conatdered in Examplo B has two arbitrary functions which dopend on two
variables, and possesses an infinite number of Lae poitt symmetries. The
methods used in this chaptor are not tlie same, dll:hough both of thom are
called preliminary grovp clagsification methods,

In chapter four, the cquivalence and the principal Lie algobras of the uystom
wo cinssifly ave found, To find the equivalenee algobra we follow Akhatov,
Gazlzov nad Ibragimov (1991) and to find the principnl Lie algebra we use
the propoditions stated in Ihmgilﬁov amd Thirdsl (1092), These nlgebras
nre utilized in chapter five, By using the proliminary group clossification
discussed in chepter three, we classily our system, although it beeomes cloar
from the results we obtain that the clessifleation i not comnploto,

Chapter five is concerned with the classification of the system (1.5). In olag-

sifylng thir system wo use tho Lie sigebras which wero introdueed in chaptor

one, Wo find that this system admits s forn-dimensional equivalonce algelira

of symmetrics and a three-tlimensional Principal Lic algobea of symimetrics,

Heniee, we uso the method which vlaesifies eccurding to low-dimensional Lic
* algebras. '

Thoe Interested reador is soferred to Ihraghmoy (1095) for more applications
oni the classiflc ation of partial differential equations, The method ntillzwd in
chapter six Is on extension of that nsed n Vewda and Malomed (1084).

Floadly, in the couclwion we mention the results obtained and some of the
apen guestions that ean facther bo exploved, In faet the main vesult of ony
worl is that the mbiteary fmetion v (n) ean only beof the form ;;fgﬁ, where
o el & axe constanty,



1.2 Scope and objective of the study

Bystem (1.5) has ite roots in plasmaa physics, We are coneered here with the
mathematical aspect of this problem, although the results can be analyzed
physically aud con be of much vse In plasma phystes,

Tho above systom (1.5) Is & new problem from the view-polnt. of group clag-
sifieation, The method we uso to Classify this system is also now (see chapter
fivn),

Owe adm Is to classify gystom (1.6} aceording to the group it admits and show
how this new method of clawifying partial differential equations works, This
method classifies tho system of equations according to low-dimensional Lie
algebres it almits, Beforo embarking upon this method, we Huatrate the
exiating methods of growp classification of pactinl differential cquations by
mreans of examples.

1.3 Content

In chapter two we give n Lrief revicw of Lie thoory of differenthd oquations

capecially partial differential equations, Thoe meaning of invarinnt [nictions
and invarlant differentlial cquations are defined, Furthiermore, Lde algebray
are infroduced in this chapter (poe, o.g, Stophand 1989 and Ieagiwny 1005).

Chapter three deals with the dassification of partial differential equations
with arbiteayy anetions, The only difference dn the pxamples disenssed in
this chapter is that the partial differential ceuntion considered in Exoaaple A
haw one arhiteary funetion which deprucki on one variable and admiis o fufte
number of Lie poiut symmetsdes, wherons the partial difforentinl equation



In the ease of layge thermal spread of the ceetron volovitios ard a negligibly
weak thermal motion of fons, the collisionless plasma can be deseribed by
the combined system of the self-consistent field equations and tie hydrody-
nanienl equations for jons with tho velocity () and the density 7 (e, §).
This systom in the one-dimensional cnse has the form (see Ihragimov 1005)

e : £
ff. + “fl + ;Eﬂfu e n| u{ +ut!; == ;,;;Bg
Ty = {fin), =2 0, I8 = dap, Ly darf e 0, (1.3)

0 : =00 .
peem f " dof i, JF=om f “ dvf o éniu,

If tho thermed motion of the cleetrons is strong enough ancd i thele datribu.
tion s of Maxwell-Boltzman type with tho density » (8, &) and temperature
T constant, the above system reduees to the systom of differential equations

¢
Up b WUz ;-EE’
fig & {fiu), = 0
‘ ;QE' (1.4)
Ty T §
By = dren 4 dxeil,
Tho rymmetries of this system are foumd in Euler, Steoh and Mulser (1991,

1992). The natural generalization of systom. (1.4) is the following system

t‘i
[ b Wy ;:;;IJ,
iy b (fiu), = 0,
[
V) o = R B,
Ep = dren + dniii,

(1.5)

where (e,n,m) anct {e%i, ) are charges, densitios and masses of long amd
elecizons, respeetively; w is the flow veloclty of lons, T' the temprrature, 1
the oleetrle field and 9 (n) an arbitravy funetion,




prablem is not only of pure mathematienl interest but also has practical
~ siguifiennce. The differential equations of mathematical physics, in meny
eases contain parameters or functions that are determined expoerimentally
and henee are not strfetly fixed (these aro called arbitzory elements),

Lio (1881) was the frst to work in tho problem of group classifieation of
differentiol cquations by classifying tho linear equation

R (1) 220+ 5 (1) 2y + T (1) 2y

+P (o) 2k Q(04) 2 + Z (2,y) 2= 0,
where B, S, T, I, ¢ andd Z are arbitrary (sce Ibragimov 1994). Subsoquently,
mony equations weye classified, not only by Lie but also by ethers.

{1.1)

1.1 Statement and analysis of the problem

The one-dimensienal nonrolativistic cleetron-ton plasma with o weale thermal -
motion of eleetrons and lons, deseribed by the Lydrodynamical model, is
based on the followlng cquations (see, o.g., Ibraglmov 1995)

1y o 11 = ;%E = g{n)ng, o (ne), =0,
Ty <k Uy = ;%IE = §§{it)iiay fig o (7)== 0, (12)

Ep o dwen 4 vt Ly = A (en o fittg) = 0,
Here, » and w are the volocitios of the clectron and ion componmts of thie
plasmg, the funetion g{n) and g (i) take into acenant the eleetron and jon
thermal pressuze dopending on the densities n amd 7 of the Alectrony wl
jons, respoctively  The tomperature of epch plasma component is assumed
ta be constant,



Chapter 1
Introduction

Tho groat Norwergian mathematician Sophus Lio (1842-1800) injtiated the
study of continuong transformation groups in the serond half of the proviens
century, Today, these gronps are ealled Lie grmi;;s. His nim wns to create
a theory of integrating ordinary differential equations similar to the Abelian
theory of solving algebraje equations, Lie groups beeamo well-known, hut
thelr exigiual field of fruitful application to a large extent remeained hidden
in the lterature, Houce many people who could have profited from this
method shnply wore not aware of its exlstenee,

It is only i this contury In which this theory has heeomoe widesproad, To-
tlay, there are mony books vontaining this theory, Since Tie's works wore
In Geeman, most of the books are merely trauslations and do not contain
signifeantly new infermation.

One of the main probleass of group analysis of differential cquations is to
atwely the action of the group admitted by a given equation (xystem of
wuations)  in o seb of golutions to this equation,  Another avepesting md
pmvt-ivith important problom cousists of weing the gronp analysls tochnigue
for the gronp elassifiention of differential cquations, The solution to this

K
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ABSTRACT

In this work we give a Lricf overview of the existing group classtfleation methods
of partial differential equations by means of examples, On top of these mothods
we introduce another new methnd which classify according to low-dimensional Lie
algebras. One can ask: What is the aim of introducing a now method whilst there
are exisling methods? This question i answered in the follov ing paragraply

Firstly we classify our system of non-linear pariial differentinl equations using the
preliminaiy group clagsification method (one of the existing methods). The results
are not different from what Euler, Stesb and Mulser have obtained in 1091 and 1092,
"That is, this method does not yield new Information.

This new method which classifies according to low-dimenslonal Lio algebras is used
to classify n general system of equations from plasma physies. Finally, using this
method we completely classify our gystem for four-dimensional algebras, For a portial
differential equation to be completely clossified using this method, it must admit o
low-dimaensional Lie algebra.
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A research roport submitted to the Faculty of Scionce, Unlversity of the
Witwatersrand, in falfilment of the requiroments for the degree of Magters,

Johanneshiuyg 1995,



IF o differentiel eqtmtion admits the veetor fivdde Xy and Xy, then it slso
ainits their commntator [X1, X3} (see 'Ovsytmnikuv 1982), The lnrgest ad-
mitted Lie algebra is callod the full Lie algobra of the equation, In this section
wo ave concerned only with finite dimensional real Lie algebras, beenuse in
applieations one mainly eneounters real differentlal equations.

One snd fwo-dimensional alguoras both have the same structires over the
real and over the complex numbers, Tn suitablo bxwoé. these ean be taken
to be (X1, Xa] = 0 and [X;3, X = Xy for two-dimoensional algebras, amd
(X, X] =0 for auy X for & onc-dimensiona) algebra,

Wo next consider tho three-dimensional real algebras, T0 e are eleven Lic

algebras of dimension three (decemposablo and ind(mmpnsabluj two of which
dopend on parameters,

18




If a differentiul equation admits the veetor fields Xy amd X, then it also
admdis their commutator [Xy, Xu] (see Oveyannikov 1982); The lavgest ad-
mitted Lie algebra is enlled the full Lie algebra of the cquation, In this sectlon
we are concerned only with finite dimer sional real Lle algobras, beeanse in
applications one mainly encounters real differential squations.

Cme andd two-dlmensional slgebras both have the same struetures over the
real and over the corplex numberr ™o suitable buses, these can he taken
to be (X1, Xp] = 0 and [X, Xe] = Xy for two-imensional algebras, and
[X, X] = 0 for any X for a one-imensional algebra.

Wo next consider the three-dimensional real algebras, Thoere are eleven Lie -

algobras of dimension threo {(decomposable and indecomposable} two of which
¢opend on parnmetors,

18



where the prolongation formulae, (3, 11 and (g are a8 glven In {2.19), (2.21)
and (2,28}, reapectively, Substituting vy = vy 12 4 2, {2.20) has the ol
lowing indepoendent variables £, , v, vy, 0, 1y, Ve 011t Vg, anid the unknown
functions &1, €2 and y depending only on t,@ aud v, Bgnating oll the coof-
ficiont Of Dty tpe, Ve, Ve, £0 zoro and solving the resulting equationy, one
emds up with tho general solution '

El = "Cl\ En = C"ﬁ: ” I Gat + %tg “'" Cf'a{; (2:3“}

where G, 1= 1,2, w4, aro arhitrary constants, Solutions {2.30) for the dew
tormining equation 2,20} gonerate o four-dimensional Lie algebra Ly spanned
by the fallowing operators

0 e 8 0 0
Xy B Xam'z—a;;-l--ég. Xamf?ﬁ. de‘gﬁ- (2.31)

2.2 Lie algebras

A Lic algebra is o voctor space L endowed with a bilincar product: [Xi, Xa]
auch that the {following holds: The Lie algebra is akew symmetrie, L.0.,

[X1, Xa] = = [X, X0)
il satinfics the Jacobi ddentily,
'[.X;, {.Y-,;,' Xall + [ X, [X:h Xln + [Xih X1, xﬁ]] = 0, for all Xy, Ko Ns € L.

In group analysl of differential equations one deals mostly with real Lio
algebraa of opeeatons atd honee here wo conmider only veetor spaees over the
fiell of real mumbers,

Wo deflne tho Tie bracket [} ou a set L of veetor fields of the fornn (2.7) as
the commutator
(X1, Ay} = 1.4 - XX (2.32)

17



The difference between Definttion 2.2 and Definition 2.2" Is thut 2.2' does not
nasme the knowledge of solntions and the invariance can be tested on any
glven differential equation using the following

X(glph (2.5) =, h=l, ., (2.27)

where Xy ig the sth prolongation of the generator X of the group G and the
notation |9 5) means evaluated on the frame, Bquations (2.27) ave called
the determining equations of the generator X of the symmetry group G,
‘The determining cqnationa are o system of linear homegencous partial (il
ferentiol oquutions for the nnknown vector X. In most practical instances,
thoese oquatloné can be solved by elementary methods and the general sohe
tion determines the most peneral infiniteslmal symimetry of the systom, The
solutiony of the determining equation generate a set of veetor ficlds denoted
by Ly, where r is the munber of the clements in the set, which can be infinite,
and Ly generates a Lie algebra of dimension r, Wo atudy Lie algebras in more
dotail in the negt seetion,

To luatrate the ahave, let wy consider the secoud-order poartial cdifferentiol
pguation

Uy €3 Pplipg b 100 o 2, (2.28)
The shove oquation is o speeial case of
= f (R0} g b g (0at).

For more information ahout the above equation see Iheagimov, Torrisd and
Valeati (1091), Tor the invardance condivions of (2.28) wo tee (2.18) where
we repluee 4 by o, which reduees the determiniug equation (2.27) to the form

€11 = 0pGnp = Paly = Qrply -~ ﬁn = (2'29)
16



As is well-known, this problem can bo solved by constructing selutions of the
system of ordinary differentinl cquatious

det d? dz
) = FoTs) B, 2R ——— (2.28)

(=)
Solutlons of (2.25) take the form

J(2) = Gy Jal2) = Cy ey Jpa (8) == Gy (2.20}

in which €y, v, Gaat iz constants of llitograizion aad the Ji(%) are functions
inclependent: of the Cys, One can note thet iF {Ji1(2), we Ja-1(2)} 18 & bagis of
invariants of a group of transformations G, then J(2) = F{J{2)s e Jo1(2))
is also an invarlant, where FF s o smooth functlon of Ity argument (sco also
Ovaynnnikov 1962, Glver 1086). For example, 2 = (o,u) , then F o= F (i, )
in (2:24) and wo have an oerator of the form (2.8).

To illustrate the forogoing, conslder the rotation gronp which has infinitesimal
generator X o e = y-a-‘;;. The corrosponding chnraeteriaties system Is

e
di ]

mat U] o b

& v

t

Heve z = {e,37) and 7 <= 2, 1o, wo have anly one fnvarlant J(3) = oy = €
whore & iy an arbiteary constant,

Deflnition 2.2’

The systoam of differential equations (2.5} is anid to be Invariant under the
group G If the framoe of the system I8 an invariant surface with respect to the
prolonged greup Gy,

15




axl operntor (2.8) Las the form

. 0 d a '
X = e,y u)*é; “+ E“(m,y,u)b-a & 7;(:1:,3;,15)-5;. (2.16)

The first and second prolongations of {2.16) are given by

Xy = X + (o au G T @.17)
- K =Xy PCu -,f} “+ G af | +c“8::w (2-18).
rvspot'txvvly, where

& = Dalm) = 4 Da(€Y) ~ 1, De(€®, (219)

G = Dy = usy(6)) =y DylE, (2:20)

Gt = Da(G) = wenDa(€') = g D (6%, (2.21)

= DyG) ~ U DYE) - 1 5 222

G = DylG) = vy Dy (§1) = upy Dy (€%). (2.23)

(soe also Stephani 1080).

Theorom 1.1
The funetion (=) is an nvariant function of the group @ with aymbol X if
anct only i it satisfies tlie Ruear partiol differential cquation

X(E) a3 E5 =0 (2.21)

14



a
== (29)
The fivat pmlongation of tho gmwrator {2. 8) is given by

g

Xy = zg' 57 T gm O 8u{" (2.10)
or
X=X+ CF———ai(,l (2.11)
‘ .

whoro £ and 9™ are as given in (2.9) and

GFaDMM -, (219
with I as In (2.2), The second prolongation of the generator & s denoted
by Xy and ig given by

3

Xy = Xy + Cagom (2.18)
i1y
whore
Ci':l'a =3 Dfﬂ(- i:) ‘*“ﬁtﬂia(ﬁ’)‘ (2'14)

Following (2.12) nnd (2.14), the higher prolongation s defined os

eir:ia.'.i. = Din (c::in...i.._.:) - u;“i;ia...i‘m.1uil (&j)' (2'13)
We now look at the altuation when @,y are independent vadablos, and « o
dependent varjable, In this ease the derivative operator (2.2) takes the form

a d i a
f ey Ty —m g VEmTLTETy ok
A = b7 1 Y Ba _u“t’}u, u"”()uy b

a ¢ {d 4

: o) " u [T
Dy oy Uy e Uy * " iy *+

13



fey) = a -y,
18 an invnriam. funetion of G, sinee
Jl 02, ¢+ cg) = flx,y), foralla,

and the fimetion

| Flmyy) =y

8 not an invarinut of &, sinco '
S g, g+ ce) # f(my),

{8ce Olver 1980).

Definition 2,2

Tho system of differentinl cquations (2.5} s sald to be Invariant wnder tho

group G of (2.7) if G converts every solution of the system under consldera-
tion into a selution of the same system.

This definition asstimes that the solution of the system is known o priert {¢f,
Definition 2.2},

A group of transformations of the above form {2.7) 18 called a group ¢ of
polnt transformntions in the space of dependent and Independent variables,

Correaponding to the group ¢ there Is an infinltesimal geneeator

td a fr.
X = @) ) gy (28)

where

12



8% o= g%() Uy 2}y §% a0 = . _ (2.7

These translormations form a ane-parameter group G if the suceessive netion
of two transformations is equivalent to tho action of another of the form {2.7),
i.e., if the funetion f = (f1,.., /™ and g = (g%, ..., g™) satiafy tho property:

P ey a) g (0, 0) 0) = fH (e}, =2 1,0,m,

ga (f (:"'l-ui ﬂ)';!} (miut ﬂ;) 3 I’J = 9“ (mfu’ (!) y = 1,

wherg
¢e= ¢ {a,b)

is & smooth function defined for small a and b, In the caso defined nbove,
G Is referred to as & local one-parameter group (¢ and & small ), otherwise
@ Is 2elled o global group (e and b ean take on values from a fixed interval
of reals). Hore, we mainly use loeal one-parametes groups hoeause of their
importance in tho application of group analysis. '

Definition 2.1

Lot G bo a local group of transformations acling on a manifold M. A function
F i M - N, where N {s another manifold, is ealled a & Invarlant funétion if
for all 2 € A7 and all g € @ such that g ds dofined

Flg.2) = F(a).

Let s consicler an examplo of the above definition. Lot G, be the group of
translations

(e,9) = (o hog, yce), e € R,

whero ¢ 8 some Axed constant, Thes the fnetion

11



Then (2.3) I8 the s-order partial differential equation. Suppose @, u, 1), 1),
aro functionally indepondent variable -onuccted only by (2.1), then (2.3) de-
‘termines & swrface in the space of Independent vaviables @, u, 11y, ), .., Ugn)-
In Ibragimov (1092) this surface is called the frame of the differential equa-
tion under consideration. The frame of the equation we have considered lg
accompanied by its differential consequences;

DiF =0, DiDiF =0, .., (2.4)
wliere |
' t'JI‘ ar
D{Ptﬂa i+ “6 u+u +ﬂ“1 i'al&“

All the polnts {2, u, 1), ty. ) sabisfying the o qumt-ions (2.3) and (2.4) are
dencted by [F] and called the extended frame.

Lot us sco what happens when we have a system of equations. Consider the
follawing systoem

FL(&J, 1‘*“{1}’ u{a},uqﬂ(g}) = 0' k = 1, lnpg (205)

wheie Iy, € A and g i the meximum order of the & differential equations
Fi, = 0. [t 18 asmumed] that

ar, t?ﬂ., aF _OF,
Dt Qus' ’Hu“

on the frame of the equations under consideration: In this vase the extended

p=rank

framo is glven by
Fk o 0] Di\[“k = 0‘ D‘Djﬁ‘k = 0. LY (2!6)
Sonsider the following Invertible traneformasions on the (v, 1) space

it e P a), F ez = 0t

14



whore

1 = Di(u®), 4§ = Dy(u) = DyDiu), . (2.1)
D; is called the operator of total differentiation and is yivon by

9 . d .0 : :
Dim-a-‘g+uf-az;+u§§-§uj—§+---. t=1,.n (2'2)

In group analysis it is expedient to consider all variables x, u, ¥, U2, »n 68
 functionally independent counected only by tho differential relations (2.1).
As & result the variables u are referved to ag differentiel variables. We denote

by # thoe sequence
& = (0, u, vy, )y ...),_
with clements
#ov2l,
whiore
gl 1€i<n ey 1<agm,

and the remaining elemonts reprosont: the dorivatives of 4,

A locally analytie fanetion f(m, i, tiay, Uy w0 Uiay)y 8 < 00, I8 called o dif
ferontinl function of order a. The set of all difforentinl functions of all finite
orderd 1s denoted by A, Tho apaco A is closed under tha dexivation given by
(2.2). Let F € A bo s differential fanction of order 8. Consider the equation

F(fﬂ. W, u(n; (T3 u{s]) .m n‘ (2-3)
where u depends on 2, Le,,
Out(x)

I .. pal . AT
U =R (m)‘ ’U.‘ --J"“'(',}:F""i (11

9



Chapter 2

Lie theory of differential

equations

In this chaptor we give 2 brief review of Lie theory an applied to the study
of Invariance properties of partial differential equations. The essence of this
chapter is taken from Ibregimov (1995), Most of the information in thig
chapter is of groat nse in the following chaptors,

2.1 Differential equations

Firstly, wa consider tho nalversal space A of differential functions introdneed
in Tbragimov {1008}, Lot

T = {m‘}, =10,
ba independent yariables and
u = {4}, = L..,m,
the dependent variables, The sucecssive derivatives of u are

'H[[] m {‘U,?} 1 1‘.{2} 2 {ug}‘ 41vy ?:1‘?‘ = 1| .uﬂ-. = 1; u||m‘

8




Uy b Ulhy = -,E.-I? (equation of motion ) (4.3)
ng E—-; (balance of pressure and eleotrie foree) (4.4)
By = dwen -k dmiit (tha Polsson cquation) . - 8)

Wo denote by (¢,n,m) and (#,7,10) the respeetivo charges, densities and
massos of fons and clectrons; u is the flow veloetty of ions, 7 the temperatire
which is constant and 2 is the clectric ficld, All ihe quantitios are dimen.
sionless, Tho symmetry Lie algebra of oquations (4.2), (4.3), (4.4) end (4.5)
is spanned by

0 0 yopl 0
Ximgp Ka=gny Xy tamd 5o

8 g 4] g 4]
Xp&f-ﬁ +ﬂ:-5$=-2u5;—2ﬂ0ﬂ -Em:j

(sev Buler, Steob and Mulser 1001 and 1892),

Clomparing the two systema (4.1) and (4.2) (4.6}, we find that the fupction
1 (n) mmst e -1- in {4.1) in order for it to bo equwulonl to (4.2 4.5). The
physical reason fm the laeluston of the goenerat interaction ${n) instond of
Just -f}i can be inferpreted in the trapping of clectrons by plasma potential
woves {500 0.5, Ibeagimoy 1995).

4.2 Equivalence and the principal algebras

Following Akhatow, Gazizov and Ihrngimov (1091), we seek the operator

- ‘ 20 0 2.0 &
3 gk '*E (Ju+ o n
g ”“’ 5B "}’“aw

a0



Chapter 4

| Equivalence and the principai

Lie algebras

Tt this chapter, we find equivalence ad prineipal Lie algebras for tlie system
of cquations '

0y e u(u, ;-1 ;5;;1[’;3,
fig o (Fite),, == (),
1 (n) g - &, “y

By o dmwen 4 &ﬂ‘ﬁﬂ,

where 1 (n) i un arbitrary Dnetlon. This work is new and we motivate this

in the next seetion,

4.1 Introduction

In 1091 and 1092, Euler, Steeb andd Mulser consicdored the system of par-
tiad differentinl cquations for a collisioniess plasma of eold lons and warm

eleetrony, vig.,

iy o (fite) = 0 {eepuntion of eontimtity) (1.2)

20



dimensionel subalgebras, seo Chupakhln (1994). We nse the above method
of preliminary classification in the next chapter fo classily our systom,

3.4 Discussion

The disadvantage of the methods discssed above is that they are not ety
fly applicable to all partinl differentinl equations. Bspeclally for the method
llustrated in Example A, you rannot state o prior which differentinl equa-
tions can or cannot ha classified using it. For Example B, it is ohvions that
the eyuation considered there is not complotely clussifiod as one is unecertain
whother the cqulvalénm algebra nsed for its group clagaifieation is the largest
subalgebra of the infhite-dimensional equivalence algebea.

28
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P 2, |

0
By= o o By= e Q' By= c‘}‘v

{ ] 1]
By = cd &5utm+m§{-j-+2wa '

a

y; -
By = tm - 2f~5=f - 295};,
(3.7}

20 o0
By -554'26

0 ol o o0
Bo = g + 2 Sz + 0 0L

Ep= Pm—ﬁfoy

This became a problem as it is known thet preliminury grongs classification ix
simple only when the difforentlal equation under consideration hos o Bodtes
dimensional equivalence algebra, The above prohl@in waw galved by clioosing
o finite-dimensional cquivalence algebra Lig from the inflnite one La,. Fromi
s Buite-dimensional equivalenee algebra, the following extenstons wore obe
tained

B oo e

B = .r-{%#ug’m ﬂffffnlr-q‘?q

Thom g Yo g+ v (38)
Iy = wﬁ%mf?%.

Aftor the optimal syates of subalgebras for these oxtendons was ohinined,
eortaln proposttiotr were involad to complete the group elassiflention with
reapect 10 oneedimensfonal subnlgebros only. For optlmal system of twos

2



respeetively. All the abovo symmetries axe the additional symmotrics to the
principal Lio slgebea which is given Ly

a i d

- d 8 . _
Zy o oo Zr = v
Tliug, {8.1) has heen suceessfully classified using this methocd,
3.3 Example B
(Sve Ibragimov, Torrlsl and Valent! 1901}
Censlder tho equation
ty =2 f {2y V) pp o g (8 ) . (3.6)

An equivalence transformation for (3.6) 18 defined ax o nondegenerate change
of the vadables #, @ ard o taking any equation of the form (3.6) lnto an
equation of the same form, with different f {x, ) and g (2, v5).

For thix equation, an infinite«limensional equivalonee algebna has boen found.
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The following cquation has boen fonnd through the investigation of the de-
tormining equation of (3.1), viz.,

0+ b + 6B 4 dwe ' =0, (3.3)

where a, b, ¢ and d are constants. Selving (8.8) with the usce of {3.2), differont
forms of H have been found, To solve this type of cquation is not: always cnsy
as it trrns out hore {see, 0.8, Tbragimov 1905). That is why many differential
equations cannot be classified nsing this method, For certain functions H,
more symmetries have been found. That is, for

H' B2 prcwu): (3-4.1'

the following symmatry I8 an additional symmetry (to the principal Lie al
gebra of symmatries)

wl 2l
Z{]-—-th—ma&.

For other forms of H, we just state the funetion A and the corcaponding
additional symmetry(les), One hag

H=n Woans

f 4]
Zg = m-t'j-:t:- —21‘.‘5‘;

anel
=y,

] ,
Zﬁm(lm#)t-éz-!'

ww—-—a
O’

whto r ::k:%. For o = % ad o = —%. the additional symmeotries are

J

? e um
i T
autl

s 8 3
b= -r‘aa-‘; o+ Ty

2



and Valonti 1991). To jllustrate this mothod we take an exemplo from this
paper.

3.2 Example A

(See Akhatov, Gazizov sud Ibragimov 1991)
Consider the following equation

Wy = H(wea). (31)

For this axaraple, an equivalence transformation is & nondegetierate change
of variables £, = and w teking any cquation (3.1} with an arbitrory H into
on equation (3.,1) with in gencral a different function H (wag) .

As wo have montioned bofore, tho first step before performing the group
clagsification is to find the equivalence algebra. The equivalence algebra of
(3.1} is

5} g 0 3
Byetoy~Hgm =g Ba= oy,
] a i g0
Ed“'é"“ ﬂaawa +II6H, Ey=gx ol
a 8 9 . )
57-».1:3—- ﬂg-—t GH, Lnﬂ:aw.

It. follows from the ahove that the o.quivnloncn transformation Is (sco papoy
vitod)

oz ey, & <o i oy,

- . 3 - L3 ("1 . (8'2)
@ =2 (o o Bair® e By obe Byt e by, H = ':;_-H + 84,
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use cxperiments to find these arbitrary functions, The Lie group approach
Invoives using a group clessification method to solve this problem.

3.1 Introduction

Tho most important flrst step bofore carrying out gronp classification s to
find the equivalence algebra of the equation under consideration. The method
used to find equivalenes algebra §s similar to the one of finding the principal
Lio algobya, although it is not exactly the same (sea next chapter, oo also
Alkhatov, Gazizov and Ibragimev 1091).

Ono of the methods of group clogsification of differentiol equations is offeeted -

by inspecting the determining equasions of the equation under consideration,
Using this, hand-in-hand with the equivalence transformation which is casily
found fron. .«xjuivalonce algebras by using the Lic equation (see, v, Torag-
fmov 1004), the equation Investigated can be clagsified. This method works
well whon applied to cortain classes of differential cquations. We fllustrate
this method by using one of the examples given in Akhatov, Gazizav and
Ibragimov {1991).

Tt has been observed (seo Ibvagimov and Torxdsi 1092) that some of the prined.
pal Lie algebra extensions are mbalgebras of the squivalence algebras, Soma
of theso extensions are similar to cach other, To consider only non-similar oxe
tensions, ono has to find the optimal system of these extonslons (see Qvsyans
nikov 1982). Finding the invariants of this optimal system and nvoking
corknit propositions, solve the problem of gronp classifieation for these ox-
tenstons, It fs this moethod which is ealled preliminary gronp classification,
It how heen found that this method works well whenr the equation inves-
tigated hus o fintte-dimensionnl equivalonee algebrn (seo Ihragimov, Torelst

a3




Chapter 3

On group classification of

differential equations

Here wo disenss the classification of non-linear partiel differential cquations
by means of iwo examples, The system we classify in chaptor four Is a systom
of non-lincar pavtial differontial equations, This group clasaification of partial
differential equations illustrated here is not new work, S Lie (1881) initiated
the group classification of partial differential equations, although his foeus
was on linear partial difforentinl equations, Moreover, anotlicr method for
group classification of partial differential cquations which works aven for non-
linear vaxtiel dilferentind equations lins been introdueed s is known as the
preliminary group classification method (see Akhatov, Gaglzov and Ihragle
mov 1491). We {llugtrate how the proliminary group classification method
works, 'Woe do not disenss the method nsed by Lie. Here our main abm iy
fo llnstrate how to classify non<dinear partial diffecentinl couations. This s
done by means of two examplos,

Mast of partiad differentinl equations which hinve physical applieations pos.
~uesd arblivary funetlons or constants. Engineers and physielsts in general

2



The labeling is the same as in Teble 2,1 The above Table 2.2 is of great
utility in choptor six. We do not discuss flve and higher dimensional Lie

algebras as they do not erise in our work,
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appearing as a superseript 1s to separate those which depend on parametors,
Thus, L§, denotes the sixth algebre of dimension three which dopends on
parametor a.

In the vase of four-dimensional reo] Lie algebras we have twenty fonr Lie
algebras (decomposable and indecomposable). The indecomposable rea] Lie
algebras of dimension four are classified into twelve types (see, o.g., Mahomed
1986) with fivo depending on parameters. We congider only six types, with
- four of the standard types incoparated in the two algobras which rlopénd on
parametors. The reason for this will hecome apparent in chapter six,

Table 2.3
Algeina | Non-z.ero commutation relations
Lag [X2, Xs] = X1
Lz (X3, X4 = 2X1, (X3, X4] = Xy,

[mei] = X -+ Xy, [meG] = X1

L 0 <bl <1}, X = X (X Xy = (10X,
(b===1,0,1) C Mg = Xy, [XayXy] == bXs
:1‘.4 (& i 0) [X2l XS] e Xlg [Xl,X.J[] = 2GX1,

[Xy, Xa) = @l ~ Xa, [Xa, Xy] = Xg - a Xy
Lag [ Xa) == X, [ X} = Xy

Lo {Xa, Xa) = X1, [N, K] = Xy

20



Table 2.1

Non-isomorphic structures of real threo-dimensional Lie algebras (ses, ¢.g.,

Mahomed 1986)
Algebra

L3

.
Lss
L3
Lss

Lg‘g (U < Iﬂl < 1),
(65£0,1), {a=—1)
Li, 020)

Lia

Ligg

Non-zero commutation relations

[X2! Xﬁ] = Xl

- [ X Xo] = Xy [ Xy Xo) = Ky + Xa

[X1: Xa} = X1

[X1 Xa} = X, [Xm'?i'a] = Xa

(X1, X3} = X1, [Xa, Xy] = aXip

[0 ol = by = . [Xes o] = X+ b
[X1 Xa] = Xy, [y, Xa} = X3,

[Xy, Xy o= —2Xs
X1 Xa] = Xy [Xa, Ko} = X1, [Xa, X0 = Xo

Labeling: Most of the timo we will use mor~ than onc Lie algebra of the

samo dimension, a5 we have done in Table 2.1, We distinguish one from

another by two indices, the first referring to the dimenslon and the second

to the number of the algebra In an arbitrary chosen ordering. The alphabet

19



whege ¢ is & constant, The system
_ .
Uy b Ulhp w3 =——
1 b T 1 ]
iy + (fi}, = 0,
en
hyp = ?"E;

Ly o= daren o dnii,

admits the fonr-dimensional algebra Ly, gonerated by the eporetors (4.23)

and
0 9 .0 .8 .8
Yastgp s 2 2~ Yop

Hero we hawe exactly the same solution us the apm'.'inl eame, ¢ == 1, conpldered
by Enler, Steel and Mulser {1991 and 1092).

4.4 Discussion

In thia chapter we liave Hlustrated how the proliminary proup classifioation
van be simple when the equivalenee algebra is finite. What s surprisiog
ia thet alﬂmu::h it works in » simple manner, one doey not get new infors
wation, Tl princlpol Lio algebrn obtained in this chapter s wicd in the
next chapter 63 obtain a complete cassifieation of equation (4.1) in terms of
low-dlimensional wee algebras, ‘
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Ther is 10 need for 18 to find the optinal system of subnlgebras ay hw been
sugpested in the previous chapter where this method wo disenssd, Using
the following proposition wo vlassify (4.1).

Proposition 4.2
Let. ¥ be an equivalence operator, The operator

X e prgeunat) (V).
18 & symmetry operator for the system {4.1) with funetion
Yo £ (),
iff o (1) Is invariont under the group generated by
Z = Pt {Y)

{soo Iheagimov and Torrist 1992),

To find the invariants of {4.94) we can neglock the vonstant 207, Lo, wo use
= mn-q- + ﬂ’aaf

Following the well-known mothod, we have
2@ = F )} opm = 0.
Trom this we abtain the firat opder ordinary <ifferential cquation

Fenf =n,
Solution of this cquation is

1}_!:3 f(n,):z :;
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This proposition las been taken from Ibragimov and Therlsi (1002). From
(4,20} the equivalence operator ¥ for systom (4.1) is

Y = (Git+0y) ?% 4 (Chie + ot O) %

+Cf'4-t% - 2f11n-‘-).:0-5 - 201&-5% (4.22)

~G\ B+
asud
Moay? & =~2G‘1u§% + 2@;11'5%.
Equating prg.mY to zere wo ubtaln
Cr==0

Substituting Cy = 0 in (4.22) we have

2 00
Ymaaé'g“f‘(adﬂ“!’on;md*f:qm.

Therefore our principal algobra is

0
‘e % o
T (122)
%o b
)

G -
i

4.3 Preliminary group classification

Au wo soe from above, that there 1s only eno nonetrivial projection pren,e (¥)
for our squivalenee operator ¥ which 1s given by

f 8 8 -
Z =904 (mﬂm o 1,"3*;;‘-) . (424}
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Gyt + Cgt -+ Ch,

Ci . (4.20)
P = =20m,

7 = =204,

1 = OB,
P = 2019

oy
[ -]
}

fl

i

Heneo we have the following gencratora

0. .8 o0 o0 58
Yy o b ok i ““35";"5?5’“361::*2*1'35’

Yy o,
i 9 (4.21)

¥ = famam o m
a:ea o'

Yoo g

Tt is cagy to see that tho reflections
F R AR TR TR V1Y) B =R

also yleld an equivalence transformation.
To find the prinedpal Lie algebra, wo use the fellowing proposition,

Praposition 4.1
An onerator X Dbolongs fo the prinelpal Lie algebra for the system (4.1) UE

X &= nl?lhit.u.ﬂ.ﬁ;"” (}")

with an equivalenee generator ¥, such thnt

Deguga (¥) =
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Alter substitating tho above equations in the third oquation of (4.8), wo
obtain '_ ” '
pe [-E-+ei—»n.“:]- (4.17)
Differentiating the nbove equation with respect to ¢ and @ wo have
4
e =Y [% “+ &~ "?ﬁt} '
M
e = T&'"l' xe ™ he|
Tyom (4.12), the ahove equations become
’?;‘.l + Egf <= 0,
s+ BER, == 0.
Beurlng in mind that & is indepondent of £, wo dedueo
7= gt (), | (4.18)
Solving tho et equation of (4.16) by using (4.18), we get
& = Qi+ Oy
Thtis fur our corflivients are
El =3 Gyt 4 Gy,
Eﬁ w3 Gim + f"a (f) 1
P = gl{haud), (4.19)
i = o (n),

o

gt = P (I).

o (F2u )

fi

Uning (4.14) to solve oquations (4,14) and (4.16), we olitain the }’,1.‘1 eral som
lntion '

el = ("lt+(“£is
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after the substitution of the prolongation foxmulae and (4.6). Decomposing
the above equation with respeet to us, fig, B, —1- and ny, the following system

¥

results
£ = £ (42), & =82t e, 0),
weflngd b 516} <+ Quith] - i — 7iES + 1 = (),
ul} —~ £ 4 ulgL = 1€l bt e dimd = 0,
w7 (@, %, 1),
“ﬂn + fimg, = 0,
Atk

0} + und o+ gl 8 (duen + deii) e ‘D i w_;;.gx

(4.14)

Solving (4.13) together with (4.14), wo obi:nin
it = (4, B), £ = 1 1), (4.15)
The first equation of (4.8), viz.,
1 4 el 1.8 4.
&) '*'._‘uC2 “+ Ut il 0,
becomes
D E
7?; (%f— - -uu,) oL b nanl = (Fet b upfi) 9 -+ Bl — (“;‘;‘;‘ - ““r) &
=iy ('SI. (ﬁ u * 'u-nﬂ') &ﬂ) U [q.‘t + ua‘ﬂu ¢Tﬂn + 7 aﬂn]
1 (dmen + dndi) nl; = uuy ((,?9 e flpbR) S+ upn! — --r; es (),
Equating the cocflicionts of g, iy ond E; to zevo, we » obtaln the system
e Eg =N
~fhigh =~ & + b = 0,

o E“ ta), nt =t UERAON

iy -mqm
n;-i-m (0~ &) +ung = =t = 0,

Solving the third cguation of (4.13) by uaing tho third cquation of (4.16), we

(4.16)

declues that
=0t e B),
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Since # and n* are independent of ¢,
fe = =ty fig = g = 0o g () (4.12)
W = egedeng=0s sy @),

Alter substitnting the prolongation formdae and invoking (4.6), the fourth
eque ‘on of (4.8) ylelds

7%+ w4+ %n& “+ ity + (dnen + dmen} nf; ~ By (E% + Uy o+ ;%E%)

...E;ﬁtg’{ = By (4men -+ dnéil) 6, - (dren + daih) ( 2 o ugfl 5,%5,1)
o (daren + Anot) 1,82 — (dmwen -+ dmeit)* €8 w dorey® = dmin® = 0,

We et cacht of the coofficients of g, iy, 13; and B equal to zero in tun and
split the detexmining equation into th. Mllowing system

=g (e, B},
78 = (dmen + dnti) & «2 0,
g =~ (dwen + 4wei) 63 = 0,
nh e (dmen & dnoi) &) = 0, (4.13)
&} + (dren - dméfi) ), = 0,
7+ {dwen + dnil) {nfy = &3 ~ (dmen, + daréit) &3]
wdaen? o dneg® =2 0,
‘The seeand equation of (4.8) hevomey

9 (-%-,-1;5 — 1-u,) N o M = (Flgte ok it} i = Tl <+ (Alon - finy) &
o (#hptt < ii20y) T}, = e [g? o+ (-‘ﬁ - uum) £3 b 2 = (Fip -k Flt,) {-‘,‘%]
. B0lh b u [nf. o= U %vﬁ; + 00 4 (dreen < drei) ?]?._3]

it (00 b Tty ) €2 4 0 (fipte o Fingy) (men -k dmiii) €], 4 gy
Al
et |77k b gk b %ﬂ}; + ﬁ-m}‘] o it (daren 4 dmeit) ),
L. _
=13 (!ﬁ? o um)' (8 o (dmon + dmiii) €] - e, (62 b u €2)

e filly [%Ef o fipER e (drren + drin) ,‘;] o gt =2 (),
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=
B

Tho last five equations of (4.8) become

- vam: =
= Yl = 0
g %nﬁ = ()
Hi = Pt = 0

gy = 1}’“3;?,» = ()

30
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Furthermoro

1

g

]

Ha

and

Hy

Iz the nhave

8

o

i

it

i

Dy (1) = D1 (€°) ~ v D0s (82) = w0y (")
~tnly (ﬂe) — 4Dy (ﬂa) ~ ¢y (ﬂd)
M- ?ﬁnﬂf.

Dy (1) = 03 (1) = a2 (8%) — vl (")
~tpndds (%) = n Dz () — wuls (n") |
Mg = "e"nﬂga

Dy () = 90D (€2) = vy (6%) = v s (')
wthng (ﬂa) — ol (ﬂs) ~ hpDs ('?4)
Hy = ¢nﬂ3!

Dy () = D5 () = D (%) = vuDy (")
Ly (ﬂa) ~ D0y (713) ~ g (Wd)

g = 'll’n'?ini

Dy (1) = a5 (&) — Vg (&%) — Lo ()
~tfiullg {'ﬂu) =Dy (Yia) ~ g (ﬂd)

wr = Palip

- 8 &
D@ =z -6.? -+ "f’l,'é"'!: - iy
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= 0 b wind + el + A + Bony — By (8wl +nidl + gl + Eigh)
~Ey (& +wibd +nil + gl + Bigh) s

¢ = De (') =D (8!) — uaD: (¢)

= 1) b Uah o+ M o FlaTl o Bany = (Eé + uﬂ:&}; + Nally o+ 16 EIE}#')

=ty (€3 + 2 o o2 + R + Bath),

CE =3 Dy (ﬂa) = s (6 1) - Nz Dy (Ea)

= 7}3 “+ ﬂmﬂg + na:’?ﬁ + ﬂ-xﬂ?i < Es??%: -y {E: “+ ‘u:eﬁ\i + "mfa]i - ﬁ.tffii + Exf}?)

g (€2 + el -+ mof + 1ol + Butd)

6§ == Dy (1) = Dy (€1) — D (¢)

z a4 1&,.,?32 o iy 4+ T b B - Ay (Ei o+ Uplp ok ey + Ikl Ewrf}-:)
iy (68 b ol o+ 183 1 el + Buh)
¢ = De (1) = B (6') = BeD: (¢)

5 78 <+ o o mah o e o By - B (8 o sl a8 -+ Bnty)
By (g2 el ol )

Tha aperators Dy and Dy ave given by

9. 0. 8 0. 0
Df_ (=] Zﬁ‘i‘ﬂlm ‘i‘ﬂgb‘;*]*fl;?ﬁ;"‘“ﬂ:'gg; ("1.9)

R A
Da-. o= E;:;'l‘ﬂ.z?}’;:“i‘ﬂ;‘é’ﬁ'f"ﬂ;-aﬂ+L1aE‘
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System (4.7) can be rowritten as

¢ gt — =yl e,
63 -+ ulf -+ Ao G + uam® =0,
WG+ gt = 2yt = 0.

&3 = dren® = dwin® = (), .
fiy =1 (4.8)
fia = 0,
#y ==,
Hs = O
pa == 0,
The prolongation formulae of (4.8) are:

=01 () - (€) i ()
2 1+ uml o+ neh <+ Ak + By e (8 + w8l 4 nill + Akl + Eicly)
~tig (&8 + w2 + midd + g + Begd)

¢ = Dy (o) = D0 (1) = neDy (&)

£ f -+ gl b nggd b dund -+ By - g (8wl + migh 4 0} + Bigh)

g (5? o+ gl b el b ] - E:E?é) ,
¢ = D (1f) = 0D [81) = 112 (&7)
G b g} s ety b A By o g (€ o i) o el ok 1) E!-e}f)
ity (E? R R o R s PJ;E}'}) .
¢f = D.() = BaD (§) ~ By (6%)
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of the cquivalence group from the condition of invariance of {4.1} written as
the following aystem

U = B -,

Fly = o k),

el

¥

By = dwen 4 4rih, _
h = P =iyt Pp =0

(4.6)

Ng =

Horo w,n, 5,5 and 4 are considored a8 dilferontial variables: w,n, 6, B in
the space of (t,2) and 4 In the space of (£, x,,n, %, &), Thoe coordinates
&, &%, .., 9" of tho operator ¥ aro sought as functions of #,z,u,n,7 and
E, whiereas the coordinate i¢ a8 & function of £, &, u, n, 7, I, 1, The Invariance
conditions of sysiem (4.6) arc

¥ (u¢+uu..-, - 7—%}3) = ()
¥ (g o+ gt o ftt) = 0,

Y (B, ~ dwen — drii) = 0,
Py =0, (47)
¥ (4) = 0,
¥ W’n) = 0,
¥ () = 0,
¥ (¥g) = 0

provided (4.6) holds. ¥ is ihe prolongation of ¥ aud i

¥ z:'Y"Iﬂg’c')u +C“(‘}u 'H‘?&n ‘{C*’an Ci(}n

0 9 a o)

"‘"‘“’awu * "’“ow.. + ”"Bwu T
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(X1, Xa] =0
(X, Xo = ]
(X X =0
[ Xy =0
- [ Xy, Xl = X,
Aftor manipulations we find that X is an opoerator of the form
X = ™ [J; {n, %, K) -(% o+ O (n, 5, &) -E%]
o [(a (nil, B} 'z‘?“ + Cy (o, B) gu]
o [i: (n, ﬁ,I}') - 4. Co ot ) I,] .
Solving for the unkuown coefBeients of X, wo end up with
X2l

and ¢ arbitrary, In other words our system doed not admit the algebra Lya.
F. Algobra Ly

Our operntors nro as follows
9 o 8’
T 0= g

. i)
Xy o XibelX, whire X = f-‘,}m ot i el e & constant

;Yl o]

and

o o i

,\,4 foac EI (t. B ATH TN 'ﬁf} :’}? - ea (t"r’ i, .E) ?}l:l:
1 (i 1, i B }‘Q" ot (e i, 1) ﬁi
r{p_‘l.ii (h RETR N ﬂ‘ I‘:} {' f= i (f; €'y u;";” !'J) ’61“-
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[Xa, Xg] = &

[ X3y Xa} = Xy + 0Xa,

We deduce that the operator Xy which satisfles the above commntators i of
the form

Xi = (ab 42+ Ch (n,ﬁ,E)) '{% o (eaa' = o 4 C‘a (n, fi.E)u) 9
+C (n, 11, E] et (=-t+au+t”7 (n, #l, £)) == o +ﬂ”(ﬂ,n L")
413 (n, 1, E) =}=n (n, 71, Is) e

Solving the determining cquations we end up with uﬁ incompatibility problem
as in Case B, Henve our system does not admit L4 for any value of a .

E. Algobra Lig

Hore we romune our oporators as

Xy = B un, 8,00 +€“ (8, U 22, n.FJ T

H?

gt (t..r.u,n,n,b)mnpq (¢, 2, 0,m, n,I}) d (5.33)
opaf® (£, i, 48,7, 6, P) +n (b, 1,y 0, J8) =g ,’i‘.
and
- G
Ay = it Xy = 5
d’Yd = fa a

7 " O
The above operators satisfy the commutaioru
[-Ytg -Yd] = qu
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anel

_ =2
Case O2, Forbh =0,
det%wl-m-q- QR-Qmﬁﬁina

ot e o T on T OE
and | |
pel.
This i3 the special cese which way considered by Euler, Steel nnd Mulser
(1691) and {1092), for & == 1 {see chapter four).
Case C3. For b= 1,

0 3] g .. 0 g
.Y.elmtb?-l-ﬂatb-; +umw2nm -~2ﬁ-§i

and |
o
W= =
Ience (4.1) admits the algebra LYy,
D. Algebra L3,
Owur prineipal algebra together with the nnknown operator X satisfies the
following commutators

(X1 X4 = 20X,

[in‘ }CH] =3 0
(X3, Xa) =0
[ X = 0Xy = Xy
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[Xa, X4 = X
[Xa, Xa] = X3

(X, X4] = bXs.

~We find that the nnknown operator Xa, which satisfles the above commuta-
tors togother with the principal algebes, is of the form

Xu = (4 Ch(mAE) at+((1+b).v+c'g(n,ﬂ Byut Gy E))a
oo (bt ok (n,ﬁ,L‘)) il i3 (n #, E) i
! (n. 71, ) ﬁ ot (ﬂ,ﬂ.,E) '{)'E

Aftor solving tle determining equations wo have tho following gencral solit-
tion

gl =t = (l+bata,

oo by, P ez 2, P o ~2f
.

e (b-1)8, V= =y

where o and ¢y are arbitrary constants, We ignore the aperator X « tr;;-(,%,
as It s a Unear combination of Xy, Hence

Xg = t0+(1+b):r «Hu,;)

mﬁnf?- - 2!:‘-‘2- o (e 1) L‘

b’
GM“ 01; E‘JI' b = "“1‘

Xy f.ﬂ. uﬁ- - 2n=§»~ o Dijwnen 4 31,,.2..

aF " Shu T "on T “"oa oE
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[Xn, X4) = Xa -+ X, (5.31)

which constitute the elgebra Laz, In o stmiloy manner to Ly we find the
operators that satisfy the above commmutators which has the prdocipal Lie
algebra Ly ns o subalgebra, The operator Xy tupns ont to be of the f_orm

8 s 2 8
X = (t+u)m+(2m+u2+¢4(n,11,bj)55
G AE) P ) e (532)
8 o
3 ; g w——rx

Wo nse the method discussed in Case A to find the aknown cocflicients of
Xy in (5.32). Starting with tlie lovrth equation of (5.18) wo heve

%ﬂ& + g+ (dmen 4"“5"*‘*) s = Bite

= {dmen + dwtn) (2 -+ 2uuy ~+~ C‘.m 4= 71, Cin

wT
w (dmen + dwii)° Cup = dren? = dweng® = 0,

This system gives tise to an incompatibility (see the torm containing 1)
We coneludo that our system does not adimit the algebra Lgg.

C. Algebra L,

The algelun L 5 satiafies the following commutators

[¢¥]| qu] &= (1 + b) x}
[X1,53) =0

[-tY]; X‘,‘.] = ﬂ
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Using (5:21), (5.20) gives ng the solution
7 @,
From (5.21), (6.22), (5.23) and (6,24} we arrive at

&1 = O ﬁa‘ﬂch
7 = PopPoyt=,
h o= B

Bubstituting (5.25) inta (5.18) we obtain the operatar

Xd = Q[%,

(5.24)

{6.25)

Tlis epexator js equivalent t¢ X3, We canclude that our system does not.

eddmit the algebra Ly,

B, Algabra Lyg

We consider the same operators fn (5.1) aud (6.2). The only difference ix
that Diore these operators are required to satisfy the following conunutators

[oYig X r[] = 2&‘{1

X Xa] =0

[‘Yal }:41 =2 A:ﬁ

(Xa, Xaj 2 Xy
49
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(5.27)

{5.28)

(5.30)



e~ (it fiat) m <+ By - (Ratt ok ftg)? 88 o (7o o+ Tinee) (&)
b (Fiott b Fitte) By = iy [(;%E ~ w@) &Y b gy = u (fiu o Tlug) 6
=il Bkl + u 1;?‘“" du [ﬁmnﬂ + (dmen 4 AnER) 13; = fiy ({g-&,{ o flp 3
+u (dren -+ dnER) £ = ufle [WE‘ + %ﬁ’?&,{ + iUl + u (dmen + dniit) &,
gyt 4 %n}, o+ figmh o+ (dmen = dwén) ), = (-;%E - ‘Lm;) (;g,.fl)]
-l ;%E - uu,) flglh =l (;%E - uu,,-) (dren -+ dwen) &,
e Titiy [fu, 8 4 %T——Eﬁ + ﬁ,uE,%_] « fittats (Aaren 4 duiii) £ 4w = 0,

Wo et thie coollicients of 4z, B ny, #x and 6 cgnal to zero and split the
determining equation into the following rystem

U] — 1 ==
-m;,1 o+ fimE + AL ~ nuﬂ,En g =0,
ni’. 4+ {dzen 4 411'2%) 0 = 0, N = r)ﬂ = 0,

Solving this system we have

‘El =), Ez = le\ 7?3 e Kyl ??1 = %n (5.21)

where &, Ky and K are arhitrary constants, Using the above sohutions the
thizd equation of (5.18) becomes

7 .Tq%;: + 1 7 T"“ il + (dwen 4 i) gk | = 0 (5.22)
Tho feurth equation of (8.18) beeames
wdgron® v dai kgt o2 (),
Bearing in mind that 5* is Independont of 7, we ltave
f* w2 Ky e 0 (o)
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Tha prolongation fornmlae are ag given in chapter four (seotion 4.2). From
the fArst equation of (5.18) we deduce

s = (Bett b fiteg) W3 4+ By, - (;%E - -uu;,) [kl = (tpte o i u) €]
- (-‘-1: ~ ) Byt ~ [(-;5-1: - wu,) £ ey (8l 4 Gm)]
b (A ) (S - Cin) = tg [E; (Ehu + Cug)] + [ v:?,qﬂ "+ n,w;ﬂ]
“+u (dmen + dwéfi) n); ~ (—-‘-E - uut) [—-j-,-g}, | Aipk) + (dnen -+ dniit) E}g]
~lly [E’ua, o e (Enu + Cin) + fi (Eh1t -+ C‘m)]
=yttz [(drren + dm*vﬂ) (ks Q)+ uan? = S0t 2 O,

Sotting the cocfliclents of wy, ny, B and % oqual to zero, we obtain the

following gystem
Cia=0, Cine=0, Cip =0,
R s m’E £1 +qt =,
o T
[

o (w., - -1251) + (dren + d) (n); - -L*g,) 0,

el g
nml'!l + Ez??}»‘ = ?—ﬁ" (mE;l; + EgE}.;) - ;-ﬁn‘{ e ),

Salving the shove cquations we find that

¢F '
n}.wi,;-eu =0, }ﬂwe}gmn. (5.20)

7 mmql:n

The second equation of (5.18) togother with (56,19) and {5.20) glve
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Substituting the cocfflcients (5.1:&) into (6,2), wo dotermine

= g (n,f, E) [e‘u-+- Cy (n,n,b)] =
+1! (n, i, E) -+- 7 (n, 4, L’) 0 {6.15)
1 (n, i, B) 5;5 + 4 (n, 7, E) b—E-

Our unimown coeffielents depend on n, 7, £. Does (4.1) admit X,? We
conslder this. For the c!et.ermining aquation wo nse

el 4
’8::,, :'Jm 3311

"““aan +G ﬂan *ClaE ““%.r:'

X = chl o *5.16)

which s the prolonged operator of Xi. The invariance conditions of owr
system pre given by

X (m + iy = %E) |(4.n e (),
K (fig 4 (7)) |{d.1} =0,
X ("ﬂ (n) 7o = %E) |y =0,
Xy (Be = dmen = dncit) gy = 0.
Thesoe invariance conditions yield

(5.17)

¢ <+ uch + ot = =t = 0,
68+ udl + A 0 Funt =0,
et (n) + ¢ (n} ¢ - :}évr‘ = (),
€3 = dmen® - dmin® == (), -

(6.18)

in which we subatitute

il ) . .
ty ;T;E = Wty Mg =2 = (Tt b 11,U) (h.19)

ey o
W' B o dren -+ dniii.

n‘rm
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[Xa, Xy == 0. (5.8)
From (5.1) snd (5.2), (5.3) becomes | |

' 3] 9
[thd] !‘at +‘Ea!6m :}:au +n:¢an +nga- +7}:aﬂ ={l (5'9)

The above equation (5.9) ylelds

g = 0= & =g (tunitl),i=12 {5.10)
7?:% m () =b gyl TI’ (t,u,m i B), J= Laud

~ Euuations (5.4), (f.6) and (6.7) ave identically satistded, Subsl:itutiug 5.1}
and {5.2) into (6,6) and making wso of (5.10), we obtain

o 7l &, 40 3,
[A‘ X‘i] eiat'}'eaa»'i'nta lan'}'mah"{ ﬂiaﬂ‘“‘n' (5'11)
From this cquation wo have the following
¢ o Sunikb),i=12 | (5.12)

¥ o= o (a0 E), §=liud

Equation (5.8) _gl\?os

b O
1 3 1_,_,, o
[‘" h 2‘-4] uu‘t Eu{'m "l"nuau +nnon “0?1 +nu31°1 E 0 (ﬁ 13)

This equation implies the fllowing

& = gna k), (5.14)
& = fus O ndE),
W o= g (n6,5).

i
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A. Algebra Lgs

The pritcipal Lie algebra, Lp, of system (4.1) hiag the following basis gener-

aors
a 8 '
X = Ef; Xg(;- g ..(5.1)
X = tc');r bu’

Thds basis sntizfics the commutation relations of Lsa. Wo impose algebra
Ly on our aystem (4.1) which according to our labeling denotes the firat
algebra of dimensht four, G‘onscqnehtly we assime that there fs another
clemoent Xy, apert from those in (5.1) which constitate Ly, viz,
w3 51 (@, ﬂvE)"gE + 52 (t 2 u,n, ¢ E) '5%
+01 {8, 2,10, 1y Fiy B) aa + 92 (20, 1, 7 E)-Bg- {5.2)

B) 2.

o
Aceording to ‘Tabls 2.2, (5.1) hognf.her with (5.2) satisfy the commutators

b uen n,EJ-5- o+ 9 (t, @, um, A,

X1 X =0 O 5a)
(%1, 85) =0 {0.4)
X0 X =0 (5.5)
X X = 0 (5.6)
[ ] = X, (57)
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Chapter 5

Classification according to

low-dimensional Lie algebras

In this choaptor we complotely classify system (4.1} according to the low.
dimensional Lie algebra it admits, We do nok nse the methads of classiil-
ention discussed in chapter three beeause of thele inhorent difficulties and
disadlvantages. The method we use here has its own advantages and disad-
vantages. This method shows no disadvantage in the group classiBeation of
Hyato.m (4.1). Unlike other methods, we kuow when the systom o equation
is partially or totally classified nsing this method,

The principal ide algebra Lp of systen (4.1) satisly Lyy of Table 8.1, Ly ls
& subalgebra of cach of the four-dimensional algebras lsted in Table 2.2 (ree

-o.8., Mahomad 1986}, These are the enly algebras of dimension four that has
Lyt o subnlgebra (see Mahomed 1986). As o resmlt of this, we nse Table
2.2 to classily our system (4.1}, Let us show now this method works, The
work pressnted heve Is nows
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C. For v1{n} = 1 4 n, the program reads as follows

ECHG ' TRIE

. NDEP#:4 $

NIND#:2 §

DV#:DR#: O

DEX 1)UL, 1)+0{1)%0(1,2)~(B/D)*U{4)
DEXL2]:U(3,1)+U(3)#U(1,2,40(3,2)%U(1) § -
DEHL3] 1 (140(2))%U(2,2)=C(A/TINU(A)Y) §
DER[A] 1U(4,2) ~4eHPI*ANU(2) ~A#PIHBAT(3) &
DVSLL} 10CL,1) § |

DV#(2] :U(3,1) $

DVH[aT:U(2,2) &

DV#[41:0(4,2) $

ECHO:FALSE §

RDS() $

We fired the symmotyics

VEC# (1) = = -l (X2)

VEC# (2) = = Dyt (X1)

VECH (3) = == -X1*D (X2) - Deft (U1}

The above tesalts confirnt the analytical results we havo obtained.
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VEC# (1) = = -D# (X2)
VECH (2) = e Dt (X1)
VECH (3) = = -X1*Dyk (X2) - Dt (UL)

&)

B, For ¢r(n) = -?:;c;}-, where C aud P are srhitrary constants, we havs

ECHO s TRUE

NDEP#:4 $

NIND#:2 $

DV#:DES:{} &

DERTL] (U1, 1)+UC1I#UC1,2)~ (B/D)#UC4) $
DE#[Z]:U(3, 1)+U() +U(1, 2)+U(3,2)%U¢1) $
DE#[3] :GxUL2,2)~( CA/TYWUCAIRT(2) “ (P41)) §
DE& {4 14, 2) ~4+#PT* AU (2) ~4+#PT+B+U(3) $
pVlilwi, ) ¢

DVE(211U(3,1) &

DV#(3):U(2,2) $

DVE[41:U(4,2) $

EGHO: FALSE &

RDSC) &

Here, the symimetrics ave

VECH# (1) = o= P (X1) / (P + P*2)

VECH (2) r= = P¥D# (X2) / (P + 1°2) - P*2¥D (X2) / (D + P°2)
VECH (3) = = XIMP*Dg (X2) / (P + D) - XI*P 2D (X2) / (P +
P°2) + PH¥D# (U1) / (1« 1% - Dt (U1) / (1 - 1)

VECHE (4) = = UPDih (U4) / P = XUDg (X1) / (D + P*2) - X2¥DDy
(X2) / (P + D*2) » X2¥Dgk (X2) / (D 4 P*9)
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Appendix
We find the symmetries of the system
o, = o
Uy 4 Uty = ﬁ;,E’
A (ftu), =0,
B
¥ (n) ﬂa = ™
By = dmon - dmifi,

by 'sing the progeam LIE version 4.1 (¢), Wa consider diferent forms of
% (1) for implementing the program.

A, For ¢ (n) arbitrary, the program gives

~ ECHO:TRUE

NDER#:4 $

NIND#:2 §

DVt DER () § _
DE# 1] 10(L, 1)+0¢1) (L, 2)=(B/D)*U(4) §
DE#12] 1U(3, 1)+U(3)+U(1,2)+U(3,2)40(1) $
DE#[8] :H{U(R)IxU(2,2)=((A/TY*U(4)) $
DE#14] 1U(4,2) ~4+#PIHANT (2) ~AHPTHBRU(3) §
DVL11:UCL, 1) §

DV#{2]:0(3,1) §

DVI3]:U(2,2) §

DV#[4):U(4,2) §

ECHO: FALSE §

RDEO) &

Tho gymmetries are
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alence symmetry is fuite. For the equation utilized, the problem of group
classification reduces to the construction of optimal system of Lie subalge-
bras, This method can ho tedious, as it was in thiz example, As the name
implies, it is also a partial group classification method.

In shapter four, the equivalence and principal Lic algebras of the gystem of
~ equations (4.1) were found. These symuietties became nseful in the following
- chapber, We nsed & now method to classify bnr systom, Before uging this
new meﬁhod, the preliminary group clogsificaion mothod was used to classify
gyatem (4.1} and tha results showed that 1 {n) = %, where ¢ is & congtant.
This new mothod classifics accoriling to low-dimesional principal Lie algebras
snd our system (4.1) had a thtee dimensional Lie algebra. We invoked the
Tie algabras of dimension four listed in chapter two (Table 2.2) to completely
classify the system (4.1). Accordingly, we extended previous xesults on tho
gymimetry group of (4.1} abtalned by Bulor, Stecb aud Mulser (1991) and
(1892). The method wo have utilized fs & variant of the reethod nsed by Vawda
and Mahomed (1994) and has been nsed for the first time in the classification
of partlal differentinl cquations. Our resnlts show thas Pn)= ;ﬁ-;, where
A and « are srbitrary constants, in order for the system (4.1) to admit &
four-cimensinzal algobre, For o an arbiteary function of n, (4.1) admits
the priveipal Lie algebre Lp = Lyg. Unlike the other methods we liave
considered, fo Is not a partial group clessification mathod.

The method wo have {ntroduced in chaptor five can also bo used to clas-
sify the equations of chapter three, 50 ag to confivm the classifivation which
was eatrled out by the preliminary group classification methods. For fture
works, the symmetries of the system (4.1) wo have classified can bo used to
find invariant solutions and also optimal system of invarlans solutions,
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Chapter 6
Conclusion

In owr work we have {llustrated different methods of group classification of
pextinl differential equations. Wo have illustrated each method by an exam-
ple. Along with this, we have introduced a new method of gronp classification
which classifies according to low-dimensional Lie algebroa.

The partial difforential equation wo heve used in Example A g an illustra-
tion has nine equivalence symmetrics and five Lie symmetries, The method
disersssod in this choptor works with the knowledge of thie determining equa-
tions and tho equivalence group of the equation (gystem of equations) woder
considoration, This mothod worked perfectly for the example used. Sinece
this method is o partiod classtieation method, one Is not save if it completely
classifies the equation. This is ono of its disadvantages, The other is that
yon cautiok state & priori which equation (system of cquations) can ov ennnot
be clossifiedd using it.

Tuo proliminary group classificntion method discussed in chapter three was
illustrated by a partiel differontisl equation which possesses infinlte numbor
of equivalonce symmotrics and thteo Lie symmeties, viz., example B, Tlis
method works with equivalence symmetries and s simple when the equiv-
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5.1 Discussion

* Tho method naed above i new, If is only applicable to equetions or systems
wiilch possess low-dimensional Tie algebras, ag the one considered above, Us-
ing this method we have completely elassified system (4.1) for fonr-dimensional
algebras. Wa find that % can only be a function of the form n—g!_-',;, where ¢
and b axe constants. Thus, we havoe achieved & goneraligation of the result of
Euler, Steeb and Mulser {1991) and {1992),

Some computational work, using the p'rog'rmn LIE by A IX Head {1993), lis

been done to condirm the above analytical work for some functional forms of
4. 'Wa show this in the Appendix.
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The commutators satisfied by the above operators are

[Xls X‘i] =) (5‘34)
[, Xa] = 0 (5.35)

(X, Xa] =0 (5.36)

[ Xa Xl = Xa (6.37)

[Xa, Xa] = 0 | (5.38)

(X3, X4] = Xa. (5.39)

Substituting owr operators in the above commut-stors, starting from (5.34)
to (5.39), wo obtain '

X o= & (n,ﬁ,E)%-i— [3&‘5 & --a:t+03(n,ﬁ,E)] a%
-t (n, i, B) % + 9% (n, 7, B) ;% +7° (n, /%, E) ’a%
+1t (n,f, E) 3%,
Solving the determining equations, we find
gt (n,ﬁ,E)+0(n.ﬁ,E)+§+a=o.
The above equatlon gives

gty w0,
& (n, 7, B) + C {n, 8, B) = —q,

The equation u = 0 8 impossible, Heneo our system does not admit the
algolra wo linve Lyg.
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