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ABSTRACT 

 

Many environmental and engineering projects require prediction of the velocity of 

flow in river channels, in terms of those channel properties and flow characteristics 

which induce resisting forces or an energy loss to the flow. Relationships such as the 

Manning, Chézy and Darcy-Weisbach equations have been in use for a century or 

more. All of them account for resistance with a single coefficient of resistance, and 

the central problem is evaluation of this coefficient.  

 

Experimental results by different researchers have shown that Manning’s n varies 

strongly with the ratio of flow depth to roughness height. It is constant for values of 

this ratio above about 4, but increases significantly for lower values. This suggests 

that the equation is not suitable in its original form for the case of intermediate-scale 

roughness. The roughness is intermediate-scale if the relative submergence ratio of 

flow depth to roughness elements height lies between 1 and 4. The influence of the 

roughness elements on flow resistance in this regime is caused by a combination of 

both element drag and boundary shear, or friction. 

 

The results of an experimental study with hemispherical roughness elements are 

presented, showing how the roughness element size, spacing and pattern influence 

flow resistance. For the range of conditions tested, Manning’s n appears to depend on 

roughness element size, spacing and pattern.     
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CHAPTER 1: INTRODUCTION 

 

1. Introduction 

 

1.1. Background  

 

The management of rivers requires understanding of the processes and phenomena 

underlying their behaviour, including the relationship between discharge and 

characteristics of local hydraulics. 

 

The prediction of the velocity of flow in river channels is of concern to many 

environmental scientists and engineers. Local flow depths and velocities are 

determined by flow resistance, which is conventionally described by well-known 

equations, in terms of those channel properties and flow characteristics which induce 

resisting forces or an energy loss to the flow. However, these equations are not 

adequate for some conditions particularly intermediate-scale roughness (Jordanova et. 

al, 2004). 

 

An attempt has been made to characterize the scale of the flow resistance in terms of 

the relative submergence (ratio of flow depth to height of roughness elements),
sD
y  

( y  = mean flow depth, sD  = characteristic size of bed material). The relative 

submergence of a river is classified into small-scale, intermediate-scale and large-

scale depending on the bed material sizes and the flow condition (Bathurst, 1978; 

Thorne and Zevenbergen, 1985; French, 1985).  

 

The roughness is small-scale if the relative submergence ratio of flow depth to 

roughness elements height exceeds about 4 (Jordanova et. al, 2004). In flow 

resistance of small-scale roughness, the boundary resistance is the result of shear and 
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pressure forces acting on the grains comprising the boundary, and the applied force 

per unit plan area is balanced by resisting forces.  

The roughness is intermediate-scale if the relative submergence ratio of flow depth to 

roughness elements height, lies between 1 and about 4 (Jordanova et. al, 2004). This 

regime represents a state of flow in which the influence of the roughness elements on 

flow resistance is manifest as a combination of both element drag and boundary 

shear, or friction.  

 

The roughness is large-scale if the relative submergence ratio of flow depth to 

roughness elements height is less than 1 (Jordanova et. al, 2004). The height of large-

scale roughness elements is associated with very complex interaction between 

roughness element drag, wake vortices and local hydraulic jumps (Jordanova et. al., 

2004).   

 

Natural river beds are composed of roughness elements of different sizes, and bed 

roughness should be represented by a single characteristic size, such as 50D  or 84D . 

Three roughness scales based on relative submergence and bed material sizes are 

shown in Table 1.1 (Bathurst et al., 1982).   

 

Table 1.1: Three Roughness Scales 

Small-Scale Roughness Intermediate-Scale Roughness Large-Scale Roughness 

 

5.7
50

>
D
y  2< 5.7

50

<
D
y  2

50

<
D
y  

4
84

>
D
y  1.2<

84D
y <4 

84D
y <1.2 

 

where 50D  is the median particle size, and 84D is the 84-percentile size of the median 

axis length.  
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Bayazit (1976) found from laboratory experiments that once the relative submergence 

exceeds a value of 3.3 in terms of 84D , the resistance of the flow is higher than that 

predicted by the logarithmic resistance equation (2.6) for small-scale roughness. 

Therefore the resistance equations for small-scale roughness are not appropriate for 

intermediate-scale condition because the associated resistance processes are different 

from those for small-scale roughness. When the relative submergence lies between 1 

and 3.3, both drag and friction contribute significantly to flow resistance and the 

roughness is intermediate-scale. 

 

The theory developed by Bathurst (1982) suggests that the resistance coefficient 

should vary with relative roughness, roughness shape, size distribution and spacing as 

well as channel geometry (bends, irregularities, obstructions). The channel geometry 

is also related to internal distortion resistance (wave resistance) and spill resistance. 

Wave resistance depends on distortions of the free surface and the effect of the free 

surface on turbulence structure and affects the near surface profile (Bathurst, 1982).  

 

Channels with very tight inner bends exhibit an additional energy loss mechanism 

called spill resistance (Leopold et al., 1960). This results from sudden expansion of 

local supercritical flow induced by curvature of large-scale roughness elements, 

including the convex banks of sharp bends. Spill resistance is probably uncommon in 

natural and most designed bend geometries, but its effect is significant and should be 

taken cognizance of under low conditions in boulder bed rivers (James and Myers, 

2002).  

 

1.2. Aim and Objectives  

 

The major aim of this project is to improve the prediction of flow resistance in open 

channels under condition of intermediate-scale roughness.  
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1.3. Statement of the problem 

 

Relationships such as the Manning, Chézy and Darcy-Weisbach equations have been 

in use for a century or more.  All of them account for resistance process with a single 

coefficient of resistance and the central problem is evaluation of this coefficient. The 

few investigations of flow resistance in open channels that have been conducted 

indicate that the equations for small-scale roughness are not suitable for intermediate-

scale roughness, because the resistive processes are different in the two cases 

(Bathurst, 1978). 

 

1.4. Research Hypothesis 

 

It is hypothesized that the size, spacing and pattern of roughness elements influence 

flow resistance under intermediate roughness condition. 

 

1.5. Research Question 

 

The question that this project intended to answer is: How do the size, spacing and 

pattern of roughness elements influence flow resistance? This question has been 

answered by carrying out a laboratory flume study. 
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CHAPTER 2: LITERATURE REVIEW 

 

2. Literature Review 

               

2.1. Flow Resistance in Open Channels 

 

An open channel is a conduit in which water flows with a free surface. The 

classification of open channel flow is made according to the change in flow depth 

with respect to time and space (Chadwick and Morfett, 1993).  

 

The theoretical aspects of open channel flow resistance are documented in some 

publications such as Leopold et al (1960), Rouse (1965), Bathurst (1982) and Yen 

(2002). There are several components that contribute to flow resistance in an open 

channel, all of which contribute to the total flow resistance or roughness. 

 

The four contributing components of flow resistance are classified by Yen (2002) as 

follows: 

 

• Skin friction 

• Form resistance 

• Wave resistance 

• Flow unsteadiness 

 

Skin friction resistance depends on the roughness of the surface materials, and 

influences the near surface flow. Form resistance is caused by the separation of flow 

and secondary circulation. Both skin friction and form resistance combine to form 

boundary resistance. Boundary resistance depends on the bed material properties and 

influences the flow condition.  
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Wave resistance depends on distortions of the free surface instabilities such as roll 

waves that can affect the shape of the near surface velocity profile (Bathurst, 1982). 

The distortion of the free surface is also caused by large roughness elements and bed 

forms. Bathurst (1982) assumed that wind effects are negligible and found that the 

effect of large roughness elements and bed forms is insignificant in gravel-bed rivers 

under small-scale roughness condition. Flow unsteadiness is associated with 

longitudinal flow accelerations and decelerations.    

 

The flow resistance of a channel is also significantly increased by the presence of 

bends (bend resistance). The additional resistance is the result of the development of 

secondary circulation as flow progress through a bend. The bends result in increased 

internal distortion resistance and sometimes spill resistance. Spill resistance is 

probably uncommon in natural and most designed bend geometries, but its effect is 

significant and should also be taken cognizance of under low flow conditions in 

boulder bed rivers (James and Myers, 2002). 

 

2.2. Flow Resistance Equations 

 

Flow resistance is a term used to describe the net effect of forces driving and resisting 

the movement of water. Yen (2002) defines hydraulic resistance as “the force to 

overcome or the work required to be done to counter the action of the rigid, flexible, 

or moving boundary on the flow.”  

 

Flow resistance describes influences of friction on the flow due to channel 

characteristics which influence the ability of a channel to carry flow. Examples of 

such characteristics include: 

 

• Slope of the channel 

• Bed friction which can be caused by bed material (e.g. sand, gravel, rock etc), 

vegetation, debris etc. 
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• Bank friction which can also be caused by vegetation, debris etc. 

• Size and shape of the channel 

 

The problem of flow resistance concerns the prediction of the velocity of flow, in 

terms of those channel properties and flow characteristics which act as a resistance or 

an energy loss to the flow (Bathurst, 2002).  The three popular relationships linking 

velocity and flow resistance are the Chézy, Manning and Darcy-Weisbach formulae.   

 

The first significant attempt to obtain flow resistance relationship was made by Chézy 

in about 1768, who proposed equation (2.1). 

 

 

                           RSCV =         2.1 

 

where V = velocity of flow, C = Chézy resistance coefficient, R = hydraulic radius (= 

P
A  where A  is the cross-sectional area and  P  is the wetted perimeter), S  = slope. 

 

Over many years the application of the Chézy equation made it apparent that C was 

not constant, even for the same channel, but varied with flow condition (James and 

Myers, 2002). The problem was addressed by many researchers and C was eventually 

related to the shape and size of the channel by equation (2.2). 

 

                    
n
RC

6
1

=                                                                                             2.2 

 

in which n is purported to be characteristic of the surface roughness only. Substitution 

of equation (2.2) into equation (2.1) gives equation (2.3) which is known as the 

Manning flow resistance equation. 
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                    2
1

3
21 SR

n
V =                                                                                     2.3       

 

Equation (2.3) has been the most widely used resistance equation in practical river 

hydraulics. The Darcy-Weisbach equation (equation 2.4) is another widely used 

equation for pipes and channels. It was first proposed by Weisbach for pipes in 1845 

and for channels in 1850. 

 

                                 

         RS
f
gV 8

=                                                                                               2.4 

 

Equations (2.1), (2.3) and (2.4) are clearly similar in form and are interchangeable in 

practice, with obvious relationships betweenC , n  and f (James et al., 2001). By 

convention, different equations are used in different circumstances and appropriate 

coefficients estimated in different ways (James et al., 2001).  

 

These three flow resistance equations also assume steady uniform flow if S is taken 

as the bed slope, 0S . Steady uniform flow is a flow in open channel where the depth 

of flow does not change, or the flow can be assumed to be constant during the time 

interval under consideration (Chadwick and Morfett, 1993).   

 

The resistance coefficient or friction factor can be related to the size of roughness 

elements on the bed, usually represented by the Nikuradse roughness sk , and the 

Reynolds number (defined as v
RV4Re = ), in which v  is the kinematic viscosity 

(James et al., 2001). For laminar flow in pipes the friction factor depends on 

Reynolds number only, and not on the surface roughness (James et al., 

2001)(equation (2.5)). 
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Re
648

2 ==
C
gf                                                                                        2.5                                    

 

For turbulent flow the relationship between f , C , Re  and relative roughness is 

commonly expressed by equations (2.6), (2.7) and (2.8). The ASCE Task Force on 

Friction Factors in Open Channels (1963) reviewed the information available at the 

time and recommended using f  rather than n  because it correlates better with 

experimental data over a wide range of conditions. 

        

For hydraulically rough flow:                

                                            ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

sk
Rac

f
log1                                                      2.6 

       

For hydraulically smooth flow: 

                                          ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

b
f

c
f

Relog1                                                   2.7 

 

For transitional flow:           

                              ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

f
b

aR
k

c
f

s

Re
log1                                                 2.8 

 

The flow is hydraulically rough if the shear Reynolds number ⎟
⎠
⎞

⎜
⎝
⎛ =

v
ku s*

*Re , where 

*u  the shear velocity is, exceeds 70 ( 70Re* > ). When the Reynolds number lies 

between 5 and 70 ( 70Re5 * << ), the flow is transitional. The flow is hydraulically 

smooth if the shear Reynolds number is less than 5 ( 5Re* < ). 
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Equations (2.6), (2.7) and (2.8) are recommended for estimating f (ASCE Task 

Force on Friction Factors in Open Channels, 1963). The Task force presented values 

of the coefficients a, b and c derived from various data sets for rigid boundary 

channels. The representative values are: 

 

       12=a   

       51.2=b  

       2=c  

 

Values of sk  for concrete and masonry surfaces are tabulated in most open channel 

texts. These values range from 0.15 mm for very smooth concrete to 1.5 mm for 

gunite or shot concrete to greater than 5 mm for rubble masonry. 

 

Equations (2.6) to (2.8) can also be used for unlined alluvial channels where bed 

forms are not present and resistance to flow arises from surface friction (James et al, 

2001). It was also found that the appropriate value of sk  is determined by the grain 

size of the sediment, but as a range of sizes is usually present, specification of a 

representative value is not straightforward. Values recommended by various 

researchers in terms of grain size measures ( iD ) are listed in Table 2.1.  
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Table 2.1: Recommended sk  values 

 

Source 

 

            sk  

 

Ackers and White (1973) 

             

            1.25 35D  

 

Hey (1979) 

            

             3.5 84D  

 

Engelund and Hansen (1967) 

            

             2 65D  

 

Kamphuis (1974) 

            

             2.5 90D  

 

Mahmood (1971) 

             

            5.1 84D  

 

Van Rijn (1982) 

             

            3 90D  

  

 

Jordanova et al (2004) estimated the flow resistance of intermediate scale roughness 

by applying the following hypothesis: 

 

• If the relative submergence is equal or bigger than four, then friction 

resistance dominates, and velocity can be estimated as 

                                                                                         

                                                                  SR
n

V 3
21

=                                       2.9    
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• If the relative submergence is equal to or less than one, the drag effect of 

individual roughness elements on flow resistance will dominate and equation 

2.10 should be used 

 

                                                          S
F

V 1
=                                                  2.10     

 

where F is the resistance coefficient 

 

• As the relative submergence increases from one to four, the dominant 

resisting effect changes gradually from element drag to friction. The velocity 

can be estimated by 

 

                                          ( ) SR
n

aS
F
aV 3

2111
−+=                                   2.11 

 

where a is coefficient related to the relative submergence. When the relative 

submergence is equal to one, the roughness is large scale. In this case 1=a and 

equation (2.11) reduces to equation (2.10). When the relative submergence is four, 

the roughness is small scale, and a  becomes 0 to reduce equation (2.11) to equation 

(2.9). Application of the proposed equation (2.11) required specification of the 

coefficient  a  as a function of the relative submergence.  

 

 

A suitable relationship form was found to be the power function 

 

                                          
c

h
yba ⎟
⎠
⎞

⎜
⎝
⎛=                                                                  2.12 

            

 



 13 
  
 

2.3. Roughness Characteristics 

 

Characteristics of the roughness which most affect flow resistance are the   size and 

shape of the roughness elements, the roughness concentration and the spacing 

between elements (Roberson and Wight., 1973). They further mentioned that only the 

roughness size is used in a direct way when determining a resistance coefficient. It 

was also mentioned by Bathurst (1978) that for real flows, the resistance to flow 

should be related to the size, shape, spacing and size distribution of the roughness 

elements and to channel geometry.  

 

2.3.1. Roughness Size 

 

A measure of the size is necessary for defining the relative submergence. The use of 

the equivalent sand roughness height, sk to account for boundary resistance has been 

very useful for pipe flows (Vanoni and Brooks, 1957). They further stated that the 

concept is less useful for channels since sk is not a measure of the actual roughness 

height but of the effect on the flow of that roughness determined experimentally.  

 

2.3.2. Roughness Shape 

 

When the water depth is similar to the size of the bed material, individual roughness 

elements protrude through the water surface and the flow resistance is caused by the 

form drag of the roughness elements and free surface distortion. Therefore 

understanding of the influence of the drag force on overall flow resistance is required.  

Experimental studies on the drag of hemispheres were conducted at Utah State 

University (Tullis, 1966). The results of the studies were used to identify the 

variables affecting the drag on a hemisphere for various flow conditions. Bathurst 

(1978) found that the shape of roughness elements affects the drag coefficient. The 

drag coefficient for the object is determined under the assumptions that there is a 
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uniform field of approach velocity and that the object is very long in the flow 

direction normal to that in which the transverse flow is made (Jordanova et al., 2004).   

 

Furthermore it was found that in natural sediments, roughness shape is determined 

largely by the local geology, so in a region of given geology the effect of shape is 

likely to be constant (Bathurst, 2002). In 1982, Bathurst found from his experiments 

that the effect of roughness shape on the roughness parameter is limited. The 

relationship between roughness shape and resistance coefficient has not yet been 

delineated. 

 

2.3.3. Roughness Size Distribution 

 

The use of a single percentile of the size distribution requires that the ratio of that 

percentile to any other percentile should be constant from site to site (Bathurst, 1982). 

This condition can be tested using the standard deviation of the size distribution 

because natural sediments have size distributions which, while not exactly lognormal, 

are usually approximately to 0S  and the standard deviation depends on a ratio of 

percentiles. 

 

As has been mentioned, for sediment with non-uniform size distribution, the ratio of 

approach to mean flow velocity and the drag varies from boulder to boulder 

(Bathurst, 1978).  

 

2.3.4. Roughness Spacing 

 

The spacing of roughness elements can influence flow resistance in open channels. 

When the roughness elements arranged in staggered pattern, the spacing of roughness 

elements has more influence on flow resistance. This is because the flow of water 

does not pass freely through the roughness elements. When the roughness elements 

arranged in parallel pattern, the spacing of roughness elements does not create more 
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resistance. This is because the flow of water   moves freely through the roughness 

elements. The spacing of roughness elements that are close to each other creates more 

resistance than for those that are not close to each other.  
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CHAPTER 3: EXPERIMENTAL AND COMPUTATIONAL METHODS 

 

3. Laboratory Experiments 

 

Predicting the flow resistance of roughness elements is of great importance in 

hydraulics, because of their importance in practical application. Individual roughness 

elements within a natural channel vary in number, size, shape and distribution pattern. 

Thus a large number of variables affect resistance.  

 

A series of experiments have been carried out to investigate the influence of size, 

spacing and arrangement of roughness elements on flow resistance.  

 

3.1. Experimental Facilities 

 

The experiments were conducted in the hydraulics laboratory at the University of the 

Witwatersrand. A rectangular glass-walled flume, 10 m long and 0.38 m wide was 

used to model a river channel (Fig. 3.1). The slope of the flume was 0.0047. 

 

 

 

 
   
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Tilting glass-walled flume 
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Flow was released from an elevated constant head tank to the flume. A vertical weir 

at the downstream end of the flume was adjusted in each experiment to ensure 

uniform flow. A pointer gauge was used to measure the flow depth. Discharge was 

controlled by a valve in the pipe between the overhead supply tank and the flume.  

 

Discharge was measured by a v-notch weir installed in a sump at the downstream end 

of the flume and by an electronic flow meter in the supply pipe. For higher discharges 

(> 0.0243 m3/s), the v-notch could not be used as water exiting the flume produced 

turbulence in the storage bay, making reading of v-notch measurements difficult and 

then only the electronic flow meter was used. The v-notch and flow meter reading 

agreed well for the lower flows.    

                                         

3.2. Experimental Parameters 

 

Other variables were kept constant in laboratory experimentation to determine the 

effect of one variable. The roughness of the flume (bed roughness), the cross-

sectional shape, and the slope of the flume were kept constant for a specific set of 

experiments. The same shape of roughness elements (hemispherical) with different 

sizes was chosen to represent river rocks (Fig. 3.2). These hemispherical roughness 

elements were made of concrete with diameters of 112 mm, 72 mm and 46 mm. 

 

 

 

 

 

 

 

 

 

Figure 3.2: Hemispherical roughness elements 
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The experiments were carried out with two patterns (staggered and parallel) as shown 

in Figs. 3.3 and 3.4. These figures illustrate the two patterns of roughness elements 

being modelled with equal spacing from centre to centre (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

a 

a 

a 

a 

a 

Figure 3.3: Staggered pattern 

Figure 3.4: Parallel pattern 
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3.3. Experimental Procedure 

 

All experiments were carried out under uniform flow conditions. The two roughness 

patterns (staggered and parallel) were created within the tilting glass-walled flume 

using hemispheres with diameters of 112 mm, 72 mm and 46 mm (Figs. 3.3 and 3.4).  

A tailgate at the downstream end of the flume was used to control the flow depth in 

the channel to ensure uniform flow. The velocity of flow was calculated from the 

experimental data listed in Appendix A (Table A.1 – A.3). The following procedure 

was applied to establish uniform flow: 

 

• Water was released from an elevated constant head tank to the flume. 

• The position of the vertical weir was set at an arbitrary level and the water 

level allowed to reach equilibrium. 

• The discharge was varied by adjusting (opening/closing) the control valves 

and measured using V-notch, which is installed at the downstream end of the 

flume, and an electronic flow meter with sensors that are situated in the water 

pipe that discharges into the flume. 

• Once the uniform flow was reached, the bed level and water surface were 

measured in order to get the mean flow depth. 

 

3.4. Test Series Description 

 

The experimental study included four test series (Series A, B, C and D). The first set 

of experiments (Series A experiments) was conducted in an empty flume to establish 

its roughness. Series B, C and D experiments included particular roughness size and 

each including three to seven runs with different discharges and roughness densities 

(see Table 3.1).  

 

Series B and C experiments were conducted with hemispheres with diameters of 112 

mm and 72 mm respectively arranged in staggered and parallel patterns, to investigate 
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the effect of roughness element pattern and spacing on flow resistance. Further details 

of experimental conditions of experimental series A, B, C and D are described in the 

sub-sections 3.4.1, 3.4.2, 3.4.3 and 3.4.4 below.  

 

3.4.1. Series A Experiments 

 

This series comprised three experiments in the empty flume to establish the 

roughness of an empty flume (Test 1, Table 3.1).  

 

3.4.2. Series B Experiments 

 

Series B experiments were carried out using hemispheres with a diameter of 112 mm, 

to investigate the effect of roughness element pattern and density on flow resistance. 

The hemispheres were arranged in staggered (Tests 2 and 3, Table 3.1) and parallel 

(Test 4, Table 3.1) patterns. The experiments were preformed for three densities, and 

centre to centre spacing for each test is given in Table 3.1.  

 

3.4.3. Series C Experiments 

 

Series C experiments were carried out using hemispheres with a diameter of 72 mm, 

to investigate the effect of roughness element spacing and density on flow resistance. 

The hemispheres were arranged in parallel (Tests 5 and 8, Table 3.1) and staggered 

(Tests 6 and 7, Table 3.1) patterns. The experiments were performed for four 

densities, and centre to centre spacing for each test is given in Table 3.1.  

 

3.4.4. Series D Experiments 

 

This series was carried out using hemispheres with diameter of 46 mm, to establish 

the flow resistance of the bed for roughness elements with diameter of 46 mm. The 
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hemispheres were arranged in staggered pattern (Test 9, Table 3.1). Only one pattern 

and one density were investigated. 
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3.5. Side -Wall Correction Procedure  

 

The flume is narrow relative to the flow depth and the bed of the flume is rougher 

than the side walls. Therefore the side wall correction procedure of the Vanoni and 

Brooks (1957) was applied to determine the friction of the bed ( )bf . The method 

depends on the following relationships: 

 

                
b

b

w

w

fff
ReReRe

==                    3.1                                          

and 

                  
b

b

w

w

f
R

f
R

f
R

==                3.2 

                                                                                   

where Re the Reynolds number of the channel is, f is the friction factor of the 

channel and the subscripts w  and b refer to the wall and bed respectively. The 

Reynolds number of the wall ( )wRe  may be rearranged as follows:  

 

           
f

w
f

f

wfwww
w R

R
R
RRURU

Re
4

,
4

Re ==
νν

           3.3 

                                                      

where U is the depth average velocity and fRe  is the Reynold number of the friction.  

 

The procedure used for estimating bed characteristics is as follows: 

 

1. Calculate Re  and f for the whole cross-section (from experimental data) and 

compute
w

w
f

Re , which is equal to f
Re  according to equation 4.1. 
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2. Plot 
w

w
f

Re = f
Re  = constant on the friction factor diagram (Brownlie, 

1981) as a straight line with a slope of 1 in log units, and with the intercept at 

f  = 0.01 at 0.01 f
Re .  

3. Select a trial value of wR , compute 
sw

w
k

R4 (where swk  is the effective 

roughness of the wall), and determine wf  from friction factor diagram 

(Brownlie, 1981). 

4. Compute ww f
f
RR ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  and compare with the selected value. Iterate to 

convergence. 

5. Calculate bf  and bR  from equations 4.2 and  

                 

                 wwbbf fpfpp +=               3.4 

                                                                           

In this application swk  is not known and the procedure was carried out the other way 

round, using a trial value of bR  and following the procedure from step 3 to produce 

values for wf  and wR .  

 

The corresponding values of Manning’s n for the wall and bed were calculated by 

equating the Manning’s n and Darcy-Weisbach formula to give: 
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The subscripts w  in equation (3.2) and b in equation (3.3) refer to the wall and bed of 

the channel respectively.    

The use of Manning’s n helps to interpret the influence of roughness elements size, 

shape and arrangement on flow resistance. The effective roughness of the bed ( sk ) 

has also been calculated from Colebrook-White transition equation (3.8). 

 

 3.6. The Effective Roughness of the bed  

 

The effective roughness of the bed ( )sk  was calculated by rearranging the Colebrook-

White transition formula, i.e. 
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to give 
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The effective roughness of the bed ( )sk  is very important in determining the friction 

factor of a bed in open channel. Additionally, assessment of the effect of roughness 

elements on flow resistance requires knowledge of the resistance characteristics of the 

bed, so that the effects can be separated and that the bed can be represented correctly 

(James et al, 2001). The results of the analysis are presented in Tables 4.1 – 4.9. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1. Experimental Results 

 

The flow resistance was expressed and presented in terms of Manning’s n, because it 

is the most common and widely used formula for open channel flow. The values for 

Manning’s n and velocity were calculated from the experimental data listed in 

Appendix A (Tables A.1 – A.3). The calculated and predicted velocities were also 

computed from the experimental data given in Appendix B (Table B.1). 

 

4.1.1. Series A Experimental Results 

 

The analysis of the results for friction factors of the bed are shown in Table 4.1.  

 

Table 4.1: Hydraulic Parameters and Friction Factors of the Bed for Series A      

 

Q  (m3/s) 

 

0.02454 

 

0.0376 

 

0.0461 

y  (m) 0.0715 0.0907 0.1135 

S 0.0047 0.0047 0.0047 

fR  (m) 0.0520 0.0614 0.0711 

bR  (m) 0.0522 0.0679 0.0846 

bf    0.0220 0.0210 0.0273 

bRe  48838 74079 90464 

bn  0.0126 0.0133 0.0116 

 

where: fR  = hydraulic radius (flume), 

            bR  = hydraulic radius (bed), 

            bf  = friction factor (bed), 
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           bRe  = Reynolds number (bed),  

           bn = Manning’s (bed), and 

         y    = Flow depth. 

          

4.1.2. Series B Experimental Results 

 

Series B experiments comprised three tests (Tests 2, 3 and 4) with the same size of 

roughness elements (112 mm), each with different densities and center to center 

spacing. Tests 2 and 3 were arranged in the same pattern (staggered), but with 

different area coverage and spacing (Table 3.1). Tests 3 and 4 were arranged in 

different patterns (staggered for Test 3 and parallel for Test 4) and spacing, but with 

almost the same spacing and area coverage (Table 3.1). Test 2 and 4 were arranged in 

different patterns (staggered for Test 2), spacing and area coverage.  

  

Table 4.2: Hydraulic Parameters and Friction Factors of the Bed for Test 2  

 

Q  

(m3/s) 

 

0.0047 

 

0.0056 

 

0.0134 

 

0.0197 

 

0.0376 

 

0.0479 

 

0.0546 

y  (m) 0.0865 0.0905 0.1330 0.1520 0.2095 0.2455 0.2585 

S 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 

fR  (m) 0.0594 0.0613 0.0782 0.0844 0.0996 0.1071 0.1095 

bR  (m) 0.0852 0.0889 0.1284 0.1446 0.1936 0.2244 0.2339 

bf    1.5377 1.2369 0.6736 0.4585 0.3202 0.3140 0.2792 

bRe  12188 14479 34039 49312 91452 115241 130002 

bn  0.0930 0.0840 0.0659 0.0554 0.0486 0.0494 0.0469 
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Table 4.3: Hydraulic parameter values and friction factor of the bed for Test 3 

 

Q  (m3/s) 

 

0.0011 

 

0.0065 

 

0.0229 

 

0.0413 

 

0.0489 

 

0.0552 

y  (m) 0.0540 0.1025 0.1520 0.2155 0.2340 0.2555 

S 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 

fR  (m) 0.0420 0.0666 0.0844 0.1010 0.1049 0.1090 

bR  (m) 0.0538 0.1007 0.1430 0.1995 0.2170 0.2362 

bf    6.9057 1.3332 0.3356 0.2894 0.2647 0.2695 

bRe  2884 16797 56695 100637 119355 134275 

bn  0.1826 0.0890 0.0473 0.0465 0.0451 0.0461 

sk  0.4164 0.4455 0.2350 0.2816 0.2778 0.3084 

 
 

 

 

Table 4.4: Hydraulic Parameter Values and Friction Factor of the Bed for Test 4  

 

Q  (m3/s) 

 

0.0030 

 

0.0076 

 

0.0195 

 

0.0315 

 

0.04334 

y  (m) 0.0575 0.0765 0.1150 0.1640 0.2005 

S 0.0047 0.0047 0.0047 0.0047 0.0047 

fR  (m) 0.0441 0.0545 0.0716 0.0880 0.0976 

bR  (m) 0.0342 0.0617 0.0807 0.1133 0.1429 

bf    1.1092 0.4027 0.1980 0.2205 0.2013 

bRe  7783 19508 47700 77214 100885 

bn  0.0738 0.0466 0.0347 0.0388 0.0380           

sk  0.2278 0.1457 0.0964 0.1578 0.1632 
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4.1.3. Series C Experimental Results 

 

Series C experiments comprised four tests (Tests 5, 6, 7 and 8) with the same size of 

roughness elements (72 mm), but with different spacing. Tests 5, 6 and 7 have the 

different densities to that of  Test 8. Tests 5 and 8 were arranged in the same pattern 

(parallel), but with different area coverage (Table 3.1). Tests 6 and 7 were arranged in 

the same pattern (staggered), but with different area coverage (Table 3.1). 

 

The results for Test 5 were compared to Test 8 to investigate the influence of 

roughness element spacing on flow resistance (Fig 4.4). 

 

The results of the analysis of the friction factor of the bed are shown in Tables (4.5 to 

4.8).  

 

Table 4.5: Hydraulic Parameter values and Friction Factor of the Bed for Test 5  

 

Q  (m3/s) 

 

0.0027 

 

0.0083 

 

0.0197 

 

0.0304 

 

0.0430 

y  (m) 0.0350 0.0650 0.0910 0.1255 0.1635 

S 0.0047 0.0047 0.0047 0.0047 0.0047 

fR  (m) 0.0296 0.0484 0.0615 0.0756 0.0879 

bR  (m) 0.0342 0.0617 0.0807 0.1133 0.1429 

bf    0.3058 0.2017 0.0917 0.1028 0.1101 

bRe  6936 20744 45984 72207 98927 

bn  0.0356 0.0319 0.0225 0.0252 0.0271 

sk  0.0508 0.0569 0.0215 0.0374 0.0532 
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Table 4.6: Hydraulic Parameter values and Friction Factor of the Bed for Test 6  

 

Q  (m3/s) 

 

0.0027 

 

0.0075 

 

0.0181 

 

0.0283 

 

0.0430 

y  (m) 0.0360 0.0665 0.1015 0.1360 0.1630 

S 0.0047 0.0047 0.0047 0.0047 0.0047 

fR  (m) 0.0303 0.0493 0.0662 0.0793 0.0877 

bR  (m) 0.0352 0.0644 0.0937 0.1260 0.1433 

bf    0.0.3331 0.2695 0.1570 0.1550 0.1097 

bRe  6942 19102 43980 68993 99462 

bn  0.0374 0.0372 0.0302 0.0315 0.0271 

sk  0.0571 0.0839 0.0614 0.0810 0.0530 

 

 

 

 

Table 4.7: Hydraulic Parameters and Friction Factors of the Bed for Test 7  

 

Q  (m3/s) 

 

0.0060 

 

0.0147 

 

0.0238 

 

0.0322 

 

0.0421 

y  (m) 0.0745 0.1160 0.1475 0.1740 0.2030 

S 0.0047 0.0047 0.0047 0.0047 0.0047 

fR  (m) 0.0535 0.0720 0.0830 0.0908 0.0981 

bR  (m) 0.0730 0.1101 0.1378 0.1615 0.1882 

bf    0.5994 0.3652 0.2819 0.2512 0.2330 

bRe  15470 36720 58507 78658 102691 

bn  0.0566 0.0473 0.0431 0.0418 0.0413 
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Table 4.8: Hydraulic Parameters and Friction factors of the Bed for Test 8 

 

Q  (m3/s) 

 

0.0026 

 

0.0064 

 

0.0138 

 

0.0280 

 

0.0448 

 

0.0498 

y  (m) 0.0515 0.0758 0.1140 0.1655 0.2155 0.2320 

S 0.0047 0.0047 0.0047 0.0047 0.0047 0.0047 

fR  (m) 0.0405 0.0542 0.0713 0.0885 0.1010 0.1045 

bR  (m) 0.0189 0.0275 0.0386 0.0497 0.0661 0.0708 

bf    1.0620 0.5498 0.3973 0.2834 0.2461 0.2482 

bRe  6752 16350 34822 67807 109235 121267 

bn  0.0709 0.0543 0.0493 0.0440 0.0429 0.0436 

sk  0.1993 0.1867 0.2110 0.2101 0.2352 0.2553 

 

 

4.1.4. Series D Experimental Results 

 

As mentioned in section 3.4.4, series D experiments were carried out with one 

roughness elements size (46 mm) and  one density, to establish its flow resistance. 

These experiments were arranged only in staggered pattern (Test 9, Table 3.1). The 

results of the analysis of the friction factor of the bed are shown in Table 4.9. 
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Table 4.9: Hydraulic Parameters and Friction Factors of the Bed for Test 9 

 

Q  (m3/s) 

 

0.0026 

 

0.0115 

 

0.0154 

 

0.0260 

y  (m) 0.0310 0.0755 0.0790 0.1030 

S 0.0047      0.0047  0.0047  0.0047  

fR  (m) 0.0267 0.0540 0.0558 0.0668 

bR  (m) 0.0304 0.0712 0.0734 0.0880 

bf    0.2298 0.1635 0.1029 0.0735 

bRe  6699   28543 37665 58426 

bn  0.0303 0.0294 0.0235 0.0204 

sk  0.0327 0.0494 0.0149 0.0242 

 

 

4.2. Influence of Roughness Element Size on Flow Resistance 

 

The roughness elements with different sizes were conducted with the same area 

coverage and pattern to investigate the size effect on flow resistance.  

 

The results for Test 3 (112 mm) were compared with Test 7 (72 mm) to investigate 

the effect of roughness element size on flow resistance (Fig. 4.1). The results of Test 

3 were also compared with Test 4 to investigate the effect of roughness element 

pattern on flow resistance (Fig. 4.5). 

 

The analysis of the results for friction factor of the bed for Tests 3 and 7 is given in 

Tables 4.3 and 4.7 respectively. The analysis of the results for friction factor of the 

bed for Tests 2 and 4 is given in Tables 4.2 and 4.4 respectively. 
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The effect of roughness element size on flow resistance in terms of Manning’s n with 

the relative submergence is presented in Fig. 4.1. Results suggest that resistance is 

influenced by the size of roughness element. It can be noted from Fig. 4.1 that 

Manning’s n for Test 7 is higher than that of Test 3. This means that Manning’s n 

varies with relative submergence much more for small size of roughness elements 

than for large size of roughness elements.   

 

The upper transitional limit for Test 3 occurs at a relative submergence of about 3 

below which the values of Manning’s n increase with decreasing relative 

submergence. At a relative submergence of about 4, Test 3 shows that above this 

level the size of roughness element has no significant effect on flow resistance (Fig. 

4.1). 
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Figure 4.1: Effect of roughness element size on flow resistance 

 
 
The hydraulic parameters and bed friction factor for Tests 3 and 7 are shown in 

Tables 4.3 and 4.7 respectively. The friction factor of the bed, bf  was plotted against 

flow depth in Fig 4.2. 
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Figure 4.2: Friction factor of the bed vs. Flow depth 

 

It can be noted from Fig. 4.2 that the friction factor of the bed for Test 7 was higher 

than that of Test 3. This means that the friction factor of the bed varies with relative 

submergence much more for small size of roughness elements than for large size of 

roughness elements. 

 

4.3. Influence of Roughness Element Spacing on Flow Resistance 

 

The spacing of roughness elements in flow resistance is important since it has 

resulted into good correlation (correlation 4, equations 5.9 and 5.10) that has 

contributed to the proposed equation (5.13). This equation (5.13) worked well when 

tested to the experimental data performed by Jordanova (in preparation, Table 5.5).  

 

It was found from the experimental data listed in Appendix A (Table A.1 – A.3) that 

the spacing of roughness elements arranged in parallel pattern with bigger area 

coverage (Test 8, Table 3.1) has more influence than that with smaller coverage area 

(Test 5, Table 3.1).  

 

A comparison between Tests 5 and 8 showed that the roughness elements with 

smaller spacing has more effect on flow resistance that those with bigger spacing 
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(Fig. 4.3). It was also observed from the experimental study that the spacing of 

roughness elements arranged in staggered pattern (Fig. 3.3) has more influence on 

flow resistance than those arranged in parallel pattern (Fig. 3.4). 

 

Tests 5 (hemispheres with 72 mm diameter) and 8 (hemispheres with 72 mm 

diameter) were carried out with the same bed slope and pattern, but with different 

spacing to investigate the spacing effect on flow resistance. The effect of roughness 

element spacing on flow resistance is shown in Fig. 4.3. 

 

It can be noted from Fig. 4.3 that Manning’s n varies with relative submergence for 

both Tests 5 and 8. The upper limit of transition zone is at relative submergence of 

about 3 for Test 5 and about 5 for Test 8. It can also be noted from Fig. 4.3 that the 

spacing for Test 8 is bigger than that of Test 5. This means that the flow resistance of 

the bed varies with flow depth much more for roughness elements with smaller 

spacing than those with larger spacing.   
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Figure 4.3: Effect of roughness element spacing on flow resistance 

 
 
The hydraulic parameters and friction factors of the bed for Tests 5 and 8 are given in 

Tables 4.5 and 4.8 respectively. These tables also indicate the calculated effective 
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roughness of the bed ( )sk . The friction factor of the bed has been plotted against flow 

depth in Fig. 4.4. 

 

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.00 0.05 0.10 0.15 0.20 0.25

Flow depth (m)

Fr
ic

tio
n 

fa
ct

or
 o

f t
he

 b
ed

,
fb

 Test_5
Test_8

 
Figure 4.4: Friction factor of the bed vs. Flow depth 

 

The friction factors of the bed for Test 8 was higher than that of Test 5. This suggests 

that the spacing of roughness elements has an effect on flow resistance, when the 

same size of roughness elements are arranged in the same pattern, but with different 

spacing (Fig. 4.4). This confirms that the roughness elements with smaller spacing 

has more effect on flow resistance that those with larger spacing. 

 

 4.4. Influence of Roughness Element Pattern on Flow Resistance 
 

Tests 3 (hemispheres with 112 mm diameter) and 4 (hemispheres with 112 mm 

diameter) were conducted with the same size and almost the same area coverage, but 

with different pattern to investigate the effect of pattern on flow resistance. The 

pattern effect was investigated by plotting a graph of Manning’s n with a relative 

submergence (Fig. 4.5).  

 

It is clear from Fig. 4.5 that Manning’s n for Tests 3 and 4 varies with relative 

submergence at in low flow condition. The Manning’s n becomes constant at a 
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relative submergence value of about 3. This suggests that Manning’s n depends on 

the pattern of roughness elements.   
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Figure 4.5: Effect of roughness element pattern on flow resistance 

 
 
 
The hydraulic parameters and friction factors of the bed for Tests 3 and 4 are given in 

Tables 4.3 and 4.4 respectively.  The friction factor of the bed has been plotted 

against flow depth in Fig. 4.6. 

 

Figure 4.6 clearly indicates that the friction factor of the bed for Test 3 was higher 

than that for Test 4. But Tests 3 and 4 becomes constant at flow depth value of about 

0.15. This means that staggered pattern affects flow resistance much more than 

parallel pattern.  

 

This also suggests that the roughness element arranged in different pattern, but with 

almost the same area coverage have effect on flow resistance.  

 

 

 



 38 
  
 

0.0

2.0

4.0

6.0

8.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Flow depth (m)

Fr
ic

tio
n 

fa
ct

or
 o

f t
he

 b
ed

,
fb

 Test_3
Test_4

 
Figure 4.6: Friction factor of the bed vs. Flow depth 

 
 
4.5. Conclusion 
 
The laboratory experiments of flow resistance in open channels with intermediate 

roughness elements were carried out to investigate the influence of roughness element 

size, roughness element spacing and roughness element pattern. The results of the 

experiments showed that flow resistance expressed by Manning’s n varies with flow 

condition. It was also found that resistance depends on roughness element size, 

roughness element spacing and roughness element pattern.  

 

The values of friction factors of the bed was calculated using the side-wall correction 

procedure of Vanoni and Brooks (1957). These values showed that the roughness 

element size, roughness element spacing and roughness element pattern have 

significant influence on flow resistance.   
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CHAPTER 5: ANALYSIS AND PREDICTIVE RESULTS 

 

5. Analysis and Predictive Results 

 

This chapter presents the development of an equation for predicting Manning’s n 

under intermediate scale roughness conditions. This was done by describing the 

variation of n with relative submergence by a power function and then correlating the 

parameters in this function with the different roughness characteristics. The proposed 

equation was verified by applied to a data set obtained from another study. 

 

5.1.  Flow Resistance Prediction 

 

5.1.1. Flow Resistance of Small-Scale Roughness 

 

When comparing the relative roughness to a Strickler function, it was found that over 

a wide range of relative roughness, the variation of the Strickler function is small 

(Chow, 1959). Because of this relationship, a constant value for the Strickler function 

can be used to calculate an n value. 

 

The results for small-scale roughness conditions were compared to Strickler’s 

equation (5.1) for n in terms of  sk  to investigate the effect of size, pattern and 

spacing on this prediction. This equation was taken from the Water Research 

Commission Report No. 856/1/01 (James et al, 2001). A comparison with this 

experimental data included all the values of Manning’s n for each element size. The 

values of Manning’s n are different because the experimental study included four test 

series, each for a particular roughness size and each included three to seven runs with 

different discharges and roughness densities (Table 3.1). 
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The Manning’s n values were plotted against the effective surface roughness height in 

Fig. 5.1. The effective surface roughness height in Fig. 5.1 is the height of the used 

hemispherical roughness elements with diameters of 46 mm, 72 mm and 112 mm. 
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Figure 5.1: Manning’s n vs. Effective surface roughness height 

                   

The n values predicted with the Strickler’s equation are slightly lower than 

experimental values of the Manning’s except for Tests 5, 6 and 9 (Table 5.1). Table 

5.1 shows n values calculated by the Manning’s and Strickler’s equations. The values 

of Manning’s n are also given in Appendix A (Tables A.1 to A.3).  
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Table 5.1: Manning’s and Strickler’s n values 

 

Test 

 

sk (m) 

 

n  

 

sn  

2 0.056 0.0379 0.0256 

3 0.056 0.0226 0.0256 

4 0.056 0.0129 0.0256 

5 0.056 0.0180 0.0256 

6 0.036 0.0295 0.0238 

7 0.036 0.0397 0.0238 

8 0.036 0.0418 0.0238 

9 0.023 0.0202 0.0221 

 

where sn  is the Strickler’s n value 

 

The Manning’s n for roughness elements with diameter of 46 mm (Test 9) is close to 

Strickler’s equation (Table 5.1). Some Manning’s n values for roughness elements 

with diameters of 72 mm (Test 8) and 112 mm (Tests 2 and 3) are close to each other 

and close to the Strickler’s equation (5.1), whereas others are not close to each other 

(Tests 7 and 8, Tests 2 and 3) but close to Strickler’s equation (5.1).  

 

This shows that the Strickler’s equation can be used to predict the n values for 

roughness elements with diameters of 46 mm, 72 mm and 112 mm (Table 5.1) as 

well as for the experiments conducted in an empty flume. The Manning’s n values 

that are not close to each other indicate that the density of roughness element has a 

significant influence on flow resistance.  
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5.1.2. Flow Resistance of Intermediate-Scale Roughness 

 

Flow resistance of intermediate-scale roughness was investigated to come up with an 

equation to be used under such condition. The resistance coefficient n was plotted 

against the relative submergence from the laboratory results. 

A suitable form of the relationship was found to be the power function (equation 5.2; 

Figs 5.2 – 5.9).  

 

                                       
b
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⎛=                                                                       5.2 

 

The plotted data was fitted with curves in Figs. 5.2 to 5.9 for the different 

experimental conditions. Only the intermediate-scale condition data were used to fit 

the curves shown in Figures 5.2 to 5.9.  
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Figure 5.2: Manning’s n vs. Relative submergence 
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Figure 5.3: Manning’s n vs. Relative submergence 
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Figure 5.4: Manning’s n vs. Relative submergence 
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Figure 5.5: Manning’s n vs. Relative submergence 
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Figure 5.6: Manning’s n vs. Relative submergence 
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Figure 5.7: Manning’s n vs. Relative submergence 
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Figure 5.8: Manning’s n vs. Relative submergence 
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Figure 5.9: Manning’s n vs. Relative submergence 

 

 
5.2. Verification of Proposed Equation 
 

The values of coefficient a and b were determined from Figs 5.2 to 5.9 and are given 

in Table 5.2. It can be seen from Table 5.2 that values for these coefficients are 

different for the fitted plotted curves.  Therefore all the values for coefficients a and b 

were grouped together and plotted against different variables to come up with the best 

correlation.  
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Table 5.2: Values of Coefficients a and b for the different condition 

 

Test 

 

D (mm) 

 

 

Sp (mm) 

 

 

D/Sp 

 

a 

 

b 

 

R2- value 

2 112 134 0.8358 0.1223 -0.7276 0.9722 

3 112 177 0.6328 0.1798 -1.2875 0.9901 

4 112 190 0.5895 0.0716 -1.0637 0.9494 

5 72 190 0.3789 0.0367 -0.4426 0.8016 

6 72 177 0.4068 0.0383 -0.1622 0.7096 

7 72 123 0.5854 0.0756 -0.3997 0.9999 

8 72 77 0.9351 0.0817 -0.4163 0.9923 

9 46 177 0.2599 0.0335 -0.3143 0.9780 

 

 

The following correlations (5.3 to 5.10) were done and compared to each other to 

come up with the best correlation. These correlations were based on the area coverage 

(AC), diameter (D) and ratio of diameter to spacing ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Sp
D of roughness elements.  

 

       1.  a   = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Sp
Df                                                                                               5.3 

                

           b  = ( )ACf                                                                                                5.4 

 
 

  2. a = f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Sp
D                                                                                                     5.5 

 

      b = f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Sp
D                                                                                                      5.6 
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3. a = ( )ACf                                                                                                          5.7                                   

 

   b = ( )ACf                                                                                                           5.8 

 

4. a = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Sp
Df                                                                                                         5.9                                   

 

  b = ( )Df                                                                                                             5.10             

                                             

Correlation 4 (i.e. equations 5.9 and 5.10) worked well because the r2 values for this 

correlation is higher than those for correlations 1, 2, and 3 (see Figs. 5.10 and 5.14). 

A suitable form of relationship for coefficient a was therefore found to be the power 

function (Fig. 5.10). 

 
             

                             
999.0

113.0 ⎟⎟
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⎞
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⎛
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Da                                                                 5.11 

 
 
The suitable relationship for coefficient b was found to be a linear function (Fig. 

5.14). 

 

                     ( ) 376.0012.0 +−= Db                                                                5.12 

 

 

Equations (5.11) and (5.12) were substituted into equation (5.2) to yield equation 

5.13. 

                      
( ) 376.0012.0999.0

113.0
+−

⎟
⎠
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⎜
⎝
⎛

⎟⎟
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⎞
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h
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Sp
Dn                                             5.13    
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Figure 5.10: Coefficient a vs. ratio of diameter to spacing of hemispheres 

 
 
 
 
Table 5.3: Table listing the fitted data and ignored data when plotting Figure. 
5.10 
 
 
               Fitted Data Points 
 

 
               Ignored Data Points 

 
Coefficient a Spacing

Diameter  
 
Coefficient a Spacing

Diameter  

 
0.072 

 
0.589 

 
0.179 

 
0.633 

 
0.037 

 
0.379 

   
- 

 
- 

 
0.076 

 
0.585 

 
- 

 
- 

 
0.082 

 
0.935 

 
- 

 
- 

 
0.038 

 
0.407 

 
- 

 
- 

 
0.122 

 
0.836 

 
- 

 
- 

 
0.034 

 
0.259 

 
- 

 
- 
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Figure 5.11: Coefficient b vs. Area coverage 
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Figure 5.12: Coefficient b vs. ratio of diameter to spacing of hemispheres 
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Figure 5.13: Coefficient a vs. Area Coverage 
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Figure 5.14: Coefficient b vs. Diameter 
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Table 5.4: Table listing the fitted data and ignored data when plotting Figure 
5.14 
 
 
               Fitted Data Points 
 

 
               Ignored Data Points 

 
Coefficient b 

 
Diameter (mm) 

 
Coefficient b 

 
Diameter (mm) 

 
-1.064 

 
112  

 
-0.162 

 
72 

 
-0.443 

 
72 

   
-0.073 

 
112 

 
-0.399 

 
72 

 
-1.288 

 
112 

 
-0.416 

 
72 

 
- 

 
- 

 
-0.314 

 
46 

 
- 

 
- 

 
 

When plotting both Figs. 5.10 and 5.14 it was found that the curves do not fit well 

when the points marked in square shape are included. Therefore those points were 

removed in order to get the best fitted curves. Figures 5.10 and 5.14 suggest that 

coefficient a is dependent on the ratio of diameter to spacing,
Sp
D , and b on the 

diameter, D  of roughness element respectively.  

 

The proposed equation (5.13) was verified by comparison of calculated and predicted 

values of velocity listed in Appendix B (Table B.1). The experimental data listed in 

Table B.1 were performed by Jordanova (in preparation) in 12.0 m long and 2.0 m 

wide flume with a slope of 0.001. These experimental data were used with the 

permission of Jordanova. Two sizes of hemispheres with diameters of 116 mm and 54 

mm were used in modeling river rocks. These hemispheres were arranged in 

staggered (Tests 1 and 8) and parallel (Tests 6 and 7). 
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The calculated and predicted velocities as well as r2 values are presented in Fig. 5.15 

and 5.17. Figure 5.15 shows a comparison between the calculated velocities and 

predicted velocities from series B, C and D. Figure 5.17 indicates a comparison 

between the calculated velocities and predicted velocities from the experimental data 

performed by Jordanova (in preparation).  

 

The calculated and predicted resistance coefficients as well as r2 are presented in Fig. 

5.16. Figure 5.16 shows a comparison between the calculated Manning’s n and 

predicted Manning’s n. The data used to plot the graphs shown in Fig. 5.15 and 5.16 

are given in Appendix B (Table B.2).  The minimum errors, maximum errors and 

average absolute errors for these predictions are given in Tables 5.6 and 5.7. 

 

It can be noted from Figs. 5.15 and 5.17 that the proposed equation (5.13) is the best 

fitted relationship to the range of conditions tested. The proposed equation (5.13) can 

therefore sufficiently predict velocity of flow for condition listed in Table B.2 with 

average absolute error of 17.43 %, and for the condition listed in Table 5.3 with 

average absolute error of 4.99 %.    
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Table 5.5: Experimental Data used for Verification of Equation (5.13) 

 
Test 

 
Q (m3/s) 

Flow 
Depth (m) 

Density 
No./m 

 
Slope 

Area 
Coverage 
(%) 

0.0119 0.064 28 0.001 15  
1 (116 mm)  0.0174 0.074 28 0.001 15 

0.0138 0.065 28 0.001 15 
0.0220 0.080 28 0.001 15 

 
6 (116 mm) 

0.0273 0.085 28 0.001 15 
0.0070 0.029 28 0.001 3 
0.0100 0.035 28 0.001 3 
0.0129 0.039 28 0.001 3 
0.0171 0.043 28 0.001 3 
0.0217 0.050 28 0.001 3 

 
 
 
7 (54 mm) 

0.0276 0.055 28 0.001 3 
0.0053 0.025 26 0.001 3 
0.0088 0.032 26 0.001 3 
0.0145 0.040 26 0.001 3 
0.0238 0.052 26 0.001 3 

 
 
8 (54 mm) 

0.0283 0.056 26 0.001 3 
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Figure 5.15: Comparison between calculated and predicted velocities for series B, C 

and D. 
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The calculated velocity values were computed from equation (5.14) and the 

calculated Manning’s values were computed from equation (5.15).  
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where P  is the wetted perimeter. 
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Figure 5.16: Comparison between calculated and predicted resistance coefficient for 
series B, C and D. 
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Figure 5.17: Comparison between calculated and predicted velocities for the 
conditions listed in Table 5.3. 

 
 

 

 

 

Table 5.6: Velocity Prediction Errors in Application of Equation (5.13) for 

Series B, C and D (Table A.1 to A.3)  

 

Error 

 

B4 

 

C5 

 

C6 

 

C7 

 

C8 

 

D9 

 

Minimum Error 

 

4.87 

 

14.98 

 

3.02 

 

1.15 

 

31.21 

 

0.38 

 

Maximum Error 

 

23.58 

 

30.92 

 

26.12 

 

6.65 

 

38.33 

 

24.22 

 

Average Absolute Error 

 

15.98 

 

23.68 

 

12.69 

 

3.98 

 

35.88 

 

13.92 
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Table 5.7: Velocity Prediction Errors in Application of Equation (5.13) for 

Condition listed in Table 5.3 

 

Error 

 

Test 1 

 (116 mm) 

 

Test 6 

 (116 mm) 

 

Test 7  

(54 mm) 

 

Test 8  

(54 mm) 

 

Minimum Error 

 

-7.41 

 

-4.79 

 

-11.25 

 

-8.30 

 

Maximum Error 

 

-5.49 

 

5.41 

 

-3.84 

 

2.88 

 

Average Absolute Error 

 

6.45 

 

3.53 

 

6.19 

 

3.84 

 

 

The errors listed in Tables 5.6 and 5.7 gives equation (5.13) allowance for application 

in intermediate-scale flow condition. The experimental errors shown in Table 5.7 

were obtained from the experimental data of Jordanova with conditions different from 

those listed in Table 5.6.     
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CHAPTER 6: CONCLUSION 

 

6. Conclusion 

 

Manning’s roughness coefficient, n, for a cobble-bed river is not constant, but varies 

with flow condition. For the range on intermediate-scale conditions tested, Manning’s 

n depends on roughness element size and spacing. Manning’s n also depends on the 

pattern of roughness elements in the transition zone, but not in small scale zone.  

 

The relative size effect depends very significantly on the absolute size (i.e. Manning’s 

n varies with relative submergence much more for large roughness elements than for 

small ones). 

 

The Manning’s n for small scale conditions is dependent on size and pattern of 

roughness elements. Figure 5.1 shows that the Strickler’s equation can be used to 

predict the n values and that the density of the roughness elements has significant 

influence on flow resistance (Table 5.1). 

  

The calculated velocities compared well with those predicted by the proposed 

equation (5.13). The coefficient a is dependent on the ratio of diameter to spacing of 

roughness elements, whereas coefficient b is dependent on the diameter of roughness 

elements. The prediction errors give the proposed equation allowance for application 

in flow conditions with cobble-bed river.   
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Appendix A                  Experimental Data for the Range of Conditions Tested 
 
 Table A.1: Experimental Data for Series B Experiments 
 
Density 1                                                     Spacing = 134 mm 
 
Test 

 
Q (m3/s) 

 
y (m) 

 
y/h 

 
A (m2) 

 
V (m/s) 

 
S 

 
n 

B2.1 0.0044 0.0865 1.5446 0.0239 0.1417 0.0047 0.0736 
B2.2 0.0056 0.0905 1.6161 0.0344 0.1624 0.0047 0.0607 
B2.3 0.0134 0.1330 2.3750 0.0505 0.2644 0.0047 0.0451 
B2.4 0.0192 0.1520 2.7143 0.0578 0.3418 0.0047 0.0386 
B2.5 0.0365 0.2095 3.7411 0.0796 0.4718 0.0047 0.0312 
B2.6 0.0483 0.2455 4.3839 0.0933 0.5139 0.0047 0.0301 
B2.7 0.0546 0.2585 4.6161 0.0982 0.5560 0.0047 0.0282 
Density 2                                                      Spacing = 177 mm 
B3.1 0.0011 0.0540 0.9643 0.0205 0.0515 0.0047 0.1606 
B3.2 0.0065 0.1025 1.8304 0.0390 0.1662 0.0047 0.0637 
B3.3 0.0220 0.1520 2.7143 0.0578 0.3963 0.0047 0.0333 
B3.4 0.0409 0.2155 3.8482 0.0819 0.5040 0.0047 0.0295 
B3.5 0.0474 0.2340 4.1786 0.0889 0.5497 0.0047 0.0277 
B3.6 0.0552 0.2555 4.5625 0.0971 0.5685 0.0047 0.0275 
Density 3                                                      Spacing = 190 mm 
B4.1 0.0030 0.0575 1.0268 0.0219 0.1384 0.0047 0.0618 
B4.2 0.0069 0.0765 1.3661 0.0291 0.2624 0.0047 0.0375 
B4.3 0.0195 0.1150 2.0536 0.0437 0.4455 0.0047 0.0265 
B4.4 0.0315 0.1640 2.9286 0.0623 0.5048 0.0047 0.0269 
B4.5 0.0434 0.2005 3.5804 0.0762 0.5701 0.0047 0.0255 
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Table A.2: Experimental Data for Series C Experiments 
 
Density 1                                                                      Spacing = 190 mm 
 
Test 

 
Q (m3/s) 

 
y (m) 

 
y/h 

 
A (m2) 

 
V (m/s) 

 
S 

 
n 

C5.1 0.0027 0.0350 0.9722 0.0133 0.2014 0.0047 0.0325 
C5.2 0.0083 0.0650 1.8056 0.0247 0.3346 0.0047 0.0272 
C5.3 0.0197 0.0910 2.5278 0.0346 0.5709 0.0047 0.0187 
C5.4 0.0304 0.1255 3.4861 0.0477 0.6372 0.0047 0.0192 
C5.5 0.0430 0.1635 4.5417 0.0621 0.6920 0.0047 0.0196 
Density 2                                                                       Spacing = 177 mm 
C6.1 0.0027 0.0360 1.0000 0.0137 0.1958 0.0047 0.0340 
C6.2 0.0075 0.0665 1.8472 0.0253 0.2958 0.0047 0.0311 
C6.3 0.0181 0.1015 2.8194 0.0386 0.4703 0.0047 0.0238 
C6.4 0.0271 0.1360 3.7778 0.0517 0.5477 0.0047 0.0231 
C6.5 0.0430 0.1630 4.5278 0.0619 0.6942 0.0047 0.0195 
Density 3                                                                       Spacing = 123 mm 
C7.1 0.0060 0.0745 2.0694 0.0283 0.2132 0.0047 0.0456 
C7.2 0.0147 0.1160 3.2222 0.0441 0.3338 0.0047 0.0355 
C7.3 0.0238 0.1475 04.0972 0.0561 0.4245 0.0047 0.0307 
C7.4 0.0322 0.1740 4.8333 0.0661 0.4868 0.0047 0.0284 
C7.5 0.0421 0.2030 5.6389 0.0771 0.5462 0.0074 0.0267 
Density 4                                                                       Spacing = 77 mm 
C8.1 0.0026 0.0515 1.4306 0.0196 0.1327 0.0047 0.0609 
C8.2 0.0064 0.0758 2.1056 0.0288 0.2239 0.0047 0.0438 
C8.3 0.0138 0.1140 3.1667 0.0433 0.3189 0.0047 0.0369 
C8.4 0.0280 0.1655 4.5972 0.0629 0.4447 0.0047 0.0306 
C8.5 0.0448 0.2155 5.9861 0.0819 0.5466 0.0047 0.0272 
C8.6 0.0498 0.2320 6.4444 0.0882 0.5651 0.0047 0.0269 
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Table A.3: Experimental Data for Series D experiments 
 
Density 1                                                                       Spacing = 177 mm 
 
Test 

 
Q (m3/s) 

 
y (m) 

 
y/h 

 
A (m2) 

 
V (m/s) 

 
S 

 
n 

D9.1 0.0026 0.0310 1.3478 0.0118 0.2204 0.0047 0.0277 
D9.2 0.0115 0.0755 3.2826 0.0287 0.4011 0.0047 0.0244 
D9.3 0.0154 0.0790 3.4348 0.0300 0.5134 0.0047 0.0195 
D9.4 0.0260 0.1030 4.4783 0.0391 0.6641 0.0047 0.0170 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 65 
  
 

Appendix B                           Experimental Results for the Predicted Velocities 
 
 
Table B.1: Experimental Results for the Predicted Velocities 
 
Flume Slope                                   0.001 

Large Hemispheres D (m)            0.116 

Small Hemispheres D (m)            0.054   

 

 
 
Pattern Q (m3) Y (m) Y/h 

AC 
(%) n pV  (m/s) mV  (m/s) Error 

ABS 
Error 

 
0.0119 0.064 1.032 14.938 0.0446 0.109 0.103 -5.49 5.49 

1  
(116 mm)  

 
0.0174 0.074 1.194 14.938 0.0384 0.139 0.129 -7.41 7.41 
 
0.0138 0.065 1.048 14.938 0.0439 0.112 0.118 5.41 5.41 
 
0.0220 0.080 1.290 14.938 0.0354 0.157 0.150 -4.79 4.80 

6 
(116 mm) 

 
0.0273 0.085 1.371 14.938 0.0333 0.173 0.174 0.38 0.38 
 
0.0070 0.029 1.014 3.237 0.0214 0.136 0.125 -9.08 9.08 
 
0.0100 0.035 1.224 3.237 0.0203 0.164 0.147 

-
11.25 11.25 

 
0.0129 0.039 1.364 3.237 0.0197 0.182 0.170 -6.78 6.77 
 
0.0171 0.043 1.503 3.237 0.0191 0.196 0.204 3.84 3.84 
 
0.0217 0.050 1.748 3.237 0.0184 0.227 0.222 -2.37 2.37 

7  
(54 mm) 

 
0.0276 0.055 1.923 3.237 0.0179 0.246 0.256 3.84 3.84 
 
0.0053 0.025 0.874 3.006 0.0223 0.118 0.109 -8.30 8.30 
 
0.0088 0.032 1.119 3.006 0.0208 0.150 0.141 -6.37 6.37 
 
0.0145 0.040 1.399 3.006 0.0195 0.183 0.185 1.19 1.19 
 
0.0238 0.052 1.818 3.006 0.0182 0.233 0.234 0.45 0.45 

8  
(54 mm) 

 
0.0283 0.056 1.958 3.006 0.0178 0.251 0.258 2.88 2.88 
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Table B.2: Experimental Results for the Predicted Velocities 
 
Flume Slope                                                     0.0047 

Large Hemispheres        D (m)                        0.112 

Medium Hemispheres    D (m)                        0.072 

Small Hemispheres        D (m)                        0.046 

 

Test Q (m3) Y (m) y/h mV  (m/s) pV  (m/s) mn  pn  Error 
ABS 
Error 

 
B4.1 0.0030 0.0575 1.0268 0.1384 0.1316 0.0618 0.0649 4.87 4.87 
 
B4.2 0.0076 0.0765 1.3661 0.2624 0.2005 0.0375 0.0491 23.58 23.58
 
B4.3 0.0195 0.1150 2.0536 0.4455 0.3587 0.0265 0.0329 19.49 19.49
 
C5.1 0.0027 0.0350 0.9722 0.2014 0.1508 0.0325 0.0435 25.15 25.15
 
C5.2 0.0083 0.0650 1.8056 0.3346 0.2845 0.0272 0.0320 14.98 14.98
 
C5.3 0.0197 0.0910 2.5278 0.5709 0.3943 0.0187 0.0271 30.92 30.92
 
C6.1 0.0027 0.0360 1.0000 0.1958 0.1447 0.0340 0.0460 26.12 26.12
 
C6.2 0.0075 0.0665 1.8472 0.2958 0.2713 0.0311 0.0339 8.27 8.27 
 
C6.3 0.0181 0.1015 2.8194 0.4703 0.4073 0.0238 0.0275 13.39 13.39
 
C6.4 0.0283 0.1360 3.7778 0.5477 0.5312 0.0231 0.0238 3.02 3.02 
 
C7.1 0.0060 0.0745 2.0694 0.2132 0.2107 0.0456 0.0461 1.15 1.15 
 
C7.2 0.0147 0.1160 3.2222 0.3338 0.3200 0.0355 0.0370 4.15 4.15 
 
C7.3 0.0238 0.1475 4.0972 0.4245 0.3963 0.0307 0.0329 6.65 6.65 
 
C8.1 0.0026 0.0515 1.4306 0.1327 0.0913 0.0609 0.0885 31.21 31.21
 
C8.3 0.0138 0.1140 3.1667 0.3189 0.1974 0.0369 0.0597 38.10 38.10
 
C8.4 0.0280 0.1655 4.5972 0.4447 0.2743 0.0306 0.0496 38.33 38.33
 
D9.1 0.0026 0.0310 1.3478 0.2204 0.2196 0.0277 0.0279 0.38 0.38 
 
D9.3 0.0154 0.0790 3.4348 0.5134 0.4254 0.0195 0.0235 17.15 17.15
 
D9.4 0.0260 0.1030 4.4783 0.6641 0.5032 0.0170 0.0224 24.22 24.22
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