG model and the pairon-holon vibration in the 2 mevel Pairing model. reapecitvaly. (The terms pairon and holon are definad in the introdaction to (ERH 77).) Thus the excitations in the Agassi model, when 5 and X ate amall, are precisely those expected intuitively of a model which is ottained by combining the LMG medel with the 2-level Pairing model. (Features in the speetra in Fig, 2.2 when $\mathrm{L}, \mathrm{X} \gg 1$ will be discussed in Section 2.2.2.)

The success of EC. (2.15) in reproducing the essontial features of the apeatrum when V and $Z_{2}{ }^{n} g_{1}$ are non-zero but small implies that assuming the eigenstates to be $|\mathrm{m}, z\rangle$ will yiald useful order of magoitude estimates for the ground state expectation velues and transition inatrix elements of quasi-gpin operators. Expressions for these can be infarred directiy from Appendix 2.1.

The expectation values in $|0\rangle=|m=0, z=-\mathbb{k} / 4\rangle$ of the simple combinations of quasi-spin operators discussed in Appendix 2.1 are listed 1n Table 2,2. As all N particies are in the lower level in $|0\rangle$, the expectation values of $L_{+} L_{-}, L_{+} S_{-}, J_{+}^{2}, J_{+}^{3}$ and $M_{+} Y_{-}$must be zero. The expectation values of $S_{+} S_{-}$and J_{0} (end any combination thereof) sre also trivial becauje $\mid 0$, is an efgenstate of theas operators. From Eqs. (A2.4) and (A2.8).

$$
J_{0}|0\rangle=-N / 2|0\rangle
$$

and

$$
s_{+} s|0\rangle=N / 2(6+1)|0\rangle \text {. }
$$

(Actually these results are implicit in Eq. (2.14).) Since $N \geq 2$, $\left.<0\left|s_{+} s_{-}\right| 0\right\rangle$ a $\Omega / 2$ Combining all of these reguits and Eq. 42.11), one can deduce the expectation values of J_{x}^{2}, J_{y}^{2} and $Y_{+} Y_{-}$. When $N=\Omega, 10$, is a single slater deferminant; even wherl $N<\Omega$ (and $|0\rangle$ is superposition of sevexal slater dereminants) only the expectation values involving $S_{+} S_{-}$differ from those of any Slater detaminant in which all N particles are in the lower level.

Of the quasimspin operators whtch conserve particie number, only ${ }_{ \pm}$(or J_{x} and $\left.J_{y}\right\rangle$ can connect $\mid 0>$ with other states. Since none of the particles in $\mid 0>$ are in the upper Level, $J_{-} \mid 0>=0$. From Eq. (42.2),

$$
J_{4}|0\rangle=\sqrt{N} /\left.2\right|_{m}=1,2=-N / 4+\frac{1}{y}=\sqrt{N} /\left.2\right|_{\tan } m 1, z=-z_{4}
$$

which implies

$$
\langle j, \pi| J_{4}|0\rangle=\sqrt{N} / 2 \quad \delta_{j, 1} \delta_{\pi,-1}
$$

Adopening J_{x} and J_{y} insitead of $J_{ \pm}$, these results become

$$
\begin{equation*}
\langle j, \pi| J_{x}|0\rangle=1\langle j, \pi| J_{Y}|0\rangle=\sqrt{N} / 2 \varepsilon_{f, 1} \delta_{\pi,-1} \text {. } \tag{2.17a}
\end{equation*}
$$

The independent nonmero matrix elements of $S_{ \pm}, L_{ \pm}$and $M_{ \pm}$between $\mid 0$, Nr and other gtates ate (using Eqs. (A2.1) anci (A2.3)

$$
\begin{align*}
& \langle 0, N-2| s_{-}|0, N\rangle=\sqrt{N(\delta+1) / 2} \\
& \langle j=2, \pi=+1, N+2| L_{+}|0, N\rangle=\sqrt{2 / 2}, \tag{2.17b}\\
& \langle j=1, \pi=-1, N+2| M_{+}|0, N\rangle=\sqrt{2 \delta} .
\end{align*}
$$

The remaining non-zero matrix elements can be inferred by hemitian conjugetion.

Because the quasi-spin operators are $S O(5)$ generators, the matrix elements of any combination Q of quasi-spin operators satiafy the sum rule

$$
\left.\varepsilon|<\varepsilon| 0|O\rangle\right|^{2}=\langle 0| Q^{\dagger} Q|0\rangle
$$

where $|\ell\rangle$ is any basis for the collective subspace. The results in ã. (2.17a) may be sumarised by saying chat, as $X, \Sigma \rightarrow 0$, the matrix element involving the lawest negative paricy eigenasate exhausts the sum rules for J_{x} and J_{y} (ef. Table 2.2). Similarly, the sum rules for $S_{ \pm}, L_{ \pm}$and $n_{ \pm}$are in each case exheusted by one matrix element in the suiz.

2.2.2 Behavtour when g and V large

In this subsection, the 1 initit g $\rightarrow \infty$ (V fixed) is considered first, and then the ifmit $\forall \rightarrow \infty$ (8 fized).

When $g \gg\rangle, \varepsilon$, the Agassi Hamiltontan becomes in offect

$$
H=-g Y_{+} Y=-g\left(Y^{2}-Y_{0}^{2}+Y_{0}\right)_{1}
$$

where $Y_{0}=L_{0}+S_{0}\left(\omega_{0}\right)$ and $X_{ \pm}$form a $\operatorname{SU}(2)$ algebra. This Hamiltonian oniy couples atates $|m, z\rangle$ and $\mid m^{\prime}, z^{\prime}>1 f m=m^{\prime}$ (ci. Eq. (2.10)). So its eigenstates are lincar combinations of the states $|m, z\rangle$, m fixed. which are eigenstates of Y^{2}. (By construction, each state $\mid \mathrm{m}, \mathrm{z}$. is an efgenvector of X_{0} with eigenvalue $M_{y}=$ b.) Since the operators $\overline{\mathcal{L}}, \mathrm{S}$ end

Fig. 2.1 Excitation energies (in units of e) of lowmyfig atates when only g_{1} non-zero ; $N=\Omega=20, \Sigma^{\prime} \cong(\Omega-1)\left(g_{1} / c\right)$. Each level is labelled by the orderd pait (m, k), where m and k refer to Eq. (2,15).

Tig. 2. 2 Low-1ying members ox exact collective excitation spectrum of Agassi model when $N=\Omega=20$; in pact (a), $X=\frac{1}{2}$ (Σ varied), while, in part (b), $\Sigma=0,35$ (x varied).

Fig. 2.3 Ground atate energy of $\mathrm{N}=20$ system relative to ground otate onergy of $N=\Omega=22$ system $(x=0.4) ; E_{a}$ and E_{b} are approximations to this given in Eq. (2.22).

P2e. 2.4 Expectation value of $Y_{4} Y_{2}$ in the positive parity ground state (curve A) and the lowest negative parity state (curve B) when $N=14,0 \in 22$ and $\Sigma_{N}=1.5$. (The expectation values have been scaled by n factor of $4 / \mathrm{Na})$.

Fig. 2. 5 Low-lying members of exact collective excitation spectrum of Agassi model when $X=5, N=\Omega * 20$.
\bar{F} have the formal properties of angular momentum operators and $\bar{Y}=\overline{\mathrm{I}}+\overline{\mathrm{E}}$, these combinations follow from standard angular momentum coupling techniques. Thus the eigenscates of H are

$$
\begin{align*}
& |Y, n\rangle=\mid Y, M_{y}=A, L=S=\pi / 4-\pi / 2> \\
& \quad z_{u} \quad \sum_{\chi_{\square \square}}|m, z\rangle \tag{2.18}\\
& z=-z_{u}
\end{align*}
$$

In which $C_{\text {Yuz }}$ is the Giebach-Gordon coefficient

$$
C_{Y M Z}=\left(L=\frac{\Omega}{4}-\frac{m}{2}, S=\frac{\Omega}{4}-\frac{m}{2}, M_{L}=\frac{\Delta}{2}+z, \left.M_{S}=\frac{\Delta}{2}-z \right\rvert\, Y, M_{y}\right)
$$

and $Y=\delta, \delta+1, \delta+2, \ldots, n / 2-m$. The eigenenergy of $\left|Y_{1} m\right\rangle$ is

$$
\begin{equation*}
\mathrm{E}_{\mathrm{Y}}=-(Y(Y+1)=\delta(\delta+1)) g \tag{2.19}
\end{equation*}
$$

from which it is clear that the ground state of the system is the single gitase for which $Y=\Omega / 2-1 . e,|0\rangle=|Y=a / 2, m=0\rangle$. as a resuit, in the 2 -level Pairing model only states in which ti $=0$ are considered. (The set of states $|m=0,2\rangle$ coincides with the basis in Eq. (2.8).)

In this limit the ground state expectation value of $Y_{+} Y_{\text {- }}$ attains its maxinum value, namely

$$
\begin{align*}
\langle 0| Y_{+} Y_{-}|0\rangle & =N / 2(\Omega / 2+\delta+1) \tag{2.20a}\\
& =\Omega^{2}(N / 2 \Omega)(1-N / 2 \Omega+1 / \Omega) .
\end{align*}
$$

On the other hand, when $g(, v) \rightarrow 0$, than, from Tabla 2.2 ,

$$
\begin{equation*}
\langle 0| Y_{+} Y_{-}|0\rangle=n^{2} / 4 \mathrm{~N} / \Omega(2-\mathrm{N} / n+2 / \Omega) . \tag{2.20b}
\end{equation*}
$$

Both resulta depend on the sum over alil states of the product of the probability that a singiempuricia state is oecupied with the probability that it is unoccupled, Whareas, for N amali, the expression in

Eq. (2.20a) is only a factor of 2 greater than the expression in Eq. (2.20 b), it becomes a factor of $\Omega / 2$ greatex es $N+\Omega$ It is the drop in the probability that any singlemparticle otate is unoccupled when particles are conftned to one level (1.e. the factor of ($1-N / n$) In Eq. (2.206)), which accounts for this trend.

Since $g_{2} \rightarrow \infty$, it is plausible that both levels contain the same number of particles in the state $\left.|0\rangle-1 . e .<0\left|J_{0}\right| 0\right\rangle=0$. Symmetry properties of the clebsch-Gordon coefficients imply that $C_{Y m z}=(-)^{Y-Y_{m}} C_{Y m(-z)}$ " where $Y_{a}=\Omega / 2-\mathrm{m}$. It follows that

$$
\left\langle 0 \Lambda_{0} \mid 0\right\rangle=2 \underset{2}{2}=\left(C_{Y}=\Omega / 2, m=0,2\right)^{2}=0
$$

or thes $\left.\langle 0| x_{0}|0\rangle=<0\left|s_{0}\right| 0\right\rangle=-\delta / 2$ as antieipated. (What tha parhisp a Inttla surprising is that this result holds for all states |Y, mo .

The calculation of the ramaining ground state expectation values in the limit $8 \rightarrow$ is lengthy but straightforward; it is facilitated by the use of standard bechaiques (in the theory of Angulaz Momentum) for the matrix elemencs of products of inreducible tensors in coupled bases (e.g. Chapter 7 of (YLY 62)). (Reail that \bar{L} and $\$$ are "argular momen" ta" coupled to total "angular momentum" 8 .) One obtains the foliowing resu1es:

$$
\begin{align*}
\langle 0| s_{+} s_{-}|0\rangle= & \langle 0| L_{+} L_{H}|0\rangle=\mu(\Omega / 2)^{2}=\mu \Omega / 2+N / 4, \\
& \left.<0\left|L_{+} s_{-}\right| 0\right\rangle=\mu(a / 2)^{2}, \\
\left.<0\left|J_{x}^{2}\right| 0\right\rangle= & \left.<0\left|J_{0}^{2}\right| 0\right\rangle=\mu \hat{N} / 2(1-N / 2 \Omega)+\mu, \tag{2,21}\\
& \left.<0\left|J_{y}^{2}\right| 0\right\rangle=0, \\
& \left.<0\left|M_{+} M\right| 0\right\rangle=N / n \mathrm{~N} / 4=\mu,
\end{align*}
$$

whare

Consiatent with fntultive anticipations, the expectation values of $L_{+} L_{-}$, $S_{+} S_{-}$and $H_{+} S_{-}$are to a good approximation equal. Theitr value in this limit is thus determined by $\left\langle 0 \| Y_{+} Y_{\#} \mid 0\right\rangle$. The results for J_{0}^{2} and j^{2} indicate that both theite expectation valuea decrease significantly as g Ancreaaes from zero (af. Table 2.2).

From Eq. (2.19) the energies of excited states relative to the energy of the yround state are

$$
E(s)=\varepsilon_{Y}=(\Omega / 2-s) \quad-\varepsilon_{Y=\Omega / 2}=s(\Omega+1-s) g
$$

 energy $E(s)$. In addition states of opposite parity are degenerate. (The number of positive parity states with energy $E(s)$ is ($s+1) / 2$ if s is ood, and $s / 2+1$ if s is even.) For the low-iying states (s mali), the spacing between enargy levels is almost constant. This suggests these states are essentialiy aon-interacting vibrational states; such a description, which requires two modes with quanta of opposite parity but the same energy, provides a natural way of accounting for the number of positive and negative parity states of a given excitation energy.

The structure in the spoctrum inpited by these rasults is not restricted to the limit g (or Σ) $* \infty$. Reference to Eig. 2.2a shows that, when $\times 13$ gmall, it is already viaible for $E: 2$.

The spectra for a spectific number of particles when V and g are small and when g ts large (V fised) are qualitatively similar in that bath are vibrationel. However qualltative differences are found when the energies of corresponding ptates (e.g. ground states) in systamg of different paritcie number are compared. Using Eqe. (2.14) and (2.19), the ground scate energy of the N-partitcle systam ralacive to the ground atate energy of the n-pneticie system fa, to leading order in g ,

$$
\begin{equation*}
\xi_{a}=\delta(\varepsilon-(\Omega / 2-1-\delta) g) \tag{2.22a}
\end{equation*}
$$

when g is manill, and

$$
\begin{equation*}
\mathbb{E}_{b}=\delta(\delta+1) g \tag{2.22b}
\end{equation*}
$$

When $g \rightarrow \infty$. Proviciad X is smali, these expressions provide upeful estimates of the splitting of ground state energies in the two regimes (of. Fiz. 2.3). For smalit 6 (1.e. N close to Ω), the fomer expresaion implies the ground states belong to a pairiag vibrational band (BB 66) while the latter waplies thay belong to a palring rotatlonal band (Sc 72). Similacly, each excited state of the N-particle systealis a mamber of, in the flisst limit, a vibrational band and, in the second Ifnit, a cotationaz band extending over gystems of different particie number. Every atate in a particular vibrational band has the same values of m and k ($c E . E q$. $(2,16 a)$), while, for a rotational band, the values of Y and t are constant.

The significance of the paining notathonal fands becomes apparent when the matrix siements of $\quad{ }^{\prime}{ }_{ \pm}$between different algenstates are con sidered. When $g \rightarrow \infty, \quad Y_{+}$and Y_{2} can only connect the grovid atace oE the N-particle syotem to the ground states of the ($N+2$)-and ($N-2$)particle systems retpectively (i.e. to other members of the ground state paising rotational band), wherers in the litait of small interaction gtrengths, Y_{+}and Y_{H} connect the 8 sound state of the N-particle aystetn to both the ground states and the first axcited states of positive parity in the $(N+2)=$ and $(N-2)$-particile ayscems (N f. Eq. (2.17b)) , Exactiy the revarge of this pattern is seen in the matrin alements of S. The selectivity of $S_{ \pm}$in the limit of small g and v ($c f$. Ea. ($2.17 b$) $1 s$ a chatacteristic of pairing vibrations.

Explictt calculation (usitug Eif (2, 28$)$) sm, that the matrix eiaments of guast-gpin opacators which to not change the number of particies can also display dissinctive behavioux. When g and V are amail, <k $\left.=1, T=+1\left|J_{y}\right| 0\right\rangle$ is non-2ero, but, as $g \rightarrow \infty$, it magt vanish (since $\left.\langle 0| \mathrm{J}_{\mathrm{y}}^{2}|0\rangle+0\right\rangle$. Lithewae $\langle k=2,7=+1| J_{0}|0\rangle$, which vandshes if onjy $g_{l} \neq 0$, exhausts the (non-zero) stam rule $\left.<0\left|y_{0}^{2}\right| 0\right\rangle$ when g is lacge.

In the limat $V \rightarrow \infty$, the efgenstates of H must be eigenstates of J^{2}, Unfurtunately these efgenstates are not avallable analyticaliy as the monopole interncion tem cantains beth J_{x} and J_{y} which do not commute
(cf. Eq(2.12)). Nevertheless it is possible to infer some results by semi-classical arguments, without perforuing namerical diagonalisation.

When only $g_{1} \neq 0$, the ground state $|0\rangle$ is an eigenstate of J^{2} and j_{0} with eigenvalues $J=-M_{J}=N / 2$; classically, this state has quasi-spin $\bar{J}=-(N / 2) \hat{z}$. The form of the monopole interaction term implies that switching on V will cause the quasi-spin of sis state to rotate in such a way that $\langle 0| J_{x}^{2}|0\rangle$ is increased (without changing $\langle 0| J_{y}^{2}|0\rangle$), thereby lowering the ground state energy. Thus, in the liait $V \rightarrow \infty$, one would expect the ground stare to have the following expectation values:

$$
\begin{equation*}
\langle 0| J_{x}^{2}|0\rangle=N^{2} / 4 \quad, \quad\langle 0| J_{0}|0\rangle=0, \tag{2,23a}
\end{equation*}
$$

and, because the system 1 is not classical,

$$
\begin{equation*}
\langle 0| v_{y}^{2}|0\rangle=\langle 0| v_{0}^{2}|0\rangle=N / 4 \tag{2.23~b}
\end{equation*}
$$

Numerical calculations, for exampie the plots in Fig. 5.2a (in Chapter 5) of $4\left(<0\left|J_{x}^{2}\right| 0>-N / 4\right) / N^{2}$ for an open-shell configuration of the Agassi model, conflum these are useful order of magnitude estimates for large V. (The variables X_{N} and ε_{N} in Fig. $5.2 a$ are in effect V end $g ;$ they ate define! In Chapter 3, Eq. (3.43).) So the ground state tin the regine of large V is characterised by a considerable onhancement in the valun of $\langle 0!+2 / 0\rangle$, being $O\left(\mathrm{~N}^{2} / 4\right)$ as compared to $O(N / 4)$ when $V \equiv 0$ (cf. Table 2.2).

The operators J_{x} and J_{y} are the equivalent in the Agassi model of the components of the quadrupole operator in the Pairing-plus-Quadrupole model. The enhancement in $\left.\langle 0| J_{x}^{2 \mid}| \rangle\right\rangle$ is similar to the increase in the ground state expectation value of the scalar product of the quadrapole operatir with itself founs in "deformed" 0^{+}nuclei. Thus an analogue of quadrupole deformation exists within the Agassi model Instead of rotational bands, parity doublets emerge in the spectrum (cf. Fig. 2.2b). Not only do the energies of the two menbers of a parity doubiet cotncide, but also their expectation values of quasi-spin operators (of. IIg. (2,4)).

The dependence of the excites parity doublets on interaction strengths ouggestg that again there exist two different fundamental excitations. The energies of all excited doublets are sensitive to the value of X (cF. Fig. 2.2b). However if one considers the dependence on Σ of the energles of the two lowest-lying excited parity doublets, then one fluds, as demonstrated by Fig. 2.5, that, alchough one of these decreases rapidily with Z (ε saalil), the other is unchanged. This pattern is reminiscent of the behaviour of the energieg of the monopole and pairon-holon vibrations introduced in the earlier discussion of Fig. 2.2a. Hence the former doublet can be vieved as a "pairon-hoion" excitation and the latter doubiet as a "monopole" excitation. If one ignores (in the first approximation) the splitting of the bigher-lying doublets in Fig. 2.5 (Σ small), then they can be fiterpreted as superpositions of both of these different modes; thus the spectrum is approximately harmonic (just as in the other 2 inith considered), observe that the splitting is smallest in the paizon-holon doublet and its higher harmanica, despite the fact that these exeftations are abseat in the tXG trodel.

The increase in $\left.<0\left|s_{x}^{2}\right| 0\right\rangle$ as $V+\infty$ implies that the transition matrix elements of J_{x} between the ground state and other statns increase. In Fact, numerical calculations show thet the lowest negative parity state exhausts the cssociated (non-energy-weighted) sum rule when it becomea part of the ground state parity doublet - i.e.

$$
|\mathrm{k}=1, \pi \#-1\rangle \rightarrow \pi \mathrm{J}_{\mathrm{X}}|0\rangle
$$

where n Is a normaligation constant. This result, when coupled with the fact that $\left.<0\left|J_{0}\right| 0\right\rangle, 0$, fmplies another signature of the large v regime: $<k=1, \pi=-1\left|了_{y}\right| 0>$ vanishes.

The very differant behaviour of ground state expec.ation values of quasi-spin operators in the two limits $V+\infty$ (g fixed) and $g \rightarrow \infty$ (V Fixed. indicates that the monopole and pairing interactions epmpete. This is reinforced by the spectrum in Fig. 2.5. As Σ is increased beyond . ., the parity doublets - ineluding the ground atate parity doublet \quad iit. For $¥ \gg$, the ordering of levels expected in the infinite g ifnit begins to amarge. It ta the competition between these
two regimes which aistinguishes the Agassi model from other simpler one-parameter models like the LMG model. Although the computational effort entailad is considerably greater, the richer structure is desirable, for it leads to several insights not poasible within oneparameter models.
ofnally, an interesting way of discussing the properties of the Agassi rodel. not considered here is to vary N keeping g, V and Ω fixed (Section 2 of (Ag 68)). It demonstrates how the Agasai model can gimulate the properties of the Pairing-plus-Quadrupole model when appiled to the isotopes of a medfum-to-heavy nucleus.

APPENDIX 2. L: MATRIX ELPMENTS OF QUASI-SPIN OPERATORS IN TME COLLECTIVE SUBSPACE

In this appendix expressiong for the action of several combinations of quasi-apin operazars on the basis state $\mid m, z, \Delta>$ are given. The matrix elements of these combinations follow trivially. The Ficisentacion of certain resuits can be simplified if the states $|m, z, \Delta\rangle$ ani $|n, z,-\Delta\rangle$ are treated on the same footing. This is achieved by introducing the
 follows $A_{0}=0,1,2, \ldots, \Omega / 2$.

Individual quasi-spin operators $\left(L_{ \pm}, S_{ \pm}, J_{ \pm}, M_{ \pm}\right)$

The expressions for $L_{ \pm} \mid n, z, \Delta>$ and $S_{ \pm}|m, z, \Delta\rangle$ are weil known from elementary treatments of angular momentum in quantum mechanics. However in terms of the variebles mand z used in this work they become

$$
\begin{aligned}
& \left.A_{ \pm}\left|a, z ; A_{0}, \pm\right\rangle=\left(z_{u}-z\right)^{\frac{1}{2}}\left(a_{u}+z+\Delta_{0}+1\right)^{\frac{1}{2}} \right\rvert\, a, z+k_{2} ; \Delta_{0}+1, \Delta>,
\end{aligned}
$$

$$
\begin{aligned}
& \left.A_{d}^{\dagger}\left|m, z ; \Delta_{0}, \pm>\left(z_{u}-z+1\right)^{\frac{1}{2}}\left(z_{u}+z+\Delta_{0}\right)^{\frac{1}{2}}\right| m, z-k_{1} ; \Delta_{0}-1, \pm\right\rangle \text {, } \\
& A \frac{t}{f}\left|m_{0} z ; \Delta_{0}, \pm>\left(z_{u}-z+A_{0}+1\right)^{\frac{1}{2}}\left(z_{u}+z\right)^{\frac{1}{s}}\right| m, z-\frac{l_{2}}{2} ; A_{0}+1, \pm>,
\end{aligned}
$$

There exfats a sfmple relation between the infinitesimal generators $F_{a \beta}$ used in (He 65) and the operators $J_{ \pm}$and $M_{ \pm}$(Pa 65, Ag 68). Thus expressions for $z_{ \pm}|m, z, \Delta\rangle$ and $M_{ \pm}|m, z, \Delta\rangle$ can be obtained by specialising results for $F_{\alpha \beta} \mid\left(I_{n_{m}} S_{m}\right) L_{, ~}, M_{L}, M_{s}>$ implicit in sections 2 and 4 of (He 65) and listed explicitily in the appendix to (Ag 68). (In both theee workg the symbols J and A are used instead of L and S respectively*) One Einds that

$$
\begin{aligned}
J_{ \pm}|m, z, \Delta\rangle= & A(n) \alpha(\mp z)\left|m+1, z \pm \frac{1}{2}, \Delta\right\rangle \\
& +A(\pi-1) \alpha(1 \pm z)\left|m-1, z \pm \frac{1}{2}, \Delta\right\rangle,
\end{aligned}
$$

where

$$
A(m)-2\left\{\left(\frac{(n+1)(\Omega-m+2)}{(\Omega-2 n)(\Omega-2 m+2)}\right\}^{\frac{3}{n}},\right.
$$

and

$$
\alpha(x)=\left(z_{u}+x\right)^{\frac{1}{2}}\left(z_{u}+|\Delta|+x\right)^{\frac{b_{1}}{2}}
$$

S1milaciy

$$
\begin{align*}
& \pm M_{ \pm}\left|t n, z ; \Delta_{0}, \pm\right\rangle=A(m) \beta(0) \mid t a+1, z ; \Delta_{0}+2, \pm z \\
& -A(m-1) S\left(A_{0}+1\right) \mid a-1, z ; A_{0}+1, A>, \\
& \underset{+}{H}\left|m, 2 ; \Delta_{0}, \pm=A(n) B\left(\Delta_{0}\right)\right| m+1,2 ; \Delta_{0}-1, \pm \tag{A2,3}\\
& -A(m-1) B(1) \mid \pi-1, z ; \Delta_{0}-1, \pm \geqslant,
\end{align*}
$$

whare $\beta(x)=\left(z_{u}-z+x\right)^{\frac{1}{2}}\left(z_{u}+z+x\right)^{\frac{1}{2}}$. Consfstent with thetr definitions (in Eqs. (2.3) and (2.4)), J $J_{ \pm}$and $M_{ \pm}$couple states of positive parity (even m) to states of negative parity (odd m).

Combinations of gungi-spin operators in the Agsssi Hemiltonian To calculate the matrix of the Agassi Hamiltonian it is sufficient to consider the following operators:
(1) J_{0}

Frome Eq: (2.8), $\left.\quad J_{0}|m, z, \Delta z=2 z| m, z, \Delta\right\rangle$.
(2) $S_{+} S_{-}+L_{+} L_{-}$

Using relations like $S_{+} S_{-} \backsim S^{2}-S_{0}^{2}+S_{0}$,

$$
S_{+} s_{m}+L_{+} L_{-}=s^{2}+L^{2}-\left(S_{0}+L_{0}\right)\left(\left(s_{0}+L_{0}\right)-1\right)+2 s_{0} L_{0}
$$

Thus

$$
\begin{align*}
& \left(S_{+} S_{m}+L_{+} L\right)|m, z, \Delta\rangle \tag{A2.5}\\
& \quad=\left(\frac{\left.L_{2}(\Omega / 2-m)(A / 2-m+2)-2 z^{2}-\Delta(\Delta / 2-1)\right) \mid a, z, \Delta \geqslant .}{(A 2} .\right.
\end{align*}
$$

(3) $\mathrm{L}_{+} \mathrm{S}_{-}$

Using Eq. (A 2.1),

$$
\begin{equation*}
\mathrm{L}_{+} \mathrm{S}_{-}|m, z, \Delta\rangle=a(z+1) a(-z)|\mathbb{m}, z+1, \Delta\rangle \tag{A2.6}
\end{equation*}
$$

where $\alpha(x)$ is defined in Eq. (A2.2),
(4) J_{+}^{2}

Uoing Fin. (A2.2),

$$
\begin{align*}
&\left(J_{4}\right)^{2}|m, z, \Delta\rangle \\
&= A(\pi+1) A(m) a(-z) \alpha(-z-1)|m+2, z+1, \Delta\rangle \tag{42.7}\\
&+\left((A(m))^{2}+(A(m-1))^{2}\right) a(z+1) a(-z)|m, z+1, \Delta\rangle \\
&+A(n-1) A(m-2) \alpha(z+2) a(z+1)|m-2, z+1, \Delta\rangle
\end{align*}
$$

Other combInations of quast-apin operators (for expectation values)
If J_{0} is excluded, then the atmplest combinalions of quasi-spin operam tors which have non-zero expectation values are products of two quasi-
spin opezators which conserve particle number and parity. Those of interest are:
(1) Y ${ }^{Y}{ }^{Y}$. (cf. Eq. (2.11))

The results given tn Eqs. (A2.5) and (A2.6) are sufficient to calculate expectation values of $Y_{+} Y_{=}$.
(2) $H_{+} L_{-}, S_{+} S_{-}$

Because of Eq. (A2.5), it is enough to consider

$$
S_{+} S_{-}-L_{+} L_{-}=s^{2}-L^{2}+\left(L_{0}-S_{0}\right)\left(L_{0}+S_{0}-1\right)
$$

It follows

$$
\begin{equation*}
\left(S_{+} S_{-}-I_{+} L_{-}\right)|0, z, \Delta\rangle=(\Delta-1,) 2 z \mid m, z, \Delta>, \tag{A2.8}
\end{equation*}
$$

(3) J_{x}^{2}, J_{y}^{2}

Erom Eq. (2.11),

$$
\left.\begin{array}{c}
4 \mathrm{~J}_{x}^{2} \\
4 \mathrm{~J}_{y}^{2}
\end{array}\right\}=2 J_{+} J_{-}-2 J_{0} \pm\left(\mathrm{J}_{+}^{2}+\mathrm{J}_{-}^{2}\right)
$$

To calculate expectation values require, in adation to Eqs. (A2.4) and (A2.7),

$$
\begin{align*}
& a_{+} J-|m, z, \Delta\rangle \\
&= A(m+1) A(m) \alpha(z) \alpha(-z) \mid m+2, z, \Delta> \\
&+\left\{(A(m))^{2} a^{2}(z)+(A(m-1))^{2} a^{2}(1-z)\right\} \mid m \quad, z, \Delta s \tag{A2,9}\\
&+A(m-1) A(m-2) \alpha(1+z) \alpha(1-z)|m-2, z, A\rangle
\end{align*}
$$

which foilows Erom Eq. (A2.2).
(4) $\mathrm{M}_{+} \mathrm{M}-$

Using ($\mathrm{A} 2,3$),

$$
\begin{align*}
& M_{+} M_{-}\left|M_{r} z, \Delta\right\rangle \\
&=-A(m+1) A(m) \alpha(z) \alpha(m z)|m+2, z, \Delta\rangle \\
&+(A(m))^{2} B(0)^{2} \tag{42.10}\\
&\left.+(A(m-1))^{2} B(\Delta+1)^{2}\right\}|m, z, \Delta\rangle
\end{align*}
$$

$$
-A(m-1) A(m-2) \alpha(1+z) a(1-z)|m-2, z, \Delta\rangle .
$$

The similarity between $(A 2,9)$ and ($A 2,10$) is not a fortuitous feature of working within the basis $\mid \overline{4}, z, \Delta>$. The operator $A=\mathbf{k}_{5}\left(M_{+} H_{-}+J_{+} J_{-}\right)$is related to the quadratic Casimir operator G of $80(5)$ by

$$
A=G-L^{2}-S^{2}+b_{4}\left(Y_{0}+J_{0}\right)
$$

(Eq. (16) in (He 65).)

Hence A mast be diagonal in the basis $\left|\left(I_{n} S_{m}\right) L_{2} S, M_{L}, M_{S}\right\rangle$, whatever the values of L_{m} and sm_{m}.

The matrix elements of J_{0}^{2} are trivial (c.. Eq. (A2.4)), while any expectation value of $\mathrm{J}_{x} \mathrm{~J}_{y}$ and $\mathrm{J}_{y} J_{x}$ can be written in terms of the expectation value of ${ }_{0}$ in the ane state.

APPENDIX 2.2: CONMUTATORE OF QUASI-SPIN OPERATORS

The 10 Independent operators forming the SO (5) Algebra are taken to be the L and s operators, and $J_{ \pm}$and $M_{ \pm}$. The non-vanishing commutators Involving these operators (excluding the trivial SU(2) cotmatatere) are:

$$
\begin{aligned}
& \left(L_{+}, J_{-}\right)=-M_{+} \quad\left(L_{0}, J_{+}\right)=L_{-} \quad\left(L_{+}, M\right)=J_{+} \\
& \left(L_{0}, M_{+}\right)=4_{+} \quad\left(s_{+}, J_{+}\right)=-N_{+} \quad\left(s_{0}, J_{+}\right)=-L_{+} J_{+} \\
& \left(s_{+}, M\right)=J_{-} \quad\left(s_{0}, M_{+}\right)=s_{+} M_{+}\left(J_{+}, M_{+}\right)=2 L_{+} \\
& \left(J_{+}, M\right)=-2 s_{-}
\end{aligned}
$$

Operater	$\mathrm{T}_{+} \mathrm{Y}^{2}$	$5{ }_{4}{ }^{\text {s }}$	$\mathbf{1}_{+}{ }_{\text {L }}=$	$\mathrm{H}_{+} \mathrm{M}$	J_{0}	d_{x}	$\mathrm{J}_{\mathrm{y}}^{2}$
	$\frac{3}{2}(8) 13$	$\frac{3}{4}(6+5)$	0	0	㗊	$\frac{8}{4}$	$\frac{N}{4}$

Chapter three

 SBLP-CONSTSTENT MEAN-FIELDS

 SBLP-CONSTSTENT MEAN-FIELDS
 (at zero temperature)

It is well known that the patring and monopole intaractions in the Agassi model give rise to non-trivial solutions of the zero temperature Bardeen-Cooper-Schrieffer (BCS) and HartreenFock (HF) equations respecm tively (ak 64, ALM 66). Thus it io necesaary to employ the Hartreem Fock-Bogoliubov (HFB) formalism, which generalises and unifies the BCS and $H F$ theories, to determine the self-consistent mean-fields appropriare to the Agassy model. In this chapter the application of HFB at zero temperature is considered, and in the naxt, the application at Einite temperature.

The first section of thit ehaptor is devoted to a brief description of HFB at zero tataperature (Ma 75, Go 79a), with the emphasir on the (formal) properties of the HFB approximation to the ground state. Section 3.2 presents the form to which the transformation determining the $H F B$ ground stats can be restricted within the Agassi model. A modification of a parametrisation firat used in (BFS 69) is introduced to tixplify subsequent mantpulations. It is ghown that, if $\stackrel{N}{\mathrm{w}} \mathrm{O}_{\text {, the }}$ transformation muat automatically break particle number symmetry. The various boiutions of the corresponding equations for the HFB ground state when $N=0$ and $\mathrm{V}<0$ are diseusged in Sections 3.3 and 3.4 respectively. In particular the conditions are determined under which these solutions are stable, (The notion of stablidty is defined in the last paragraph of Section 3.1.) This insormation is sumariged in "phase diagrams" - i.e. piots in the gy-plane ahowing wheh solutions are stable where. A teature of the phase diagran for the closedmshelil ($\mathrm{N}=\Omega$) aygtem is the absence of a genutno HFB solution (or phase),

The calculation of expectation values in the most general form of HFB ground atate appropriate to the Agasai model is ontlined. in Appendix 3.1 to this chapter. Only expectation values of the combinations of quasispin operators discugsed in Ghapter 2 are considered. Appendix 3.2 contains material required in Appendix 3.1.
 for an interacting non-relativistic sermion many-body aystem with Hamiltonian

$$
\begin{equation*}
y=\sum_{L j}^{E} t_{i j} b_{1}^{\dagger} b_{j}+\frac{1}{4} \underset{i j k I}{\Sigma} \bar{v}_{i j k 1} b_{1}^{\dagger} b_{j}^{\dagger} b_{1} b_{k} \tag{3.1}
\end{equation*}
$$

Where b_{f}^{+}, b_{1} are the parefele craation and annihdiation operators asscelated with any complete singlemparticle basis, and $\bar{v}_{\text {ijkl }}$ are the anti-gymutrisea matrix elaments of the jateraction in this besis. The self-consistent mean-field approxinterion seeks quasf-particle creation and aminilation operatora $\beta_{1}^{\dagger}, \beta_{1}$ in temo of which the Hamiltonian H can be recast (without any approximarion) into the following pinpler forgl:

$$
\begin{equation*}
H=E_{0}+\sum_{1}^{\Sigma} \Sigma_{i} \beta_{i}^{\dagger} \beta_{i}+H_{r e a}, \tag{3.2}
\end{equation*}
$$

where $H_{\text {res }}$ is the (restdual) interaction between quasi-particles which, by design, is as gali as possible (in a senge oxplained below), given the reatriction that the quastmparticie operators are related to the ${ }^{\text {thenen }}{ }^{n}$ operators b_{f}^{4}, b_{1} by a unicary transforantion. (In the Agassi model. the most conyenient get of "bare" operators is that uged in Eq. (2.1) *) The determination of the transformation which accomplishes this requires the salf-consintent solution of a set of non-ilnear equatimes. In most gybtems, including the Agassi thodel, the solution is such that all the energies G_{t} in Eq_{F} (3.2) are positive (A eareful discussion of this point $1 s$ givon in sections 7.3 and 7.7 of (RS 80).) Whereas in HF the undtary tranaformation is algo required to conaerve partsele number, in H, the most general fom is permisolble namely

$$
\begin{equation*}
\beta_{i}^{\dagger}=\sum_{j}\left\langle\mathrm{U}_{j 1} b_{j}^{\dagger}+v_{j 1} b_{j}\right) \tag{3.3}
\end{equation*}
$$

In this way, shortrrange pairing corralations can be incorporated (Va 61). However it also Lapliea that a gubstidary condition must be Introduced which ensures that; the corresponding approximetion to the ground stade conseryes partiche number on the average. This cat be done
 particle number operator and the chemical potentiel μ is fixed so that the ground state expectation value of \hat{N} is equal to N, the number of particles in the system, (This procedure is eastly generalised to constraints finvolving the ground state expectation values of other operators (Gc 79a), bett in the present work only \hat{N} needs no be considered.) Since the transformation is unitary, the quasi-particles are alen femions.

Ideally $H_{\text {res }}$ is uegingible, in which case tif effectively diagonalised $!$ the quasi-particle bagis. Whatever the casc, thiu basis is the optimal one for the pur. of the sole (but importanc) approximation made, namely that $H_{r e s}$ can be ignored. The ground state of the system (1.e. the state of 10 west energy) when each E_{1} is positive is then, from Eq. (3.2), the state containing no quasi-particles or the quasi-particle vacult |v>. (In what follows, inless otherwise speciriled, |v> is normailsed.) A consequence of Wick's theorem is that $|v\rangle$ is specified (to within an arbitwary phase factor) by the set of all contractions

$$
\begin{equation*}
\rho_{i j}=\left\langle v \mid b_{j}^{t_{b}}{ }_{i} v\right\rangle, \quad \quad k_{i j} \quad=\langle v| b_{j} b_{i}|v\rangle \tag{3.4}
\end{equation*}
$$

whanh are the matrix elements of the single-particle denaity ρ and the pairing tunsor k in the "bare" basie reapactively. The definition of $|v\rangle$ impiles that ail the contractions of the quasi-particle operators (in this state) vandeh except

$$
\begin{equation*}
\langle y| B_{i} \beta_{j}^{\dagger}|v\rangle=s_{i j} . \tag{3.5}
\end{equation*}
$$

Substituting the invetae of Eq. (3.3) Into Eq. (3.4) and using Eq. (3.5), one Elade that

$$
\rho_{i j}=\sum_{k} v_{i k k}^{*} v_{f k}
$$

and

$$
k_{i j}=\sum_{k} V_{i k} \mathrm{E}_{j k},
$$

where $V_{1 j}$ is the complex conjugate of $V_{A j}$.
Under a change of gingle-particle basio - i.e. the unitary transformation

$$
b_{i}^{\dagger} \rightarrow \sum_{k} u_{k i} b_{k}^{\dagger}, \quad b_{i}+\sum_{k} u_{k i}^{*} b_{k}
$$

 second order tensor respectively (BM 62). (Hence the terra pairing senfor for k.) Furthermore, from (F . (3.4), ρ is hermitian and K is anti-symetric. Thus thete exists a aingle-particle basia in which ρ is diagonal, while the simplest form to which the matrix for k can be reduced is the cannilical form

where the first square consists of zeros, the a_{f} are resl and the entries fintside the squares on the diagonal vanish (Zu 62). It is demonstrated an (as 62) that, for ρ and k to deseribe one and the same quasi-patifcie vacuum, they must batiafy the relations

$$
\begin{equation*}
k x^{4}=p-o^{2} \tag{3.7a}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho k=k p t \tag{3,7b}
\end{equation*}
$$

If follows that the single-particle basts which diagonaliaes ρ can be chosen in such way that k is ainultaneously brought into its canonical forth (8M 62). This very spacial and important singlemparticle basis is terned the canonical basis.

The matrix elements of p and x in the canonical basis will be denoted by ρ_{1}^{c} (stnce ρ diagonal) and $k_{1 j}^{c}$. As k is canonical in form, this basis can be divided finto "paired" and "blocked" atates: for any blocked state |a>,

$$
k_{a j}^{c}=0 \text { (for ani } j \text {), }
$$

and, for any paired stace |bs,

$$
k_{b j}^{c}=s_{j \bar{b}} k_{b}^{\prime}
$$

where $|\bar{b}\rangle$ is the state which is canonically conjugate to $\mid b>$ or "partners" $|b\rangle$. (Ftrm the previous paragraph, $\kappa_{\square}^{c}=-K_{b}^{c}$.) It follows from Eq. (3.7a) that, for a blocked state |a>, ρ_{a}^{c} is either 1 or 0 .

As is whili-known, the existence of the canonical basis inplies that any HFB transformation can be decomposed into three successive transformations of siapler structure (the Blochmessiah theorem (BM 62)). These are:

1) First, a unfeary transformation U_{1} from the bare basis to the canonical basis of the furm

$$
s_{i}^{t}=\sum_{j}\left(\mathrm{U}_{1}\right)_{j i} \mathrm{~b}_{j}^{\dagger},
$$

where the particle creation operators a_{i}^{*} refer to the canonical basis;
2) Second, a special Bogolfubov-Valatin transformation $B_{s p}$ of the operators a_{1}^{\dagger}, a_{4} : which, for blocked states, is of the form

$$
\alpha_{k}^{+}= \begin{cases}a_{k}^{+} & \rho_{k}^{c}=0 \\ a_{k} & \rho_{k}^{c}=1\end{cases}
$$

and, for paired states, of the form

$$
a_{k}^{t} \quad u_{k} a_{k}^{\dagger}-v_{k} a_{k}
$$

where u_{k} and v_{k} are real, $u_{k}=u_{\bar{k}}, v_{k}=-v_{k}$ and $u_{k}^{2}+v_{k}^{2}=1$;

Finaliy, is general, a unitary transformation U_{2} among the quesiparticle operators a_{i}^{\dagger} to obtafin the quasi-perticle operators

$$
\beta_{i}^{\dagger}=\sum_{j}\left(U_{2}\right)_{j i} \varepsilon_{j}^{\dagger} .
$$

The ground state |v> s a prifori determined (to within an arbitraty phase factor) by the requirement that

$$
\beta_{1}|v\rangle=0 \quad(\text { fox all i). }
$$

This can however be replaced by the condition

$$
\left.a_{1}|v\rangle=0 \quad \text { (for all } \pm\right\rangle
$$

which demonstrates that all phystcally important properties of |ve are determined by the first two transformations, U_{1} and $B_{s p}$, aione. In fact one can replace the exprassions for $\rho_{i j}$ and $k_{i j}$ in Eq. (3.6) by

$$
\rho_{i j}=\sum_{k}\left(\mathrm{U}_{1}\right)_{1 k}\left(U_{1}\right)_{j k}^{*} \rho_{k}^{c}
$$

and

$$
k_{i j}=\sum_{k}^{\Sigma^{1}}\left(\mathrm{~J}_{1}\right)_{1 k}\left(U_{k}\right)_{j \bar{k}} k_{k}^{c}
$$

where Σ^{\prime} in the sum over the paired atetes in the canonical basis. Ohserve that the expectation value of $\hat{\mathrm{N}}$
depenids ottly on the nature of the second transformation.

If the formal expressions fur the operators b_{i}^{\dagger}, b_{i} in terms of the operators a_{1}^{4}, σ_{1} are substituted into $H^{\prime \prime}$ and the result ia rewritten in terms of nomaliy-ordered products (with respect to \|v>), then one finda In general that

$$
\begin{aligned}
& \text { II }=E_{0}^{*}+\sum_{1 j}^{\Sigma} H_{1 j}^{11} \alpha_{1}^{\dagger} \alpha_{j} \\
& +L_{2} \underset{i f}{\left(H_{1 j}^{20} a_{1}^{+} \alpha_{j}^{t}+\text { h.c. }\right)}+H_{4} \text {, }
\end{aligned}
$$

where H^{11} is a hermitian matris, H^{20} is anti-symmetric (h.c. denotes hermitian confugate), and H_{4} consigts of normally-ordered products containing Eour quasi-partysie operators. (For the purposes of the present diacussion explicit expressions for $\mathrm{H}^{1 l}$, H^{20} and H_{4} are unnecesgary; however these are given in ali generality in Appandix E of (RS 80), while expresaions for $H^{1 I}$ and H^{20} appropriate to the Agassi model are given in appendix 6.1.) The transformations L_{t} and $B_{\text {sp }}$ are determined by the requirement that

$$
\begin{equation*}
H^{20} \equiv 0 \tag{3,10a}
\end{equation*}
$$

along with the subsidiary condition that

$$
\begin{equation*}
\operatorname{Tr}(p)=N_{i} \tag{3.10b}
\end{equation*}
$$

where Tr denotes trace. It is in this way that the role of the interacthon tin the system of quasimparticles 10 minindsed. Given the solution of Eq. (3.10), $\mathrm{H}^{2 亡}$ can be explicitly calculated, The transformation U_{2} follows trivially: In order co obtain the form of H^{\dagger} in Eq. $(3,2), \mathrm{U}_{2}$
 Hence this transformation ta inoportant for the description of oxcited gtates. When the normaliy-ordered products la H_{4} are expressed in terms of the oparators $\beta_{f}^{\dagger}, \beta_{d}$, it coincidea with $\mathrm{H}_{\text {res }}$ in Eq . (3,2),

The transfomation U_{L} is analogous to that decermining the ground state In HP. Indead, in the limit in which $k=0$, inapection of tike detailed expression for H^{20} shows that it satisfies the same set of equations. Likewise the furm of $B_{s p}$ is familiar from beS and, in a limit similar to
$\kappa=0$ but not quite as restrictive, $B_{\text {sp }}$ satisfies the BCS equations. As is to be expected from the marrdage of HF and BCS_{2} the ground state of a full HFB solution deacribes a gysten in which pairing takes place between particles moving fro a deforned HF-like fteld. An essent fal fingredient of this description ts that it allows for the selfoconsistent influence of the palring on the deformation and vice varsa. Despite the conceptual alatiarity between HFB and the coupled HFWSCS approximation (BGG 69), the two methods should not be confused for they are in general different (Go 79a). (The coupled HF-BCS approalmation ignores certain contriburions to H^{20} and \mathbf{H}^{11} which are usuelly non-zero; vartous studies have shown neglecting these terms has undesirable consequences (Go 79a).)

Applying Wick's theorem to Eq. (3.1) and using Eq. (3.4), one deduces that the HFB approximation to the ground state energy is given by

$$
\begin{align*}
& E_{o}=\sum_{i j} c_{i j} \rho_{i j}+k_{i j k I}\left\{\rho_{i k}^{*} \bar{v}_{i j k 1} \rho_{1 j}\right. \\
&\left.+v_{i k}^{*}{ }_{i j} \bar{v}_{i j k 1} \kappa_{k 2}\right\}, \tag{3.11}
\end{align*}
$$

where $\rho_{i j}$ and $k_{i j}$ are evaluated once Eq. $(3,10)$ tas been solved. on the other hand, E_{0} can aiso be regarded $2 s$ a functional of the unknown coafficients in V_{1} and $B_{s p}$, and can then be used to determine their values. Hot ali variations in these coefficients are pernisaible; they must be such that U_{1} and $B_{s p}$ remain untitary and the trial state |v> has expectation value $\langle v| \hat{N}|V\rangle=N$. The variational principle

$$
\begin{equation*}
\delta_{c} E_{0}=0 \tag{3.12}
\end{equation*}
$$

where $\delta_{c} E_{0}$ denotes the constrained variation of E_{0} discussed above, is, along with the necesany constraint conditions, exactly equivalent to Eti, (3.10). (See, for example, (DMP 66).)

Since the equations determining U_{1} and $B_{s p}$ are non-litnear, they possess In general more than one solution, the recogntition that these equations follow frose a verational principle of the Rayleigh-litz type involving E_{O}, suggests that only solutions corresponding to a locel minimum of E_{o}
can be relevant. Such solutions are termed "stable". (It is importent to realise that the locel minimum ander consideration is onty required to be a local mininum for vartacions which satisfy the constrainta discussed (OS 83), a point which has been overlooked in, for example, (Ca 65).) In what follows, stability will be sufficient to select one solution from any others. For syatems where this is not the case, the stable solution of lewest energy is usually adopted.

SECTION 3.2: FORM OF THE HTB TRANS FORMATLON

In the Agassi model the transformation to the canonfeal basis U_{1} acconmodates the monopole interaction. This thansformation differs Erom its HF counterpart oniy in that HPB allows Eor the selfaconsistent influence of pairing. Therefore U_{1} must have the same form as its HF counterpert, namely (from the HE calculations in (ALM 66))

$$
\begin{equation*}
a_{\mathrm{OR}}^{\dagger} \neq \sum_{\sigma^{\prime}}^{\Sigma\left(U_{1}\right)_{\sigma^{\prime}, ~ J}} \mathrm{c}_{\mathrm{C}^{\prime} \text { IB }}^{\dagger} \tag{3.13}
\end{equation*}
$$

where $a_{0,0}^{+}$and $c_{\sigma d}^{\dagger}$ are the creation operators in the canonical and bare bases respectively. Like the bare basis, the canonical basis consists of two levels each of degeneracy a. As $V, g>0, U_{1}$ can be assumed to be orthogonal (Section 5.4 In (RS 80)). Sc the transformation in Eq. (3.13) can be rewritten without any loss of generality as

$$
\begin{equation*}
a_{\sigma \pi m}^{+}=\cos \phi / 2 c_{0 \mathrm{~m}}^{\dagger}+\sigma \operatorname{sin\phi } / 2 c_{-\mathrm{cm}}^{\dagger} \tag{3.14}
\end{equation*}
$$

whare $|\phi| \$ \pi$.

The tramaformation within the caionical basis allows for correlations which may be induced by the pairing interaction. It too should be formally similar to its BCS counterpart. The application of BCS to the 2-Ievel Palring nodel (RR64) thus implies this tranaformation is

$$
\begin{equation*}
\alpha_{\sigma m}^{\dagger}=u_{\sigma} a_{\sigma m}^{\dagger}-\operatorname{sgn}(m) v_{\sigma} a_{\sigma-m m} \tag{3.15}
\end{equation*}
$$

where $\operatorname{sgn}(m)$ is the algn of m and u_{o}, v_{0} are non-negative. The coefficients u_{σ}, v_{σ} are subject to the constreint

$$
\begin{equation*}
u_{\sigma}^{2}+v_{\sigma}^{2} \cdots 1 \tag{3,16}
\end{equation*}
$$

to ensure that the transformation in Eq. (3.15) is unitary.

The matrix elements of p add k in the canonical basis are

$$
\begin{align*}
& \rho_{\sigma m, \sigma^{\prime} m^{\prime}}^{c}=\left\langle\left. v\right|_{\sigma^{\prime} m^{\prime}} ^{+} a_{\sigma m^{\prime}} \mid v\right\rangle=\rho_{\sigma}^{c} \delta_{\sigma, \sigma^{\prime}} \delta_{m, m^{\prime}} \tag{3.17a}
\end{align*}
$$

in which

$$
\begin{equation*}
P_{\sigma}^{\mathrm{g}}=\mathrm{v}_{\sigma}^{2}, \quad k_{\sigma}^{\mathrm{c}}=u_{\sigma} v_{\sigma} \tag{3.17b}
\end{equation*}
$$

and |oy fis the (normes sd) trial HF8 ground state, which is such that $\alpha_{o m}|v\rangle=0$ (for all σ, m).

Combining Eqs. (3.17) and (3.9), the partfcle number constraint reads

$$
\begin{equation*}
v_{1}^{a_{1}}+v_{1}^{?}=N / n \tag{3.18}
\end{equation*}
$$

Equations (3.16) and (3.18) \}mply it ds possible to write a $\sigma^{+} v_{o}$ as

$$
\begin{array}{ll}
v-1=(N / n)^{\frac{1}{2}} \cos \psi / 2 & u-1=\left(1-N / n \cos ^{2} \psi / 2\right)^{\frac{1}{2}} \\
v_{1}=(M / n)^{\frac{1}{2}} \sin \psi / 2 & u_{1}=\left(1-N / n \sin ^{2} \psi / 2\right)^{\frac{1}{2}}
\end{array}
$$

where ψ is an arbitcary variable jying in the incerval $0 \leqslant \phi \leqslant \pi$. tm the Agassil model one muet have $\rho_{1}^{c} \notin \rho_{i}^{e}$; hence ψ uan in fact be rem atricted to the range 0 甶 $\psi \leqslant \pi / 2$.

If $\mathrm{N}=\Omega$, then, when $\psi=0$, the tranaformation in Bq , (3.15) becomes

$$
a_{1^{\prime \prime}}^{\dagger}=a_{L^{m}}^{\dagger}
$$

$$
x_{-2^{m}}^{\dagger}=-\operatorname{sgn}(m) a_{-1^{m}}
$$

which shows that it can encompass the cless of $H F$ solutions. By contrast, when $N \& \pi$, the coeffictents $v-1$ and tum are confined to the ranges

$$
N / 2 \Omega \leqq v-1 \leq N / \Omega \quad,(1-N / \Omega)^{\frac{1}{2}} \leqq t-i \leqq(1-N / 2 \Omega)^{\frac{3}{2}} .
$$

The transformation in Eq. (3.15) thus automaticaily braaks particle t: mber symmetry. The exclusion of mean-fielde which conserve particle number is neconsary. If fixed partipie number N is retained in the mean-field description, then only y states in the lower level of the canonical kesis can be occupied. Gleariy, as $N<a$, there is no unique choice of these states, which means that the ansate for the approximate ground state is not unique. This is both physically and formally undesirable (Da 67). The problem is circumented when particle number syminetry is broken.

Exptessions for p and k in the bare basis can be deduced by combining Egs. (3.8), (3.14) and (3.17). Dne finds that
where

$$
\begin{gather*}
\rho_{\sigma, 0}=\rho_{\sigma}=\frac{\left(p_{1-1}^{c}+\rho_{1}^{c}\right)}{2}+0\left(\rho_{-1}^{c}-\phi_{-1}^{\mathrm{c}}\right) \cos \phi \\
=\operatorname{N/2n(1-\theta \operatorname {cos}\psi \operatorname {cos}\phi)} \\
\rho_{\sigma,-\sigma}=-\rho_{0}=\frac{-\left(\rho_{-1}^{c}-\rho_{1}^{c}\right) \sin \phi}{2}=\frac{-N \cos \psi \sin \phi}{2 n} \tag{3.20b}
\end{gather*}
$$

$$
\begin{align*}
& k_{\sigma, \sigma}=k_{0}=\frac{\left(k_{-1}^{c}+k_{1}^{c}\right)-\sigma\left(k_{-1}^{c}-k_{1}^{c}\right) \cos \phi}{2} \\
& k_{\sigma, \bar{\sigma}}=k_{0}=\frac{-\left(k_{-1}^{c}-k_{1}^{c}\right) \sin \phi}{2} \tag{3.20c}
\end{align*}
$$

Just as $p_{1}^{G} \leq p_{1}^{0}$, so $\rho_{-1} \geq P_{1}$, implying $|\phi| \leq \pi / 2$. The aign of ϕ determines the aigns of P_{0} and k_{0} which ate trbitrary. Hence ϕ can be restricted to 0 ふ $\ddagger \mathfrak{\pi} / 2$.

The trial ground state |u> can break cwo symmetries of the Agassi Hamini onian, namely paxity symuetry whenever ρ_{0} is non-zero, and particle number symmetry whenevar $\ddot{\kappa}$ a $\left\{\kappa_{-1}+k_{1}\right\} / 2$ is non-zero. These two parameters, ρ_{0} and \bar{k}, conveniently opecify the physical, character of the ground stace. Because parity symmetry is the analogue in the Agassi model of rotational, invariance in the pairing-plus-Quadrupole model, a ground state for which $\rho_{0} \nmid 0$ is termed deformed; a ground gtate for which $\bar{\kappa} \neq 0$ is auperconducting. Four different sypes \because ground state can be 1dentifyed:
(1) spherfeyl $-\rho_{0}=\bar{k}=0 \quad 4 \quad \psi=\phi=0, N=\Omega$ (HF state);
(ii) deformed - $p_{0} \neq 0, \bar{k}=0 \rightarrow \psi=0,0<\phi \leqslant \pi / 2, N=\Omega \quad$ (HF state);
(ili) superconducting $\cdots \rho_{0}=0, \bar{x} \neq 0 \leftrightarrow 0 \leq \psi \leqslant \pi / 2$ (equeltity when $W<\Omega$) $\phi=0$ (BCS etate), or $\psi=\pi / 2, \phi$ arbitrany (Fuli HPS state);
 when $N<R), 0<\phi \leqslant T / 2$.

The deformed and deformedwsuperconducting states are interpreted as describing both members of the ground state parity doublet found when $V+\infty$: g fixed (cf. Section 2.2.2). Oherve that, when $N \leqslant a$, only superconducting or deformed-superconducting states are possible. (This

Is one of the reasons why the cases $N=\cap$ and $N<\Omega$ are discuased separately in Sections 3.3 and 3.4 reppectively.)

Applytug Wick's theorem to the Agaswi Hamiltonfan (Eq. (2.1)) and using Eq. (3.20), lead to the result

$$
\begin{align*}
\xi= & \frac{2}{\Omega}\left(\frac{\rho v|\theta| v\rangle}{-\varepsilon}\right] \\
= & \left(\rho_{-1}^{c}-\rho_{1}^{c}\right) \cos \phi+\varepsilon_{1}\left(2 \rho_{-1}^{c} \rho_{1}^{c}\right)+\varepsilon_{2}\left(2 \kappa_{-1}^{c} \kappa_{1}^{c}\right) \tag{3.21}\\
& +\frac{L_{2}\left(x\left(\rho_{-1}^{c}-\rho_{1}^{c}\right)^{2}+V / \varepsilon\left(\kappa_{-1}^{c}-k_{1}^{c}\right)^{2}\right) \varepsilon \operatorname{tn} n^{2} \phi+n g / \varepsilon}{}
\end{align*}
$$

where

$$
\Sigma_{1}=\Sigma_{2}-\frac{g}{\varepsilon}-\frac{V}{\varepsilon}=\left(\frac{\pi}{2}-1\right)_{E}^{g}, x=(n-1)_{E}^{V}, \quad n=\frac{W}{f}\left(8+\frac{N}{n}\right)
$$

(A less direct derivation of this essential result is discussed in Appencix 3.1.) Since, by choice, ϕ and ψ automaticalily satisfy ail the relevant constraincs, the variationad principle in Eq. (3.12) implies that it is necessary to find ϕ_{0}, ϕ_{0} auch that

$$
\left.\frac{\partial \xi}{\partial \phi}\right|_{\phi}=\phi_{0}, \psi=\psi_{0}=\left.\frac{\partial \xi}{\partial \phi}\right|_{\phi=\phi_{0}} \psi=\psi_{0}=0
$$

(There are, of course, no subsidiary conditions.) Also, in the present case, the corresponding state is atable if

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial \phi^{2}}, \frac{\partial^{2} \xi}{\partial \psi^{2}}<0 \text { and } \frac{\partial^{2} \xi}{\partial \phi^{2}} \frac{\partial^{2} \xi}{\partial \psi^{2}}>\frac{\partial^{2} \xi}{\partial \phi \partial \psi}, \tag{3.22}
\end{equation*}
$$

Where the partial derivatives are evaluated at $\phi=\phi_{0}, \psi m \psi_{0}$. The parametrigation of the transformations (Eqs. (3.14) and (3,19)) ammplifien considerably the determination of the GFB gromn acate, and, in particular, the application of the atability criturion.

SECTION 3, 3: HFB GROOND STATE WHEN $N=a$
Setting $N=\Omega \operatorname{In~} \mathrm{Bq}$. (3.19), one Finds that

$$
\begin{equation*}
v-1=u_{1}=\cos \psi / 2, \quad u-1=n, \quad \sin \psi / 2 \tag{3.23a}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\rho_{\sigma}^{c}=k_{2}(1-\cos \psi), \quad \kappa_{\sigma}^{c}=\frac{L_{2}}{2} \sin \psi . \tag{3.236}
\end{equation*}
$$

so that f assumes the form

$$
\begin{equation*}
\xi=\cos \psi \cos \phi+\frac{1}{2} f_{0} \sin ^{2} \psi+3_{2 x} \cos ^{2} \psi \sin n^{2} \phi+g / E \tag{3.24}
\end{equation*}
$$

where $\Sigma_{0}=\Sigma_{1}+\Sigma_{2}$. The equations deternining the HFB ground state are

$$
\begin{aligned}
& \frac{\partial \xi}{\partial \phi}=0=\cos \psi \sin \phi(1-X \cos \psi \cos \phi), \\
& \frac{\partial \xi}{\partial \psi}=0=\sin \psi\left(\cos \phi+x \cos \psi \sin ^{2} \phi-\Sigma_{0} \cos \psi\right) .
\end{aligned}
$$

The solutions of these equations can be found analytically. Thetr multiplicity depends on the values of x and Σ_{0}.

If $X \neq E_{0}$, theme are four different solutions, which are as follows.
(1) $\psi=\phi=0$, This exists for any values of X, Σ_{0} and $1 s$ a spherical HE colution. It is also a rivial solution of th" HP equations in the LMG modet and the BCS equations in the 2 -level Pairing uoded (when $\mathrm{N}=\Omega$).
(2) $\phi=\phi=\pi / 2$. Again, the axistonce of this solution is indepandent of the values of X and Σ_{0}. It in an exampla of that peculatar type of superconducting state for which $\phi=\pi / 2$,
(3) $\psi=0, \cos j=1 / X$ provided $x>1$. This tis the deformed (etrictily parity-mixed) $H F$ solution found in the LMG model.
(4) $\phi=0, \cos \psi * 1 / \Sigma_{0}$ provided $\Sigma_{0}>1$. This is a \quad. \cos solution. It corresponds to the superconducting solution of the 2-level Pairting nodel.

For the spacial case $X=\Sigma_{0}>1$, thato is another (infinita) ciabs of solutions conslating of sil the values on ψ, ϕ which gatiaty the git , le equarion

$$
\begin{equation*}
\cos \psi \cos \phi=1 / \chi . \tag{3.25}
\end{equation*}
$$

Only members of ehis class of solutions are deformed-superconducting.

The evaluation of the second dexivatives of ξ for these solttions is straightforward. Emplaying Eq. (3.22), one finds that:
(1) the spherical HF stable is stable only if both $x, E_{0}<1$;
(ii) the deformed $H F$ (BCS) Bolution is stable provided $X>\Sigma_{0}$ $\left(\varepsilon_{n}>x\right)$;
(iti) the solution $\psi=\phi * n / 2$ is never stable.

Accordingly this iast solution can hereafter be fgnored.

These resuica are conveniently sumariand the Fig. 3.t. It ahows what the stable self-consiatent man-field is in any part of the $\Sigma x-$ plame (where $\&=(\Omega-1) g / \varepsilon$). For $g=0$ and $V=0$ the dzagram is consistent with the results of $F P$ and $B C B$ calculations in the EMG and Pairing Models respectively. ELgure 3.L demonstrates that the class of soluthons atisfying Eq_{i}. (3.25) has no practical relevance.

The absence of a gemuine HPB solution is probably a general feature of N - n systems. The most general "physical" Hamiltontan for a two-level model which has quasi-spin group $\$ 0(5)$ and conserves parity is given by (EK 71)

$$
\begin{aligned}
H_{g e n}= & \left.\varepsilon J_{0}-\frac{V_{1}\left(J_{+} J_{-}\right.}{2}+J_{-} J_{+}-\hat{N}\right)-\frac{V_{2}}{2}\left(J_{+}^{2}+J_{-}^{2}\right) \\
& -g_{2}\left(L_{+} L_{2}+s_{+} s_{-}\right)-g_{2}\left(L_{+} S_{-}+s_{+} L_{\infty}\right)
\end{aligned}
$$

(The Agassi Hamiltomian corresponds to the chaice $V_{2}=0, V_{2}=V$, $\mathrm{B}_{1} \times \mathrm{g}_{2}=\mathrm{g}$,) For atcractive Interactions, the form of the transformation determining the HFB ground state is the same for this system as it is for the Agesss wodel. In torms of the parameters ψ and ϕ, the EFB variational functional when $N=\Omega$ is

$$
\begin{aligned}
& +\frac{1 / 2}{} X_{g e n} \cos ^{2} \psi s \pm n^{2} \phi+g_{1} / \varepsilon
\end{aligned}
$$

where

$$
\begin{align*}
& I_{\text {gen }}=\left(\frac{\pi}{2}-1\right) \frac{g_{1}}{s}+\frac{\vdots}{2} \frac{g_{2}}{\varepsilon}+\frac{V_{2}}{\varepsilon}-\frac{V_{1}}{\varepsilon} \\
& \chi_{\text {gen }}=(\Omega-1) \quad\left[\begin{array}{l}
V_{1}+\frac{v_{2}}{\varepsilon} \\
\frac{\varepsilon}{\varepsilon}
\end{array}\right]+\frac{g_{2}}{\varepsilon}-\frac{g_{1}}{\varepsilon} \tag{3.26}
\end{align*}
$$

From comparison of $\xi_{\text {gen }}$ with ξ in Eq. (3.24), one can impliately deduce that, again, the relwvant solutions ere efther HF or BCS states. The same result has been found in realfstic calcularions in closed-shell nuelei (SG6 69).

Expresaions, appropriate to the three regions in Fib- 3. L , for ρ_{0}, \bar{k}, the approximate ground state emargy and expectation values of various combinations of quasi-spin operators are collected together in rable 3. The parameters p_{0} and \bar{k} and the approximate ground state energy are easily calculated using Eqs. $(3.20 \mathrm{~b}),(3.23 \mathrm{~b})$ and (3.24)n The other expectation values follow straightforwardly from Eqs. (A3.3) - (A3.5) in Appenajix 3.1.

Inspection of Table 3 shows that, in certain respects, the BCS and deformed $H F$ solutions are formally similar, with Σ_{o} performing the same role tin the BCS solution as χ does in the deformed $H F$ solution. However, as the expectation values of all the quast-apin operators (except J_{0} demonstrate, these two solutions are physically very different. The considerable enhancement in the expectetion values of J_{x}^{2} in the deformed region and $Y_{+} Y$ in the superconducting region demonstrates that these solutions accommodate the monopoie and pairing interactions, respectively.

A feature of the transition from one region in Fig. 3.1 to another is the non-analytic change of various quantitié sin wable 3 . In some cases the quantitiles themselves axe discontinuous at the bourdary between two regions, and in others oniy their firgt derivatives with respect to γ and g. This type of non-anklyttc behaviour in physical observabies is a characteristic of phase transitions. It is for this reason that a stable quasi-particle basis is commonly referred to as a "phese" (Chapter 11 of (S S 80)). Similarly, Fig. 3.1 is 4 hase diagram, which indicates the phase transitions predicted by $\mathrm{HFB} ; \rho_{\rho}$ and $\vec{\kappa}$ are order parameters for these transitions.

In the thermodynaic description of phase transtions, the phase is determined by the value of the chenical potential μ. Transitions are clasgified as aither continuous or discontinuous depending on whether derivatives of H (with respect to the relevant thermodynamic variables) are continuaus or discontinupus. (The chemical potential itself is continuous through a transition.) In the present context, ζ fulfils the role of μ. Hence the analagous clussification scheme implies thet the spherical-to-deformed and $\because \therefore=A c a l-t o m p u p e r c o n d u c t i n g$ transitions in Fhg- 3.1 are continuous. \%ontrast, the deformed-to superconduering trangition is discontinuous despite the presence of the class of soluElons of Eq. (3.25).

The correlacions promoted strongly by the monopole and pairing interactions respectively are quite different, as evidenced by the very different mean-fieids which accommodate them. The competition between these two different types of correlathons is seen in the fact that the monc pole interaction strength required to cause the deformed-to-super-
conducting transition increases linearly with the pairing interaction strength (cf, Fig. 3.1). However, the mem-flelds involved do not eater directly for this competition (because neither are full HFB solutions). For exarple, \vec{k}, the measure of pairing corralations, increases finstead of decreasing as V is incrensed and the superconducting-to-deformed transition line in Fig. 3.1 is approached frombelow. This trend ariees because a small fraction of the correlations induced by the monopole interaceion resemble those induced by the pairing intemaction. (The similar concribution to the correlations finduced by the monopole interaction from part of the pairing interaction is fortuitousiy cancelled by the remainder of the patring interaction - cf. $X_{\text {gen }}$ in Eq. (3.26).) The fact that the monopole finteraction pronotes other corcelations is seen only in the "fndependent" comparison of the ground state energies of the BCS and deformed HF states. Hence the discontinuity of the deformed-so-superconducting transition.

In line with the earlier stability analysis, the phases which supplant the sphericel phase have lower ground state energies (ct. Table 3). Consider the spherical-to-deformed transition, In the spherical phase, the Ω particles fill the lower level of the nom-interacting basis. In the deformed phase both the upper and lower levels are populated. To create thds distribution one must exctice the systew with an energy $E_{e} m\left(\Omega \rho_{1}\right) E$. However the $m^{\text {th }}$ state of the upper level and the $m^{\text {th }}$ state of the lower level now interact. Such an interaction causas an energy drop of magatiude $e_{c}=\alpha V_{2}$ where a is some constant. The magnitude of the overall drap, which is obtained by sumuing over all distinct pairs of these correlations, is then $E_{c}=1 . j \Omega(\Omega-1) e_{c}$. Thus X is essentially the magntitude of the ratio of E_{c} to E_{e}. This recognition provides a sliple explanation for the location of the spherdealutodeformed transition. It also illustrates the collective character of the factor ($8-1$) appearing in X. A aimilar analysis can be applied to the spherical-to-superconducting transteion.

The presence of e in Σ_{0} and x is a non-trivial feature. The larger the Leval specing e of the non-1nteractita basis, the larger the interaction strengths nuat be for the apherdcal phase to become unstable. A fintiar trend it observed in the application of HFB to the Pafting - plus Quadrupole model (BS 58): the lower the level density for the laxger

Efg. 3. 1 Zuro temperatuze HFB phase diagram for Agassi model wher $N=a$. Trancieion lithe A is given by $x=(\Omega-1)(i-\Sigma)$ and transition line \& by $x=((\Omega-1) /(\Omega-2)) \Sigma$.

Fig. 3.3 Superconducting - to - deformed - superconducting transition ilne for different perticie numbers N when $\Omega=22$. The superconducting (BCS) solution is scable belnw these lines.

Fig. 3.4 The superconducting - to - deformed - superconducting cransition ${ }^{\text {mines of }}$ Fig. 3.3 when replotted using L_{N} and X_{N} (defined in Eq. (3.43)) instead of Σ and x; the key to gurvas is the eame as in Fig, 3.3.
the level spacing) near the Fermi level of the underlying gphertcal shell model basis, the stronger the residual interaction strengtha must be for a symatry-breaking solution to be found.

SECTION 4: HFB GROUND STATE KHEN N < Ω
When $N<\Omega$, the dependence of $\xi \operatorname{in} \mathrm{Eq}$. (3.21) on ψ is quite complex. A tractabla axpression for $\delta 5 / \partial \phi$ is obtained by introducing the variable a related to ψ by the transformetion

$$
\cos \psi=(1+\beta-\beta \sec \theta)^{\frac{1}{2}}
$$

in which

$$
\beta=2(1-N / Q) /(N / \Omega)^{2}
$$

and, as $0 \leq \psi \leq \pi / 2,0 \leq \theta \leq \theta_{u}=\arccos (\beta /(1+\beta))<\pi / 2$. In terns of this new variable,

$$
2 \rho_{-1}^{c} \rho_{1}^{c}=(1-N / \theta)(\sec \theta-1), 2 x_{2}^{c} \kappa_{i}^{c} *(1-N / \theta) \tan \theta
$$

and

$$
\begin{equation*}
\rho_{-1}^{c}-\rho_{1}^{c}=N / a(1+\beta-\beta \sec \theta)^{\frac{1}{2}} \tag{3.27}
\end{equation*}
$$

WHth the aid of

$$
\begin{equation*}
\left\langle x_{\sigma}^{c}\right)^{2}=\rho_{0}^{c}\left(1-\rho_{0}^{c}\right\rangle \text { and } \rho_{1}^{c}+\rho_{1}^{0}=N / \Omega \tag{3,28}
\end{equation*}
$$

the coefficient of $\mathrm{sin}^{2} \phi$ in Eq. (3.21) becomes

$$
\begin{align*}
x\left(\rho_{-1}^{c}-p_{1}^{c}\right)^{2} & +\frac{V}{\varepsilon}\left(\kappa^{c}{ }_{1}-x_{1}^{c}\right)^{2} \\
& =\frac{N(N}{\square}\left(\frac{\rho}{R} x+\left(1-\frac{N}{\Omega}\right) \frac{v}{\varepsilon}\right)-\left(2 x-\frac{V}{\varepsilon}\right) \tag{3.29}
\end{align*}
$$

Substituting from Eqs. (3.27) and (3.29) into Eq. (3.21), ons finds that

$$
\begin{align*}
\xi= & N / \Omega \cos \phi(1+B-\theta \sec \theta)^{\frac{2}{2}} \tag{3,30a}\\
& +(1-N / \Omega\rangle\left\{\sigma_{1}(\phi) \sec \theta+\sigma_{2}(\phi) \operatorname{can} \theta\right\}
\end{align*}
$$

where

$$
\begin{align*}
& \sigma_{1}(\phi)=\Sigma_{1}-\left(y-\frac{1}{2} V / \varepsilon\right) \sin ^{2} \phi \tag{3,30b}\\
& \sigma_{2}(\phi)=\Sigma_{2}-\frac{1}{2} V / \varepsilon \sin ^{2} \phi=\frac{1}{2}(0 g / \varepsilon+V / \varepsilon)+\frac{L_{2}}{2} V / \varepsilon \cos ^{2} \phi \tag{3,30c}
\end{align*}
$$

and terms independent of θ have ben dropped. It follows that

$$
\begin{align*}
& \frac{\partial \xi}{\partial \psi}=\frac{\partial \xi}{\partial \theta} \frac{\partial \theta}{\partial \psi}=0=(\sec \theta-1)^{\frac{1}{2}} \\
& x\left\{N / \Omega(1+\beta-\beta \sec \theta)^{\frac{1 / 2}{2}}\left(\sigma_{1}(\phi)+\sigma_{2}(\phi) \cos \sec \theta\right)-\cos \phi\right\} \tag{3.31}
\end{align*}
$$

Study of the limit $\theta+0$ shows that, whetever the value of $\phi, \theta=0$ does not setisfy this equation. Thus the factor of $(s e c \theta-1)^{\frac{1}{2}}$ can be discarded. From Eq. (3.21),

$$
\begin{aligned}
\frac{\partial \xi}{\partial \phi}= & 0 \sin \phi \\
& \left.x\left(\rho_{-1}^{c}-\rho_{1}^{c}\right)-\left(x\left(\rho_{-1}^{c}-\rho_{1}^{c}\right\}+V / \varepsilon\left(\kappa_{-1}^{c}-L_{1}^{c}\right)^{2}\right) \cos \phi\right\}
\end{aligned}
$$

which through Eqs. (3.27) and (3.29) in an axt assion in a and ϕ.

Inspection of Eqs. (3.31) and (3.32) shows that the rhoice $\phi=\pi / 2$ is a solution for all interaction strengths provided $\psi=\pi / 2\left(\theta=\theta_{0}\right)$ and vice verse. Like its counterpart when $N=\Omega$, it too is of no interest becauge it is always unstable. There remain two other solutions, both of which ate physicalily relevant.
(1) A gupersondugting solution, for whioh $=0$ and gationita (from Eqs. (3.30b, c) and (3.31))

$$
\begin{equation*}
\frac{N}{\Omega}(1+\beta-\beta \sec \theta)^{\frac{1}{2}}=\frac{1}{\Sigma_{1}+\frac{1}{\Sigma_{2} \operatorname{cosec} \theta}} \tag{3.33}
\end{equation*}
$$

The gxaphicat equivalent of Eq. (3.3y) demonstrates frmadiateiy that a solution $\theta_{B C S}$ always exists, is unique and conffined to the open interval $0<\operatorname{G}_{B C S}<\theta_{\mathrm{u}}\left(m 0<\psi_{\mathrm{BCS}}<\pi / 2\right)$.

A remarkable feature of Eq, (3.33) is that the left-hand alde doea not depend on the interaction atrength g and V, while the righthand side does not depend on N. This makes it aimple to deduce that $\theta_{\text {BCS }}$ increases with increasing g, V and N. It follows that $\vec{\kappa}$, which, from Eqs. (3.27) and (3.28), is given by

$$
\begin{align*}
& \bar{x}=1_{2}, N / \Omega(1-N / \Omega)+2 \rho \tilde{\mathrm{E}}_{1} \rho_{1}+2 \kappa_{1} \mathrm{E}_{1} \kappa_{1}^{2} \tag{3.34}\\
& \text { - } \frac{1}{2} \sqrt{(1-N / Q)(\sec \theta+\tan \theta-(L-N / a))},
\end{align*}
$$

Increases with $g_{\text {g }}$ in the superconducting phase, as one would expect.
(2) A deformed - superconducting solution in which $0<\phi<\pi / 2$, $0<\theta<\theta_{a}$. Equation (3.32) finplites that the values of ϕ and θ for any solution of this ktad are related to each other by tho expression

$=\frac{(1+B-B \theta \operatorname{coc} \theta)^{\frac{1}{1}}}{f 1(\theta) V / E}=S(\theta)$
whera, from Eqs. (3.27) and (3.29),

$$
\begin{equation*}
h_{1}(\theta)=1-N / 2 \Omega(1+\beta \tan \hat{\theta}) \tag{3,35b}
\end{equation*}
$$

$$
+N / \Omega(\Omega-3 / 2)(1+\varepsilon-8 \sec \theta) .
$$

The function $S(\theta)$ is positive and increases monotonicaliy with θ; IE divetges as $\theta+\theta$. Clearly the equality in Eq. (3.34e) can ondy hola it

$$
\begin{equation*}
S(0)=\frac{1}{(N+1-2 N / A) V / E}<1 \tag{3.36}
\end{equation*}
$$

Furthermora, aven when Eq. (3.36) is satibfied, it is necessary to restrict θ to the intervai $0<\theta<\theta_{c}$, where $\theta_{c}\left(\leqslant \theta_{u}\right)$ is auch that $S\left(b_{a}\right)=2$.

Blimination of $\$$ in Eq. (3.31) using Eq. (3.35a) yields the equation which must be satisfied by 0 , amely

$$
\begin{equation*}
g(\theta)=h_{2}(\theta) /\left(h_{1}(\theta)\right)^{2} \tag{3,37a}
\end{equation*}
$$

where

$$
\begin{align*}
& g(\theta)=\frac{N}{2 n} \frac{y}{\varepsilon}(20+g / \varepsilon)\left(1+2\left(\frac{x-\Sigma}{\varepsilon_{0}+g} \theta\right)-\operatorname{cosec} \theta\right) \tag{3.37b}\\
& h_{2}(\theta)=\frac{\psi}{2}((1+\beta-\varepsilon \sec \theta) \operatorname{cosec} \theta+1+g \tan \theta)-1 \tag{3.37c}
\end{align*}
$$

and $h_{1}(\theta)$ is dafined in Eq. (3.35b). By inspection, $g(9)$ is a monotonically increasing Eunction of θ, which, whatever the interaction triengths, is negative for θ small enough; $h(\theta)=h_{2}(\theta) /\left(h_{1}(\theta)\right)^{2}$ is positive and decreases monotonicaliy. Thus the solution θ_{HFB} of Eq (3.37) is utidque and exists when En. (3.36) and the condition

$$
\begin{equation*}
g\left(\theta_{\varepsilon}\right)>h\left(\theta_{e}\right) \tag{3.38}
\end{equation*}
$$

are saciskjed.

Figure 3.2 is a schematic drawing of the graphical equivalent of Eq. (3.37a) under these conditions. It demonstrates that ${ }^{8}$ HFe is
in fuct zonftned to the interval $\theta_{0}<\theta_{H F B} \leq \sigma_{0}$ where, Erom $\mathrm{Eq} \cdot(3.37 \mathrm{~b})$,

$$
\begin{equation*}
\operatorname{cosec} \theta_{0}=1+2\left(X-\Sigma_{0}\right) /\left(\Sigma_{0}+g / \varepsilon\right) . \tag{3.39}
\end{equation*}
$$

An inference from aq, (3.39), which is interesting in view of the earlier results for $N=$, is that Eq. (3.38) cannet be satyafied If $\varepsilon_{0} \approx X$ (for then $g(\theta) \leqslant 0$). The depandence O. θ_{0}, θ_{c} and $\theta_{\text {HRB }}$ on V is easily determined. While θ_{c} incteases with increasing V, 6_{0} and $\theta_{H F B}$ decransa. As, from Eq. (3.35a), $\cos \phi_{H F B}=S\left(\theta_{G F B}\right)$, this implies the intulewaly pleasing crend that $\phi_{\text {HFB }}$ ineroases With increasing V; similariy, from Eq. (3.3i), \bar{k} decreases. As $V+\infty$ (g fixed), both $e_{t F B}$ and θ_{0} tond not to zare but to $\theta_{4}=\arcsin (1 /(2 \Omega-3)$.

Evaluation of the gecond derfvatives of ξ show that the full HFB state is atable whenever it exists, but that the BCS state is stable oniy if $S\left(\theta_{\mathrm{BCS}}\right)>1$. It follows that a netessary condition for the instability of the BCS state is that Eq. (3.36) is setisfied, which is one of the critucia for the existence of the GFB state. Now, by employing the resuits given above, it is also possible to prove that the other criterion, $\mathrm{Eq}(3.38)$, is satiflited only when the BCS gtate is unstable. thus ons arrives at another intuitivaly satiafying rasult, namely that the Instrabisity of the BCS solution is equivalent to the axistence of the HFR solution. It Eoliows that the phasa aingram for the Agasai modal when $M<\pi$ contains fust these two solutions. The BES-to-HFB transition inte in the iocur of pointa for whith $\theta_{\text {BCS }}{ }^{m} \theta_{6}$. Because $S(\theta)$ is (fortultousiy) indapendent of g, this line is easily detemined for given N and 2 . Fixing V (at gome value which satisfies kq, (3.36)) allows one to solve for θ_{c}. After aubstitutiog θ_{c} into the equation determining ${ }_{\text {bos }}$ (Eq. (3.33)), one can solve for the critical vaiue g_{c} of $\mathrm{g}- \pm, \mathrm{g}$,

$$
\frac{g_{e}}{\varepsilon}=\left(\frac{\sin \theta_{\theta}}{N / \Omega\left(1+\beta-\beta \sec \theta_{q}\right)^{1 / 2}}-\frac{V}{\varepsilon}\right) /\left(\Omega / 2 \div(\Omega / 2-1) \sin \theta_{\mathrm{a}}\right),
$$

The $H F B$ solution extats for the chosan value of V if $g_{c}>0$ and $g<g_{c}$.

A plot of the aCS - to - HF3 (or superconducting - to - deforned superconducting transition line in the Explane for varlous values of N wnen $\Omega=22$ is given in Fig. 3.3. Not surprisingly, this transition has certain Eentures in commun with the superconducting -m to $=$ deformed transition found in the closed-shell system. Deformation occurs as X is increased; the larger Σ is, the larger X aust be (which, as before, reflects the competition between monopole and paixing interactions). In the BCS phase, the approximate ground state enezgy (in units of $-\Omega / 2 \mathrm{e}$) is $\xi_{B C S}=\xi\left(\phi=\psi_{B C S}, \phi=\phi_{B C S}=0\right)$, where $\xi(\psi, \phi)$ is given in Eq. (3.21), and

$$
\begin{align*}
& \frac{\partial \xi}{\partial X} B C S=\left.\left(\frac{\partial \xi}{\partial x}(\psi, \phi)\right)\right|_{\psi}=\psi_{B C S}+\left[\frac{\partial \xi}{\partial \psi}\right)_{\mid \psi}=\psi_{\phi}=\psi_{B C S} \frac{\partial \psi}{\partial x} B C S \\
& \begin{array}{rlrl}
\left.+\left(\frac{\partial \xi}{\partial \phi}\right) \right\rvert\, \psi & =\psi_{\mathrm{BCS}} \quad \frac{\partial \phi}{\partial \mathrm{x}} \mathrm{BCS} & =\left(\frac{\partial \xi}{\partial \mathrm{X}}(\psi, \phi)\right. \\
\phi & =0 & & =\psi_{\mathrm{BCS}} \quad, \\
\phi & =0
\end{array} \tag{3.40a}
\end{align*}
$$

using the fact that $\psi_{B C S} \phi_{B C S}$ satisfy Eqs. (3.31) and (3.32). Similarly

$$
\begin{equation*}
\frac{\partial \xi}{\partial X} \mathrm{HFB}-\left(\frac{\partial \xi}{\partial x}(\phi, \phi)\right)_{\phi}=\psi_{H F B}=\phi_{\mathrm{HFB}} \tag{3.40b}
\end{equation*}
$$

Along the BCS - to - HFB transition line,

$$
\theta_{\mathrm{BCS}}=\theta_{\mathrm{HFB}}=\theta_{\mathrm{C}}+\psi_{\mathrm{BCS}}=\psi_{\mathrm{HFB}}, \phi_{\mathrm{BCS}}=\phi_{\mathrm{HFB}}=0(3,4 \mathrm{~L})
$$

which, together with Eq. (3.40), implies that the derivatives of $\xi_{B C S}$ and $\varepsilon_{\text {HFB }}$ with respect to interaction strengths are the same on this line. So, in contrast to the superconducting m to -deformed tratsition in the closed-sheil system, the BCS - to - HFB transition is continuous.

Equation (3.41) by itself ensures the continuty of all approximate ground stata expectation values at the BCS - to - WFB transition. The continuity of the derivatives of the approximate ground state energy results from the particular nature of the variational princtple occurring in zezo cemperature $H P B$, and cannot be expected (in general) of the
ofiser expectation values. In fact, a difference in the behaviour of $\overline{5}$ and other expectation values at continuous transittons can be seen in the resultes of Table 3.

Inspection of the general expressions for the ground state expectation values of quasi-spin operators in Appendix 3.1 shows that their behaViout in the BCS and HFB phases of the open-shell system is simflar to their behavidur in the BCS and deformed HF phases respectively of the closed-sheli system. However, it must be remembered that, in the HFB phase, both $\bar{k} \neq 0$ and $p_{1}^{c} \neq 0$ (because $\theta_{\text {HFB }}>0$ always), while, in the deformed HF phese, $\bar{\kappa}=\rho_{1}^{c} \equiv 0$. Froperties of the bCS and HFB solutions in open-shell systems will be studfed in subsequent chapters.

A festure of Fig. 3.3 is that the value of X at winch the BCS-to-HFB transition occurs for given Σ decreases with increasing N. This can be scated in another more faniliar way: for fixed interaction strengths, changing the number of particles in the valence shell can lead to the onset of deformation, which is characteristic of several sets of isotopes in, for exampie, the rare earth region (Ba 50, KB 66). Observe that it holds even es the shell closure ($\mathrm{N}=\Omega$) is approached. Equation (3.36) implies that, when \mathbb{E} is small (i.e. $\theta+0$ on the transition line), the critical value of X scales with N like $1 / \eta$, where $n=N+1-2 N / \Omega$. When Σ is very large, $\theta_{c}=\theta_{B C S} \equiv \theta_{y}$ on the transition line; the eritical value of X is also very large (cf. Fig. 3.3). The dependence of $g(\theta)$ on interaction strengths along with the graphical equivalent of Eq(3.37a) suggests that, under these cizcumstances, $\theta_{0}=\theta_{c}$. From the equivalent "equality" $\operatorname{cosec} \theta_{0} m \operatorname{cosec} \theta_{u}$, one deduces (using Eq. (3.19)) that, when Σ is large, the values of X and Σ on the transition line should be approximately related by

$$
\begin{equation*}
\chi=\mu \Sigma \tag{3.42a}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu-\frac{n / 2-N / n(1-N / 2 n)}{N(1-N / 2 \Omega)-1+\sqrt{2}(1-N / n)^{2}} \tag{3.42b}
\end{equation*}
$$

Whan $\#=\Omega$, Eq. (3.42) coincides with the axpression for the superconducting - to - deformed ifne in the $N=0$ phase diagram.

In the future, instead of I and X, the variables

$$
\begin{equation*}
x_{N}=\pi V / \varepsilon \quad, \quad \Sigma_{N}=\mu \eta g / \varepsilon \tag{3.43}
\end{equation*}
$$

will be used wher dealing with systems in which $\%<\Omega$. The transition lines in Fig. 3.3 are replotted in Fig. 3.4 using X_{N} and Σ_{N}. The variables X_{N} and Σ_{N} are like the "reduced" variables used in discussing "corresponding" states in thermodynamics, in that the transition lines now almost sotreide. In fact, one can go further; the $H F B$ ground state expectation values in systems of different particle number, if approprim ately acaled, also heve essentially the same functional dependence on X_{N} and ε_{N}. This is demonstrated in, for example, Fig. 5.3.

APPENDIX 3.1: EXPECTATION YALUES OF QUASI-SPIN OPERATORS IN HEB GROUND STATE

The normalised ground state $\mid v>$ correspondfng to the quasi-particle operators defined by the combination of transformations in Eqs. (3.14) and (3.15) can always be written as

$$
\begin{equation*}
\left.|v\rangle=\operatorname{m}_{\substack{\operatorname{cin} \\ a>0}}\left(u_{\theta}+v_{0} a_{\sigma m}^{\frac{1}{n}} a_{\sigma-m}^{\ddagger}\right) \right\rvert\, \rightarrow, \tag{A3,1}
\end{equation*}
$$

where $\mid->$ is the state containfing no particles or the "bare" vacuum. (It is trivially verified that $\alpha_{\sigma \pi}|v\rangle=0$ for all a and m.) In this appendix, expressions for the expectation values in this state of the comblnations of quasi-spin operators considerad in Appendix 2.1 are derived. This is facilitated through the use of the expressions in Eq. (A3.9) of Appendix 3.2. (Familiatity whth the contents of Appondix 3.2 is assumed in this appendix.) Equation (A3.1) implies that only conbinations of the operators in Eqs. (A3.6) and (A3.7) (of Appendix 3.2) which conserve the formal equivalent in the canonical basis of parity (which is deftned for the bare basis in Section 2.1), can have non-zero expectation values in the stase $|v\rangle$. Thus reference to

Eq. (A.3.9) shows that only the expectation values of $y_{+} y_{n}, x_{+} x_{m}, m_{+} m_{m}$, $y_{f} y_{-}, f_{x}^{2}, j_{y}^{2}$ and f_{0}^{2} have to be evaluated.

In this appendix, the expectation value of an operator 0 in the atete |v> will. be demoted by <0>.

Bxpectaction values of $y_{+} y_{-}, x_{+} x_{-}, m_{+} m_{-}, y_{+} x_{-}$_:
From the definittione of y_{ψ}, x_{+}, m_{+}and theit heradtiar conjugates, it follows that each of these comftrations 1 s a spectai case of the opaxator
$\mathrm{ma}_{\mathrm{m}} \mathrm{min}^{\prime}>0$

In which (σ) denotes the sum over $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ and

$$
\begin{equation*}
s_{\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}}=s_{\sigma_{1} \sigma_{3}} \delta_{\sigma_{1} \sigma_{2}} \delta_{\sigma_{3} \sigma_{4}}+s_{2}, \quad \delta_{\sigma_{3}-\sigma_{4},} \tag{A3.2a}
\end{equation*}
$$

where $S_{0, \sigma_{3}}, S_{2}$, axe given in Table A3, Using Wick's theorem, Eq. (3.17) and the fact that $m, m^{+}>0$,

$$
\begin{aligned}
& \left\langle a_{\sigma_{1} m}^{\dagger} a_{\sigma_{2}-m^{\prime}}^{\dagger} a_{\sigma_{3}-m^{\prime}} a_{\sigma_{4} m^{\prime}}\right\rangle \\
& =r_{\sigma_{1}}^{c} \kappa_{\sigma_{3}}^{c} \delta_{\sigma_{1} \sigma_{2}} \delta_{\sigma_{3} \sigma_{4}}+p_{\sigma_{1}}^{c} \rho_{\sigma_{2}}^{c} \delta_{\sigma_{1} \sigma_{4}} \delta_{\sigma_{2} \sigma_{3}} \delta_{m m^{\prime}},
\end{aligned}
$$

fuplying

$$
\begin{equation*}
\langle A\rangle=\cap / 2\left[\Omega / 2 \sum_{\sigma g^{\prime}} s_{\sigma \sigma^{\prime}} k_{\sigma}^{c} x_{\sigma}^{c}+\sum s_{\sigma \sigma}\left(\rho_{\sigma}^{c}\right)^{2}+s_{2}\left(2 \rho_{-1}^{c} \rho_{1}^{c}\right)\right\} \tag{A3.2b}
\end{equation*}
$$

Specialising Eq．（A3．2b）one deducen

$$
\begin{aligned}
& \left\langle\mathrm{m}_{+} \mathrm{m}_{-}{ }^{y}=0 \quad \rho_{-1}^{\mathrm{c}} \quad \rho_{1}^{\mathrm{c}}\right. \\
& \left\langle y_{+} x_{-}\right\rangle=-(\delta+N / \Omega\rangle \Omega / 2\left(\rho_{-1}^{c}-\rho_{1}^{c}\right),
\end{aligned}
$$

where $\delta=(\Omega-N) / 2$ ．

Expectation values of j_{x}^{2}, j_{y}^{2} and j_{0}^{2} —；
Using the method above，one finds

$$
\begin{align*}
& \text { 《势 }{ }_{x}^{2} \\
& \}=\Omega / 4\left(N / 8-2 p^{c} p_{1}^{c} \pm 2 x_{1}^{c} \quad k^{2}\right) \\
& \left\langle j_{0}^{2}\right\rangle, \tag{A3.4}\\
& \left\langle j_{0}^{2}\right\rangle=n / 4\left((a-1)\left(\rho_{1}^{c}-\rho_{1}^{c}\right)^{2}+\left(x_{1}^{c}-k_{1}^{c}\right)^{2}\right)+\langle v|\left\langle j_{x}\right)^{2}|v\rangle
\end{align*}
$$

Expectation values of opezators in Bq．（A3，9）：
Combining Eqs．（A3．3），（A3．4）and（A3．9）．

$$
\begin{aligned}
& \left\langle S_{+} S_{-}+L_{+} L_{-}=\Omega / 2\left(\Omega / 2\left(\left(K_{1}^{C}\right)^{2}+\left(x_{1}^{C}\right)^{2}\right)+(N / R)^{2}-2 \rho_{1}^{C} R_{1}^{c} ;\right.\right. \\
& \left.-\Omega / 2\left[\Omega\left(\left(\kappa_{1}^{c}-\kappa_{1}^{c}\right) / 2\right)^{2}+b_{2}\left(\rho_{1}^{c}-\rho\right)^{c}\right)^{2}\right\} \sin n^{2} \phi \\
& \left\langle S_{+} S_{-}-L_{+} L_{-}\right\rangle=(\delta+N / \Omega) \Omega / 2\left(\rho_{1}^{c}-\rho_{1}^{C}\right\rangle \cos \phi \\
& \left.=\sim(\delta+N / \Omega)<v\left|y_{0}\right| v\right\rangle \\
& \left\langle\mathrm{Y}_{+} \mathrm{X}_{-}\right\rangle=\left\langle y_{+} y_{-}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle J_{y}^{2}\right\rangle=\left\langle j_{y}^{2}\right\rangle \\
& \left\langle M_{+} M_{\infty}\right\rangle=\left\langle m_{+} m_{\infty}\right\rangle+\Omega\left\{\Omega\left(\left(x_{1}^{c}-x_{1}^{c}\right) / 2\right)^{2}+i_{2}\left(\rho_{L}^{c}-\rho_{1}^{c}\right\rangle^{2}\right\} \sin n^{2} \phi,
\end{aligned}
$$

The expression for $\left\langle J_{0}^{2}\right\rangle$ is obtained by replacing $\sin ^{2} \phi$ by $\cos ^{2} \phi$ in the result for $\left\langle J_{x}^{2}\right\rangle$.

Substituting from Eqs. (A3.4) and (A3.5) into Eq. (A3.10), Eq. (3.21) follows trivially.

APPENDIX 3.2: FORM OF OUASI-SPIN OPERATORS IN CANONICAL RASIS
In this appendix the quasi-gpin operators defined in Chapter 2 and various combinations thereof are rewritten in terms of the operators $a_{o m}^{\prime}{ }^{\prime} a_{\text {om }}$ given by Eq. (3.14). For this purpose, it is convenient to introduce the formal analogues the the canonical basis of the quasi-spin operators = 1.e. the set of operators
as well as the Intent combinations

$$
\begin{align*}
& j_{x}=\frac{\left(j_{+}+j_{-}\right)}{2}, j_{y}=\frac{\left(j_{+}-\jmath_{-}\right), j_{0}=\ell_{0}-s_{0}}{21} \\
& y_{+}=\ell_{+}+s_{+}, x_{+}=\varepsilon_{+}-s_{+}, \pi_{0}=\varepsilon_{0}+s_{0} \tag{A3.7}
\end{align*}
$$

Clearly the operators in Eq. (A3.6) have the sum e commutation relations as their formal counterparts in Eqs. (2.3) and (2.4), and so also form an $50(5)$ algebra.

$$
\begin{aligned}
& m>0 \\
& \text { प1 }>0
\end{aligned}
$$

Qunsi-spin operators in Eq. (2.3) and (2.4):

Ueing the inverse of the transformation in Eq. (3.14),

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
L_{0} \\
s_{0}
\end{array}\right\}=1_{2}\left(m_{0} \pm \cos \phi f_{0} \pm \sin \phi j_{x}\right) \tag{A3.B}\\
L_{+} \\
s_{+}
\end{array}\right\}=m_{2}\left(y_{+} \pm \cos \phi x_{+} \pm \sin \phi m_{+}\right) .
$$

Expressions for the remaining operators in Eqs. (2.3) and (2.4) can be obtained by hermitian conjugation.

Combinations of quasi-spin operators (discussed in Appendix 2.1):
Using Eq. (A3.8),

$$
\begin{align*}
& S_{+} S_{-}+L_{+} L_{-}=z_{2}\left\{y_{+} y_{-}+\cos ^{2} \phi x_{+} x_{-m}+\sin ^{2} \phi m_{+} m_{-}\right. \\
& \left.+\sin \phi \cos \phi\left(\pi_{+} x_{-}+x_{+} m_{m}\right)\right\} \\
& s_{+} s_{-}-L_{+} L_{-}=-b_{2} \cos \phi\left(y_{+} y_{-}+x_{+} y_{-}\right)-k_{2} \sin \phi\left(y_{+} m_{-}+m_{+} y_{-}\right) \\
& Y_{+} Y_{-}=y_{+} y_{-} \tag{A3.9}\\
& J_{x}^{2}=\cos ^{2} \phi f_{x}^{2}+\sin ^{2} \phi J_{o}^{2}-2 \sin \phi \cos \phi\left(J_{x} j_{0}+j_{0} j_{x}\right) \\
& J_{y}^{2}=j_{y}^{2} \\
& M_{+} M_{-}=\cos ^{2} \phi m_{+} m_{m}+\sin n^{2} \phi x_{+} x_{-}-\sin \phi \cos \phi\left(m_{+} x_{m}+x_{+} m_{-}\right) .
\end{align*}
$$

The expression for J_{a}^{2} can be inferred direct iv from Eq. (A3.9), since the transformation to the canonical basis is such that $J^{2}=f^{2}$ (ALM 66).

Inserting the results in Eqs. (A3.8) and (A3,9) into Eq. (2.2), one finds that, under chis transformation, the Agassi Hamintondan becomes

$$
\begin{equation*}
H=E\left(\cos \phi d_{0}+\operatorname{sin\phi } f_{x}\right)-g y_{+} y_{-}-V\left(f_{x}^{2}-f_{y}^{2}\right) \tag{A3.10}
\end{equation*}
$$

$-\operatorname{Vsin}^{2} \phi\left(j_{0}^{2}-f_{x}^{2}\right)+2 V \sin \phi \cos \phi\left(j_{x} j_{0}+j_{0} j_{x}\right)$.
A feature of Eq. (A3,10) is the inyariance of the pairing interection, which emphasizes the fact that the transformation to the canonical bagis is designed to accempodat: the monopole interaction (and not the pairing interaction).

	\%o	\bar{k}	Ground Stata Grects	${ }^{4}+$	s_{0}	${ }^{3}{ }^{\frac{2}{x}}$	J_{y}^{2}
State Unste	-	*	- $(10 / 2 \mathrm{~s})$	fi/2	$\mathrm{n} / 2$	9/4	n/4
spherical	0	0	$1+\mathrm{g} / \mathrm{c}$	1	-1	1	4
Da[ormed	$4 / 2-\left(1 / L_{0}\right)^{2}$	0	$2 /(x+1 / x)+8 / c$	1	$-1 / x$	A	1
Supareoadueting	0		$4\left(t_{0}+1 / t_{0}\right)+8 / 6$	0	$-1 / s_{0}$	1	$1 /\left(t_{0}\right)^{2}$

	${ }^{3}$	$*_{4}{ }^{*}$	$\mathrm{m}_{+} \mathrm{mm}_{5}$	$y_{+}{ }^{x}-$
300	1	-9\%	0	0^{\prime}
s_{2}	0	0	1	0

CHAPTER VOUR

THERMAL SELF-CONGISTENT MEAN-FIELDS

Temperatire is no stranger to the description of finite nuciei. Ita classis application is to the compound nucleus formed in low-energy neutron scattering, where it is unambiguously detemined by the level. denstty (Appendix 2 of chapter 2 of (BM 69)). What is perhaps a 1tttle surprising is that it can also be applied to fusion and daep inelastic heavy-ion reactions. These produce nuciei with large incringic axcitation energies whose decay proceede through a number of highlyexcited Intermediate states of different energy and particle number, and is dominated by neutron and r-ray emission (GN 80). This fmplies a deexcitation time of the order of $10^{-16} s$. On the , ither hand, the time 16 required to "thermalise" the exctation energy of any of thesa intermediate states over the vartous degrees of freedon is of the order of 10^{-21} s (TEC 83), suggesting the methods of equilibrium petatistical mechanics could be usefully employed.

The nature of ethis physical process indicates that ic it the grand canonical enaemble which is appropriate, because the members of this type of ensemble have different energies and particle tumber. The grand canonical ensemble has a well-deftned temperature T and chemicel potential μ (section 5.1 of (Pa 71)). In quantum statistical mechanics, the measurable properties of this unsambe are detamaned by a positive definite hemitian operator termed the density operator D, which is such that

```
TrD = [<1|D|{> = 1,
```

 1.
 where the sum is over all states in the ensemble. The expectation value of any observabie 0 is given thy the ensomble nverage (chapter 4 of (Pa 71))

```
<0> m Tr (DO).
```

The laws of themodynamics inply that the condition satisfied hy the equillibrium state of this ensemble is convenientily expressed in terms of the grand potential

$$
\begin{equation*}
\theta=E-T S=\mu N \tag{4,1a}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\operatorname{Tr}(D H), S=-k_{B} \operatorname{Tr}(D \operatorname{In} D), \quad N=\operatorname{Tr}(\hat{D N}), \tag{4,2b}
\end{equation*}
$$

In which H and S are the Hamilitonian and entropy of the system, respectively, $\overline{\mathrm{i}}$ is the particle number operator and k_{B} is Boltzmann's constant. In equilibrium, is minimized (section F of chapter 1 of (Re 80)).

Finite temperature or thermal BFB represents the optimal description in serns of non-inceracting quasimparticles (CI 67, Go BIa) of a grand canonical ensembie containing fermions with a Hamiltonian of the rype given in Eq. (3.1), Within thia approximation, the ensemble consists of the entire set of stares $\left|n_{1}, n_{2}, \ldots, n_{n t}\right\rangle$, where $I I$ is the total number of quasi-particie states (which is fintte in applications to nuclei), and n_{i} is the occupation number of a quasi-particle state ($n_{i}=0$ or 1). As in zero temperature HFB, the quasi-particle operators β_{i}^{\dagger}, β_{2} are assumed to be relaced to bare particle operators b_{i}^{\dagger}, b_{i} by a unitary transformation of the form in Eq. (3.3).

In thila chapter, the foundations are iald for the investigation in chaptar 5 of the existence of phase rransitions prediteted by tharmal 3 HB when it is applied to finite systems. This topic is sonvenientily addressed within the Agaset model.

A general wethod for the aetermination of the transformation in thermal HFB is discussed in aection 4.1. In the process, the calculation of ensembia averages withfn this approximation is demonstrated and, where relevant to subsequent considerations, Eentures which edintinguish thermal HIP from zero temperature HES are pointed out, thile it is well knuwn that; the operator 1dentity established in Whek's theorem does not hola at finite temperature (BD 58), there is some oonfuston in the

12 eratere over the status of the canonical basis. (See, for exampie, the conflitting statements made ta (Go 84) and (RP 85).) It is shown that, in genural, this does not exist.

The application of thermal APB to the Agassi model is presented in section 4.2. Only closec-shell systems ($N m$) are considered. The forif of thormal HFB appropriate to such systema is discugsed, and chen the corresponding phasa diagram is determined. Like its zerc tempersture counterparts it onntains no fulit HFB phase.

SEGCYON 4.1: ESSENTIAL FEATURES OF TEERMAL HFB

The operator identity in Wick's theorem cannot ba extended to finite temperature because it is not possible to define, in an ensemble of quasi-particle states, the anslogue of normal product of operatora. Nevertheless, Wick's theovem remains valid for the engemble average <> ${ }_{o}$ of operators in this ensemble (BD 58). It follows that

$$
\begin{equation*}
\left.\left.\dot{x}_{i y} *<b_{j}^{\dagger} b_{i}\right\rangle_{0} \text { and } \tilde{x}_{i 1} m<b_{j} b_{i}\right\rangle 0 \tag{4,2}
\end{equation*}
$$

play the same role in the evaluathon of ensemble averages in themal HFB as the contractione $0_{i f}$ and $k_{i y}$ (in Eq. (3,4)) in the calculation of ground state expectstion vaiues in zero temperature HFB. The quantities $\hat{p}_{i j}$ and $\tilde{k}_{i j}$ are the matrix elemente in tha bare basis of the chermal gingle-particle density and the thermat pairing tensor R, respectively,

As in a non-interacting Fermi gas at finite temperature, the independent non-vantshlig ensemble averages of billnear conbinations of the quasiparticle operators are (Go Bla)

$$
\begin{equation*}
\left\langle\beta_{1}^{\dagger} \beta_{j}\right\rangle_{0} \quad F_{i} \delta_{i j}, \tag{4,3}
\end{equation*}
$$

Where the guasi-particie occupacion probabilitites f_{1} lie in the interval $0<f_{i}<1$. It dis through these as yet unknown occupation probabilities that the effocte of non-zero temperature are saken into account, Empleying the anti-comutation relations of the operatore β_{i}^{*}, β_{1}, the ensemble avarages in Eq. (4.3) imply the exfatence at another class of non-zero ensemble averages, namely,

$$
\begin{equation*}
\left\langle\beta_{i} \beta_{j}^{+}\right\rangle_{0}=\left(1-\tilde{E}_{i}\right) \delta_{i j} \tag{4,4}
\end{equation*}
$$

Substitution of the fnverse of the transformation it Eq. (3.3) into Eq. (4.2), along with use of Eqs. (4.3) and (4.4) leads to the expressi.ons

$$
\begin{align*}
& {\tilde{\tilde{x}_{i j}}}=\underset{k}{\varepsilon}\left\{v_{i k}^{*} v_{j k}\left(1-f_{k}\right)+U_{i k} u_{j k}^{*} f_{k}\right\} \\
& \tilde{x}_{i j}=\sum_{k}\left\{v_{i k}^{*} v_{j k}\left(1-E_{k}\right)+U_{1 k} v_{j k}^{*} f_{k}\right\} . \tag{4.5}
\end{align*}
$$

Equations (3.5) and (4.4) and the formally similar roles of $\langle v| \beta_{1} B_{j}^{\dagger}|v\rangle$ and $\left\langle\beta_{1} \beta_{j}^{\dagger}\right\rangle_{0}$ imply that the results in Eqs. (4.5) and (3.6) must coinctide When $f_{1} \equiv 0$, and indeed this is the case.

It is obvious shat the transformation properties of $\tilde{\beta}_{i j}$ and $\tilde{x}_{i j}$ under a change of single-particle basis are the same as those of $\rho_{i j}$ and $k_{i j}$ in Eq. (3.4) respectively. Recalling the consequences of these cransformation piopertles in zeto temperature BFB , the question arises as to whethex there is a singie-particie besis in which pis diagonal and k is simultaneously camonical. A requirement for the existence of such a
 and ρ because of Eq. (3.7)). The unttarity of the transformation in Eq. (3.3) inplies that the matrices t and V, with matrix elements $U_{i j}$ and $v_{i j}$ respectively, nust satisfy the conditions

$$
\begin{align*}
& v^{\dagger} u+v^{\dagger} v=w u^{\dagger}+v^{*} v^{T}=I \\
& u^{T} v+v^{T} u=u^{*} v^{T}+v u^{\dagger}=0 \tag{4.6}
\end{align*}
$$

Using Eqs. (4.5) and (4.6), one ftnds that

$$
\begin{align*}
& R \hat{R}^{+}=\hat{B}-\tilde{D}^{2}-Y_{1}, \\
& \bar{p} \dot{k}=\bar{k} \tilde{p}^{*}-\left(\gamma_{2}+\gamma_{2}^{T}\right), \tag{4,7a}
\end{align*}
$$

where

$$
\begin{align*}
& \gamma_{1}=V^{*} F(1-F) V^{T}+U F(1-F) U^{\dagger}, \\
& \gamma_{2}=V^{*} F(1-F) U^{T}, \tag{4,7b}
\end{align*}
$$

In which F is the diagonal matrix with entries f_{i}. With the exception of the spechal case in which $F=I, \gamma i$ and if do not commute. Thus, as recognized in (Go 84), there is, in general, no equivalent in thermal HFB of the canonical basis of zero temperature \quad 日最 B on the other hend, it is always possible to write the transformation in Bq. (3.3) in terns of three successive transformations along the lines of the Bloch-Messiah decomposition (Section 7.2.1 in (RS 80)) - 1.a. one can write

$$
\begin{equation*}
\mathrm{U}=\mathrm{U}_{1} \overline{\mathrm{U}} \mathrm{u}_{2} \quad \text { and } \quad v=\mathrm{u}_{1}^{*} \overline{\mathrm{v}} \mathrm{v}_{2} \tag{4.7c}
\end{equation*}
$$

where U_{1} and U_{2} are unitary matrices and

In which u_{k} and v_{k} are real-valued and satisfy $u_{k}^{2}+v_{k}^{2}=1$. It is for this reason that there is confugion over the status in themal HEB of the camonical basig. The point overtooked in cortata fommal papers (So 83, RP 85) is that, in general, the tratisformation U_{1} cemnot be chosen so that lt simultaneously diagonalises \tilde{p} and brings \vec{k} to its canonical form.

A related difference between thermal and aero tomperature H HB is that the ensemble averages, unitke the ground gtate expectation vylues in zero temperature HFS , depend explicitly on the thitd transformation J_{3} * For axample, the ensemble average of the partiche mumber operator if is

$$
\begin{equation*}
\langle\hat{N}\rangle_{0}=\sum_{k} \sum_{k k}=\sum_{k} V_{k}+\sum_{k, 2}^{\sum}\left(1-2 V_{k}\right) f_{1}\left(U_{2}\right)_{k 1}\left(U_{2}\right)_{k 1}^{*} \tag{4.8}
\end{equation*}
$$

where V_{k} demmes any entry of the diagonal matrix $\bar{V}^{\mathrm{T}} \overline{\mathrm{V}}$, and use has been made of Eqs, (4.5) and (4.7c) and the fact that $\bar{U}^{2}+\overline{\mathrm{V}}^{\mathrm{T}} \hat{\mathrm{v}}-\mathrm{I}$. The leck of dependence of $\langle\hat{N}\rangle_{o}$ on U_{l} is a feature unique to $\hat{N}-c f$. Eq. (3.9).

The entropy of the thermal HFB ensemble is as in any non-interacting system (Go 81a), given by

$$
\begin{equation*}
s_{0}=-k_{B} \sum_{i}\left\{E_{i} \operatorname{lnf} f_{i}+\left(1-E_{i}\right) \operatorname{in}\left(1-E_{i}\right)\right\} \tag{4.9}
\end{equation*}
$$

The expression for the ensemble average of the Hamiltonian is trivially obtained from Eq. (3.11) by replacing $\rho_{i j}$ and $k_{i, j}$ by $\tilde{\rho}_{1, j}$ and $\bar{x}_{i j}$, respectively. Conbining the above results, one obtains the thernal HFB approximation to the grand potential $\omega_{0} *\langle H\rangle_{0}-T S_{0}-\mu\langle\hat{N}\rangle_{0}$ in terms of the unknown occupation probabilities f_{i} and transformation coefficients $U_{i j}$ and $V_{1 j}$, These are determined by appealing to the themodynamic eriterion for thernal quilibrium stated in connection with Eq. (4.1). Thus they have to minimize fo, pubject to the constraints Implied by the unitarity of the transformation in Eq. (3.3) and the condition that $\left\langle\bar{N}_{\rho} w N\right.$, the number of perticles in the system under consideration. (Depending on the nature of the application of the thermai HFB approximation, eddztional restrictions on other ensenble averages can be introduced) Note the famal similarity between this criterion and that detemining zero temperature HFB solutions.

The consequences of the requirement that the constrained variation of ${ }_{0}$ vanish are consideced in detail in ($6081 h$). Thay aze twofold. First$1 y$, with the exception of certain spectal cases (which are given in (Go 81a)), it in equivalent to the system of equations

$$
\begin{equation*}
\tilde{H}_{1 j}^{20}=0 \quad \text { and } \quad \tilde{H}_{i j}^{!1}=\tilde{E}_{1} \delta_{i j} \tag{4.10a}
\end{equation*}
$$

where $\tilde{\mathrm{H}}^{20}, \hat{H}^{11}$ are defined in the same way as H^{20} and H^{11} in zero temperatare $H F B$, with β and \hat{R} replacting ρ and K (as in the calculation of < $\left.{ }^{\prime}\right\rangle_{0}$), and \vec{E}_{i} is a thermal quasi-particle energy, observa that the diagonality of $\mathrm{H}^{1 /}$ follows automaticalily from the variational principle
 dixgonal supplements the relevant variational principle. (The reason for this difference is that in zero temperature HFB the variational principle determines oniy the ground state, whereas in thernal HFB it detemines an ensemble - i.e. ground state plus excited states, The second consequence is the relation

$$
\begin{equation*}
f_{i}=\left(1+e^{B E_{1}}\right)^{-1} \tag{4.10b}
\end{equation*}
$$

Although formaily similat to the expression for occupation probabilities in a non-interacting Ferai gas in fquilibrium, it differs subtly in that \tilde{E}_{i} is temperatare dependent.

As in zero temperature $H F B$, the value of the chemical potential μ is adjusted so that the condition $\langle\hat{N}\rangle_{o} \neq N$ is satisfied. The temperature T is strictly another Lagrange parameter, and should be fixed so that the average energy of the ensemble \dot{z}_{0} takes on sone desired value (Section 5.1 of (Pa 71)). (In a study of heavy-ion reactions, this value can be related to the excltation energy (MZP 74, FLg, in Go 81b).) The issues addressed in this work however do not require this, and so T will be treated as a Eree parameter. In adation, instead of solving the system of Eq. (4.10) subfect to the constraint $\langle N\rangle_{0}{ }^{m} \mathrm{~N}$, the variational principle will be used directly.

Thenal HFB solutions are clessified in the same way as zero temperature HFB solutions. Thus, for a thermal HF solution, $\hat{k} ¥ 0$, while, for a thermal BCS solution, \bar{f} is dtagonal and \hat{x} is uonwero but canonical in the bare basis. Ocher forms of f and k (10 the bare basis) correspond to Eull GFB solutions. There is however one difforence, which is revealed by the ensemble average of $(\hat{N}-N)^{2}$ where $N=\langle\hat{N}\rangle_{0}$; this to given by

$$
(A N)^{2}=\left\langle\stackrel{\left.\ddot{N}-N)^{2}\right\rangle_{0}=\operatorname{Tr}\left(B-\beta^{2}+\tilde{R}^{+} \dot{K}^{+}\right), ~ . ~ . ~}{\text { a }}\right.
$$

Which, substituting fron Eq. (4.7), becotes

$$
\begin{equation*}
\left(\Delta B^{2}=2 \operatorname{Tr}\left(K_{k} \mathbb{K}^{\dagger}\right)+T H(F(1-F))\right. \text {. } \tag{4.1i}
\end{equation*}
$$

So for all bases, inciuding theraal wg bases, $(\Delta N)^{2}>0$, This is a chatacteristic of any description of a system at finite temperature, which has a fxred chmical potential (section 5.1 of (Pa 71)), In open-shell syatams, it leads to the exiatence of solutions which have no cointerpart at $T=0$ (Appendix B in (LA 84) and (CM 86)).

SECTION 4.2: APPLICATION OF THERMAL GFB TO THE AGASSI MODEL WHEN N $=\Omega$
Since the purpose of the quasi-particle transfortation at finite T is the same as at T, its form is the same. The full HFB transformation appropriate to the Agassi nodel (and not just that part deternining the quesi-particle vacuum) is discussed in Appendix 6.1 of chapter 6. It is shown that, taking advantage of the Bloch-Messiah decouposition, it can be written as

$$
\begin{equation*}
A_{\sigma \pi}^{\dagger}=\cos \zeta / 2 a_{\sigma \pi}^{\dagger}-\sigma \sin c / 2 a_{\sigma \sigma x}^{\dagger} \tag{4.12}
\end{equation*}
$$

where a_{cm}^{4} is definet by the tro successive transformations in Eqs. (3.14) and (3.15) and $0 \leq 5 \leqslant \pi / 2$.

Glven the equivalence in the Agessi model of the singlemparticle states within a level of the non-interacting basis, the quasi-particle occupa-
 fore, substituting from Eqs. (4.12) and (3.15) dato Eq. (4.8), the constraint 《N. N . bacomes

$$
\begin{gather*}
(1-N / \Omega)-\left(1-v^{2}+1-V_{f}^{2}\right)\left(1-E_{-1}-E_{1}\right) \tag{4,13}\\
=\left(E_{-1}-f_{1}\right)\left(v_{-1}^{2}-v_{1}^{2}\right) \cos \zeta .
\end{gather*}
$$

There are two independent contributions to this redetion. Tems proportional to f arise from the statistical charecter of the description and are not inherent in the approximation (cf. the discusaton in connection with Eq. (4.11)). On the other hand, tecme in Eq. (4.13) containIng only v_{σ}^{2}, nccur because the ensemble used by thermal HFS to approximote the exact pasemble eontains otates of indefindte particle number. It ta desirable to impose the Eddtional conatzaint

$$
\begin{equation*}
v_{-1}^{2}+v_{1}^{2}=N / R \tag{3,18}
\end{equation*}
$$

which ensures that the quasi-particle vacuum, at least, has the correct particle number on average. The additional constraint in Eq. (3.18) impties that the coefetcients u_{o}, v_{σ} of the secund transformation can once again be writeen as in Eq, (3.19).

As the purpose of the application of themal HRB is to investigate "phase transitions" at finite temperature, it is sufficient to consider oniy the case $N=B$, Eor which various technical simplifications occur. Inserting Eq. (3.18) into Eq. (4.13) one obtains

$$
\left(1-\frac{N}{n}\right)\left(f_{-1}+f_{1}\right)=\left(f_{11}-f_{1}\right)\left(v_{-1}^{2}-v_{1}^{2}\right\rangle \cos 5
$$

Thus, when $w=\Omega$, the quasi-particle occuparion probabilities $f_{\text {om }}$ nugt be findependent of both σ and m, i.e.

$$
f_{\sigma m}=\left\langle\beta_{\sigma \mathrm{L}}^{\dagger} \beta_{\sigma \mathrm{m}_{0}}^{\rangle_{0}}=E .\right.
$$

It is precisely under these conditions that the first transformation in the gloch-Messiah decomposition of the transformation in the Eq. (4.12) defines a canonical single-particle besis in which β is diagonel and \hat{R}^{2} canonical.

This is verified by explicit calculat ton; one finds
and

$$
\begin{equation*}
\left.\hat{x}_{\sigma m, \sigma^{\prime} m^{\prime}}^{c} \cdots<a_{\sigma^{\prime} m^{\prime}} a_{\sigma m^{\prime}}\right\rangle=\operatorname{sgn}(m) k^{c} \delta_{\sigma, \sigma^{\prime}} \delta_{m,-m^{\prime}} \tag{4.14c}
\end{equation*}
$$

in which

$$
p_{\theta}^{c}=4(1-\sigma(1-2 f) \cos \psi), \quad R^{2}=\frac{1}{2}(1-2 f) \sin \psi_{1} \quad(4.14 d)
$$

 dependence of the ensemble averages in Eq. (4.14) on the ehird transiormacion in the bioch-Messiah decomposition (or, in this case, the parineter G), is also a general fature of the case FxI. It holds for all
ensentle averages and so the varkational princtple discussed in section 4.1 does not, in this case, defermine the third transwonatilon. (As only ensemble averages sre of interest in the present work, this is not a drawback, rather an econony ${ }^{\text {.) }}$

The fotms of \bar{F} and A in the bare basis are obtained repiacling f_{0}^{c} and k_{σ}^{c} $\operatorname{in~} \mathrm{Eq} .(3,20)$ by $\vec{p}_{\sigma}^{\mathrm{c}}$ and $\vec{k}_{\mathrm{G}}^{\mathrm{c}}$. Thus they are
and

$$
\bar{k}_{\sigma m, \sigma^{\prime} m}=\left\langle c_{\sigma^{\prime} m^{\prime}} \epsilon_{\sigma^{\prime}{ }^{\prime} \sigma} \Rightarrow \operatorname{sgn}(m) \hat{k}^{e} \delta_{\sigma, \sigma^{\prime}} \delta_{m, m^{\prime}}\right.
$$

with

$$
\begin{align*}
& \tilde{\beta}_{\sigma, \sigma}=\tilde{\sigma}_{\theta}=1_{\sigma}(1-\theta(1-2 f) \cos \psi \cos \phi) \tag{4.15c}\\
& \tilde{\rho}_{\sigma,-\sigma}=-\tilde{\beta}_{\sigma}=-\xi_{2}(1-2 E) \cos \psi \operatorname{sin\phi }
\end{align*}
$$

where 4 is defined in Eq. (3.14). The difierence between the expresstons in Eq. (3.20) (when $N=n$) and those above in the appearance of the factor ($1-2 f$), Its effect is to diminish the magnitudas of fogd R^{C} as f increanet. Thus a rise in the emporacure deareasem the orcer parametsers and, at the same stme, increases the frection of partieles in excited states. These results illuatrate that, on a quaiftative levei, therwal HFB describes correctly the effects of thermal excitation.

The substitation used ta deriving expresstons for f and k in the bare basis, cannot in general. be enployed to obtain the ensemble averages of combinatsons o\# quasimpln operatoza from the axpressions in Chapter 3 and Appendix 3.1 for the ground atate expectation values in zero cemperEture HFB, beratae in many of these x fisults wise has begn made of Eq. (3.7). In partiqular, this applies so Eq. (3.21) for the ground state expectation value of the ALassi Hamittonian. If Wick's theoram (For ensembla averages) is appliod directiy to the Agasai Eamiltonian and Eq, (4,15) 1s uad, one does however obtain an expression for 〈li> which ls vary similer to that Eor sv|H|v> when $N=0$, mamely

$$
\xi=\frac{2}{\eta} \frac{\langle\xi\rangle}{\varepsilon} 0=(1-2 f) \cos \psi \cos \phi+\frac{1}{2} x(1-2 f)^{2} \cos ^{2} \psi \sin ^{2} \phi
$$

$$
\begin{equation*}
+\frac{h_{2}}{\Sigma_{0}}(1-2 E)^{2} \sin ^{2} \psi+\frac{h_{2}}{\varepsilon} \frac{g}{\varepsilon}\left(1+(1-2 f)^{2}\right) \tag{4.16}
\end{equation*}
$$

where x and E_{0} are defined in Eqs. (3.21) and (3.24).

The variablea ϕ, ψ and f have been defined so that all constraints, in parttular the particle namber constraint, are automaticaily satisfiec. Thus theit values are determined by the minimisation of, not the grand potentinl, but the theral HFB free energy functional

$$
\mathrm{F}_{0}=\left\langle\mathrm{H}_{0}\right\rangle-\mathrm{T} \mathrm{~S}_{0^{2}}
$$

where <H> ${ }_{0}$ ts given in Eq. (4.16) and, using Eqs. (4.9) and (4.14a), the entropy is given by

$$
\frac{S_{0}}{k_{B}}=-2 \Omega(f \ln E+(1-f) \ln (1-f))
$$

The equations for the statilnary points of F_{0} are

$$
\begin{align*}
& \frac{\partial F_{0}}{\partial \phi}=0=(1-2 f) \sin \phi \cos \psi(1-x(1-2 f) \cos \phi \cos i \phi)(4.17 a) \\
& \frac{\partial F_{0}}{\partial \psi}=0=(1-2 \theta) \sin \psi\left(\cos \phi+\left(X \sin ^{2} \phi-\Sigma_{0}\right)(1-2 t) \cos \psi\right) \tag{4.17b}\\
& \frac{\partial F^{0}}{\partial f} 0=0=\cos \phi \cos \psi+\left(X \sin ^{2} \phi \cos ^{2} \psi+\sum_{0} \sin n^{2} \psi+z / \varepsilon\right)(1-2 f) \tag{4.17c}
\end{align*}
$$

where $T=k_{B} T / E$. Equation (4.17 c) demonstrates that, when $r \neq 0$, there are no stationary pointe for whith $E=0$. On the other hand, acting $f=\frac{1}{2}$, one finds an infinite class of stationary points satisfying the condicion
$\cos \psi \cos \phi=0$.

None of these points however correspond to minima.

The equations for the remaining solutions of Eq. (4.17), for which $0<f<t_{\text {f }}$, are simplified by latroducing the variable x which is related to Eby
$f=1 /(1+\exp (2 x))$
and ilea in the interval $0<x<\infty_{*}$ Discarding those solutions which are never thermodynamicaliy stable (i.e. never uinima of ρ_{0}, or, in thise case, F_{0}), one is left with three.
(1) A spherical thernal tif solution $-\phi=\psi=0, x=x_{g}$ where x_{g} is the solution of the equation

$$
\begin{equation*}
1+g / \varepsilon \tanh x=4 \pi x . \tag{4.18}
\end{equation*}
$$

This apherical solution is always present, but is thermodynamically stable only if tanhx satisfles both

$$
\begin{align*}
& \tanh _{g}<1 / x, \tag{4.19a}\\
& \tanh x_{5}<1 / z_{0} . \tag{4.198}
\end{align*}
$$

(2) A deformed thermel HF solution $-\quad \phi=0, x=x_{D}$, $\cos \phi$ * $1 /\left(x \tanh x_{D}\right)$, wherf x_{D} ds the non-zero solution of

$$
\begin{equation*}
(x+g / \varepsilon) \tanh x=4 \pi x . \tag{4.20}
\end{equation*}
$$

This deformed aolution exises if
cantix $=1 / x$
and is thermodynamically stable provided $\chi>\Sigma_{0}$.
(3) A superconducting thermal BCS solution - $\quad=0, \quad x=X_{B}$, $\cos \phi=1 /\left(L_{0} \operatorname{tanhx}_{B}\right)$, where X_{B} ds the non-zero solution of

$$
\begin{equation*}
\left(\Sigma_{0}+g / \varepsilon\right) \tanh x=4 \pi x, \tag{4.21}
\end{equation*}
$$

This superconducting solution exists as long as

$$
\tanh _{s} \geqq 1 / \Sigma_{0}
$$

and is thermodynamically stable provided $\Sigma_{0}>\chi$,

These results axe very similar to those found at m 0 . Agein, there is no fuli HFB solution, at $T=0$ the deformed and superconducting solutions are formally sitilar in certain respects, notably existence and stability. This similarity peraists at finite temperature. In the Agassi model, the effect of temperature on pairing is the same as it is on deformation.

The results conoerning extatence and stability are convententiy summarised at constant temperature by phase diagrama like that in Fig. 4. 1 , The boundaries of the spherical phate are obtained in the following way, Given 8 and $7, x_{s}$ can be dehermined using Eq. (4.18). From Eq. (4.19a) the value of x at which the apherical-to-deformed transition occurs (ignoring, for the moment, the existence of the superconducting phase), is then

$$
\begin{equation*}
x_{D}=\operatorname{coth}\left(x_{B}\right) . \tag{4,22a}
\end{equation*}
$$

Simidarly, from Eq. (4.19b), the value of x at which the ophericaj-tosuperconducting tzansition occurs is

$$
\begin{equation*}
X_{B}=(\Omega-1)\left(\operatorname{coth}\left(x_{B}\right)-\Sigma\right) \tag{4.22b}
\end{equation*}
$$

where $E=(0-1) g / \varepsilon$. Since x_{s} fncranses with g (cf. a graphical equivalent of Eq. $(4,18)$), both x_{D} and x_{B} are decreasing Eunctions vit g (or E). To generate the boundarias in Fig. 4, 1, Eq. (4, 22a) ia weed for $0 \leq \Sigma 5 \Sigma_{E}$, and Eq. (4, 22b) is ust for $\tilde{L}_{E} \leq \Sigma \leq \Sigma_{M}$ where $\Sigma_{E}\left(\Sigma_{M}\right)$ is the value of Σ at wheh $X_{B}=x_{D}\left(X_{B}=0\right)$. From Eq. (4.22),

Figo 4. 1 Thermal HFB phase diagram for the Agassi model when $\times 0.25$ and $N=\Omega=20$. The celculation of the boundaries of the spherical phase is diacussed in the text; the suparconducting - to - deformed cranstition line is as in Fig. 3.1.

Fing, 4, 2 Thermal HPB phase allegrams for the Agassi modal at vartous temperatures when $\mathrm{N}=5 \% 20$,

Fig. 4. 3 Approximate specific heat c_{v} (in unitg of $a k_{B}$) for various semperatures (calatated using Eq. (4.25) ; $N=0=20$. $\Sigma=0.4$.

$$
\begin{equation*}
\Sigma_{E} \operatorname{tanhx}_{s}=\frac{\Omega-2}{\Omega-1} \tag{4.23a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{M} \operatorname{tanhx}_{s}=1 \tag{4,23b}
\end{equation*}
$$

Combining Eq. (4.23) with the relation eurining : $\mathrm{s}_{\mathrm{s}}-1 . e .2+\mathrm{g} / \mathrm{E}$ tanhx g_{g} $=4 \mathrm{xk}_{\mathrm{s}}$, one finds

$$
\begin{align*}
& \Sigma_{\mathrm{E}}=\left[\frac{\Omega-2}{\Omega-1}\right) \operatorname{coth}\left[\left(1+\frac{\Omega-2}{(\Omega-1)^{2}}\right) / 4 r\right), \\
& \Sigma_{\mathrm{M}}=\operatorname{coth}\left(\frac{\Omega}{\Omega-1} \frac{1}{45}\right) . \tag{4.24}
\end{align*}
$$

Observe that, Erom Eqs. (4.22a) and (4.23a), when $\Sigma=E_{E}$, $X *(\Omega-1) /(\Omega-2) E_{E}$. Thus the spherical-to-deformed and sphericii-to-superoonducting transition lines intersect each other on the line $x=\varepsilon_{0}$.

The deformed-to-supexconducting transition 1 ine is given by $X=\Sigma_{0}$ and so temperature has no effect on it (in contrast to other nodel studies (RP 85)). On the other hand, as Fig. 4.2 demonstrates, the size of the spharical region increases with increasing T. In the absence of the pairing lateraction, the value of x at which the spherical-to-ceformed transition occurs $1 \mathrm{~s}, \mathrm{from}$ Eqs. (4.18) and (4.22a), $X=\operatorname{coch}(1 / 44)$. Even when the pairing interaction is present, this remados a usaful estimate of where the sphericel-to-deformed transition occurs. From Eq. (4,24), the value of Σ at whith the sphericel-to-superconducting transition occuts is also approximately equal to coth $(1 / 4 \tau)$. (These estimates inprove with : screasing Ω),

Expressions for $\bar{\xi}$ in the three phases arie given in Table 4 . The entropy within each plase can be wititen as

$$
\frac{s_{0}}{k_{B}}=-2 \Omega(x \tanh x-\ln (\cosh x)-\ln 2)
$$

where, depending on the shase, $\mathrm{x}=\mathrm{x}_{\mathrm{s}}$, x_{D} or x_{B}. If the corresponding expressions for the free energy F_{o} are comsidered, it is found that the first derivatives of F_{g}, are continuous throtrgin the spherical-to-deformed and spherical-to supe 'conducting transitions, making these tranaitions (like their counterparts at $T=0$) continuous. This does net however apply to all the first derivatives of $\bar{\xi}$ and S_{0} separately. For example, using Eqs. (4.18), (4.20) and (4.21) and the expressions for $\vec{\xi}$ in Table 4 , one finds that the specific heat C_{v} (in untts of k_{B}) is given, in eack phase by

$$
\begin{equation*}
c_{v}=-\frac{\Omega}{2} \frac{\partial \xi}{\partial \tau}=\frac{\Omega}{2} \frac{(2 x \operatorname{sech} s)^{2}}{1-v(\operatorname{sech} 2)} \tag{4.25}
\end{equation*}
$$

where ν is defined in Table 4 . (Woce thar a consequence of patisfying any one of Eqs. (4.18), (4.20) and (4.21) is that the denominator in Eq. (4.25) is posifive) Becauge v changes discontinuously, C_{v} (and hence $\partial \vec{\xi} / \delta x)$ is discontinuous at the spherical-to-deformed and spher-ical-to-superconducting transitions. Figure 4.3 contains a typicaj plet of C and illustrates that the discontlnuity is "1ambda-shaped". The phenomenological Landau-Ginzberg theory damonstrates that any mean-field description of continuous symatry-breaking transitions must predict this distinctive type of behaviour in C (Section F sf chapter 4 of (Re 80)).

Although not required for subsequent developments, certain features of the chermal HF8 solutions away from phase boundaries are worth pointing outh. For exampie, when $g=0$, analytic solution of fq . (4.18) is possible ($x_{5} * 1 / 4 \tau$). gecause the dependence of x_{s} on g is weak, the explicit expresifons for ensemble averages obtained in this limit are still useful when $g \neq 0$. Furthemore, the decrease of x_{s} with increasing T is a generally valid property. Stnce in the spherical phase

$$
\beta_{-1}-\beta_{1}=\tanh \left(x_{s}\right)
$$

1t ineplies that the exctitation of particies to the upper lavei of the nob-hetracting hasis occurs. By contrast, although X_{B} and x_{D} also dech tia ith inereasing tempurature, in the superconducting and deformeat phases

$$
\tilde{\beta}_{-1}-\tilde{\beta}_{1}= \begin{cases}1 / \Sigma_{0} & \text { Superconducting } \\ 1 / x & \text { Deformed }\end{cases}
$$

The reduction in the fraction of particles in the upper level due to the weakening of correlations (with temperature) exactly cancels the increase due to themel excitation.

As $x+0$, each of x_{D}, X_{B} and $x_{s}+\infty$, Study of these limits thows that one recaptures the results of zera temperatura HFB . So, in this systen, the limit $T+0$ is continuous,

TABLE 4

CHAPTER FIVE

EKISTEACE OF PWASE TRANSITIONS

The attitude in the literature towards the use of the HFB approximation In the study of (innste) natelei is ambivalent. On the one hand, there is the success of phenomenological applications of zero temparature fF6 In the description of mediumwtonesavy nuclei. The most sophisticated of these to date (DO 80), employing a realistic static effective interace tion (a finite-range extension of the Sleryme interaction), gives impressive agrement with a broad range of experimental dats on ground state proparties. On the other hand, aspects of HFB , In particular fts prediction of phuse trangitions, cannoc emerge from any exact description of a gicroscoplec many-body system. The GFB approximation incorporates correlations by breaking symmetries of the Hamiltonian of the system. Such dynamical symatry-breaking is admissible in the thermodyname inmit (La 56) - i.e. for syatems in which the particle number $N+\infty$, subject to the restriction that the particle density remains constant (and whatever other conditions are required to ensure the eiristence of this Ifalt (Gi 77)). A consistent interpretation is possible in this case because of the presence of classical macroscoptc observables (GDM 71). It is therefore not surpristag that attempts to Lend formal respectability to the broken-symmetry HFB solution in microscopic many-body syscems, by identifying it as an intrinale state, have ancountered unresolved problems (VC 70). In the same vein, a rigorous statistical mechanics treatment (HO 49), section 12.1 of (Pa 73)) demonstrates that thermodynamic variables derived from a partition function can dispiay singular behaviour only in the thermodyamic limit. (This result was originally proved for classical systems, but it is easily extended to quantum systans - section 15.1 of (Hu 63).) Thus a system heas to be macroscopic for its physieal varim ables to dieplay characteristics observation ally indistingutshable from singulat behaviour. In turn, this means that phase crangitions cannot strictly occur in fintite nuclei, so that the phase translitions predicted by HFB when applied to afaroscopte syetem can only be valid in a qualitative gense.

Thia chapter fnvestigates the issue of these phase transitions, boch at zero and at non-zero temperature. Consistent with the discussion in the preceding paragraph, it is possible for $H F B$ to be exact in the thermom dynamic linit (GF 78, RP 85). In effect, the validity of phase srafsithons predicted by HFB depends on the extent to which a finite microscopic system still possesses chanacteristics of the thermodynamic 1imit. (In what follows, phase transition found in the thermodynamic limit will often be referred to as "thermodynamic phase transtitions" to distinguish them from the phase cranoitions in finite systems predicted Dy HFB.)

The pienomenological success of zero temperature tFB can be viewed as evidence that the phase transitions it predicts are qualitatively reliable. However, it gives no clue as to what formal mechanism is responsible for this - 1.e. how it ts that phase transitions found in the thermodynamic linit are already "felte" for finite partiche number. Section 5.1 tries to establish what this mechanism is. It considers in detall how the exact solution for open-shell configurations of the Agassi model behaves in the vicinity of the superconducting-tom deformed-superconducting transithon predicted by HFB. For the most part, values of N and a typical of the valence shells of rare-earth nuclet are chosen. It is shown that this behaviows is consisteas with the conjecture that the phase transitions predicted by HFS signal the presence of singularities in the dependence of the exact solution on interaction strengths: in the generic case, these are branch point singularities. Implications of this Lmportant insight will be explored in hapter 6.

The stata of affales at finite tampatature appears to be far leos satigfactory. The bahsuiour of nuclei at finite cemperature and very high spin has been an area of consicerable thooretical interant recently (SEN 84). It is hoped that detained propertiog of nuelet under these conditions will soon be made experimencalily accessible by the new generation of "cryatai ball" detectors at Berkeley and Daresbury (DS 84, BBH B5). Samiwealisuic applications of thermal hFB Indicate that, in nuclet, the neutron and proton pairing gapa (which are the conventional order parameters for superconductivity) dacrease raptdly with increasing Emperature $\%$. Sinflerly, a variety of BFB calculetions of differing

Levela of sophistication (BMR 73, MSR 76, GVS 76), Indeate that pairing gaps in stateg alung the yrast Itne decrease with increasing nuclear spin I, disappearing abruptily above some critical spin (Mottel-son-Valatin effect (MV 60)). Typical results for both types of calculation are given by curves A and B in Figs. 5.1A and b respectively. Natvely one would expect that, while the abruptress of the stiperconductingotonormal phase transititons predicted is spurious, they are qualitam tively valid, However, thia is at odds with the results of more elaborace treatments (6084 , ERI 85), Finite taporature HFB does not directly take into accuint the effects of themal Eluctuations. When these are included, the pairing gap is givan by curve C in Fig. 5.1a ingtand of curve A : the peining gap now decreases initially with temperature, but for larger if is essentialiy constant and non-negiigibie. Thermal afb is not even qualitatively correct in this region. Equally evident is the discrepancy, in Fig. 5.10, between the HF8 and FHFB predictions at high nuclear epin. (THFB employs essentialiy the same trial state as HFg , except that it is first projected onto the requited symmetries and oniy then is the variational princtiple invoked. It is an improvement over $H F B$ in that it self-conststentiy includes the "quantum fluctuations" which autonaticaliy restore, in any finite systen, the symuetry broken by HFE.)

In section 5.2 the qualitative validity of phese transirions predicted by themal HFB is reconsidered. This is in part motivated by what are felt to be certain weaknessas in the arguments employed in (6084 , ERI 85). (A fuil discussion of these ja given in section 5.2.) Equaliy persuastive to the bellef that the atngularities discusaed in section 5.1 must continue to infiuence the dynamics of a systemi at finite temperature. Agatn, the Agassi model is employed. It is shown by considering the spectific heat (as oppnsed to an order parameter like the pairing gap) that thermal HFB phase tratsitions are incesd visible within the systera. However, the result is a subtle one, for, as whll be seen, it Is not in conflict with the numerteal flidings of (60 84) and (ERI 85), but rather suggests a new interpretation of then.

Condtitions under which the Agassi model is soluble analyticaliy are discussed in the appendix to this chapter. These results are required in section 3.1.

SECTION 5, 1: ZPRO TEMPERATLRE PHASE TRANSITIONS

A necesancy prelude to a discusgion of the meshantsa whereby a finite systen "rieels" phase transicions is a demonstration of to what extent they manifest themselves. This requires the exact evaluation of properties of a finite aystem, and so the exactly coluble Agassi model is considered. (The subsequent discuasion will show that the results obtained are not spectific to this model.) The question of interest is not do different phases or regimes exist (as evidence of this has already been given in section 2.2), but is there a rapid change from the one to the other as suggested by HFB? Some of the early model studies of $\mathrm{HF}, \mathrm{BCS}$ and HFB dealt with the reliablifty of these approximations (RR 64, Ag 68, BFS 69). However, they concentrated on the quantitative accuracy, considering of the vartous ground state properties only the energy. As demonstrated tn section 3.4 , the spproximate ground gtate energy does net display any radily vistbla singular behaviour at a trangition; so nothing more spectific can be deduced from these studies than that these approximatious are numerically inacourate in the vicinity of the txansxtions they predict.

By contrast, othet ground state expectation values within the HFB approximation tin general change dramatically, in the region of phese boundaries. The behaviour of $\langle v| j_{x}^{2}|v\rangle$ at the superconducting-to-deformed-superconducting tranateion (depicted lit Fig. $5.2 a$ in this section) is a typical example. In line with the discussion in section, $\langle v| J_{X}^{2}|v\rangle$ is continuous at this ixansition but its first derivative (with respect to V) is discontinuous. Nore importantly, the magnicude of this discontinutity is large. Thus $\langle v| J_{x}^{2}|v\rangle$ changes abruptiy and raptdiy. Similar behaviour by expactation values of other quagi-spla operators is evident Erom Table 3, It ia this which makes these expectaten values, a oppoged to the ground atate energy, suitable quantiades to atudy.

Within the Agassi model it is appropriate to consider Eirst the expectan tion values of $X_{+} Y_{-}$and J_{X}^{2}. There are two reasons for this, both of which hinge on the fact that the Agasai Handltonian can be watten as

$$
\begin{equation*}
\mathrm{H}=E J_{0}=\nabla\left(J_{\mathrm{X}}^{2}-\mathrm{J}_{\mathrm{y}}^{2}\right)-8 \mathrm{Y}_{+}{ }^{Y} \tag{2.12}
\end{equation*}
$$

Fig. 5.1 Neutron paxing gaps ag function of temperature (pert (a)) and nuclear opin (part (b)). Curves A and B are the resuits of HFB calculations, while curve C ls obtained onee thermal fiuctuations are included and curve D is the outcone of a number-projected FHFB enteulation. Further detaile are given In (ERI85) from which this figure has been adapted.

(part (b) acaled ate in 8. (3.1 , whan $N=14$, $A=20$,
 $F_{3}=0.4,2,0,3.4$ raspectivaly. The remaining curves aro tha

 $(8, \mathrm{H}=2.02 \mathrm{~N} / \mathrm{a}=0.01$.

 $\left(\mathrm{I}_{\mathrm{S}}=2.0, \mathrm{~N} / \mathrm{a}=0.6\right)$.

 axpeasntion valuag for $0=20,26,40$ reppectivoly. $\left(E_{\mathrm{N}}=2.0\right.$, $\mathrm{N}=$ (${ }^{(1)}$.

Fis. S. 5 Ground atato akpectation varuen of $\mathrm{M}_{+} \mathrm{f}$ _ (part (a)) and J_{0}^{2}
(part (h)) acalod by Eactors of $2 / \mathrm{N}(\mathrm{s}+1)$ and $4 / \mathrm{N}^{2}$ sapectiveiy. Other decaila at in Fig. 5.2

It was demonstrated $1 n$ chapter 2 that, as a result, the exact ground
 $N / 4$ when $V \cong 0$ ($\$ \cong 0$) to of the order of $N^{2} / 4 a s V \rightarrow *$ (Efxed) , but that, as $g+m(V) f i x e d)$, it becomes of approxduately $N / 4$ ageln. Similarly, it was shown that <D|Y Y J O' increases with g and decreases with increasing V (cf, Fig. 2.4). Thus, ilke $\left.N F B_{p} \leqslant 0\left|J_{x}^{2}\right| 0\right\rangle$ and $<0\left|Y_{4} Y_{-}\right| 0>$ distingulsh between the regimes of large g and V. In addi-
 two-body interaction In a fermion systam. Hence the HFB ground state expectation valteg of 2-body operators which appear directily in the Hamiltonian should in mogc eases be better than those of any other two-bredy operators. In the present case, if $\langle 0| J_{x}^{2}|0\rangle$ and $\left.<0\left|X_{+} Y\right| 0\right\rangle$ do not follow the crende pradicted by $\langle v| J_{x}^{2}|0\rangle$ and $\langle v| Y_{+} Y_{f}|v\rangle$, then no exact expectacion value involving a two-body operator is Inkely to be qualitatively consiatent wh its BFB counterpart.

Ohe is of course not restricted to the expectetion values of only two-body quasi-spin operators. There art three one-body quasi-spin. operators with non-zero expectation values, namely, N_{4}, N_{-}and Jo* J_{0} these, just one has independent ground atate expectation values (as $\langle 0| N|O\rangle\langle v| \hat{N}|v\rangle * N$. Nowever, n result of section 2.2 is that $\alpha\left|J_{0}\right| 0 ;$ and hence $0\left|N_{+}\right| O$ and $<0\left|N_{-}\right| O$ do not change significantiy between the regimeg of darge g (V fixed) and karge V (fixed). Thus consideration of these expectation values is also deferted until $\because 0\left|J_{X}^{2}\right| 0>$ and $c 0\left|Y_{+} Y_{-}=0\right\rangle$ have been stuified.

Figuras $5.2-4$ are graphs of $\langle 0| 3_{x}^{2}|0\rangle$ and $\langle 0| Y_{+} X_{-}|0\rangle$ in the ragion whare HFB predicte the supereondusting-to-dafomed-auperconducting transition $(N<D)$. For conveniance, the actual quantitles plotted are

$$
\begin{equation*}
\left.4\left(<0\left|J_{X}^{2}\right| 0\right\rangle-N / 4\right) / N^{2} \quad \text { and } \quad 4\langle 0| Y_{+r^{2}} Y_{-}|0\rangle / N \cap(2-N / \Omega) \tag{5,1}
\end{equation*}
$$

(This choice of scaling is suggasted by the results of section 2.2.) Included for comparison are the HFB approximations to these expectation values. Stace oper-shell systems are constdered, the variables X_{N} and Σ_{N} are trsed instead of γ and g (cf. Eq. (3.43).) In all of these figures, the dependence on χ_{N} is presented. Fowever, all three of the indupendent vartations of Σ_{N}, N and n are also considered. The
different curver within a figure correspond to different values of F_{d} (N, Ω fixed) in Fig. 5.2, $N\left(E_{N}, N / \Omega\right.$ fixed) in Fig. 5.3 and $N / \Omega\left(N, \Sigma_{N}\right.$ ftxed) in Fig. 5.4. Together, then, these figures repzesent a conprehenstive overall survey of tha behavtour of $\langle 0| J_{X}^{2}|0\rangle$ and $\langle 0| Y_{+} Y_{-}|0\rangle$.

The feature common to all the results for $\langle 0| J_{K}^{2}|0\rangle$ is that its increase from approximately $N / 4$ to of the order of $\mathrm{N}^{2} / 4$, whide smooth, is not extended uniformly throughout the incervad $0 \leqslant \chi_{N}<\infty$. Rather, it occurs essentially in a single salli interval. Moreover, this interval coincides approximately with the region fust after the superconduct-ing-to-deformed-sunerconducting transition in which $\langle v| J_{x}^{2}|v\rangle$ fincreases dramatically. Similar observations apply to <o|Y $X_{+}|0\rangle$: the decrease of $\langle 0| Y_{+} Y_{-}|0\rangle$ from its value when $X_{N}=0$ to its value when $X_{N}+\infty$, takes place in the sane interval in which $\langle v| Y_{+} Y_{-} \mid v>$ decreases rapidly. Thus the present comparison of ground state expectation values of J_{K}^{2} and $Y_{t} Y_{-}$ provides unambiguous evidence that the abruptness of the superconduct-Ing-to-deformet-superconducting phase tranaicion has a counterpart within the exact solution.

Turning specificaliy to Fig. 5.2 , one can gauge what influente the magnitude of Σ_{N} has. Two features emerge. For siffitatentiy amall Σ_{N} (e.g. $\Sigma_{N} \approx 0.6$), the value of $\langle 0| Y_{+} Y_{-}|0\rangle$ when $X_{N} * 0$, is not significantly different from its value when X_{N} is large (cf. curve a of Fig. 5.2b). Under these circamstances, it is not reelily possible to see
 However, the same ts not true of $\left.<0\left|J_{X}^{2}\right| 0\right\rangle$ for these values of Σ_{N} (cf.
 ghase transitions gannot rest on the behaviour of one expecration value alone; comparison of several expentation values is necessary. Flgure $5.2 a$ demonstrates that, as E_{N} becomes large, so the xata of change in so| $5_{8}^{2}|0\rangle$ in the ragion of the superconducting-to-deformed-superconducting cransition decreases graduaily, (Equivalently, the width of the interval over which its rate of change is significant becomes larger,) The same trend is seen in curves B and G of $E t i 8,5,26$. Significantly, HFB fails to reproduce this feature. Thus consideration of the rate of change of quantittes calculated whthin GFB wilit not by itgele indicate when ong has escaped the transitional region.

In interpresing the significance of Fig. 5.3, it must be remembered that, as N and Ω ate changed, the scale factors for both axes diferifor the varions carver, The vardsbie X_{N} is given by $X_{N} *(N-0.2) V / e$. if the acsle for the Y-exis approptiate to curve A ($N=12$) were used throughout, curves B and C of both Figs. $5.3 a$ and b would have to be multiplied by fattors of $9 / 4$ and 4 , respectively, Thus the scaling adopted hides the fact that as N inereases $\langle 0| J_{K}^{2}|O\rangle$ and $\langle 0| Y_{+} Y_{-}|0\rangle$ change more sharply in the vicinity of the gtperconducting-to-deformedm superconductiny transition: not only do the variations in magnitude becone greater but they also occur over a salaller variation in the Interaction strength V. Nonethetegs, the scaling does have an advartage, For FIg, 5.3 shows that the quantities plotced converge to welldefined (findte) 14mits as N increases with N / a fixed. (In fact, it would saent that in the case of $4\left(\left\langle v \mid J_{x}^{2 i} v\right\rangle-N / 4\right) / w^{2}$ this limit is already attained for $N \neq 20$.) Noreover; the exact reaults converge to the HFA results (which is true of other systems as well (FGN 79 and reierences cherein, RP 85)).

From Pig, 5.4e, it is seen that the effect of changing N / Ω (N fixed) on the expectation value of J^{2} is stgnificant only in the transitional region. In ehis region, decreaging $N / 8$ causes the rate ar which the expectation valug changes to dectease. In contrast to Fig, 5.2, this is true of both the exact and the approximate ground state expeceation values of J^{2}, The same behaviour in the transitional region is found in Fig. 5.4b. To underssand this trand it is helptur to take into account the way in which the expectation values have been scaled, In fact, the expectation value of $Y_{+} Y_{-}$itself increases substantialiy with Ω or, in this case, es N/R decreases; this is consistent with the uifscussion of $<0\left|Y_{+} Y_{-}\right| 0$, in connection with Eq. (2.20). (The scaling in Fig. 5. 4a l.s, on the other hand, essentially unaffected by changes in Ω.) As the expectation value of $Y_{i} \Psi^{Y}$ is a measure of the extent of pairing correlations, it follows that it is the sompetition between increased pairing correlations and mumopole correlations which in responsible for the patern in Figs. 5.4a and b.

The expectation values of other combinations of auasi-spin operators conmirm that thege Etndings are not fortuitous. The combinations $5_{+} S_{-}$. $L_{+} L_{-}$and $L_{+} S_{-}$can be ignored, slnce the behaviour of thetr expectetion
values in the limits of large V and g is detemined by the expectetion value of $Y_{+} Y_{-}$(cf. section 2.2 .2). The remaining simple (but nontrivial.) combinetions are $J_{0}, J_{0}^{2}, J_{y}^{2}$ and $M_{+} M_{0}$. The expectetion values of $M_{+}{ }^{N}$, and J_{0}^{2} are plothed $4 n \mathrm{FLF} \cdot 5.5$ as functions of X_{N} for the samie velues of Σ_{N}, N and $\left[\right.$ as in Fig. 5.2. Like the expectation walues of J_{x}^{2} and $Y_{+} Y_{-}$. they behave near the transtion point fin a way which is qualitatively consistent with the predictions of HFB. This agreement is particularly stgnificant in the case of $M_{+} M_{-}$, as it is not connected to the Agassi Hamiltonian in any wiy. IE Σ_{N} is large (e.g. $\Sigma_{N} ; 3,4$) clearcut change in $\langle 0| J_{0}^{2}|0\rangle$ ceases to be visible; horover, this beha viour is "Forced" on $\langle 0| J_{0}^{2}|0\rangle$ since, from section $2.2 .2,\langle 0| J_{0}^{2}|0\rangle$ is $0(N / 4)$ when g is large and still $O(N / 4)$ when V is large. The expectation values $\langle 0| J_{0}|0\rangle$ and $\langle 0| J_{y}^{2}|0\rangle$ also vary rapidly, in general, with χ_{N} near the superconducting-to-deformed-superconducting transition, but like $\langle 0| \mathrm{J}_{0}^{2}|0\rangle$ and indeed $\langle 0| Y_{+} Y_{2}|0\rangle$ (cf. curve A in Fig. $5.2 b$), there are certain choices of X_{N} and X_{N} for which sharp changes camot occur. When N and Ω are increased separately for these combinations of quasispin operators (as in Figs. 5.3 and 5.4), the patterns found for J_{x}^{2} and $Y_{+} Y_{-}$persist.

If this study of exact ground state expectation values is repested for the closed-she3l system ($N=0$), the findings are similar. Moreover, clear avidence of phase transitions is not restricted to ground state axrectation velues alone. They are also seen in axaet transition matrix elements between the ground state and the excited states, which is fllustrated in Fig. 6.5b for the deformed-tomsuperconducting transition In the $N=a$ system.

Having discussed the behaviour of exact resuita, it is instructive to afgress slightiy by eonsidering the agreement between the appoximate and exact grourd state properties dopicted in Figs. 5.2-5.5. One scea that EFB acores two notable successes. Firstly, the superconducting-to-deformed-superconducting transition correctly signals the onset of the region in which the exact molution changes. Secondly, the changes in the approximate expectation values mirror those th the exact expectation values. At the same thme, however, the phase diagrams deduced in chapter 3 are fadequate. For example, in the opanmbelit phase diagram, the fingle trangition tine oan now be seen co mark the beginning of a
transitional region snd it should fdeally be supplemented by a line marking the end of the transtitonal region. Studies of sinpler or move reliable mathods for predicting the critiend interaction errength for a phase transition (BCP 81, BNP 82) are deffeient in that they overlook this poins, While it is posabible to develop prescriptions for the aecond litne which exploit the qualitetive reltability of HFB expectation values, they are inevitably somewhat arbitrary; for example, one candidate is the incus of points at which the pertial derivative of an HFB expectation value with respect to X_{N} in the deformed-superconducting phase is some particular fraction of lts maximum valus.

A clee to a possible reason why phase transitions are visiole in fintte systems is provided by the excitation spectra. Consider the excitation spectrun for the closed-shell configuration of the Agassi mode tyen in, Fig. 2.2a. The regions of anisil and large Σ ean be identifte the the spherical and superconducting phases of Fig. 3.i, respectively. In fact, the arrow in Fig, $2.2 a$ tarics the location of the sphericai-tosuperconducting phase transition. Figure 2.2 a demonstrates that the change from the pattern in the exact spectrum typical of smadl i to the pattern typieal of large $\&$ is accomplished by a set of level repilsions found in the vicinity of this arrow, Similar observations hold for the excitation spectra in Figs. 2.2b and 2.5. (Again, the arrow in each of these diagrams indicates the lozation of a phase transition predicted by HFB.)

All these figures display the eigenvalues of an operator of the form

$$
h(\lambda)=h_{0}+\lambda h_{i}
$$

where h_{0}, h_{1} are hemitian and λ ta (single) varabale intaraction strength, The properties of this type of operator when λ is a somplex variable are well-known (Ka 66, SW 73, Ku 8:). The partiotpation by two ofgenvalues e_{a} and e_{β} of $h(\lambda)$ in a level repulaton for real values of $\lambda_{\text {, }}$ reflects the existience of an exceptional point $\lambda-\lambda_{e}$ in sn adjecent portion of the complex λ-plane at whoh $e_{\alpha}={ }_{\beta}{ }_{\beta}$. In the genenic case e_{α} and z_{β} are the two bramohea of a Eunorion with a $1^{\text {st }}$ ordur branch point at $\lambda=\lambda_{e}(\delta 673)$, In the prasent case, axeeptions to this can be ruled out because, by using the quasi-split group, thll symmetring of the Agassi
model have been properly taken into account (cf. the digeusaion for section 3.3 of (3 W 73)), Thus, for example, Fig. 2.2 a implies that, when X fixed and $X<1$, the exact solution possasses branch point singularities in the interaction strength Σ for complex velues with a nodutus of appromimately unity - l.e. in the region in which hFe predicts the spherical-to-superconducting phase transition. It is adngularitiea of this typa which have been conjectured to be respansible fot sudden changes like those observed in FIgs. $5.2-5.5$ (GH 84a).

This' observation can be further refined. The spectre in Plgs. 2.2 and 2.5 contain several level repulstons. However, as the notion of a zero temperature phese transition refers specifically to the properties of the ground state, it is only the leqel repulston involving the ground state which is relevant. Thege conszderations can be cast into concrete thermbe . Suppose that one fis dealing with a systen charactertser waction strengths λ_{i}, all of which are defined e at the hamilic. as phyatcal onily when they are real, and that the $\&$....: state energy E_{0} is given by $E_{0} \times f\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, in which the dependence of E_{0} on ocher phyaigel parametars (such as, the particie number) is suppreased. In line with the preceding discussion, the conjecture is that it is the
singularities in functions like

$$
\begin{equation*}
E(\lambda)=f\left(\lambda_{1}-\lambda_{1} \lambda_{2}=c_{2}, \cdots, A_{n}-c_{n}\right) \tag{5.3}
\end{equation*}
$$

Which are remponsible for iramatic changes in the exact ground state when $\lambda_{2} * c_{2}, \ldots, \lambda_{n}=c_{n}$, and λ_{1} is varled (λ_{1} real), Confirmation that the gingulazitien in $g(z)$ fifect the ground state wavefunction is seen ta those few caseg for thich the exact many-body ground stats wavefunction and energy are aaplicitiy available. A notu-crivial example found within the corcext of the Agassi model is discussed in the appen-
 tonian in Ec. (2,12)): from Eq. (A5, 1) tha ground state energy is

$$
\begin{equation*}
w=-2 / a^{2}+\left(1-\frac{2}{n}\right)\left(\frac{a}{2} g_{2}+v\right)^{2}+2\left(1+\frac{1}{n}\right) v^{2} \tag{5,4}
\end{equation*}
$$

While from Eq. (A5,2) the ground wate wavefunceion is

$$
v_{-}
$$

Fanctions like $g(\lambda)$ In $E q$. (5.3) are efganvalues of oparators of the form consldered $\frac{1}{2}$ Eq. (3.2) . Thus these functionf do not possess singularities at any real value of λ (5 \# 73) . From fratances where axplicit expressions for E_{0} are availabio (e.g. (LNG 65)), onts can extrapolate that the number of singularities is 0 (D), where D is the dimension of the matrix which has to be diseonalised; in the present oontext, this means their number is at least $O(N)$, N being the particle number. Further infomation wbout the wey in which these singularities mate behave for the conjecture stated in connection with Eq. (5.3) to be -Ilfd can be extracted, In the particular case of the Agas.si model, from the patterns in Figs. 5.2m5.5. The fact that, when I_{N} is Elxed and X_{N} Is varied, the charaeter of the ground state changes only once suggests thet the distribution of the aingularitien in the complex χ_{N} plane is as in Fig. 5. Ga father than as In, for exampie, Fig. 5.6b. Figureos. 3.2 and 5.5 impty that as Σ_{N} is increased from its value in fig. 5,60 , the point
 Fig. 5. 4 dnplius that, as N / a is decreased, A moves to a point lika C. The thangee wht N are patticularly interatting: Fig. 5.3 shows that
 In eddition, the number of singuiantetes increases. It is concejvable thet in the Ifoit as $N \rightarrow \omega$, they form a set with ari accumulation point (bot in the get) on the real X_{N} maxts. Lincer thesa sonditiong, the Agansi model would realiy experienco a phage transiction. The knowledge that HEB La exact in this limit for suol systems, stggeste that this Is in fact what happens.

The discussion above iliustrates bow the aingularitide in functions like $g(\lambda)$ can be responsible for real phase transitions in any systeh. There are interesting parallels with the considerations of Yang and lees on thermodynamic phase transitions at finite temperature (YL 52, section 15.2 of Hu 63), In a aystem characterized by temperature T and fugacity z, all other chermedynamic variables can be written in terms of

$$
\Phi(z, T)=k_{B} T \& Q(z, T)
$$

and its derivatives, where $Q(z, T)$ is the grand damontical partition function. The papers by Yang and Lee thus relate the fingular behaviour of themodynamic varlables at some temperature to the ilstribution of zeros of $Q(z, T)$ in the complex zmplane. Much as with the oligularitides of $g(\lambda)$, none of the zeros of $Q(z, T)$ are located at physical values of z ($1 . e, z>0$), and a phase transtition corresponds to a situation in which they $f \circ r \mathrm{~m}$ f set with an accumulation point on the positive real axis. It can even be negued that the two approaches are related: as $\mathrm{T}+0$, the doninating contribusion to $\mathrm{Q}(z, T)$, because of the absence of thermai fluctuations, contes from the lowest energy state of the bystem containing atrictily the desired number of particiea $N_{0}-1 . e$.

$$
\phi(z, t)+E_{0}\left(N_{0}\right)-\mu N_{0},
$$

where μ is the chenical potential. Hence, at $T=0$, it is natural to study, instead of the distribution of zeros of $Q(z, N)$, the distribution of siagularities in the ground state energy.

The preceding considarations are someviut academic, but they acquire practical importance when one turns to the HFB approximation. They suggest that one tan ascribe the following significance to HFB phase tuansittons, namgiy, that they locate singuiaritias in the dependence on Intaraction atrength of the exact solution for the ground gtate. Do cagea in which these singuiarities are avallable explicitly confirm th1s?

Consider the example introduced eariter in discussing the functions $g(\lambda)$ In Eq, (5.3) for whth the axact groma state entrgy is explicitiy avallable, If ga is fixed and real, u_{0} 2n Eq. (5.4) is singular at

Fine So possible distributions of exceptional point; involving the ground state eigenenergy in the complex $X_{N} p l a n e\left(x=\operatorname{Re}\left(X_{N}\right), y=\ln \left(X_{N}\right)\right.$) for a given set of values of Σ_{N}, N and Ω (full dots). The patterns are symmetric about the π - axis, and the curves maris boundaries of regions enclosing this axis in which no exceptional points are found for the given values of Σ_{N}, N and \cap. The empty circles in part (a) denote the conjectured location of A for other values of Σ_{N}, N and n.

Fig. 5.7 Comparison of "exact" and approximate critical strengths, Curve 0 is the asymptote to curves A, and B and is given by $X=$ $(3 / 2)^{\frac{1}{2}}$ Ea $_{a}$; gurve D is given by $x+3 / 4 \Sigma_{a}$. See text for further details.

Fig. 5. 日 Ground state expecta, Ion value of $X_{+} X_{\ldots}$ gealed as in Eq. (5.1), when $X_{N}=0.4, N / \Omega=0.6$; curves $A m$ are the exact: expectation values for $N=12,18,24$ respectively. The remaining curves are the corresponding aCS expectation values.

Fig. 5.9 Ereization utrergy of lewse posiefve parity utate when $N=18$,

$$
v_{s}=\frac{1}{3}\left(-\left(\frac{\Omega}{2}-1\right) g_{2} \pm \sqrt{\left.3 e^{2}+2\left(1+\frac{1}{\Omega}\right)\left(1-\frac{2}{\Omega}\right)\left(\frac{\Omega_{2}}{2}\right)_{2}^{2} 1\right)}\right.
$$

and, if V is fixed and raal, it is singular at

$$
\left(g_{2}\right)_{z}=\frac{2}{\Omega}\left(-V \pm \sqrt{\left(E^{2}+2\left(1+\frac{1}{n}\right) V^{2}\right) /\left[1-\frac{2}{\Omega}\right)} i\right)
$$

Curves A and B in Fig. 5.7 are plota in the $\Sigma_{a} x-p l a n e\left(\Sigma_{a}=(\Omega / 2)\left(g_{2} / \varepsilon\right)\right)$ of titu magnitudes of V_{s} and $\left\langle g_{3}\right\rangle_{s}$, respectively, for the closed-shelj. configuration $(N=N=4$) Superimposed on this is the WFB phase diagram appropriate when gi $=0$ (cf. Eq. (3.26)). AIthough the boundazies do not coincide with turves A and E, there is an encouraging global correspondence beween the two sach fficurves. However, tha same is not two when $N \in \operatorname{lif}$ the explicit erample demotstrates then trie class of stngulatities giving rise to curye B persists but, on the othet hand, there is no corresponding phase boundary in the N \& diagram.

Figure 5.8 contains typical plots of $\langle 0| Y_{+} Y_{-}|0\rangle$ and $\langle v| Y_{+} Y_{-}|v\rangle$ when E_{N} is varied and $X_{\text {d }}(\leqslant 1)$ is fixed. (As in Figs. $5.2-5.4$, these expectat Lon values have been scaled by the factor $4 / \mathrm{N} \cap(2-N / \Omega)$). Both the exact and the approximate expectation values of $Y_{t} Y_{-}$increase sharply for $\Sigma_{N} \leqslant i$ and remain essentially constant thereafter. The structure fa
 However, as demonstrated by Fig. 5.8 , the behavtour of $\langle 0| Y_{+} Y_{1}$ fo> as $N \rightarrow \infty$ is difforent; it remeins non-singular, tmplying that the Agessi model does not experience a phase transition. (In fact, Tig. 5.8 provides further evidence that $H F B$ or, in this case, BCS is exact in the thermodynanic limit for systeme ifke the Agassi mocel: <0, y, y
 calised inoreage $\left.\pm n<0\left|Y_{*} y\right| 0\right\rangle$ could signal the presence of singularities in the exact solu:

The piot an Fig. 5.9 of the energy (as a function of Σ_{N}) of the first excited positive parity state relative to the ground statc for different values of N / Ω (N fixed, $X_{N}=0.4$) is consistent with this. For $N / \Omega=0.82$, a level of repulsion between these two states in the finterval $0<\Sigma_{N}<1$ is clearly visibie. The behaviour of the other energies In Fig. 5.9 is conpatible with the interpretation that as N/R decreaser the singularities associated with this reptigion remain, but that their
location moves further the positive real \sum_{N} maxis. A similar trend in the X_{N}-plane is ioplited by Fig. 5.4 (ct, the earlier discussion of Fig. 5,6). The fact that these singularities ere not responsible for a phase transition $\mathrm{aS} \mathrm{N}+\infty$ simply suggests that they do not have an accutrulation point on the posttive real axis in this limit. (This does not exclude the possibility of an accumulatlon point elsewhere.)

The difference between the regimes of small Σ_{N} and large Σ_{N} is only that, In the former, pairing occurs essentialiy within the lowest leve1, whereas in the latcar it occurs in all levels. Daspite this, the progression from one regime to the other appears to be accompanied by aingularities. Inspection of Fig. 5.8 shows that not oniy does bes accomodate both regtmes (wich in itself ts remarkable if singularities are present), but aiso that it zapidiy changes pracisely where the exact solution changes. Thus, combininy the present findings with those obtained earlier (when Σ_{N} was fixed and χ_{N} wat varied), one is led to a slight reviaion of the earlier conjecture concerning HFB: the selfconaistent mean-fieid approximation possesses the remarkable property of being eensitive to singularities in the dependence on interaction strengths of the exact solution for the ground state of a many-body system. Furthermore, it would appear at if all of these singularities are responsible for localised changes in the exect ground state properties and some of them for phase transitions in the thermodynamic limit, while HFB attempts to repzoduce these changes, and the "phase transitions" predicted by it in a finfte system correspond to this latter class of singularities. (thds property also allows one to distinguish between the two types of singularities).

This conjecture provides a formal reason for the qualitative validity of the phese transtition predicted by HPB in a finite system. It aiso implies that the utability criterion employed in chapter 3 to deduce the HFB phese diagrams for the Agasei model is not as arbitrary as suggeated in the ifeerature (Kit 79, BCD 81); the quasi-partiele bases, which it identiftes as physically appropriate, attempt to mimic the relevant features in the exact solution, f.e. the singulatibins discussed in this section.

In one of the earlitest papers (Mo 72) dealing with the effect of temperature on the mean-field description of a nucleus, it was poanted out that in any consistent (statistical mechanics) treatment of a nucheprs which is supposed to be at some non-zero cenperature, one should consider, in addicion to the equilibrium values of obsetvables, the thermal fluctuations about these values. These can be algnificant in a finice system and are not directly catered for by the mear-field approximation which gives only the most probable value of an observable (0084), This the qualitative reliability of zero temperature HFB does not immediately imply that the transictons predicted by thermal BFB are also qualitatively valid. In fact, a variety of studies (Mo 73, Go 84, ERT 85), some of which were discussed th the introduction to this chapter, seens tu have shown that thermal, fluctuations wash out any sign of phase transitions at finice temperatare in finite systems.

On the other hand, the thermal hFs study in chapter 4 indicates the limit $T \rightarrow 0$ can be continuous. Furthermore, the singularities present in the exact solution for the eigenvalues of a systen which were discussed in the previous section, parsist at finite tenperature, it is difficuit, then, to see how an infinitesimal, non-zero temperature an substantialiy alter the situation frow the zery temperature ca. Rather, one would expect phase transitions to remain viaible below some Einite (but perhaps smali) temperature. In fact, the studies referred to earlier do not exclude this possibility. All considerations in (Mo 73) and (Go 84) are based on the landau theory description of themal fluctuations (Th 83), which does not hold for temperatures $T \rightarrow 0$. In addition, the exact model study in (ERT B5) deals with a phese transition which has no andogue at $T=0$.

The obvious way to resolve these doubts is to detemine the thermal Eluctuations around an exact ensemble average. A parciculariy appropriate choice is the ensemble average of the Hamiltonian H, for it can be ahown, quite ganeraily ($\mathrm{F}, 70$ of (Pe 71)), that the apecific heat C_{V} (10 unite of k_{B}) $1 s$ given by

$$
c_{V}=\frac{1}{\left(k_{B}^{2}\right)^{2}} \quad\left(\left\langle H^{2}\right\rangle-\left\langle H^{2}\right)\right.
$$

where <> denotes the canonical ensemble average. Since C_{V} vanishes in the limit $T \rightarrow 0$, it is a direct measure of extent of thermal fluctuations in atb. More importantly, the behaviour of C_{V} in thermodynamic phase transitions is very distinctive: it diverges. Such singular behaviour is not possible in a small finite systen but the appearance of a smooth peak in c_{V} would be evidence of a "phase transition" (Wa 72 , FF 69'). (Recall that the thermal HFB calculation in chaptar 4 predicts a peak-ifke structure in C_{V}) Thus, by calculating C_{v} one can stimultoneousiy extract information about the magnitude of fluctuations and the extent to which phage transitions occur in amall finfte systems (at T $\ddagger 0$).

In this section, the behaviour of C_{v} is studied for closed-shell configurations of the Agassi. model. Figure 5.10 contains typical plots of C_{v} at different fixed temperatures when $X=0.5$ and Σ is veried ($N=\Omega$ * 20). The ensemble over which the average has been perfomed has been restricted to the collective subspace because only the structure in \mathbb{C} Is ef interest, and it is deternined by this subspace. Two arguments can be pxesented in support of this contention. The energles of the states onftied ehange less with fnteraction strengths than those of btates in the cojlective subspace. In particuiar, the energias of these states decrease more alowly with increaging interaction strengths than the enexgy of the ground stace. Thus in the regime of lange maseraction strengthe the contribution of these states to the ensemble average is numericaliy negligible. The differenee in the dependence on interaction atrengths is, in fact, a consequence of the singularitios diactiosed in detall in the previous section; these only aftect states in the collectiva gubspace.

The second argument explodts the presence of these stagulardties in a more edrect way. In the linit as $\mathrm{F}+0$, contributions to C_{V} from the lowest-lying excited states douinate, and Eor T amain enough,

$$
\begin{equation*}
C_{V}=g \beta(\Delta E)^{2} e^{-\beta \Delta E} \tag{5,5}
\end{equation*}
$$

where $\beta=1 / k_{B} T$ and Δx is the anergy of the g-zold degenerate fowest axcited level redative to the ground atote. The spectrut of the Agessi model when Σ is vaxied and $x=0.5$ d.s given in zid. 2.2a. The essent inal
features of the lowest-lydng excited states can be nimicked by supposing there is a sitngle doubly degenerace level with excitation energy

$$
\begin{equation*}
\frac{\Delta E}{2 \varepsilon}=a\left(\Sigma-\Sigma_{c}\right)^{2}+b \tag{5.6}
\end{equation*}
$$

where a and b are appropriately chosen (dimensionless) constants and Σ_{c} marks the location of the level of repulaion seen in Fig, 2,2a. Equations (5.5) and (5.6) amply that $C v$ has the following structure (df regarted as a function of E);

1) when $\tau\left(\sim \mathrm{k}_{\mathrm{B}} \mathrm{T} / \mathrm{s}\right)<\mathrm{b}, \mathrm{C}_{\mathrm{V}}$ hes a single maximum at $\varepsilon=\varepsilon_{\mathrm{g}}$;
2) when $\tau>b, C_{V}$ has three stationary polnts - minimum at $\Sigma=\Sigma_{s}$ and tuxima at

$$
\begin{equation*}
\Sigma=\Sigma_{ \pm}=\Sigma_{c} \pm \sqrt{(r-b) / a} \tag{5.7}
\end{equation*}
$$

Featureg of these resulte like the precise value of T at which the bifurcation occurs and the square root appearing in Eq. (5.7), shouid not be taken seriously, since they depend on the details of the parametrization in Eq. (5.6). Also, the symetry of the two maxima at $\Sigma=\Sigma_{\#}$ is spurious. For conventence, ΔE in Eq. (5.6) has been chosen to be symmetric about $\varepsilon=\Sigma_{c}$. If a more realistic parametrdzation is used, the patk at $\Sigma=\Sigma_{\text {_ }}$ disappears; instead, C_{V} decreases (slowly) as $\Sigma+\Sigma_{c}$. Nevertheless, Eq. (3.6) serves to show in a sinple way essentialiy what ts the structure in C_{V} implied by the lavel repulsion in Fig. 2. 2a.

A remarkable finding is that the changes goen in Fig. 5.10 as the cemprature increases ave in accord with tirds pattorm, even when the temperature as not smali. At the lowest temperature considered in Fig. 3.10 a peak to cleariy visible. With a shight inereage in temperathre it dusappears. However, the new ahape of C_{V} gould quite concetvably be the sum of two overlapping and wnessulved maxima in inine With the approsimate analysis of the provious paragraph. line sppearance of the shoudder in C_{V} at a still higher temperatute ($t a 0.5$) confimm this. The approximace amalysis correctly predicts chat these two maxima appear only obove a certain temperature (i.e. the bifurcation temperature $\tau_{b} \# b$), and that the one maximun becomes clearly resclved from the other and its location moves to larger E when the temperature is Eureher

Pig. $5.10 \quad C_{V} / \hat{N}$ (in untes of k_{B}) when $N=\Omega=20, x=0.4$.

P4g, 5, 12 Approxithate and "exact phase diagrams for the Agassi mode? When $N=\pi=20, t=1,5$. Carves $A-G$ are the sphertend - to supetconducting, spherical - to w deformed and supereonducting - to - deformed transtition itnes respectively In the epproximate (d.e日, thempal UFB) phase diegratn.
increased. This agzeement indicates that even the inciusion of other states within the collective subspace 20 the ensemble average, let alone states outside the collective subspace, does not signiffcantly altei the gross structure of C_{V}. It also auggests that the atructure of C_{V} fis a consequance of the singuiarities in the exact qolution discussed in section 5.1. (zarlifer, in section 5.1, the Yang-Lee theory of phase transitions, which aligo deals with the relationship betwen singularities and phase transitions, was referred ≤ 0. To demonytrate the rota of the singularicies diecussed in section 5.1, it is necescary to vary interaction strengthe. On the ocher hand, Yeng-Lee Theory is is designed for a situation in wht th temperature ond particle number and not interaction strengths are varied. Hence it will not be considered here.)

One of the maxima iound above to corresponds to the prak found below this temperature, and the other to a pronounced fincrease in thermal fluctuations fin the region $\Sigma<\Sigma_{c}$. Thus the peak seen at the lawest temperatares persists throughout; it simply is not visible for temperam tures close to T_{y}. The fact that, in this range of temparatures, the magnitudes of C_{V} for $\Sigma+0$ and for $\Sigma \Sigma_{c}$ become suddeniy comparable suggests a change ta the properties of the system for $\Sigma<\mathcal{L}_{\mathrm{a}}$. Thermal fluctuations for these interaction atrengths are now inportant, and remitn inportant at higher temperatures. The significance of the change will be returnec to laper. Firgt it da appropriate to consider the behaviour of C_{V} for amperature at which peak orructure is olearly visible, and 5 ae whes : it call be congistencly intetpreted as the remnanc of a phase tramaition th the thermodyamac danite.

A quitable temperatire is $t=1.5$ (cf, Fig. 5,10). In fact, the paak atrueture of C_{V} at this tamperature is non-trivial. For example, when both Σ and X are changed, with $\Sigma+X=C$ (c onts constant) as in Fig. 5.11, one finds that $C V$ has not one but switpoaks. Claxity is gained by plotting the loci in the Ex-pitane of in the peaks in C_{y}, which is done in ELE. 5.12 the dots in that innom indicate these Loci when $\Omega=20$ and, for comparison, the phase butdartes precteted by HFB at this temperature (curves A, B and C) lis a abo been includad, The peak etructura in C_{V} divides the $x x-p l a n e$ Lice four regions (labelled I to IV in Fig. 5.12). Clarly, ragtons I, 41 and IIt axe to ba
tdentified wth the opherical, superconducting and deformed phases, respectively. Region IV car be associated with a deformed-superconducting or hybrid phase whiteh is not actually predicted by thernal HFB. It is essentialiy a transitional region linking the superconductIng and deformed regtons, for, as increases (or the thermodynanic linit is approached, the width of this region decreases $-c \in$. Fig. 5.11. (Recell that, Erom section 5.1, phase transitions amount in finite systens to transitional regions.) With this in mind, it is posstble to eqsocisite the peaks in C_{Y} with transitions found in the thermodynamic limit. In turn, chis means the phase transitions prem dicted by themal HFB axe relevant in finita systems. It is evan possible to deduce an "exact" phase diagran (1.e. Fig. 5.12). These findings continue to apply at other tamporatures. (with the ingight afforded by the approkinate analysia earlier, it is poseible to "guesa" the poaitions of the peakg even when they are not clearly visible.)

Compariton of the exact and approximate phase diagrams in Fig. 5.12 shows that in its gross structure the approximate phase diagram is correct. Further, thi location of the approximate superconducting to-deformed transition is essentially correct. However, the size of the approximate apherical phase at this temperature is groasly overestimated. In fact, it is oniy for $\tau \leqslant \tau_{b}$ that the agreent it between the epproximate and the exact phese diagrams tan be considered everywhere reasonable. (Recalling the significance of τ_{b}, one sees that, as one might have axpected, it is the presence of tharmal fluctuations which is responatble for this faflure of thermal HFB.) It must therefore be concluded that, in general, thermal HFB does not rejiably predict critical interaction strongths or, equivalently, criticat tenperacures.

This result is not incompatibie with the temenstration that thermal HFB is exact in the tharmodynamic limit. In (az 34) vartous meanwfield approximations differing only by tems of $D(1 / N)$ are considered, As chege predict very ditferent critical temperatures, one an infer that the eritheal temperatures and atrengths depaticl vensitivaly on terms of O(1/t) (which, of course, vanish in the thermodynamic liwits).

A remarkable fettern is evident in the magnitude of fluctumtions in the regions away Eron phase bounduries. Fluctuations are always megdigible in the superconducting and defonmed reglons (cf. Fig. 5.11). However, as observed earlyer in connection with Fig. 5.10, they can be signtficant in the spherfical region Note that these findings hold when the
 (Thusf the inclusion of more states in the ensembie average does not affect them.)

This difference between the spherical (or, more generally, disordereci) phase and the deformed and ewpexconducting for ordered) phases $\& s$ very important. It helpe to axplain why, in the moded study of (RF 85), the convergence of the exact grand potentaz to itg thermodynamic lidmit, as particle number wa increased. Wes slowest in the spherical. phese. (A
 tions for order-to-disorder tranticions (e.g. apherical-tomaperconducting),

When cmemai Eluctuations ara signiEscant, the average value of any par teular parameter can be quite different ftom that predioted by the HFB approximetion, In particular, order parametars like the paiting gap - which within the man-Eieid description are atatomatically zero fin the sphertcal phase - could in a more elaborate traatmant be signtffeantly different Eron zero. Exactiy this affect is seen in the results of (Go 84) and (ERI 8S). Taken in Igolation, it Implies that the trangitions Erom sphericalwo-deformed and spherdsal-so-buparconducting are washad out. So the rosults of tha present study are compatible with those of (GO 84) and (ERJ 85). Nowever, it indicates that a diferane (and pragmatically advantageous) vaovpolat thould be acopted: the cransitions do pccup, but they cotreaponc in general to a prograssion fri*m a region in which a statco self-consistant rean-field by itgaiz is useful to a region in which it is not.

It view of than, the fajlure of HF (under the same qurcunglances) to reproduce this tranaition point reliebly is a serlous flaw. A simple Femedy would seem to be to calculate (wathdn themal HFB) the varlamea in any themal HFB ensemble avarage of interast, with the understanding
that only if this is larga, are nore elaborate methods (such as those suggested in, for example, (AZ 84)) indicated.

APPENDIX 5

An fnteresting feature of the LMG model is that, although no convenient basis which diagonalises the Hamiltonian exists, the eigenenergles can be solved for analytically even when the particie number is as large as $N(a)=8$ (LMG 65). Tn the Agassi model this can only be done in trivial cases for which the matrices involved are at most $2 \times 2-i . e$. for positive parity states when N : 2 , and negative parity states when $N=4$ (cf. Table 2.1). However, if $g_{\ddagger}=0,4 \times 4$ Hamiltonian matrices, which detemane the positive (negative) parity states when $N=4(6)$, can also be treated analytically. (Recall that the interaction with strength g_{1} is automaticalily diagonalised by the basis $\mid m, z>$.)

Using Eqs. (2.7), (2.9) and (2.10), one deducea that the form of these 4×4 matrices is

$$
h=\left[\begin{array}{rrrr}
-2 \varepsilon & -a & 0 & -b \\
-a & 0 & -a & 0 \\
0 & -a & 2 \varepsilon & -b \\
-b & 0 & -b & 0
\end{array}\right] \text {, }
$$

where a and b are given in Table A5. Explicit calculation shows that
 beitng

$$
w^{2}\left\langle w^{2}-4 \varepsilon^{2}-2\left(a^{2}+b^{2}\right)\right\rangle=0
$$

Hence the eigenenergies of h are

$$
\begin{equation*}
\mathrm{E}=0 \text { (twice) }, \pm \omega_{0}, \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
\omega_{0}= & \sqrt{4 c^{2}}+2\left(a^{2}+b^{2}\right) \tag{A5.1b}\\
& +
\end{align*}
$$

The corresponding orthoarmal eigenvectors are
(A5.2)
where

$$
u_{1}=\sqrt{2 \varepsilon^{2}+a^{2}}+
$$

and, as the notation suggests, v_{2} hes the eigenenergy wo the degenerate eigenvectors v_{1} and v_{2} have been chosen so that, when $b=0$ (i.e. $\mathrm{V}=0$), they coincide with members of the natural set of orthonomal eigenvectors in this limit. When g_{1} is non-zero, first order perturbation theory indicates that the degeneracy of these two aigenvectors is itficed.

Quite apart from the interesting singulariaies exhibited, these results provide uaeful checka of numerical results.

TABLE A.5: ENTREES IN h

	$N=4$	$N=6$
Entry		
a	$2 i=1$	$2\left(1-\frac{2}{Q}-2\right)\left(\left[\frac{Q}{2}-1\right) 8_{2}+3 v\right)$
b	$2 \sqrt{\left(1+\frac{1}{\Omega}\right)}$ V	$2 \sqrt{3\left(L+\frac{3}{3-2}\right)}$ V

When $N=4$, 6 is the positive parity submatrix, and when $N=6, h$ the negative parity submatrix.

CHAPTER STX

THE RANDOM-PHASE APPRCXIMATION IN SEEF-CONSTSTENT BMSES

In the previous chapter the conjecture was put forward that sudden changeg in the charactet of the HFB solution fox the ground gtate, including, in particular, the appearance of broken-aymetry solutions, mimic the presence of algebratc singulamities in the dependence on Lnestection strengehs of the exact golution. (In what foliows, shas wiil, for cunventence, be termed the "singulerity" conjecture.) If this is so, then despite the weli-knom disadvantages of broken-symmetry bases (cf. introduction to chapter 5), approximation schemes employing self-consistent (broken-symaetry) bases in the description of excited states ought to be at least qualitatively successful. In this chapter, this clatm will be substantiated by constdering the results of randomphase approximation calculations within the selfmeonsistent bases epproprtate to the Agassi model.

The randommphase approximation (RPA) is selected 1 its simpli= city. Within the context of certain systematic E, nsion treatmente, it can be viewed as the lowest order correctar ot the independent quasi-particie descxiption of excited segtes (Ma 74). It is also intimately related to the gelfmeonsigeent mean-fiald approximation: RPA In an HFB basis gleids the nomal modes for the description of amell. amplitude oscillations on the mFB energy atiface about the stationary point to which the basia corresponcis (Section 6.5 of (By 78)).

In section 6.1 there is a discussion of properties of RPA in selfconsiatent bases. Its purpose is to prepare for the application of RPA to the Agasai model in section 6.2, and 50 it is essentially a sunmaty of material appealed to in this section. Section 6.2 itgelf is divided Into two subsections: formal aspects of the application of RPA ate presented in section 6.2.1; In section 6.2.2. ReA fesults are compared with both energies and sultable matrix elements of che exact solution, and conclushons emerging frotithis comparison are citscussed. Termitcal materiai required In section 6,2 is relegated to two appandiees.

Within an independent quasi-particle description, the simplest excitam thons of an even systern are the two quasi-particle states $\beta_{1}^{\dagger} \beta_{j}^{\dagger}|v\rangle$. The random-phage approximetion also describes excitations of essentially two quastmparticle chazactar exeept it allows for the possibility that the ground state differs from the quasi-particle vacuum |v>. Whereas $\beta_{1} \mid v>\equiv 0$, the RPA ground state $\mid r>$ cen be such that $\beta_{4} \mid r>\neq 0$, One of the advantages of RPA is that it permitg one to calouiate properties of excited stateg $|a\rangle$ whehout requirlag explicit knowledge of |r) (which may be very complicated.) It starts from the assumption that

$$
\begin{equation*}
\text { |ax } \sum_{i<j}\left(x_{i j}^{a} \beta_{i}^{\dagger} \beta_{j}^{\dagger}-y_{i j}^{a} \beta_{j} \beta_{i}\right)|z\rangle=\forall_{i}^{\dagger} \mid r>, \tag{6.1}
\end{equation*}
$$

and proceeds to determine Q_{a}^{\dagger} (approxiantely). Thon RPA yields informatlon about \mid as relative to the ground state, namely:
(1) the exeftation energy E_{a} with respect to |r>;
(2) tramsition matrix eiements

$$
\begin{equation*}
X_{i j}^{a}=\langle r| \beta_{j} \beta_{i}|a\rangle \text { and } Y_{i j}^{n} \times\langle x| \beta_{i}^{+} \theta_{j}^{\dagger}|z\rangle \tag{6.2}
\end{equation*}
$$

These are obtained by soiving the RZA Gigenvalua problem (Ba 60)

$$
\left(\begin{array}{ll}
A & B \tag{6,3n}\\
B^{*} & A^{*}
\end{array}\right)\left[\begin{array}{l}
X \\
Y
\end{array}\right]=E\left[\begin{array}{c}
X \\
-Y
\end{array}\right],
$$

where X / Y are the colum vectors with components $X_{i j} / X_{i j}(1<j)$ and A and B ate hermitian and symmetric matrices respectively, with matrix elements (i<j,k<1)

$$
\begin{align*}
& A_{1 j, k l}=\langle v|\left(\beta_{j} \beta_{1},\left(\theta^{\prime}, \beta_{k}^{\dagger} \beta_{1}^{\prime}\right)\right)|v\rangle \tag{6.3b}\\
& \left.B_{1 j, k l} \sim \leqslant v\left|\left(\beta_{j} \beta_{1},\left(\eta^{\prime}, \beta_{k} \beta_{1}\right)\right)\right| v\right\rangle
\end{align*}
$$

In which ft " is the "Hamitonian" operator ased in determdining the quasi-partiole bagis; in this work, $H^{\prime} * H-\hat{N}$ (cf. the discussion EOLLOWLing Eq. (3,3)).

The posityve eigenergies $\&$ of , (6.30) are the excitation energies E_{a}, and the cowponents of the corresponding eigenvectors, the traneition matrix elements in Eq. (6.2), Within RPA, the excitations are (noninteracting) harnonic vibrations about the quast-particie vacumis configuration (cf. introduction to this chapter).

If particie number is conserved, then Eq. (6.3a) decouples into the (sepsatate) ph- and pp- RPA equations (Section 8.9 of (RS 80)). The structure of the ph- RPA equations is the same as that of Eq. ($6.3 a$). (This is not true, in general, of the pP- RPA equetions.) Thus several. properties of solutions to the phe RPA equations (Th 61), e.g. the fect that for each eigenvector with eigenvalue E (ϕ) , there ia in eigenvector with eigenvalue -E*, and the orthonormalisation condiltion for solutions with real non-zero eigenvalues

$$
\begin{equation*}
\sum_{i<j}^{\sum}\left(X_{i j}^{a^{*}} x_{i j}^{b}-Y_{i j}^{a^{\star}} Y_{i j}^{b}\right)=\operatorname{sgn}\left(E_{a}\right) \delta_{a b} \tag{6.4}
\end{equation*}
$$

apply also to solutions of Eq. (6, 3).

For simplicity, the anti-symmetrised matrix elements $\bar{v}_{\text {fyki }}$ of the interaction in the bara basis and the coefficients in the quasi-particle trangformation (Eq. (3.3)) will henceforth be assumed to be real-valued. Under these conditions, A and B are real matrices end, subatituting E^{\prime} expressed in tems of normally-ordered products of the operators $\beta_{1}^{\dagger}, \beta_{1}$ into Eq. (6.3 b), one finds that they have matrix elaments

$$
\begin{equation*}
A_{12,34}=\left(E_{1}+E_{2}\right) \delta_{13} \delta_{24}+A_{12,34}^{1} \tag{6.5a}
\end{equation*}
$$

with

$$
\begin{gather*}
A_{12,34}^{y}={ }_{5678}^{\sum} \bar{v}_{5678}\left(\left(\mathrm{U}_{51} \mathrm{~V}_{82} \mathrm{~V}_{63} \mathrm{U}_{74}-(1 \leftrightarrow 2)-(3 \leftrightarrow 4)\right.\right. \\
\left.+\mathrm{U}_{51} \mathrm{U}_{62} \mathrm{U}_{73} \mathrm{U}_{34}+\mathrm{V}_{7,} \mathrm{~V}_{82} \mathrm{~V}_{53} \mathrm{~V}_{64}\right) \tag{6,5b}
\end{gather*}
$$

and

$$
\mathrm{a}_{12,34}=\operatorname{S6}_{36} \sum_{8} \bar{v}_{5678}\left(\left\{v_{51} v_{62} v_{63} v_{74}+v_{53} v_{64} v_{81} v_{72}\right)\right.
$$

$$
\begin{equation*}
-(1 \leftrightarrow 3)-(1 \rightarrow 4)\rangle, \tag{6,5c}
\end{equation*}
$$

Where E_{1} and E_{2} are quasi-particle energles.

A feature of RPA is its lack of internal, conaletency. Any derivation of Eq. (6.3) presupposes | $\tau\rangle$ and $|v\rangle$ are not significantly different - i.e. the coefficients $X_{i, j}$ are mall in comparison to the coefficients $X_{i j 1}$. It is for this reason that $|v\rangle$ appears in Eq. (6.3b). (Another consequence is thet the identity $|a\rangle=Q_{a}^{\dagger}|r\rangle$ is lost - ef. section 2 of (LM 80).) The actuel solution of Eq. (6.3) may not conform with this assumption. Thus an RPA calculation is not a priori meaningful.

The elgenvalue problem in Eq. (6.3a) is not explicitly hernitian and so Its efgenvalues are not necessarity real-valued. Provided, however, a gelf-conslatent basis is mployed, it is possible to state precisely when complex algenvalues occur (0583); moreover, information about the appropriate metmefield can be extracted (Th 61).

Suppose one la dealing with a gelf-consistent banio which does not break any oymmetries. Then, if this bsois is atable (an the senge of section 3.1), the matrix

$$
s=\left(\begin{array}{ll}
A_{\mathrm{ph}} & \mathrm{~B}_{\mathrm{ph}} \\
B_{\mathrm{ph}} & A_{\mathrm{ph}}
\end{array}\right)
$$

appasadng in the ch- RFA equationa appropriate to this basis, is positive definite (Th 61). This means that a Cholesky decomposition of S existe - i.e. S can be weitcen $A s S=L^{T} L$, where L is a non-singular upper trianguiar matrix (Ghaptar 4 of (Wi 65)). The ph- RPA equations can be recast into the real syntnetric eigenvalua problem

$$
=\left(\begin{array}{cc}
1 & 0 \tag{6,6}\\
0 & -1
\end{array}\right)^{T}\left[\begin{array}{c}
\tilde{x} \\
\bar{y}
\end{array}\right)=\left[\begin{array}{l}
\bar{x} \\
\dot{y}
\end{array}\right)
$$

in which

$$
\left(\begin{array}{l}
\bar{X} \\
\tilde{y}
\end{array}\right\}=e^{-L_{2}} E\binom{X}{Y}
$$

where c is some constant, Hence, as long as the basis $L s$ stable, all the ph- RPA eigenvalues mugt be rasil and, in fact, nonmero. (The deteminant of the matrix on tine leat-haud side of 7q. (6.6) is non-zero.)

What happens if an eigenvalue e_{s} of 8 tends to zero as an interaction strengeh $\lambda+\lambda_{c}$, and, for $\lambda>\lambda_{c}$, is negative? Such behaviour means thet the quast particle vacuan f> for the basis is not stable for $\lambda>\lambda_{c}$ and indicates the existence of a new stable quasi-partiele vacuum $\left|v^{\prime}\right\rangle$ (with which is asoociated a new quasi-particie besis), which supplants |v>. It also implies that apair of phm RPA efgenvalues temd to zero as $\lambda+\lambda_{c}^{-}$, and that, for $\lambda>\lambda_{e}$, they become complex (Th 61). Thus, complex ph- RPA elganvalues are found what the basis ts unateble. Appealing to Thouless's theorem (Th 60, Ma 75), one can ralate $\left|v^{\prime}\right\rangle$ to $\mid v>$ by an expression of the form

$$
\begin{equation*}
\left|v^{+}\right\rangle=n \exp \left\langle\sum_{i<j} z_{i j} \beta_{i j}^{+} \beta_{j}^{\dagger}\right\rangle|v\rangle, \tag{6,7}
\end{equation*}
$$

Where n is a normalisation constant, and β_{1}^{\dagger} is an "old" quasi-particle operator corragponding to $|v\rangle$. New corvelmtions are present in $\|^{1} s$ and their character is indicated by the coefficientes $z_{\text {if }}$ In Eq. (6.7), when λ. \hbar_{c}, these coefficients coincide with the amplitudes $X_{i j}$ of the soft RPA node, whose energy $E+0^{+}$as $\lambda+\lambda_{c}^{-}$(BB 76). So, the soft mode and the new etable ground gtate are related; it mugt contain the correiathons that are excited in the old ground state by the soft mode.

The stabiltey of the basis is no longer a guarantee that a Cholesky decomporition of the matrity in the RPh equations exists if one adopte a broken-symmety basis which ts subject to constraints (os 83) or considers the p-RPA equasions (LA 80), In the case of broken-symmetry bases, the diecassion is further complicated by the presence, in general, or "opurious" modes these have eigenenergies which are identically zeco
throughout the broken-symanetry phase (TV 62). They reflect the existence of "sparfou states which can be generated by acting on the vacuma dtate with tive jorator which maps the quati-particie hilbext space oned itself, utiout rransforiettions of the sygter corresponding to a broken sympetry. \{ R_{i} has thus the ability, unlike, notabiy, the Tamm-Dancoff approximation (20s), to discinguish these staces from vibrational excitations of the syseem.) After a technicaily more enaborate disgussion (LM 80, DS 83), one again finds the same relationship between the reality of RPA eigenenergies and the stability of the basis employed, and between the plbrational modes whose energies become conples (when thits basis becomes unstabie) and the new stable quasiparticle vacutim.

The decrease to zard of the energy of a vibrational mode is undesirable in that, in general, it will no longer good approximation to eny excfted state, (Âs the energy tends to zero, $\left|Y_{i f}\right|+\left|X_{i f}\right|$.) Howevex, because this behaviour occurs when a besis becomes unstable, it can be used to predict changes in the menm-Fteld. There are geverai many-body systens in which a mean-field is readily available (e.g. a plane wave basis), but it is clearly appropriate only for a certain ranga of the intaraction parameters. Nhat is of interest is the precise range ot values for which the basis is appropriate and the nature of tha new basis that replaces it when going beyond that sange, Even in simple models, a complate self-consistent mean-field caleuiation is a difficult problam because of $i 4 s$ non-1inear character (HL 82, WH 86). The diseussion in the previous paragraphe implies that both issues can be ecthled by studyzag the Linear problem ef the behaviour of the RFA modes In the aveilable quasi-particle basis. Following this approach in the Agassi model, it is possible to eifminate the existence of a Eull HFR solution when $N=\Omega$ and darive the phase diagram (Fig. 3.1) using onjy the resuits of the HF and BCS ealculationa. This method is valid only when the quast-particle besis adopted is selfuconsistont. Nevertheless It is plausible that the mathod remaing ugeful even whan this is nos the case (KL 85).

The occurrance and form of spurious modas aro entixely deteminad by the quasi-particle basis. Thay oscur whenever the basis beaks a symmetity
of H^{\prime} which frssesses infinitestmal generators that are one-body operam tors ($\mathrm{M}_{\mathrm{H}} \mathrm{69}$). Any of these generatore B when expressed in terms of the quasi-particie operators of this basis, will be given by an expression of the following form:

$$
\begin{equation*}
B=B_{o}+\sum_{i j} \beta_{i j}^{1} \beta_{i}^{\dagger} \beta_{j}+\sum_{i<j}\left(B_{i j}^{20} \beta_{i}^{\dagger} \beta_{j}^{\frac{1}{4}}+B_{i j}^{02} \beta_{j} \beta_{i}\right), \tag{6,8}
\end{equation*}
$$

where B_{0} ia the ground state axpectation value of B (which may be zero), and $\mathrm{B}_{\mathrm{ij}}^{20}$, $\mathrm{B}_{\mathrm{ij}}^{02}$ are nonmzero becaase the basise breaks the symmetry for which B is the generator. Since $\left(H^{\prime}, B\right)=0$, one has the relation

$$
\langle v|\left(\beta_{f} \beta_{1},\left(H^{\prime}, B\right)\right]|v\rangle=0,
$$

which, using Eqs. ($6.3 b$) and (6.8), leads to the conciusion that

$$
\begin{equation*}
B_{s p}=\binom{8^{20}}{-\mathrm{B}^{02}} \tag{6.9}
\end{equation*}
$$

satisfies Eq, (6.3a) with elgenvalue $\varepsilon \equiv 0$. So the prectse form of spurious solutiont of the RPA equation can be established from results 1ike Eq. (6.8), without reference to the RPA equations themelves.

The identiftcation of s_{sp} In Eq. (6.9) as a spurious mede hinges on the Fact that an axactiy self-congistent basis is used. In practical calculations, technical simpliftcations are neceseary which forfetc this property of the basda. Spurioua modes no longer have eigenenergies which are identicaliy zero, nor is the corresponding eligenvactor as in Eq. (6.9) (UR 71). (The clear-cut division between spurious modes and other modes in a self-consistent basis is another advantage of this type of basis.) The extent of the deviation from thase resuits aeryes as a theck on the sfinpliftacations made (BN 70). On the other hand, when the bases are self-consiatent, the requirement that B_{sp} satisfy the RPA equations can be used to establish whethat the RPA metrity has beer correctiy celculated.

The presence of spurious modes suggesto that $\mathbb{E P A}$ respects, in some sense, the gymetries of the Hamilonian. In fact, while a vibrational RPA mode is interprated as an excitati, of an intrinsic state, a

Epurious mode can be 1nterpreted as collective (non-vibtytionai) motion of the Intrinaio state (e.g. a rotation or ctamadatidon) which zegtores the symmetry broken by dt to the aceuzacy of the random-phase approximation (MD 69 and referencos therafn), However, becouse RPA Ls a "stuaII atnglitwde approximation" and, reover, doen rot supply explicit waver Etuctions, there are certatn fgtities (MW 69, LM 80), To resolve them 1t 1s necessary to go beyon *he Eramswork of RPA (MN 69, MW 79, Ma 82), and so, in what followes the discussion will facus on vibram tional modes.

SEITTON 6.2: APPLICATION OF RPA TO IEE AGABST MODEL

The RPA caleulations considered in this section are performed within the self-consistent quasi-particle bases determined in cl:apter 3 and appendix 6.1. Detailed compartson of RPA results with exact results (Section 6.2.2) will be presented oniy for the $N * \Omega$ conflguration of the Agassi madel, as this is sufficient to establish the points of interest. On the other hand, in dealing with formal aspects of the application of RPA to the Agassi modei (Section 6.2.1), the nost general appropriate quasi-particie basis, namely, the deformedmsuperconducting besis, is adopted because $1 t$ provides a naturai framework for the stmultaneous dascussion of RPA within the spherteal and deformed ar bases and RPA within the superconducting basia.

6.2.1: The approprince collective RFA modes

The form of the transformation relating the quagi-particle operators in the deformed-superconducting phase to the bare operators $e_{\text {em }}^{\dagger} c_{\text {on }}$ is given in Eq. (A6.4), and the anti-symmetrised matrix elaments of the Agagni model interaction in the bare basis are obtadned by setting $\phi=0$ in Eqg. (A 6.6 m). Substituthig thage rasults into Eq, (6.5), one finds that the matrices A and B in the RPA equations eppropriace to the detormedmoperconduating bails have elemants

$$
\begin{align*}
& A_{\sigma_{1}} \pi_{1}, \sigma_{2} \mathrm{~m}_{2}, \sigma_{3} \mathrm{ma}_{2}, \sigma_{4} \pi_{4} \\
& =\left(E_{\sigma_{1}}+E_{\sigma_{2}}\right) \delta_{\sigma_{2} \pi_{3}} \delta_{\sigma_{2} \sigma_{4}} \delta_{m_{2} m_{3}} \delta_{m_{2}, m_{4}}-A_{\sigma_{1} m_{1}, \sigma_{2} m_{2}, \sigma_{3} m_{9}, \sigma_{4} m_{4}}^{(6, ~} \tag{6.10a}
\end{align*}
$$

with

$$
\begin{aligned}
& A_{\sigma_{1} m_{1}, \sigma_{2} m_{2}, \sigma_{3} m_{3}, \sigma_{4} m_{4}=}=\left(A_{\sigma_{2} \sigma_{2} \sigma_{3} \sigma_{4}} \delta_{m_{1} m_{3}} \delta_{m_{2} m_{4}}-\left(\sigma_{3} m_{3}+\sigma_{4} m_{4}\right)\right) \\
&+\operatorname{agn}\left(m_{2} m_{4}\right) A_{\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} m_{1}-\sigma_{2} \delta_{m_{3}, m_{4}},} \begin{aligned}
\left(\sigma_{4} 10 b\right)
\end{aligned}
\end{aligned}
$$

and

$$
\begin{align*}
& B_{\sigma_{1} m_{1}, \sigma_{2} m_{2}, \sigma_{3} m_{3}, \sigma_{4} m_{4}} \\
& =\left(\operatorname{sgn}\left(m_{1} m_{2}\right) \delta_{m_{1}-m_{3}} \delta_{m_{2} \rightarrow m_{4}} g_{\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}-\left(\sigma_{3} m_{3} \rightarrow \sigma_{4} m_{4}\right)}\right. \tag{6.10c}\\
& \left.\quad-\left(\sigma_{1} m m_{1} \rightarrow \sigma_{4} m_{4}\right)\right)
\end{align*}
$$

where E_{σ} is a quasi-particle enargy (the calculation of which is discussed in Appendix 6.1) end fetailed axpreseions for A_{1234}, A_{1234} and B1234 are given in Appendix 6.2.

Constianation of Eq. (6,10) Leeds to the conclusion that, the coherent collective RPA efgenvectors have compenents

$$
\begin{align*}
& x_{\sigma \pi, \sigma^{\prime} a^{\prime}}=\operatorname{sgn}(t i) \delta_{m-m^{\prime}}\left(/ 2 x_{\sigma} \delta_{\sigma \sigma^{\prime}}+x \delta_{\sigma-\sigma^{\prime}}\right) / R^{\frac{1}{2}} \tag{6,11}\\
& \left.Y_{\sigma \pi, \sigma^{\prime} m^{\prime}}=" \quad " \quad \text { (" } y_{\sigma} "+y^{n}\right) /^{\prime \prime}
\end{align*}
$$

where the normalisation condition for positive energy golutions $u s$ (ef. Eq. (6.4))

$$
\frac{\Sigma}{\sigma}\left(x_{\sigma}^{2}-y_{\sigma}^{2}\right)+x^{2}-y^{2}=1
$$

The coefficients x_{g}, y_{g}, x and y satisfy the fib RPA equation

$$
\left(\begin{array}{ll}
A_{c} & B_{c} \tag{6.12a}\\
B_{c} & A_{c}
\end{array}\right)\binom{X}{Y}=E\left[\begin{array}{l}
X \\
-Y
\end{array}\right]
$$

where

$$
x=\left(\begin{array}{l}
x_{1} \tag{6.12~b}\\
x-1 \\
x
\end{array}\right) \quad, \quad y=\left(\begin{array}{l}
y_{1} \\
y-1 \\
y
\end{array}\right)
$$

and A_{c} and B_{c} are symmetric matrices, If

$$
A_{c}=\left(\begin{array}{ccc}
a_{1} & -a & -a_{1} \tag{6.12c}\\
& a-1 & -a_{-1} \\
& & a
\end{array}\right) \quad, \quad B_{c}-\left(\begin{array}{ccc}
b_{1} & -\dot{b} & -\dot{b} \\
& b-1 & -\dot{b}-1 \\
& & -b
\end{array}\right)
$$

then

$$
\begin{align*}
& a_{\sigma}=\operatorname{ci}_{\sigma}-A_{\sigma \sigma \sigma \sigma}-\frac{\Omega}{2} A_{\sigma \sigma \sigma \sigma}^{\prime} \\
& b_{\sigma}=-(\Omega / 2-1) B_{\sigma \sigma \sigma \theta} \\
& a=A-n_{1-111}+\frac{\Omega}{2} A^{\prime}-1-111 \\
& \bar{b}=-8-1-151+\frac{8}{2} 8-11-12 \\
& a=E_{1}+E-1-A-111-1-A 1_{11-11}-\Omega A_{-11-11} \tag{6.12d}\\
& b=-\mathrm{B}-11-11+(2-1) \mathrm{B}-1-111 \\
& x_{\sigma}=\sqrt{2}\left(A_{V \sigma-11}+n / 2 A_{\sigma \sigma-11}^{\prime}\right) \\
& \dot{b}_{\sigma}=\sqrt{2}\left(-B_{\sigma \sigma-11}+n / 2 B_{d-10}\right) .
\end{align*}
$$

As it stands, the systen in Eq. (6.12) is fornally applicable to ali bases appropriate to the Agassi nodel. However $\ddagger \mathrm{t}$ simplifies stili further if the basis is either one of the $A F$ solutions or the BCS solution.

For any of these solutions, $a_{a} m \hat{b}_{a}=0$, and $E q \cdot(6,12$) decoupias into the two independent systems

$$
\left[\begin{array}{cc}
a & -b \tag{6,13a}\\
-b & a
\end{array}\right]\left(\begin{array}{l}
x \\
y
\end{array}\right\}=E\binom{x}{-y}
$$

end

$$
\left(\begin{array}{ll}
A_{r} & B_{r} \tag{6.13b}\\
B_{r} & A_{r}
\end{array}\right)\binom{X_{r}}{Y_{r}}=E\binom{X_{r}}{-Y_{r}}
$$

Where the definitions of vectors X_{r}, Y_{r} and $2 x 2$ matrices A_{T}, B_{T} are Obvions from Eq. (8,12), In the case of a HF solution, because particle number 4 s conserved, $\frac{\pi}{a}=b_{d}=0$, and Eq. (6.L3b) reduces to

$$
\left(\begin{array}{cc}
a_{1} & -\dot{b} \tag{6.14a}\\
-\tilde{b} & a-1
\end{array}\right)\binom{x_{1}}{y=1}=E\left[\begin{array}{c}
x_{1} \\
-y{ }^{2}
\end{array}\right)
$$

nand

$$
\left(\begin{array}{cc}
a_{4} & -\dot{b} \tag{6.14b}\\
-\vec{b} & a_{1}
\end{array}\right)\left(\begin{array}{c}
x-1 \\
y_{1}
\end{array}\right\}=E_{n}\binom{x=1}{\cdots y_{1}}
$$

Where E_{f} / E_{h} is the energy of $a(\Omega+2)-/(\Omega-2)$-particie RA state zelative to the RPA ground state of the Ω-particle system. The decomposition of Eq. (6.12) Into Eqs. (6.13) and (6.14) i.lustrates preatsely how the quasi-particle RPA equations combine the ph-RPA equations (e.g. Eq, ($6,1 \hat{3}$)) and the pp-RPA equationa (e.g. Eq. (5.14)) all under one umbralia. On the other hand, Eq. (6.14) obscures the aymmetrical.
interxelatitonship beturen the colkective pp-mode (paifon) and the collective himmode (holon). These can both be related to solutions of

$$
\left(\begin{array}{cc}
\left(a_{1}+a-1\right) / 2 & -\ddot{b} \tag{6.15}\\
-b & \left(a_{1}+a-1 / 2\right.
\end{array}\right)\binom{\dot{x}}{y} \times E\binom{x}{-\bar{y}} .
$$

If x, y satisfy Eq , (6.13) with elgenvalue E , then

$$
\begin{equation*}
x_{1}=z, y-1=z \tag{5.26fa}
\end{equation*}
$$

satisfies Eq. (6.14a) with eigenvalue $E_{p}=E-\left(a_{1}-E_{1}\right) / 2$, and, at the same tme,

$$
\begin{equation*}
x-1=x, y_{1}=y \tag{6.16b}
\end{equation*}
$$

satisties Eq. (6.14b) with eigenvalue $\mathrm{E}_{\mathrm{h}}=\mathrm{E}+\left(\mathrm{a}-1-\mathrm{a}_{1}\right) / 2$.

The collective ph-node in the spherical basis is precisely that found in the EMG model when $x<1$ (MGL 65); yindiarly, the patron and holon modes (in the spharical basis) are found in the two-level Pairing wodel when $\Sigma<1$ (BB 66). Implicit in RPA Is the assumption that the RPA modes do not interact with esch other (cf. section $8,4.5$ in (RS 80)), Hence, the presence of the pairon and holon states, whthenergies E and E_{h}, Implies the extistence of a collective pairon-holon excitation in the s-particle system of energy $E_{p}+Z_{h}$. The studies in (MGL. 65) and (BR 66) demonstrate that the collective ph-mode (or monopole mode) and the pairon-holon mode do in fact describe the exact low-iying collective exctuations uf Exxed particle number within the LMG and Patring models respectively. On the other hand, the aiscussion in section $2,2.1$ of the exact collective excitations of the Agassi model when X, Σ are mail, showad that they can be interpretec as non-interacting superpositions of the (besic) excitations found separately in the LMG and Pairing models. Thus the ara solutions isolated in Eqs. (6.13 a) and (6.24) are indeed those approptiate to the collective excttations of the closed-shell configurations of the Agassi model when $\mathrm{E}, \mathrm{X}<1$.

Because of the simplicity of the tmall interaction strength 1.1 mit of the Agassi model, the results above (specifically Eqs. (6.13a) and (6.14))
interrelationghip betwean the collective pporade (patron) and the collective htmode (holon). Theae eat both be related to solutions of

$$
\left(\begin{array}{cc}
\left(a_{1}+a \sim_{1}\right) / 2 & -\vec{b} \tag{6.15}\\
-\vec{b} & \left(a_{1}+a-1 / 2\right.
\end{array}\right)\binom{\hat{x}}{\vec{y}}=E\left\{\begin{array}{l}
\bar{x} \\
-\vec{y}
\end{array}\right) .
$$

If z , y setisfy Eq. (6.15) wth eigenvalue E , then

$$
x_{1}=x, y-1=9
$$

satisfieg $\mathbb{Z q}$. (6.14a) wich eigenvaide $E_{P}=k-\left(a-1-a_{1}\right) / 2$, and, at the same tine,

$$
\begin{equation*}
x-1=x_{2} \quad y_{1}=\tilde{y} \tag{6.16b}
\end{equation*}
$$

satisfies Eq. ($6,14 b$) with eigenvalue $E_{h}=E+\left(a-1-a_{1}\right) / 2$.
The collective ph-mode in the spherical besis is precisely that found in the LMG model when $X<1$ (MGL 65); aimilarly, the pairon and holon modes (in the spherical basts) are found in the two-level Pairing model when $\mathbb{E}<1$ ($B B 66$). Inplicit in RPA is the assumption that the RPA modes do not interact wath ach other (cf. section 8.4 .5 in (RS 80)). Hence, the presence of the pairon and holon states, with energies E_{p} and E_{h}, impliles the exdstence of a collective palronmholon excitation in the S-particle system of energy $E_{p}+E_{h}$. The studies in (MGL 65) and (BB66) demonstrate that the collective ph-node (or monopola node) and the paironmolon mode do 1 fact describe the exact low-lying collective excitations of fixed particie number within the LitG and Yairing models respectively. On the other hand, the discussion in section 2.2.1 of the exact collective excications of the Agassi model when X, I are small, showed that they can be interpreted as nom-interacting superpositions of the (basic) exctracions found separately fin the LMG and Pairing models. Thus the RPA solutions fsolated in Eqs. (6.13a) and (6.14) are indeed those appropriate to the collective arcitations of the closed-shell conflgurations of the Agassif model when $\varepsilon, \chi<1$.

Because of the simplicity of the sanlil interaction strength litait of the Agassi model, the results above (specifically Eqs. (6.138) and (6.14))
could have been heuristically inferred from a knowledge of the RPA calculations within the LMG and Paizing models - viz. these calculations Sugeest that a reasonable ansatz for the operator in Eq. (6.I) corresponding to a collective negative parity excitation within the Agassi model ta

$$
\begin{equation*}
0_{\pi}^{+} \Leftrightarrow \times J_{+}-y J_{-} \tag{6.17}
\end{equation*}
$$

which is conststent ofth the restilts above. However the rather format Aiscussion above has the advantage that it indicates the following excrapolation beyond this "simple" regime to the regimes of large Σ and X, where the problem appears far more complex (OH 84b) ; the coherent collective RPA modes given by Eqs. (6.11) and (6.12) are, in general, the wodes appropriate to the description of the excicacions within the collective subspace of the Agasad model.

The charactar of these modes in bases ochex than the sphericail HF basis can be sumerised as follows.
(I) Daformed HF. In this basis, the nodes are fomally identical to those in the spherical basis. "he physical interpretation of these modes is however radically different. They must now be assumed to describe both members of excited parity doublets buflt on the parity doublet containing the ground state of the s-particle system.
(2) Supercondintting (BCS). As in the sphertcal HF basis, one finds a negative parity "monopole" mode, namely the solution of Eq. (6.13a). The solucions of Eq. (6.13b) possess positive parity. The fact that particie number symmetry is broken implies that the positive parity vector with not-zero components

Is a solution of the RPA equationt with elgenenergy acro. Qbencye that this vestor is of the same forti as the vectors in Ef. (6,11), and so must gatisfy Eq, ($6,13 \mathrm{~b}$), which is confizmed by direct substitution. This mode is of rotational character: as
 quasi-sptn space corresponding to the SU(2) group with gezerators $Y_{ \pm}$and Y_{0}. (The absence of a simitar "spurfous" solation when parity symmetry ts broken is a consequence of the fact that it is a discrete symmetry with no ineinitealmal one-body generator.) The other wode deterained by tg. (6.13b) is the "pairing" vfbration. This is the councerpart of che pairon-holon excitation found in the HF bages, with the difference that, in addition to an anargy, one obtains an eigenvector, enabling one to calculate Exansition matrix elements.
(3) Deformed-superconductige (Full hifb). Not surprisingly, the modes in this basis share features of the modes in the superconducting basis and the deformed (ER) basis. As in the euperconducting basia, thare ate three distinct modes of which one ts ",jpurious". The remaining modes can again be classified as "pairing" and "monopole" modes, but, as in deformed $u F$, they now describe partly doublets. Because the monopole and parring modas satisfy the same set of equations, they are identified by their eigenvectors: the dominant components of the monopole (pairing) mode eigenvector are $x, y\left(x_{g}, y_{0}\right)$.

So, independent of the choice of besis, RPA predicts two fundemental excitations in a systen of given particle number, a monopole vibration and either a paiting vibration (BCS, HFE basis) or a pairou-holon vibration (HF bests). These have negative and posititve parity respectively except when the busis 15 "deformed", in which they duscribe both nembers of excited parity doublets. Observe that these findings are qualdtativeiy conaistent with the results of section 2.2.

An inceresting aspect of the behaviour of chese coilective modes is that it to they whith are affected by instabilities of the quasi-particle bases. Constder, for axample, the padren-hoion mode in tha spherical phase of the $N=0$ syscem. This excites Coopar pairs. on the other hand, in section 3.3 it was shown that the sphertead phase beasmes unstuble wath respecs to the formation of Cooper pairs for Σ_{0} il 1 . Reonliing the diocusation of sestion 6.1, ona gan conclude that, ae $\mathrm{I}_{\mathbf{*}} \mathbf{1}^{-1}$, the augrgy of the pairon-holon mode must tend to zero, and that,

ELg. E.L Loct at which energies of RPA modes (indycated by labelled arrows) tend to zero, Curves A and D are the supexanducting - to - deformed and superconducting - to - deformed superconducting tranaltion lines reapectively; eurve B is given by $x=1$ and anrve 0 by $x=(\Omega-1)(1-\Sigma)$. In the labels, M, P and $P H$ denote monopole, pationg and pairon-holon modes, and $B, D, D S$ and S the superconducting, deformet,

Fig. 6.2 Compardson of exaet and approximate excitation energiag when $N=18,0 m 22$ and $\Sigma_{N}=0.5$. Curve A is obtained by uging an approximation discussed In section 7.2. Mhe energies of the RPA monopole and pairing vibrational modes within the appropriate quasimparticle bases are fidentified by the key in the diagram.
for larger values of Σ_{0}, it is unphysical beling no longer real-valued. Furthemore, because, at the spherical-tomeperconducting transition, $\psi_{\text {BCS }}{ }^{*} \dagger_{\text {BCS }} m$, which are the values of ϕ and ψ in the spherical phase, the paliting mode (Ln the BCS basis) formaliy satisfies the same equations as the pairon and holon wodes at the transition puint, and so the pairing mode energy must tend to zero as $\Sigma_{0}+1^{+}$. (Racause the BCS solution does not exist for $\Sigma_{0}<1$, this zero in the pairing vibrational mode energy should not be interpreted as a sigal of instab_ity.) The display of aimilat behaviour by the other coliective modes can be anticipated in the same way from the results in chapter 3. This finform mation is convententiy sumarised in Fig. 6.1. Expiletc confimation of thase patterns in che case of the $N=\left\{\begin{array}{l}\text { configuration cen be seen in the }\end{array}\right.$ closed-form analytic results given in saction 6.2.2, Eq. (6.19), while numerical ealculasions are eonsigtent with Fig. 6.1b (of. Fig. 6.2).

In the next section, comparisons of RPA energies with exact excitation energies will be conplemented by comparisons livolving RFA matrix mements. Matrix elements of the particie number conserving quasi-spin operators J_{0}, J_{x} and J_{y} wilit be considered. (The results of section 2.2 indicate that the behaviour of matrix elements of these operators is typical of that displayed by matrix elements of any of the other quasiopin operators,) Expreasions for these matrix elements, applicable to any basis appropriate to the Agassi wodel, can be obtained :y working within the deformed-superconduceing basis. Take, for example, the operator J_{0} : in terms of the quasi-particle operators $\beta_{\sigma m}^{\dagger}, \beta_{\text {cin }}$ of the deformed-superconducting basis, it is given by

$$
\begin{aligned}
& \text { + (teras which do not consribute to RPA matritx elements), }
\end{aligned}
$$

and so the matrix elament betwan a coharanc colleceive RPA state fos and the RPA gtound gtate fry is, from Equ, (6.2) and (6.11),

$$
\begin{equation*}
\frac{2}{\Omega^{h_{2}}}\langle c| J_{0}|r\rangle=\sum_{a}\left(n_{1,0}-n_{-1, \sigma}\right)\left(x_{a_{1}}+y_{\sigma}\right)+\left(n_{1}-n-1\right\rangle(x+y) \tag{6.18g}
\end{equation*}
$$

where

$$
\eta_{\sigma, \sigma^{r}}=2 u_{\sigma \sigma^{1}} v_{\sigma \sigma^{\prime}} \quad, \quad \eta_{\sigma}=u_{\sigma_{1}} v_{\sigma-1}+(1 \leftrightarrow-1\rangle
$$

In the same way, the matrix elements of J_{x} and J_{y} between $\mid c>$ and $|r\rangle$ are
where

$$
\mu_{\alpha \sigma^{1}}=2 u_{\sigma \sigma^{1}} v_{-\sigma \sigma} \quad, \quad \mu_{\sigma}=u_{\sigma_{1}} v_{-\sigma_{-1}}+(1 \leftrightarrow-1) .
$$

The signs of these matrix alemencs are, of course, not deternined by the solution of Eq. (6,12). It is convenient to take $\left\langle\left.\right|_{\mathrm{x}}\right| \mathrm{fr}$ and the exact cransition matrix alements of J_{x} to be positiva; this detamines the aigns of the matrix elementa of J_{y} because, imdependent of the basis, $\langle\varepsilon| J_{x}|r\rangle$ and $\langle c| J_{y}|r\rangle$ are to be conupared wath exact matrix elements betwaen the same pair (or pairs) of atates. The phase of matrix elements of J_{0} hovever remains arbitwary; they will be assumed to be positive.
6.2.2 Compartson of RPA with exact resuits

When $N *$, It $1 s$ posaible to sotve tor the collective RPS nodes analytm 1cally. One finds that, incependent of the bssis, the excitation energy of the wonopole vibration can be written as

$$
\begin{equation*}
I_{\mathrm{m}}=\alpha_{+} a_{-} \tag{6.19a}
\end{equation*}
$$

where $\alpha_{ \pm}$is given in Table 6 . Stailarly, the energy of boeh the paironm holon and the pairing vibretions is given by

$$
\begin{equation*}
\frac{{ }_{\mathrm{E}}^{\mathrm{P}}}{}=2 \beta_{+}{ }_{-}, \tag{6.19b}
\end{equation*}
$$

where $\beta_{ \pm}$is also defined in Table 6. The transition watrix elements of J_{x}, J_{y} and J_{0} (cF. Eq. (6.18)) can also be written in a compact manner. The matrix elements of J_{x} and J_{y} between the pairing vibrution fps (superconducting basis) and the RPA ground state |r> must vanish because both states possess positive paricy; in the case of the monopole mode |m> they are given by

$$
2 / \Omega^{\frac{1}{2}}\langle m| J_{x}|r\rangle=1_{x}\left(\alpha_{+} / \alpha_{-}\right)^{\frac{1 / 5}{2}}, \quad 2 / \Omega^{\frac{1}{2}} t\left\langle m^{2}\right| J_{y}|r\rangle=p_{y}\left(\alpha_{-} / \alpha_{+}\right)^{\frac{1}{2}}
$$

where $\mu^{\prime} x^{\prime} y$ are defined in Table 6. Syanetry considerations imply that the only tratsition matrix elements of J_{0} which can be non-zero are $\langle n| J_{0}|r\rangle$ in the deformed phase and $\langle p| J_{0}|r\rangle$; they are given by

$$
2 / \pi^{\frac{1}{2}}\langle m| J_{0}|r\rangle=\left(\alpha_{4} \alpha_{-} / X\right)^{\frac{1}{2}}, 2 / \pi^{\frac{1}{2}}\langle p| y_{0}|r\rangle=\left(2 \beta_{+} \beta_{-} / \delta_{0}\right) .
$$

(Matrix elements of J_{0} Invoiving the pairon-hoion excitation are not constdered because, as vas pointed out in the previous section, no RFA eigenvector is avatiable for this gtate.) The fact that the matrix elements of all three operators between |mis and |ry are non-zero th the deformed besis may aeem sontradictory. However, in the deformed phase, the axact apectrum must be treated as if it consista of parity doublete. The gPA watcix elemente $\langle m| J_{x} \mid$ s \rangle and $\langle m| J_{y} \mid r>$ must be compared with the matyix elaments of J_{x} and J_{y} between the positive and thegetive parity members of the ground state parity doublet and the negative and positive partry members, respectivety, of tho appropelato excitod parity doublet; $\left\langle\left. m\right|_{0} \mid r\right\rangle$ had to be comparad with the matrix elements of J_{0} betwean members of these two doublets with the sume parity.

The energies of the collective RFA modes are compared with exact excitation entrgies in Figa. $6.3-4$; $N=\pi=20$ with ε being varied and $x=1 / 2$ and 5 respactivaly (as in Figa. 2, 2a and 2.5).
where $\alpha_{ \pm}$is given in rable 6 . Similariy, the energy of both the paironm holon and the pairing vibrations da given by

$$
\begin{equation*}
\frac{E_{j}}{\varepsilon}=2 \beta_{+} \beta_{-} ; \tag{6.19b}
\end{equation*}
$$

where $\beta_{ \pm}$is also defined in Table 6 . The transition matrix elements of J_{x}, J_{y} and J_{0} (cf. Bç. (6.18)) can also be wrytten in a fompact manzer. The matrix elements of J_{x} and J_{y} between the pairing vitration $\left.\right|_{p}$ (sHperconducting beals) and the RPA ground state |r> must vanish becasse both staces poisess positive parity; in the case of the monopole mode |ar thay are gluen by

$$
2 / \Omega^{\frac{1}{2}}\langle m| J_{x}|r\rangle=\mu_{x}\left(\alpha_{+} / \alpha_{-}\right)^{\frac{1}{2}}, \quad 2 / n^{\frac{1}{2}} \pm\langle\pi| J_{y}|r\rangle=\mu_{y}\left(\alpha_{-} / \alpha_{+}\right)^{\frac{1}{2}},
$$

where ${ }_{x}$, H_{y} are defined in Table 6. Symumery conalderations imply that the only tramsition matrix elements of J_{0} which can be non-zero are $\langle m| J_{0}|r\rangle$ in the deformed phase and $\langle p| J_{0} \mid r \geqslant$; they are given by

$$
2 / \Omega^{\frac{1}{2}}\langle\pi| J_{0}|\pi\rangle=\left(\alpha_{+} \alpha_{\infty} / X\right)^{\frac{1 / 2}{2}}, 2 / h^{\frac{1}{2}}\langle p| v_{0}|\Sigma\rangle=\left(2 \xi_{+} \beta_{-} / \Sigma_{0}\right\rangle_{.}
$$

Matrix elements of J_{0} involving the pairon-holon extitation are not considered because, as was pointed out in the previous section, no RPA eigenvector $1 s$ available for this state.) The fact that the matrix elements of all three operators between |m> and |r> are non-zera in the deformed basis may seem contradictory. However, in the deformed phase, the exact spectrum must betreated as if th consists of parity doublecs. The RPA matrix elementa $\langle m| J_{x}|r\rangle$ and $\langle m|$: $\left.{ }^{2}\right\rangle$ must be compared with the matrix elamente of J_{x} and J_{y} between the positive and negative parity nembers of the ground state parity doublet and the negative and positive parity membors, respectively, of tho appropriate excited parity doublet; <m|J $J_{0} \mid r>$ has to be comparad with the matrix elements of J_{0} betwean nembers of these two doublets with the same parity.

The energias of the collective RPA modes are comparad with exact exara-
 and 5 respeotively (ot in Figs. 2.20 and 2.5),

AaIvaly, one expects the colleccive RPA modes to describe the excfted states of lowest encrgy, this expectation is in fact met for $X=\frac{1}{2}$. Figure 6.3 s shows that the excitation energy of the lowest negative parity state is well described by the monopole mode in the stable quasi-particle basis. Similarly, except for $\Sigma<0.15$, the lowest positive parity exeited state is approxinated first by the pairon-holon mode (in the spherical phase) and then by the pairing vibration (in the superconducting phase), when Σ is amali, mattert are compicared by the presence of another positive parity stace of comparable excitetion energy; in fact, as $E * 0$, it is lower than the state described ty the pairon-holon mode. However it is also an APA state in thet it is approximated by the second hamontc of the monopoie vibration.

An inportant resuit illustrated by Fig. $6.3 a$ is that it is essential to use a stable basis in an RPA calculation. For $\Sigma_{o}>1$, the spherical HF basis is unstable. Because it is unstable with respect to the formation of Cooper pairs, the energy of the peiron-holon mode becomes complex (in) fact, imaginary) beyond this point and it has to be discarded. On the other . ad, the properties of the monopole mode within the spherical basis ere unaffected. If the results of the RPA calculation of negative parity states (which do not fnclude the pairon-holon mode) are taken in isolation, there is no reason to discard this mode. However Fig. 6.3a demonstrates that it does not have any meaning in thit region.

It Pig. f. 3 X is fuxed and Σ is veried. Analogous patterns are found if tristead Σ is fixed (at some value less than $(\Omega-2) /(\Omega-1))$ and x is Increased. In this case there is a transition Erom spherical HF to deformed HF. The roles of the monopole, and peiron-holon and pairing modes are fntetchanged. A plot of the monopole mode energies would now look like Fig. 6.3b (GH 34b), while the patron-holon and pairing mode energies would behave as tn Fig. 6.3n. When either X is varied (with E fixcd) or i is varied (wieh x fixed), the mode associated with the fastability of the spherical HF basis performs poorly the the transition regton (as antictpated $f n$ section 6.1). Tha energy of the other mode remains a good approximation if calculated in the stable basis. Outside this region the energies of ell modes compare well with the exact energies. This is in particular true in the regime where either x or E 1s latge.

Fig. 6.3 Comparison of exact and RPA excitation energies when $x=$ b, N * \cap a 20. (a) Exact energy of lowest negative parity state and RPA monopole mode energies in: spherical than bast? C) ; BGS basis (curve D). (b) Exact energies of lowest. excited positive parity states and RPA pairon-holon and pairing mocha energies tn: spherical HF basis (curve A); BCS basis (curve E).

Fig. 5.5 Comatesaon of exhac ond RPA matrix elemants when $k=0=20$. In all dingtama tho motrix elamante are acaled by a tactor of $2 / \mathrm{A}^{\text {i }}$. (a) $x=4$. zta oxpet and approximate matrix alemante of J_{x} betwean the ground atate and the lawest nagativo pattity afnきa arat carve A, EPA in aphoricel MF basis; eurva B, RPA In less bnaint eurst C, exnct, The oxate and mpproxitance
 positive parity excleed actute are corva 11 , exatif earve \mathbb{E}, RPA in BCB basic. (b) Xatrix alament of $13 y$ butween the greund atots and lowest negarive parity detata when $X=3$ t

 io stabia. The axnes natrix elemente are betveant tho negustive purtity maiuber of El:e ground atata doublet and the positive parity mapleaxa of the first, neeond ata thisd oxetted parity doublate \{curves A, C and E respectively\}; the potitive parity nambay of the ground stato doubiot and the nagative parity mombars of the firat and angoud exolead parity doulutets (mufyas I and D reapectivoly), Garye F is tha RPA foblate in tha deEorzed hill baria.

 In all Hidgzans tha watrik alswantit axa saled by a factor of
 of J_{x} watwan the groused atate anki the lawont nogativo parity etata ara: curwa h, RPh fol gpherioal HF basia; garve B, APA In Beg banial turvg C, axtet. The exaet and appramimata matrix slemants of $J_{\text {o }}$ hotwon the ground atate and the louese
 RPh in DCE baskg. (b) Mnerix elament of $1.5 y$ batween che ground atate and lowost negative parity detato whan $x=5$; curve A, axnet: eurya it, RPA in hes basig. (0) Matrix olequates of J_{x}, when $x=5$ tin the rogtot whate the deformed HF
 nogetive parity mempur of the storate atate doablet and tho
 parity doublata (aurvea A, O and E rapectivoly), tha pasitiva parity mestar of the ground sente coublat mest tha negative parity ambory of tho firat and neochd axcited parisy doubidete
 tho daformaded dif bainia.

As gpherioaj HF is not stable when $X=5$ (see Fig. 3.1), only the results of RPA calculations in the deformed $H F$ and BCS bases are compared with exact energies in Fig. 6.4. The RPA stetes celcuixted in the deformed $H F$ basis mast be interpreted as parity doublets, and indeed, the fow-1ylng menbers of the exact excitation spectrum for X a 3 do form parity doublets in the deformed phase provided one is not too clase to the deformed-tomsuperconducting transition point. For $z<2.5$, the menbers of the two lowest excited parity doublets cannot be resolved on the scales of Figs. $6.4 a$ and b. In this interval they are reasonably approximated by the monopole and pairon-holon podes respectivaly in tha deformed $H F$ basis. Although the members of the lower of thase two parity doubletis separate for larger valuas of E, they can atill be viewed as belongting to a "doublef". It continues to be approxinated by a mode in the deformed HF basis, namely, the phiron-holon mode, but the level of agremertic deteriorates (Yig. 6.4b). The other parity doublet is far more gloarly defined until the level repulaton at $\mathbb{E} \equiv 3.5$ (Fig, 6, Gb); tip to chis point it is well described by the monopole mode in the deformed $H F$ basis. To the extent that atates (i) and (ij) in Fig. $6.4 a$ fonn a "doublet", so do states ($2 v$) and (v) immediately aftar E 3.5. Thin doublet is described by the monopole node in the deformed HF basis. By contrast, the positive parity otate (itit), which has a lower axcitation energy chan this doublet, cannot be a RPA state in thia besis because it does not belong to a parity doublet. As the tranaition region is approached, not only does the quality of the RFA degcription of "doublets" worsen, but it al*o falls to describe all the low-lying colidetive states, When $x>5$ this feature of the spectrum is geen more clearly.

At $\Sigma=\Sigma_{\mathrm{c}}=4.74$, the deformed $H F$ basis becomes unsteble thad the BCS basis, which exists provided E $: 0.74$, becomes atable. The RPA nodes in the deformed B b basia behave in the same way at this point as the correspondatg RPA nodes in the spherical 1 FF basie at the sphericalmesuperconducting transition (cf, fig. 6.le). The monopole mode in the deiomed HF bagis remaine wallmbehaved even when the basis ia not stable, but, as in $\operatorname{Pig} .6 .3 \mathrm{e}$, it is completely meaningless (Fig. 6.4a). Likewise the pairing mode (in the BCS basis), although formally acceptable when the BG's basis is unstable, cannot be taken sertously in thas region (Fig. 6.4b). This applies in particular to the varisting of the
 occurrence of a phase srameltion, but it would be wrong "n do so.

In the region in which the BCS basis is stable, the energies of its RPA modes eompare wall whth the energies of exact atates. It can ba geen from Fig. 6.4 a that the negative parity monopole mode approximates the Iowest negative parity state, and that the approximation remains remarkably good as the transition point is approached. In the limit of large Σ (i.e. $\Sigma>7$), the posttive perity pairing mode, like the monopole mode, describes the lovest excited state with the same symmetry. However, between the transition point and the level "crossing" at $\mathbb{Z} \geqslant$, the paiting mode corresponds to the second ascited state of positive parity. The lower excited positive parity state can be viewed as the second harmonic of the monopole vibration.

Through the comparison of energies the exact state or group of btates which can be identified with a collective RPA mode have been determined. It is now possible to compare the RPA predictions for transition metrix. elenents with their exact values.

Figure 5.5 contains cotparisons of the RPA predictions for matrix elements with the f exact values. As before $N=\Omega=20$ with $\chi=\frac{1}{2}$ and 5 , and Σ is varied. Results for $X \mathrm{~m}$ 名 are all contained in Fig. 6.5a which shows that the two ralevant exact matrix elements are well described; the level of quantitative agrement detertorates in the transitton region but still remains falr. This also applles to the tatrix element of $J y$ not shown. A comperison of these results for the matrix elements with those for the energies (Fig. 6.3) in the case of the pairing mode shows surprisingly that the former are significantily better In the transition regton: evan when the energy of a soft mode is a poor approximation, the matrix elaments can still be good, Figures 6.51 and a demonstrate that the RPA results are also reasonable appreximam tions when $x=5$. The discrepancles can become signisionnt as the ramsirion point is appronched, but, as is most cleariy shown in Fig. 6.5b, the behaviour of the RPA natrix elements renalns at least qualitatively correct, Such findings lend support to the methods employed in other investigations (t.G 85).

The parity doublet deseribed by the monopole mode in the deformed $u F$ basis is involvea in two leval repulsions (Fig. 6.4a). This makes the comparisong in Fig. 6.50 rather complex, but they confirm the agsignments made in discussing Fig. 6.4a. The intervals of poor agreement in Fig. 6.5 c ac $\mathbb{Z} \approx 2$ and 3.5 coincide with the intervals in which the exact atates repel eacin other. The RpA "ignores" the level repulsions. On the other hand, the exact resulta in Fig. 6.5 c demonstrate that the level repuisions between excited states amount, in effect, to nothing toore then level crossings. Thus this is a desirable sharacteristic of RPA.

When these calculations are repeated for smaller values of X, namely $1<x<3$, the RPA in the deformed HF basis is poor (GH 84b) while at still performs well in the BCS basis - i.e. the width of the region of poor agrement in the deformed HF basis parallel to the x -axis is broader than in the BCS besis parallel, to the Σ-axia. This is a pacum liarity of the model. Por the RPA fat the deformed HF besis to work wail it is necessary that the exact excited states with quite different unperturbed energies form almost exactly degenerate parity doublets. This pattern only energes once X is quita large - much larger than the value at which the ground state parity doublet first appears. In contrast, the APA in the BCS basis does not require rigict patterns in the excitation spectrum of the $N=$ n gystem.

The overall pattern to emerge from the comparison of RPA and exact resules an be sumanibed as follows. First and foremost, RA calculations are meaningful oniy in gtible quagi-particie bases. This can be Interpreted as further support for che singularity conjecture of gecsion 5.1 , which suggefte that the singularities wherant in the exact colutlon are acequately mimaked by atable bases, but not by unstable basas. The connaction with the Binguiartey conjectuce in turn suggests this finding ie not opectife to the Agassi nodel. It has thus practicei significance for calculations within realistic systens in which, for reasons of economy, only some of the collective RPA modes are considered. While these modes may be well-behaved, an fristability of the basis may be associated with a mode not under constderetion. If so, the results will be invalid, and this will not be obvious by considering them alone.

As regards the quality of the RFA (In a stable begis), this depends on how cloce one is to a "phase txansition". Well away fyom a phase transition, the RPA is adequate (except at points whare excited statea are involved in level repuiaions among themselves), but it becomes, in general, poor (although still qualitativaly correct) in the imediate vicinity of a phase transition. This is also true of the HPB Gescripm tion of ground state properties. So, in the treatment of the collective low-iying states and the ground state, one can identify the vicinity of a phase transition as a region in which the "mean-field approach" (i, e. HFS and RPA) fails, while on eithet side of a transition it is adequate. More alaborate treatments are required primarily in the region of phase transitions. The same conclusions emerge from realistic applications (see, for example, chapter 11 of (RS 80)).

Model otudies show that the solution to a many-body problem, when exprassed in tems of the quasi-particle basis appropriate to the non-interacting lintit, becomes (in general) extremely complieated with increasing interaction strength, and patterns wichin the solution are not transparent (Gt 84b). The success of the mear-field approach in the region beyond phase cramsition is thus remarkable: it tidentifies a structure which, for example, enables one to express some of the complicated states of the solution to the manymbody problom as simple RPA states built on a new "vecuuti".

The singularity conjecture can account for the deteriorating quality of the mean-field approsch as the location of phose transtitions is apm proached: the inadequacies of the way in which the gingularities fnvolved are nimicked now show up. This suggesta that tmproved agraement in the tranatition region can be obtatined by staulating these stagularitias more eccurntely. The implenontation of erossingosymmetry may be Just such a method.

Within the Grean's function fotmulation of the many-body problem, a
 Crossing-synnetry de one the formal proparties req̧uired of any aract Γ (E4H 77, He 80). It is a very stringent requirement, being non-perturbative and non-tinean in eharncter (ha 68), and attempte at
constructing, in the general esse, a croastig-symmetric for fermions (He 80,81, DH 84) have to date bert unsuccessful. (Studies of arosednge symmetry with basons sem to have sen ear more eucenasful (JLS 82).) The purpose of these studiea was to eacebifth the physical signtficance of crossing-symetry. The resultes of the model study in (G8 83, Ga 84a), in which the exact I appropriate to the LHG model with two partialet is aleulated, seem to shed some light on this issue. This vertex function possesses algebraic aingularities in the interaction strength parameter V which occur suggestively for values of V such that $|V / e|=|x|=1$. At the same time, these singularitiea arise because this I, being exact, possesses crossing-symaetry (chapter 3 of (ee 85)). The implication is that it is precisely in the troublesome transitional region where crossing-symatry is relevant.

APPENDIX 6.1: THE APPROPRIATE QUASI-PARTICIE STATEA

In this appendix, the form of the third and final manber of the decoraposition of the full HFB transfomation appropriate to the Agassi model is determined. This yields the quasi-particle states which are necessary for the description of excitations. In addition, the calculation of the quasi-particle enargies of these states ip discussed.

To accomplish thit, the expressions for H^{20} and H^{11} (approprlate to the Agassi nodel) found in the quasi-particle basts deftned by Egs. (3.14) and (3.15) are required (cf. discussion following Eq. (3.10)). These are

$$
\begin{align*}
& H_{\sigma m_{1}, \sigma^{\prime} m^{\prime}}^{20}=\operatorname{sgn}(m) H_{\sigma \sigma^{\prime}}^{20} \delta_{\pi,-\mathbb{m}^{+}} \tag{A6.1a}\\
& H_{\sigma m, \sigma^{+} m^{\prime}}^{11}=H_{\sigma \sigma^{\prime}}^{11}, s_{m, \Pi^{\prime}}, \tag{A6.1~b}
\end{align*}
$$

10 when

$$
\begin{align*}
& H_{\sigma \sigma^{\prime}}^{20}=\gamma_{\sigma 0^{\prime}} h_{\sigma \sigma^{\prime}}^{c}-\bar{\gamma}_{\sigma \sigma^{\prime}} \Delta_{\sigma \sigma^{\prime}}^{c}, \tag{A6.2a}\\
& H_{\sigma \sigma^{\prime}}^{11}=\vec{\gamma}_{\sigma 0^{\prime}} h_{\sigma \sigma^{\prime}}^{c}+\gamma_{\sigma \sigma^{\prime}} \Delta_{\sigma \sigma^{\prime}}^{c}, \tag{Aa.2b}
\end{align*}
$$

where

$$
\gamma_{\sigma \sigma^{\prime}}=u_{\sigma} v_{\sigma^{\prime}}+u_{\sigma^{\prime}} v_{\sigma} \quad \bar{Y}_{\sigma \sigma^{\prime}}=u_{\sigma} u_{\sigma^{\prime}}-v_{\sigma} v_{\sigma^{\prime}},
$$

and use hag been made of the fact that the matrix elements in the canonical basis of the equivalent within HFB of the HF Hamiltonian and Pairing field can be written as

$$
h_{\mathrm{Cn}, \sigma^{\prime} \mathrm{m}^{\prime}}^{\mathrm{c}}=,_{\sigma \sigma^{\prime}}^{c} \delta_{\mathrm{n}, \mathrm{~m}^{\prime}}
$$

and
respectively. Explicit expressions for $h_{\sigma \sigma^{\prime}}^{c}$ and $\Delta_{0 \sigma^{\prime}}^{c}$ will be given below (Eq. (A6.8)).

Form of the $3^{\text {rd }}$ transformation:
The third transformation J_{2} is required to be such - tat $\mathrm{U}_{2}^{\dagger} \mathrm{H}^{11_{\mathrm{J}_{2}}}$ is diagonal. Hence, from Eq. (A6. lb), it can be chosen to be

$$
\beta_{\sigma \text { ow }}^{t}=\Sigma c_{\sigma^{\prime} \sigma} \sigma_{\sigma^{\prime} \mathrm{ml}^{\prime}}^{t}
$$

where $u_{0 \text { om }}^{\dagger}$ are the quasi-particl. operators defined by Eggs. (3.1.4) and (3.15) and

$$
c_{\sigma}=\binom{c_{1 \sigma}}{c_{-1 \sigma}}
$$

Is an eigravector of $\operatorname{Hog}_{\sigma}$, with eigenvalue $E_{\sigma} ;{ }_{\sigma}$ is che quasi-partiele energy corresponding to the quasi-partitele state created by $\beta_{0,}^{+}$. (By chores, $\mathrm{E}_{\mathrm{l}} \leqslant \mathrm{E}-\mathrm{l}$)

Since $H_{\sigma G}^{11}$, is symmetric and real-valued, the thitod transformation exists and an be chosen to be orthogonal. It can be parametrised in a manner very simar to the Entree transformation (EQ. (3.13)), namely

$$
\begin{equation*}
B_{c m}^{\dagger}=\cos \zeta / 2 \psi_{c m}^{+}-\sigma \sin \zeta / 2 \alpha_{-\sigma m^{\prime}}^{+} \tag{A6.3}
\end{equation*}
$$

there $0 \leq 5 \leq \pi / 2$, The deterusnation of C is trivial once $H_{0}^{1 D}$ is known.

In terng of the bere operators $c_{c m,}^{\dagger}, c_{o m}$, the quasi-particle operator $B_{o n}^{\dagger}$ can be written as

$$
\begin{equation*}
B_{\sigma ⿴ 囗}^{f}=\sum_{\sigma^{\prime}}^{\prime}\left(1_{\sigma^{\prime} \sigma} c_{\sigma^{\prime} m}^{\ddagger}-\operatorname{sgn}(m) v_{\sigma^{\prime} \sigma} c_{\sigma^{\prime}-n}\right) . \tag{A6,4}
\end{equation*}
$$

Expressions for $h_{\text {cot }}^{\mathrm{c}} \mathrm{s}_{\text {GO* }}^{\mathrm{c}}$
In a canonical basis, h and Δ have matrix elements

$$
\begin{align*}
& h_{i j}^{c}=\varepsilon_{i j}^{c}+\Sigma \nabla_{I k j k}^{c} \rho_{k}^{c} \tag{A6.5}\\
& \Delta_{i j}^{c}=\frac{1}{2}^{c} \varepsilon^{\prime} \vec{v}_{i j k}^{c} \bar{k}^{c} k_{k}^{c}
\end{align*}
$$

where $t_{i j}^{c}$ is a matrix element (in the canonical basis) of the 1 -body part of $H^{\prime}, V_{i j k} \mathrm{c}$ an anti-symmetrissd matrix element of the (2-body) isteraction in H^{\prime} and Σ^{\prime} denotes the sum over pained states. fin the Agasil model, these matrix elements are, fron Eic. (A3.10),

$$
\begin{align*}
& t_{\sigma \pi, \sigma^{\prime} m^{\prime}}^{c} \#\left(\varepsilon / 2 t_{\sigma \sigma^{\prime}}^{c}-\mu \delta_{\sigma \sigma^{\prime}}\right) \delta_{\operatorname{man}^{1}} \tag{A5.6a}
\end{align*}
$$

$$
\begin{align*}
& -\operatorname{sgn}\left(m_{1} m_{3}\right) \mathrm{g} \delta_{\sigma_{1} \sigma_{3}} \delta_{\mathrm{a}_{2} \mathrm{C}_{4}}{ }^{8} \mathrm{~m}_{2}-\mathrm{n}_{2}{ }^{\circ} \delta_{\mathrm{m}_{3}-m_{4}} \text {, } \tag{A6.6~B}
\end{align*}
$$

wher: 4 is the chemical potential,

$$
\begin{equation*}
\sum_{\sigma \alpha}^{e}=\sigma \cos \phi \quad, t_{\sigma-\sigma}^{c}=-\sin \phi \tag{AB,7a}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\sigma_{1} \omega_{2} \sigma_{3} \sigma_{4}}^{L} \cdot V\left(\delta_{\sigma_{1} \sigma_{2}} \delta_{\sigma_{3} \sigma_{4}}-s_{\left.\sigma_{1 \sigma_{2} \sigma_{3} \sigma_{4}}\right)}\right. \tag{A.5,7b}
\end{equation*}
$$

in which

$$
s_{\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma}=\sum_{\sigma}\left(U_{1}\right)_{\sigma \sigma_{1}}\left(U_{1}\right)_{\sigma \sigma_{2}}\left(U_{2}\right)_{\sigma \sigma_{3}}\left(U_{1}\right)_{\sigma \sigma_{4}}
$$

and $\left(\mathrm{U}_{1}\right)_{\text {ov }}$, appears in the transformation to the canonical basis, Eq- (3.13). The independent entries in $S_{\sigma_{1} \sigma_{2}{ }_{3} \sigma_{4}}$ are

$$
S_{\sigma \sigma \sigma \sigma}=1-\frac{1}{2} \sin ^{2} \phi \quad S_{\sigma \sigma-\sigma-\sigma}=h_{i} \sin ^{2} \phi
$$

$$
s_{\sigma \alpha \sigma-\sigma}=-s_{\rho} \sigma \sin \phi \cos \phi .
$$

(A6.7e)

Substisuting Eqs. (A6.6)m(A5.7) into Eq. (A6.5), one finds that

$$
\begin{equation*}
\mathrm{h}_{\sigma \sigma^{\prime}}^{\mathrm{L}}=\varepsilon / 2 \mathrm{t}_{\sigma \sigma^{\prime}}^{\mathrm{c}}-\mu \delta \cdot{\sigma^{1}}^{\prime}+F_{\sigma \sigma^{\prime}}^{\mathrm{c}} \tag{A6.8a}
\end{equation*}
$$

with

$$
\begin{align*}
& \Gamma_{\sigma \sigma}^{c}=1_{2} \alpha(\Omega-1) v\left(\rho_{-1}^{c}-\rho_{1}^{c}\right) \sin ^{2} \phi-g \rho_{\sigma}^{c} \tag{A6.8b}\\
& \Gamma_{\sigma-\sigma}^{c}=\frac{1}{2}(\Omega-1) v\left(\rho_{1}^{c}-\rho_{1}^{c}\right) \sin \phi \cos \phi
\end{align*}
$$

.and

$$
\begin{align*}
& A_{\sigma \sigma}^{c}=1_{2}\left(\Omega_{g}+V\right)\left(k_{1}^{c}+x_{1}^{c}\right)+b_{1} \sigma v\left(k_{1}^{c}-x_{1}^{c}\right) \cos ^{2} \phi \tag{A6.8c}\\
& A_{\sigma-0}^{c}=-b_{2} v\left(x_{1}^{c}-x_{i}^{c}\right) \cos \phi \sin \phi,
\end{align*}
$$

where p_{g}^{c} and k_{0}^{q} are given in Eq. (3.17).
Quasi-particle energies:
In the superconducting basis, H_{g}^{11}, is autometically diagonal (as substicution of $\psi=0$ in Eq. (A6.8) confirms). As, From Eq. (A5.2b), the quasi-particle energy

$$
\begin{equation*}
E_{\sigma}=\left(1-2 \rho_{\sigma}^{c}\right) h_{\sigma \sigma}^{c}+2 x_{\sigma}^{c} \Delta_{\sigma \sigma}^{c} \tag{AG.9}
\end{equation*}
$$

and $h_{\text {go }}^{\mathrm{c}}$ depends on μ, it would semm mecessary to know μ in ordex to evaiuace E_{a}. In fact, this is not the case; using the condition

$$
\mathrm{H}_{\sigma \sigma}^{20}=0 \text { (BCS equations), }
$$

Eq. (A5.9) can be rewritten as

$$
\begin{equation*}
E_{\sigma}=\Delta_{\sigma \sigma}^{c} / 2 K_{\sigma}^{c} \tag{A6,10}
\end{equation*}
$$

(In Eqs. (A6.9-10), it is assumed $\phi=0$.)

Similarly, in the deformed-superconducting basis, by combining Eq. (6.2) and the condition $\mathrm{H}^{20} \approx 0$, one finds

$$
H_{\sigma \sigma^{\prime}}^{11}=\Delta_{\sigma \rho^{\prime}}^{\mathrm{e}} / \gamma_{v \sigma^{\prime}}
$$

In the HF basis $\left(N=\Omega, \mu=0\right.$, H^{11} is again automatically diagonal and

$$
\begin{aligned}
\varepsilon_{\sigma} & =\sigma h_{\sigma \sigma}^{c} \\
& =\varepsilon / 2\left(\cos \phi+\chi \sin ^{2} \phi\right)+g \delta_{\sigma, \ldots} .
\end{aligned}
$$

using Eq. (A6.8).

APPENDIX 6.2: COEFFLCIENTS IN EQ. (6.10)

$$
\begin{aligned}
& A_{1234}=V\left(S_{1234}^{\mathrm{u}}+S_{1234}^{v}-\left(\bar{S}_{1234} \rightarrow(1+2,3 \leftrightarrow 4)\right)\right) \\
& \left.+\mathrm{g}\left(\left(\underset{\sigma \sigma^{\prime}}{\mathrm{I}} \mathrm{u}_{\sigma_{1}} \mathrm{v}_{\sigma_{3}} \mathrm{u}_{\sigma_{2}^{\prime}} v_{\sigma_{4}^{\prime}}\right)+(1 \leftrightarrow 2,3 \leftrightarrow 4)\right)\right) \\
& \left.A_{1234}^{\dagger}=V_{1234}+(1 \leftrightarrow 2)+(3+4)+(1 \leftrightarrow 2,3 \leftrightarrow 4)\right)
\end{aligned}
$$

where $u_{\sigma G^{\prime}}, v_{o G^{\prime}}$ are defined in Bq. (A6.4),

$$
s_{1234}^{u}=\sum_{\sigma}^{u_{\sigma_{1}}} u_{\sigma_{2}} u_{-\sigma_{s}} u_{-\sigma_{4}}
$$

and $\mathrm{S}_{1234}^{\mathrm{V}}$ is obtained from S_{1294}^{4} by replecing $\mathrm{u}^{\prime} \mathrm{s}$ by $\mathrm{v}^{\prime} \mathrm{s}$.

$$
B_{1234}=V\left(\left(\varepsilon_{\sigma} u_{\sigma_{1}} u_{\sigma_{2}}^{v} v_{-\sigma_{3}}^{v}{ }_{-\sigma_{4}}\right)+(1 \leftrightarrow 3)+(2 \leftrightarrow 4)\right.
$$

$$
+(1 \leftrightarrow 2,3 \leftrightarrow 4))
$$

TABLE :

Bus 15	$\left(a_{4}\right)^{2}$	$(\mathrm{n})^{2}$	$\left(0_{4}\right)^{2}$	$\left(B_{-}\right)^{2}$	${ }^{2} \times$	${ }^{4}$
Splesteal HF	$1+x^{\prime}+2 z^{\prime}$	$1-x$	$1+g^{\prime}+v^{*}$	$1-x_{0}$	1	1
BCS	$\Sigma_{0}+B^{\prime}+x^{\prime} /\left(\Sigma_{0}\right)^{2}$	$E_{0}-x$		$y_{5}\left(S_{0}-1 / s_{0}\right)$	1	$1 / t_{0}$
$\begin{aligned} & \text { De Earsed } \\ & \text { HF } \end{aligned}$	${ }^{\prime} x^{\prime}$	$x-1 / 8$	$x^{\prime}+y^{\prime} / x^{2}$	$x-i_{0}$	1/x	1

CHAPTER SEVEN

SIDE-EFFECTS OF SYMOIETRY-EREAKING AND THERR TREATMENT

Not only is the symatrymbeaking of HFB formally undesirable, it also affects the quality of agreement with experiment. The obvious extenston of HFB , in which a state with the desired symmetries is projected out of the GFB trial state, leads to improved agreement, uven when the projection is performed after the verfational parameters in the frial state have bean determinid (PHFB) (SGE 84 and referencss therein). (In a fully self-consistent-treatment, profection shouid be performed before variation (FHFB).) Projection, particularly the projection of states of good angular momentum, is however computationally expensive (Har 82); to date, celculations incorporating projection have largely been c' ied to semi-realistic models, itke the Fairing-Plus-Quedrupole mode. and even these are by no means complete (WAM 85). '(Compounding this is the fact that performing PHFB and FHFB does not remove the need in the description of exciced states for treatments like TDA or RPA or their symmetry-conserving analogues (FR 85).)

The question arises whether or not the same physical instght cannot be attained by much stmpler and techndcally less demanding methods. This has motivated the Hartree-Fock Seniority (HFs) approxtnation (GP 86), which is designed for open-shell systens. Realistic calculations have been performed within this approximetion but it has not been compared in any detail with its rival approximations - i,e. HFB or PRFB.

This chapter ig devoted to a discusaton of the effects of symmetry breaking and thair treacment. Section 7.1 reports what can be learnt about the consequences of broken partiole number symmetry witisn the Agassi model, only the ground state energy is consideted becausa, unlike other HFB expectation values, it is expected to be reliable. The most significant finding is that the WF8 ground atate anergy can be lower that the exact ground atate anergy, which contradicts a silief Impliant fin the literature (cf., For example, section $8.4,6$ in (RS 80)) that, as $H F B$ can be dertved uging a Raytejgh-Ritz variational peinciple, it must always yield an upper bound to the ground state energy. In section 7.2, the HFS approximation will be diseuseen, with the aim of
seeing to what extent it can stmulate a projected hFs calculation. The technicalities of particie number projection within the Agassi nodel are degeribed in an appendix to this chapter (appendix 7).

SECTION 7.1: CONSEQUENCES OF BROKEN PARIICLE NUTBER SYMAETSY

Within the Agassi model, the mean-flelds break two symmetries. Parity symatry is broken when the monopole interaction is doninant, and the naive interpretation for the cortesponding solution is that it describes both mambers of a ground state parity doublet. Indeed, under the seme conditions the exact positive parity ground state doen become degenerate with the lowest negative pirity state (Figs. $2.2 \mathrm{~b}, 2.5$), and the exact expectation values of this doubiet do colncide (Fig. 2.4). Thus, the breaking of parity symetry is a pos'ritorit justifiad, on the other
 the valic. aceraction strengthe. (This is a chazarteristic of the menh ecription of any open-shell nucteus (LA 84).) breaking pation number symmetry, the mean-tiald can accomodate t pairing interaction. In fact, the compartison of approxfmate anc exact ground state expectation values of $Y_{+} Y_{-}$in Eig. 5.8 demonstrates that the particle number-breaking BCS solution continues to parform adaquately evan as $g * 0$ (V suali). However, when in isolation, the monopole interaction is accommodated by a particie number-conserving meanmifid. So, in chis sestion, the purticie number dispersion of the HFB soluttong appropriate to open-shell ernfigurationa of the Agassí mosiel will be consideced, particularly when v da large.

Tha form of any HFB ground state appropriate to the dgazal model is given by (Appendix 3.1)
from which it is clear that the distribution of components of different particle number in $|v\rangle$ fa determined by the transformation within the canonfcal basis (cf. Ec. (3,10)), and it is (formally) the amme as the distribution corresponding to a BCS state. This distribution can be

Is the probabilicy that a specific pair of eime-reversed states in the upper (lower) Level $t s$ occupiad; gimilarly, $u_{1}^{2}=1-v_{1}^{2}\left(u_{1}^{2}=1-v m\right.$) Is the probability that this pais of states is unoccupied. The probablitty that a componant with k specific pairs in the upper lavel and beN - k specizic pairs in the lown level is present in |v> is

$$
\begin{equation*}
p_{k}=\left(u_{1}^{n}\right)^{\Omega / 2-k}\left(v_{1}^{2}\right)^{k}(u-1)^{2} \Omega / 2+N / 2+k\left(v_{1}^{2}\right)^{N / 2-k} \tag{7,12}
\end{equation*}
$$

The maziber of such components is

$$
\begin{equation*}
n_{k}=\binom{a / 2}{k}\binom{a / 2}{N / 2-k} \tag{7.1b}
\end{equation*}
$$

Thus, the probability that $\mid v>$ contalas a component with particie numbet: N 1a

$$
\begin{equation*}
\rho_{N}=\sum_{k=0}^{N / 2} n_{k} P_{k^{+}} \tag{7.1c}
\end{equation*}
$$

(This result is also a spin-off of the narmer projection calculation in Appendix 7.) Because of the constraints in Eq. (3.15) , P_{N} may be regarded ag a functionsi of $\rho_{1}^{e}=v_{1}^{2}$ atone.

The mathematical properties of this type of distritution have been studtad at some length in the Itterature ($\left\{\begin{array}{l}\text { a } \phi 65 \text {) and referances thera- }\end{array}\right.$ In) . Wevertheless, the fulj extent of the symmetry-breaking by fro in the presgat case ta begt gauged by evaluating F_{N} explicitiny Typiscal aumardoal values, when $E N$ ta fixad and X_{N} is variad, are given in Tabla 7; 却 chic oxampher than namber of particlen in the aystam is $\left.N_{0}=14(8) 22\right)$. It has the following notable fenturge.
(1) The distribution has a qingle maximum and chis ocoure for the componant with partiole number equal to the desired arorage No. The property is, of cotirse, highly deairable and is, in fact, a general fasture of the particie number tiwtrabution correaponding to a BCS wiata (if 65).
(2) The distribution is approximately symmetric ebout this naximum; this is a consequence of the large $N_{0} 1$ imit (in which F_{N} is given by a Gaussian (H 6 65)).
(3) The probabilitias P_{N} are essentially constant in the deformedsuperconducting phase and remain appreciable for components with particie number $N \neq N_{0}$ even when X_{N} is very large. The changes in P_{N} with X_{N} (which are confined to the superconductingwtomeformedsuperconducting tennsition regton), are constistent with the behsviour of Pi (cf. Fig. 7.1). (Likewiss, changes with Σ_{N} ara regtristed to the interval $0 \leq \Sigma_{N} \leq 2$, if $X_{N} \leq 1$,)

From Fig. 7.1, as $X_{N} \rightarrow \infty, \rho_{1}^{c}+0$ (In affect) and so $0-1-N_{D}^{c} / 2, \quad$ Substivuting into Eq. (7.1) one finds

$$
P_{N} * P_{N}^{a}=\binom{\Omega / 2}{(N / 2}\left(1-\frac{N}{\Omega} 0\right)^{(\Omega-N) / 2}\left(\frac{N}{\Omega}\right)^{N / 2}
$$

Table 7 shows that the bingmial distribution P_{N}^{a} is a good approximation to P_{N} even when $X_{N}=2$, Thus the dispersion seen in P_{N} for large X_{N} is typical of any $H F B$ desaription of an open-shell nucleus, which admits pelring withita a single valence sheil.

It is not oniy in the realm of large X_{N} that P_{N} is of binomsal character. The distribution P_{N}^{a} is also a good approximation to P_{N} if both X_{N} and Σ_{N} ara smadil (when $\rho_{1}^{c} a 0$ agmin - cf. the curve for which $\varepsilon_{N}=0.5$ in Fig. 7.1). In addition, when $\Sigma_{N} \geq 1$ (X_{ET} small and fixed), th.
 sion obtained by setting $v_{1}=v_{1}=N_{0} / 2$. .

A more suceinct, quartitative measure of the indefinite particie number of |v> is the variance in the expectution value of $\bar{N}-1, e$.

$$
(\Delta N)^{2}=\langle v|\left(\hat{N}-N_{0}\right)^{2}|v\rangle \text {, }
$$

where $\langle v| \hat{N}|v\rangle=N_{0}$. For the Agasat model this is given by

$$
(\Delta N)^{2}=\frac{\left.2 a^{\left(N_{0}\right.}\left(1-\frac{N_{0}}{a}\right)-2 p_{1}^{c} p_{1}^{C}\right)}{(\Omega)}
$$

which, in the livit of large X_{N}, becomes

$$
\Delta N=(2 \Omega)^{\frac{b}{2}}\left(\left(N_{0} / \Omega\right)\left(1-n_{0} / n\right)\right)^{\frac{b}{2}}
$$

The dependence of particle number dispersion on N_{0} and N_{0} / Ω is eastiy seen in this result. For example, the dispersion is greatest when the vadence shell is haif-fuld (as in Table 7).

The effeces of the significant parifain diapersion of lov can be eatabliahed by comparing the predictions of HFB and PFFB. The perticle nember projection of $|\mathrm{V}\rangle$, which ydelds the N-particle states $\left|N, N_{0}\right\rangle^{\prime}$ (where $N_{0}=\langle v| \hat{N}|\gamma\rangle$) and the caloulation of the expectation values of quasi-spin operators in these states are discusced in Appendux 7. This material will be used in subsequent considerations. However, it is instructive to consider firgt an approximate but simple scheme relating the results of HFB and PHFB calculations, which allows one to infer some of the gualitative consequences of restoring symmetry by projection without actually performing the projection (Ni 64, Appendix 3 in MPR 65, Go 79b). This scheme is particulariy useful when the almost int: ectable angu2ar momentum projection is desirable (Go 79b), but in what follows it will be specialised to the sase of particle number projection.

Suppose thet \hat{A} ia an observable which does not change the particle number and let

$$
A_{H}=\langle v| \hat{A}|v\rangle \quad, \quad A_{P}(N)=\left\langle N, N_{0}\right| \hat{A}\left|N, N_{0}\right\rangle
$$

(The PHFB expectation value of \hat{A} is $A_{P H} * A_{p}\left(N_{\theta}\right) \cdot$) The starting point of the approximate scheme is the relation

$$
\begin{equation*}
A_{H}=\sum_{N} P_{N} A_{p}(N) \tag{7.2}
\end{equation*}
$$

where P_{N} is given in U_{q}. (7.1c). If N is trated as a conchnuous variable, and the expansion of $A_{p}(N)$ about the point $N=N_{o}$ is inserted Into Eq. (7.2), then one Ends

$$
\begin{equation*}
A_{H}=A_{P H}+\frac{1}{2} \frac{\partial^{2} A_{P}}{\partial N^{2}}\left|N=N_{0} \quad \Delta N^{2}+\frac{1}{6} \frac{\partial^{3} A_{P}}{\partial N^{3}}\right| N=N_{0} \quad \Delta N^{3}+\ldots \tag{7,3}
\end{equation*}
$$

which is an expansion of A_{H} in ter , of monents of P_{H} about N_{O}. (Observe that since the expansion is about the point of $N=N_{0}$, tha first moment vanishes while, becatree ${ }_{\mathrm{N}}^{\mathrm{N}}$ is almost symutric about this point, other odd moments are negligible.) To convert Eq, (7.3) into a relation between $A_{P H}$ and A_{H} which can be used without explifctt knowledge of $A_{p}(N)$, two assumptions are made concerning the derivatives it contcins. Parstly, it is assumed that

$$
\begin{array}{ll}
\frac{\partial}{}_{(m)}^{A_{p}} \tag{7.4a}\\
\partial N^{(m)} \mid V=N_{0} & \because
\end{array} \quad \frac{\partial^{(m)_{A}}}{\partial N_{0}^{(m)} \mid N=N_{0}}
$$

which appears to be physianily rensonable (Ni 64) and noc grossiy uurellable numericelly (MPR 65). The second assumption made is that, alchough the numeriad value of A_{H} may be incorrect, its derivatives with respect to N_{0} are assentially correct; more precisely, it is ascamed that

If the $H F B$ approximation is at last qualitatively valid, this relation should be satisfied. Thus, one arrivas at the following approximate raiationship betwaen A_{H} and $A_{p t}$:

$$
\begin{equation*}
A_{p H}: A_{H}-\frac{1_{2}}{\frac{\partial^{2} A_{H}}{\partial N_{0}^{2}} \Delta N^{2}+\text { higher arder certis. }} \tag{7.5}
\end{equation*}
$$

Given the sonewhat drastic approximations made, and the heuristic uss to which Eq. (7.5) will be put, the highermorder terma in Eq. (i.5) will be Agnored. In this regard, use of these highernorder terma and suggesthons that the ratie of convergence of thla axpansion ba studiad (Go 79b) aser sotrewhat misguided. (Such studies are more approprince to formaliy consistert but far more complex treatments like the kamiah expansion (Ra, 58).)

The advantage of Eq. (7.5) lies in ite aimplicisy, It makes very clear that inscrepancles between A_{H} and $A_{P H}$ occur when the dependence of A_{H} on N_{o} is non-linear. This conclusion is perheps better expressed the other way round - i.e. if A_{H} depends idneaxily on N_{o}, there wili be no aignificant discrepancies, no matter what the filuctuation in particle number 1s. Observe also that the sign of correction $1 s$ decemined not, as one witght naively have thought, by the firgt derivative of A_{t} with respect to N_{0} bur by the secund. These feasuses sen be interprated as inevitam bie consequences of the Itnear particle number constraint employed in HFB, which Lends further substance to the vaildity of Eq. (7.5).

What do these considerations imply for the HFB ground state energy Within the Agassi model? In the inimit of large X_{N}, the dominant contribution to the ground state energy of the deformed-auperconducting solucion (appropriate to an opermshell. configuration of tho agessi model with morticles) is, from Eq. (3.21),

$$
\begin{equation*}
\underline{E}_{-\varepsilon}^{a} \approx 1_{2} N_{0} X_{N_{0}}=x_{N_{0}} N_{0}\left(N_{0}+1-2 N_{0} / n\right) \frac{Y}{E} \tag{7.6}
\end{equation*}
$$

and so, because of the nonmintear dependence of E^{a} on N_{0} projection ought to yield a substantinily different vaiue when the number dispersion in $|v\rangle$ is not negligible (i.e. $N_{0} \dot{f} \Omega$). More interestingly, Eqs. (7.5) and (7.6) Imply that the projected energy will be higher than the unprojected energy $\left(\partial^{2} E^{3} / \partial N_{0}^{2}<0\right)$, and precisely this is seen when the actual PHFB energy is compared with the $H F B$ energy as in Fig. 7.2 (curves A and A respectively). (Note that the absolute maguitudes of the ground atate energies are plotted In Fig. 7.2.) This itinding is a* odds utth a commonly accepted belief about projection which has arisen (desplte isolated countermenamples, eig. Fable 9 of (As 71)) from studies of the BCS treatment of patiting correlations whin nucied, nemely, that the energles of profected statas are lower than the energies of unprojected states. (This has often been cited os the reason why PHFB must be an improvement over HFB (GK 80),) However, as Eq. (7,5) makes clear, this is true only of systems with interactions whict Limply that the binding energy per particle does not increasa monotondally with partitelemamber - e.g. aystams with saturating
interactions. The scarcity of nuclei for which the projected ground siate energy has been found to be higher than the HFB gxound state energy is a fortuitous consequence of the fact that saturation is, in princfple, required of any realistic effective nuclear interaction and is therefore a property of most interactions employed in applications fineluding the pairing finteraction. (As the monopole interaction is a residual interaction actiong only within the valence shell, its failure to possess any saturation propurties ts not a sexious drawback. In fact, the quadruple interaction of the Fairing-plus-Qusdrupole model also does not possess saturation properties (BK 68).)

A felated observation is that the HF ground state energy can even be Lowe: than the exact ground state energy (cf. curves a and C of Fig. (\%.2)). The HFB ground state is determined by appealing to the Rayleigh-Ricz vartational princtple, which usually yields an upper bound to the lowest eigercislue of an operator. The apparant contradiction is resolved by the realisation that the eigenvaluf referred to is fixed by a set of "boundary conditions", of which one is the particle number of the system. In HFB , however, the trial gtates have indefinice particie number. Thus, the HFB ground state ansacy can take advantage of the fact chat an eigenenergy of system with particle number $N \neq N_{0}$ may be Lower than the iowest ifignifenergy of the N_{o}-parthicle systen to predict a spuriousiy 20 w ground scate energy. A pedestrisn analysts using the results of the PHRB calculation confirms this in the present example. Flotted in Fig. 7.3 is the absolute magnitude of $\left\langle N, N_{0}\right| H \mid N, N_{o}>/ N$ ($N_{0}=14$), (This choice of scailng permits the dependence of $E_{N}=$ <N, $N_{0}|n| N, N_{0}>$ on N to be read off from Fig. 7.3.) It demonstrates that, when $X_{N_{0}}$ is 2atge,

$$
E_{N_{0}}-\bar{N}_{N_{0}}+2 k \times E_{N_{0}}-2 k-E_{N_{0}}
$$

$(k=1,2)$. On the other hand, from Tablc $7, P_{0}+2 k{ }^{m} P_{o}-2 k$ (where P_{0} denotes the probobility of $\mid v>$ containing N_{0} particles). From Eq. (7.2), this ensures that the HFB ground state energy is spuriousty low. (Closer tnspection of P_{N} in rable 7 shows that $\mathrm{P}_{\mathrm{o}}+2 \mathrm{k}$ fis actually alightiy greater than $P_{0}-2 k$. It is tempting to interpret this as evidence of how the HFB golution capitalisas on the lower energies found
in syetems of adyacent particis number. Howevar, the presence of the same asymatry in p_{N}^{a} shows that its origin is not related to dynamics.)

It was demonstatea fin chapter 5 that the requirement of stability for a mean-field to be appropriate is reilable. (This, in turn, supports the
 this section are relevant to the selection between axfferent staile mean-fields. Usually the gtable mean-field which predicts the lowest ground atate energy tw adopted. Hotrever, care has to be taken to ensure that none of these energies are lowered spuriously by symmetry-breaking, a point which hae been overlooked in seversi realistic applications of HFB (e.g. (Gsa 70)). (This posaibility can be excluded by resorting the PHFB.) In this seteson, it has been shown that this can happen when particle number aymetry is Bromin; it can also oecur when transletional invariance is broken (MV 83). Fortunately for nuclesw phyatea applications, these considerations are unnecessary in the cutc cf particle number symetry-breaking wher realidtic interactions (which have reliable saturation properties) are employed.

SECPION 7.2: HARTREE-FOCK SENICRITY APPROXIMAEION (HFS)

Beckuse in an open-shell system thera ara several Slater deterufnants of lowest energy, in order to construct a unique ground state wava function Within a numberwconserving approximation, the use of just one siater determinant has to be relinquished (cf. the discussion following Eq. (3.19)) - 1.e. one cannot work within a mean-fieid approach. Nevertheless, it is possibie to retain several features of the approach by euploying the Hartree-Fock Seniority approximation (GP 86).

As in 4 FF , HFS assumes that the particles occupy (unknown) singlepartiche states $|k\rangle$ which accommodate in an average way the long-runge correlatio: f tween the particles. Likewise, a natural generalisacion of the HF pizucription for the ground gtate of a closedmshell system is adopted: the HFS approximation to the gromed state |s> is assumed to be apannea by only the lowest energy Slater determinents formed with the slugle-particle states $|k\rangle$. To agcommodata the short-range correlations between particies, |s> ie taken to be that combination of these determitnants which has sentority zero (Section 5 of chapeer 1 of (La 80)); this particusar (fixed) combination also setisfies the requirenent of being

Fig. 7.2 Comparison of various approximations to the ground state energy.
(For convenfence, the absolute noduli in units of $\frac{\Omega}{2} e$ are plotted). The various curves are: A, HFB ; $\mathrm{B}, \mathrm{PHFB}$; C , exact; D, HFS ; E , exact energy of the lowest negative parity state. $\left(N_{\mathrm{O}}=14,0=22, \Sigma_{\mathrm{N}}=1.5\right)$.

 7.2).

Fig. 7. 4 Comparison of verious approximations to the ground atater uxpectation value of $\hat{X}_{\text {. (scaled by a factor of } 4 / \mathrm{t} \text {) when }}$ $\Sigma_{N}=0.5$. The signiEicance of the difererent line types is the saime as in rig. 7.2. ($\mathrm{N}_{\mathrm{o}}=14, \mathrm{n}=22$),

Fig, 7.5 Comparison of various approximations to the ground state expectation value of $M_{+} M_{-}$(scaled by a factor of $2 / \mathrm{N}(\mathrm{R}+\mathrm{i})$). Other detalls are as in Fig. 7.4.
unique (Ke 61). The appropitate single-particle states |k> are those which minimise < \mid H|s> (where H is the Hamitonian of the system). For a closed-shell system, HF and HPS are equivaitent.

The unknown single-particle basis appropriate to the Agassi model must heve particie creation operators whose form is that of $e_{\text {om }}^{t}$ in Eq. (3.14), while |s> is spamed by those slatex determinants containing only partioles in the $\sigma=-1$ level of this basis. Thus |s> is the sendority zero atate

$$
\begin{equation*}
\left.|s\rangle=\frac{1}{n}\left(s_{+}\right)^{N / 2} \right\rvert\,-s \tag{7.7a}
\end{equation*}
$$

where

$$
a_{+}=\sum_{m}>0 a_{-l^{m i}}^{\dagger} a_{-1-m}^{\dagger}
$$

and

$$
\mathrm{n}=\frac{\mathrm{N}}{2}+\binom{\Omega / 2}{\mathrm{~N} / 2}^{\frac{k}{2}}
$$

is the normailantion constant.

The operator a_{+}is a member of the $50(5)$ Lie algebra fnvolving the operators $a_{d m}^{\dagger}$, $a_{c \mid t h}$ introduced in Appendix 3.2. The corresponding çuasi-spin, So (5), has, of course, the same formal propertias as the SO(5) group introcuced in chanter $2\left(S O_{c}(5)\right)$. In parcicuisr, it is posstble to introduce the formal analogue of the collective subspace with basts $|m, z\rangle_{a}$. From the explicit form of those states (Section 4 of (He 65)) it can be tuferred that

$$
\begin{equation*}
|g\rangle=\left|\pi=0, z=-z_{u}\right\rangle_{A} \tag{7.7b}
\end{equation*}
$$

Observe that, if in Eq. (3.14) coincides with the ground of $V=g_{2}=0$. This by itwelim sneatz for the ground state at.
then $|\mathrm{m}, z\rangle_{\mathrm{e}}=|\mathrm{n}, \mathrm{z}\rangle$ and $|\mathrm{s}\rangle$ Hamiltonian in Eq. (2.12) when that $\mathrm{Eq},(7.7 \mathrm{a})$ is a racqoneble men V, g are smali.

The identification of $\mid s s^{3}$ a menber of the basis for an irreducible representation of $\mathrm{SO}_{4}(5)$ greatly facilitates the calculation of expectation values. Given particular combination of the quasi-spin operators In Eqs. (2,3) and (2,4), the first step is to remexpress them in terms of the quasi-spin operators in Eqs. (A3.6) and (A3.7) (as in Eqs. (A3.8) and (A3.9)). The expectation value in |s> of a combination q of the operators in Eqs. (A3.6) and (A3.7) can be evaluated by exploiting the formal sinilarity of $\mathrm{SO}_{\mathrm{a}}(5)$ and $50_{\mathrm{f}}(5)$. If Q is the operator obtained by replactag $a_{\sigma n \prime}^{\dagger} a_{\sigma m}$ in q by $c_{\alpha n}^{\dagger}, c_{c \pi n}$, then, from Eq. (7.7b),

$$
\begin{equation*}
\langle s| q|g\rangle=\left\langle\mathbb{L}=0, z=-z_{u} \mid Q_{i} \alpha_{3} m 0, z=-z_{u}\right\rangle \tag{7.8}
\end{equation*}
$$

and these last expectation values are easily inferred from Appendix 2.1 or Mable 2.2. For example, if $q=j_{x}^{2}$, then $Q=J_{x}^{2}$, and $\left\langle j_{x}^{2} \mid s\right\rangle=N / 4$ from Table 2.2.

The form of the Agassi Hamitondan in in tarms of the operators in Eqs. (A3.6) and (A3.7) is given in Eq. (A3.10). Applytug the prescription in Eq. (7.8) to Eq. (A3.10), one finds

$$
\langle s| H|s\rangle=-\frac{N_{\varepsilon}}{2}\left(\cos \phi+\frac{\chi_{0}}{2} \sin ^{2} \phi+(0+1) \frac{\mathrm{g}}{\varepsilon}\right)
$$

where $X_{0}=(N-1) V / \varepsilon$. This has mindma at:
(1) $\phi=0$ 1f $X_{0}<1-\quad$ wherical HFS soiution;
(2) $\phi+0, \cos +1 / x_{0}$ it $x_{0}=1-a$ deformed BPS solution.

The properties of the opheriest and deformed HFS solutions axe essentially the same as those of hat spherical and deformed $H F$ solutions in the $N=0$ syatem respectively, also, like its $H F$ counterpart, the HFS spherical-tomeformect transition is continuous, Observe that the HFS transition occurs at $X_{0}=1$ incependent of the value of g. (In this respect, HFS is again similay to HF.) This is not consigtent with the findings of chapter 5 which show that the location of the changes in the exact solution associated. with a phase stanstition do dapend on the value
of g . Except in the 1 imit of gnall g ($\mathrm{K}_{\mathrm{N}} \mathrm{S}$)), the location of the HFS transition is spurious.

A typical example of the HES ground state energy in given by curve D in Fig. 7.2. (The spherical-to-deforme hrs transition occurs at $X_{N}=1.06$, and the superconduering-to-iaformad-suparconducting $H F B$ transition at $X_{N} m$ l.63.) Obeerve that the PBCS energy becomes exact as $\chi_{\mathrm{N}} \rightarrow 0$, in agreement with the reaults of (KLM 61). By contrast, the sphericat HPS ground state energy is not a good approximation for this value of ε_{N}. Not only is it quantitacively imaccutate but it is also qualitatively misieading in that it does not reflect the alight decrease In the ground state energy with inereasing X_{N} (x_{V} samil); even the symmetyybreaking BCS solution is superior to HFS in this regime. On th. other hend, the HFS approximation is much more accurate in the deformed-superconducting region. (Daspice this, hFS is only closer to the exact energy than $A F B$ for very large X_{N}, which bears testimony to the power of HFB.) Although the thr energy ts otill not as accurate as the PHFE energy, the race of change of both these energies with X_{N} in essentially the same. The proparty ia partioularly signfficant because
 can indeed indicate what the effect of projection will be.

Representative comparisons of HFS ground state expsetation values not appea whectity in the Agassi Hamilconien with the corresponding fFB and " expectanion values ate given in Figs. 7.4 and 7.5. (The signifisance of this diatinction has been discussed in seetion 5.1.) In
 taction $2,2.2$ indicate that, with the axception of the regime of gmall x_{V}, X_{N}, the Epherich HES solutini, is Jnedequate, However, ${ }^{*}$ Eig. 7.4 provides further evidence that, it whemith of large X_{N} (c_{N} fised), wrs can be a good approximation. fit shis whatane, it is even marginalily better than PHFB, As in Fig, X \because, the rate of change of the HFS and PHFB expectation values with $X_{i j}$. . . sthe same, A remarkabla feature of Fig. 7.4, which does mint detran: then the sucuess of firs, is that the HFB and PHFB reaulta coincide " :arge XV' This is oonsistent wheh Eq. (7.5): the non-intuearity in the dependence of $\langle v| \mathbb{N}_{-}|\psi\rangle$ on N in this linite is vary weak and to Eq. (\%.5) tapliea that the PFFB and HFB expectation vaiues cannot be sifnificantly different. By contwan, the
expectation value of $M_{+} M_{-}$(cf. Hig. 7,5) demonstrates that HFS is not always successfui when X_{N} is Iarge (\mathcal{F}_{N} fixed). Although it predicts correctiy that the expectation value in this regime is increased when particie number projection ts implemented, te grossiy overestimates the magnitude of this correction. In EaLt, while HFB is a reasonebly good approximation to co $\left|M_{+} M_{-}\right| o>$ in this regine, HFS is not. the spurious location of the HFS phase transition is also evident from Fig. 7.5.

The results in Figs. 7.2, 7.4 and 7.5 show that $\mathbb{H F S}$ emn aimulate the behaviour of the PHFB ground state energy and PHFB expectation values of onembody operators. This is all that can be reasonably expected to be relitable when dealing with a mean-field-1ike approximation auch as PHFB anyway. Howevar, despite the tact that the HFS ground state ansatz has seniortity zero, HFS has essentialiy the same domaln of applicability as a full HFB solution, beiag inadequate when a BCS solution is appropriate - 1.e. HFS can simulate PHFB, but not PBCS unless the pairing interacthon strettgth is small. The fability of HHS to cope with a pairing interactlon is already outdent from the (in generai) spurious location of the HFS phase transition. This finding implies that the suggestion faplicit in (GP 86), namely that HFS can be employed to eatalilish whether the patring properties of the phenomenologically successful Skryme interaction (6581) are adequate, is incorrect. The characteristic of a pairing interaction which kFs nannot accomodate is the (wellknown) associated diffuseness of the Fermi surfece. A suitable extension of the HFS ground atate ansatz is suggested by the form of the exact ground stata of the Agassi model in the limit when $g+\infty$ (cf. Eq. (2.18)), (Note that the PHFB ground state does in fact possess this atructure - cf. Eq. (A7.3).)

In mitigation of tits flaws, UPG has the advantage that it allows one to perform a atraightforward "open-shell" RPA calculation (PN 70) of excitad states. In its formiation, open-shell RPA is cumpletely analogous to quasi-particle RPA (QRPA). Stnce QRPA has been considered In some detail in the previous chapter, the discussion of open-shell RPA con be confint to the following ramaks.

The famediate obstacia to RPA calculations in oper-shell nucial is the disappearance of the distinction between particie-states and hole-
states. This wules out the extension of pp- and hhmpa to such systems. However de is possible to introduce a (limited) replacement of the ph(h; $;-$) operators $c_{p}^{\dagger} c_{h}\left(c_{h}^{\dagger} c_{p}\right)$ employed 1π ph-RFA, namely the padrs $c_{0}^{\dagger} c_{\beta}$, $c_{B}^{\dagger} c_{r x}$ whose me mbers have opposite (spatial) partty (RW 70); in the generic case, thesa opposite parity pairs satisfy the reçuinement of having nommzero unperturbed excitation energies - 2.e. the unperturbed energies of the singlemarticle states $|a\rangle$ and $|\beta\rangle$, and e a satisfy the inequality $e_{\alpha}>e_{\beta}$. (In analogy with the terminology of ph- RPA,
 caters only for negative (spatial) partity excitations of nuclei.

The range of eppileation of open-sbell RPA is further restricted to openmshelt systens for which a suitable "uncorrelated" approxiustion ICs. ${ }^{2}$ to the ground state extatis; a typical example of a suitable $\int_{0}>$ is given in Table i of (BW 70) . (A notablefeature of this example ts that there is conflguration-mixing present in $\left.\left.\right|_{\phi_{0}}\right\rangle$; howaver it is uncorrelated in the semse that configurations containing opposite-partty hp-paiss axe excluded,) The epproximation schame yielding | $\psi_{0}>$ must aiso supply a single-partiule basls fron whith the oppositemparlity pairs cari be constructed. One such approximation sclieme is HFS.

Given all these ingredients, the derivation of the open-size.ll RPA equations proceads as for the QRPA equattons. They therefore possess the same structure, whick, in turn, means that the (non-spurious) solutions of the openmshell RPA equations atso occur in pairs with pnergies tef, and are subject to the same orthonormailty conditions.

Within the Agasst model, opon-shell RPA can describe excitationa ot negative (LMG model) paricy. The appropriate uncorralated approximation to the ground giata is given by far in Eq. (7.7), The resulta of chapret 6 taply that, in an RPA deacription based on a parcicle numberconsarvang ground stati, the collestive monopola excitation is oreated by the "quasi-boson" oparator (ci., Eq, (6.17))

$$
Q_{\text {mi }}^{+}=\frac{1}{(\Omega)^{2}}\left(x y_{+}-y y_{4}\right)
$$

where $j_{j_{+}}$axe given in Eq . (A3.6) and $\mathrm{x}^{2}-\mathrm{y}^{\text {i }}=1$. The coefficients x and y, and the monopole excitation energy f_{m} are found by solving the "linearised" equations of motion (or open-shedi RPA equations)

$$
\begin{equation*}
\langle s|\left(0 Q_{\mathrm{mi}}, \overrightarrow{1}, Q_{\mathrm{m}}^{\dagger}\right)|s\rangle=\mathbb{E}_{\mathrm{E}}\langle s|\left(\delta Q_{\mathrm{m}}, Q_{\mathrm{m}}^{\dagger}\right)|\mathrm{s}\rangle, \tag{7.9}
\end{equation*}
$$

where the variation in $8 Q_{\text {ri }}$ is with respect to x and y. (The expectation values in Eq. (7.9) ara evaliated by empioying Eq. (7.8).)

The behzvioux for large χ_{N} of the (positive) eigenvaiue $E_{\text {ra }}$ which emerges from this calculation, is depicted by curve A in Fig. 6.2. Its accuracy is comparable to if not betcer than that of the corresponcing QRPA efgenvalue. In fact, it becomes significantly better than the QRPA efgenvalue as N decreasas. Since, in the general ease, tha openshell RPA calculation is less tedious that the QRPA calculation, this is a considerable triumph. It also indicates that, aithough the EFB description of ground state properties is in general superior to the HFS description, becaus: of its symetry-breaking character, HFB is nic necessarily the best starting point for the description of excited states, this despite the fact that QRPA possessos the property of restoring symmetry to the order of the approximation. Applications of the symmetry-consexving analogues of TDA and RPA axe still in their infancy, but this example suggeses that they should yleld significant improvements over $Q R P A$ even in the region away from a transition point.

APPENDIX 7: NUMBER PROJECTLON OF THE GRB GROUND STATE

A variety of sophisticated projection techniques have been developed (AG 74, HI 79) in order to faclilitate projected TDA calculations in a BCS basis. However, in the present context, it is advantageous to proced in a pedestrian manner (following t.ie treatment in section 3 of chapter 5 of (So 71)), because it permits one to use the So(5) group algebta to calculate expectation values.

The HFB ground state is, from Eq. (A3.1),

$$
|v\rangle=\pi_{\substack{\sigma m \\ a n}}^{\pi}\left(1+b_{\sigma \pi}^{\dagger}\right)|\rightarrow\rangle
$$

where

As the operators $b_{0 m}^{\dagger}$ commute among themselves and $\left(b_{\sigma m}^{+}\right)^{2}=0$, it can be more compactly written as

$$
\begin{equation*}
|v\rangle=\pi e^{A^{\dagger}}|-\rangle \tag{A.7.1}
\end{equation*}
$$

with

$$
\mathbf{A}^{\Psi}=\frac{v_{1}}{u_{1}} \ell_{+}+\frac{v-1}{u-1} s_{+}
$$

Expanding the exponential in Eq. (A7.1), one finds that the N-particle component in $|\mathrm{V}\rangle(\mathrm{N}=0,2, \ldots, 2 \Omega)$ is

$$
\left.|N\rangle_{v}=\frac{n}{(N / 2) 1}\left(A^{\dagger}\right)^{N / 2} \right\rvert\, \rightarrow,
$$

or, using the binomial theorem (ℓ_{+}and s_{+}commute),
where P_{k} is defined in Eq, (7,10).

Equation (A7.2) can be rewritten in terms of the states $\mid \mathrm{m}, z_{a}$ which form the basis of the analogue for $50_{a}^{(5)}$ of the collective subspace (cf. the discussion mediately preceding Eq. (7.7b)). From (He 65),

$$
\left.\left|x_{k}=0,2=-z_{u}+2 k\right\rangle=\frac{1}{(N / 2) \mid} n_{k}^{-\frac{k}{2}}\binom{N / 2}{k} e_{+}^{k} s_{t}^{N / 2}-k \right\rvert\, \rightarrow
$$

where n_{k} is defined in Eq. (7.1b), Hence

$$
\begin{equation*}
\left.\right|_{W\rangle_{v}}=\sum_{k=0}^{N / 2}\left(\pi_{k} P_{k}\right)^{\frac{1}{2}}|m=0, z=-z+2 k\rangle_{a} . \tag{A7.3}
\end{equation*}
$$

The norm of $|\mathrm{N}\rangle \mathbf{y}$ follows tumediately - i.e.

$$
\langle N \mid N\rangle v \quad \sum_{k=0}^{N / 2}{ }_{k}=r_{k}=P_{N}
$$

(cE. Eq. (7.1c)),
and so $\mid v>$ can be decomposed in terms of normalised N-particle states $\left|\mathrm{N}, \mathrm{N}_{\mathrm{o}}\right\rangle$ as

$$
|V\rangle={ }_{N}^{\Sigma}\left(P_{N}\right)^{\frac{1}{2}}\left|N, N_{0}\right\rangle
$$

where $\left|N, N_{0}\right\rangle=\left(P_{\mathrm{N}}\right)^{-\frac{1}{2}}|\mathrm{~N}\rangle_{\mathrm{V}}$.
The PHFB ground state is $\left|N_{0}, N_{0}\right\rangle$. To calculate expectation values of quasi-spin operators in this state, one can expioft the fact thet it can be rewritten in terns of the states $|m, z\rangle_{a}$ (cf. Eq. (A7.3)), and proceed as described in sectlon 7.2 in connection with the calculation of expectation values in |s>.

TABLE 7: P_{N} (cf. Eq. (7.1)) when $\mathrm{K}_{\mathrm{W}_{0}}=1.5$

N	8	10	12	14	16	18	20
x_{N}							
1.5	0.066	0.126	0.180	0.200	0.173	0.118	0.064
2.5	0.051	0.116	0.193	0.232	0.201	0.122	0.050
3.5	0.048	0.114	0.194	0.239	0.208	0.124	0.049
4.5	0.047	0.113	0.195	0.241	0.210	0.124	0.045
P_{U}^{2}	0.045	0.111	0.195	0.244	0.217	0.124	0.044

CHAPTER ELGET

CONCLUSION

The resulte presented in the preceding ohapiezg repregent a vindication of the sometimes questioned felevance (in 75) in findte bystens of the
 कymmetry-breaking. In tais tegati, there are two paxticulaxly impoitgnt (movel) xeswlts. Firetly, evidence has been found which gugeests that the phase tramsitions predicted by zaro temperatuze HFB mimic the exfect of stagularities (or exceptional polnte) in the dependence on interaction strangths of the exact soistion (A rore precige statement of this conjeature is given at the end of gection S.I.) Secondiy It has been demonstrated that, despite the presence of thermal finctuations, the effects of phase trangitions can be discerned in the exact solution of a many-body probletrin Etnite temperature (DM 86).

The quatitative Felfabilyty of broken-symmetry beses is seen in the eale山lations perfotmed in chaptefs 6 and 7. The symmetry-breaking accominodates the emergence of a ner \therefore an fitinin the exact solition, whose cleaxest manifestation fo the :rui te of specific degeneracies Hithin the excitation spectrum (GH \& fia Insight fecilitateg the 1nterpretation of the results of an RPA calculation in a broken-symmetry basia; for examples the breaking of parity symmetry within the Agessi model indjcates the existence of parity doublets, and so the RPA modes In the parity-mixed bases represent excited parity doublets built on the ground state parity dowblet (a point which does not saen to have been pereaved in (Ag 68)) . In chapter 6; it was concluded that RPA calcuLations ase meaningful only in a stable basis snd the pregnatic implivations of this conciusion were discussed. This resuit may be relnterprated as follows; under certadn circumetence, RPA calculations will Eail unless performed in a basis with broken symmety this is true even when the symmetry broken has undesirabie consaquences, such as a spariously low ground state energy, (The fact thet performing RPA within the $U F S$ approximntion yields better results (Section 7.2) does not contradict this conclusion; FFS as not a mean-fided approximatton. Moreover tt also breaks the relevant symmetrym d.e. parity. Furthermort the restints in broken-symbetry bases can bat successfully etuployed
to pradict the qualitative character of changes introduced by profection csiculations (Section 7.1).

The nature and location of the phase transitions discuesed in this work have been determined by the requixement thet the appropxiate aolution minimize the zero or Finite temperature HFB veriational functionals. (When two or more solutions are simultanoously local minima and some of them break symetries, care must be taken co ensure that the lowest minimum is not spurtousiy lower than the others (cif, section 7.1), but, fortunately, this eventuality does not arise in the present work.) The gross structures of the corresponding phase diagrams are essentially correct. However, the changes sssociated with a phase sransition in a finite system are apread out owr an interval of interaction strengths, and this is not reflected by the singie oritical interaction strength yielded by HFB. In addition, while at zero temperature the critical strengths do fall within these transitionsl regions, at finite temperature, this is not the case in general.

The reliable location of the trangitional region is fmportant. The results of the HFS and RPA calculations considered in this work fliustrate the well-known fact (BFS 69) that these approximations fail to ba quantitatively accurate in precisely this region. (This is consistent with the conjectured function of these transitions, nameiy to mimic the effects of certain singularlties) At finite tenmerature, one of the distinctions between various phases is that the magnttude of themal fluctuations differs; in particular, the present study suggests that they are tn general significant in "\&isordered" phases itike the spherm ical phase th the Agassi model, and so the meanmipld dascripetion is not reliable in these regions. Compounding this problem is the fact that the mean-field approximation sems to grossly overestimate thelt extent. At finfte temperature, the extent of thermal fluctuations within the dteordered phases must be evaluated (u由dng, say, Landau theory (80 o 84 and references theratn)) to asøess the validity of the predictions of thermal HFE.

To what use can the identiftertion of the role played by exceptional points be put? Just $n s$ in this work these singularitilea are credited for the gualitative rellability of "phase transtitons" predicted in
finite systeme by RFB, so they should also lie at the root of any success in the transitional region of more elaborate methods - for example, the FHFB approximation and related techniq̧ues (SGF 84). Note that this point of view differs from the stendard rather vague interpretation of the advantages of FFFB, namely that it necomodates "quan" tum fluctuations" (FR 85). Two (inter-related) challenges, which go beyond the scope of this work, are raised by these speculations:
(1) Eirstily, to derive an approximation scheme in which the role of these sfngularlities can be seen explicitly;
(2) secondly, to develop some relisble method for locating these singularities which does not, in effect, eritail sciving the reiated nany-body prablem oxactly.

A promising point of departure may be the "uniform" approximation scheme (LS 77 and references therein), which exploits analytiestructure within the exact solution and is claimed to be valid in the trensition region (AZ 84).

REFERENCES

AB 71 K. Allaart and B. Bosker, Nuc1. Phys. Al68 (1971) 630

Ag 68 D. Agassi, Nucl. Phys. All 1 (1968) 49

AG 74 K. Allaart and W.F. van Gunsteren, Nuc1. Fhys, A234 (1974) 53

ALM 66 D. Agassi, H.J. Lipkin and N. Meshkov, Nucl. Phys. 86 (1966) 321

AW 85 A.Y. Abul-Magd and H.A. Weidenmüller, Phys. Lett. 162B (1985) 223

A2 84 廿. Alhassid and J. Zingman, Phys. Rev. 030 (1984) 684 Ba 60 M. Berangex, Phys. Rev. 120 (1960) 957

BB 6 D D.R. Bês and R. A Broglfa, Nucl. Phys. 80 (1966) 289

BCP 81 G. Bozzolo, M.C. Camblaggio and A. Plastino, Nucl. Phys. A356 (1981) 48

BCS 57 J. Bardeen, L.N. Cooper and J.R. Schrielfer, Fhys. Rev, 108 (1957) 1175

BD 58
C. Bloch and C. de Dominteis, Nuc1. Phys. 7 (1958) 459

BFS 69 K. Bleuler, A. Friederich and D. Schitte, Nuc1. Fhys. A216 (1969) 628

BGG 69 J. Bar-Touv, A. Goswani, A.L. Goodman and G.L. Struble, Phys. Rev, 178 (1969) 1670

BK 68
M. Barenger and K. Kumar, Nucl. Phys. A110 (1968) 490

BKN 76 P. Bonche, S.E. Koonin and J.W. Negele, Phys. Rev. 013 (3976) 1226

BL 55
K.A. Brueckner and C.A. Levinson, ihys. Rev. 97 (1955) 1344

BLM 79 O. Bohigas, A.M. Lane and J. Martorell, Phys. Rep. SiC (1979) $26 ?$

3M 62 C. Bloch and A. Meesiah, Nuci. Phys. 39 (1962) 95

3N 69 A. Bohr and E.R. Mottelson, Nuciear Structure, vol. 1 (Benfamin, New York, 1969)

3MP 58 A. Bohr, B.R. Mottelson and E. Ptnee, Phys. Rev. 1.10 (1958) 936

BMR 73 B. Banerjee, H.J. Mang and P. KLng, Nacl, Phys. A213 (1973) 366

BAPP 82 G. Bozzolo, J. Nûnez and A. P1astino, Phys. Kev. 026 (1982) 2692

Br 55 K.A. Brueckner, Phys. Rev. 97 (1955) 1353

ES 68 D.R. Bes and R.A. Sorenson, Ady, Nuch. Phys. 2 (1968) 1.29

BV 78 K. Baranger and M. Veneroni, Ann. Phys. (NY) 114 (1978) 123
C. 65
P. Camiz, Nuovo Cim 40A (1965) 1220

0167 J. des Cloizeaux, in Manymbody Physics, Fds. D. de Witt and R. Eallan, (Gordan and Ereach, New York, 1968), p. 5

GMM 78 R.Y. Cusson, J.A. Maruhn and H.W. Meldnex, Phys. Rav. C18 (1978) 2589

De 67 E.D. Day, Rev, Mod, Phyg. 39 (1987) 719
bok 85 K.T.K. Dawieg, K.R.s. Devi, S.E, Koonin and M.R. Strayer, in Treatise on Heavy-Yon Science, Ed. D.A. Bromley (Plenum, New York, 1985), Yol. 3, P.I

DG 80 J. Bechargè and D, Gogny, Phys. Rev. C2h (1980) 1568

DH 84 E.D. Davis and W.D. Heise, J, Math, Phys, 25 (1984) 812

DH 85 E.D. Davis and W.D. Weiso, J, of Phys. G; Nued. Fhys., in press

DM 86 E.b. Davis and H.c. Miller, "Phase transitions" at Einite temperature in finite systems, NRIMS Technical Report TWISK 446, CSIR
DMP 66 K. Dietrich, H.-J. Mang and J. Pradal, Z. Phys. 190 (1966) 357

DS 84 R.M. Diamond and R.S. Stephens, Nature 310 (1984) 457

EHM 77 C.A. Engelbrecht, F.J.W. Hahne and W.D. Heiss, Ann. Phys. (NY) 104 (1977) 22L

EK 71 J.A. Evans and N. Kraus, Phys. Lett. 378 (197') 455

ER 8\%a J.L. Egido and P. Ring, सuch. Phys. A383 (1982) 189

ER 826 J.L. EgLén and F. Ring, Vuc1, Phys, 1388 (1982) 19

ERI 85 J.L. Egico, p, Ring, B. Iwasaki and H,-J, Mang, Phys, Lett, 154B (1985) 1

FF 69 A, E. Ferdinand and M, E. Fischer, Phys. Rev, 185 (1969) 832

CNE 78 R.Y. Cusson, J.A. Maruhn and H.W. Meldneat, Phys. Rev, C18 (1978) 2589

Da 67
B.D. Day, Rev, Mod. Fhys. 39 (1967) 719

DDR 85 K.T.R. Davies, K.R.S. Devi, S.E. Koontn and M.R. Strayer, in Treatise on Heavy-Ion Setence, Ed. D.A. Bromley (PJenum, New York, 1985), vol. 3, f.l

DG 80

DH 84

DH 86

DM 86

DNP 6б

DS 84

EHH 77 C.A. Engelbrecht, F.J.H. Hahne and H.D. Haiss, Amn. Phys. (NX) 104 (1977) 221.

EK 71 J.A. Evans and N. Krous, Phys. Leet. 37B (1971) 455

ER 82a J.L. Egido and F, Ring, Nucl. Phys. A383 (1982) 189

ER 82b J.L. Egido and P. Ring, Nucl, Phys, A388 (1082) 19

ERI 85 J.L. Egiddo, P. Ring, B, Twasaki and H.-J. Mang, Phys, Lett. 154e (1985) 1

FF 69

FGN 79 D.H. Feng, R. Gilmore and L.M. Narducci, Phys. Rev. C19 (1979) 1119

FKN 78 H. Flocard, S.E. Koonin and M.S. Weiss, Yhys. Rev. C17 (1978) $168 ?$

FN 75

FR 85 O. Feclerschmidt and F. Ring, Nuck. Phys. A435 (1985) 110

GD 66
M. R. Gunye and S. Das Gupta, Nusi. Phys. 89 (1956) 443

GDM 71 A, A, Grib, E.V. Damaskinskil and V.M. Makeimov, Sov. Phys, Usp, 13 (1971) 798
H.B. Geyar, Bosan Kappings for Elementary Ewcytations in Permion Systems, AEB Report PIN - 584 (B / R), Chapter 5

Ge 85 M.Z.L. Gering, PhD Theais, University of the Wtwatersmand, 1985

GF 73
R. Ginmore and D.F. Feng, Fhys. Lett. 76B (1978) 26

G4 83 M.Z.I. Gering and W.D. Heiss, S. Afy. J. Phys, 6 (1983) 44

GH 84d M. $2 . I$. Gering and W.D. Hexss, J. Math. Phys. 25 (1984) 327

Ga 84b M.Z.I. Gering and W.D. Heiss, Phys, Rev. 029 (1984) 1113

G1 77 तू. Gimore, Physica 86A (1977) 137

GK 80
M.R. Gunye and A. Kumar, Phys. Rev, 022 (1980) 869

GLM 65 A. Gaiek, H.J. Lipikin and N. Meshkov, Nucl, Plyy, 62 (1965) 133

GN 80
A. Gobbi and W. Norenberg, in Heavy Ion Collistong, Ed.
R. Bock (North-Holland, New York, 1980)

Go 79: A.L. Goodman, Adv. Nuc1. Fhys. 11 (1979) 263

Go 79b A.Z. Gooduan, Nuch, Phys. A325 (1979) 171

Go 81s A.L. Goodman, Nuc1. Phys. A352 (1981) 30

Go 81 b A.h. Goodman, Nuc1. Fhys. A352 (1981) 45

G0 84 A.L. Goodmsn. Fhys. Rev, C29 (1984) 1887

GP 86 J.N.G. G6mez and C. Prieto, Nuc1. Phys. A452 (1986) 452

GS 81 N, van Giai and H. Sagawa, Phys. Lett. 106B (1981) 379

GSB 70 A.L. Goodran, G.L. Struble, J. J. Bar-Touy and A. Goswani, Phys. Rev. C2 (1970) 380

GVS 76 A.L. Goodnan, J.P. Vazy and 8.A. Sorenson, Phys. Rev. $C 13$ (1976) 1674

HS 68 R.W. Haymaker and R, Blankenbacier, Phys, Rev. 171 (1968) 1581

He 65 K.t. Hecht, Nuc1. Phys. 63 (1965) 177

He 80 W.D. Hefag, J. Math. Phys. 21 (1980) 848

He 81 W.D. Helss, J. Math. Phys. 22 (1981) 1182

HAR 82 K, Hara, A, Hayashi and P, Rang, Nect. Phys, A385 (1982) 14

HI 79 K, Nara and s. TWasakf, Nuad. Phys. A332 (1979) 61

Ro 49 L, van Hove, Physies 15 (1949) 951.

H1 65 J , Hゆgaasen, Nuovo CLm. 36 (1965) 773

Hu 63
3. Huang, Statiatteal Mechandag, (Whiey, New York, 1963)

Jls 82 A.D. Jackson, A. Lande and R.A. Smith, Phys. Rep, 86C (1982) 55

Ka 66 T. Kato, Perturbation Theory for Linear Operators, (Spinger, New York, 1966)

Ka 68 A. Kamiah, Z. Phys, 216 (1968) 52

KB 66 K. Kumar and M. Bexanger, Phys. Rev. Lett, 17 (1956) 1146

KCL 82 A. Kiejn, T.D. Cohern and C.-T. Li, Ann. Phys. (N.Y.) 141 (1982) 382

Ke 61 A.K. Kerman, Ama, Phys. (N.Y.) 12 (1961) 300

Kg 84 K. Kumar and j. B, Gupta, J. Phys, G: Nucl, Fhys. 10 (1984) 525

KG 85 S.E. Koonin and H.B. Geyer, in Gacirons and Heavy tong, Ed. W.D. Helss, Lecture Notes in Physias (Springer, Barlin, 1985), vol. 231, p. 1

KI 85 S.P. Klevansky and R.H. Letmer, J. Phys. G: Nucl. Pliys, 11 (1985) 1103

KLM 61 d.K. Kerman, R.D. Lawson and M. H. Macfarlana, Phya, Rev. 124 (1961) 162

Kii 79 H.G. KCmme1, Nuc1. Phys, A317 (1979) 199

Ku 81 T.T.S. Kuo, in Topies in Nuclear Physics I, Eds. T.T.S, Kuo and S.S.M Worg, Lecture Noteg in Phystes (Springer, Berlin, 1981), vol. 144, p. 248

La 66 R.V. Lange, Fhys. Rev. 146 (1966) 301
i.a 80 R.D. Lawson, Theory of the Nuclear Shell ModeI, (Oxfoxd Universtty Press, New Yorik, 1980)

LA 84 S. Levit and Y. Alhsssid, Nac. Fhys. A413 (1984) 439

LG 85 R.H. Lemmer and W. Greiner, Phys. Lett, 162B (1985) 247

LM 80 A.M. Lane and J. Matorell, Ann. Phys. (NY) 129 (1980) 273
-LMG 64 H.J. Lipkin, N. Mesthkoy and A.J. Glick, Nucl. Phys. 62 (1965) 188
LS 77 S. Levit and U. Smilansky, Ann. Phys. (NY) 108 (1977) 165

Ma 75 H.-J. thang, Phys. Rep, L8C (1975) 325

Ma 74 E.R. Karshalek, Nuch. Phys. A224 (1974) 245

Ma 82 E.R, Marshalek, Ann. Phys. (NY) 143 (1982) 191.

MGI 65 N. Meshkov, A.J. G1itk and H.J. Lipkin, Nucl. Phys, 62 (1965) 199

Mo 72 L.G, Moretto, Nuch. Phys. A135 (1972) 145

Mo 73 L.G, toretto, Nuci. Phys. A216 (1973) 1

MPR 65 H. -A. Mang, J.K. Poggenburg and J.0. Rasmussen, Nuc1. Phys. 64 (1965) 353

MSR 76 H.-J. Mang, B. Samadi and P. Ring, Z. Phys. A279 (1976) 325

MV 60 B.R. Flottelaon and J.g. Valstin, Phys. Rev. Lett. 5 (1960) 511
MV 83 H.G. Miller and J.P. Vary, Phys. Lett, 1318 (1983) 271

MW 69 E.R. Marshaiek and J, Weneser, Ann. Phys. (NY) 53 (1969) 569

24W 79
Y. Myanishi and G. Watanuki, Prog. Theor. Phys. 61 (1979) 680

3ikp 74 J. Mose1, P.-G. Zint and K.H. Passler, Nuc1. Fhys. A236 (1974) 252

Ne 82 J.w. Negela, Rev. Mod. Phys. 54 (1982) 813

N1 S4 S.G. N1sson, Nuci, Fhys. 55 (1964) 97

N7 72 J.W. Jegele and D. Vautherin, Fhys. Rev, C5 (1972) 1472

OS 83 R, Jkamoto and K. Suzukt, Prog. Theor. Phys. 70 (1983) 606

Pa 65 J.C. Parikh, Nuci. Phys. 63 (1965) 214

Pa 71 R. Pathria, Statisticad Mechandcs, (Pergamon, Oxford, 1971)

QM 86 R.M. Quick and H.G. Miller, submitted for pubIication

Ra 50 J, Ratnwater, Phys. Rev. 79 (1950) 432

Re 80 Z.E. Reichl, A Modern Course in Statistical Physics, (Arnold, London, 1980)

RP 85 R. Rossignald and A. Plastino, Phys. Rev. G32 (1985) 1040

RR 64 M. Rho enct J. O. Rasmussen, Phys. Rev. 135 (1964) 1295

RS $80 \quad$ P. Ring and P. Schuck, The Nuclear Meny-body Problem; (Springer, Berlinn, 1980)

RW 70 D. J. Rowe and S.8.M. Wong, Nucl. Phys. A153 (1970) 561

Se 72 H. Schaddt, Varenne Lectures 53 (1971) 144

SEN 84 Spin Exctitations in Nuclei, Conference Procerdings, Eds. F. Petapyich et al. (Flenum, wew York, 1984)

StB 69 S.L. Saipathy, D. Goss and M.K. Banerjee, Phys. Rev. 183 (2959) 887

SOE 84 K. W, Schmid, F, Grimmer and A. Feecsiez, Phys. Rev, C29 (1984) 291, 308

So 71 V.G. Soloviev, Theory of Complex Nuclei, (Pergainon, OxFord, 2971)

So 83 H.M. Sommermann, Ann. Phys, (NY) 151 (1983) 163

SHF 73 T.H. Schmcan and H.A. Weidenmiller, Am. Yhys. (Ny) 76 (1973) 483

TBC 82 I. Tseruya et a1, Phys. Rev, C26 (1.982) 2509

TH 60 B.J. Thouless, Nuck. Phys. 21 (1960) 225

Th 61 D.J. Thouless, Nucl. Fhys. 22 (1961) 78

Th 83 H. Thomas, in Gritical Phenomena, Ed. F.J.N. Halme, Lecture Notes in Physics (Springer, Berlin, 1983), vol. 186, p. 141

TV 62
D.J. Thouless and J.0. Valatin, Nucl. Phys. 31 (1962) 211

UR 71
N. B11ah and D.J. Rowe, Nuc. Piys. A163 (1971) 257

Ya 61
S.G. Valatin, Fhys. Rew. 122 (2961) 1012
vo 70
F. Villars and G. Cooper, Ann. Fhys. (NY) 56 (1970) 224

We 72
P.G. Watson, In Phase Transitions and Critical Phenomena, Eds.
C. Donib and H.S. Green (Academic, London, 1972), vol. 2. p. 101

WAM 85 E. Wist, A, Ansori and U. Masel, Nucl, Phys, A435 (1985) 477

WI: 86
G.M. Welke and W.D. Heisa, Phys. Rev, D 33 (1986) 2047

Wi 65 J.H. Wilkiason, The Algebrafe Eigenvalue Probiem, (Clarendon, Oxford, 1965)

YL 52 C.N. Yang and T.D. Lee, Phys. Rev. 27 (1952) 404, 410

YLV 62 A.P. Yutsis, I.B, Levinson and Y.V. Venagas, Mathematicel Apparatus of the theory of Angular Momentum, (Israel Program for Scientific Translations, Jerusalem, 1962)

3462
B. Zumino, J. Math. Phys. 3(1962) 1055

Author Davis Edward David
Name of thesis Dynamical Symmetry-breaking And The Mean-field Approach In Microscopic Nuclear Theory. 1986

PUBLISHER:

University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

