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ABSTRACT

The "phase transitions" predicted within finite microscopic systems by
Hartree-Fock-Bogoliubov (HFB) and aspects of the uge of the asscciated
broken~symmetry bases in che random-phase approximation (RPA) are
considered using soluble models. Evidence is presented in support of
tha conjecture that the success of these techniques lies in the faet
that they mimic singularities in the dependence on interaction strengths
of the exact solutiop. This conlecture provides a natural explanation
for why such methods fail close to a point where a phase transition

occurs and indicates possible directions for improvement.

Phage diagrams at both zero and finite temperature ave detsrmined, and
simple analytic expressiors for the way in which coriticasl screngrha
scale with particle number are found. It 1s shown that the "phase
transitices” predicted at finite temperature are relevant. A connection
between the singularities referred to ebove and real phase transiticns
found in the thermodynamic limit is discusaed.

It is found that only stable bases can be used in an RPA caleulation.
This is in particular true for those RPA wodes which are not associated
with the onset of instability of the basis; these modes do not describe
any excited state when the basis is unstable.

Outside transitional regions certain undesirable features of HFB are
unearthed, notably that the HFB ground state emergy is not necassarily
an upper bound to the exact ground state energy. The effectiveness in
this regime of the Hartree-Fock Seniority approximation as a substitute

to projection methods is - .ated,
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CHAPTER ONE

INTRODUCTLON

A challenge common to many areas of phyelca is to understand the prop-
ertles of an interacting system having large or infinite numbers of
degrees of frasdom. Among these complex many-body problems, the ground
state stcacture and low-energy collective dynamics of atomle mnuclel
occupy a unique place: the wealth of experimental dinformation on
nuclear properties makes the nucleus by far the best laboratory for the
study of quantal collective phenomena (AW 85 and references therein).

The past 35 years have seen the development in importance of the self-
congistent mean-field approximation in the mlerescopic description of
the nuclear many-body problem, Beginning with rhe early bewilderment
that something like the ghell model could be good in a strongly inter-
acting system, continuing tlhrough the discovery (BL 55, Br 535) of a
suitable treatment of short-range correlations, and then the discovery
(BCS 57, BMP 58) of a suitable traatment of pairing correlations, it was
ultimately established that an adequate quantitative description of
ground state properties can be afforded by a (static) self-consistent
mean-fleld approximation of, in the most general case, the Hartree-Fock-
Bogoliubov type with an effective interaction derived from first princi~
ples (NV 72, FN 75). More recently an ambitious programme involving the
time-dependent generalisation of mean~fleld theory has been launched
{BKN 76, CMM 78, FKW 78) with a view tr v, iding a microscopic descrip-
tion of nuclear collisfons (at un energy of a few MeV per nucleon above
the Coulomb barrier) and large-amplitude rallective motion; collective
variables and thelr dynamics are fully spe.ified by the nuclear Hamil-
tonian a.d the physical procass under cousideration, and not decided
upon on an ad hoe basils. This theory presents u formidable compu-
tational effort as It leads to & set of highly non~linear coupled
integro-differential equatiouns, but the solutlons have demonstrated an
unexpectadly rich behaviour and good agreement with experiment has been
found (Ne 82, DDK 85, KG 83).

The mean~field don does not d gy-~di d (or
dynamic) effective interactions. The significance and phystcal




relevance of dynamic interactions, »e well as thelr proper treatment
within the Green's function formulation of the many~body problem, have
been discussed at length in (EMH 77) and (Ge 85). A formally important
property emerging from these investigations 12 the crossing-symmetry
required of an exact four point vertex function I', which reflects the
complexity of a y~body eystem in cal terms. Direct attempte
to construct a crossing-symmetric I in the general case have been
unsuccessful (He 80, 81), but inzight has been gained from the model
study in (GH 84a), which, in fact, suggests that the implementation of
crossing-symmetry becomes impartant in the region of the "phase tran-

sitions" within nuclei predicted uy the self-consistent mean-field
approximation. This claim rests on the conjecture that the "phase
transitions” are related to the presence of branch point singularities
in the dependenc on interaction strengths of the exact solution. The
desire to present more evidfence in support of this conjecture was the
starting point of the preseus satudy.

Two topics are exploved in this work. The firat concerns the "phase
transitions" predicted by the self-consistent mean-field approximation
when applied to finite microscopic systems both at zevo and at Eipite
temperatuxe. In chapter 5, wvidence 1s presented in support of the
conjecture discussed above (which refers to zero temperature phase
traneitions). In particular attention is paid to what cer reasonably be
expected to happen ¢ rhe distribution of branch point singularities as
the dimensions of .- system increase, apecifienlly as the particle
number N + = (and the thermodynamic limit fa attained), to see whether
these singularities can account for (as they must) the occurrence of
non~analytic behaviour in the real phase trawsitions found 4n this
Iimit.

These investigations imply that, cuntrary to the findings of (Go 84) and
(ERI 85), a "phase transition" predicted %1 - Finite system should
remain viailble at finite temperature. Aecord:v,.v, this dssue is also
taken up (agatr in chapter 5), but, instead of :tudying order paremeters
as in (Go 84) and (BRI 85), the spacific hea: “y ia considered; it has
the advantage of being a direct measure of thexmul fluctuations, which
are claimed to be responsible for the "washing out" of the "phase




transitions”, and at the same time, it bebaves in s distinctive (singu-
lar) way in real phase transitions.

The second tople is intimately related to the first: aspects of the use
(at zero temperature) of gelf-consistent mean-fields with broken sym~

) B metry are addressed. The conjectursd relatlonship betveen phese tran-
joo. ol aitions and branch point singularities 1s seen to imply that broken-~
2 symretry bames which are mtable (in the senge of gection 3.1) minde

A appropriately the effects of the singularfties. Thua, while they may be

inadequate In the vicinity of a phase transition, their quality ought to
improve outside of the transition region. Confirmation of this is
presented in chapter 6, which considers RPA calculations in the vicinity L
of phage transitions and beyond. Both stable and unstable bases are
employed in order to highlight this.

PR In chapter 7, some unexpected and undesirable consequences of using

broken-synmetry bases, which can arise in regions far removed from phase

transitions, are discussed. In addition, the effectiveness in this
regime of an approximate treatment, which has been propesed recently (GP
86) as a substitute to complex projection methods, is evaluated. ey

u To accomplish &ll this, the exactly soluble Agassl model (Ag 68, DH 86),
“ which is eimilar to the Pairing-plus-Quadrupole model, is employed. It

1s chosen because a variety of phase transitions can be studied within

it. Chapters 2 - 4 prepare the for the consld~ I
erations by discussing the exact properties of this model and resvlts of
the application of Hartree-Fock~Bogoliubov (HFR) at zerpo and Einite ©

temperature. In chapter 2, the model is described; Lts exact solution
ueing the quagi-spin method and qualitative features of the solution are
discussed. Zero and finite HFB are applied in

chapters ) and 4, respactively, with the purpose of eatablishing the
appropriate phase diagrams. L

N Conclusions emerging from this work are presented in chapter 8. With £
%6) ’ the exception of chapter 8, each of the succeeding chapters possosses an o .
] introductory section in which the contents of the particular chapter is —
. outiined. These complement the discuseion in this chepter of the global g

% structure of the thesis by pointing out specific results which are felt e




transitions”, and at the eame time, it behaves in a distinetive (singu-
lar) way in real phase transitions.
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(at zero temperature) of self-consistent mean-fields with broken sym-
metry axe addressed. The conjectured relationship between phase twan-
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presented in chapter 6, which nonsiders RPA calculations in the vicinicy
of phage trangitions aud beyond. Both stalile and unstable bases are
employed in ordar ¢o highlight this.

In chapter 7, some unexpected and undesirable conoequences of using o w

broken- symmetry bases, which con arise in regions fax romoved from phase "
transitions, axe discussed. In additlon, the affactiveness in this '
regiue of an approximate treatment, which has been proposed recently (GP i f
86) as a substitute to complex projection methods, is evaluated. ’

To accomplish all this, the exactly moluble Agessi model (Ag 68, DR 86),
which 1a similar to the Palring-plus~Quadrupole wmodel, is employed. 1t
is chosen because a variety of phase transitions can be studied within

it. Chapters 2 - 4 prepare the foundations for the subsequent consid-
erations by discuseilng the exact properties of this model and results of
the application of Hortree-Fock-Bogoliubov (HFB) at zero and Finite
temperature. In chapter 2, the model ile descxibed; its exact solution

using the quasi-apin method and qualitativa fentures of the solution are

dis~vased. Zero and finite HFB are applied in e
chaptars 3 and 4, vespectively, with the purpose of establishing the @t X
[ appropriate phase diagrams. .

Conclugions emerging from this work are presented in chapter 8. With N
the exception of chapter 8, each of the succeeding chaptera possesses an .
introductory section in which the contents ef the particular chapter is N N
sutlined. These complement the discussion in this chapter of the global 3 j
structure of the thesis by pointing out specific results which are felt <




to be novel or interesting and by citing, where appropriate, relevant
developments in the literaturw. In addition, there are several appendi-
ces. As 1In most cases thelr contents is relevant to no more than one
chapter, they have been formafted to appear as integral parts of the
chapters concerned.




CHAPTER TWO

THE AGASSI MODEL

The Agassi model (Ag 68) consists of N identical fermions which occzupy
two levels, each with degemeracy Q (2 even). Adopting the BCS phase
convention, the Bamiltonian is

. ¥ L
" _% q;x:lq Som Som %d:m' Som Som' S-gm' S-om
WTy
(2.1)
L
- gc s “em So-m Sotem’ So'm'
wa' >0

where o labels the levels, m the stares within a level and c:m creates a
fermion in the single-particle state |om>. In this work ¢ is taken to
be +1(-1) for the upper (lower) level, and m to have the range m = I,
%2, ..., #0/2. Also V end g are assumed to be non-negative, and N to be

even.

The Agassi model is by design a schematic version of the phenomenologi-
cally successful Pairing-plus-~Quadrupole model (KG 84). While the
pairing intersction (with strength g) 1is retained, the complex quadru-
pole Imteraction is replaced by the simpler monopole interaction (with
strength V) familiar from the LMG model (IMG 65). It is well known
{GLM 65, ALM 66} that this interaction is respomsible for effects which
are formally similar to those induced by the quadrupole interaction.
The two  levels together may be interpreted as the equivalent of the
valence shell in a nucleus. In application of the Pairing-plus-Quadru~
pole model, the singli-particle levels used are typically (GD 66) just
those in this shell.

Familiarity with the LMG model and the 2-Level Pairing model (RR 64)
immediately suggests that the Hamiltoniam of the Agassi model can be

rewritten as

How el - QT 4+ B - gL+ 5O+ 8) (2.2)
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The L, § and J operators separately form SU(2) algebras. Obviously the
L and § operators commute. Consideration of the commutation relations
of the J operators with the L and § operators shows that a closed Lie
algebra is obtained by introducing the operators X, and M_ = (M+)+ where

+ ot
M, = D oel el (2.4)
o,m
m>0

The M operators also form an SU(2) algebra: the operator Mo is given by
Mo = Lo + So'

The non~trivial commutators of the 10 independent operators introduced
above are given in 2.2; they te that these 7 s
form the Lie algebra of the group 50(5) (Pa 65, Ge 81). This means that
H can only have a non-zerc matrix element between two states if a

component of each belongs to the same irveducible representation of
80(5). The dirreducible representations of S0(5) contain states of
different particle numbers. The dimenalon of the N-particle subspaces
within these irreducible representations is at most cubic in N. (by
contrast, the dimengion of the full Hilbert space involved grows ex-
ponentially with N.) Accordingly, adopting a basis which consists of
these N-particle subspaces makes exact diagenalization (by computer) of
the gntire Hamiltonian matrix feasible even when N is quite large.

In succeeding chapters the Agassi model will be considered at both zero
and finite temperatures. The approach adopted at finite temperature is




however influenced by insights arrived at in the zero temperature case.
S0, this chapter will be devoted to material relevant te the exact
solutirn at zero temperatura. (The finite temperature case will be
taken up in Chapter S.)

At zero temperature, omly the ground state of the Agassi model and its
most collective (low-lying) excitations are of interest. These are all
spanned by a single irreducible representation of the "quasi-spin" group
50(5), whatever the value «f N. (Recall ¥ is assumed to be even.) For
cbvious reasons, the N-particle subspace of this irreducihle representa-
tion will subsequently be referred to as the "collective subspace” of
the N-particle system. The dimension of the subspace is a quadratic in
N.

The introduction of the quasi-spin group SO(5) dramatically simplifies
the problem of determining the most collective states of the Agassi
model. The use of S0(5) in the Agassi model is an ‘llustration of a
completely gemeral approach to the nuclear man ¢ roblem. The
rationale behind this approach is discussed extens (KCL 82). &
spin-off is that it suggests 2 method whereby a «.. .<ty of exactly
gsoluble but uon-trivial models can be generated.

The information necessary to construct the Hamiltonian matrix in the
collective subspace of the Agagsi model is presented in Section 2.1 of
this chapter. In particular, the group theoretical basis for the
collective subspace will be considered. While all of this material is
dmplicit in the litexature {Ag 68, He 5, Pa 65), this discussion makes
the thesis self-contailned (and serves as an accessible preseription for
anyone who would like to use the Agassi model).

Section 2.2 is devoted to the small and large interaction strength
limlts of the Agassi model. This discussion establishes what the
sallent qualitative features of the exact solution are. Finally, there
are two appendices to this chapter. The first contains useful matrix
elemonts of the operators in the SO(5) algebra in the group thecratical
basis for the collective subspace, at! the second, as already mentioned,
the non-trivial commutators of these quasi-spin operators.




SECTION 2.1: INGREDIENTS FOR THE EXACT SOLUTION OF THE AGASSI MODEL

The L and 5 operators introduced im Eq. (2.3) can be used to construct a
set of four commuting operators, namely L2, §2, L, and S.. The math-
ematilcally natural choice of basis for an irreducible representation of
$0(5) consists of simultaneous eigenstates of these four operators
(Section 2 in (He 65)). In fact, the efgenvalues of these operators are
sufficient to label the members of the basis completely. Furthermore
the maximum values attained within the irreducible representation by the
eigenvalues of L and § unambiguously specify the representation. Lf
these are denoted by Lm and sm respectively, then the hasis states are
|(Lmsm)L,s,ML,Hs>, where M (M) ds the susiavalue of L (S}, and
L(L + 1) and S§(S + 1) ave the eigenvalues of L? and $2 respectively.

The basis used in (RR 64) to diagonalise the 2-level Pairing model is
very similar. When both levels have the same degeneracy @, the states
in the basis are

lLs M> = L M5 |8 H>
where

L =35=Qf4

M = -B/4, -R/4 + 1y ooy =016 F /2 QMg = (N - R)/2 - ).

These span the intevacting ground state of this model, If the limit
(lee. V + 0) in which the Agassi model coincides with the 2~level
Pairing model is uniform, the irreducible representation of $0(3) which
eoutaing the collective subspace of the Agassl model must contain states
for which L = 8 = 8/4. This is only possible if Lm‘ Sm 2 Q/4. On the
other hand, from the definitions of Lo and So ir Eq. (2.3), their
elgenvalues M, Mg S Q/4, implying L, S, S 8/4, rombining these
inequalities leads to the result that, for the irreducible representa-
tion of interest, L = § = Q/4, whatever the value of W.




The assumption required to derive this conclusion falls away 4f it can
be shown that the irreducible representation selected spans the ground
state of the LMG model. This model pogssesses the same single-particle
level scheme as the Agassi model but the number of particles present ig
austometically equal to f0. An obvious member of the busis spanning the
ground sgtate 13 the state in which all Q patticles occupy the Llower
level. This state is also found in the Ilrreducible representation with
L, = 8, = %/4, where it is denoted by

[(are ars) a/4, a4, - 9f4, 9l

As the vemainder of the basis for the ground state of the LMG model is
genervated by acting on this state with the "ladder" operator J+ {ir~
troduced in Eq. (2.3)), the desired result follows.
'

Because L = § in the irreducible representation of interest, the basis
congists of states in which L » 8 (Eq. (11) in {H#e 65)), The range of
values of L (and §) 1s given by L = /4 ~ m/2 where m =0, 1, 2, ...,
9/2. In states containing N particles, the eigenvalues ¥ and Mg nwst
satisfy the constraint

MokNg ow (¥ -0)/2 = 4 (2.6)

This i possible provided 2L = /2 - m 2 |A{, or equivalently, m & LN
where

N/2 NsR
. - - @n
m, a/2 - |a]

(20 - N)/2 N>
The constraint in Bq. (2.6) implies thar ML and MS can be written as

Moo= 42 45, Mg o= 4/2 -z (2.8)

where the unconstrained variable z = ~z, = (3, ~ 1), = (3, = 2), ..\,
2, = Ly 2, with




22, = m =m 2.9)
Thug the group theoretical basis for the N~particle collective subspace
of the Agassi model is the set of states

|m,z>
- ](Lm-sm-ﬂ,/A) Lws=0/s~n/2, h =8/2+z, ¥ =8/2-2>

where the ranges of m and 2 are glven above., Clearly the dimension of
this subspace is

n
Dy = T (22t 1) = Mlm o+ Dim, + 2,
me= 0

which is a quadratic in either ¥ or 2@ - N, whichever is emallexr. In
circumstances wheve it is necessary to specify the particle number of
the state m,z> it will be denoted by |m,z,4>.

Ingpection of the Hamiltonian in Eq, (2.1) shows that it transforms a
gtate containing on even number of particles in the upper level into (in
general) a linear combination of such statesa; a similar result holds for
states containing an odd number of particles in the upper level. The
formal reason for this property is that the Hamiltonian commutes with
the "parity” operator P = exp(iwdo) familiar from the LMG model. States
which contain an even/edd number of parciecles in the upper level, and
linear combinations of these states, are said to possess posivive/nega-
tive parity. Because the state [m,z> s aun eigenstate of Ly 1t must
have good parity; in faet it is easily shown that |m.z> has positive
parity 1f m 46 even and negative parity if m is odd. The parity sym-
metry of the Agassi Hamiltonian implies that the Hamiltonlan matrix in
the basis |m,z> 43 not of dimension D_. Instead it consists of two
submatrices, one of which couples the positive parity (even m) basis
states, while the other couples the negative parity (odd m) basis
states. The dimensions of these submatrices are given in Table 2.1. It
1s slear that the elgenstates which emerge from the diagonalisation of
this Hamiltonlan matrix automatically have good parity.




Expressions for the non-zero matrix elements of the Agassi Hamiltomian H .
in the basis |m,z> can be deduced from Eqs. (A2.4) ~ (A2.7) of Appen-— o
dix 2.1. The members of the basis are assumed to be ordered so that m
increasea from left-towright or top-to-bottom in a matrix and, for given A
m, ¥ varies in the same way. $ince the Hamiltonian matrix is hermitian, o
only the matriz elements <m',z'|H|m,2> in which (m',z') & (m.z), have to
be calculated, Expressions for three of these matrix elements can be
written down immediately from ¥qs (A2.4) ~ (A2.7). They are: 3.

1 <mzlifme> = amgz] e g~ gL+ 5,8 [mz

(2.10a} LR
Tk RIS SR
2)  <m,z + UHmz> « - <m, 2+ 1{g LS + %ﬂ““""
(2.10b) E
® -~ (g+bmV) alz + 1) al-z) o
where - “
ax) = kim, - m+ 20" @ - n o+ 20af + 20" 7
A
o
and ‘%
bm) = (alm)? + (a(w-1))?
-y in which L
M ¥
. - 2(m+ 1Y@ ~ 0+ 2) . Lo .
o ] am) {m-z|n)(n-2m+2) ; g
) 2, 2k L[Bmz 2 2 V2 @2, 2+ 1|3 m .
e (2.100) o
& = al(m+ 1) a(m) al-z) a(~z - 1) V. A

The fourth (and final) non-zero matrix element of H of this typs follows
. from the observation that «m - 2, z + 1]Ji[m,z> is non-zero (cf,
Eq. (42.7)), which implies, through hermitian conjugation, that




<m+ 2, z - 1|I%m,z2>

is nom~zere. Thus, ust.; the reality of matrix elements of J,

@2, % UHfwa> w = V2t 2,z 1|52
= - Wt emz|dlln v 2, 2 - 1> (2.104)
® - alm+ 1) a(m) afz) a(z - 1) V.

The parity-conserving property of H# 15 contained iIn the fact that
<n',z' |R|m,z> 1s non-zare only if m' - m is even.

In che non-interacting limit, it is obvious the properties of the
{R + Zk)~particle pystem whare (k= I, 2, ..., 9/2) are trivially
related to thoss of the (R - 2k)~particle system, if the description of
stares in the (9 + 2k)-particle system is reformulated in terms of the B
. (% ~ 2k) single-particle states which are unoctupied. Consideration of
o Egs. (2.7) and  (2.9) #...® that the bages |m, 2, &=k and
e {m, z, & = =k> possess the same rangss of m and z. 7his suggests a
T fundamental coomection between the systems containing (R - 2k) and
(@ + 2k) particles persists in the (interacting) Agassi wmodel. Imspecw
tion of Eq. (2.10) confirms this suspicion, for it implies

v <m', z'y, A=k |H| m, oz, A=k .

e NS IR N S - | NI

which means the two Hamiltonlan matrices have exactly the same eigen=
vectors, whila the eigenenergies of tha (Q + 2k)~partfcle system are
obtained by subtractlng 2kg From each of the eigenenergies of the
(R - 2k)~particle system, Equations (A2.1) - (A2.4) (of Appendix 2.1)
demenstrates that the equivalence of these two sygtems also ambraces the -

it matrix elements of the individual quasi~spin operators. Thus, in what
follows, ¥ § 2 unless otherwlse specified. Furthermove, as only a 2 x 2
o matrix has to be diagonaliged when ¥ = 2, it will be assumed that @ 2 4.

wt. F



SECTION 2.2: IALITATIVE FEATURES OF THE SOLUTION '.0 THE AGASSI MODEL

In subsections 2.2.1 and 2.2.2 of this section, the solution to the
Agassi model for small and laxge interaction strangths respectively will
be congidered. The discussion will take advantage of results available
analyticaliv. Attention will be focussed on the properties of the
ground state, the global structure of the spectrum of exciration ene '~
gies and the matrix elaments of quasi-spin operators between the ground
state and other states. It 4s convenlent to characterise the ground

state by the expectation values of b iong of quasi~spi

These expectation values convey the assentlal physics of the ground

state without any redundant information. (In fact, just this is ex-

ploited in the elegant Sum~rule alternatives to full HPA caleulotions

(BLYM 79).) 1In this regard, it is useful to introduce the combinations
Te o m (3002, L (I, -J/2, ¢

= Ly * 8, (21D

which, because the Agassi Hamiltenian can be written as
- - 2= -
H el V(Jx Jy ) Y., (2.12)
are particularly appropriate to the limits of large g and V.

With regard to notation (here and elsewhere), the eigenstates of H will
be denoted by |_1,vr>. The label n i +1/-1 for positive/negative parity
statag; for states of a given parity, J dincreases with increasing
energy, with j w | for the state of lowest energy. For succinctness,
the ground state will wsually be denoted by [0>' When the parti-
cle number of eigenstates is nseded, they will be denoted by |j,m,N>
{or, in the case of the ground state, [0,N>).

2.2.1 Behaviour when g and V small

It is useful in discussing this vegime to distinguish that the part of
the palring interaction which scta within a level from the rest (which
scatterg partieles from one lavel to the othexr). This can be dome by
introducing, instead of the Agassi Hami{ltonlan, the more general Hamil-
tonian




- - 2,52y -
Bo= el - W2 2T - el + 5,80
(2.13)
- malLS_ + S,

From Eyg, (2.10), the expressic for the eigenenergies of H contain
terms which are linear in g;, oy gz and V appear to higher powers.
Thus in studylng the limit of sme’l interaction strengths in the Agassi
model, a reasonable first stap is the set V = gp = 0. This immediately
simplifies the problem since the states |m,z> are then the eigenstates
of H with eigenenergies

E(m,2) = 22:-{—;-{%-m][g-m+2] - 2? - s[%‘“]}gl

(2.14)

where § = (@ - N)/2 = |a|. 1In all of these eigenstates the number of
particles in the uppar level is a good quantum number. This feature is
usually typical of non-interacting systems, These states are however
very different from those of a non~interacting system, being special
superpositions (in general) of several Slater detarminants. (Only the
states fm=0, z « & z,, 4 = 0> compriae just one Slater determinant.)

As g) 1s increased from zers, & levelwcrossing iavolving the lowest two
positive parity state occurs. For g; less than this value, the state
with the lowest energy (i.e. the ground state) is |0>- |m-0,
zm -z - ~N/4>. The energles of the remaining states relative to the
ground state are given by

E{m,z) =~ E(m =0, z = ~N/4)
(2.15)
= mle+ (5 + 1gy) + k(2 - (V- 2n - 2W)g) = AE(m,k)

where k = 2z + 2, = 0y 1y 2, «vyy N/2 ~ m. TFigure 2.1 contains a
typteal plot of AE(m,k) for some of the low-lying excited states. 1f m

and k are gmall in comparison to ¥, then 4t 1s a good approximation to
write

, o
8E (myk) B ow B+ kEpr (2,168)
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where

E:uon =+ (8+ gy » = 2¢ - (N - 2)g;. (2.16b)

B®
pr
Equation (2.16) shows that the spectrum of excited states can ba egsily

if it is that the N-particle system supports two

independent vibrational modes: one has a negative parity guantum of
energy E;m“ and the other has u positive parity quantum of energy E’r.
The excited states contain different numbers of these two quanta. This

description also makes the collective nature of the spectrum clear.

The spectrum in Fig. 2.2a is typical of those found in the full Agassi
model when x(S( -1)V/e) is susll and I(3(R - 1)g/¢) 1is varied. It is
noticeable how similar Figs. 2.2a and 2.1 are in the range 0 s L s 0.75.
The description of the spectrum in terms of two vibrational modes of
opposite parity (with ensrgles Emon and E r) is still feasible in this
regime, with the level-repulsions at & ® 0.25 being in effect level-
crosgings. Comparison of the energies dn Fig, 2.2a 1in the limit £+ O
with Eq. (2.16) suggests that, for imall ¥, Emon decresses with in-
creasing x, while B r 48 essentially independent of . This is conw
firmed by the spectrum in Fig, 2.2b, for which L iy now amall and ¥ Ls
varied. Furthermere, it too is vibrational (provided x s 1). The two
modes of energy Em“ and E e GFe the counterparts of the wmonopole
vibration in the LMG model and the pairon-holon vibration in the 2-level
Pairing model respectively. (The Lerms pairoun and holon are definad in
the introducticn to (EWH 77).) Thus the excitations in the Agessi
model, when I and x are small, are precisely rhose expacted Intuitively
of a model which 1s obtained by combining the LMG medel with the 2-level
Pairing model. (Features in the spectra In Fig. 2.2 when %, x >> ] will
be discussed in Section 2.2.2.)

The success of Bq. (2.15) in reproducing the essentlal features of the
spectrum when V und g, = g) are non-zerc but small implies that assuming
the eigenstates to be |m,z> will yield useful order of magnitude esti-
mates for the ground state expectation values and transitlon watwix
elements of quasi-gpin opervators. Expressions for these can be inferred
directly from Appendix 2.1.

at .




W hl T %

The expectation values in [0> = | m = 0, z = -N/4> of the simple com-
binations of quesi-spin operators discussed in Appendix 2.1 are listed
in Table 2.2, As all ¥ particles are in the lower level in [0>, the
expectation values of LL_, L,S , J3, J,J_ and MX_must be zero. The
expectation values of 5,5 and J, (and any combination thereof) are also
trivial because |[0> 1s an elgenstate of these operstors. From
Eqs. (A2.4) and (a2.8),

1les = - w/zfo>

s+s_|o> = 2 (8 + 1) lo>,

(Actually these results are implicit in £q. (2.14).) Since W2 2,
<0|5,5_{0> /2. Combining all of these results and Eq. {2.11), onme
can deduce the expectation values of JZ, J* and Y,Y . Whes N = . 0>
is a single Slater determinant; even when N < @ (and |0> is superposi-
tion of several Slater determinants) only the expectation values in-
volving §,§_ differ from those of any Slater determinant in which all W

particles are in the lower level.
Of the quasi-spin operators which comserve particle mumber, only J, (or
1, and Jy) can connect |0> with other states. Since none of the parti-
cles in [0> are in the upper level, J_|0> = 0. From Eq. (42.2),

Lo = Mzjmel, 2 m oWl = A2 jmm, oz ~z,>

which implies

<d.mlajos = /2 6, 8
San]3,] LI I

Adopting Jx and Jy inytead of J , these results become

<tunfd o> = 2 <Jnvayf0> - VN/2 84,y Sroey (2.17a)




The independent non-zero matrix elements of 5., L, and M, between lo,ns
and other states are (using Eqs. (A2.1) and (A2.3)k

<0, ¥ - 2[s_|o,¥> = /NCSF D72
<j =2, wmHl, N+ 2]L+|0,N> = /9/2, (2.178)
<f =1, mm -l W2y ]ow = VEs .

The remaining non-zerc matrix elemeats can be inferred by hermitian

conjugation.

Because the quasi-spin operators are S0(5) generators, the mstrix
elements of any combination Q of quasi-spin operators satisfy the sum

rule
z |< ejejor]2 = <olq’ qlos |

where |£> is any basis for the collective subspace. The results in
Eq. (2.17a) may be summarised by saying that, as X, I » 0, the matrix
elemgnt involving the lowest uegative parity eigenmstate exhausts the
sum rules for J and J (ef. Table 2.2). Similarly, the sun rules for
5, L

, and M, are in each case exhausted by ome matrix element in the

4
sum.

2.2,2 Behaviour when g and V large

In this subsection, the limit' g » @ (V fixed) is considered first, and
then Lhe limit ¥ + @ (g fized).

When g »>> V,g, the Agassi Hamiltonian becomes in effect
a - o -g(Y® - ¥?
H g VY g(Y° - Y2+ 1Y),

vhere Y = Lo + 8 ( = M) and Y, form a SU(2) algebra. This Hamil-
tondan only couples states |m,z> and |m',z'> 1f m = m' (cf. Eq. (2.10)).

So 4ts et are lincar ions of the states |m,z>, m fixed,
which are eigenstates of Y2. (By construction, each state |m,2> 1s an
eigenvector of Y with eigenvalue My = 4.) Since the operators L, § end

S N
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Fig, 2.1 Excitation energies (in units of ¢) of low-lying states when
R " only gy non-zere ; N = @ = 20 , B £ (2 - l)(g/e). Each
; level f¢ labelled by the orderd pair (m, k), where m and k

5" refer to Eq. (2.15).
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Fig. 2.2 Low-lying members cm exact noﬁmnnﬂqm excitation wvmnnﬁﬁ of Agassi model when N = @ = 20; in
part (a), x = § (£ varied), while, in part ?v. = 0.35 (x varied).
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Fig, 2.2 Low-lying members oy exact collective excitation spectrum of Agassi model when N = Q = 20; in
part (a), x = & (T varied), while, in part {b), £ = 0,35 (x varied),




Fig. 2.3 Ground state energy of N = 20 system relative to ground state
energy of N = Q = 22 system (x = 0.4); E‘l and Bb are
approximations te this given in Eq. (2.22).
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i Fig. 2.4 Expectation value of ‘I+Y_ in the positive parity ground state

1 {curve A) and the lowest negative parity state (curve B) when
: N = 14, @ = 22 and By = 1.5, (The expectation values have ¢
been scaled by a factor of 4/NQ).
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Fig. 2.5 Low-lying members of exact collective excitation spectrum of
Agassi model when x = 5, N = = 20,
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¥ have the formal properties of angular momentum operators and
T=1 4§, these combinations follow from standard angular momentum
coupling techniques. Thus the eigenstates of H are

[t = |v, By wdy Loms =8/ - a2
z
u

- 3 cm[ m,z> (2.18)

z = -z
u

in which Cy 18 the Clebsch-Gordon coefficlent

Comz ™ (L-%‘%. s-g-%\.u,‘-%u,us-%-zlv,my)

and ¥ = §, &+ 1, 6 +2, +0v, /2 ~ m. The elgenenergy of |Y,m> is

BY = = (YY1} = 88 + 1))g, (2.19)
from which it is clear that the ground state of the system 1s the single
state for which Y = /2 - f.e. [0> = }Y = 0/2, m = 0>, As a result, in
the 2-level Pairing model only states in which m = 0 are considered.

(The set of states !n\ = 0,z> coircildes with the basis in Eq. (2.8).)

In this limit the ground atate expectation value of Y, ¥ attains its
maximum vzlue, namely

<0]Y+Y_|O> A N/2Z (B2 84 1)

(2.20a)
w 2* (N/29) (L - N/20 4 1/8).
On the other hand, when g (,¥) » 0, then, from Table 2.2,
<0[y,Y_[0> = @34 N/8 (1L~ w/a+ 2/0). €2.200)

Both results depend on the sum over all states of the product of the
probability that a single~particla state is occcupied with the probabili-
ity that it is unoccupled, Whereas, for N amall, the expression in




Eq. (2.20a) is only a factor of 2 greater than the expression in
Bq. (2.20b), it becomes a facter of Q/2Z greater sg N + @, It is cthe
drop in the probability that any single-particle state is ynoccupled
when particles are confined to one level (i.e. the factor of (Il - N/R)

in Eq. (2.20b)), which accounts for this trend.

Since gp + =, it is plausible that both levels contain the same number
of particles in the state (0> = d.e, <°“o|0> w 0. Symmetry properties
" - oy Y,

of the Clebsch-Gordon coefficients imply that Cy = (=)' 'm cYm(-z)'
where Y = 8/2 - m. It follows that

= 2

Ol0> = 252 (S ugpy, g, o

or that <0|L [0> = <0)5 |0> « -8/2 as anticipated.

little surprising is that this result holds for all states |Y,m>)

{What %8s parhaps a

The calculation of the remaining ground stata expectation values in the
limit g + « is lengthy bat straightforward; it is facilitated by the use
of standard techniques (in the theory of Angular Momentum) for the
matrix alements of products of irreducible tensors in coupled bases

(e.g. Chapter 7 of (YLV 62)). (Recall that L and § are "angular momen-

ta" coupled to total "angular wmomentum" ¥.) One obtains the following
results:
<0fs,s_|0> = <0|LL 0> = w (/)% - wp/2 R NG,
<ofts_ {00 = u@/n)?,
<u|1;|o> = <0|J:|0> s oufh o= N2 (L~ N2k, (2.21)
<0|J;|O> =0,
<ol 0> = waws -,
whare
o= /(v - 1) N/2@ (1 - N/20) .
- . - R - -

i
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Consistent with intultive anticipations, the expectation values of L+L_.,
S_._S_ and L+S_ are to a good approximation equal. Their value in this
limit is thus determined by <0|Y+Y_Jo>. The results for J% and .1;
indicate that both their expectation values decrease significantly as g
increases from zero {(cf. Table 2.2).

From Eq. {2.19) the energles of excited states relative to the energy of
the ground state are

B = Bylqgapp-e T FByagn T S@F1l-s)g

where s = 1, 2, 3, ..., N/2. There are s + 1 states with excitation
energy E(s). In addition states of opposite parity are degenerata.
{The number of positive parity states with energy E(s) is (s + 1)/2 1f s
1% odd, and s/2 + 1 if s is even.) For the low~lying states (s small),
the spacing between energy levels 1s almost constant. This suggests
these states are essentially non-interacting vibrational states; such a
description, which requires two modes with quanta of opposite parity but
the same energy, provides a natural wey of accounting for the number of
positive and negative parity states of a given excitaticn energy.

The astructure in the spactrum implied by these results is not restricted
to the limit g (or E) + =, Reference to Fig. 2.2a shows that, when y ig
small, it is already viaibla for [ = 2.

The spectra for a specific number of particles when V and g are small
and when g is large (V Eixed) ave qualitatively similer in that bath are
vibrational. However qualitative differences are found when the ener-
gles of corresponding states (e.g. ground states) in systems of differ-
ent particle number are compared. Using Egs. (2.14) and (2.19), the
ground state energy of the N-particle system relative to the ground
state enevgy of the Qwparticie system i, to leading order in g,

o= (e~ (@21~ 8)g) (2.228)

when g is small, and

E-.
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By = 8(§+ L)g (2.220)

when g + «. Provided Y 1s small, these expressions provide useful
estimates of the splitting of ground state energies in the two regimes
{cf. Fig. 2.3). For small § (i.e. N close to 2), the former exprassion
implies the ground states belong to a pairing vibratiomal band (8B 66)
vhile the latter implies they belong to a pairing rotetionsl band

(8¢ 72). Similarly, each excited state of the N-particle system is a
member of, in the first limit, a vibrational band and, in the second
limit, a rotational band extending over aystems of different particle
number. Every state in a particular vibrational band has the same
values of m and k (cf. Bq. (2.16a)), while, for a rotational band, the
values of Y and m are constant.

The significance of the pairing votational bands becomes spparent when
the matrix elements of Y, between different elgenstates are com-
sidered. Whea g » =, \'+ and Y_ can only comnect the grond state of
the N-particle system to the ground states of the (N + 2)- and (N - 2)-
particle systems respectively (f.e. to ocher membera of the ground state
pairing rotaticnal band), wherers in the limit of small interaction
strengths, Y+ and ¥ connect the ground state c;i the N-particle systém
to both the ground states and the first excited states of positive
parity in the (N + 2)- and (N - 2)-particle systems (ecf. Eq. (2.17B)).
Exactly the revarse of this pattern is seen in the matrix elements of
8 . The selectivity of §, in the limit of smell g and V (ef.

E;- {2.17b)) 18 a characteristic of pairing vibratioms.

Explicit calculstfon (using Eq. (2.18}) suu s that the matrix elemeats
of quasi-spln operators which do not change the number of particles can
also display distinctive behaviour. When g aend V are swall,
k=1, 1= +1|")~|0> is non-zero, but, as g + ®, it must vanish (since
<o\:;[o> + 0y Likewlae <k = 2, 7 = +1]J |0>, which vandshes 1f only
%1 # 0, exhausts the (non-zevo) sum rule <0|J:]0> when g is large.

In the limlt V + », the eigenstates of H must be elgenstates of JZ2,
Unfortunately these eigenstates are not avallable analytilcally as the
menopole interaction term contailng both Jy ond Jy which do not commute




(ef. ¥q(2.12)). VNevertheless it is possible to infer some results by
semi-classical arguments, without performing numerical diagonalisation.

When only g, # 0, the ground state |0> is an elgenstate of J? and ER

with eigenvalues J = =M, = N/2; classically, this state has quasi-spin

J = -(¥/2)2. The fomJof the monopole interaction term implies that
switching on V will cause the quasi-spin of :is state to rotate in such
a way that <o|.r;io> 1s increased (without changing <oJJ;io>), thereby
lowering the ground state emergy. Thus, in the limit V » =, one would
expect the ground state to have the following expectation values:

<0[32o> = N4 , <olijes = o0, (2.23a)
and, because the system is not classical,
<0]J;|o> - <0juElo> = w4 (2.23b)

Numerical cslculations, for example the plots in Fig. 5.2a (in Chap-
ter 5) of 4(<u|J;§o> - W/4)/N? for an open-shell configuration of the
Agassi model, confirm thege are useful order of magnitude estimates for
large V. (The varisbles xy and Iy in Fig. 5.2a are in effect V and g;
they are defined in Chapter 3, Eq. (3.43).) So the ground state in the
regime of lsrge V is characterised by a cousiderable enhancement in the
valur of <ol,1f,;o>, being O(N?/4) as compared to O(N/4) when V & 0 (cf.
Table 2.2).

The operators J, and J are the equivalent in the Agassi model of the
components of the quadrupole operator in the Pairing-plus-Quadrupole
model. The enhancement in <0|J§!o> is similar to the increase iu tle
ground state expectation value of the scalar product of the quadrupele
operatyr with itself found in "deformed” 0% nuclei. Thus an analogue of
quadrupole deformation exists within the Agassi model  Instead of
rotational bands, parity doublets emerge in the spectrum {ef.
Fig. 2.2b). WMot only do the energies of the two members of a parity
doublet coimeide, but also their expectation values of quasi-spin
operators (cf. Iig. (2.4)).

et
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The dependence of the excitel parity doublets on interaction strengths
suggests that again there exist two different fundamental excitationms.
The energies of all excited doublets are sensitive to the valus of x
(cf. Fig. 2.2b). However if ome considers the dependence on & of the
energles of the two lowest-lying excited parity doublets, then ome
finds, as demonstrated by Fig. 2.5, that, although one of these de-
creases rapidly with I (& small), the other is unchanged. This pattern
is reminigcent of the behaviour of the energies of the monopole and
pairon~holon vibrations introduced in the earlier discussion of
Fig. 2.2a. Hence the former doublet can be viewed as a "pairon-holon"
excitation and the latter doublet as a "monopole" excitation. If ome
ignores (in the first approximation) the splitting of the higher-lying
doublets in Fig. 2.5 (L small), then they can be interpreted as superpo-
sitions of both of these diffcrent modes; thus the spectrum is approxi-
mately harmonic (just as in the other limits considered). Observe that
the splitting is smallest im the pairon-~holon doublet and its higher
harmonics, despite the fact that these excitations are absent in the LMG

model.

The inerease in <0|J2|0> as V » = implies that the tramsition matrix
elements of Jx between the ground state and other staves increase. In
fact, numerical calculations show that the lowest negative parity state
exhausts the cssociated (non-energy-weighted) sum rule when it becomea
part of the ground state parity doublet - L.e.

lk w1, w=-1>n0]0>,

where n 18 & normalisation constant. This result, when coupled with the
fact that <0]J°I0> » 0, implies another signature of the large V regime:
<k =1, w= -1[Jy|0> venishes.

The vary different behaviour of ground state expec.ation values of
quasi-spin operators in the two limits V + = (g fixed) and g » = (V
fixed) indicates that the monopole and pairing interactions compete.
This is reinforced by the spectrum in Fdg. 2.5. As I i increased
beyond ° ., the parity doublats - including the ground state parity
doublet . idt. For I > 7, the ordering of levels expected in the
infinite g limit begins to emerge. It is the competition between these
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two Tegimes which distinguishes the Agassi wmodel from other simpler
one-parameter models like the LMG model. Although the computational
effort enzailed 1is considerably greater, the richer structure is
desirable, for 1t leads to several insights not possible within one-

parameter models.

®inally, an interesting way of discussing the properties of the Agassi
wodel not considered here is to vary N keeping g, V and @ fixed (Sec~
tion 2 of (Ag 68)). It demonstrates how the Agsssi model can simulate
the properties of the Pairing-plus-Quadrupole model when epplied to the

isotapes of a medium-to-heavy nucleus.

APPENDIX 2.1: MATRIX ELEMENTS OF QUASI-SPIN OPERATORS IN THE COLLECTIVE

SUBSPACE

In this appendix expressions for the action of several combinatioms of
quasi-spin operamvors on the basis state |m,z,A> are given. The matrix
elements of these combinations follow trivially. The presentation of
certain results can be simpliffed if the atates |m,z,A> and |m,z,-A> are
treated on the same footing, This is achieved by introducing the
notation |m,z;¢ ,:>, which ie such that Imzsa 2> = Jmyz, 28 >, In what
follows & = 0, 1, 2, «.ny 8/2.

Individual quasi-spin operators (L,, 8., J,» M)

The expressions for L, |m,z,4> and §, |m,2,8> are well known f£rom element-
ary treatments of angular momentum fin quantum mechanics. However in

terms of the variables m and z used in this work they become
A |mzia 85 = (2 N N R ts fm, 24l &+ 1, &>
WEALIEIE " 3 N sz A+ L, >,
axlmzis e m (2 248 (2 tz+ DY Izl A -1,
I B8 = u o u g P8 T T R

(a2.1)
2=zt DG bz ) [, 2 8 = L,

AIIm,z;Ao,p "
Azt e e (2 ~zr s 0z 40 ozt a + 1,
Flnozia .t o X , N

where A = L, A = S_and 2z, = 9/2-4 -mu(z0).

o
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There exists a simple relation between the infinitesimal generators Fus
used in (He 65) and the operators J, and M, (Pa 65, Ag 68). Thus
expressions for J£|m.z,A> and M*|m,z,A> can be obtalned by specialising
results for Fu5|(LmSm)L,S,ML.MS> implicit in Sections 2 and 4 of (He 65)
and listed explicitly in the appendix to (Ag 68). (In both these works
the symbols J and A are used instead of L and § reapectively.) One
finds that

Jilm,z,p = Alm) oy 2) lm+ 1, z % &>

+ Am-1) allda) |m-1, 2tk 8,

where (A2.2)
X
) @-mt2) ¥ ,
Aw) =2 {(n — w2 — 28 F 2)}
and
a) = (2, + 0 @+ o] + 0t
Stoilarly

M fmzih e w0 Alm) BOY fm+ 1, 25 8, + 1, e
- afm- 1) B, 1 [m- b,z a1, 2,

i LSRR R R
(A2.3)
= Am - 1) B Im= 1, 2 8 - 1 e,

vhere B(x) = (3, ~ 2 + x);‘ (z, + 2+ x)”. Cousistent with thelr defini-
tions (in Eqs. (2.3) and (2.4)), J, and ¥, couple states of positive
parity (even m) to states of negative parity {(odd m).

Combinations of guagi-spin in_the Agassi Hamiltonian

To calculate the matrix of the Agassi Ramiltonian 1t is suffieient to
consider the following operators:
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@y 3,

From Eq: (2.8), Iolms 2y 8> = 22 |m, 2, A5, (A2.4)

(2) 8,5 +LL
- 2 . g2
Using relations like 8,8 = 5% = 82+ 5,
a §% 41 - -

5,8+ LI $% kL2 - (S, L) (S, + L) = 1) + 25 L.
Thus

(8,5, * L) my 2, 85

(a2.5)

= (4(r/2 - m) (/2 - m +2) ~ 22% - A(A/2 - 1)) |m, 2, B>

A s
Using Eq. (4 21),

LS |mat> e+ 1) al-2) |m oz + 1, &> (A2.6)
where a(x) Ls defined in Eq. (42.2).

) 13
Using Bq. (A2.2),

[EALLRENY
= Alm+ 1) A(m) o fz) al~z = 1) [m+ 2, 2+ 1, &>
42.7)
+ (Am)? + (Alm = 1)) alz + 1) a(=2) [my z 41, &>

+al@m-1) Alm=-2) alz+2) alz+ 1) |m=2, 2+1, &>

Other combinations of quasi-spin operators (For expectation values)
If Jo is excluded, then the simplest combinations of quasi-spin opera-
tors which have non~zero expectation values are products of two quasi-
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spin operators which conserve particle number and parity. Those of
interest are:

(1) ¥,¥_ (et Bq. (2.11))

The results given im Eqs. (A2.5) and (A2.6) are sufficient to calculate
expectation values of Y+Y_4

2) LL,ss,

Bacause of Eq. (A2.5), it {s anough to consider

- = 2 - LR - -
S5 ~LL = 82 -LT4 (L -8 )(, + S - b

4]
It follows
(8,8~ LL) |mz,b> = (4-1) 2 [m, 2, &5, (42.8)
2 g2
@ 25

From Eq. (2.11),
432
x 2 2
L= R -2y WL+ 9D, .
AJy

To calculate expectation values require, in addition to Eqs. (A2.4) and
(a2.7),

4,9 {m,z,0>
= Alm o+ 1) A(m) wfz) al-z) |m+ 2, z, &>
(42.9)
+ {(Am)?* o®(z) + (A(m = 1) a*(L - 2)} |m  .z,80

+AM - 1) Alm - 2) a(l +2) all -2) jm-2, 2, A>

which follows from Eq. (A2.2).




@ wy_

Using (42.3),
M |m,z,4>
= = Alm+ 1) A(m) a(z) al~z) |m+ 2, 2, &>
+ {(A(m))? 8(0)2 (42.10)

+ (Alm - 102 B¢A + )P} m,z,8>

- Alm = 1) A(m = 2) a(l +2) afl - 2z) |m- 2, z, &>

The similarity between (A2.9) and (42.10) is not s fortuitous feature of
working within the basis |m,z,4>. The opevator A = B(MM_+ JJ) is
related to the quadratic Casimir operator G of S0(5) by

A = G-1%-385%+ !;(Yo ) (Eq. (16) in (He 65).)

Hence A must be diagonal in the basis [{L 8 )L,S,M,Hs>, whatever the
values of L and S .
L mw

The matrix elements of J: sre trivial (ef. Eq. {(A2.4)), while any
expectation value of Jx.! and J, Jx can be written in terms of the

expectation value of Jo in the oame state,

APPENDIX 2,2: COMMUTATORS QF QUASI-SPIN OPERATORS

The !0 independent operators forming the SO(5) algebra ave taken to be
the L and § operators, and J, and Mi’ The non-vanishing commutators
involving these operators (excluding the trivial SU(2) commutators) are:

(Lad) = M, () = i (L) = ody

Loy) = wy, (5,0) = -n (5,0 =k

(M) = 4_ (8o} = v, (3] = 2

(gm) = =25

s




(=S P
S

together with the hermition conjugate commutators.
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TABLE 2.1: DIMENSIONS OF EAMILTONIAN BUBHATRICES
o, o,
a
3 wven (o, +2) By, v 2)
H T \ 4
2
2o D@D ® : 1y
LN h_) 1s tho dizensten uf ponitlve {negacive} pariry submuprix; my 1g
defined tn K. (100, (IE X 5 3 m, = /2D
TABLE 2.25  GROUND STATE EXPEGTATION VALUES OF QUASI-SPIN OPERATORS (Guly gy # 0)
ol parseor (A 58, L, (XN 4 a2 £
Y- s+ 4 0 4 ¥ .
Sot
v
1 .
%
i
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CHAPTER THREE

SELP~CONSLSTENT MEAN-~FIELDS
{at zero temperature)

It is well known that the palring and monopole interactions in the
i’ Agasst model give rise to nometrivial solutions of the gero temperature L
Bardeen-Cooper—Schrieffer (BCS) and Hartree-Fock (HF) equations respece
tively (RR 64, ALM 66). Thus it ie necesmary to employ the Hartres- w3,
Fock-Bogoliubov (HFE) formalism, which generalises and unifies the 8C8 [°

and BF theories, to determine the self-consistent mean-fields appropri-
ate to the Agassi wodel. In this chapter the application of HFB at zero
temperature is considered, and In the next, the application at finite

temperature. 8

The £irst section of this chapter is devoted to a brief description of

HFB at zero temperature (Ma 75, Go 79a), with the emphasir on the .
(formal) properties of the HFR approximation to the ground state.

Section 3.2 presents the form to which the transformation determining
the HFB ground state can be restricted witbin the Agassi model. A
wodification of a parametrisation firet used in (BFS 69) is Introduced
to simplify subsequent manipulations. It is shown that, 4F ¥ = @, the

must lly break particle number symmetry. The

various solutions of the corresponding equatioms for the HFB ground i
state when N = Q and N < @ are discussed in Sactions 3.3 and 3.4 respec-

e tively. 1In particular the conditions are determined under which these . i
p solutions are stable. (The notfon of stability is defined Ln the last

paragraph of Section 3.1,) This information is summarised in “phase
P diagrama" ~ i.e. plots in the gV-plane showing which solutlons are s,
stable where. A feature of the phase diagram for the closed-ghell
(N = Q) syatem L8 the absence of a genuine HFB solution (ox phase).

The calculation of expectatlon values in the most general form of HFB
i ground state appropriate to the Agassi model is outlived in Appendix 3.1 »

to this chapter. Only expectation values of the combinations of quasi- N 1
spin operatora discussed in Chapter 2 are considered. Appendix 3.2
contains material required in Appendix 3.1,

e i R
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SECTION 3.1: RESUME OF RELEVANT PROPERTIES OF HEB

HFE is the most general form of self~et - sistnt mean-field approximation
for an interacting non-yelativistic termion wany-body aystem with
Hamiitonian

+ s ot
Ho= e bib + 4 L3 b, bl b, b (3.1)
i ML PR R R

vhere b, b, ave the particle creation and amnihilation operators
associated with any complete simgle-particle basis, and Vi KL 8% the
anti-symmetrised matrix elements of the interaction in this basis. The

self-consistent mean-field on seeks quasi-particle creation

and annthilation operators A1, B, 1o terms of which the Hamiltonian H
can be recast (without any upproximation) into the following simpler
form:

H = E +EEB+B + 8 ) (3.2)

o { RS T § res

where Hres is the (residual) interaction between quagi-particles which,
by design, is aw small as possible (in a sense explained below), given
the restriction that the quasi-paxticle operators are related to the
"bare" operstors bl, b, by a undtary tramsformation. (In the Agassi
model the most convenlent aet of "bare" operatoxs ie that used in
Bq. (2.1).) The determination of the tramsformation which accomplishes
this requires the self-consistent solutior of a set of non-linear
equations. In most systems, including the Agassi model, the solutlon is
such that all the emergles 1".i 1n Eq. (3.2) are positive. (A careful
discussion of this point 1s given in Sections 7.3 and 7.7 of (RS 80).)
Whereas in HP the unitary transformation is also required to conserve
particle number, in HFBE the most general form is permissible, namely

o +
8y jz(uji by + Yy by (3.3)

In this way, short-range pairing cortelations can be incorporated
(Va 61). However it also implies that a subsidiary condition must be
introduced which ensures that the corresponding approximation to the
ground stale conserves particle number on the average. This can be done
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by considering, instead of H in Eq. (3.2), H' = B = uN, vhere N is the
particle rumber operator and the chemical potential p is fixed so that
the ground state expectation value of ﬁ ig equal to N, the number of
particles in the system., (This procedure is easily generalised to
constraints involving the ground state expectation values of other
operators (Ge 79a), but in the present work only ﬁ needs to be con~
sidered.) Since the transformation is unitary, the quasi-particles are

also fermions.

Ideally Hres is uegligible, in which case W is effectively diagonalised
*y the quasi-particle baeis. Whatever the case, this basls iz the
optimal one for the pur of the sole (but important) approximation

made, namely that Hre can be ilgnored. The ground state of the system

(L.e. the state of JaQZsc energy) when each Bi is positive is then, from
Eq. (3.2), the state containing no quasi-particles or the quasi-particle
vacuum |v>.  (In what follows, unless otherwise specified, |v> is
normaiised.) A cownsequance of Wick's theorem is that |V> 1s specified
{to within an arbltrary phase factor) by the set of all contractions

by = <v|b;‘btgv>, P <v|bjb1‘v>, (3.4)

13
whazh are the matrix elements of the single-particle dengity p and the
pairing temsor k in the "bare" basis respectively. The definitlon of
|v> implies that all the contract! of the quasi-particle

(in thie state) vanish except

<v|BlB§|v> . by (3.5

Substituting the dinverae of Eq. (3.7) dnto Eq. (3.4) and using
Eq. {3.5), one finds that

Py i%k ik
and (3.6)

e« I Ve U »
otk ik
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vhere Vf, is the complex conjugate of V...

Under a change of single~particle basis - i.e. the unitary transforma-
tion

+ +
By v Fug B by ¥ By By

"13 and ».“ transform 1.ke the matrix elements of an operator and of a
second order tensor respectively (BM 62). (Hence the term pairing

tensor for x.) Furthermore, from Fq. (3.4), p is hermitian and « is
anti-symmetric. Thus there exists a single-particle basis inm which p is
disgonal, while the simplest form to which the matrix for k can be

reduced is the cancaical form

where the first square consists of zeros, the a; are real and the
entries «utside the squares on the diagonal vanish (Zu 62). It is
demonstrated in (BM §2) that, for p and k to desexibe one and the same
quasi-paiiicie vacuum, they must satisfy the relations

et = - p2 (3.7ay

px = kpt . (3.7b)

It follows that the single—part{éle basis which diagonalises p can be
chogen in such 2 way that k is asimultaneously brought into its canonical
form (BM 62). This very special and important single-particle basis is
termed the camonical basis.
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The matrix elements of p and « in the canonical basis will be denoted by
p; (since p diagonal) and x‘;r As k is canonical in form, this basis
can be divided into "paired" and "blocked" states: for any blocked
state [a>,

3

Kaj = 0 (for all j),

and, for any paired state [b>,

Kom bk

bj 'ib Fp*
where |B> is tie state which fs cenomically conjugate to |b> or "part~
ners" [b>. (Frem the previous paragraph, kg  -kp.) It follows from
£q. (3.7a) that, for a blocked state |a>, p: is either 1 or 0.

As is well-known, the existence of the canonical basis implies that any

HFB tr: on can be into three successive transfor-

mations of simpler structure {the Bloch~Messiah theorem (BM 62)). These

are:

1) First, a unitary transformation U; from the bare basis to the

canonical basis of the foxm
T2 T
2 = ;: (Ul)Ji bj'

where the particle creation operators a;’ refer to the canonical

basis;

2) Second, a special Bogoliubov-Valatin ton By of the

operators a:[, a,; which, for blocked states, is of the form

c
2, o 0

[
a P 1

and, for paired states, of the form
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+
%

¥
bt e T

= v 2 2 = 1,
where Uy and vy ere real, Uy Vi and ug + Vi 1;

k

Finally, in general, a unitary transformation U, among the quasi-

particle operators aI to obtain the quasi-particle operators
to_ +
8 = i (Uz)ji 9.

The ground state |v> ‘3 a priyrd determined (to within an arbitrary
phase factor) by the requirement that

g lve = 0 (for all i).
This can however be replaced by the condition

ay Jv»o = 0 (for all i),
which demonstrates that all physically important properties of |v>
are deternined by the first two transformations, Uy and B, alone.
In fact one can replace the expressions for pij and Ki:l in
Eq. (3.6) by

* e

gy ° i (Ul)ik wl)jk oy

and 3.8)

Ky om E D O K>

where L' is the sum over the paired states in the canonical basis.

Ohserve that the expectation value of N

3.9

h <v{!v>=2p -ch
il = Eoy - Es

7 deperids only on the nature of the second transformation.




If the formsl ons for the 5 in terms of the

b,
EASIRSY
operators «,, v, are substituted into H' aud the result is rewritten in

terms of normally-ordered products (with respect to [v>), then one finds
in general that
B = B' 4 EHllu+u
o P B B
20

ot
+ % L (H, e @ 4 heo) + H,
13 i3 717 [

where H!l is a hermitian matrix, H20 is anti-symmetric (h.c. denotes
hermitian conjugate), and H, consists of normally-ordered products
(For the of the
present discussion explicit expressions for H!l, w20 and Hy are unneces-~

containing Eour quasi-pasticle

sary; however these are glven ir all generality in Appendix E of
(]S 80), while expressions for H!! and W20 appropriate to the Agassi
model ave given in appendix 6.1.) The transformacions Uy and B . are
determined by the requirement that

w0 = g, (3.108)
along with the subsidiary condition that
Te (p) = W, {3.10b)

where Tr denotes trace. 1t is in this way that the vole of the interac-
tion in the system of quasi-particles 1o minimised.” Given the solution
of Eq. (3.10), H!! can be explicitly calculated, The transformation Up
follows trivially: 1in order to obtain the form of H' in Eq. (3.2), U,
ia chosen so that it diagonalises Hll - i,e. u§ #!l U, fs diagonal.
Hence thia transformation is important for the description of excited
states. When the normally-ordered products in Hy are expressed in terms
of the operators 81, 8,, it coincides with B in K. (3.2}.

The tramsformation U; is analogous to that determining the ground state
in HF. Indeed, in the limit in which x 5 0, inepection of tue deteiled
expreasion for H20 ghows that it satisfies the same set of equations,
Likevise the form of B is familiar from BCS and, in a limic similar to
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k # 0 but not quite as restrictive, usp satisfies the BCS equations. As
1s to be expected from the marrlage of HF and BCS, the ground state of a
full H#FB solution deacribes a system iIn which pairing takes place
between particles moving in a deformed HF-like field. An essentisl
Ingredient of this description is that it allows for the self~consistent
influence of the pairing on the deformation and vice versa. Despite the
conceptual similarity between HFB and the coupled HF-BCS approximation
{BGG 69), rhe two methods should not be confused for they are in genaral
different (Go 79a). (The coupled HF-BCS approximation ignores certain
contributions to H2® and W!! which are usuelly non-zers; various
studies have shown neglecting these terms has undesirable consequences
(Go 79a).)

Applying Wick's theorem to Eq. (3.1) and using Eq. (3.4), one deduces
that the HFB approximation to the ground state energy is given by

.
E, = ij fy by kiiu Pk Vigia P1y
(3.11)

* -
+ %Kij Vi Kkl)’

where 04y and kyy are evaluated once Eq. (3.10) hzs been solved. On the
other hand, Eo can also be regarded as a functional of the unknown

coefficients 4in Uy and B , and can then be used to determine thelr

8
values. Mot all variations in these coefficients are permisaible: they
must be such that Uy and B_ vemain unitary and the trial state |v> has

expactation value <v|N]v> = N. The variatfonal principle
§ E = 0, (3.12)

where Gc E, denotes the constrained variation of B, discussed above, is,
along with the necessary constraint conditiona, exactly equivaleat to
EG. (3.10). (See, for example, (DMP 66).)

Since the equations detawmining Uy and Bs are non-lineax, they possess
in general more than one solution, 'The recognition that these equaticns
follow from a variational principle of the Rayleigh-Ritz type involving
Eo" suggests that only solutions corresponding to a local minimum of Ea

-
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can be relevent. Such solutions are termed "stable". (It 1s important

to renlise that the local minimum under consideration is only required k
to be a local minimum for variations which satisfy the comstrazinte
discussed (0S B3), a point which has been overlooked in, for example, . i
(Ca 65).) In what follows, stability will be sufficient to select one :
solution from any others. For systems where this is not the case, the -

stable solution of lowest emergy is usually adopted.

SECTION 3.2: FORM OF THE HFB TRANSFORMATION

In the Agassi model the transformation to the canonical basis U; accom-

modates the monopole i on, This on differs from its
HF counterpart only in that HFB allows for the self-consistent influence
of pairing. Therefore U; must have the same form as its HF counterpart,
namely (from the HF calculations in (ALM 66))

T o, +
I3 al : WP g1y S s (3.13)

vhere a® and ¥ are the creation operators in the canonical and bare
iolo bases respectively. Like the bare basts, the canonical basis consists
i of two levels each of degeneracy &. As V, g > 0, U; can be assumed to
be orthogonal (Section 5.4 in (RS 80)). Sc the transformation in a

Eq. (3.13) can be rewritten without any loss of generality as

al = cosg/y of

. T+ osing/y ol (3.14)

where [¢| s =

The transformation within the cauonical basis allows for correlatiuvns
which may be induced by the pairing interaction. It too should be
formally similar to its BCS counterpart. The application of BGS to .the g
2-level Pairing model (RR64) thus implies this transformation is

*oa L. ;
3 u Al sgn(m) v a_ (3.15) e
where sgn(m) ls the sign of m and u , v, are non-megative. The coeffi- i

clents Ugs V, are subject to the constraint




W oy ol (3.16)

to ensure that the transformation in Eq. (3.15) is unitary

The matrix elements of p aad k in the canonical basis are

c T i = ¢
Pom,q'n’ <“wlogiy Bgiv °s 89,0 Cmm’
(3.172)
c c
Komya'm’ w[ﬁv'm' Em]W = mgn(m) ko 8, o0 8y o
in which
S » o2 -
Py Vo Xy Uy Vr (3.17b)

and |v> 1s the (noru=. .d) trial H¥B ground state, vhich is such that
um|v> =0 (for all o,m).

Combining Eqs. (3.17) and (3.9), the particle number constraint reads
vd o+ vl = N/@ . (3.18)
Equations (3.16) and (3.18) imply it is possible to write g v, 88
i 242y
v-p = (N/R)* cosy/2 u=p = (1 -~ N/Q coa®y/2)
(3.19)
'3
v = ) stnps2 w = (1 - W0 ettt
where ¢ is an arbitrary varfable lying in the interval 0 § ¢ S 7. In
the Agasst model one must have 951 H p‘f 3 hence ¢ can in fact be re-

stricted to the range 0 § ¢ & n/2.

1f § = @, then, when $ = 0, the transformation in Eq. (3.15) becomes

too. At
% 2
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LU -sgn(m) L I

which shows that il con encompass the class of HF solutions. By con-
trast, when N < 9, the coefficients v-; and u-; are confined to the & 4
ranges ’

was v- SN . (U-N@%s w5 - wa¥ .

The transformation in Eq. (3.15) thus automatically breaks particle
wvmber symmetry. The exclusion of mean-fields which comsérve particle
number is necessary. If Ffixed particle number N is retained in the
mean~field deseription, then only N states in the lower level of the
canonical basis can be occupied. Glearly, as N < Q, there 1s no unique
choice of these states, which means that the ansatz fer the approximate
ground state ic not unlque. This is both physically and formally

undesirable (Da 67). The problem is circumvented when particle oumbeyr Ons

symmetry is broken. N

xpressions for p and k in the bare hasis can be deduced by combining
Bgs. (3.8), (3.14) and (3.17). One finds chat

+ "
Pomyg'n’ wlegi egalve Pg,a" Snya’
(3.208)
= * =
Bom,a'm' <v|cq,m, comlv> sgn(m) Kaya? 5m.-m'
where .
G+ %)« o (62 - et cose
o P 1 1 1 )
029 “ 7 T i
2 = §/22 (1 ~ o cosy cosd) o |
s (3.20b) |
T - (of1 - p‘:) sing N coed sing . |
: b= =p, = . - ; |
ol LA o L 20 L
and
o i
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c e o e
(T 3 B -
(O R) (e, k) cosp
a0 ¢ ] 7

(3.20c)
S = %) sing
K = = k= -1 1 R
0,0 ° ———

Just as o) 2 pS, s0  p-| 2 Py, dmplying |é| S w/z. The sign of ¢
determines the signs of Py and , which ave arbitrary. Hence ¢ can be
restricted to 0 & ¢ § n/2.

The trial ground state |v> can bresk two symmetries of the Agassi
Hamil onian, namely parity symmetry whemever p, is non-zero, avd parti-
cle number symmetry whenever k = (k=] + k1)/2 ie non-zero. These two
parameters, p  and K, conveniently specify the physical character of the
ground scate. Because parity symmetry 1s the analogue in the Agassi
model of rvotational invariance in the Pairing-plus~Quadrupole model, a
ground state for which [ ¥ 0 is termed deformed; a ground state for
which K # 0 i3 superconducting. Four different types »° ground state
can be idantiffed:

(1) spherieal - p =k =0 <+ y =g =0, =0 (HF state);

(11) deformed - p #0, K=0 + y=0, 0<oFn/2, N=0 (4
state);

(411) euperconducting = po =0, K #0 > 05y ¢ v/2 (equality when
N <), $=0 (8C5 state), or § = %/2, ¢ erbitrary (Full HPB

state);

(iv)  deformed-superconduciing ~ o, K#0 ++ 05y <u/2 (equallty
when ¥ < @)}, 0 < ¢ & v/2.

The d and di states are interpreted as

deseribing both membexs of the ground stats parity doublet found when
V+ e, g fixed (cf. Section 2.2,2), Observe that, when N < Q, ounly

or g states are poasiyle. {This
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49 one of the reasons why the cases N = @ and N < fI are discussed
separately in Sections 3.3 and 3.4 vespectively.)

Applying Wick's theoxem to the Agasul Hamiltonfsn H (BEq. (2.1)) and
using Eq. (3,20), lead to the result

. - ;[<V;H|v>]
2 -€

= - - <. ¢ L1 c c.
(9_l pl) cos + 21(29_1 pl) + Eg(ZK_l xl) (3.21)
+ \s(x(oﬁ1 - 9:')2 + Ve (»{l - xf)*) sln?¢ + ngle

where

= G-n8 x - @-n% oa - Read.

- _E_Y
2 gy

(A less direct derdvation of this essentlal result is discussed in
Appendix 3.1.) Since, by cholce, ¢ and § automatically satisfy all the
relevant constraints, the variational principle in Eq. (3.12) implies
that it is necessary to find %’ "o such that

2% - X
Tl = 4o ¥ = ¥, T4 = 4 ¥ = ¥,

{There are, of course, noe subsidiary conditions.) Alse, in the present
case, the corresponding state is stable 1f

2, 2)
By, g 222> 2%, (3.22)
a2yt LLEE TS T

where the partiasl derivatives are evaluated at ¢ = d»o, P wu‘ The
parametrisation of the transformatlons (Eqs. (3.14) and (3.19)) aim-
plifies considerably the determination of the HFB ground state, and, in
particular, the application of the stability criterion.
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SECTION 3.3: HFB GROUND STATE WHEN N = 0

Setting N = @ in Eq. (3.19), one finds that

V-] = up = cosy/2 , u-y = v, = aing/2 (3.23a)
which implies

Py = Ml - cosy), ko =k slap, (3.23)

so that £ assumes the form

£ = cosy cos + !:xo sin®y + hy cos?y sin?¢ + gle
(3.24)

where ED = I + Lz, The equations determining the HFB ground state
are

= 0 = cosy sing (L - X cosy cosg),

SR

o
b

= 0 = sing (cos$ + x cosp sin?¢ ~ £, cosy).

ol
<

The solutions of these equations can be found analytically. Their
multiplicity dependz on the values of x and I,

I x = Zo, there are four different solutions, which are as follows.

{1} ¢ = ¢ =0, Thia exists for any values of ¥, ED and is a spherical
HF solution. It is also a triviml solution of th- HF equations Iin
the LMG model and the BCS aquations in the 2-level Pairing medel
{when & = Q).

(2) ¢ =4 = /2. Again, the existonce of this solution is independent
of the values of yx and 2:0. Lt is on example of that peculiar type
of superconducting state for which ¢ = /2.
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(3) 1§ =0, cosp = 1/x provided x > 1. This is the deformed (strictly
parity-mixed) HF solution found in the LMG model.

(4) ¢ =0, cosp = I/Za provided zo > 1. This i3 a BCS solution. It
cor to the ng solution of the 2-lavel Paiving

model.

For the gpecial case yx = Eo > 1, there is another (infinite) class of
solutions consisting of all the values ox ¥, $ which satisfy the sir le
equation

cosp coss = 1/x. (3.25)
Only members of this class of solutions are deformed-superconducting.

The evaluation of the second derivatives of { for these solutions 1s
straightforward. Employing Eq. (3.22), one finds that:

(1) the spherical HF stable s stable only if both x,I, < 13

(1)  the deformed HF (BCS) eolution is stable provided x > I,
€, > %)

(1i1) the sclution § = ¢ » n/2 ia never stable.
Accordingly this last solution can herealter be ignored.

These results are conveniently symmarised in Fig. 3.1. It shows what
the stable self-consistent mean-field is in any part of the Ix - plane
(whera T = (R - l)g/e}. For g = 0 and V = 0 the dlagram is conaistent
with the vegults of HF and BCS calculations in the LMG and Pairing
Models respectively. Figure 3.1 demonstrates that the class of solu-
tions satisfying Eq. (3.25) has no practilcal relevance.

The absence of a genuine HFB solution is probebly a general feature of
N = 0 systems. The most general "physical' Hamiltonian for & two-levael
modal which has quasi-spin group S0(5) and consexves parity is given by
(ER 71)

R
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Hon = %X(J+J_ a0, - W %2(J+ + 0®) i

mE Ll 85) - ogalS 4+ 8

(The Agassi Hamiltonian corresponds to the choice V) =0, Vp =V,
81 = 8 = 8.} For attractive interactions, the form of the transforma—

tion determining the HFB ground state is the same for this system as it
is for the Agassi wodel. In terms of the parameters § and ¢, the HFB

variational functional whea N = @ is L

>) = + % in?
gen genlv ) cosy cos ¥ gen 1070 .

3 = 2 (<v|H
Q
-

2, 2 .
+ h Xgen €8 v sin2p + g)/c )

where
Ieen = [%"1] g1+ 5 g2tV - W o
E € € €
(3.26)
Xgen 7 @D (Vi o+ Vo) 4 B2 - g
€ e e e

From comparison of £ . with £ in Eq. (3.24), one can fmmediately deduce
that, again, the relevant solutions are either HF or BCS states. The
same result has been found in realistic calculations in closed-shell

nuclel (SGB 69).

Expressions, appropriate to the three reglons in Fig. 3.1, for p_, Ks
the approximate ground state ewargy and expectation values of varlous . .
combinatione of quasi-spin operators are collected together in Table 3.
The parameters p, and k and the approximate ground state energy are
easily calculated using Eqs. (3.20b), (3.23b) and (3.24). The other I |
expectation valuss follow straightforwardly from Egs. (A3.3) - (A3.5) in :

u Appendix 3.1. e

s A




Inspection of Table 3 shows that, in certain respects, the BCS and
deformed HF solutions sre formally similar, with Za performing the same
role in the BCS solution as y does in the deformed HF solution. How-
ever, as the expectation values of all the quasi-spin operators (except
Ja') demonstrate, these two solutions are physically very different. The
considerable in the on values of J2 in the deformed
region d that these

region and Y+Y_ in the sup
solutions accommodate the monopole and pairing interactions, respec~
tively.

A feature of the transition £row one reglon inm Fig. 3.1 to another is
the non-analytic change of various quantitiec fn Pable 3. In some cases
the quantities themselves are discontinuous at the boundary between twp
regions, znd in others only their first derivatives with respect to !
and g. This type of nor-analytic behaviour in physical observables is a
characteristic of phase transitions. It is for this reason that a
stable quasi-particle basis is commoaly referred to as a "phase” (Chap-
ter 11 of {8 80}). Similarly, Fig. 3.1 is u hase diagram, which

indicates the phase transitions predicted by HFB; p_and x are order

o
parameters for these transitions.

In the thermodynamic description of phase transitiens, the phase is
determined by the value of the chemical potential p. Transitions are
classified as either continuous or discontinuous depending on whether
derivatives of u (with respect to the relevant thermodynamic variables)
sre continuous or discontinuous. (The chemical potential itself is
continuous through a transitfon.) In the present context, £ fulfils the
role of y. Hence the analogous clessification scheme implies that the
spherical-to-deformed and =2ical-to-guperconducting transitions in

Flg- 3.1 are continuous. .+ uostrast, the deformed-to-superconducting

transition is discontinuous despite the presence of the class of solu-
tions of Eq. (3.25).

The correlatious promoted strongly by the monopole and pairing interac-
tions respectively are quite different, as evidenced by the very differ-
ent mean-fields which accommodate them. The competition between these
two different types of correlations is seen in the fact that the mono

pole interaction strength required to cause the deformed-to-super~
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conducting transition incresses linearly with the pairing interaction
strength (cf. Fig. 3.1), However, the mein-fields involved do not cater
directly for this competition (because neither are full BFB solutions).
For example, K, the measure of pairing correlations, increases instead
of decreasing as V is incrensed and the superconducting-to-deformed
txansition line in Fig. 3.1 is approached from below. This trend arises
because a small fraction of the correlations induced by the monopole
interaction resemble those induced by the palring interaction. (The
similar contribution to the uorrelations induced by the monopole inter-
action from part of the pairing interaction is fortuitously cancellied by
gen P BQ- (3.26).) The
fact that the monopole interaction promotes other correlations 1s seen

the remainder of the pairimg interaction - cf. ¥,

only in the "independent" comparison of the ground state energles of the
BCS and deformed HF states. Hepce the discontinuity of the deformed-

to~superconducting transition.

In line with the earlier stability analysis, the phases which supplant
the spherical phase have lower ground state energles (cf. Table 3).
Consider the spherical-to-deformed transition. In the spherical phase,
the 2 particles £ill the lower level of the non-interacting basis. In
the deformed phase both the upper and lower levels are populated. To
create this distribution one must excice the system with aun energy

E, % (2 pde. However the a"l th

state of the upper level and the m
state of the lower level now interact. Such an interaction causes an
energy drop of wmagnitude e, = V, where o 4is some constant. The
magnitude of the overall drop, which is obtained by summing over all
distinct pairs of these correlatioms, is them E = ko - e, Thus ¥
is essentially the magnitude of the ratio of E, to E,. This recogaition
provides a simple explanation For che location of the spherical-to-
deformed transition. It also illustrates the collective character of
the factor (® = 1) appearing in y. A similar analysis can ke applied to
the spherical-to-guperconducting transition.

The presence of ¢ in Eo and y {s a non~trivial feature. The larger the
level spacing € of the non-interacting basie, the larger the interaction
strengths must be for the spherical phase to become unstable, A similar
trend is observed in the application of HFB to the Paiving - plus -
Quadrupole model (BS 68): the lower the level demsity (or the larger
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Fig. 3.1 Zuro temperatuve HFB phase diagram for Agassi model when
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Fig. 3.2 Schematic graphical equivalent of Eq. (3.37a) when the
e satisfied. The .
— funtion h(8) is independent of interaction strengths, while

conditions for the existence of 8,

N g(8) increases monotonically with V.

e
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Fig. 3.3 Super ing ~ to - deformed - ng transition

line for different particle numbers N when @ = 22, The

superconducting (BCS) solution is stable below these lines.




I [ I
0 1 2 3 . 4

Fig. 3.4 The superconducting - to =~ deformed = superconducting

transition lines of Fig. 3.3 when replotted using :N and Xy
(defined in Eq. (3.43)) instead of I and ¥ ; the key to curves
is the same as in Fig. 3.%.




the level spacing) near the Fermi level of the underlying spherical
ghell model basis, the stronger the residual interaction strengths must
be for a symmetry-breaking solution to be found.

SEGTION 4: HFB GROUND STATE WHEN N < @

When N < @, the dependence of & in Eq. (3.21) on ¢ is quite complex. A
trvactable axpression for 3£/3p is obtained by imtroducing the variable &
related to ¢ by the transformation

cosp = ({1 + 8 - aaece)!’

in which
8 = 201 - nay / (v@)?

and, as 0 Sy S /2,050 % Su = areces(B/(1 + B)) < w/2. In terms of
this new variable,

%% o) = (1 - WR) (aect - D), 2% & w1 - /) tans

and (3.27)

pfl- pT = N/B(1L+ 8 - 6 sec)®

With the aid of
¢ = oS (L=0D and 0% + of = WA, (3.28)

the coefficient of sin®¢ in Eq. (3.21) becomes

e
x(n_l - p‘:)‘ + ¥ - «hH?
£

. N
Akt
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Substituting from Eqs. (3.27) and (3.29) into Eq. (3.21), one finds that

E = Nf@cosd (1+B=-8 ser:s)si
(3.30a)
+ (L= N/Q) {0y (§) secd + o0p(4) canb}

where

o1() = I - (x - Y V/e) sin®¢ (3.300)

G3(9) = Iz = ¥ V/e sin®¢ = X(0g/fe + V/e) + 4 V/e cos?y

{3.30¢)
and terms independent of & have beun dropped. It follows that
8 L LI 4 . ¥
w 505 0 (secd =1)
(3.3

X{N/a(L+p-8 sace)!ﬁ (ay {¢) + aa(¢) cosach) - cos¢}
Study of the limit & + O shows that, whatever the value of ¢, 6 = 0 does

3
not satisfy this equatlon., Thus the factor of (secé =~ 157 can be
discarded. From Eq. (3.21),

= 0 = sing

o=

(3.32)

Sy w Ve (KE] - wf)’] cos¢}

2% - % - e
W - oD (x(p_l o

which through Eqs. (3.27) aud (3.29) 13 an sx; ‘ession in 8 and ¢.

Inspection of Eqs. (3.31) and (3.32) shows that the r:l‘wice ¢ =n/2 ig &
solution for all dinteraction sttengths provided ¢ = 7/% (8 =8 ) and
vice verss. Like its countarpart when N = @, it too ds of no interegt
because it is always unstable. There remain two other solutions, both
of whiech are physically relevant.

(1) A guperconducting solution, for which ¢ = 0 and 0 satisfims (from
Eqs. (3.30b,c) and (3,31))
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)3 . L T S (3.33)

g (1 + 8~ 8seco) Tr + T, sosacd

The graphical equivalent of Eq. (3.33) demonstrates immediately
that a solution eﬁcs always exists, is unique and confined to the
open interval 0 < 505 <% (=> 0 < bges ¢ w/2).

A remarkable feature of Eq. (3.33) is that the left-hand side does
not depend on the interaction strengths g and V, while the right-
hand side does not depend on N. This makes it simple to deduce
that GBCS increages with inéraasing g, Vand N. It follows that ¥,
which, from Eqs. (3.27) and (3.28), is given by

of + 2% i

T R .
(3.34)

« W/ - WG (sech + tand - (L = §/0)),
increages with g in the superconducting phase, as one would expact.

A deformed - superconducting solution in which 0 < ¢ < 7/2,
0<6 < eu. Equation (3.32) implies that the values of ¢ and 6 for
any solution of this kind are related to each other by tho expres-
slon

cosy =

- g g
((a 1 (n_\ n‘> + (K,,‘ K‘_) Wie

(3.352)
= (Lt 8 =~ ES_EE))M = 5(8)
T (8) v/
where, from Bqs. (3.27) and (3.29),
hy(8) = 1 - N/20 (1 + B tang)
(3.35b)

+ N/% (@ - 3/2) (1 + B+ B secd).




The functlon $(8) is positive and increases monotonically with §;

it diverges as § » eu' Clearly the equality in Eq. (3.34a) can

only hold if
UV T — (3.36)

SO = T e <!

Furthermore, aven when Eq. (3.36) is satisfied, it is necessary to

restrict  to the interval 0 < & < 0., where 8, (< 8)) 1s such that

$(8,) = 1

Elimination of ¢ in Eq. (3.31) using Eq. (3.35a) yields the equa~
tion which must be satisfied by 0, namely

8(8) = hz(8)/(h((8))? {3.37a)
where

)
80 = Y (%o + g/e) {1 + 2{2-&———0 + im - casece]
(3.370)

hte) = (148 - 5 seco) cosacs + 1+ 8 tams) - 1
(3.37¢)

and hy(8) 1is defined in Eq. (3.35b). By dinaspection, g(8) 1s a
monotonically increasing functlon of ©, which, whatever the
interaction sttengths, 1s negative for 6 emall enough;
h(8) = ha(8)/(h1(8))* 1s positive and decreasas monotonically.
Thus the solution e““ of Eq (3.37) 1s utilque and exists when
Eq. (3.35) and the condition

g(ec) > h(Gc) (3.38)
are satisfied.

Figure 3.2 1s a schematic drawing of the graphical equivalent of

Eq. (3.37a) under these conditions. It demonstvates that 6, is

HFB




in faet <onfined to the interval e°< eHFBs ac whers, from
Eq. (3.37b),

cosec8 % 12 (x~ Eo) 1 (5, + sle). (3.39)

An inference from Eq. (3,39), which Is interesting in view of the
earlier results for N = R, is that Bq. (3.38) cannot be satiasfied
1f Eo & X (for then g(8) s 0). The depandence of L ec and eHFB
on V is easily determined. While ec inoreases with inereasing V,
&, and SHFB decrease. As, from lKg. (3.35a), 08y = s(e“n),
this implies the intuizively pleasing crend that ¢HFB inereases
with increasing V; similarly, from Eq. (3.31), k decreases. As
V4w (g fixed), both ehFB and 30 tend mnot to zare but to
6, = arcsin (1/(20 - 3).

3

Evaluation of the gecond derivatives of £ shows that the full HFB state
is stable whenever it exists, but that the BCS state is stabla only if
S(eacs) » 1. It follows that a necessary conditlon for the instability
of the BCS state is that Eq. (3.36) is satlsfied, which fs one of the
eritevie for the ewdstence of the HFB state. Now, by employ‘ing the
results given above, it is also possible to prove that the other crite-
rion, Hq(3.38), 13 satisfied only whan the BOS state is unstable. Thus
one arrives at another intuitively satisfying result, namely that the
instabi:ity of the BOS solution is equivalent to the existence of tha
HFB solutionr., It follows that the phase didgram for the Agasai model
when N < ) contains just these two solutions. The BCS-to~HFB transition
iine is the locus of points for which SBCG - en' Because S$(8) 1is
{fortultously} indopendent of g, this line is easily determined for
given N and Q. Fixing V (ot some value which satisfles Eq. (3.36))
allows one to solve for ec. After substieubing Gc into the eguation
determiaing BBCS {iq. (3.33)), one can solve for tha critical value 8¢
of g - 1,e,

g 1
o e X @2 e @2 - 1) st )

€ N/R(L+ B - 8 secec;‘ J

The HFB solution axists for the chosan value of V if g, > 0and g < g,

v N




A plot of the 308 - to - HFB (or superconducting = to -~ deformed -
superconducting) transition line in the Iy-plane for various values of N
wnen © = 22 {s given in Fiz. 3.3. Not surprisingly, this transition has
certain features in common with the superconducting - to = deformed
transition found in the closed~shell system. Deformation oceurs as y is
increased; the larger I is, the larger x must be (which, as before,
reflects the competition between monopole and pairing interactions). In
the BCS phase, the approximate ground state energy (im units of -@/2 £)
16 Epog = B = Wgoes  § = dyeq = 0), where E(Y,9) 1s  given in
Eq. (3.21), and

s - o d')J + B ges
i RIS I VI W) [ = bgeg X
V2 bees § 7 beos
(3.40a)
+ fag) Ypoe [a_s(w,ﬂ
(awlw = Ygcs = BV = Yy o
6=0 s=0
using tha fact that yooo, $yo0 satisfy Egs. (3.31) and (3.32). Simi-
larly
TIN5
52HFB [ax(‘”"’)]w “ Yy (3.40b)
= fupp
Aloag the BCS - to - HFB transition line,
acs = %rs " % v Vmos T Vwrw facs Y twes "0 4D

which, together with Eq. (3.40), implies cthat the derivatives of EBCS
and EHFB with respect to interaction strengths are the same on this

line. So, in contrast to the sup ng - to - transition

in the closed-shell system, the BCS - to ~ HFB transition is continuous.

Equation (3.41) by itself ensures the continulty of all approximate
ground state expectation values at the BCS - to - HFB transition. The
continulty of the derivatives of the approximate ground state energy
results from the particular nature of the variational principle occur=
ring in zero temperature HFB, and cannot be expected (in general) of the

N » e o . e BRR o el
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cther expectation values. In fact, a difference in the behaviour of €
and other expectation values at continuous trangitionms can be seen in
the results of Table 3.

Inspection of the general expressions for the ground state expectation

values of quasi-spin operators in Appendix 3.1 shows that their beha-

viour in the BCS and WFB phases of the open-shell system is similar to
their behaviour ia the BCS and deformed HF phases respectively of the
closed-shell system. However, it must be remembered that, in the HFB

phase, both % # 0 and o} # 0 (because B, > 0 slwsys), while, in the .
deformed HF phase, ¥ = p} = 0. FProperties of the BCS and HFB solutions -
in open-shell systems will be studied in subsequent chapters.

A feature of Fig. 3.3 is that the value of ¥ st which the BCS~to-HFB ST
transition occurs for given I decreases with increasing W. This can be "
stated in another more familiar way: for fixed interaction strengths,
changing the aumber of particles in the valence shell can lead to the

onset of ion, which is istic of several sets of iso-

|
topes in, for example, the vare earth region (Ra 50, KB 66). Observe o
that it holds even as the shell closure (¥ = Q) is approached. #quation oy
(3.36) implies that, when § 1s small (i.e. 8 + 0 on the transition
line), the critical value of x scales with N like 1/n, where
naN+1 - 280 When L is very large, & = @ 2 8 on the trangi- -

e " "BCS T Tu K
tion line; the critical value of x is also very large (cf. Fig. 3.2). ni

The 'dependence of g(8) on interaction strengths along with the graphical

equivalent of Eq(3.37a) suggests that, under these circumstances,
8, %9 . From the equivalent "equality” cosec8 = cosecd, ome deduces

(using Eq. (3.19)) that, when ¢ is large, the values of ¥ and I on the :
transition line should be approximately related by .

X = ut (3.42a)

where

|

I

t

. /2 - w/a n/28) . ’ ]

" W(TL - 0728 ~ 1 + W1 - N (3.420) - i
T

_ g - ok [P NS AP




When ¥ = @, Eq. (3.42) coincides with the expression for the supercon-
ducting ~ to - deformed line in the N = 0 phase diagram.

In the fucure, instead of I and x, the varlables
Xy =" \8 » L'N = pngle (3.43)

will be used vhen dealing with systems in which ¥ < Q. The transition
lines dn Fig. 3.3 are replotted in Fig. 3.4 using xy snd Ly The
variables Ay and E" are like the "reduced" variables used in discussing
"corresponding” states in thermodynamics, in that the tramsition lines
now almost colnclde. In fact, one can go further: the HFB ground state
expectation values in systems of different particle number, if appropri-
ately scaled, alsc have esgentlally the same functional dependence on Xy

and !ZN. This is demonstrated in, for example, Fig. 5.3.

APPENDIX 3.1: EXPECTATION VALUES OF QUASI-SPIN OPERATORS IN HFB GROUND
STATE

The normalised ground state |v> corresponding to the quasi~particle
on of ons in Egs. (3.14)

operators defined by the

and {3.15) can always be written as

ot
fvw» = 1 (o, + v oag aq_m)|->, (.1
om
n>0

where [-> is the state containing no particles or the "bare" vacuum.
(It is trivially verified that o |v> = 0 for all o and m) In this
R appendix, ons for the on values in this state of the

combinations of quasi-spin operators considered in Appendix 2.1 are

Ve derived. This is facilitated through the use of the expressions in
: Eq. (A3.9) of Appendix 3.2. (Familiarity with the comtents of Appendix
3.2 1s assumed in this appendix.) Equarion (A3.1) implies that only
f ons of the s in Eqs. (A3.6) and (A3.7) (of Appendix
3.2) which conserve the formal equivalent in the canonical basis of

parity (which is defined for the bare basis in Section 2.1), can have

non-zero expectation values in the state |v>. Thus reference to
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Eq. (A3.9) shows that only the expectation values of Yo KXl mm

vy 32 j; and 32 have to be evaluated.

In this appendix, the expectation value of an operator 0 in the gtate
|v> will be denoted by <0>.

Expectation values of y .y XX, WM, YK ¢
From the definitions of Yo Xy By and theilr hermitian conjugates, it
£ollows that each of these combinations is a special case of the opexa-

tor
A = I s af &t va
@ na' 010 & Oy om ogp-m og-m' Coym
n, o' >0

in which (o) denotes the sum over gy, o0y, g3, gy and

- ,
Sdlazﬂaﬂb 5‘7103 60102 603U»+ 52 S'Ia-m.x

(43.23)

where S §,, are given in Table A3, Using Wick's theorem,

o103’
Bg. (3.17) and the fact that m, m' > 0,

<al 8l a ya_ 4>
om “gp~m og=m’ “oym

<« § + ¢ gt s s
oy 03 010z 0304 oy "oy 010y G303 mm

inplying [
) e e e ¢ e b !
@ = B/208/2 E osu ke kS, b DS (D)7 + 52(20° 2%} i
oot o =1 .
(43.2b) |
Xy
. '
f
!
B PR Y . k. e s § -
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o
Specialising Eq. (43.2b) one deduces ]
-
<y, y_> il
+ Y- 2 2 L i
= { ] {K_-l__i K.x.) +'lz-[%) Y pl}’ ‘\“
<Xy X > 2 e G
e At
(43.3) T
3 c ¢
a,m> = .
4y B N :
o c
] o= - (8 +N/Q) Q/2 -
Y X ( /2) 9/ (a_] nl) N
where § = (% - N)/2. ot
B
Expectation values of 3%, J; and 33 _: e
¢
Using the method above, one finds S
= il
<3251 4
X X 2
bowoalh (Ve - 205, o & 268 k%) S
2
<42
{A3.4)

4 = oA (@ -1 6% - eD? + 68 - kDD ¢ (R

Expectation values of operators in Bq. (A3.9):
Combining Eqs. (A3.3), (A3.4) and (A3.9),

S5+ L w2 @2 (E? + D+ mmE - 2% ol) ‘
- a2 ey - €Hrn? + il - oD stnd

B, - LL> = (84 N/ /2 (6% - o) cosg ~

= (s + W] fvs
STY > o= <y >

aZ o= B4k (@ = D 6% - oD+ (& - kDR sint

" & P _— i, s 4
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g = % ]
b4 3y !

WM > = awm >+ 0 (R(F - DD+ k%) - pD)%) sin?,

The expression for <J:> 1s obtained by replacing sin®¢ by cos®$ in the
result for <J”(>.

Substituting from Eqs. (A3.4) and (A3.5) into Hq. (A3.10), Eq. (3.21)
follows trivially.

[ APPENDIX 3.2: FORM OF QUAST-SPIN OPERATORS TN CANONICAL BASIS P
; b
In this appendix the quasi-spin operators defined in Chapter 2 and &

various combinations thereof are rewritten in terms of the operators

a:m, L. given by Eq. (3.14). For this purpose, it is convenient to o
introduce the formal analogues in the canonical basis of the quasi-spin !

operators - i.e. the set of operators

TP _ - + - q/2)
£, ’s.:; LN 0/2), sy ¥ (;:la_‘m i a/2),
. 2"
+ :
N LT BN PR CH LR o
a )
m>0 m>0
; Lo )
. . 'L + . [ ot <
E 3 (S ‘f‘ 8w %em M () ém Bom #-g-m' »‘\;
- m>0 }E
' '}w‘w as well as the linear combiunations
kB - - - - - 'y
e dy Qe * 310 iy Ga RPN 2, 5 LA
b 2 2 T
Nt .
(43.7) C s
e P N Xo= 8- o8, my o= £+ s

i Clearly tha operators in Eq. (A3.6) have the sume commutation relations
as their formal counterparts in Eqs. (2.3} and (2.4), and so alsec form
an 50(5) algebra.
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Quasi-spin operators in Eqe. (2.3) and (2.4}
Ueing the inverse of the transformation in Eq. (3.14),
LD
= ls(mo + cosé 3° + 8ing jx)
5 )
(43.8)
Ly

= !((y_'_ + cosd Xy + sing m+)

. cos¢Jx - sing jo + ijy
M+ = cospm, - sing L

Expressions for the remaining operators in Eqs. (2.3) and (2.4) can be
obtained by hermitian conjugation.

Combindtions of guasi-spin (discussed in dix 2,1}

Using Bq. (A3.8), :
85 +LL = k{y+ y_ * cos?¢ x,x_ + sin’p LN
+ slng cosplmx_ +x.m )}
5,8, - Ll = -lcosp (yx txy) -Msing (m o twy)

‘l+‘1_ . Y.

(43.9)
J; « cas?y j; + sin j: - 2 sing cosd (3,3, + 1,3

J2 e 2
y 3y
MM = cos?$ m m_ o+ sin¢ xyx_ - sing cosd (mx_ -+ x.m ),

The expression for Jg can be inferred divectly from BEq. (A3.9), since
the transformation to the canonical basis is such that J2 = 32 (ALM 66).

Y - oy P

A AL ol

st
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Tnsaerting the results in Eqs. (A3.8) and (A3.9) into Eq. (2.2), one
finds that, under this transformation, the Agassi Hamiltonian becomes

B o= efcossl +slng 1) -8 ¥y - V(J; - 3;)
(43.10)
=V osin®(i? - 1)+ 2V sing cosd(d S, + 4 8.

A feature of Eq'. (A3.10) 1s the invariance of the pairing interaction,
which emphasizes the fact that the transformation to the canonical basis
1s designed to accommodat. the monopole interaction {(and not the pairing
interaction).
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CHAPTER FOUR

THERMAL SELF-CONSISTENT MEAN-FLELDS

Temperat sre is no stranger to the description of finite nuclei. Its
classin application 1s to the compound nucleus formed in low-energy

neutron scattering, whare it is unambiguouely determined by the level.

density (Appendix 2 of chapter 2 of (BM 69)). What is perhaps a little
surprising is that it can also be applied to fusion and deep inelastic
heavy~ion reactions. These produce nuclei with large Intrinsic excita-
tion energies whose decay proceeds through a number of highly-excited
intermediate states of different energy and particle number, and is
dominated by neutron and y-ray emission (GN 80). Thiz implies a de-
excitation time of the order of 107'%s. On the sther hand, the time
required to "thermalise” the execitation energy of any of these inter-
mediate states over the various degrees of freedom is of the order of
10725 (T8C 82), suggesting the methods of equilibrium otatistieal
mechanics could be usefully employed.

The nature of this physical process indicates that it is the grand
canonical ensemble which is appropriate, because the members of this
type of ensemble have different energles and particle number. The grand
canonical ensemble has a well-defined temperature T and chemical poten-
tial y (section 5.1 of (Pa 71)}. In quantum statistical wechanics, the
measurable properties of this ensamble are determined by a positive
definite hermition operator termed the density operator D, which is such
that

Te D % geifplix = 1,
1

where the sum is over all states in the ensemble. The expectation value
of any observabls 0 is given by the ensemble average (chapter 4 of
(Pa 71))

<0> = Tr (DO).




The laws of thermodynamics imply that the condition satisfied hy the
equilibrium state of this ensemble 1s conveniently expressed in terms of

the grand potential )

@ = E-T5 - N (4 12)

I where i
E o= Tr R, 5 = -k, Tr (DInD), N= TN, (4.1b) :

in vhich H and § arve the Hamiltonian and entropy of the system, respec-
tively, ;« is the particle number operator and kB 15 Boltzmamn's con-
stant. In equilibrium, ¢ d4s minimized (section F of chapter 1 of ot
(e 80)). e

Finite temperature or thermal HFB represents the cptimal description in <

terms of non-interacting quasi-particles (Cl 67, Go 8la) of a grand
i canonical ensemble centaining fermions with & Hamiltonian of the type
glven in Eq. (3.1), Within this approximation, the emsemble consists of
the entire set of states |ni, ng, «-v» O >, where m {g the toral number
of quasi-particle states {which is finite in applications to nuelei),
and ny 1s the occupation number of a quagi-particle state (ni =0 orl).
As in zero temperature HFB, the quasi~particle oparators EI, 51 are
agsumed to be related to bare perticle operators b, by by a umitary .
transformation of the form in Eq. (3.3). o

In this chapter, the foundations are lald for the investigation in
chapter 5 of the existence of phase tvansitions pradicted by thermal WFB
when it 4s applied to finite systems. This toplc %8s conveniently '

e addressed within the Agassi model. -

A geneval method for the aet. don of the on in thermal v

" HFB is discussed in section 4.1, In the process, the calculation of
engemble averages within this approximation id demonstrated and, where

4 relevant to subsequent considerations, featuras which distinguish
| thermal HIFB from zero temperature HFY are pointed out. While it is well i
s koown that the operator identity established in Wiek's theorem does not A
hold at finite temperature (BD 58), there is some confuslon in the
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licerature over the status of the canonical basis. (See, for example,
the conflicting statements made in (Go 84) end (RP 85).) It 1s shown
that, in genaxal, this does not exist.

The application of thermal HFB to the Agassi model is praseated in
sectlon 4.2, Only closed-ghell systems (N = @) are considered. The
form of thermal HFB uppropriate to such aystems is digcussad, and then
the corresponding phase diagram %s determined. Like its zero tempers-
ture counterpart, it contains no full HPFB phase.

SECTION 4.i: ESSENTIAL FEATURES OF THERMAL HFB

The operator fdentity in Wick's theorem cannot be extended to finite
temperature becauge it 1is not possible to define, 1in an ensemble of
quasi-particle states, the analogue of a normal product of operators.
Nevertheless, Wick's theorem remsins valid for the engemble average >,
of operators in this ensemble (8D 58). It follows that

H -
ﬁij * <bj by, and Eij <bj by>, (4,2)

play the same rale in the evaluatilon of ensemble averages in thermal HFB
as the contracrions "13 and k1 {in Eq. (3,4)) in the caleulation of
ground state expectation values in zero tempevature HFB. The quantities
?5“ and %1‘1 are the matrix elements in the bare basis of the thermal
gingle~particle demsity p$ and the thermal palring tensor R, respec~
tively,

Ag in a non-interacting Farmi gas at findte temperature, the independent
non-vanishing ensemble averages of bilinear combinations of the quasi-
particle operators ave {(Go 8la)

4
By BJ>° - £ 613’ €4.3)

where the quasi-particle occupation probabiliries fi lie ir the interval
0 < fi < 1. Tt fs through these aB yet unknown occupation probabillities
that the effacts of non-zero Ctemperaturc are teken dinte account,
Empleying the anti-commutation relations of the operators B;, Bi’ the
ensewble averages in Eq. (4.3) imply the existence of another class of
nou-~zero ensemble averages, namely,

el ¥
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By 8P, = (- £)8, (4.4

Substitution of the inverse of the transformation im Eq. (3,3) into
Eq. (4.2), along with use of Egs. (4.3) and (4.4) leads to the expres—

sions

N * *
Py = i{ Vie Vg 0 B0 Uy Uy fk}
“.5)
s v U, 0.5 + o, Vo E
“i3 k{ ik ik K 1k jk k}.

Equations (3.5) and (4.4) and the formally similar roles of <vfﬂiB;|v>
and ‘31“;% imply that the results in Eqs. (4.5) and (3.6) must coincide
when £, = 0, and indeed this is the case.

It is obvious rhat the transformation properties of ﬁij and &,. under

a  change of simgle-particle basis are the same as those of pijljand %4
in Bq. (3.4) respectively., Recalling the consequences of these crame-
formation properties in zero temperature HFB, the question arises as to
whether there is a single-particie basis in which § is diagonsl aund R is
simultaneously camonical. A requirement for the existence of such a
basts is that R &1 commutes with & (BM 62). (This property holds for k
and p because of Eq. (3.7)). The unitarity of the transformation in

Eq. (3.3) implies that the matrices U and ¥, with matrix elements U

ij
and Uy, respectivaly, must satisfy the condiclons
o+ vty = ot e vhT -,
' (4.6)
o o+ vRu o= o e wt e ol
Using Eqs. (4.5) and (4.6), one finds that
2t = p-p2-vg,
(4.72)
* T,
BR = RP - (raty2)s
where

sk




v o= v R - nvF o - pof,
(4.7b)
vy = v rQ- BT,

in which F is the diagonal matrix with entries fi' With the exception
of the specisl case in which F « I, v, and (i do not cormute. Thus, &5
recognized in (Go 84), there is, in general, no equivalent in thermal
HFR of the canonical basis of zaro temperature HFB. On the other hend,
it is always possible to write the transformation in Bq. (3.3) in terms
of three successive transformations along the lines of the Bloch-Messiah
decomposition (Section 7.2.1 in (RS 80)) - i.e. ome can write

= * =
U= 0 Tu and V= 0,V (4.7e)

where U; and Uy ure unitary matrices and

3 { 1
ir 1 ! 10 .
Y . L0 :
uy ! } ~vi 0
- dp i _ H G vy
T o= up , ¥ = | vy 0
’ ; 0 v,
! -v_ 0
i "y
L L J

in vhich v, and v, are real-valued and ‘satissy Wk VE = L It ds for
this reason that there is confusion over the status In thermal HFB of
the canonical besis. The point overlooked in certain formal papers
(So 83, RP 85) is that, in general, the trausformation U; cannot bde

chosen so that 1t simultaneously diagonalises § and brings & to its

canonical form.

A related difference between thermal and zero temperature HFB is that
the ensemble averages, unlike the ground staute expectation values in
zero temperature HF3, depend explicitly on the third transformation Us.
For example, the ensemble average of the particle number operator ;1 is




%
= BV, o+ B {l=-2V) £,(Ua); (U2) (4.8)
H o1 k) F10% kL

where V, denotes any entry of the diagonal matrix ¥ and use has been
made of Eqs. (4.5) and (4.7c) end the fact that 0% + 77 « I. The leek
of dependence of <N)o on U; is a feature unique tc N - cf. Eq. (3.9).

The entropy of the thermal HFB ensemble is as in any non~interacting
system (Go 8la), given by

S, = iy i {Ei Inf, + (1~ £) In (1~ fi)} . €4.9)

The expression for the engemble average of the Hamiltonian 1s trivially
obtained from Bq. (3.11) by replacing pyy and x;; by By and 7

respectively. Combining the above results, one obtains the :hemal H)?B
approximation to the gramd potential 6, = <H> - TS - u<N>D in terms
of the unknown occupation probabilities fi and transformation coeffi~
cients lli and V1 . These are determined by appealing to the thermo-
dynamic criterion for thermal equilibrium stated in commection with
Eq. (4.1). Thus they have to minimize @c, subject to the constraints
implied by the unitarity of the transformation in Eq. (3.3) and the
condition that <ﬁ>° « N, the number of particles in the system under
conslderation. (Depending on the nature of the application of the
thermal HFB approximation, additional restrictions on other easemble
averages cau be introduced) Note the formal similarity between this

eriterion and that determining zero temperature HFB solutions.

The consequences of the Teguirement that the constrained variation of ¢
vanish are considered in detail in (Go 8la). They are twofold. First-
1y, with the exception of certain speclal cases (which are given in
(Go 8la)}, it is equivalent to the system of equatiens

B0 - 0o and Wl o« B

13 H 4 6“ (4.10a)

where 20, Wl are defined in the same way as K20 and H!! in zero
temperature HFB, with 3 and & replacing p and k (88 in the caloulation
of <H>°), and Ei is a thermal quasi-particle energy. Observe that the
dlagonality of H!! follows eutomatically from the veriatiomal principle

M i o

afe.




in thermal HFB, whereas, in zero temperature BFB, the demand that H!! be
disgonal supplements the relevant variational principle. (The reason
for this difference is that in zero temperature HFB the variational
principle determines only the ground state, whereas in thermal HFB it
determines an engemble - i.e, ground state plus excited states) The

second consequence is the relation

L (4.105)

£ o= (14
Although formally similar to the expression for occupation probabilities
in a non-interacting Fermi gas in equilibrium, it differs subtly in that

E; is temperature dependent.

As in zero temperaturs HFB, the value of the chemical potential i im
adjusted so that the condition <> = N is satisfied. The temperature T
is strictly another Lagrange parameter, and should be fixed so that the
average energy of the ensemble 1':0 takes on some desired value (Section
5.1 of (Pa 71)). (In a study of heavy-ion reactions, this value can be
related to the excitation energy (MZP 74, Pig.l in Go 81b)) The issues
addressed in this work however do ot require this, and so T will be
treated as & free parameter. In addition, instead of solving the system
of Eq. (4.10) subject to the constraint <§>°-u, the variational '
principle will be used directly.

Thermal HFB solutions are classified in the same way as zero temperature
HFB solutions. Thus, for a thernal BF solution, R % 0, while, for a
thernal BCS solution, § is dlagonal and & 1s non-zero but camonieal in
the bare basis. Other forms of § and R ({n the bare basis) correspond
to full WFB solutions. There is however one difference, which is
revealed by the emsemble average of (N - ¥)T where N = <> ; this is
given by

@0? = @B = e g -p2rr D),
which, substituting from Eq. (4.7), becomes

@E e 21 @D+ o1 (FQ - ). (4.11)




So for all bases, including thexrmal HF bases, (&N)2 > 0, This 1s a
characteristic of any description of a system at finite temperature,
which has & fixed cheamical potential (section 5.1 of (Pa 71)), In
open~shell systems, it leads to the existence of soluticns which have no
counterpart at T = 0 (Appendix B in (LA B4) and (QM 86)).

SECTION 4.2: APPLICATION OF THERMAL HFB TO THE AGASSI MODEL WHEN N = @

Since the purpose of the quasi-particle transformation at finite T is
the same as at T = 0, its form is the same. The full HFB trangformation
appropriate to the Agassi model (and not just that part determining the
quasi-particle vacuum) is discussed in Appendix 6.1 of chapter 6. It is
shown that, taking ge of the Bloch tah d ition, it can

be written as

+
Bom (4.12)

= cosg/2 u:m - ¢ sing/2 *

where u:m ia defined by the two successive transformations in

Eqs. {3.14) and (3.15) and D § § & w/2.

trIven the equivalence in the Agassi model of the single-particle atates
within a level of the non-intervacting basis, the quasi-particle occupa-
tion probability £/ must be independent of m - f.e. £ = £, There-
fore, subgtituting from Eqs. ( 4.12) and (3.15) into Eq. (4.8), the
constraint <;¢>° = N bacomes

U om W) = (L =92 = D) (L« £y = £))
(4.13)
= (£ - £)) (v3 - v}y cosy .

There are two independent contributisns to this reiation. Terms pro-
portional to fa arise from the statistical character of the description
and are not inherent in the approximation (cf. the diseussfon in connec-
tion with Eq. (4,11)). On the other hand, tezms in Eq. .(4,13) contain~
ing only v:‘;, occur because the ensemble used by thermal HFB to approxi-
wmate the exact ensemble contains states of indefinite particle number.
It is desirable to impose the agdditionmal conutraint

vq 4+ vt o= W/, (3.18)

MRS S o
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which ensures that the quasi-particle yacuum, at least, has the correct
particle number on average. The additfonal comstraint in Eq. (3.18)
impiies that the coefficients U Yy of the secund transformation can
once again be written ag in Eq. (3.19).

As the purpose of the application of thermal HFB ia to investigate
"phase transitions" at finite temperature, it 1s sufficient to consider
only the case N = @, Ffor which various technical simplifications occur.
Inserting Eq. (3.18) into Eq. (4.13) one obtains

A=ty +8) = (e - £) (v = vD) cost.

Thus, when ¥ = @, the quasi-particle occupation probabilities fm mugt
be independent of both o end m, 1i.e.

fon ® Bom Bon?o = E (4. 142)
It is precisely under these conditions that the first transformation im

the Bloch 1ah 4 ition of the ion in the Eq. (4.12)
defines a canonical single-particle basls %n which 5 is diagonal and R

canonical.

This is verified by expliecit calculatlon: one finds

a:m,a'm' - <a:,m. ) 5; 6n7,u’ Gm,m' (4.149)
and

k:m,u'm’ T UL sgn(m) &° sa,u' 5m,-m" (4. 14c)
in which

g om M-l - 20) cony), S w N(L-28) snd, (4140

where ¥ is defined in Oq. (3.19). As p%y 2 pS, £ 84 The lack of
dependence of the ensemble averages in Eq. (4.14) on the third transfor~
matlon in the Bloch-Messish decowpositfon (or, in this case, the para-
meter r), is alse a general featurs of the case F=I. It holds for all




ensemble averages and so the variational principle discussed in section
4.1 does not, in this case, determine the third transformation. (As
only ensemble averages are of interest in the present work, this is not
a drawback, rather an economy.)

The forms of  and R in the bare basis are obtained replacing p: and Kg
in Eq. (3.20) by a: and e:. Thus they are

+

5mmq‘m‘ = “Comt Con’e 7 gu,v' lsm.m' (4. 152)
and

Romotn' = Coigt Copde = SR RO S, 6 . (4.15)
with

Byg = By = (1= o(l - 26) cost cosy)

{4.15¢)
[ = ~bg(l - 2£) cosy sing

where ¢ is defined in Eq. (3.14). The differencea hetween the expres-
sions in Eq. (3.20) (when N = Q) and those above 1is the appearance of
the factor (1 - 2f). Its effect is to diminish the magnitudes of 50 and
#® as £ increases. Thus a rise in the temperature decreases the order
parameters and, at the same time, increases the fraction of particles in
excited states. These results illustrate that, on a qualitative level,
thermal HFB describes correctly the effects of thermal excitation.

The substitution used in deriving expressions for § and & in the baxe
basls, cannot in general be employed to obtain tlhie ensemble averages of
combinations of quasi-spin operators from the expressions in Chapter 3
and Appendix 3.1 for the ground state expectation values in zero temper-
ature HFB, because in many of these results use hos been wmade of
Bq. (3.7). In particulsr, this applies to Eq. (3.21) for the ground
state expectation value of the Agassi Hamiltonian. If Wick's theovem
(for ensemble averages) is applied directly to the Agassi Ramiltonian
and Eq, (4.15) 1s used, one does however obtain an expression for <H>D
which s very similar to that for <v|H|v> when N » @, namely

N

p



E = %ﬁ_}o = {1« 2f) cosy cosg + kx(l ~ 2£)2 cos?V sin?y
€

(4.16)
+iE (1~ 207 atn® + HE (141 - 207

where x and I_ are defined in Eqs. (3.21) and (3.24).

The variables ¢, ¢ and f have been defined so that all constraints, in
particular the particle number conetraint, are automatically satisfied.
Thus their values are determined by the minimisation of, not the grand
potential, but the thermal HFB free enmergy functional

Fu = <H°> -T Sox
where <l-l>° 1s given in Eq. {4.16) and, using Eqs. (4.9) and (4.14a}, the
entropy is given by

S = 2p(EE+ (L0 1n - D).
K,

The equations for the statlonsry points of F, are

3 = 0w (1 - 26) sing cosp (1 = x(1 - 26) cosp cos #)  (4.17a)
24
O w 0w (1~ 26) sing (cosg + (x sin?p - ) (L - 20 cosy’
)

(4.17b)
oF,

P20 w 0 = cosp cosh + (y sin®é cos?y + Iy sin?y + g/e) (1 =~ 2£)
af
(4. 17e)
+ 2t in YE/{L - £))

where T ™ kBT/:. Equation (4.17c) demonstrates that, whem v # 0, thera
are no stationary points for which £ = 0. On the othexr hand, setting
f =) one finds an infinite class of statlonary peints satisfying the
condition




cosy cos = O,

None of these points however correspond to minima.

The equations for the remeining solutions of Eq. (4.17), for which
o ¢ £ <, are gimplified by introducing the variable x which is related
to £ by

£ o= 1/(L + exp(2x))

and lies in the interval 0 < x < w., Discarding those solutions which

are never thermodynamically stable (i.e. never minima of 00, or, in thisg

case, Fa). one is left with three.

(1) A spherical thermal HF solution « ¢ = $ = 0, x = *g where xg is the
solution of the equation

1+ gfe tanhx = 4tx. (4.18)

This apherical solution is always present, but is thermodynamically
stable only if tanhxs satisfles both

tanhe, < 1/x (4.192)

y
car\hxR < I/T.u_ (4,19b)

{2) & deformed thermal HF sclution =« ¢ =0, ® =%y, cosd

= 1/{x tanhz where Xy 1s the non-zero aolution of

s
{x + g/e) tanhx = 4% . (4.20)
This deformed solution exists i1f

cnrmxs z Uy

and is tharmodynamically stable provided y > Eo'
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(3) A superconducting thermal BCS solution - ¢ =0, x=x
cosyp = 1/(20 canhxn), where Xy 15 the non-zero solution of

(Zo + g/e) tanhx = 41x . (4.21)

This superconducting solution exists as long as
tanhx, 2 1/Z;
and ig tharmodynamically stable provided ED > X

These results are very similar to those found at T = 0. Again, there is
no full HFB solution. At T = 0 the deformed and superconducting solu-
tions are formally similar in certain respects, notably existence and
stability. This similarity persists at finite temperature. In the
Agassi model, the effect of temperature on pairing is the same as it is
on deformation.

The results concerning existence and stability are conveniently sum-
marised at constant temperature by phase diagrama like that in Fig. 4.1.
The boundaries of the spherical phase are obtained in the following way.
Given g and T, %, can be determined using Eq. (4.18). From Eq. (4.19a)
the value of x at which the spherical-to-deformed transition oceurs
{ignoring, for the moment, the existence of the superconducting phase),
is then

X = coth(xs). (4,22a)

$imilarly, from Eq. (4.19b), the value of yx at which the spherieal-~to-
superconducting transition occurs ia

Xg " - 1) (eoth(x)) - I) (4.22p)

where I = (2 - l)g/e. Since g increases with g (ef. a graphical
equivalent of Eq. (4,18)), beth X and Xp 8T8 decyeasing Functions of g
{or £). To generate the boundarles in Fig., 4.1, Eq. (4.22a) ia used
for 0§58 EE’ and Eq. (4.22b) is used for ZE $Is EM where EE(EH) 1s

the value of I at which yy = ¥ (xy = 0). ¥rom Eq. (4.22),

T
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Superconducting
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Fig, 4.1 Thermal HFB phase diagram for the Agassi model when t = 0.25
and ¥ = @ = 20, The caleulation of the boundaries of the
spherical phase iz discussed in the text; the superconducring
- to - deformed transition line is as in Fig. 3.1,
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Fig., 4.2 Thermal HFB plase diagrams for the Agassi model at various
temperatures when N = & = 20,
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Fig, 4.3 Approximate specific heat c, (in unite of Q ka) for various
temperatures (caloulated using Eq. (4.23))3 W = Q = 20,
L w04,
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2-2
I tanhx o (4.23a)
I tamhx, = 1. (4.23b)

Combining €q, (4.23) with the relation darining g w loes 14 8le tanhx
= 4tx_, one finds

(4.24)

Obgerve  that, from  Eqs. (4.22a) and (4.23s), when I = EE.
X ® (2 -1)/(@ = 2) I,. Thus the spherical-to-deforned snd sphericil-
to-superconducting transition lires intersect each other on the line

X = I

The deformed-to-superconducting transition line is given by x = I, and
so temperature has no effect on it (in contrast to other model studies
{RP 85)). On the other hand, as Fig. 4.2 demonstrates, the size of the
spherical reglon increases with increasing T. In the absence of the
pairing iateraction, the value of X at which the spherical-to-deformed
transition occurs is, from Eqs. (4.18) and (4.22a), x = coth (1/41).
Even when the pairing interaction is present, this remains a useful
estimate of where the sphericai-to-deformed transition occurs. From
Eq. (4.24), the value of § at which the spherical-to-superconducving
trangition occurs is also approximately equal to coth (1f41). (These

estimates improve with !icraasing Q).

Expressions for { in the three phases ar: given in Table 4.  The
entropy within each phase can be written as

S5 = -20(x temht - 1n(cosh®) ~ 1n2)
k,

B
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where, depending on the jhase, % = X_, X, or ®. If the corresponding
expressions for the fre energy F_ are considered, it is found that the
first derivatives of Fo are continuous through the spherical~to-deformed
and spherical-to-gupe'conducting transitions, making these transitions
{like their counterparts at T = 0) continucus. This does not however
apply to all the first derivatives of £ and S, separately. Tor example,
using Eqs. (4.18), (4.20) and (4.21) and the expressions for £ in
Table 4 , one finds that the specific heat Cv (in units of ks) is
given, in eack phase by

‘, - -%ié . 8 (2% sechd)? .25

1 -~ v(sechg)

where v is defined in Table 4. (Note that a consequence of X gatisfying
any one of Eqs. (4.18), (4.20) and (4.21) is that the denominator ia
Eq. (4.25) is positive) Because v changes discomtinuously, €, (and
hence 3£/8t) is discontinuous at the spherical-to-deformed and spher-
ical~-to-superconducting transitions. Figure 4.3 contains a typical plot
of CV and illustrates that the discontinuity is "lambda-shaped". The
phenomenological Landau-Ginzberg theory demonstrates that any mean-field
description nf continuous symmetry-breaking tramsitions must predict
this distinctive type of behaviour in € (Section F of chapter 4 of
(Re 80)).

Although not required for subsequent developments, certain features of
the thermal WFB solutions away from phase boundaries are worth pointing
out. For example, when g = 0, analytie solution of Eq, (4.18) 1s
possible (xs = 1/41). Becauss the dependence of xg 00 g is weak, the
explicit expressions for ensemble averages obtained im this limit are
still useful when g # 0. . Furthermore, the decrease of X, with in-
creasing T 1s a generally valid property. Since in the spherical phase

o =By = temh(x),

it implies that the excitation of particles to the upper level of the
non-ir*-7aeting hasis occurs. By contrast, although Xg and *p also
deey e vith increasing e, in the ng and de-

formed phases




/3 Superconducting
°
fop - By

1/x Deformed

The reduction in the fraction of particles in the upper level due to the
weakening of correlativms (with temperature) exactly cancels the in-
crease due to thermal excitation.

As T = 0, each of Xy X and L Study of these limits ghows that 8 &

B
one recaptures the results of zero temperature HFB. So, in this system,

the limit T + 0 is continucus,

TABLE 4
E 4ty
2
Sphertoal tanhx  + % 5(1 + tavh®x ) é
1 (x + g} tanh®x  + 1(1 + g] X*8
Deformed 3 { : L .

o Expressions appropriate to superconducting phase are obtained from

expressions in deformed phase by replacing x and x, by I, and xy. L
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CHAPTER FIVE

EXISTENGCE OF PHASE TRANSITIONS

The attitude in the literatuve towards th~ use of the UFB approximation
in the study of (finite) nuclei is ambivalent. On the one hand, there
is the success of phenomenological applications of zero temperature HFB
in the description of medium-to-heavy nuclei. The most sophisticated of
these to date (DG 80), employing a realistic static effective interac-
tion {a finite-range extension of the Skryme interaction), gives impres-
sive agreement with a broad range of experimental dats om ground state
properties. On the other hand, aspects of HFB, In particular its
prediction of phuse transitions, camnot emerge from any exact descrip-
tion of 2 microscopic mamy-body system. The HFB approximation incorpo-
rates correlations by breaking symmetries of the Hamiltonian of the
system. Such dynamical symmetry-bresking is admissible in the thermo-
dynamic limit (La 66) - i.e. for syatems in which the particle number
N > =, subject to the restriction that the particle density remains
constant (and whatever other conditions are required to ensure the
existence of this Limit (GL 77)). A consistent interpretation is
possible in this case because of the presence of classical macroscopic
observables (GDM 71}, It is therefore not surprising that attempts to
lend formal 1ity to the brok ry HFB solution in

microscopic many-body systems, by identifying it as an intrinsic state,
have encountered unresolved problems (VC 70). In the same vein, a
rigorous statistical mechanics treatment ({Ho 49), section 12.1 of
{Pa 71)) es  that variables derived from a
partition function can display singular behaviour only in the thermo-

dyaamic limit. (This result was originally proved for classical sys-
tems, but it is easily extended to quantum systems - section 15.1 of
(Ha 63}.) Thus a system has to be macroscopic for its physical vari-
ables to display characteristics observatlorslly indistinguishable from
singular behaviour. In turn, this means that phase transitions camnot
gtrictly occur in finite nuclei, so that the phase transitions predicted
by UFB when applied to a microscopic system can omly be valid in a
qualitative sense.

e ey




This chapter investigates the issue of these phase transitions, both at
zero and at nou-zero temperatura. Consistent with the discussion in the
preceding paragraph, it is possible for HFB to be exact in the thermo-
dynamic limit (GF 78, RP 85). In effect, the validity of phase tran-
sitlons predicted by HFB depends on the extent to which a finite micro-
scopie system still possasses characteristics of the thermodynamic
Llimit. (In what follows, phase transition found irp the thermodynamic
limit will often be referred to as "thermodynamic phase transitions” to
distinguish them from the phase transitions in finite systems predicted
by HFB.)

The phenomenclogical success of zero temperature HFB can be viewed as
evidence that the phase transitlons it predicts are qualitatively
relisble. However, it gives no clue as to what formal mechanism is
responsible for this ~ 4.2, how it is that phase transitions found in
the thermodynamic limit are already “felt" for finite particle number.
Section 5.1 tries to establish what this mechanism is. It considers in
detall how the exact solution for open-shell counfigurations of the
Agassi model behaves in the vicinity of the superconducting-to-
deformed~superconducting transition predicted by HFB. For the mast
part, values of ¥ and Q typical of the valsnce shells of rare-sarth
nuelei are chosen. It 13 shown that this behaviour is consistenc with
the conjecture that the phase transitions predicted by HFE signal the
presence of gingularities in the dependence of the exact solution om
interaction strengths: din the generic case, these are branch point
singularities. Implications of this important ingight will be explored
in :hapter 6.

The stata of affairs at finite temperature appears to be far less
satisfactory, The behaviour of nuclei at finite temperature and very
high spin has been an area of considerable theoretical interest recently
(SEN 84). It is hoped that detailed propertiecs of nuclei under these
conditions will sgoon bLe made experimentally accessible by the new
generation of “erystal ball" detectors at Berkeley and Darasbury (DS 84,
BBH 85). Semiwrealisvic applicatioms of thermal HFB indicate that, in
nuclel, the neutron and proton pairing gaps (which are the conventional
order parameters for superconductivity) deccease rapidly with increasing
temperature T. Similerly, a varlety of HFB 'caleulations of differing




levels of sophistication (BMR 73, MSR 76, GVS 76), dindicate that
pairing gaps in states aleng the yrast line decrease with increasing
nuclear spin I, disappearing abruptly above some critical spin (Mottel-
son-Valatin effect (MV 60)). Typical results for both types of calcula=
tion are given by curves A and B in Figa. 5.la and b respectively.

Nalvely one would expect that, while the abrup of the sup
ing~to-normal phase transitions predicted is spurious, they are qualita-
tively valid, However, this is at odds with the results of more elabo-
ruve treatments (Go 84, ERI 85). Finite temperature HFE does not
directly take into account the effacte of thermal Ffluctuaticns. VWhen
these are ineluded, the palring gap is given by curve C in Fig. 5.la
ingtead of curve A: the pairing gap now decreases initfelly with
temperature, but for larger T is essentially constant and non-negligi~
ble. Thermal HFB is not even qualitativaly correct in this region.
Bqually evident is the discrepancy, in Fig. 5.1b, between the HFB and
FHFB predictions at high nuclear spin. (FHFB employs essentially the
same trial state as HFB, except that it is first projectad onto the
required symmetries and only then is the variational principle invoked.
It is an improvement over HFB in that it self-consistently imcludes the
"quantum fluctuations" which avtomatically restore, in any finite
system, the symmetry broken by HFE.) '

In section 5.2 the qualitative validity of phase transirions predicted
by thermal HFB Is reconsidered. This is in part motivated by what are

felt to be certain weaknessas in the arguments employed in (Go 84,
ERI 85). (A full discussion of these is given in section 5.2.) Equally
persuasive 1s the belief that the singularities discussed in sectdonm 5.1
must continue to influence the dynamics of a system at finite tempera-~
ture. Again, the Agassi model is employed. It is shown by considering
the specific heat (as oppnsed to an order parameter like the pairing
gap) that thermal HFB phase transitions are indeed visible within the
system. However, the result s a subtle one, for, as will be seen, it
is not in conflict wifh the numerical indings of (Go 84) and (ERL 83),
but rather suggests & new interpretation of them,

Conditions under which the Agassi model 1s soluble analytically are
discussed in the appendix to this chapter. These results are required
in gestion 5.1.

b
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SECTION 5.1: ZERC TEMPERATURE PHASE TRANSITIONS

A necesgary prelude to a discussion of the mechanism whereby a finite

system "feels" phase transitions is a demonstration of to what extent
they manifest themselves. This requires the exact evaluation of prop-
erties of a finite system, and sc the exactly eoluble Agassi model is
considered. (The subsequent discusgion will show that the results
obtained are not specific to this model.) The questlon of interest im
not do differeat phases or regimes exist (as evidence of this has
alrvesdy been given in saction 2.2), but is there a rapid change from the
one to the other as suggested by HFB? Some of the early model studies
of HF, BCS and HFB dealt with the reliability of these approximations
(RR 64, Ag 68, BFS 69). However, they concentrated on the guantitative
sccuracy, considering of the various ground state properties only the
energy. As demenstrated in sectlon 3.4, the approximate gyound state
energy does not display any readily visible singular behavicur at a
transition; so nothing more specific can be deduced from these studies
than that these approximations are numerically inaccurate in the vicin-
ity of the transitions they predict.

By contrast, other ground state expectation values within the HFB
approximation in general change dramatically, in the region of phase
boundaries. The behaviour of <v|J3|v> at the superconducting-to-
deformed-superconducting transition (depicted fn Fig. 5.2a2 in this
section) is & typical example. In line with the discussion in section,
<v|J;|v> is continuous at this transition but its first dertvative (with
respect to V) is discontinuous. More importantly, the magnitude of this
discontinuity is large. Thus <v|J;fv> changes abruptly and rapidly.
similar behaviour by expsctation values of other quagi-gpln aperators is
avident from Table 3. It is thig which makes these expectation values,
as opposed to the ground state energy, suitable quanticles to study.

Within the Agassi medel it is te to conslder firat the exp.
tion values of Y ¥_ and J:. There are two rxeasons for this, both of
which hinge on the fact that the Agasei Hamiltonian can be written as

" - 2 o 32y .
" 83, = VIL Jy) [RAS (2.12)
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It was demonstrated in chapter 2 that, as a result, the exact ground
state expectation value <oi3;lo> increases with V, from approximately
N/4 when V & 0 (g 5 0) to of the order of N?/4 as V + = (g fixed), but
that, as g += (V fixed), it becomes of approximately N/4 agein.
Similarly, it vas shown thuc <0}¥,¥_|0> increases with g snd decreases
with dincreasing V (cf. Fig. 2.4). Thus, like dF8, <0|J2|0> and
<0[Y+‘1_|0> distinguish between the regimes of large g and V. In addi-

tion, the HFR approximation is geared to inzorporate the effects of a
two-body interaction in a fermjon system. Hence the HFB ground state
« expactation values of 2-body operators which appear directly in the
Hamiltonian should in most cases be better than those of amy other
two-body operators. In the present case, if <O|J;[O> and <0[Y,¥_}0> do
b not follow the trends predicted by <v§J;|o> and <v]‘1+Y_|v>, then wo
exact evpectation value iavolving & two-body operator is likely to be
‘ o qualitatively consistent with its HFB counterpart.

One 1s of course not restricted to the expectation values of only

two-body quasi-spin operators. There are three one-body quasi-spin
- operators with non-zero expectation values, namely, N, ¥_ snd J . Of
these, just one has independent ground state expectation values (as
<o!§)o> = <v|ﬁ1v> = N). However, a result of section 2.2 is that
v, <0fJ 10: and hence <OfN |0> and <0|N_J0> do nor change significantly
between the regimes of large g (V fixed) and large V (g fixed). Thus

consideration of these expectation values 1s also deferved until

<0[J§[0> end <0{Y,¥_[0> have been studted.

Figures 5.2-4 are graphs of <o|J;|o> and <0|Y+Y_|0> in the region where

HFE predicts the ing p ng transition
(¥ < Q). For convenience, the sctual quantities plotted are

o 4 (032105 = M/AI/N?  and 4 <O|x,¥_|o>/Na(2 - W/B). (5.1)
= (This cholce of scaling is suggested by the results of section 2.2.)
Included for comparison are the HFB approximations to these expectation
: values. Since open-shell systems ave considered, the variables Xy and
Vi I, are used instead of V and g (ef. Eq. (3.43).) In all of these
figures, the d on X is p However, all three of the

independent variations of ZN’ N and R are also considered. The
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aifferent curves within a figure correspond to different values of Iy
8, @ fixed) in Fig. 5.2, ¥ (f,, W/ fixed) in Fig. 5.3 and N/Q (N, By
fixed) 1in Fig. 5.4. Together, then, these figures represent a compre-
hensive overall survey of the behaviour of <0[J2[0> and <0{t,¥_Jos.

The feature common to all the results for <0[J2[0> is that its increase
from approximately N/4 to of the order of N2/4, while smooth, is not
extended ‘uniformly throughout the futerval 0§ yy < =. Rather, it
occurs essentially in a gingle small interval. Moreover, this interval
coincides approximately with the reglon just after the superconduct-
ing~to-deformed-sunerconducting tramsition in which <v|J;|v> increases
dramatically. Similar observatious apply to <0]Y+Y_IO>: the decrease
of <0|Y+Y_jo> from 1ts value when Xy ® O to irs value whem xy + =, takes
place in the game interval in which <v;‘1+‘1_|v> decreases rapldly. Thus
the present comparison of ground state expectation values of J2 and Y, ¥_

provides unambiguous evidence that the o of the -

ing: phase transition has a counterpart
within the exact solution.

Turning specifically to Fig. 5.2, one can gauge what influence the
magnitude of ):N has. Two features emerge. For sufficlently small LN
(e-g. Iy ¢ 0.6), the value of <o|y+v_}o> when x, * 0, is not signifi-
cantly different from its value when x, dis large (ef. curve A& of
Fig. 5.2}:). Under these circumstances, it is not really possible to see
any effect of the phase tramsition in the behaviour of <0|Y,¥_|o».
However, the same is not true of <ol:;|u> for these values of I (cf.
curve A of Fig. 5.2a). This {llustrates that any cuaclusions about

phase trensitions cannot rest on the behaviour of one expectation value

alone; comparison of several on values 1s y. Tigure
5.2a demonstrates that, as :N becomes large, so the rate of change in

<O|Jf_|0> in the reglon of the ~deformed-sup

ng transition gradually, (Equivalently, the width of

the interval over which its rate of change 1s significant bacomes
larger.) The same trend 1s seen in curves B and G of Fig. 5.2b.
Significautly, WFB fails to repreduce this feature. Thus consideration
of the rate of change of quantities caleulated within HFB will not by
itself indicate when cne has escaped the transitional region.
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In interpresing the significance of Flg. 5.3, it must be remembered

that, as N and @ are changed, the scale factors for both axes differ for

the various curves. The varisbie yy 18 glvem by x * (¥ = G.2)¥/e. 1f
the scale for the Y-axis apprepriate to curve A (N = 12) were used
throughout, curves B and G of both Figs. 5.3a and b would have to be
multiplied by factors of 9/4 and 4, respectively. Thus the scaling
adopted hides the fact that as M increases <0]J%[0> and <o0lv,¥_fo>
change more sharply in the vicinity of the superconducting-to~deformed-
superconducting transition: wot only do the variations in magnitude
become greater but they also occur over a smaller variation in the
interaction stremgth V. MNonetheless, the scaling does have an advan-
tage, for Fig. 5.3 shows that the quantities plotted converge to well~
defined (finite) limits as N increases with N/Q fixed. (In fact, it
would seem that in the case of 4(sv|s2iv> - W/4)/N® this limit is
already attained for N = 20.) Moreover, the exact results converge £o
the HFB results (which is true of other systems as well (FGN 79 and

references therein, RP 85)).

From Fig. 5.4a, it is seen that the effect of changing N/Q (N fixed) on
the expectation value of J2 is significant only in the transitiomal
region. In this region, decreasing ¥/Q causes the rate at which the
expectation value changes to decrease. In contrast to Fig. 5.2, this is
true of hoth the exact and the approximats ground state expectation
values of J;, The same behaviour {4 the transitionsl region is found in
Fig. 5.4b. To understand this trend it is helpful to take into account
the way in which the expectation values have been scaled, In fact, the
expectation value of Y+Y_ itself increases substantially with Q or, in
this case, ag ¥/Q decreages; this is consistent with the discussion of
<ofv+y_;o> in counectfon with Eq. {2.20). (The scaling in Fig. 5.4a ls,
on the other hand, essentially unaffected by changes in 8.) As the
sxpectation value of Y+‘{__ 1s a measure of the extent of pairing correla-
tions, it follows that it is the competition between increased pairing
correlations and monopole correlations which in responsible for the

pattern in Fige. S5.4a and b.

The expectation values of other combinations of quasi~spin operators
confirm that these findings are not fortuitous. The combinations S+S_,
LL_ and 1,8_ can be igrored, since the behaviour of their expectation




values in the limits of large V and g is determined by the expectation
value of Y,Y_ (cf. section 2.2.2). The renainlng simple (but non-
triviel) combinatione ave J, 32, J§, and MM_. The expectation values
of M.N_ and Jg are plotted in Fig. 5.5 as functions of x for the same
values of Iy, N and @ as in Fig. 5.2. Like the expectation valves of J2
and Y+‘1_, they behave near the transition point dn 2 way which is
qualitatively consistent with the predictions of HFE. This agrecment is
particularly significant in the case of M+M_, as it 1s not connected to
the Agassi Hamiltonian in any wiy. If Iy 1s large (e.g. Iy 2 3.4)
clearcut change in <0[J2[0> ceases to be visible; hawsver, this beha~
viour is "forced" on <0[J%[0> since, from section 2.2.2, <0[3%[0> is
0(N/4) when g is large and still O(N/4) when V is large. The expecta~
tion valueg <o[.v°]o> and <0|J;|0> also vary rapidly, in general, with xg
4 4

near the super p ng transition, but
like <0[J2{0> and indeed <0[Y,Y_|0> (ef. curve A in Fig. 5.2b), there
are certain choices of Iy and yy for which sharp changes canmot occur.

When ¥ and ® are 1 ly for these ons of quasi-
spin operators (as in Figs. 5.3 and 5.4), the patterns found for J2 and
Y,Y_ persist.

If this study of exact ground state expectation values is repeated for
the closed-shell system (N = @), the findings ave similar. Moreover,
clear avidence of phase transitions 1s not restricted to ground state
expectation values a2lone. They are also seen In exart transition matrix
elements between the ground state and the excited states, which 1is
{llustrated in Fig. 6.5b for the deformed-to-superconducting transition
in the N = 0 system.

Having discussed the behaviour of exact results, it 1s instructive to
digress slightly by considering the agreement between the approximate
and exact ground state proparties depicted in Figs. 5.2 - 5.5. One sees

that HFB scores two notable successes. Firstly, the superconducting-
to-deformed-superconducting transition correctly signals the onset of
the region in which the exact solution changes. Secondly, the changes
in the approximate expectation values mirror those in the exact expecta-~
tion values. At the same time, however, the phase diagrams deduced in
chapter 3 are inadequate. TFor exsmple, in the open~shell phase dilagram,
the single trensition lime can now be seen to mark the beginning of a
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transitional reglon and it should ideally bs supplemented by a line
marking the end of the trangftional region. Studies of simpler or more

relisble methods for predicting the critical interaction strength for a
phase tramsition (BCP 81, BNP 82) are deficient in that they overlook
this point. While it is possible to develop preseriptions for the
second Lime which exploit the qualitative relisbllity of HFB expectation
‘values, they are inevitably somewhat arbitrary; for example, one candi-
date ia the locus of points at which the partial derivative of an HFB
expectation value with vespect to xy in the deformed-superconducting

phase is some particular fraction of its mawimum valus,

A clue to a possible reason why phase transitions are visible in finite
systems 1s provided by the excitarion spectra. Consider the excitation
spectrum for the closed—shell configuration of the Agassi mode  'vem im.
Fig. 2.2a. The regions of small and large I can be identifie: th the
spherical and superconducting phases of Fig. 3.1, respectively. In
fact, the arrow in Fig, 2.2a marks the location of the spherical-to-
superconducting phase tramsition. Flgure 2.2a demonstrates that the
change from the pattern in the exsct spectrum typical of small I to the
pattern typical of large I is accomplished by a set of level repnlsions
found in the vicinity of this arrow. Similar observationms hold for the
excitation spectra in Figs., 2.2b and 2.5. (Again, the arrow in each of
these diagrams indicates the location of a phase transition predicted by
HFB.)

All these figures display the eigenvaluas of an operator of the form
BGY = b My, 5.2

whera ho’ h; ore hermitian and A is a (single) variable interaction
strength, The propertles of this type of operator whem A is a complex
variable are well-known (Ka 66, SW 73, Ku 81). The participation by two
eigenvalues e, and e, of h(A} in a level repulsion for reul values of i,
reflects the existence of an gxceptional point ) = )‘e in an adjacent
pottion of the complex A-plane at which e, = ;. In the genevic case e
and e are the two branches of a function with a 15 arder branch point
at A = A, (SW 73). In the present case, exceptions to this can be ruled
out becausa, by using the quasi-spla group, sll symmetriss of the Agassi

PO S

.




model have been properly taken into account {cf, the digcussion in
section 3.3 of (SW 73)). Thus, for example, Fig. 2.2a implles that,
when X fixed and x < |, the exact solution possesses branch point
singularities in the iInteraction strength I for complex values with a
modulus of approximately unity ~ 1.e. in the region in which HFB pre-
dicts the spherical-to-superconducting phase transition. It is singu~
larities of this typa which have been conjectured to be responsible for
sudden changes like those observed in Figs. 5.2 - 5.5 (GH 84a).

This observation can be further refined. The spectra in Figs. 2.2 and
2.5 contain several level repulsions. However, as the notion of & zero
temperature phase transition refers sgpecifically to the properties of
the ground state, it is only the Javel repulsion involving the ground
state whick is relevant. These consideraticns can be cast into comerete

tarms @ Suppose that one is dealing with a system charac-
terise” w.action strengths >‘1’ all of which are defined ¢ at
the Hamili.. ~s physical only when they are real, and that the g -’

state energy E, 18 given by E_ = £{A), -+., A ), 1n which the dependence
of Eo on other physical parameters (euch as, the particle number) is
suppressed. In line with the preceding discussion, the conjecture is
that it is the singularities in functions like

g(A) = (A m A, Az =egy vees )‘n - cn) (5.3)
which are responsible for dramatic changes in the exact ground state
when A3 = cp, .auy An = cgs and Ay is varled (A} real), Confirmation
that the singularities in g(z) eaffect the ground state wavefunction is
seen in thoge few cases for which the aexact many-body ground stute
wavefunction and energy are explicitly available. 4 nou-trivial example
found within the cortext of the Agassi model is discussed in the appen-
dix to this chapter. In this example, N = 4 and g; = 0 (cf. the Hamil-

tonian in Eq. (2.12)): from Eq. (A5.1) the ground state energy is
uu-2/1e2+1-2]“ +v) e 2fi il (5.4)
: 72 v .

while from Eq. (AS5.2) the ground state wavefunction {s
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As anticipated, the singularities in v_ are the same as those in w,.

Functions like g(A) in Eq. (5.3) are efgenvalues of operators of tie
form considered im Fq. (5.2), Thus these functions do not possess
singularities at any real value of A (SW 73). From dinotances where
ewplicit expressions for Eo are available (e.g. (LMG 65)), one can
extvapolate that the number of singularities is 0(D), where D is the
dimensfon of the matrix which has to be dimgonalised; in the present
context, this means their number is at least O(N), ¥ being the particle
number. Further information about the way in which these silugularities
must behave for the conjecture stated in connection with Eq. (5.3) to be
<alid can be extracted, in the particular case of the Agassi model, from
the patterns in Figs. 5,2-5.5, The fact that, when XN 1s fixed and Xy
18 varted, the character of the ground state changes only once suggests
that the distribution of the singularities in the complex xN-plsne is as
in Fig. 5.6a rather than as in, for example, Fig. 5.6b. Figures 5.2 and
5.5 imply that as EN is incrsased from its value in Flg. 5.6a, the point
A moves to & point like B also depisted in Fig. 5.8a; similardy,
Fig. 5.4 implies that, as N/0 13 decreased, A moves to a point like C.
The changes witk ¥ are particularly interssting: Fig, 5.3 shows that
the singularitles must approach the rasl XN-nxts ~ e.g. 4 moves to D.
In addition, the number of singularities increases, It is conceiveble
that iIn the limit as N > =, they form a set with an accumulation point
(oot in the set) on the regl Yy-axis. lnder these conditions, the
Agassi model would really experience a phase transition. The knowledge
that HPFB 1z exact in this limit For such systems, suggests that thig ds
in fact what happens.
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The discussion above illustrates how the singularities {u functions like
g(\) can be responsible for real phase transitions in any system. There
are iInteresting perallels with the considerations of Yang and Lee on
thermodynamic phase transitions at finite temperature (YL 52, section
15,2 of Hu 63). In a system charactaerized by tempevature T and fugacity
%, all other chermodynamic variables can be written {o terms of

#(z,T) = kT 0(z,T)

and its derivatives, where Q(z,T) & the grand canonical partition
function., The papers by Yang and Lee thus relate the singular behaviour
of thermodynamic variables at some temperature to the distribution of
zevos of Q(z,T) in the complex z-plame., Much as with the singularities
of g(A), none of the zeros of Q(z,T) are located at physical values of z
(i.e. 2z » 0), and a phase transition corresponds to a situation in which
they form a set with an accumulation point on the positive real axis.
It can even be argued that the two approaches are related: as T + 0,
the dominating contribution to Q(z,T), bacause of the absence of thermal
fluctuations, comes from the lowest energy state of the system contain-~
ing strictly the desired number of particles N, - de.

a0y B () -,

where p is the chemlcal potential. Hence, at T = 0, it is natural to
study, instead of the distribution of zeros of Q(z,T), the distribution
of singularities in the ground state emergy.

The preceding congidarations are somewhat academlc, but they acquire
practical importance when one turng to the HFB approximation. They
suggest that one c¢an aseribe the following significance to WFB phase
trangitions, namsly, that they locats singularities in the dependence on
interaction strengths of the exact solution for the ground state. Do
cagez in which these singularities are available explicitly confirm
this?

Gonsider the example introduced earlier in discuseing the functions g(A}
in Eq. (5.3) for which the exact ground state energy Ls explieitly
available, If g is fixed and real, u,in Eq. (5.4) is elngular at

w¥ o
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- Plg, 5.6 Posginle distributions of exceptional points imvolving the ground state
IS elgenenergy in the complex Xy-plane (x = Re(xy), y = In(xy)) for a given
I set of values of Zy , N and @ (full dots), The patterns are symmetric

about the x -~ axis , and the curves mark boundaries of regions enclosing Lt
this axis in which no exceptional points are found for the given values

of Iy , Nand Q. The empty circles in part (a) denote the conjectured |
‘iocation of A for gther values of Iy , N and @, ?
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Fig. 5.7 Comparison of “exact" and critical Curve
G is the asymptote to curves A and B and is given by yx =
(3/2) L,; curve D is given by x = 3/4 I,. See text for
further details.
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Fig. 5.8 Ground state expecta.lon value of Y+Y_ scaled as in Eg. (5.1),

when Xy = 0.4, N/@ = 0.6; curves A-C are the exact
espectation values for N = 12, 18, 24 respectively. The

remaining curves are the corresponding BCS expactation values.

» ™ ™ L a e v SRR O Y

1




3

0.4 . a8 1.2

1,8

9 Excitation enwrgy of lowust poritive paricy stats vhen N « 18,
Xy« 0.4, Par curves A-D, & 22, 28, 40 ond 66 respeacivaly.
" « ok v e e s




o3[ e el

and, if V 1s fixed and real, it is singuler at

Curves A and 8 in Fig. 5.7 are plots in the I x-plane (I, = (2/2)(ga/e))
of the magnitudes of V, and (gg),, vespectively, for the closed-shell
configuration (N = @ = 4). Superimposed on this 1is the HFE phase
diagram appropriate when g, = 0 {cf. Eq. (3.26)). Although the boun~
daries do not coincide with curves & and B, there is an encouraging
global correspondence between the twe setn uf curves. However, the same
1s wot twwe when ¥ < @3 the exnplicit example demcastrates that the
class of singularities giving rise to curve B persists but, on the other
hand, there is no corresponding phase boundary in the N < @ diagram.

Figure 5.8 contains typlcal plots of <o]Y+x_]o> and <v]Y+Y_]v> when Iy
is varied and x, (< 1) is fixed. (As in Figs. 5.2 - 5,4, these expecta-
tion values have been scaled by the factor 4/NQ (2 - N/@)). Both the
exact and the approximate expectation values of Y,Y  increase sharply
for gsl and remain essentially constant thereafter. The structure in
<0|Y,¥_0> is reminiscent of that seen in < 0|J2]0> in Figs. 5.3 - 5.5.
Hovever, as demonstrated by Fig. 5.8, the behaviour of <0v,¥ ]0> as
N + = {s different; it remains non-singulsr, implying that the Agassi
model does not experience a phase tramsition. (In fact, Fig. 5.8
provides further evidence that WFB or, in this case, BCS is exact in the
thermodynamic limit for systems 1fke the Agassi model: <01y:'y_[o>

canverges to <vl‘{+‘{<lw 1n this limit.) Nevertheless, the rapid lo-
calised increase in <0|Y ¥ 0> could signal the presence of singu-
larities in the exact solu: '«

The plot in Fig. 5.9 of the energy (as a function of xN) of the first
exclted positive parity state relative to the ground state for different
velues of N/R (N fixed, xy = 0.4) is consistent vith this. For
/@ = 0.82, a level of repulsion between these two states in the iater-
val 0 < EN <1 is clearly visible. The behaviour of the other energies
in Fig. 5.9 1s compatible with the interpretation that as N/Q decreaser
the singularities associated with this repulsion remain, but that their

a
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location moves further the positive real EN—axis. A sgimilar trend in
the xy-plane is implied by Fig. 5.4 (cf, the earlier discussion of
Fig, 5.6). The fact that these singularities are not responsible for &
phase transition &s N » » simply suggests that they do not have an
accuralation point on the positive real axis in this limit. (This does
not exclude the possibility of an accumulation point elsewhere.)

The difference betveen the regimes of small Iy and large Iy ls only
that, in the former, pairing occurs essentially within the lowest level,
whereas in the larver it occurs in all levels. Despite this, the
progression from ome regime to the other appesrs to be accompanied by
aingularities. Inspection of Fig. 5.8 shows that not only does BCS
accommedate both regimes (which in itself is remarkable if singularities
are present), but also that it rapidly changes precisely where the exact
solution changas. Thus, combining the present findings with those
obtained earlier (when ZN was fixed and Xy was varied), one 15 led to &
slight revision of the earlier conjecture concernimg HFB: the self-
consistent mean-field appr on the r le property of

being sensitive to singularities im the on interaction

strengths of the exact solution for the ground state of a many-body
system. Furthermore, it would appear as if all of these singularities
are respongible for localised changes in the exact ground state prop-
erties and some of them for phase transitions in the thermodynamic
limit, while HFB attempts to reproduce these changes, and the "phase
transitions" predicted by it in 2 Ffinfte system correspond to this
latter class of singularities. (This property alse allows one to
distinguish between the two types of singularities).

This conjecture provides a formal reason for the qualitative validity of
the phase trangition predicted by HFB in a finite system. It alse
implies that the wtability criterion employed in chapter 3 to deduce the
HFB phase diagrams for the Agassi model is not as arbitrary as suggested
in the literature (Kit 79, BGD 81); the quasl-partiele basas, which it
identifles as physically appropriate, attempt to mimie the relevant
features in the ewact solution, i.e. the singularities discussed in this

seetion.




SECTION 5.2: TFINITE TEMPERATURE PHASE TRANSITIONS

In one of the earllest papers (Mo 72) dealing with the effect of temper-
ature on the mean-field description of e nuclews, it was pointed out
that in any consistent (statiscical mechanics) treatment of a nucleus
which ¢ supposed to be at some non-zero temperature, one ghould consid-
er, in addition to the equilibrium values of observables, the thermel
fluctuations about these values. These can be significant in a finite
system and are not directly catered for by the mean-field approximation
which gives only the most probable value of an observable (Go 84). Thus
the qualitarive reliability of zero temperature HFE does not immediately
imply that the transitibns predicted by thermal HFB are also qualita~
tively valid., In fact, a variety of studies (Mo 73, Go 84, ERI 85),
some of which were discussed in the introduction to this chapter, seem
tu have shown that thermal fluctuvations wash out any sign of phase

transitions at finite temperature in finite systems.

On the other hand, the thermal HFB study in chapter 4 indicates the
limit T + 0 can be continuous., Furthermore, the singularities present
in the exact sclution for the eigenvalues of a system which were dis-
cussed in the previous section, persist at finite temperature. It ig
diffieult, then, to gee how an infinitesimal, non-gzero tewpevature can
substantially elter the situation from the zerc temperature ca
Rather, one would expect phase transitions to remain visible below some
finite (but perhaps small) temperature. In fact, the studles referred
to earlier do not exclude thig possibility. All considerations in
(Mo 73) and (Go 84) are based on the Landau theory description of
thermal fluctuations (Th 83), which does not hold for temperatures
T " 0. In addition, the exact model study in (ERL 85) deals with a
phase transition which has no analogue at T = 0.

The obvious way to resolve these doubts is to determine the thermal
fluctuations around an exact ensemble average. A particularly appropri-
ate cholce ia the ensemble average of the Hamiltonian H, for it can be
shown, quite gemerally (p. 70 of (¥a 71)), that the specific heat €, (in
units of ky) is given by

(<H2> - <H>?)

MRS 2 o




where <> denotes the canonical ensemble average. Since CV vanishes in
the lmit T + 0, it {s a dirvect measure of extent of thermal fluctua-
tions in <H>. More fmportantly, the behaviour of C, in thermodynamic
phase transitions is very distinctive: it diverges. Such singular
behaviour 16 not possible in a small finite system but the appearance of
a smooth peak in G, would be evidence of a "phase transition” (Va 72,
N TF 69}. (Recall that the thermal HFB calculation in chapter 4 predicts
: a peak-like structure in Cy.) Thus, by calculating G, one can simul-
taneously extract information about the magnitude of fluctuations and
the extent to which phase transitions occur in small finite systems (at
v T#0).

In this section, the behaviour of CV 1s studied for cloged-shell config-
a1 urations of the Agassi model. Pigure 5.10 contains typical plots of Sy
F at different fixed temperatures whem Y = 0.5 and I 4s varied (N =0
i = 20). The ensemble over which the average has been performed has been
! restricted to tha collective subspace because omly the structure im Gy
1s of interest, and it is determined by this b « Twae

can be presented in support of this contention. The energles of the
W states omitted change less with iInteraction strengths than thoge of
7 “atates in the collsctive subspace. In particular, the energles of these
3 states decrease more slowly wich 8 on than

the energy of the ground state. Thus in the regime of large interaction

strengths the contribution of these states to the ensemble average is
numerically negligible. The difference iIn the dependence on interaction

R strengths 1s, in fact, a consequence of the singularities discussed in
.5‘ detail in the previous section; these only affact states in the collec-
) tive subspace. .
o
z:,i The second argument exploits the presence of these singularities in a
{ more direct way. In the limit as T + 0, contributions to Cy from the
ta
lowest-lying excited states dominate, and for T small encugh,
i o, ® g 8(D? ¢ BE, (5.5)

v

where § = l/kBT and AR is the enargy of the g-fold degenerate lowest
excited level relative to the ground state. The spectrum of the Agassi
model when I is varied and y = 0.5 is given in Fig. 2.2a. The essential




features of the lowest-lying excited states can be mimicked by supposing
there 1s a single doubly degenerate level with excitation energy

£ .-+, (5.6)

where a4 and b are apptopriately chosen {(dimensfonless) constsnts and I,
marks the location of the level of repulsion seen in Fig, 2.2a. Equa-
tions (5.5) and (5.6) imply that C, hes the following structure (if
regarded as a funciion of L)

1) when 1 (~ kBT/e) < b, CV has a single maximum at I = Ec;
2) when t > b, CV has three stationary points - minimum at I = E::
and maxima at

o= x5 = i &/ (x-b)a. (5.7)

%

Featyres of these results like the precise wvalue of 1t at which the
bifureation occurs and the square root appearing in Eq. (5.7), should
not be taken seriously, since they depend on the details of the para-
metrization in Eq, (5.6). Also, the symmetry of the lwo maxima at
L =g, 1s spurfous. For convenlence, AF in Eq. (5.6) has been chosen to
be symmetric about £ = l‘.c. If a more realistic parametrization ig used,
the peak ac I = 3_ disappears; instead, Gy decreases (slowly) as I » 5.
Neverthelesa, Bq. (5.6) serves to show in a simple way essentially what
is the structure in C, impliad by the level repulsion in Fig. 2.2a.

A remarkeble finding s that the changes seen in Fig. 5,10 as the
temperature increages ave in accord with this pattern, even when the
tampevature 4s not small. At the lowest temperature considered in
Tig. 5.10 a peak is clearly visible. With a slight increase in tempera-
ture it disappears. However, the new shape of Cv could quite con-
ceivably be the’ sum of two overlapping and unresolved maxima in line
with the approximate analysis of the previous paragraph. The appeavance
of the shoulder in C; at a still higher temperature (t & 0.5) confirms
this. The approximate analysis corractly predicts that these two maxima
appear ouly above a certain temperature (i.e. the bifurcation tempera-
ture T, @ b), and that the one maximum becomeg eclearly resolved from the
other and its location moves to larger I when the tamperature is furcher




Pig, 5.10 Cy/% (in univs of ky) when N = @ = 20, x = 0.4,
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when N = @ = 20, © = 1,5, Carves A-C ave the spherical -~ to ~ |
; superconducting, spherical ~ to ~ deformed and superconducting . } .
i

- te =~ deformed transition lines respectively in the
approximate (l.e. thermal HFB) phase diagram.
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inereased. This agreement indicates that even the inclusion of other
states within the collective subspace g the ensemble average, let alone
states outside the collective subspace, does not significantly altet the

grose structure of C It also suggests that the etructure of Cv is a

congequence of the Zingularitiss in the exact solution discussed in
section 5.1. (Barlier, iu section 5.1, the Yang-Lee theory of phase
trangitions, which also deals with the relatlonship between singu~
laritiea and phase transitions, was referred to. To demonwtrate the
role of the singularities discussed in section 5.1, it is necessary to
vary interaction strengths. On the othar hand, VYang~Lee Theory is 1s
designed for a situation in which temperature and particle number and
not interaction strengths are varied. Hence it will not be considered

here.)

One of the maxima Jound above LY corzespends to the pasak found below
this temperature, and the other to a pronounced increase in thermal
fluctuations in the region I < Ec‘ Thus the peak geen at the lowest

persists 3 it simply is not visible for tempera-

tures close to Ty The fact that, in this range of temparatures, the
magnitudes of CV for £+ 0 end for I = Ec become suddenly compaxable
suggusts a change in the properties of the system for I « Ly Thermal
fluctuations for these interactlon strengths are vow important, and
remsin important at higher temperatures. The significance of the change
will be returned to later. First it is appropriate to consider the
behaviour of C\« for - smperature at which peak styucture is clearly
vigible, and see whes ¥ 1t can be consistently interpreted as the
remnant of a phase transition in the thermodynamie limit.

A suitable temperature 4s t = 1.5 (cf, Fig. 5.10). In fact, the paak
structure of cV at this temperature is nom-triviai. ¥or example, whan
both I and x are changed, with I+ y = ¢ (¢ some congtant) as in
Fig. $.11, one finds that Cy has not one bukt twt panks. Clarity is
gained by plotting ths locl in the Ex~plane ot #ii zhe peaks in Cv,
which is done in Mg, 5.12: the dots in thig 5 st indicate these
loct when & = 20 and, for comperison, the phasa M undurdes predicted by

HFB at this temperature (curves A, B and C) ha 2 ulao been ineluded,
The pesk structure in CV divides the Ex-plame ince jeur reglons (label-
led I to IV in Fig. 5.12). Clearly, regions T, IL and ILI are to be




s
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identifled with the spherical, superconducting and deformed phases,
respectively. Reglon IV can be associated with 4 deformed-super-
conducting or hybrid phase which is not actually predicted by Cthermal f
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ing and deformed regions, for, as f 1

HFB. It 1s essentially a transitional region linmking the superconduct-~ ?

limit is approached), the width of this region decreases - cf.
Fig. 5.11. (Recall that, from secticn 5.1, phase transitions amount im

finite systems to transitional regions.

possible to zssociaste the peaks in Gv with transitions found in the 3
thermodynamic limit. In turn, this means the phase transitlons pre~
dicted by cthermal HFB are relevant din finita eystems. It is even
possible to deduce am "exact" phase dlagram (i.e. Fig. 5.12). These
findings continue to apply at other tamperatures. (With the insight
afforded by the approximate analysis earlier, it is possible to "guess" L}
the poaitions of the peaks even when they are nat clearly visible.)

Comparison of the exact and approxlmate phase dlagrams in Fig, 5.12 #
shows that in its gross structure the approximate phase diagram is
correct. Further, the location of the approximate superconducting~
to-deformed transition is essentially correct. However, the size of the
approximate spherical phase at this temperature 1s grossly over- :
estimated. In fact, it is only for 7 ¢ L that the agreemrt between {
the approximate and the exact phase diagrams ¢an be considered every-
where reasonable. (Recalling the significance of T,s one sees that, as
one might have expected, it is the presence of thermal fluctuations
which {6 responsible for this failure of thermal HFB.) It must there-
fore be concluded that, in general, thermal HFB does not reliably

predict critical dnteraction strongths
temperatures.

)

{or the o

With this in mind, 1t is h

or, equivalently, crizical \

on that thermal H¥FB

This result is not dble with the
is exact in the thermodynamic Iimit.

approximations differing only by terms of O0(L/N) are considered. As \
these predict very different critical temperatures, one can infer that !
the eritdeal temperatures and stvengths depend sensitively or terms of . 1

in

|
|
|
(AZ 84) various mean-field §

*0(1/¥) (which, of course, vanish in the thermodynamic Limir). .
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4 remarkable pattern is evident in the magnitude of fluctuations in the
regione away from phase boundaries. Fluctuations are always negligible
in the supércenducting and deformed reglons (cf. Fig. 5.11), However,
as observed earlier in connection with Fig. 5.10, they can be signifi-
cant in the spherical region Note that these findings hold when the
temperature 1s fixed and it is interaction atrengths which are varied.
(Thua the inclusion of more states in the engemble average doea mnot
affect them.)

This difference hetween the spherical (or, more generally, dlsorderad)
phass and the deformed and euperconducting {or ordered) phases is very
impertant. It helps to explain why, in the model study of (RP 85), the
convergence of the exact grand potential to itz thermodynamic limit, as
particle number was increased, wae slowest In the spherical phase. (A
similar trend can e seen in Fig. L of (FGN 79).) It also has implica-
tiong for order-to-disorder transitions (e.g. spherical-to-supar~
conducting).

Wnen cthermal fluctuations are significant, the average value of any
par’ tcular paramater can be quite different from that predicted by the
HFB approximation. In particular, order parameters like the pairing gap
- which within the mean-fleld descriptien are antomatically zero in the
spherical phage ~ could in a wore elaborate treatment be significantly
differeat from zero, Exactly this effect is seen in the results of
(Go 84) and (ERI 85). Taken in isolation, it implies that the tran-
gitions from spherical~to-deformed and spherical-to-superconducting are
washed out. So the results of the present study are compatible with
those of (Go 84) and (ERL 85). However, it indicates that a Jdifferent
{end pragmatically advantageous) viewpolnt wshould he adopted: the
trangltions do occur, but rhey correspowc in gemeral to a progression
from a regilon in which a statle galf-consivtent mean-field by itself is
useful to a region in which it is not.

In view of chis, the failure of HFD (under the same circumstances) to
reproduce this transition point reliably 1s a aerious flaw. A simple
remedy would seem to be to culenlate (within thevmal HFB) the variauce
in any thermal HFB ensemble average of interest, with the understanding

™ 5 e T SRS




99

that only if this 1s large, are more elaborate methods (such as those

suggested in, for example, (AZ 84)) indicated

APPENDIX 5

An interesting feature of the LMG model is that, although no convenient
basis which diagonalises the Hamiltonian exists, the eigenenergles can
be solved for enalytically even when the particle number is as large as
N{= R) = 8 (LMG 65). Tn the &gassi model this can only be done in
trivial cases for which the matrices involved are at mast 2 X 2 - i.e.
for positive parity states when N = 2, and negative parity states when
N = 4 (cf. Table 2.1). However, if g; = 0, 4 x 4 Hamiltonian matrices,
which determine the positive (negative) parity states when N = 4(6), can
also be treated analytically. (Recall that the interaction with
strength g) is automatically diagonalised by the basis |m,z>.)

Using Egs. {2.7), (2.9) and (2.10), one deduces that the form of these

4 x 4 matrices is

-2 -a 0 b
& -a 0 -a o ! s
0 -a 2 -bj
[ o - o
where a and b are given in Table AS. Explieit calculation shows that
the secular equation det (wl - h) = 0 is fortuitously quadratic in w?,
belng

w? (u? - 4e? - 2(a? + b2)) = 0.

Hence the eigenenergles of h are

E = 0 (twice), ku (45.1a)
where
w, = V/he? + 2(a® ¥ b9 . (45. 16)
+
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(A5.2)
where

w = V2% +a?
+

and, as the notation suggests, Ve

ate eigenvectors v, and vy have been chosen so that, when b = 0 (i.e.

has the eigenenergy twg; the degemer-

V= 0), they coineide with members of the natural set of orthonormal
eigenvectors in this limit. When g is non-zero, first order perturba-
tion theory indicates that the degeneracy of these two eigenvectors is
iifred.

Quite apart from the interesting singularities exhibited, these results

provide useful checks of numerlcal results.




- o
TABLE A.5: ENTRIES IN h
N=4
Entry
2| (g
. N e
b 2¢ [1 + %]v

When N = 4, b 1s the positive parity submatrix, and when N = 6, h is the

negative parity submatrix.
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CHAPTER SIX

THE RANDOM~PHASE APPROXIMATION IN SELF~CONSISTENT BsSES

In the previcus chapter the conjecture was put forward that sudden
changes in the character of the HFB solution for the ground state,
including, in particular, the appearance of broken-symmetry solutions,
mimic the presence of algebraic singularities in the dependence on
intexsetion strengths of the exaect solution. (In what follows, this
will, for cunvenience, be termed the "singularity" conjecture.) If this
is so, then despite the well-known di: of brok y

bases (cf. Introduction to chapter 5), approximation schemes employing
self-consistent (broken-symmetry) bases in the description of excited
states ought to be at least qualitatively successful. In this chapter,
this claim will be substantiated by considering the results of random—
phass approximation calculations within the self-consistent bases

appropriate to the Agassi model.

The random-phase approximation (RPA) is selected ! < {ts simpli-
city. Within the comtest of certain systematic B - nsion treat-
ments, 1t can be viewed as the jowest order correet.. .o the indepen—

dent quasi-particle description of excited states (Ma 74). It is also
intimately related to the self-congistent mean-field approximation: RPA

in an HFB basis yields the normal modes for the description of small
amplitude oscillations on the HFB emergy surface about the statiomary
point to which the basis corresponds (Section 6.5 of (BV 78)).

In section 6.1 there is a discusslon of properties of RPA in self-
congistent bases. TIts purpose is to prepare for the application of RPA
to the Agasei model in section 6.2, and so it is essentially a summary
of material appealed to in this section. Section 6.2 itself is divided
into two subsections: formal aspects of the application of RPA are
presented in section 6.2.1; in section 6.2.2, RPA results are compared
with both energies and suitable matrix elements of the exact solutiom,
and conclusions emerging from this comparison are discussed. Technical

material required in section 6.2 1s relegated to two appendices.
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SECTION 6,1: FEATURES OF RPA WITHIN A SELF-CONSISTENT BASIS

Within an independent quasi-particle description, the simplest excite-
tions of an even system are the two quasi-particle states eIg;’[‘». The
random-phase approximation also describes excitations of essentially two
quasi-particle charactar except it allows for the possibility that the
ground state differs from the quasi-particle vacuum |[v>. Whereas
s 8,|v> = 0, the RPA ground state |r> can be such that 8, |r> # 0. One of
the advantages of RPA is that 1t permits one to calculate properties of
o excited states |a> without requiring explicit kuowledge of |r> (which
g may be very complicated.) It starts from the assumption that

la> = .t j(xjJ Dy a}‘ -1y el = e (6.1)

and proceeds to determine Q' (approximately). Thus RPA yields informa-
a

tion about |a> relative to the ground state, namely:

i {1) the excitation energy B, with respect to [r>;
Lg (2) transition matrix elements

x:j = <rlagp,|a> and yij - <r|8:ﬁ;|a>, 6.2)

These are obtained by solving the RPA eigenvalue problem (Ba 60)

! LY X X
,\‘ o B (530
N
F whers X/Y are the coluay vectors with components X,,/¥,, (4 <) and A
i
I and B are hermitlan and symmetric matrices respectively, with matrix
}"’ elements (1 < j, k < 1)
| A = vl (B8 (R sled)) v
; 13,kL A AL !
! (6.3b)
K
By vl (88 (8 g)} vy
in which H' 45 the "Hamiltonian" operator used 1in determining the
) quasi-particle basis; in this work, H' = H - N (cf. the discussion
following Bq. (3.3)).
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The positive eigenergies & of . (6.3a) ave the excitation energles E,,

and the of the corresponding eig: » the transition
mateix elements in Eq. (6.2). Within RPA, the excitations are (non—
interacting) harmonic vibrations about the quasi-particle vacuum config-
uration (cf. introduction to this chapter).

If particle number is conserved, then Bg. (6.3a) decouples into the
(separate} ph~ and pp- RPA equations (Section 8.9 of (RS 80)). The
structure of the ph- RPA equations 1s the same as that of Eg. (6.3a).
(Thig is not true, In general, of the pp- RPA equations.) Thus several
properties of solutions to the ph- RPA equations (Th 61), e.g. the fact
that for each eigenvector with eigenvalue E (# 0), there is an eigen~
vector with eigenvalue -E%, and the ovthonormalisation condition for
solutions with real mon-zers eigenvalues

b &

(x:;‘ %, - Yi;' vﬁj) = sgm (5) 6, (6.4)

I
1<j
apply also to solutions of Eq. (6.3).

For simplicity, the ‘anti-symmetrised matrix elements \71 k1 Of the
duteraction in the bave basis and the coefficients in the quasi-particle
transformation (Eq. (3.23)) will henceforth be assumed to be real-valued.
Under these conditdons, A and B are real matrices und, subatituting B'
expressed in torms of normally-ordered products of the operators B8
inte Bq. (6.3b), one finds that they have matrix elements

H
Atz 3y = (B + Ep)61gdan + Al gy (6.58)
with
1 -
Masy = B vse76((Us1VeaVealzy = (1 ++ 2) = (3 «+ 4)

(6.5b)
+ Us1UgaUzslgn + V71VaaVsaVen)
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se¥s 5578 ((Us1Vs2Ve V7u * UsglsyVa1V72)

Bz,
(6.5¢)
- (L 3) - {1+ 4,

where E; and By are quasi-particle energiles.

A feature of RPA is its lack of internal comsistency. Any derivation of
Bq. (6.3) presupposes |r> and |v» ars not significantly different - ..
the coefficients Yy, are small in comparison to the coefficlents X,,.
It is for this reason that |v> appears in Eq. (6.3b). (Another conmse~
quence 1is that the identity &> = qf [r> 1o last - cf. section 2 of
(M 80))  The actual solution of Eq. (6.3) may not conform with this
assumption. Thus an RPA calcularion is not a priori meaningful.

The eigenvalue problem in Eq. (6.38) 1s not explicitly hermitian and so
its eigenvalues are not necessarily real-valued. Provided, however, a
gelf-consistent basis is employed, it 1s possible to state precisely
when complex eigenvalues occur {05 83); moreover, information about the
appropriste meav~field cam be extracted (Th 61).

Suppose one is dealing with a self-consistent basis which doea not break
any eymmettieg, 'Then, if this basis 18 stable (in the sense of sec~
tion 3.1), the matrix

fgn Bph)

o
Bt Ao

appoaring in the ph~ RPA equations appropriate to this basis, is pogi-
tive definite (Th 61). This menns that a Cholesky decompasition of §
exists - i.e. § can be written as § = LTL, where L is a non-singular
upper triangular matrix (Chaptsr 4 of (Wi 65)). The ph- BPA aquatiauns
car be recast into the real symmetric eigenvalus problem

380

0 -1 ¥/

w,
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in which i 3

- f) R

where c is some constant, Hence, 8s long as the basis ls stable, all

the ph~ RPA eigenvalues must be real and, in fact, non-zero. (The
iv determinant of the matrix on the left-hand side of 7q. (6.8) is i

non~zero. )

What happens 1f an edgeavalue ey of § tends to zaro as an dnteraction
] strength A » AJ, and, for A > A, is negativel Such behaviour means

A that the quasi~particle vacusm |v> for the basis is not stable for
T A> )‘c and indicates the existence ¢f a new stable guasi-particle vacuum
[v'> (with which s assoclated a vew quasi~particle basls), which
supplants |v>, It also implies that a pair of ph~ RPA eigenvalues tend
to zero as A » Aj, and that, for A >k, they become complex (Th 61).

Thus, complex Fh- RPA eiganvalues sre found when the basis i¢ wnatable. :
Appesling to Thouless's theorem (Th 63, Ma 75), ome can relate |v'> to ‘
|v> by an expressioa of the form

+ ot
vis = noexp (L Z,. B, B} |v> 6.7)
' R

where n 4g a nornalisation constant, and B} s an "old" quasi-particle 3

operator correaponding to |v>. New correlations are present in |v'> and 3
their character is indicated by the coefficilents Zij in Eq. (6.7). When 1
) om ’.c, theze coefficlents coineide with the amplitudes xij of the soft
WA mode, whose energy E + 07 as A + A (3B 76). So, the soft mode and
the new ctable ground state are related: it must contain the correla-

tlons that are excited in the old ground state by the soft mode. |

The stability of the basis %s no longer a guarantee that a Cholesky
decempogition of the matrix in the RPA equations exists if one adopts a

broken-symmetry basis which is subject to constratnts (0§ 83) or consid-
ers the pp~RPA equationg (LM 80), In the case of broken-symmetry bases,

the discussion is further cowplicated by the presence, in general, of [oim

! "spurious" modea: these have eigenenergies which arve jidentically zato ‘
|
]
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the brok y y phase (TV 62), They reflect the exis~
tence of "spuriou- states which can be generated by acting on the
wacuum gtate With tus operator which maps the guasi-particle Bilbert
space onte itself, una-: transfotitatlons of the system corresponding to
a broken symmetry. (RFa has thus the sbility, unlike, notably, the
Tamm-Dancoff approximation (1D4}, to distinguish these states from
vibrational excitations of the system.) After & technically more
e.aborate digeussion (LM 80, 08 83), one again finda the same relation~
ship between the reality of RPA elgenenergies and the stability of the
basis employed, and between the vibrational modes whose energies become
complex (when this basis becomes unstable) and the new stable quasi-

particle vacuum.

The decrease o zexo of the energy of a vibrational mode is undesirable
in that, in general, it will no longer be a good approximation to any
excitad state, (As the energy tends to zero, |Y“f * inj].) However,
because this behaviour occury when & basis becomes unstable, it ean be
used to predict changes in the mean-field. There are several many-body
gystems in which a mean-field is readily available (e.g. a plare wave
basis), but it is clearly appropriate orly for a certain range of the
interaction parameters. What 38 of interest is the precise range of
values for which the basis is appropriate and the nature of the new
bagis that replaces it when going beyond that range. Bven in simple
wodels, a complete self-consistent mean-field caleulation is a difficult
problem because of its non-linear character (HL 82, WH 86). The dis~
cussion in the previous paragraphs implies that both igsues can be

settled by studying tha linear problem ¢f the behaviour of the RPA modes
in the available quagi-particle basis. Following this approach in the
Agassi model, it 1s possible to eliminate the aexigtence of a full HFB
golution when N = @ and derdve the phase diagram (Fig. 3.1) using only
the results of the HF and BCS cslculations. This method is valid enly
when the quasi-particle basis adopted is self-consistant. Nevertheless
it is plausible that the method remains useful even when this is not the
case (KL 85).

The occurrence and form of spuricus modes are entively determined by the
quasi-particle basis. Thay occur whanever the basis breaks a symmetyy
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of H' which possesses infinitesimal generators that are one-body opera-
tors (MW 69). Any of these generators B when expressad in terms of the
quagi-particle operators of this basis, will be given by an expression
of the following form:

- . 11 ot 20 gt gt 4 g0
A R R DR AR (6.8)

where B ia the ground state expectation value of B (which may be zero),
and "ﬁ' 8)% are non-zero because the basis breaks the symmetry for
which B is the generator. Sinee (H',B) = 0, one has the relation

<v|(ajai,(n',a])lv> =0,

which, using Eqs. (6.3b) and (6.8), leads to the conclusion that
320
Bep (-nﬂz] (6.9

sarisfles Eq. (6.Ja) with eigenvalue E = 0. So the precise form of
spurious solutlons of the RPA equation can be established from results
like Eq. (6.8), without reference to the RPA equations themselves.

The identification of Bsp in Eq. (6.9) as a sptrious mede hinges on the
Fact that an exactly self-consistent baais 13 used. In practical
calculations, technical simplifications are necessary which forfeit this
property of the basis. Spurious wodes no longer have edigenenergies
which are ldentically zero, nor is the corresponding eigenvector as in
Eq. {6.9) (UR 71). (The clear-cut division between spurious modes and
other modes in a self-consistent basis is another advantage of this type
of basis.) The extent of the deviation from these results -erves as a
check on the simplifications made (RW 70). On the other hand, when the
bases are self-consistent, the requirement that Bs satisfy the RPA
equations can be uged to establish whether the RPA metrix has been
corractly calculated.

The of 4 modes te that RPA » in some
sense, the symmetvies of the Hamiltonlan. Inm fact, while a vibrational

RPA mode 1s interpreted as an excitatd.. of an intrinsic state, a

P N
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spurious mode can be interpreted as collective (non-vibrational) motion
of the intrinsic state (e.g., a rotation or translation) which restores
the symmetry broken by it to the of the dom-ph.

tion (MW 69 and references therein). However, because RPA 1s a "small
amplitude approximation” and, - reover, does not supply explicit wave-
functions, there are certain fguities (MW 69, LM 80}, To resolve
them it 1s necessary to go beyon/ “he frameworl of RPA (MW 69, MW 79,
Ma 82}, and so, in what followe, the discussion will focus on vibra-
tional modes.

SEGTION 6.2: APPLICATION OF RPA TO THE AGASSI MODEL

The RPA caleulations considered in this section are performed within the
self-consistent quasi~particle bases determined in chaptexr 3 and appen~
dix 6.1, Detailed comparison of RPA results with exact results (Section
6.2.2) will be presented only for the N = @ configuration of the Agassi
medel, as this is sufficient to establish the points of interest. On
the other hand, in dealing with formal aspects of the application of RPA
to the Agassi model (Section 6.2.1), the most general appropriate
quasi~particle basis, namely, the deformed-superconducting basis, is
adopted because it provides a natural framework for the simultaneous
digcussion of RPA within the gpherical and deformed HF bases and RPA
within the superconducting basis.

6, The appropriate collective RPA modes

The form of the transformation velating the quasi-particle operators in
om' Som 8
given in Eq. (A6.4), and the anti-symmetrised matrix elements of the
Agassi model interaction in the bare basis are obrained by setting ¢ = 0
in Bqa. (46.6~7). Substituting these vesults into Eq, {6.5), one finds
that the matrices & and B in the RPA equations appropriate to the

the deformed-superconducting phase to the bare operators ¢

deformed~guperconducting basis have elements

Aam,cm,am,am
1122 33 8y

{6.10a)

= By TS5 Sue Yam Sam " m.om,om,on
1 2 13 2% 13 ah NI S e A

R N
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with
L (A § - (cm + o))
G M ,0 M ,0 W ,0m T Ce0 mm omm a3 by
1172283 by 123 13 2w
(6.10b)
+asn(mm)Aawoc b en S om ?
123 12 3w
and
B
O ,0m ,0 M ,0 Mm
1722733y
(6.10c)
= fsgn(mm) 6 13 B ~(oem 4rom)
m-m ‘m-m “coo0
P T %% 83 N

-(em +om))
11 AR

where E 4s a quasi-particle energy (the calculation of which is dis~
cussed 'n Appendix 6.1) and decatled sxpressions for Ajpgy, A“;u and
Bl23y are given in Appendix 6.2,

Consideration of Eq. (6,10) leeds to the coneclusion that,the coherent
collective RPA eigenvectors have components

35
X Vo sgnta) & o (/2% 8, xS )/a

om,o'n m
(6.11)
Yoot = " oy My oy
where the normalisation condition for positive energy solutions s (cf.
Eq. (6.4))

Y 2 u2
x(aq yo)+x ¥ 1.
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The coefficlents x_, ¥, x and y satisfy the 6x6 RPA equation

A B X X
[ ¢ “] [ ] = [ ], (6.12a)
B oA v Y,

where
x1 ¥

X o= imey N Y o= lyed, (6.12%)
[ y

then

ap -8 -3

A = &=y -3 , (6.12¢)
a
- _aar
I i p
bD’ = -@z-n BUUGO‘

f

& = Aepey @A
2

b= "M'lu“%“'u'n

'
a = Ej +E- - At - At - RAStn (6.12d)
b= -Bopyeyy 4 (R~ 1) Bopmin

a8 = /Z_(Aw_

o l+n/z Al )

i L8l

L) (-Byguy, + 2B o0

e B

R Y
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As it stands, the system in Eq. (6.12) is formally aspplicable to all
bases appropriate to the Agassi model. However it simplifies still
further if the basls is either one of the HF solutions or the BCS

solution.

For any of these solutions, & = b = 0, and Eq. (6.12°) decouples into
the two independent systems

L0

B x.) X
‘} {'l = E { ’}, (6.13b)
Ao ly,) -,

whers the definitions of vectors X, Y, end 2x2 matrices A, B are
obvious from Eq. (6.12). In the case of a HF solution, because particle

number is conserved, & = b = 0, and Eq. (6.13b) reduces to

(a, -b 0 x
[ . - (6.142)
b a- y-1 Py
and
ay - Y Loy f""l
. | = E, l N (6.14b)
b4 n {91}

where Ep/Eh 1s the energy of a (@ + 2)=/(R - 2)-particle RPA state
relstive to the RPA ground state of the Q-particle system. The decompo-
sition of Eq. (6.12) into Eqs. (6.13) and (6.14) illustrates precisely
tow the quasi-particle RPA equations combine the ph~RPA equations (e.g.
Eq. (6.13a)) and the pp-RPA equations (e.g. Eq. (6.14)) all under one
umbrella. On the other hand, Eq. (6.14) obscures the aymmetrical

- ¥
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interrelationship between the collective pp-mode (pairon) and the
collective hb-mode (holon). These can both be related to solutions of

(a1 + a=1)/2 -5 ) %
. 3 . (6.15)
-b (ay + a-1/2 ¥ -3,
5 If %, ¥ satisfy Eq. (6.15) with eigenvalue E, then
: X, = % ye = ¥ (6.16a)
4 v satisties Bq. (6.142) with eigenvalue B, = E -~ (a-) - 2,)/2, and, at the
K same fime,
e X = X oy =9 (6.16b)
3 satisfies Bq. (6.14b) with eigenvalue Ey = E + (a=) = aj)/2.
¥ Tie collective ph-mode 1n the spherical basis is precisely that found in
p the LMC model when x < 1 (MGL 65); similarly, the pairon and holon modes

(in the spherical basis) are found in the two-level Pairing model when
£ <1 (BB 66). Implicit in RFA 1s the assumption that the RPA modes do
not interact with each other (cf, section 8,4.5 in (RS 80)). Hence, the

presence of the pairon and holon states, with energles £ end E,
implies the existence of a collective pairon-holon excitation in the
f-particle system of energy E_+ B . The studles in (NGL 65) and

(BB 66) demonstrate that the collective ph-mode (or monopole mode) and

G

the pairon-holon mode do in fact describe the exact low-lying collective
excitations of fixed particle number withinm the IMG and Pairing models
respectively. On the other hand, the discussion in section 2.2.1 of the

exact collective excitations of the Agassi model when x,I are small,

showad that they can be i d as non-int. itiens of
the (basie) excitatlons found separately in the LMG and Pairing models.
Thus the APA solutions isolated in Eqs. (6.138) and {(6.14) are indeed
those appropriate to the collective excitations of the closed-shell

configurations of the Agassi model when I,y < 1.

Because of the simplicity of the small interaction strength limit of the
Agassi model, the results above (specifically Eqs. (6.132) and (6.14))

wl¥

DT




RIS

[
O —

B

e

;
L
|
f

113

interrelationship between the collective pp-mode (pairon) and the
collective hh-mode (holon). These c¢an both be related to solutions of

(ay +a)/2 b3 Y
- = E . (6.15)
“b (a; + a-)/2 3 -3

It %, § satisfy Eq. (6.15) with elgenvalue E, then
Xy ® Ry yey % {&.16a)

satisfles Bq. (6.14a) wich eigenvalle Ep = E - (a~) - a1)/2, and, at the

same time,
X~y = % yi =F (6.16)
satisfies Eq. (6.14b) with eigenvalue E = E + (a-) -~ 21)/2.

The collective ph-mode in the spherical basis is precisely that found in
the LMG model when x < 1 (MGL 65); similarly, the pairon and holon modes
(in the spherical basis) are found in the two-level Pairing model when
£ <1 (BB 66). Implicit in RPA 4s the assumption that the RPA modes do
not interact with cach other (cf. section 8.4.5 in (RS 80)). Hence, the
presence of the pairon and holon states, with energles E_ and Eh’
1mplies the existence of a collective pairon-holon excitation in the
G-particle system of eeray E, + & The studies in (MGL 65) and
(BB 66) demonstrate that the collective ph-mode (or monopole mode) and
the pairon-holou mode do in fact deseribe the exact low-lying collective
excitations of fixed particle number within the LMG and Pairing models
ragpectively. On the other };And, the discussion In ssction 2.2.1 of the
exact collective excitetions of the Agassi model when x,I are small,
showed that they can be interpreted as non-interacting superxpositions of
the (basic) excitations found separately in the LMG and Pairing models.
Thus the RPA solutlons isolated in Eqs. (6.13a) and (6.14) are indeed
those appropriate to the collective excitations of the closed-shell

configurations of the Agassi model when I,y < 1.

Because of the simplicity of the small interaction streugth limit of the
Agassi model, the rasults above (specifically Bqs. (6.13a) and (6.14))

"
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could have been heuristically inferred from a knowledge of the RPA
caleculatlons within the LMG and Pailring models - viz, these calculations
guggest that a reasonable ansatz for the operator in Eq. (6.1) corre-
sponding to & collective negative parity excitation within the Agassi
model is

+ N
Q = xJ =yl (6.17)

which is consistent with the vesults above. However the rather formal
discussion above has the advantage that it indicates the Ffollowing
extrapolation beyond this "simple" regime to the regimes of large I and
X» whers the problem appears far more complex (GH 84b): the coherent
collective RPA modes given by Eqs. (6.11) and (6.12) are, in general,
the modes appropriate to the description of the excitations within the
collective subspace of the Agassi model.

The character of these modes in bases other than the spherical HF basis

can be summarised as follows.

(1) Daformed
those in the spherical basis. e physical interpretation of these
modes is however redically different, They must now be assumed to

F. In this basis, the modes are formally identical to

deseribe both members of excited parity doublets built on the
parity doublet contalning the ground state of the Q-particle
system,

(2) Superconducting (BCS). As in the spherical HF basis, one finds a
aegative parity “monopole” mode, mnamely the solution of
Eg. (6.13a). The solutfons of Eq. (6.13b) possess positive parity.
The fact that particle number symmetry is broken implies that the
positive parity vector with non-zerc components

Haen T Tomen T o

15 a solution of the RPA equations with eigenenargy zero. Observe
that this vector is of the same form as the vectors in Eq. (6.11),
and so must satisfy Eq. (6.13b), which {s confirmed by direct
substiturion. This mode 1s of rotational character: as

s 7

i
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Yo' (ﬁ-n)/z, it generates rotations about the z-aris of the
quasi-spin spacea corresponding to the SU(2) group with genmerators
¥, and ¥,. (The absence of a similar "spurious” solution when
parity symmetry is broken i{s a consequence of the fact that it is e
discrete symmetry with no infinitesimal one-body generator.) The
other mode determined by Bq. (6.13b) %s the "pairing" vibration.
This is the counterpart of the palron-holon excitation found in the
HF bases, with the difference that, in addition to an energy, one
obtains an eigenvector, enabling one to calculate transition matrix

elements.

[&}

Deformed-superconducting (Full HFB). WNot surprisingly, the modes
in this basis share features of the modes in the superconducting
basis and the deformed (HF) beels. As in the superconducting
bsasis, there ave three distinet modes of which one 18 "ipurious".
The remaining modes can agein be classified as “pairing”" and
"monopole” modes, but, as in deformed HF, they now describe parity
doublets. Because the monopole and pairing modes satisfy the same
set of equations, they are identified by their eigemvectors: the
dominant components of the monopole (pairing) mode eigenvector are

XY (xy)-

So, independent of the choice of basls, RPA predicts two fundamental
excitations in a system of given particle number, a moncpole vibration
and either a pairing vibration (BCS, HF¥B basia) or a pairon-holon
vibration {HF basis). These have negative and positive parity respec-
tively except when the basls 1s "deformed”, in which they describe both
members of excited parity doublets. Observe that these findings are
quallitatively consistent with the results of section 2.2.

An interesting aspact of the behaviour of these collective modes 1s that
1t is they which are affested by instabilizies of the quasi-particle
bases. Conglder, for example, the paircu-holon mode 4n the spherical
phase of the N = R aystem. This excites Cooper pairs. On the ocher
hand, in sectdon 3.3 1t was shown that the spherical phase becomes
unstable with respect to the formation of Cooper pairs for Eo % 1.
Recalling the discussion of section 6.1, one can conclude that, as
%,+ L7, the energy of the pairon-holon mode must tend to zero, and that,

.




Fig. 6.1

(b)

By

Loci at which energles of RPA modes (indicated by labelled
arrows) tend to zero. QCurves A and D are the supexconducting

~ to - and - o -~ -

superconducting transition lines reaspectively; curve B is
given by x = 1 and curve € by x = (@ - )(1 - I). 1In the
labels, M, P and PH denote monopole, pairing and pairon-holon
modes, ond B, D, DS and § the suparconducting, deformed,

deformed-superconducting and apherienl hacpa reeveet fvely,
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Fig. 6.2 Comparison of exsct and approximste excitatlon emergies when

N= 18, @ = 22 and EN = 0.5, Curve A is obtained by using an

epproximation discussed in section 7.2. The energies of the
RPA momopole and pairing vibrational modes within the
appropriate quasi-particle bases are identified by the key in
the diagram.
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for larger values of xo, it is unphysical being no longer real-valued. i i
Furthermore, because, at the spherical-to-superconducting transition,
épcs ™ ¥pog ™ 0» which are the velues of ¢ and ¥ in the spherical phase, ;
the pairing mode (in the BCS basis) formally satisfies the same equa- | ‘
tions as the paivon and holon modes at the transition puint, and so the ¢
peiring mode energy must tend to zero asg Ec * 1+. (Bacause the BCS Vj
solution does not exist for I, < 1, this zero in the pairing vibrational i
mede energy should not be interpreted as s signal of instab..ity.) The

display of seimilar behaviour by the othar collective meodes can be !
anticipated in the same way from the results in chapter 3. This infor-
mation is conveniently summarised in Fig. 6.1. Explicit confirmation of i .
these patterns in the case of the N = @ configuration can be seen in the y
closed~-form analytic results given in section 6.2.2, Eq. {6.19), while
numerical calculations are comsistent with Fig. 6.1b {of. Fig. 6.2),

In the next sectlon, comparisons of RPA snergies with exact exeitation
energles will be complemented by comparisons involving RPA' matrix

plements. Matrix elements of the particle number conserving quasi-spin .
operators Jo, Jx and J_will be considered. {(The results of section 2.2
indicate that the behaviour of matrix elements of these operators is

A

typical of that displayed by matvix elements of any of the other quasi-
opin operators.) Expressious for these matrix elements, applicable to
any basls appropriste to the Agassi model, can be obtained y working
within the deformed-superconducting basis. Take, for example, the
" of the
deformed-superconducting basis, it is given by 4

operator J.: in terms of the quasi-particle operators a:m, B,

f e 4l

=
J g a;:' agalm) (“10 v om Sat-m

o Yo gr) 8

1@ " Mg
+ (terms which do not contribute to RPA matrix alements),

and so the matvix element batween & cohavant collective RPA state [o» kS
and the RPA ground state |r> is, from Eqs. (6.2) and (6.11), :

i

I

2 <eld e o= Etn Y Gy ) H () -onep) (k) J
M

T

o " Meyyo
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where

L 2 ugs Voo Pomg e g Yt e ).

In the same way, the matrix elements of J  and Jy between |c> and [r>

are

_2_§ <ely, e

¢ D gty ) Gty kG k) et

2 t<c|y, fr> o v

'—,“ X

a

{6.18b)

where

Magt ™ gt Vogg? voBg v v_ah‘-# (1 ~1).

The signs of these matrix elements are, of course, not determined by the
solution of Eq. (6.12). It is convenient to take «:l‘lxh) and the exsct
transition matrix elements of Jx to be positive; this determines the
signs of the matrix elements of Jy because, independent of the basis,
<e|d [r> and <c|Jy|r> are to be compared with exact matrix alements
between the same pair (or pairs) of states. The phase of matrix ele-
ments of Jo however remains arbitrary; they will be assumed to be
positive,

6:2,2 Comparison of RPA with sxact results

When N = @, it 1s posaible ko solve tor the collective RPA wodes amalyt~
ically. One findg that, independent of the basis, the excltation energy
of the monopole vibration can be written as

B oo, (6.198)

i
|
|
{

O,




118

where o, is given in Table 6. Similarly, the energy af both the palron-
holen and the pairing vibrations is given by

E
.
- 28,8, (6,195}

where B, is also defined iIn Table 6. The transition matrix elements of
5y and 3, (c£. Eq. (6.18)) can also be written in a compact memner.
The matrix elements of J and J between the paiving vibration |n>
(superconducting basis) and the RPA ground state |r> must vanish because
both states poisess positive parity; in the case of the monopole mode
|m> they are given by

270 <m|-1xfr> =y (a*/u_)ii f 2/t 1.<m|Jy|r> =y (u_/u+)}’ f

where Ber “y are defined in Table 6. Symmetry considerations imply that
the only transition matrix elements of Jo which can be non-zero are
<m|:°|:'> in the deformed phase and <p|J°§r>; they are given by

i ala o = e 0t L el e = a8,

(Matrix elements of Jo involiving the pairon-holon excitation are not
congidered because, as was pointed out in the previous section, no RPA
sigenvector L5 available for this state.) The fact that the matrix
alements of all three operators between |m> and |r> are non-zero in the
deformed busis may seem contradictory. However, in the deformed phase,
the exact spectrum must be treated as if it consists of parity doublets.
The RPA matrix elements <mll |y end <m{g |r> must be compared with the
matrix elemencs of Jx and J between the positive and negative parity
members of the ground state parity doublet and the negative and positive
parity members, respectively, of the appropriate excited parity doublet;
]y |r> has to be compared with the matwix elements of J, betvean
members of these two doublets with the same parity.

The anergles of the collective RPA modes are compared with exact excita-
tion energles in Fige. 6.3-4; ¥ = 0 = 20 with T being varied and x = %
and 5 respsctively (aa in Figs, 2.2a and 2.5).
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where o, 1s given in Table 6. Similarly, the energy of both the pairon~
holon and the pairing vibrations is given by

E
F o= e, (6.18b)

where ﬂ* 1s also defined in Table 6. The transition matrix elements of
Jgr 9y and 3, (ef. Bq. (6.18)) cen also be written in & compact mavnier.
The matrix elements of I and J  betveen the palring vibration o>
(snperconducting basis) and the RPA ground state [r> must vanish because
both states poasess positive parity; in the case of the monopole mode
|m> they are given by

E E!
U i e = a0t ud dalyfe - @t

vhere u., u ave defined in Table 6. Symmetry comsiderations imply thac
the only trameition matrix elements of Jo which can be non-zero are
<m1Jolr'> in the deformed phase and <p|J fr»; they are given by

P gl = (e t0® L 2t lile = a8,

(Matrix elements of J, involving the paivon-holon excitation ave mot
congidered because, as was pointed out in the previous section, no RPA
eigenvector 1s availgble for this state.) The fact that the matzix
elements of all three operators between |m> and |r> are non-zera in the
deformed basis may seem contradictory. However, in the deformed phase,
the exact spectrum must be trented as if it consists of pavity doublers.
The BPA motrix elements <m\ax;:> and <) 'v> must be compared with the
matrix elements of Jx and Jy between tha positive and negative parity
members of the ground state parity doublet and the negative and pesitive
parity members, respectively, of tha appropriate excited parity doublet;
<m|J°ir> has to be compared with the matrix elements of J  between
nembers of these two doublets with the same parity.

The energies of the collective RPA modes ave comparad with exact evcira-
tlon energlas in Flgs. 6.3-4; N e 0 = 20 with I being varied and y = i3
and 5 respectively (ns in Figs. 2.2a and 2.3).

v ta i o
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Nalvely, one expects the collective RPA modes to describe the excited

states of lowest encrgy. This expectatiom is in fact met for x = k.
Figure 6.3a shows that the excitation emergy of the lowest negative I
parity state is well described by the monopole mode in the stable
quasi-particle basis. Similarly, except for I < 0.15, the Iovest 5

positive parity exnited state is approximated first by the pairon-holon « A
o mode (in the spherical phase) and them by the pairing vibration (in the <]
F superconducting phase). When I is small, matters are cowpiicated by the

i presence of another pasitive parity state of couparable excitation
energy; in fact, as [ + 0, it is lower than the state described Ly the
pairon-holon mode. However it is also an RPA state in that it is

- approximated by the second harmouic of the monopole vibration. v

BT & An important resuif illustrated by Fig. 6.3a is that it is essential to
use a stable basis in an RPA calculatien. For I,> 1, the spherical HF

basis is unstable. Because it is unstable with respect to the formation

. of Cooper pairs, the emergy of the pairon-holon mode betomes complex (im
fact, imaginary) beyond this point and it has to be discarded. On the
other ' .id, the properties of the monopole mode within the spherical

basis are unaffected. If the results of the RPA calculation of negative H

e parity states (which do not include the pairon~holon mode) are taken in &
isolation, there iz no reason to discard this mode. However Fig. 6.3a

demonstrates that it does not have any meaning in this region.

Ia Fig. £.3 x 4s fixed and I is varied. Analogous patterns are found if
4 instead © is fixed (at some value less then (0-2)/(2-1)) and x is
increased. In this case there is a transition from spherical HF to

K deformed HF. The toles of the monopole, and pairon-helon snd pairing
modes are interchanged, A plot of the monopole mode energles would now
lock like Fig. 6.3b (GH 84b), while the pairon-holon and pairing mode
energies would behave as in Fig. 6.3a. Whem either x is varied (with T
£ixed) or I is variea {with x fixed), the mode assoclated with the
instability of the spherical HF basis parforms poorly la the tramsition i

region {as anticipated ‘n section 6.1). The energy of the other mode '
remains a good approximation 1f calculated in the stable basis. Outside !
this reglon the energies of all modes compare well with the exact H

energies. This is in particular true in the regime where either x or I .

is large. i
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As sphevical HF is not stable when x = 5 (see Fig. 3.1), only the
results of RPA caleulations in the deformed HF z2nd BCS bases are com-
pared with exact emergies in Fig. 6.4. The RPA states calculated in the
deformed HF basis must be interpreted as parity doublats, and indeed,
the low-lying membevs of the exact excitation spectrum for y = 5 do form
parity doublets in the deformed phase provided one is not too close to
the deformed~to-superconducting transition polat. TFor I ¢ 2.5, the
mewbers of the two lowest excited parity doublets cannot be resolved on
the scales of Figs. 6.42 and b, In this interval they are reasonably
approximated by the monopole and pairon-holon modes respectively in the
deformed HF basis. Although the members of the lower of these two
parity doublets separate for larger values of 5§, they can still be
viewed as belouging to a "doublet”. It continues to be approximated by
a mode in the deformed HF basis, nsmely, the palron-holon mede, but the
level of agreement detericrates (Fig. 6.4b). The other parity doublet
is far more ¢learly defined until 'the level rvepulslon at ¥ = 3.5
(Fig. 6.4b); np to this point it is well described by the monopole mode
in the deformed HF basis. To the extent that states (i) and (i1} in
¥ig. 6.b4a form & “doublet", so do states {iv) aud (v) immedistely after
I 2 3.5, This doublet is described by the monopole mode in the deformed
HF basis. By contrast, the positive parity etate (iii), which has a
lower excitatilon epergy than this doublet, cannot be a RPA state in this
basis because 1t does not belong to a parity doublet. As the transition
region is apprcached, not only does the quality of the RPA description
of "doublets" worsen, but it also falls to describe all the low-lying
collective states. When x > 5 this feature of the spectrum 1 seen more
clearly.

At L= Ec = 4.74, the deformed HF basis becomes unstable and the BCS
bagis, which exists provided & » 0.74, becomes stable. The RPA modes in
the deformed HF basis behave in the same way at this point as the
corresponding RPA modes in the spherical HF basis at the spherical-to-
suparconducting trawsirion (ef, Fig. 6.la). The monopole mede 4n the
deformed HF basis remaina well-behaved even when the baais is not
atable, but, as in Pig. 6.3a, it is completely meaningless (Fig. 6.%a).
Likewise the pairing mede (in the BCS besls), although formally aceept=
able when the BCS basis 1s unstable, cannot be taken seriously in this
region (Fig, 6.4b). This applies in partieular to the vanishing of the

=
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palring mode enexgy at I = 0,74, It is tempting to infer from this the
occurrence of a phase transition, but it would be wrong *n do so.

In the region in which the BCS basis is stable, the energles of its RPA
modes compare well with the energles of exact states., It can b2 seen
from Fig. 6.4a that the negative parity monopole mode approximates the
lowest negative parity state, and that the approximation vemains re-
markably good as the transition point 1s approached. In the limit of
large I (i.e. £ > 7), the positive parity pairing mode, like the mono-~
pole mode, describes the lowest excited state with the same symmetry.
However, between the tramsition point and the level "croassing" at L & 7,
the pairing mode corresponds to the second excited state of positive
parity. The lower excited positive parity state can be viewed as the
second h ie of the le vibraed

Through the comparfson of energies the exact state or group of states
which can be identified with a collective RPA mode have been determimed.
It is now possible to compare the RPA predictions for transition matrix
elements with their exact values. .

Figure 6.5 containg comparisons of the RPA predictions for matrix
elements with their exact values. As before N = = 20 with x = % and
5, and I is varied. Results for x ~ % ave all contaiped in Fig. 6.5a
which shows that the two releavent exact matrix elements are well de-
seribed; the level of quantitative agreement deteriorates in the trangi-
tion reglon but still vemains fair, This also applies to the matrix
element of J not shown. A comparison of thege results for the matrix
elements with those for the energies (Fig. 6.3) in the case of the
pairing mode shows surprisingly that the former are significantly better
in the transition vegleon: even when the enargy of a soft mods is a poor
approximation, the matrix elements can still be good. Figures 6.5
and ¢ demonstrate that the RPA results are also reagonable approximaw-
tions when y = 5. The discrepancies can become significont as the
vransition point 1s approached, but, as 1s most clearly shown in
Fig. 6.5b, the behaviour of rhe RPA matyix elements remains at least
qualitatively correct. Such findings lend support to the methods
employed in other investigations (LG 85).

_
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The parity doublet described by the monopole mode in the deformed HF
basis 1is involved in two level repulsions (Fig. 6.4a). This makes the
comparisons 44 Fig. 6.5c rather complax, but they confirm the assign~

ments made in discussing Fig. 6.4a. The intervals of poor agreement in
Fig. 6.5c at £ % 2 and 3.5 coimcide with the intervals in which the

|
exact states repel each other., The RPA "ignores" the level repulsions.
B On the other hand, the exact results in Fig. 6.5c demonstrate that the
1
i

level repulsions between excited states amount, in effeet, to nothing

more than level crossings. Thus this is a desirable characterigtic of
RPA.

When these calculations are repeated for smaller values of x, namely f
1< x <3, the RPA in the deformed HF basis is poor (GH 84b) while it
still performs well in the BCS basis - i.e. the width of the regien of
poor agreement in the deformed HF basis parallel to the y-axis is
broader than in the BCS basis psrallel to the I-axis. This is a pecu-
liarity of the model. For the RPA in the deformed MF basis to work well

PR

it 1s necessary that the exact excited states with quite different

unperturbed energies form almost exactly degenerate parity doublets.

This pattern only emerges once X I8 quite large - much larger than the

value at which the ground state parity doublet £irst appears, In i |
contragy, the RPA in the BCS basis does not require rigid patterns in {
the excitation spectrum of tha N = {2 system,

g g g

3 The overall pattern to emerge from the comparison of RPA and exact
results can be summarised as follows. First sud foremost, RPA caleula~

tione are meaningful only in gtsble quasi-pavticle bages. This can be

a interpreted as furthar support for the singularity conjecture of see-
tion 5.1, which suggests that the singulavities inherant in the exact
solution are adequately mimicked by stable bases, but not by unstable

bases. The connaction with the pingularity comjecture in turn suggests
this finding is not specific to the Agassi model. It has thus practical
significance for calculations within realistic systems in which, for

reasons of economy, only some of the collective RPA modea are con~
sidered. While these modes may be well-behaved, an instability of the
basis may be aspoclated with & mode not under comsiderstion. If so, the
vegults will be invalid, and this will not be obvious by considering om i
them alone.
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As regards the quality of the RPA (in a stable basis), this depends om
how close cne is to a "phase tramsition". Well away from a phase
transition, the RPA 1s adequate (except at points where excited stateg
are involved in level repulsions among themselves), but it becomes, in
general, poor (although still qualitatively correct) in the immediate
vielndty of a phase transition. This is also true of the HFS descrip~
tion of ground state properties. So, in the treatment of the collective
low-lying states and the ground state, one can identify the vicinity of
a phase transition as a region in which the "mean-field approach” (i.e.
BFB and RPA) fails, while on either side of & transition it {s adequate.
More elaborate treatments are required primarily in the region of phase
trapsitions. The same conclusions emerge from realistic applications
(see, for example, chapter Ll of (RS 80)).

Model sotudies show that the solution to a many-body problem, when
exprassed in terms of the quasi-particle basis appropriate to the
non-interacting limit, becomes (in general) extremely complicated with

ng interaction , and patterng wichin the solution are

not tramsparent (GH 84b). The success of the mean-field approach in the
region beyond a phase tramsition i3 thus remarkable: it identifies a
structure which, for example, enables one to express some of the com-
piicated states of the solutien to the many-body problem as simple RPA
states built on a new "vacuum",

The singularity conjecture can account for the deterilorating quality of
the mean-fleld approach as the location of phase transitions is ap-~
proached: the inadequacies of the way in which the singularities
involved are mimickaé sow show up. Thils suggests that improved agree~
ment dn the transition region can be obtained by simulating these
singularitiss more accurately. The implementation of crossing~symmetry
may be just such a method.

Within Lthe Green's function fovmulation of the meny-body problem, a
central vola is played by the 4-point vertex function [ (EHN 77).
Crossing-symmetry {8 one the formal proparties raquired of any exact T
(EHH 77, He 80). It is a very stringent requirement, being non~pertur~
bative and non-linear in churacter (HB 68), and attempts at

|
|
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constructing, in the general csse, a crossing-symmetric I for fermloms
{He 80,81, DH B4) have to date bees unsuccessful, (Studies of crossing=~
symmatry with bosons seem to have izen far wore successful (JLS 82).)
The purpuse of these studies was to establish the physical significance
of crossing-symmetry. The results of the model study in (GH 83,
GR 84a), im which the exact I' appropriate to the LMG model with two
particles is ‘alculated, seem to shed some light on this issue. This
vertex function possesses algebraic singularities in the interaction
strength parameter V which occur suggestively for values of V such that
|vie] = |x| = 1. At the same time, these singularities arise because
this I', belng exact, possesses crossing-symmetry (chapter 3 of (Ge 85)).
The implication is that ir is precisely in the troublesome transitional
veglon where croasing-symmetry is relevant.

APPENDIX 6 THE _APPROPRIATE QUASI-~PARTICLE STATES
In this appendix, the form of the third and final mamber of the decompo~
sition of the full HFB transformation appropriate ta the Agassi model is
determined. This ylelds the quasi-particle states which are necessary
for the description of excitations. In addition, the calculation of the
quasi-particle ensrgies of these states is discussed.

To accomplish this, the expressions for H2? and H!! (appropriate to the
Agassi model) found in the quasi-particle basis defined by Eqs. (3.14)
and (3.15) are required (cf. discussion following Eq. (3.10)). These

are

2D v T see(m Wb, 8 (a6.1a)

Homatar = Hgr Spar (46, 1b)
1 which

HES = Yogr hoor = Togt dgor (4. 28)

Hé}y' = ;ua‘ h;c' * Yoo! A;o"' (£3.2b)




125

where

Yogr B UM, =NV,

= u N3 +u
¥ PN Y a0 o Yo LA

aot ¢ g a
and use has been made of the fact that the matrix elements in the
canonical basis of the equivaient within HFB of the HF Hemlltonian and
Pairing field can be written as

@

h v -
om,q'm

aqt dm,m' N

3 « wsgLo A

o S
CLA-ALY o' “my-mt?

respectivaly. Explicit expressions for h;s, and A:q, will be given
below (Bq. (A6.8)).

Form of the 3¢ tou:

+

The third transformation Uz is required to be such .aat ULHlY, 1s

dlagonal. Hence, from Eq. (A6.1b), it can be chosen to be

B = % ot %ot
whare «' are the quasi-particle operators defined by Eqa. (3.14) and
(3.15) and
o
¢ -
¢ c

is an elgravector of W)

emargy corresponding to the quasi-particle state created by s:m_ (By
cholce, By & E=p)

1, with eigenvalue E_ j B is the quasi-particle
o' o’ "o

Since Héé, is symmetric and real-valued, the third transformation exists
and can be chosen to be orthogonel. It cen be parametrised in & manner
very similar to the first transformetion (Eq. (3.13)), nemely
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toL v +
8 cost/2 ul - o stng/2 o,

om (46.3)

where 0 5 $ %/2. The determination of £ is trivial once a;é. is

known.

; + : +
In terms of the bere operators o, C, ., the quasi-particle operstor Bl

can be written as

g - A B S R A (46.4)

& o
Expressions for ho ., A0 1,

It a canonical basis, h and 4 have matrix elements

< c I
his By * F Vigk Pk

(26.5)
e _ e o
by T ORI Vg e

where :i. is a matrix element (in the canonical basis) of the l-body

part of H', ¥ an anti-symmetrisad matrix element of the (2-body)

<
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f.teraction im H' and E' demotes the sum over paired states. In the

Agassi model, these matrix elements ave, from Eq. (A3.10),

o e

L N LA I LD . S (46.62)

I PR— ¢ -

Yoymy s 0pmy, 03mg, 04my s Voyuz030y \5“\1!113 szm“ 3 an
(A6.6b)

- sgn(mmg) g 60153 Gu;m. 5m;-m2 5m3—~m‘,’

whers u is the chemical potential,

ey = O cosé » o ty g = -siné (A6.7a)
and

<

Va;ugcgm. V(qucz 6030., - Sa;azagm,)’ (46.7b)




in which

S 1655000 B, (O)gg, (1) ggy (g,

and <U1>cu' appears in the transformation to the canonical basis,

Eq. (3.13). The independent entries in 5010253°u are
Sop5e = * =% sing Sog-g-g = 4 oiné
. (A6.7¢)
Scua-c = =l ¢ sing cosd.
Substicuting Eqs. (46.6)~(A6.7) into Eq. (A6.5), one finds that
o < <
Mo = e/2E0 - w s kI (A6.8a)
with
oo ko @-1V S - o) stn®p - g oy
(A6.8b)
M5 = %@ =1 (o8 = p}) sing cosy
and
a8 = ek V) G+ )+ o TGS - kD) cos®s
, (46.8¢)
85 = s S - kD) coss simg,

vhere p; and xg are given in Eq. (3.17).

Quasi-particle emergies:

11
In the superconducting basis, H_ , s automatically diagonal (as substi
cution of ¢ = 0 in Eq. (A6.8) confirms). As, from Eq. (A6.2b), the
quasi-particle energy

e, o e,
E (- 2p0) bo+ 25 8% (46.9)
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EJ
and hgg depends on p, it would seem necessary to know p in order to
]
evaluate Eu. In fact, this is not the case; using the condition -
20 :
H . = 0 (%S equatiens), b
Eq. (A6.9) can be rewritten as
© c
£, [SETSN (46.10)
(In Eqs. (A6.9-10), it is assumed ¢ = 0.)
Similarly, in the p basis, by Eq. (6.2) R
» and the condition H20 = 0, one finds :
;. n . .
e Bor = bagt!¥ogre
N H
In the HF basis (N = @, y = 0), H!! is again automatically diagenal and :
] E = g¢git i
H 4 oo |
! :
| = ¢/2 (cosd + X sun?p) + g & - |
’ i
i
using Eq. (46.8). :
APPENDIX 6.2: COEFFICIENTS IN EQ. (6.10) '
A =y s - B e (L2, 3 e 8) b
1234 1234 1234 +123% i
!’
R :
+ E((U;J' Uy, Yoy Ugty "a’..) + (L= 2,3+ 8) ‘[
La
AT m WS Al 2) (3 )+ (L2, 3 e 4) 3
1234 ¢ 1234 ¢ ) ? ( ) . .
+g vg' (uq1 uu2 uv,3 uu'., + “01 vu2 vﬂ,3 va'u) :
ot
o
s
i
[
|
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S N e

129
where u_ ., Voo, arve defined in Bq. (46.4),
g = LV v VW
1234 ¢ 91 02 U3 O
u
s = I u
1234 o Yoy Yoy u‘ﬂs Beay
and 87,34 is obtained from S},gy by replacing u's by v'a.
B = V((Eu v v + (1= 3)+ (24
1234 ((a vy “Uz -3 'Vu) ¢ ) ¢ )
(L 2, 3 e 4))
- Iv v u, u + (L2, 3 8),
g((qa' o1 Vo3 Yo' g1, ¢ )
* w e N

N

3
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CHAPTER SEVEN

SIDE-EFFECTS OF SYMMETRY-FREAKING AND THEIR TREATMENT

Vot only i the symmetry-breaking of WFB formally undesirable, it also
affects the quality of agreement with experiment. The obvious extension
of BFB, in which & state with the desired symmetries is projected out of
the HFE trial stute, leads to improved agreement, even when the projec-
tion is performed after the vsriational parameters in the trial state
have bean determined (PHFB) (SGF 84 and references therein). (In a
fully self-consistent - treatment, projection should be performed before
variation (FHFB).) Projection, particularly the projection of states of

good angular ig however onally expensive (HHR 82); to
date, celculations incorporating projection have largely been ¢ ed
to semi-realistic models, iike the Pairing-plus-Quadrupole mode:. nd
even these are by no means complete (WAM 85). *(Compounding this is the
fact that performing PHFB and FHFE does not remove the need in the
description of excited states for treatments like TDA or RPA or their

symmetry-conserving analogues (¥R 85).)

The question arises whether or not the same physical insight cannot be
attained by much simpler and technically less demanding methods, This
has wmotivated the Hartrese-Fock Senidrity (HFS) approximation (GP 86),
which {s designed for open-shell systems. Realistic calculations have
been performed within this approximetion but it has not baen compared in
any detail with its rival approximations - i,e. HF& or PHFB,

‘This chapter is devoted to a dlscuselon of the effects of symmetry-
breaking and their treatment. Section 7.l reports what can be learnt
about the consequences of broken particle number symmetry withuin the
Agassi model, Only the ground state energy 1s considered because,
unlike other HFE expectation values, it is expected to be reliabla. The
most significant finding is that the HFB ground state energy can be
lover that the exact ground state energy, which contradicts a h.lief
implieir in the literature (cf., for example, section 8.4,6 im (RS 80))
that, as HFB can be derived using & Rayleigh-Ritz variational principle,
it must always yield an upper bound to the ground state energy. In
section 7.2, the HFS approximation will be discussed, with the aim of

i
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seelng to what extent it can simulate a projeated HFB calculation. The
technicalities of particle number projection within the Agassi model ave
described in an appendix to this chapter (Appemdix 7).

SECTION 7.1: CONSEQUENCES OF BROKEN PARTICLE NUMBER SYMMETRY

Within the Agassi model, the mean-fields break two symmetrles. Parity
gymmetry is broken whem the monopole interaction is dominant, and the
naive on for the

ng solution is that it describes
both mambers of a ground state parity doublet. Indeed, under the seme
conditions the exact positive parity ground state does become degenerate
with the lowest negative paxity state (Figs. 2.2b, 2.5), and the exact
expectation values of this doublet do coincide (Fig. 2.4). Thus, the
breaking of parity symmetry is a pog'-riorl justified. On the other
hand, particls =omber symmetry is brokem whenever § < 0, independent of
the vaiu- iteraction strengthe. (This is a characteristic of
the mean wcription of any open-shell nucleus (LA 84).)
breaking parua. aumber symmetry, the mean-fisld can accommodate t:
pairing interaction. In fact, the comparison of approximate and exact
ground state expectation values of Y+‘1_ in Fig. 5.8 demonstrates that
the particle number-breaking BCS solution cortinues to perform ade-
quately even as g+ O (V small), However, when in isolation, the
monopele interaction 1is aceommodated by a particle number-conserving
mean-£ield, So, in this section, the particle number dispersion of the
HF golutions appropriate to open-shell ccnfigurations of the Agassi
model will be eonsidered, particularly when V s large.

The form of any HFB ground stute appropriate to the Agassi model is
given by (Appendix 3.1) )
= LPLERYI
fv> T Guy + vy ag al 3=, 3.1
on
m>0

from which it is clear that the distribution of components of different
particle number in [v> is determined by the transformation within the
canonical basis (cf. Bq. (3,10)), and it is (formally) the same as the
distribution corresponding to a BCS stats. This distribucion can be

derived from the observation thot <-|a fv> = Ve Thus, vi (v-y)

g Pom

o

Py e i
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is the probability that & specific pair of tizme-reverszad stnates in tl;e
upper (lower) level is occupied; similarly, u; = 1 = vy (u=j = 1 =~ v=y)
s the probability that this pair of states is unoccupied. The prob-
ability that a component with k specific pairs in the upper level and
4N - k specific pairs in the lower level is present in |v> is
a2 -k (v:)k (u_j)n/z SN2k B2 -k

N 2
P = (u1) -1 (7.1a)

The womber of such components 4s
. [an2)( arn
n, [k][m_k] 1)

Thus, the probability that |v> contains a component with particle number
N 12

§/2
= o0 op. (7.1¢)
LI
(Thic result is alsc a spin-off of the number projection calculation in
dppendix 7.) Because of the copstraints in Eq. (3.15), Py may be
vegarded as a functional of p} = v| alene.

The mathematical properties of this type of distribution have been
studied at some langth in the litavature ({H¢é 65) and references there-
in). Wevertheless, the Full extent of the symmetry-bresking by [v> in
the present case is best gaugad by evaluating Py explicitly. Typical
numerical values, when }:N 1s fixed and Xy is varled, are given in
Tahle 7; #n this example, the number of particles in the system is
N, = 14 (# = 22). It hes the following notable fantures.

(1) The disrributlon has « single meximum and this ocours for the
component with particle number equal to the desired average Nov
The property ia, of course, highly desirable and is, in fact, a
general feature of the particle number distribution corresponding
to a BCS siate (HY 65).

wld o

i
!

i




(2) fThe distribution 1is approximately symmetric about this maximum;
this is a consequence of the large No limit {in which PN 1is given
by a Gausaian (8¢ 65)).

CAT o e——

tially

(3) The probabilities PN are in the d
superconducting phase and remain appregiable for components with
particle number N # N, even when Xy is very large. The changes in
PN with Xy (which are confined to the superconducting-to-deformed-

superconducting transition rvegiou), are cousistent with the beha-
viour of pf (ef. Fig. 7.1). (Likewlse, changes with Iy are re-
gtricted to the interval 0 € Iy s 2, 4f Xy 3 1) &

From Fig. 7.1, as yxy >, pf + 0 {(in effect) and so e~ + N /2. Sub- e
Py stituting into Eq. (7.1) one finds

o st {m] [1 i gc)m - w0/ [go}“lz

Table 7 shows that the bimomial distribution P; is a good approximation

to Py even when Yy % 2, Thus the dispersion seen fn Py for large xy is
typleal of any HFB description of an open-shell nucleus, which admits
peiring within a single valence shell.

It is not only in the realm of large X, that Py 1s of binomial charac-
L ter. The distribution P is also a good approximation to Py 1£ both xy ;
. and ZN are small (when p‘{‘ # 0 again - cf, the curve for which EN = 0.5 }
L in Fig. 7.1). In additfon, whem Iy 2 1 (x, small and fixed), tb f
Y distribution Py is satisfagtorily approximated by the binomdal distrib.- i

tion obtained by setting vi = v-1 = N /20.

A more suceinct, quartitative measure of the indefinite particie number
B of |v> is the varlance in the expectation value of N - i.e.

S

o @n* = <l - )2,

vhere <v{§|vs> = N, For the Agasai model this is given by

(an)2

0
12

oot
N
{

1
1= pr p'fﬂ
a)

TR
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which, in the limit of large yy, becomes
- ] ¥
&y @R)* (/a1 - ¥ /an™.
The dependence of pavticle number dispersion om N and N /@ is easily

seen in this resylt. For e 1 the di 4 is when the
valence shell is half-full (as in Table 7).

The effects of the signiffeant particle dispersion of |v> can be estab-
lished by comparing the predictions of HFR and PHFB. The perticle
number projection of |v>, which ylelds the N-particle states |N,N°>
(vhere N = <v[N|v>) and the caleulation of the expectation values of
quasi-spin operators in these states are discussed in Appendix 7. This
material will be used in subsequent considerations, However, it is
instructive to consider firpt an approximate but simple scheme relating
the results of HFE and PHFB calculations, which allows one to infer scme
of the gualitative consequences of restoring symmetry by projection
without actually performing the projection (Ni 64, Appendix B in MPR 65,
Go 79b). This scheme is particularly useful when the almost int:actable
angular momentum projection is desirable (Go 79b), but in what follows
4t will be specialised to the sase of particle number projection.

Suppose that A is an observable which does not change the particle
number and let

Ay = wvlalv , AQ) m o <N |aNLN >
(The PHFB expectation value of A s Apy = Ay(N).) Tre starting point
of the approximate scheme ds the velation

by T Ly AW (7.2)

whers P is given in Bq, (7.le¢). If N is treated as a continuous

N
variable, and the expansion of AP(N) about the point N = Na 1s inserted

into Eq. (7.2), then one finds
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924 8%

[ ERR N J
- P, PR a4 7.3)
BT bt Iy =, oo v,

which is an expansion of AH in ters of moments of PN about No' (Ob~
serve that since the expansion is about the point of N = N , the first
moment vanishes while, because PN is almost symmetric about this point,
other odd moments ave negligible.) To convert Eq., (7.3) into a relation
between APH and AH which can be used without explicit knowledge of
A (N), two sssumptions are made concerming the derivatives it conteins.
Firstly, it is assumed that

Aty a®™y

;m) (7.4a)

)]
W
Ja = Ny o |uw ¥,
which appears to be physically reasonable (Ni 64) and not grossly
uureliable numerically (MPR 65). The second assumption made is that,
although the numerical value of AH may be lucorrect, its derivatives
with respect to No are egsentially correct; wore preciszely, 1t is

asgumed that

{m) {m)

3 3VA
~—(m‘;“ = b (7.4b)
oy w . v,

1f the HFE approximation is at least qualitatively valid, this relation
should be satisfied. Thus, ome arrives at the Following approximate
relatlonship between Ay and Apyt

AN® + highev order term.. (7.5)

Apy ¥ Ay =k ‘:H

N

Given the somewhat drastic approximstions made, and the heuristic use to
which Eq. (7.5) will be put, the higher-oxder terms in Eq. (7.5) will be
ignored. In this regard, use of these higher-order terms and sugges-
tions that the rakte of convergence of this expansion bi studied (Go 79b)
seen somewhat misguided. (Such studies ave more appropriate to formally
consistent but far more complex Lreatments like the Kamlah expansion
(ka 68).)
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The advantage of Eq. (7.5) ldes in its simplicity, It makes very clear

that discrepancies between AH and APH oceur when the dependence of A, on

H
N, te non-lineer. This conclusion 1s perhaps better expressed the other
way round - i.e. if A depends linearly on N, there will be no signifi-

cant di 8, no matter what the fluctuation in particle number

1le. Observe algo that the sign of correction is determined not, as one
night naifvely have thought, by the first derivative of A, with respect
to No but by the second. These features van be interpreted as inevitae-
ble consequences of the linear particle number constraint employed in
HFB, which lends further substance to the validity of Eq. (7.5).

What do these considerarions imply for the HFB ground state energy
within the Agassi model? In the limit of large Xyt the dominant contri-
bution to the ground state emergy of the deformed-superconducting
solution (i late to an op hell confd ion of thc Agassi model
with ¥ particles) is, from Eq. (3.21),

Ea=l;ux kW 41 ey /) L (7.6)
- o %, * % Yo o' e

end so, becausa of the non-limear dependence of E® on N , projection
ought to yield a substantially different value when the number disper-
sion in |v> is not negligible (l.e. Ny # R). More iInterestingly,
Eqs. (7.5) and (7.6) imply that the projected energy will be higher than
the unprojected enexrgy (a“aa/wg < 0), and precisely this 1s seen when
the actual PHFE energy is compared with the HFB energy as in Fig. 7.2
(curves A& and B respectively),. (Noie that the gbsoluta magnitudes of
the ground state emergles are plotted in Fig. 7.2.) This finding is a%
odds with a commonly accepted bellef about projection which has arisen
(despite isolated counter-examples, e.g., Table 9 of (AB 71)) from
studles of the BCS treatment of pairing correlations within nuclei,
namely, thet the energies of projected states are lower than the ener-
gles of unprojected states. (This has often been cited as the reason
why PHFB must be an improvement over HFB (GK 80).) However, as
Eq. (7.5) mekes clear, this is true only of aystems with interactions
which imply that the binding energy per particle does not increase
monotonically with particle-number = e.g. systems with saturating

il
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interactions. The scarcity of nuclei for which the projected ground
state emergy has been found to be higher than the HFB ground state
energy is & fortuitous consequence of the fact that saturation is, in
principle, required of any realistic effective nuclear interaction and
is therefore a property of most interactions employed in applications
ineluding the pairing interaction. (As the monopole interaction is &
residual interaction acting only within the valence shell, its fallure

to possess any saturation propurties is not 2 serious drawback, In

BT SN

fact, the quadruple interaction of ths Pairing-plus-Quadrupole model

also does not possess saturation properties (BK 68).)

A related obsexrvation is that the HFB ground state energy can even be

lower than the exact ground state energy (cf. curves A and C of

Pig. {7.2)). The HFB ground state is determined by appealing to the
Rayleigh-Ritz variational principle, which usually yields an upper bound

to the lowest elgenvalue of am . The ction is

resolved by the realisation that the eigemvalue referred to is fixed by
a set of “boundary conditions", of which one is the particle number of
the system. In HFB, however, the trial statss have indefinite particle
number. Thus, the HFB ground state ansatz can take advantage of the
fact that an eigensnergy of a system with particle number N # N, may be
lower than the Lowest ¢igenenergy of the No—psrcicle system to predict a
spuriousiy low ground state energy. A pedestrian analysis using the

results of the PHFB calculation confirms this in the present example.
Plotted in Fig. 7.3 is the absolute magnitude of <N, JH|N,N >/¥
(N, = 14). (This choice of scaling permits the dependence of Ey =
<N,NB!HIN,N°> on N to be read off from Fig. 7.3.) It demomstrates that,

when ¥, s lerge,
)

L T T i
L s o

(k= 1,2). On the other hand, from Table 7, Py, o % Po _ 5
denotes the probebility of |v> containing N, particles). From

(vhere P
o

Eq. (7.2), this emsures that the HFB ground state energy is spuriously
low, (Closer inspection of Py in Table 7 shows that P, ., 1s actually ;
slightly greater than P _ ... It is tempting to interpret this as

evidence of how the H¥B solution capitalises on the lower energies found

1
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in systems of adjacent particle number. Howevar, the presence of the
same asymmetry in p; shows that its origin is not related to dynamics.)

It was demonstrated im Chapter S that the requirement of stability for a
mean-field to be appropriate is rellable. (This, in turm, supports the
use of the Rayleigh-Ritz principle in deviving HFB.) The findings of
this section are relevant to the selection between different stable
mean-fieids. Usually the stable mean-field which predicts the lowest
ground state energy is adopted. However, care has to be taken to ensure

that nome of these emetgies are lowered spuriously by symmetry-breaking,

T S T LA T

2 point which has been cverlooked in several realistic applications of
HFE (e.g. (658 70)). ({This possibility can be excluded by resorting the
PHFB.) In this section, it has been shown that this can happen when
particle number symmetry is brolen; it can also occur when translational

invariance is broken (MV 83). Fortunately for nuclesr physics applica—

tions, these comsiderations are unnecessary in the casc of particle
number symmetry-breaking when realistie interactions (which have reli- E

able saturation properties) are employed.

SECTION 7.2: HARTREE-FOCK SENIORITY APPROXIMATION (HFS)

Because in an open-shell system thera are several Slater determinants of

lowest energy, in order to construct a unique ground state wave function

within a numb ing app the use of just ome Slater |

determinant has to be relinquished (cf. the discussion following |
Eq. (3.19)) - i.e. ome cannot work within a mean-field approach.

Nevertheless, it is possible to retain several features of the approach

by employing the Hart k Sendority imation (GP 86).

As in HF, HFS assumes that the particles occupy (unknown) single—

particle states |k> which accommodate in an average way the long-range

corvelatio.: «tween the particles. Likewise, a natural generalisation

of the HF pizucription for the ground state of a closed-shell system is i
adopted: the HFS approximation to the ground state |s> is assumed to be
spanned by only the lowest energy Slater determinants formed with the [
single-particle states |k>. To accommodate the short-ramge correlations
between particles, |s> s taken to be that combination of these determi- ;
nants which has seniority zero (Section § of chapter 1 of (La 80)); this ”

partieular (fixed) combination also satisfies the requirement of being
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Fig. 7.2 Comparison of various approximations to the ground state energy.

(For conventence, the absolute modult tn units of § ¢ are

plotted). The various curves are: ' A, HFB; B, PHFB; C, exact;
D, HFS; E, exact energy of the lowest negative parity state.
(8, = 14, @ =22, 5y = 1,5).
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Fig. 7.3 The sbsolute magnitude of <¥, Mo|i|w, N2/H verwus N for
difforant valuon of Yyi N, = 14, 2= 22, £y = 1.5 (as in Fig.
7.2,
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(Big. 7.4 Comparison of various spproximations to the ground state
expactation velue of §_ (scaled by a factor of 4/N) when
Sy < 0.5, The significance of the different line types
is the same ss in Fig. 7.2. (¥ = 14, f = 22),
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Comparison of various approximations to the ground state
expectation value of MM_ (scaled by a factor of 2/N(R*l)). !
Other details are as in Fig. 7.4
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unique (Ke 61). The appropriate single-particle states |k> arve those
vhich minimise <s|H|s> (where H is the Hamiltonian of the system). For
& closed-shell system, HF and HFS are equivalent.

The unknown single-particle basis appropriate to the Agassi model must
have particle creation operators whose form is that of a:m in
Eq. (3.14), while s> 13 spanned by those Slater determimants containing
only particlas in the o = -1 level of this basis. Thus |s> is the
senlority zero otate

|ss = rll(s+)N/2 |-> 7.72)
where
5, =
and
]
T .
noeg ‘[N/z]

is the normalimation constant.
The operator 8 is a member of the S0(5) Lie algebra involving the
operators a:m, a, introduced in Appendix 3.2. The corrasponding
quasi~spin, $0,(5), has, of course, the same formal properties as the
80(5) group introduced in chanter 2 (soc(s)). In particular, it is
possible to intwoduce the formal analogue of the collective subspace
with basis Im’”a‘ From the explicit form of those states (Section 4 of
(He 65)) it can be inferred that

(7.7b)

les = |m=0,2=~2>
Vs

Observe that, 1f in Eq. (3.14) ©othen myzr, = lmz> and e
coineldes with the ground s+ Hemiltonian in Eq. (2.12) when
Vmgy w 0. This by itsels that Eq. (7.7a) is a reesoneble
ansafz for the ground state at . men V, g are small.

AR A
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The identification of |s> as a member of the basis for an irreducible
raprasentation of S0 (5) greatly facilitates the calculation of expecta-
tion values, Given a particular combination of the quagi-spin operators
in Eqs. (2,3) and (2.4}, the first step 18 to re-express them in terms
of the quagi-spin operators in Egs. (A3.6) and (AJ.7) (as in Eqs. (43.8)
and (A3.9)). The expectation value in |o> of & combination q of the
operators in Eqs. (A3.6) and (A3.7) can be evaluated by exploiting the
formal similarity of soa(s) and SOE(S). If Q 1s the operator obtained

by replacing n:m, 24 in q by ¢ » then, from Eq. (7.7b),

. g
om’ om
<slqls> = @ =0,z ~z|Q/un0, ww ez, (7.8)

and these last expectation valuss are easily inferred from Appendix 2.1
or Table 2.2. For example, 1f ¢ = §2, then Q = %, and <:|j;|s> = N/4
from Table 2.2.

The form of the Agasal Hamiltonian H in terms of the operators in
Eqs. (A3.6) and (A3.7) is given in Eq. (A3.10). Applying the prescrip-

tion in Eq. {7.8) to Eq. (43.10), one finds

<slife> = - gt{coso + %o sin?g + (6 + 1E
2 E

where X = (N -~ 1)¥/e. 'This has minima at:

(1) $=04f x <1 =~ « -yherical KF$ solution;
(2) ¢ #0, cogd = )./x‘J H W * )l -~ & deformed HFS solution.

The properties of the spherical and deformed HFS solutlons are essen-
tially the same as those of cha spherdcal and deformed HF solutions in
the N = 0 system respectively. also, like its BF counterpart, the HFS
spherical-to~deformed transition ig continuous. Observe that the HFS
transition occurs at ¥, = 1 independent of the value of g. (In this
respeat, HFS 1s again similar to HF.) This is not consistent wilth the
findings of chapter 5 which show that the location of the changes in the
exact solution associated with a phase transition do depend on the value
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of g. Except in the limit of small g ():N $ 1), the location of the HFS
transition is spurious.

A typical example of the HFH ground state energy 1s glven by curve D in
Fig. 7.2. (The spherical-to-deformea HFS transition occurs at
¥y % 1,06, and the 4 d HFB
transition at ¥y « 1.63.) Observe that the PBCS energy becomes exact as

Xy * 0, in agreement with the results of (KLM 61}. By contrast, the
spherical HF3 ground state energy is not s good approximation for this
value of Zy. Not only is it quantitatively inaccurate but it is also
qualitatively misleading in that it does not reflect the slight decrease
in the ground state energy with increasing Xy (xy small); even the
gymmetry-breaking BCS solution is superior to HFS in this regime. On
th other hand, the HFS approximation is much more accurate in the
deformed-superconducting region. (Despite this, HFS is only closer to
the exact energy than HFB for very large Xy which bears testimony to
the power of HFB.) Although the HFS energy is still not as accurste as
the PHFR energy, the rate of change of both these energles with Xy is
essentinlly the same. The property is particularly significant because
the rate of change of the HFB energy is different; it suggests that HFS
can indeed indicate what the effect of projection will be.

Representative comparisons of HFS ground state expsctation values not
appea ‘o directly in the Agassi Hamiltonian with the corresponding HFB
and » expectation values are given in TFigs. 7.4 and 7.5, (The
significance of this distinction has been discussed in section 5.1.) In
the spherical HFS phase, <s[‘b;_[s> w N alvays. Hence the results of
section 2,2.2 fndicate that, with the sxception of the regime of small
Bys Xy the spherfcal WPS solutits fe lnadequate. However, Fig. 7.4
provides further evidence that, 3 \he limit of lavge Xy (EN Fixed), HFS
can be & good approximation. In shiy Instance, 1t %s even marginally
better than PHFB. As in Fig. 7.:, the rate of change of the HFS and
PHFB expectation values with Xy - iha same. A remarkable feature of
Fig. 7.4, vhich doas nnt detraw: ivom the success of HFS, 1s that the
RFB and FHFB results coincide ‘arge Xyt This if congistent with
Eq. (7.5): the nom-linearity ia the dependamce of <v|N_|v> on ¥ in this
limit 1s very weak and so Eq. (7.3) implies that the PHFE and HFB
expectution values cannot be significantly different. By contrvast, the

snd
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expectation value of MM_ (cf. Pig. 7.5) demonstrates that HFS is not
always successful when xy is large (I, fiwsd). Although it predicts
orrectly that the on value in this regime is increased when

particle number projection 15 implemented, it grossly overestimates the
magnitude of this correction. In fact, while HFB is a reasonably good
approximation to <afz4+n_8o> in this regime, HFS Ls not. The spurious
location of the HFS phagse transition is also evident from Fig. 7.5.

The results in Figs. 7.2, 7.4 and 7.5 show that HFS can simulate the
behaviour of the PHFE ground state energy and PHFB expectation values of
one~body operators. This is all that can be reasonably expected to be
relisble when dealing with a meun-field-like approximation such as PHEB
anyway. Howevar, despite the fact that the HFS ground state ansatz has
seniority zero, HFS has essentfally the same domain of applicability as
a full HFB solution, being inadequate when a BCS solution is appropriate
=~ i.e. HFS can simulate PHFB, but not FBCS unless the pairing interac—
tion strength is small. The inability of HFS to cope with a pairing
interaction is already evident from the (in general) spurious location
of the WFS phase transition. This finding implies that the suggestion
implicit in (GP 86), namely that HPS can be employed to establish
whether the pairing properties of the phenomenologically successful
Skryme on (G8 81) are is incorrect. The 8-

tie of a pairing interaction which HFS zannot accommodate {s the (well-
known) associsted diffuseness of the Fermi surface. A suitable exten~
sion of the HFS ground state ansatz is suggested by the form of the
exact ground stata of the Agassi model in the limit when g + = (cf.
Eq. (2.18)), (Note that the PHFB ground state doeg in fact possess this
structure - of. Eq. (A7.3).)

In mitigation of its flaws, HFS has the advantage that it allows one to
perform a straightforvard “open-shell" RPA calculatfon (PW 70) of
excited states. In its formulation, open-shell RPA 13 ceiplately
analogous to quasi-particle RPA (QRPA), Since QRPA has been considered
in gome detail in the previous chapter, the discussion of open-shell RPA
can be confined to the following remarks.

The immediate obstacle to RPA caleulations in open-ghell nucled g the

disappearance of the distinction between particle-states and hole-
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states. This rules out the extengion of pp- and hh~RPA to such systems.
However it is possible to introduce a (limited) replacement of the ph-
(hi~) operators c;ch (c;cp) employed in ph-RPA, namely the pailrs c:cs,
cge, whose mcwbers have opposite (spatial) parity (RW 70); in the
generic case, these opposite parity pairs satisfy the requirement of
having non~zero unperturbed excitation energies ~ i.e. the unperturbed
energles of the single-particle states |a> and |B>, e,
the fnequalicy ey > eg (In analogy with the terminology of ph- RPA,
r::t:6 (\:;cm) is an opposlte-parity ph - (hp-) pair.) Open-shell RPA thus

catera only for negative (spatial) parity excitations of nuclei.

and o, satisfy

The range of application of open-shell RPA 1s further restricted to
open-shell systems for which a suitable "uncorrelated" approximation
|¢\_> to the ground state exists; a typical example of a suitable f%’ is
given in Tabla 1 of (RW 70). (A notable feature of this example ls that
there is configuration-mixing present in ]%n however it is uncor-
related in the sense that configurations conteining opposite-parity
hp-pairs are excluded,) The epproximation scheme ylelding ]¢0> must
alse supply a single-partiule basis from which tha opposite-parity pairs
can be constructed. One such approximation schieme is HFS.

Given all these ingredients, the derivation of the open-ghell RPA
equations proceads as for the GRPA equations. They therefore posseass
the same structure, which, in turn, means that the (non-spurious)
solutions of the open-shell RPA equations alse occur in pairs with
energies *E, and are subject to the same ovthonormality conditions,

Within the Agassi model, open-shell RPA cen describe excitations of
negative (LMG model) parity. The appropriate uncorrelated approximation
to the ground stata is given by ls> 4n Bq. (7.7). The results of
chapter 6 imply that, in an RPA deseription based ou a particle number-
couserving ground state, the sollective monopole excitation is created
by the "quasi-boson" oparator (cf. Eq, (6.17))

0

R

and

R




145

vhere j, are given in Eq. (A3.6) and x* - y® = 1. The coefficients x
and y, and the monopole excitation energy K eve found by solving the

Ylinearised”" equations of motion (or open-shell RPA equations)
- o R +
<s|{sq 0,00 [s> = B, <s](6q,, q}le>, €7.9)

where the variation in §Q, is with respect to x and y. (The expectarion

values in Eq. (7.9) are evaluated by employing Eq. (7.8).)

The behaviour for large x of the (positive) eigenvalue E_ which emerges
from this calculation, is depicted by curve A in Pig. 6.2. Its accuracy
is comparable to if not better than that of the corresponding QRPA
eigenvalue. In fact, it becomes significantly berter than the QRPA
eigenvalue as ¥ decreases. Since, in the general case, th: open—
shell RPA calculation is less tedious than the QRPA calculation, this is
2 considerable triumph. It also indicates that, although the HFB
description of ground state properties 1s in general superior to the HFS
description, becaus: of its symmetry-breaking character, HFB is noc
necessarily the best starting point for the description of excited

. states, this despite the fact that QRFA possesses the property of
restoring symmetry to the order of the approximation. Applications of
the symmetry-conserving analogues of TDA and RPA are still in their
infancy, but this example suggests that they should yleld significant

improvements over QRPA even in the reglon away from a transition point.

APPENDIX 7: WUMBER PROJECTION OF THE HFB GROUND STATE

A variety of sophisticated projection techniques have been developed
(4G 74, HI 79) in order to facilitate projected TDA calculations im a
BCS basis. However, in the present context, it is advantageous to
proceed in a pedestrian manner (following t.ie treatment in section 3 of
chapter 5 of (So 71)), because it permits one to use the 50(5) group
algebra to calculate expectation values.

The HFE ground state is, from Eq. (A3.1),

- +
v = "qi (1 + b 3->

>0

awd
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where

2 2
n = (“lu'l)nlz: vyt = 20»

As the operators b:m commute among themselves and (l::m)z = 0, it can be

more compactly written as

(A7.1)
with

+
A v g,k ovs, -
vy =1

Expanding the exponential in Eq. (A7.1), one finds that the Neparticle
component in |v> (N = 0, 2, ..., 260} is

o, = @hv/? |~>,
/D1

or, using the binomial theorem (£+ and sy commute),

N

/2
I

L . (NQZ} (pk)% 21; sE{:/z -k |->» w2

L
/Dt k
where py is defined in Eq. (7.la).

Equation (A7.2) can be rewritten in terms of the states |m,2>, which

form the basis of the analogue for soﬂ(s) of the collective subspace
(cf. the discussion immediately preceding Eq. (7.7b)). From (He 63),
. . Lo <5 (N/2) & N/2 -k
o= 02 =~z + 2k, = gy [ 6 ] B sy -

where n, is defined in Eq. (7.1b). Hence

wd
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N/2 %
W, = . z o (o pd Im= 0,z = ma v 2>, (47.3)
The norm of IN’V follows immediately - i.e.

N/2
<N]N>v - . i o nop = Py (ef. Eq. (7.1e)),

and so |v> can be decomposed in terms of normalised N-particle states

tn.ae> as

£
Jo> = § (P Ju,no>

-k
vhere |u,w°> = (R {N)v'

The PHFB ground state is |u°,uc>. To calculate expectation values of
quasi-spin operators in this state, one can exploit the fact that it can
be rewritten in terms of the states |m,z>s {ef. Eq. (A7.3)), and proceed
as described in section 7.2 in connection with the calculation .of

expectation values in |s>.

TABLE 7: Py (ef. Eq. (7.1)) when Iy = 1.5
°

¥ 8 10 12 14 16 18 20
Xy
LS 0.066  0.126  0.180  0.200 0.173  0.118  0.064
2.5 0.051  0.116  0.193  ©0.232  0.20f  0.122  0.050
3.5 0.048  0.114 0,194  0.239  0.208  0.124  0.049
4.5 0.047 0,113 0.195  0.241 0,210  0.124  0.045
2 0.045  0.111 0,195  0.244  0.213 0,124  0.044

W T ey e .,

Rl o
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CHAPTER ELGHT

CONCLUSIONW

The results presented in the preceding chapters represent a vindication
of the sometimes questioned relevance (Ma 75) in finite systems of the
notion of phase transitions and the asgoeciated occurrence of dynamical
symmetry-breaking. In this regard, there are two particularly important
(noval) results. Firstly, evidence has been found which suggests that
the phase tramsitions predicted by zero temperature HFB mimic the effect
of singularities {or exceptional points) in the dependence on inter-
action strengths of the exact solution. (4 more precise statement of
this conjecture is given at the ead of section 5.1.) Secondly, it has
been demoustrated that, despite the preseuce of thermal fluctuatioms,
the effects of phase transitions can be discerned in the exact solution

of a many-body problem at finite temperature (DM 86).

The gualitative relisbility of broken-symmetzy bases is seen im the
caleulations performed in chapters 6 and 7. The syumetry-breaking

accommodates the emergence of a ner .- ¢» 7 within the exact solution,
whose clearest manifestation is the -iwu. .o of specific degemeracies
within the exeitation spectrum (GH & imis insight fecilitates the

interpretation of the results of an RPA calculation in a broken-symmetry
basis; for exsmpls, the breaking of parity symmetry within the Agassi
model indicates the existence of parity doublets, and so the RPA modes
in the parity-mlxed bases represent excited parity doublets built on the
ground state parity doublet (a point which does not seem to have been
perceived in (Ag 68)). In chapter 6, it was concluded that RFA caleu-
lations are meaningful only in a stable basis and the pragmatic implica-

tions of this conclusion were discussed. This result may be reinter~

preted as follows: under certainr ci s RPA calculations will
fail unless performed in a basis with broken eymmetry. This 1s true
even when the symmetry broken has undesirable comsequences, such as a
spuriously low ground state energy. (The fact that performing RPA
within the HFS approximation yields better results (Section 7.2) does
not contradict this conclusion; HFS is not a mean-field approximation.
Moreover it also breaks the relevant symmetry - i.e. parity.) Further—

more the results im broken-symmetry bases cam be successfully employed

TOURERES




to pradict the qualitative
calculations (Section 7.1).

of changes & by projection

The nature and location of the phase trangitions discussed in this work
have been determined by the requirement that the appropriate golution
minimige the zero or finite temperature HFB variational functionals.
(When two ox more solutions are simultanecusly local minima and some of
them break gymmetries, care must be takem to ensurs that the lowest
minimum is not spuriously lower than the others (cf. section 7.1), but,
fortunately, this eventuality does not arise in the present work.} The

gross of the ing phase di are essentially

correct. However, the zhanges assoclated with a phase transition in a
finite system are spread out ovvy an interval of interaction strengths,
and this is pot reflected by rhe single critical interaction strength
yielded by HFB. In addition, while at zero temperature the critical
strengths do fall within these transitional regloms, at finite temper-

ature, this is not the case in gemeral.

The relisble location of the transitional region is important. The
results of the HFE and RPA caleulations considered in this work illus-
trate the well-known fact (BFS 69) that these approximations fail to ba
quantitatively accurate in precisely this region. (This is consistent
with the conjectured function of these transitions, namely to mimic the
effects of certain singularities) At finite temperature, one of the
distinctions between various phases is that the magnitude of thermal
fluctuations differs; in particular, the present study suggests that
they are in gemeral significant in "disordered" phases like the spher—
ical phase in the Agassi model, and sp the mean-field description is not
reliable in these regions. Compounding this problem is the fact that
the mean-field approximation Seems to grossly overestimate thelr extent.
At finite temperatuve, the extent of thermal fluctuations within the
disordered phoses must be evaluated (using, ssy, Landau theery (Go 84
and references therein)) to assess the validity of the predictions of
thermal BFE.

To what use can the ddentification of the vole played by aexceptional
points be put? Just as in this work these singularities are credited
for the qualitative reliability of "phase transitions" predicted in

4
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finite systeme by HFB, so they should alse lie st the root of any
success in the transitional region of more elaborate methods - for
example, the FHFB approximation and related technigues (SGF 84). Note
that this point of view differs from the standard rather vague inter-
pretation of the advantages of FHFB, namely that it accommodates "quan-~
tum fluctuations” (FR 85). Two (inter-related) challenges, which go
beyond the scope of this work, are raised by these speculations

(1) firstly, to derive an approximation scheme in which the role of
these singularities can be seen explicitly;

(2) secondly, to develop some reldsble method for locating these
singularities which does not, in effect, entail sclving the reiated
many-body problem exactly.

A promising point of departure may be the "uniform" approximstion scheme
(LS 77 and references therain), which exploits smalytic.structure within
the exact solution and is claimed to be valild in the transition region
(42 84).

il
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