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C H A P T E R       1 

INTRODUCTION 

 

1.1       Background to Study 

 

When measurements are taken from the same subject more than once, the responses 

are no longer independent. Longitudinal data is characterised by clusters of repeated 

measurements, each obtained from a single subject (Fitzmaurice, Laird & Ware, 

2004). Longitudinal study designs are often used for environmental or ecological 

studies to measure trends over time. Although these studies can be expensive, time 

consuming and difficult to analyse, they allow the direct study of change over time 

and the factors which influence this change, as well as assessing within-subject 

changes (Lindsey, 1993; Twisk, 2003; Fitzmaurice et al., 2004). Analysing the growth 

curves of individuals over time, or determining the effects of the continued 

administration of treatments over time are examples of when longitudinal studies 

would be required (Lindsey, 1993). 

 

A classic example of growth curve analysis is the data set of Potthoff and Roy (1964) 

(the PR data set). Their data set consists of measurements obtained during a dental 

study from 11 girls and 16 boys at the ages of 8, 10, 12 and 14. This study was 

conducted by researchers at the University of North Carolina Dental School, who 

measured the distance between the pituitary and pterygomaxillary fissure for each 

child using x-ray exposures of the side of the head taken every two years. The purpose 

of this study was to examine growth of this structure over time and to determine if this 

differs between girls and boys.  
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A second example is from an ecological study (Kirton, 2005) conducted on water 

hyacinth plants. Sixty plants were chosen at random and divided equally between two 

herbicide treatments, one using a sublethal dose of herbicide and the other using no 

herbicide. Three nutrient treatments were also used with varying amounts of 

phosphate and nitrate. Weekly measurements were taken from the plants over eight 

weeks. The length from the base of each plant until the tip of the second youngest 

petiole was measured each week. The purpose of this study was to examine the 

growth of the plants over time and to determine if this changed depending on whether 

the herbicide was applied or not, and if this depended on nutrient level. 

 

These data sets could be analysed using several different models of varying 

sophistication. Taking the PR data set as an example, let yij, i = 1,…,N and j = 1,…,ni, 

be the length between the pituitary and pterygomaxillary fissure for the i th individual 

at the j th measurement occasion, where there are N individuals and ni measurement 

occasions for the i th individual (ni = 4 for all individuals in this example). A simple 

approach to analysing these data would be to conduct a two sample t-test between the 

measurements from the girls and the measurements from the boys. This approach, 

although easy to implement, would be invalid and would ignore the time effect in the 

data. This is because more than one observation from each individual would be 

included in the data, thereby violating the assumption of independent observations. 

One way of getting around this assumption, provided the data could be assumed to be 

normally distributed and continuous, would be to perform multiple t-tests (Crowder & 

Hand, 1990; Davis, 2002). Therefore t-tests would be performed between the 

measurements of the girls and boys at each measurement occasion. The difficulty 

using this approach would be in deciding on an overall conclusion, since some of the 
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tests may show significant differences and others may not, leading to the possibility of 

subjective conclusions. Alternatively, a t-test could be performed on the data from the 

final measurement occasion only, but this would result in a huge amount of data 

wastage. In particular, this method would not allow for an analysis of growth trends. 

 

To compare the measurements at different time points, paired t-tests could be 

performed between the data at two different ages. All possible paired combinations of 

ages could be considered. Because the test comparing time 1 to time 2 will be related 

to the test comparing time 2 to time 3 and time 1 to time 3, these tests are not 

independent, and this can cause the probability of finding at least one test significant 

to increase spuriously (Crowder & Hand, 1990; Davis, 2002). 

 

Subject, gender and time could be included in an analysis of variance (ANOVA) 

approach to analysing the data, resulting in the model yij = β0 + β1δi + β2i + β3j + εij, 

where δi is an indicator for gender, and β2i and β3j are adjustments to the mean 

response for the i th individual and the j th measurement occasion respectively, and εij is 

the error term. Alternatively, time can be included as a continuous covariate, changing 

this to an analysis of covariance (ANCOVA). Since subject is included in the mean 

structure of this model, this approach would imply that the subjects included were the 

only subjects of interest and inference could not be made beyond these individuals. It 

also does not allow for the inclusion of variability arising from the random sampling 

process, and therefore underestimates the variability in the data (Allison, 2005). 

 

The above analyses can be refined by subtracting a base value, usually the 

measurement taken at time zero for a particular subject, from the measurements of 
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each subject, thereby allowing each subject to be its own control (Crowder & Hand, 

1990). 

 

A different approach could be to summarise the vector of measurements for each 

individual into one summary measure (Crowder & Hand, 1990). For this method to be 

effective, a summary measure needs to be chosen that will adequately describe the 

subjects’ data (Crowder & Hand, 1990; Davis, 2002). This method is referred to as 

response feature analysis. Examples of response features include the mean, maximum 

rate of increase, time to reach maximum rate of increase, half-life, or the slope of the 

least squares regression line. The data then simplifies to ++ ++= iiiy εδββ 10  and 

+
iy and +

iε  are the respectively the response feature and random error of the response 

feature for subject i. These methods require the assumption that the variance of the 

derived response feature be homoscedastic. This would be violated if there are 

different numbers of observations being summarised for each individual, implying 

that this can only be achieved when there are no missing values and the number and 

sequence of measurements are the same for each individual (Fitzmaurice et al., 2004). 

 

All of the methods discussed so far result in information loss and make very strong 

assumptions about the data, such as homogeneity of variance (Crowder & Hand, 

1990; Fitzmaurice et al., 2004). None of these methods consider the covariance 

between repeated measures on the same individual, which may contain much 

information about the total response of an individual. Therefore in order to take full 

advantage of the longitudinal study design, methods of analysis which explicitly 

include the covariance between repeated measures should be used. 
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1.2       Problems Related to Using Simple Techniques 

 

Although methods, such as reducing the repeated measurements into a single 

summary measurement, can be useful for exploring the data (Davis, 2002), the use of 

overly simple analyses for repeated measures results in a loss of the richness of 

information inherent in longitudinal data. Additionally it can lead to efficiency loss, 

i.e. increasing the variability while not capitalising on the information available in the 

data, as well as biasing the results (Weiss, 2005). 

 

Loss of efficiency can result from omitting subjects, e.g. because they contain missing 

data, or from omitting observations in order to accommodate a certain method of 

analysis. Using methods that can utilise all of the available information, thereby 

making better use of the data, will result in more efficient estimates (Weiss, 2005).  

 

Bias can be introduced into the analysis in a number of ways, e.g. by means of 

inappropriate experimental designs, inappropriate analysis, or leaving out subjects for 

reasons related to the study. If the design of a study leads to subjects being sampled so 

that the true sampled population is different to the intended population of interest, 

then the results of the analysis will be biased in favour of the subset of the population 

that was sampled. Therefore appropriate randomisation is important to avoid bias. The 

same result will occur if a poorly selected subset of otherwise well collected data is 

chosen for analysis. This problem can result from the omission of subjects with 

missing data. If the “missing-ness” of the data is related to the outcome of the study, 

then this type of omission will bias the results of the analysis (Weiss, 2005). 
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Using simple analyses on data with missing values can lead to several problems. For 

example, it can result in subjects being compared that have been measured at entirely 

different points in time, resulting in differences in their averages and slopes over time 

simply because they were measured at different times and for no other reason. Once 

data belonging to these subjects is summarised into an average or slope, there is no 

way of identifying this problem (Weiss, 2005). When there are missing data for 

certain subjects it also means that the variance for the derived summary measures is 

no longer the same, thereby complicating the analysis by invalidating the assumption 

of homogeneity of variance required for standard parametric methods (Fitzmaurice et 

al., 2004) 

 

Very different reasons for groups showing differences in a longitudinal study can 

result in exactly the same result using a simple statistical analysis. For example, two 

groups that have different means may have the same slope over time, or the slopes 

could be very different, yet in both cases the same difference in means may be found. 

Therefore simple analyses are very limited in the types of conclusions that can be 

drawn from them. Alternatively, it is also very possible that two groups with very 

different responses over time can result in a non-significant result. For example, two 

groups may have the same average over time, but their slopes could be very different. 

Therefore these groups respond differently over time, but their averages do not 

convey this information (Weiss, 2005; Fitzmaurice et al., 2004). Even more 

sophisticated means of analysis such as repeated measures ANOVA is too restrictive 

in the compound symmetry assumption for the covariance structure, which assumes 

equal covariance between all repeated measures, and can lead to overly conservative 

conclusions (Fitzmaurice et al., 2004). 
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Much of the loss of information resulting from overly simple methods of analysis is 

due to the disregard of the covariance between observations. Only by incorporating 

the covariance into the analysis is it possible to make predictions of the subjects’ 

responses through time (Weiss, 2005). 

 

1.3        Linear Mixed Effects Models 

 

One of the most widely used methods of including the covariance matrix in the 

analysis is through the linear mixed effects model (Laird & Ware, 1982; Verbeke & 

Molenberghs, 2000; Davis, 2002; Fitzmaurice et al., 2004; Ugrinowitsch, Fellingham 

& Ricard, 2004; Vittinghoff, Glidden, Shiboski & McCulloch, 2005). Mixed effects 

models are those where the mean is modelled through both random and fixed effects. 

 

Fixed effects are those factors in a model for which the designer of the experiment 

had deliberately chosen certain levels, and which are the only levels of interest, rather 

than randomly sampling levels from an infinite population of possible levels 

(Vittinghoff et al., 2005). An example of a fixed effect would be if a researcher were 

interested in the growth of a certain species of plant under different nitrogen levels, 

and then selected five different nitrogen levels under which the plants would be 

grown, say 1%, 2%, 3%, 4% and 5%, which are considered to be the only levels of 

interest. Here the researcher would be investigating the impact of increasing nitrogen 

levels on the growth of the plant. Nitrogen can be considered as a fixed effect in the 

model since each plant in a particular treatment group would receive the same amount 

of nitrogen. When a researcher chooses individuals for a study in such a way that 
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specifically both males and females are included, then gender can be considered as a 

fixed effect. 

 

When the researcher does not explicitly choose the levels of a factor, but rather the 

levels are a sample of the possible levels available, then this is known as a random 

effect (Fitzmaurice et al., 2004). In the PR data set the children included in the study 

are an example of a random effect, as they were randomly selected from a larger 

population of children, whereas the gender of the children can be considered a fixed 

effect since all levels of interest are represented. Including individual specific random 

effects into a model can be used to account for correlation among repeated 

measurements (Fitzmaurice et al., 2004; Vittinghoff et al., 2005). 

 

Linear mixed effects models are a special case of mixed effects models in which both 

the fixed and random effects occur linearly in the model function. The most common 

formulation of the model is that of Laird and Ware (1982): 

I)σN(0,~εΣ),N(0,~b

εbZβXy
2

ii

iiiii Ni 1,...,  for =++=
 

where yi(ni×1) are independent and normally distributed, β is the p-dimensional 

vector of fixed effects, bi is the q-dimensional vector of random effects, Xi(ni×p) and 

Zi(ni×q) are known fixed effects and random effects regressor matrices respectively, 

and εi is the ni-dimensional within-individual error vector with a spherical Gaussian 

distribution. It is assumed that bi and εi are independent for different individuals and 

that they are independent of each other for the same individual. A structure needs to 

be chosen for the covariance matrix of bi, Σ, and, in the more general formulation, for 

the covariance matrix of  εi. The consequences of these structural choices will be the 
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main consideration of this study. In Chapter two further details concerning this model 

will be discussed. 

 

1.4        Study Objectives 

 

My interest in repeated measures models stems from my interaction with postgraduate 

students in the life sciences and my observation of the types of methods these students 

use to analyse repeated measures data. I am particularly interested in (1) the 

consequences of using an over-simplified model, namely the ordinary linear 

regression model which assumes independence of repeated measurements, to analyse 

repeated measures data, and (2) if an appropriate model is chosen, what the 

consequences are of using an incorrect parameterisation of the covariance structure 

for the estimates of the fixed effects and inferences about these estimates.  

 

The objective of my study was to investigate the use of linear mixed effects models to 

analyse repeated measures data, with an application to an ecological data set. I 

simulated models under various available covariance structures and determined if a 

covariance structure or structures exist that perform well under misspecification. The 

linear mixed effects model was fitted to the ecological data set, and by means of 

goodness-of-fit measures, the results of the simulation study were validated. The 

interpretability of the linear mixed effects models is also discussed in the context of 

the ecological study. 

 

Using the PR data set, I carried out a simulation study to determine the consequences 

of incorrect covariance structure choice. I fitted linear mixed effects models with 
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different covariance structures and then, using the estimated parameters of each of 

these models, I simulated more data and then investigated the effect of fitting linear 

mixed effects models with different covariance structures to these data sets, with the 

intention of determining how robust these methods are to misspecification of the 

covariance structure. This was done through the use of goodness-of-fit measures and 

measures of robustness. 

 

For the ecological data set, I fitted the various repeated measures models to the data 

set and obtained the best fitting repeated measures models for the data. The fit of the 

models was assessed using goodness-of-fit tests and residual diagnostics. These 

results were then contrasted with the results from the simulation study. I then 

compared these analyses against a simpler, but invalid, method which may have been 

used by an inexperienced researcher to analyse this data, and determined if there were 

any differences in the conclusions drawn from the different types of analyses. 

 

1.5        Other Issues 

 

Complications can occur in a longitudinal study including missing values for 

particular individuals, and responses that are not continuous. These issues will not be 

explicitly considered in this study. The researcher should be aware that missing data is 

a common problem in some longitudinal studies. In longitudinal studies, specifically 

clinical trials, observations for different subjects are usually missing, leading to 

differences in sample sizes between individuals, for some reason related to the 

outcome of the study, as discussed by Vittinghoff et al. (2005). Missing data during 

an out-patient clinical trial can lead to overly optimistic estimates for the sicker 
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patients, as they may have arrived for fewer of the follow-up visits, and those visits 

where they were present may well have been days when they were feeling relatively 

well, thereby biasing the results towards healthier patients. During an in-hospital trial, 

there would be more data for the sicker patients, as the healthier patients would have 

been discharged, thereby biasing the results towards the sicker patients. If the 

“missing-ness” of the data is due to a factor already included in the model, then the 

“missing-ness” will not bias the results, but if the “missing-ness” is not related to one 

of the factors in the model then the results will be especially misleading. This is not 

easily dealt with and methods that attempt to correct for such missing data based on 

assumptions of the missing data mechanism (such as informative missing data or not 

missing at random methods) need to be used (Davis, 2002, p. 22; Vittinghoff et al., 

2005, p. 286) 

 

 


