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§1. PROPERTIES OF DISLOCATIONS
\HE purpose of this wmmnn is to put forward eertain advances in H_r_n theory
of dislocations, and in @mwﬁn&&. to discuss their www:nmﬁob to' the
: [ “theory of iransient creep, in the sense in which the term is used by
m 9 Andrade (1917, 1914, 1932) and by Orowan (1947). :
” It is now usual to base any theory of the mﬁmbmmu of solids on the wmmﬁbwﬁoﬁ
//‘& that a perfect erystal is very strong, and that it will not slip unless subjected to
a shear strain of the order of 10°. A stress giving a shear of this magnitude is
necessary in order to make one plane of atoms slide simultaneously ever the
- one below it.© This may be shown as follows. ~Consider two adjacent planes . .
- of atoms in the solid distant % apart. - Then the force per unjt area meggssary B
to move one plane a distance x relative to the next is px/h, if xis small. ' is here i :
the shear modulus. But after displacing them by a certain distance 4, a new
o, position of equilibrium is reached. Thus for the force for QmEmnaBnﬁm x Hbmﬁ
are not small we may write approximately e N
F=(pa|2ah) sin{2usx|a), vereni{1)
provided the crystal does not approach another equilibrium configuration.
during the deformation. - This force has a maximum value pa/2w%, which is equal
to \&o shear stress for simultaneous slip. For two close-packed planes of a f.c.c.
- or hexagonal close-packed structure sheared in the twinning direction, £ = +/2a.
* Thusthestress for simultaneous mmm is uf24/2m andthe strainistan~(1 /44/2)=10°.
This mmmcawﬁoz of a sine curve in (1) probably gives slightly too large a value
_ for the maximum stress. Moreover, as Zener {1947) has pointed out; the face-
- centred lattice passes through the body-centred configuration during this shear,
and this may be a structure in stable mechanical equilibrium. ‘This would
reduce the theoretical yield strength by a factor of about two.
In-the hardest technical m:owm the ratio between Y (the yield stress) and p,

e

.* ie. the shear strain at S»znﬁ slip begins, is of the order 0 om as table 1 shows. In
. Table 1 B
- ’ Shear modulus p Elastic limit. ¥ /Y
. . (dynesjcm?®) | {dynes/cm?) M
- - Pare Al .. T 2-6x108 900
: ‘Commercial drawn Al .. 99X 10° 250 =
Duralumin 3-6x10° 70
Special Al with Ho&v w:b%w 5-4 x 10° 45
‘Single crystal of Al 4x10% - 60,000
Single crystal of Sn P 43 x 107 15,000
3 mrumgn crystal of Ag 6% 108 - 45,000
' Soft iron .. 1-5%x 10° 500
Heat-treated carbon steel 6-5x10° - 120
- Nickel chrome steel .. - 12x 10 65 - ST
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single crystals it is very much less. In most:modern theories of slip, it is assumed
that slip begins at one end of the crystal and travels across it, thus avoiding the
concept of simultaneous slip. The discontinuity in a oJNmSH when mrv Wmm
travelled part of the way across it is called a *“ dislocation”

The concept of dislocations was introduced into mgﬂﬁnm by Prandtl Qowwv
and Dehlinger (1929) and applied first to explain the deformation of crystals
by Taylor (1934), Orowan (1934) and Polanyi (1934).
fairly familiar, and the mathematical theory has been developed in detail by
Burgers (1939) and Koehler (1941). From the point of view -of this paper a
“ dislocation of edge type” (Burgers) is the discontinuity which exists near A
if that part of an initially perfect crystal which lies above TA slips one atomic
distance along the glide plane T'T", while there is no slip over the remaining portion
A'T’ of the glide plane. We shall recapitulate here some of the properties of
dislocations of edge type.

(@) A dislocation is a line discontinuity, mﬁg&_bm waawggnimw to the
paper from one boundary of the crystal to Hro other; it is in no way similar for
instance to a vacant lattice point.

(b) Dislocations on one plane can be of two kinds, positive or negative’
(figures 1 (a) and (b)).

(¢) The material just wdo<o a positive dislocation is in compression, that below

in extension.

(d) As first mo:zmm out by Taylor (1934), dislocations 0m unlike signs attract
and those of like signs repel each other.

(¢) The axis of the dislocation need not extend in an unbroken straight line
‘perpendicular to the plane of the paper, but may be broken into segments, the
ends of which are joined by ““screw dislocations” also lying in the glide plane.
Figure 2 shows the position of the dislocation of figure 1 in the glide plane through
TT’ perpendicular to the plane of figure 1.

direction of glide

—_—
— —
! : . T T
T A S T B ,‘ T
__
-— — Figure2. A 'single dislocation with
(@ 03] some parts of edge and some ‘of

screw type. The slip plane is the
‘plane of the paper.

Figure 1. Positive and negative dislocations.
The dotted lines are planes of atoms.

The theory of cohesion in solids is sufficiently far advanced to enable one
to estimate with some certainty how dislocations .should behave. Results of
calculations show : )

() That a single dislocation in an otherwise stress-free solid will move under
an applied stress very much less than the shear modulus. A theoretical estimate
(Nabarro 1947) suggests that this critical stréss will be about /2000, which
is much greater than the experimentally determined strength of some single

It has now become -

e

F
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crystals. The theoretical estimate depends critically (through an Qﬁon.nsamc
on the details of the model used and on the calculated width of a dislocation

. {AA’ in figure 1) which is deduced from the model. The greater AA’ is, the

smaller is the critical stress. It seems certain that the model used in the calcula-
tions (a simple cubic lattice) gives too small a value.of AA’. The true value is
probably two or three times that estimated, and the corresponding critical stresses
are of the order.of 107y and 10104, The calculations of §3 suggest that,
when this stress is very much less than u, the line of a dislocation is not. bound
to those positions in the lattice where the energy of misfit is smallest. Shockley
(1947) considers that the external stress required to move the dislocation is
reduced by an averaging factor similar to that employed in §6 to calculate the
vield strength of solid solutions, because not all parts of the dislocation have to

- be lifted simultaneously from potential troughs. If the calculated stress is not

itself very small (as might occur in a crystal held by directed _uobmmv“ the line of
the dislocation is bound to preferred @oﬂﬂosmM and the averaging process does
not occur.

(5) The energy of a dislocation is of the order 1-5ev. per atomic plane, and
thus, for a crystal of width 0-1 mm., of the order 107ev. It is thus out of the
question that dislocations exist as a result of 59.5& equilibrium at any tempera-
ture at which the substance is solid.

(c) As m#om&% stated, dislocations are not doommm,&.m% straight; if the crystal
in mmE.n 1 is rotated about T'T” it might appear as in figure 2; but, since the

energy increases with the length, the dislocation may be QKEME of as having a.

tension of the order pa? which tends to straighten it out, where a is the inter-
atomic distance.

(d) An external shear stress o tending to cause the crystal to slip along the
glide plane is equivalent to a force oa in the direction of slip acting on unit length

-of the dislocation. This may be seen as follows. Suppose that the crystal

of figure 1 is a cube of side L. 'Then if one dislocation moves across the crystal,
the strain produced is a/L and the work done ¢aL? The motion of a dislocation
through a distance L results in a change of energy ¢aL?; hence the force on it

is oaL, or oa per unit length.

§2. CAUSE OF RESISTANCE TO FLOW

If, as seems highly probable, slip in crystalline solids takes place through
the motion of dislocations, then resistance.to slip must be due either to the

_ difficulty in forming them or to the difficulty in moving them.

The problem of their formation is at present the furthest from solution in
the whole theory. " The extensions obtained in normal engineering tests are
of the order of 509, corresponding to the motion of one dislocation across each
atomic plane. With a specimen of cross-section about 1cm? this represents

10® dislocations per cm?, and it would not be unreasonable to assume that such
a concentration of dislocations was mr.omm% present in the metal. Evidence
from the extinction and breadth of x-ray lines, in conjunction with observations
of surface markings after various types of treatment, suggests that an annealed
single crystal is composed of blocks some 5000 A. on a side tilted with respect
to one another by angles of the order of 10-15 minutes of arc. This tilt corre-
sponds to the presence of dislocations in the boundaries of the blocks separated
by about 300 atoms, giving a density of dislocations of about 10 cm=2. It is

-2
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doubtful if this dehsity of dislocatiotis could aceount fot the very large shears
observed in slip=bands in single crystals at Emw temperatureés. -

1t seems higlily probable, as will be séén below; that ohe a»mH@cmcoF ofite
it starts moving, generates vthers. - Frahk ﬁfwv has recenitly suggested a possible
niechanism for this process.

The experimental facts themselves indicate that the difficulty of forming
dislocatiotis is not usually the Factor which detérniines strenpth. - Deformed,
eold-worked crystals aré usually Hardér than annealed ofies, and intefrial strains
shotild help with the fofiation of dislocations bt hinder their motion, Thus
we tnay wﬁmavﬁ to explain yield points aiid pethaps cieep in terms of the stress
tequired to sét in fnotion 4 small aurhbet of dislo¢ations which afé already thete.

Taylot first intfoduced the ides that the yield poiiit of a ctystal is determined
by internal strains. Figure 3{a) represénts a cubic o&ﬁg containing nmbaoa
ifiternal stiains.  All the .
lines afe supposed to bé : . e
drawn along, say, (100)
planes, and the small
parallelograms show the
local distortions. - Slip .
cannot take place along the 7
line AB until an extetnal E .-..Wﬁ ..Q\..l &
strain is applied which is -

50 great that all internal

straing have the samé sigh

(figure 3(8)). From this @ W

coricept it Tollows that if ¥
is the stréss at which yield
along AB oceurs and o; the makimum internal shear stress at any point on AB,
Hrg V=6,

This model leads us to irtrodice the ¢omeept of the potential energy V{(x)
of a dislocation, which ¢an be plotted as 4 furiction of womm_em % along a line
such as AB in figure 3. It has already been showh that the présence of a stress
o exerts a force gaL on a dislocation. We may nmvnmmgﬁ the internal stress o;
by some oscillating function of %. The ﬁoﬁonaﬁ energy Is given by

V(%) n& & Lds.

Figure. 3. .H_.w,amn..m—& strain in metdls.

An oscillating funétion of the type shown in figure 4(a) is to be expected. In
the presence of an external stress o, the potential becomes .

;.@Ti Ldx, . @)

as shown in figuré 4(). The dislocation will move right acfoss the plane >w
when the extérnal stréss is gieat obocmr to rermove all minima.

In Taylor's theory of work hardening, he supposes that dislocations do not
travel right across a mEu plane, but get stuck in the crystal; their aumber thus

increasés with increasing strain. He then ascribes the field ¥(x) in which any

dislocation moves to the strains due to all the othér dislocations. There is.
little doubt that sométhing of the kind ‘does actually happen during work
hardening; also that the stuck dislocations aré ‘hot rigidly stuck, but move a

bﬂ.%%m.% theory and transient creep s
certain m&@wnn mgBmh?mm mﬁmﬂ. the Emcmwnn of an m@@r& strain. - All these.

effects may he séen in the * bubble model ¥ mm@_mmm agg Goﬁs
Experi Boum. %ﬂﬁﬁp on creep or deformati _cm soft single crystals or

be Maa%ﬁ,nm in gmﬁw of .mrm
motion of dislocations in a
stress field of potential F(x»)
which not only changes-
during work hardening but
probably is changed by the
applied stress.- It is one of .
the aims of this paper to W)
emphasize that an important

first step for the study of slip

and creep should be the in=’
vestigation of materials where . S > B
this is not so, and where the ‘Figure 4, PBotential energy of a &m_bnumnﬁw asa
internal stresses giving rise : Eonon of position,

to V(x) change as little as

possible during the test. One thinks at opge of the strains Hocnm precipitates
(which either have or have not separated from the matrix) responsible for age
hardening. The ideal case would be one in which mmEm took place only at a
temperature higher than the ereep test, so that the centres of internal strain
could be considered constant during the experiment. It thus appears te the
authors that tests on age-hardened materials—among which many materigls of
technical importance are included—may be simpler to interpret and mere Jikely
to lead to advancement of the theory of slip than experiments with puse single
crystals, Ipn the remajnder of this article the deformation of materials of this
type, and of solid solytions, will be discussed.

(@)

A= posensil bapeige U

R

direction of slip

> ===

]

[—

(03]

Figure 5. Strain round a precipitate.

is the slip plane.
The strains Hc:sa precipitates have heen discussed by wvarious authors

AZ@vmﬁo 194043, b, Laszl 1943-5), and in figure 5 the type of strain envisaged
is illustrated. In most alloys: plate-like precipitates are formed ; but the resulting’

Figure 6. A curved dislocation. The plane of mpo vunon
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strains will be not dissimilar. What is immediately apparent, therefore, is
that the theory illustrated in figure 3 must be made three-dimensional.

The reason for this is illustrated in figure 6 (a), which shows again the curved
dislocation of figure 3; the arrows show the directions of the force which the
internal stress exerts on the &&oowﬁob A is of the ofder of the distance between
precipitates.

A dislocation in equilibrium under Eomo internal stresses will take up a oc?m@
or N_m-Nmm form as shown.

§3. THE FLEXIBILITY OF DISLOCATIONS

We now have to answer the following questions :

(1) Given that the dislocation line is constrained to depart not more than
one atomic distance from a given curve (of curvature everywhere much greater
than 1/a), is its equilibrium form a smooth curve or a zig-zag?

(2) By how much does the energy of the equilibrium form exceed 9.&“ of
a straight dislocation ?

We consider only the case in which the tangent to the given curve is inclined
at a small angle to the axis of a free straight dislocation. We use the same
notation and formulae as before (Nabarro 1947, referred to as I), except that
the interatomic spacing is represented by a instead of d as previously.

Hﬂmcg 7 represents one complete tooth of a zig-zag dislocation which is

u N )

Figure 7. A single tooth of a zig-zag dislocation passing a.:.ocmr the points X, Z and Y. The
full line represents its equilibrium form ; the broken lines XTUZ and ZY are possible
extreme forms. »

constrained to lie along one equilibrium line in the lattice at a series of points

such as X and Y, separated by a distance A much greater than a, and to lie along

the next equilibrium line at a distance 3d at a series of equidistant points such.

as Z. We allow it to take any form intermediate between that of the dotted line

XTUZ and that of the dashed line ZY. - We vary the angle i at which the disloca--
tion line crosses from one equilibrium line to the other, and minimize the energy.
In fact we carry out the calculation only for small values of i, and observe whether
the energy increases or decreases as i increases from its least possible value,
viz. a/A. -

The energy of the zig-zag dislocation exceeds that of a mc..&mr" dislocation.
lying along XY because the energy of misfit in the glide plane is increased, and
because the elastic energy of the blocks above and below the glide plane is.
increased. As ¢ increases, the region in which the misfit is unnecessarily bad.
becomes smaller, and the energy of misfit diminishes, but the same elastic dis—
placements are concentrated into a smaller space, and the elastic energy increases..

We first estimate the change in the energy of misfit. We assume that an
element of length dy at a distance x from the line XY has the same energy of
misfit as an element of the same length in a dislocation lying parallel to the line

Dislocation &%Q, and, transient creep 7

XY (the y-axis in figure 1 of I), and passing through the centre of the element.
This energy exceeds that of an equal element lying in the line XY v% an amount
given by equation (34) of I, and wm@aoﬁamn&% w@:m_ to

m .
Na mslqav &21‘?\?|§.ATSK§S®........E
where o, is Poisson’s ratio for the crystal, assumed mmoﬁ.ommo.

This expression vanishes over the parts of the zig-zag parallel to XY. The
sloping parts of the zig-zag occupy a fraction afAy of its length, and the average
misfit energy per unit length of the zig-zag dislocation exceeds that of a straight
dislocation lying along XY by

pa’

W= 3Rt —og) P L —2/(1 —o0)]- e

Next we estimate the elastic energy of the zig-zag &pmyoomﬂob For a straight
dislocation along the y-axis the displacements u and w are given by equations (4),
(14) and (15) of I. 'There is no v component of displacement along the y-axis,
and u and w are independent of y. We assume that the zig-zag dislocation
also produces no v component of displacement, but, near the sloping parts of
the zig-zag, # and w now depend on y. The shear strains between neighbouring .
planes perpendicular to Oy are given by

by = 0uldn; e,=Yowox.  w....(5)

The strain energy per unit length near the sloping parts exceeds that of a .
straight dislocation by

b [ (¢ e )= By :_HAWIHVN + Aw.mv““_ dxds. ......(6)

If this integral were extended to infinite values of x and z it would diverge logarith-
mically. It is, however, clear that our approximation of considering that the
displacement of atoms in any plane perpendicular to Oy depends only on the
point at which the dislocation meets that plane, and not at all on the displace-
ments of atoms in neighbouring planes, must break down in regions of the plane
distant A or more from the dislocation. The variations from plane to plane
become smaller at these distances, and the shear-strain energy (6) is reduced.

- An estimate of the rate at which the shear energy falls off with distance is given

in the Appendix. The result is to multiply the integrand in (6) by a factor
exp [ ~4m(x?+2%)}/A]. This new integral is taken over a fraction a/Ay of the
total length of the dislocation, and the average elastic energy per unit length of
the zig-zag dislocation exceeds that of the straight dislocation by

W, = (ua[8A) (A ),

where  p g [ _H@vm £ AWINVNH_ o _HEH_ dxdz. ......(7)

The values of 0u/dx and dw/0x must be inserted from I. The approximate
value of the integral I(A/a) is derived in the Appendix, and we finally obtain

13 hua¥p
- Wem—hE E@amv _ ()

where (3 —200)2>k>(1-20,)%, and {=a/2(1 o).
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. We shall take k=1 as'an estimate of the true value.
“The total energy is

pad [e-2di=a) 1 1-3 In(A/4nl) H_
W=Wnt+W.= Na\% S T ¢

Varying ¢, we obtain a minimum of W when ‘
4= 167 exp [—27/(1 I.o.cvug
- L13(1—0p) In(A/4nl) | °
To obtain 4 numerical value, we take oy=%, A =100g¢, .mw&.bm
=106 exp[ —/(1 —op)] Zexp[ —m/(1 —og)]. * ...... 29

This value of 4 is small, so that our original assumption is self-consistent.
Moreover, it is greater than the least @ommHEo value a/A, provided A is of &5 order
1004, as we have assumed. The energy is then

el (9)

,%Em‘ H_ . H
i@m@ﬂ‘ﬂk |Q.ov. ....:AH v
A straight dislocation of wmcmﬂw ‘A has become a zig-zag of _mumﬂw>+a (cosec ¢
—cot ﬁvl\/ +4a), and its energy has increased by AW. 'The .mnwwos T in it
is, therefore, 2AW/ay;, which from (10) and (11) is

T=2a%m(l —ap) = pa®. e (12)

We conclude that a dislocation in a strained lattice will approximate to.a
smooth curve rather than to a square zig-zag, and that its effective tension is

approximately pi®.  The shape of the dislocation in figure 6 will thus be given
by

i U Tlpeo, . L3
where p is the radius of curvature. - This gives . .
pla==pfoy. e (14)

A distinction must now be drawn between the case in which A, the distance
between particles of precipitate, is greater than p=pa/o;, and the case in which

A is less than this quantity. In the first case the internal stresses are great enough

to force the dislocation into the regions of low stréss between the particles of
precipitate, as in figure 6(a). It takes up a Sm@ shape in which both the wave-
length and the amplitude are of order A. This is the case we shall consider first.
In the other case the internal stresses are not large enough to force the dislocation
into the regions of lowest stress, and the mwwmmnmbna of the dislocation will be
as illustrated in figure 6 ().

We believe that many 895@35_ m:o%m correspond to ,}m case in SE% A

is greater than pa/o;.

Table 1 shows that for hard m.:o%m the ratio /Y is of order 100; and on our
mmchvcoﬁ that Y=o, this means p/o;=2100. The distance between precipi-
tates is usually greater than 100 atomic diameters. On the other-hand, Guinier
has shown that the distance between nuclei in age-hardened m:owm such as
duralumin is only about 50, so that for these alloys neither the treatment of
the following section, which assumes A3 pafo;, nor the treatment given for
solid solutions, which assumes A <ua/o;, is a good approximation. That this
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should happen for the strongest technical alloys can hardly be an accident :
it seems that the equation A=pafo; defines the “critical dispersion” of the
early theories of age-hardéning. Too fine a dispersion allows the opposed internal
stresses acting: on different parts of a dislocation to compensate one another,
as will be seen from the discussion of the hardness of solid solutions at the end
of this paper. Too coarse a dispersion will leave large regions of low stress

‘in which . dislocations can move mnnnq Onoémb.ﬁﬁmv suggests that in this

«case dislocations do not cross regions om high ow@oﬁbm stress, but form Eomoa.

loops round them.

§ 4. MOTION OF DISLOCATIONS WHEN THE SCALE OF THE
s ) INTERNAL STRESSES IS LARGE

In the case where A> ua/o;, the equilibrium form of a dislocation (in the
plane of slip) will' be as shown in figure 6(a); both the wavelength and the
amplitude of the oscillation will be of order A. The elementary step in the
motion forwards of a dislocation from one position of €quilibrium to another
will be its motion from a position such as ﬁrﬁ shown by the full line to that .
shown by the dotted line.

One can easily estimate the order of BmmEEmo of the potential barrier to
be surmounted by a'loop of a dislocation in moving from one of these positions
to another in the absence of an applied stress; it will be of order

Aa R. ﬁ@& dzx,

where o;() is the mean stres$ along the loop when displaced a distance x from
its position of o@::m_uica. Taking oy(x) to be of the form o sin (2mx/A), and
integrating from a minimum to'a maximum, we obtain

ayal\?[m. .. ...(15)

The numerical magnitude of the quantity o;@A?/m will concern us in the
remainder of this paper. We have seen that for the considerations of this
section to'be valid, A > pa/o;, so that (15) is great compared with ua?A/r. Taking
pa®~5ev. and A~1004, a value of 150ev. seems to be a minimum. We shall
base our arguments on the following values :

A=100a, o;=p/100,- pad=10ev.
Then : © 6;uA2=1000ev. ceenn(16)

‘We see, therefore, that heat motion will not give appreciable assistance to a

dislocation in surmounting the barrier (15). At first sight this conclusion

seems an obstacle to the understanding of creep. ~However, it should be pointed

out : . : .

(i) that values of o; extending over a wide range must exist for the various
loops of the various dislocations present in a solid at any one time;

(i) ’as emphasized by Orowan, transient creep only takes place for external
stresses o nearly great enough to cause slip at low temperatures, i.e.
motion of dislocations without the help of heat motion. For these the
potential barrier U is very much reduced, as shown in figure 4.

We shall therefore evaluate the height of the barrier in the case for which
the external stress o is nearly equal to the internal stress oy, so that the height
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of the barrier is small.
tion of length L.

We denote the force on a dislocation due to the internal strains by

oiaL cos (2mx/A).
The force in the vammmnno of an applied stress o is then .
ah_”qu cos (2mx[A) —o].

This will vanish when cos (2mx/A) =0ofoy, or, if two.roots of this equation are
close together, 1 —4(2mx/A)?=0o/o;. This gives for the two roots x

We shall make the calculation first for a straight disloca-

2mno/A= £[2(1 ~ofe)]. el (18) .

‘

The required activation energy U is thus, by (17),
nh?ﬁ cos (2mx/A) —o] dx,

where the integration is between the two roots given by (18).

‘gives
Nnh_us mﬁﬁ quou_

The integration : y

or, expanding in powers of x;,

. ah>_”mﬂ§ Aﬂlqv —1o, Aquov . H_

Substituting from (18), we obtain for the activation energy U shown in figure 4
U(0) =(2+/2/37) 0aLA[1 —c o]t ..(19)
For the motion moHéma of a loop of the curly dislocation of mmE.m 6 Aav a correct .

oamnomBmmEEmoSEUoowﬁm_somngnmcvmﬁ:ﬁnm\w»dnhEmoﬁB:E Qov,
thus .

U(0) = 0-156:aA%[1 —a/oy]2. ceeen(20)
§5. THEORY OF CREEP
We now assume that the chance « per unit time that a Hoo@ of a &Eoomﬂob
jumps forward is given by
a=vexp[ —U(o)/kT], v (21) : v
where v is the frequency of vibration of a dislocation in its potential trough. ST

This is to replace the corresponding formula in the w@nwﬁrOwoémz theory,
mon which -

U(o)= VAS —0)?2u, s ./. .(22)

V being the volume through which thermal fluctuations must raise the stress &

in order that the dislocation shall move forward. We may estimate » as follows :
The force on a dislocation of length L may be taken to be

aL[a; cos (2mx/A) —o], : -

which vanishes for = x,, where cos (2mxo/A)=0/o;. Putting x= x5+8, we find
that the force for'a &m@_mom:ﬂnnﬁ 8 from a position of equilibrium is

Awﬂnhqﬂw\\wvc —afoy)t.
.Hmw_bm the effective mass to be Pa?L, where P is the density of the Bﬁﬁ._&

e (17) .o®

UN.&QS&.% theory and transient creep - . IE

we see that the m.nmcgo% = with which -a dislocation vibrates onE its mean.

voﬂaoc is given by .
_ P Nﬂ.o.a e i
v=a-(ae) (15 a;

Comparing this with the ».H.mn:go% vy of atomic vibrations, which is of order
(u/a2P)}, we see that if o differs from o; by, mmv: 4%, visless by a factor 100=1000r
than v,, and thus equal to 108-10°sec™™.

We have assumed here that the statistical Sﬂmg of the state in which the:
Hoo@ is passing over the potential barrier is the same as the weight of the state.
in which the loop lies in its potential Q.ocmr For we may describe the state
of the loop, like that of a stretched string, in terms of its normal modes of vibration..
Only the fundamental mode helps the loop to overcome the barrier, and the:
distribution of energy among the other modes is almost the same for the loop-
in the trough and for the loop at the top of the barrier.

In order to calculate creep rates we require to know the increase in strain.
which will result when each loop of a dislocation moves forward. This increase
s is given by 8s=aA?/(volume of crystal), unless each motion of a loop sets off
an “avalanche” of other dislocations, forming a slip band. To take account of’
this possibility, we shall set 8s=aA2p/(volume of crystal), where p is a numerical.
factor which may be great compared with unity.

Weare nowin a position to calculate creep rates wish various models. Consider
first the hypothetical case where every loop of every dislocation in the material’

e (23)

‘has the-same value of o;.  Then if there are IV dislocations per unit area (crossing:

a plane containing the direction of flow and perpendicular to the glide plane),.
there are N/A loops per unit volume, and one obtains for the creep rate -

ds|dt = NaApvexp[ — U(o)/ET]. (28

This is of course independent of the time but strongly dependent on stress..
. Some values of the numerical constants must now be inserted: »~10° sec®;
N~109%2¢m2; A~10-5cm. ; a~10-8cm. Thus ds/dt~105% 2pexp[—U(o)/kT].
It is of interest to see how B:or o must differ from o (the yield stress at T'=0)
to obtain an observable creep rate (say ds/d¢=10"%sec™l) at 88@9&88 T.
We must then have
QAQV\»\HHFGOM»N@\S.

. One cannot estimate the right-hand side accurately without knowing the (largey

numerical constant p, but it may safely be assumed to be in the range 20-40..
Taking 30 as a round value, and substituting for U(c), we see that

1 — o= Amoo wﬂv
T\ owA? )
In (16) we have estimated o;aA? to be of the order 1000 ev., though the estimate-
may be out by a factor of 10. Accepting it, however, and putting kT=1 \Ao ev.,,
we see that
1 —0/0;=0-03.

Thus, according to this model, the yield strength (if defined as the stress at'
which a flow at the rate of 10-8sec™* occurs) will not differ at room temperature-
by more than a few per cent from the value at the absolute zero. No reasonable:
choice of values for o;aA? seems to alter this conclusion. '
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The large observed dependence on temperature of the yield strength of

nany materials cannot therefore be explained on any hypothesis in which g
is independent of temperature. ~Cottrel] (1948) has proposed a mechanism by
‘which e;, the internal stress hindering the motion of a dislocation, may depend
-on T, but the decrease in o with increasing T is likely to be appreciable only
at high temperatures. Lawson (1947) has pointed out that in a metal hardened
by cold-work or by precipitation it is the internal strains and not the internal
stresses which remain constant if the temperature varies. - Therefore o; and the
yield strength decrease proportionately to the decrease in ‘elastic modulus as
‘the temperature increases. The increase in Young’s modulus in going from
Toom temperature to liquid air temperatures is about 5%, for metals of high
‘melting point, 109, for Mg, Al and Ag, and 30-509, for Na and Zn. The
yield strength of annealed metals and single crystals. increases by 40-1009%,
-over the same range. In iron, where a special mechanism operates, an iricrease

in yield strength of 100-180%, is accompanied by an increase in modulus of less -

‘than 59%,. .
The assumption of a single value of o; is of course not sufficient to explain

transient creep. If a stress o=OB is applied to a materia] with a stress—strain -

curve as shown in figure 8, an instantaneous strain s=OA results, This is
followed by rapid creep which slows down roughly as #¥, as first shown by Andrade.

-

Mig)

o T A ) s 0

o

Figure 8. Schematic stress-strain curve of Figure 9. Number of dislocation loops per unit
volume which at absolute zero temperature
would start to move under stresses between o

a material. CD’ is the tangent to the
curve-OCD at C.

and oj+doj is N(oy)de;.

>w03§5 ,ﬁok_.dmwbmaoﬁmnbmm wombﬁoaobﬁ,ﬁOonEnocnﬂm quqcmn&mo
the activation energy is initially zero and rapidly increases, :

One must now carefully distinguish between two assumptions. One is
that, as we go up the stress—strain curve CD, the material hardens physically
through the increase in the internal stresses. Making the further very drastic
assumption that af any point on the Stress—strain curve only a single value of A
is operative, i.e. o; is the same for all dislocations, the creep. rate is still given
by (24), but sve may write o; —o =fs, where s is the strain measyred from A
in figure 8 (the end of instantaneous extension) and g is the tangent of the angle
D'CX. Thus . .

‘ ds/dt=const. exp [ —ys}/kT],
withy=0-15aA28/oit. The analogous formula with 52 instead of st was obtained

by Orowan; it was found pot to give the observed rapid initial ingrease of s
with 2. Orowan therefore assumed that, when o; —¢ was very small, any motion

o’
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of a dislocation would set into motion an additional number proportional to-
1/(o; —0)?.  With this assumption he found -
. ds|dt ={const./s? exp [ —ys¥/RT]},
" which gives:good agreement with expefiment.
"It is, however, much more reasonable to assume that at any moment the:
creep is detefmined by a whole range of values of o;, and that the eatly parts.
of the hardening curve ate detefmined at least partly by the exhaustion of disloca-
tions for which U(o), the activation energy, is small. We shall then work out
the depeiidence of creep rate on time on the following assumptions :
(i) At the moment when instantaneous slip under applied stress stops,
function N(s;) can be defined so that N(o;)do; gives the number of dislocation loops.
*per unit volume that would nove under a stress between a; and oi+doi.  N(ay)
may be expected to appear as in figure 9. We are only interested in its value for-
0>, loops for which 6>> o; will have moved during the instantaheous extension..
(ii) ‘During creep N(o;) does not change appretiably—i.e. hardening is due:
mainly to the exhaustion of dislocations, : -
(iii) A dislocation loop, once it has moved from a position of particularly low
{01 —5), moves in genetal into a position where (o =) is much bigger, and does.
not again take part in the ¢reep.
(iv) The chance adt per time interval d that a dislocation loop with a given.
value of o; moves forward is given by -

) a=vexp[ —U(o)/RT], veene (26)

and this results in an increase of strain egual to o/(volume of crystal). We

shall not attempt to estimate v} it depends whether or not the motion of a single
loop sets off an avalanche. :

With these assumptions, ‘the number of remaining dislocations in the range:

03 t0 03 +doy which have not moved after time # is N(o;)do; e, and their contri-

butien to the creep rate is obtained by tultiplying by «z  Thus the creep rate

is given by “ds o . .

L w Noye doy,

o

ceeena(25)

: e (27)

gaﬁwnﬁoﬁ&mﬁg&os“Bmmwﬁda.@oﬁbﬁrnmgms&gmbmﬁmbﬁmnoo:mmxnmbmmop,
stops, :

smp Q,s (1 =) N{oy)dey. v 428)

The integral (27) for the créep rate may be evaluated by .Emﬁ...:m « the inde-
pendent vatiable, * We have from {19) and (26) .

L o AT
: o ] ,@.ww‘.&»\?mqm i’

? kaw. ' | A~

[+4 «®

and hence, since | o —oy| Ly,
do_2 7 KT\
doe ] 3°\015 ol
The simplest assumption is that N(o;) is constant over the small range of o; which:
is of importance, but to be as general as possible we set N{ay) =Ny(1 —ofa;)m.
Then . . ds [ af_e\*( -de,

b7 H.G.ZL.Q oe AH - nﬂv A do.

i) do /
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: , : z Loog o
A short reduction gives for this . 3 3.7 Mltwrl\\
, ds - 1 1\m~% o .
S=4 bﬁa ?mv\\? e (29)
where 7=vt and 4 Hméqw\‘ w(kT[0-15 aA2c;)m+E, ..wm o Mﬂ = 2in
— : 3

Actually; since v~10°8sec™, r=wt is large for all values of ¢ of practical
importance. We have thus to find an asymptotic form for the function

Fo)=[ ety nmm-p 25

Putting log (1 \5 2, this gives
- F(r)= %o exp{ —Te? —z}z" dz.

If we set 2=In+ +{, the integral becomes

.:.LfoﬁiIwnnleA_n++mv§&m. » . . v

T

The term —e*—{ tends to — oo as { tends to + oo, and has its maximum value
‘when {=0. Thus if Inr is large, this may be written

(nr)re 4, s (30)

T o (n7)»’
where A,= Q&“ P (=t =0 AF 4vs&m.

Hére C, isthe nth binomial coefficient. Taking the first term only of the expansion,
and no_&mﬁbm the lower limit in the integral by — co, we have F(r)=pg(lnr)"/r,
‘where \.w is a numerical factor of order unity. Thus on ysﬁmmamcob
. 48
Ta+l

22 (In ), SNC)

Thus, finally, with 7= —3%, we expect the extension to be given in terms of
the time ¢ U% a formula of the type

s=const. T¥(In S&ﬁ e (32)

-where v~108, \v

It is characteristic of this formula, as of any derived from a @E.m “exhaustion” -
hypothesis, that the total extension before creep becomes observably slow must
‘be larger than the total’ oummw extension. Thus between 10sec. and 108sec.
{~10 days) the factor (In»#)? will increase by about 309% only. Any extension
Jarger than the initial instantaneous creep must, we believe, be associated with :
physical hardening, i.e. a change in Zﬁq_v during extension mc@ to &mﬁozuon of _
the lattice. Itis Wowo& to treat this case in a later paper.

Pure “exhaustion” creep of the type described here will be observed pri-
B_E.:% at low temperatures and particularly at low stresses, where the increase

_in the number of ﬁwm_wm& dislocations, and particularly the change in N{q;), will

mot be important.
Curves of very much the required type are observed at low ﬁoawﬂ.ﬂcﬂom

for lead, cf. for mNmEEm the curves obtained by Andrade (1914) for this material
at —180° and —78°c

- g -

s
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It is possible to aowm,ms distribution functions N(s;) which give temperature
dependences of the yield strength either more or less violent than that predicted
by formulae (20) and Awé It seems unlikely that any reasonably smooth distri-

“bution function will give a ﬁBHumEEno ‘dependence as great as that observed
“experimentally.

§6. SLIP IN SOLID SOLUTIONS .
We now turn to the case in Sgor the internal stresses are not large obocmw

._oonE.nm with tension of a dislocation, to force the dislocation into the region

of low stress. - The condition for. this is Ao;<ua. In this case lengths of the
dislocation large in comparison with A run almost straight across the crystal,
being bent by individual regions of stress into arcs with radii of curvature
%lta\q_ The amplitude of the wavy curve into which the dislocation is bent
is of order A?/p =Ao;/ua.

If the dislocation showed no large-scale deviations from mqﬁmrgomm it would
‘move under the influence of practically any external stress, however small. For
a dislocation of length L much greater than A-is composed of L/A elements, '
on each of which the internal stress exerts a force of order of magnitude ojaA
and of random sign. - The resultant force is of order oaA(L/A), while the
force due to an external stress ¢ is oL, which can always be made greater than
oaA(L/A) by taking L large enough.

In fact we must not assume that the mean path of the dislocation will not
depart from a straight line, however large L becomes. The force oyaA(L/A)*
represents an average force oja(A/L) on unit length of the dislocation. This
will bend it into a curve of radius - :

pa® © (LY} Y
b|o‘—§ﬁ>\hv MAMV a. ......Awwv.
If L is so large that this radius p is comparable with L, the dislocation is effectively
flexible under the internal stresses. The condition for this is
L= Ah\\wvwat\qu or L=p2a?o?A. e ﬁi.v
This is much greater than A.

We now assume that the length L of the a_mnoomcob moves cbaﬂ. the influence
of an applied stress 0. The force on it due to the internal stresses is o;a(A L)},
and varies more or less periodically with wavelength A as the dislocation moves
across the crystal. Its energy as a function of its displacement x is given by

. W =oya(AL)}(A[2m)sin (2mx/A) —oaLx.
As before, the positions of maximum and minimum energy are given by
aa(A L) cos (2mx,/A) = oalL, v
and if these are close to one another the roots are

-2

The activation energy is

NWW .ac\m_mlmﬁvw_m._ L 35)

Since for the values of L and A concerned the factor outside the bracket is
very much H&.mﬁ. than &7, slip will only begin when

o~gy(A/L)
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Inserting the value of L, this gives -
‘. o=0A/pa. : ceeee.(36)

Before applying this formula, we must estimate the appropriate value of o;.
In a solid solution of atomic concentration f the value om A, %m mean distance
between solute atoms, is
=aft e (37)

In a precipitation-hardened alloy the dislocation is sufficiently flexible to
avoid the regions of maximum stress, and the appropriate value of o; is that
obtaining at a distance of order A from a particle of precipitate. In a solid
solution the dislocation is not appreciably deviated by the local stresses, and the
appropriate value of o; is a volume average of the stresses. If the misfit of the
foreign atom in the lattice is €, the tangential strain in the matrix at a distance
7 from a foreign atom is (Mott and Nabarro 1940) given by ea3/3, and the shear

-stress by wea®/r®. The mean value of this through the volume from r=a to

r=Ais .
f= 3 j ror—%
o= % U gty \ [7 4w
:mwgw —peflnf. 39
The %SE mﬁ.gmnw is given by (36), (37) and (38) as
c=pdfiinfl. eeenn(39)

We may simplify this by noticing that over the practical range of concentra--

tions, from f=0-01 to f=0-20, the quantity f}(Inf)? varies only between the
limits 0-89 and 1-22, reaching » maximum near f=0-07. To a good approxi-
mation we may replace this factor'in @8 by unity, obtaining
= uef. +reas(40)
As before AZ»,UNQO 1946), -we may estimate € from the change in lattice
‘parameter with concentration as

e =(1/a)(daldf). reean {41)

. The dependence of the yield strength in (40) linearly on concentration and quadra-

tically on the change of lattice vmamaﬁﬂ. agrees rather w»ﬁm?hacﬂ@ with the
experimental observations.

APPENDIX

The elastic energy of a bent dislocation

To estimate the rate at which the shear strain falls off with distance, we
imagine the zig-zag disturbance replaced by a sinusoidal disturbance of the same
wavelength. "We shall find that the law of decay with distance is exponential :
the exact nature of the disturbance can affect the decay law only by factors which
are inverse powers of the distance, and we shall therefore consider a type of dis-
turbance which is easily treated mathematically. The disturbance we consider
is a body force in the x direction, localized along the line Oy, and alternating
in sign according to the law
Na\

.>. -

Bmru(A +2u)

F,=- pym Fysin—=

e (AD)

.
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where A and p are Lamé’s elastic constants for the solid. The &%585@5?
(9 vy w,) produced at any point (x, ¥, %) 7% \&:m;o:um &mgv:ﬁos are given
(Love 1927, mSS by

P m ’
ﬁonﬁ%MSAx + Emv m5|u\&ﬁ

Atu 7 A
(* %y —y) |§ my’ _
eonmils m_:l&uﬁ be .. (A2)
. L *
89"5% smw.mBHI@, . ]
where - .
. . ‘.NMxN+QIu\vm +22% o ool (A3)
- To evaluate the integrals, we write , - )
o2y 2my 2wy —y') o 2my . 2m(y —y')
. sih—— = mEHoom — | —cos —¢ sin —=——==* X
- and obtain ’ o
L g 2wy x2 >‘+mt.H 27(y" =) ,, )
ﬁclm‘amEIHISA " cos—=r ‘&f
‘= .|muo 00w|n€.—. RA.\\c |u\v QHV.IQV um.w\
N . . lsma . 2n(y—y) > ...:.%?3
= —F, cos II% Ty ay',
2y’ —1
goum.c sin L\R. MM cos d@> ?) ay'.
] . ~
Now Aéﬁmo: 1922, §6.6) .
° 1 2y =), -
%.,sﬂsm%& =2K,(2mp/A) _
and . . ) b ceeee . (AS)
> 1 2n(y —y),, 4= :
, ‘F oos TRy = L G, |
where
p?=x% +27, o Lo (AD)

and NN and K are Bessel functions.
4553 Nﬁov.\w .No and K both have the asymptotic form Aémﬁwob §7.23) .

© o K(2mp|A)~(AAp)texp (—2mp[A), e (AT)

and the components of displacement all contain this factor exp ( Nﬂm\\wv The
same factor remains when the displacements are differentiated to give the com- .

" ponents of strain, and the elastic energy contains a factor exp ( —4mp/A).

In the case of the zig-zag dislocation we therefore Bo&@ the Sﬁnmﬁ& “@

to the form .
o e[



: J,?M)w . TR e

\

18 2 F. Mott and F. R. N: Nabarro

This integral is taken over a fraction a/Ay of the total length of the dislocation,

.and the average elastic energy per unit length of the zig-zag dislocation exceeds -

that of the straight dislocation by

W, = (pay/SA)(A/a), - il(AB)

where

I(AJa) u Il _HAWIHVN + AWIWVMH* exp ﬁ wim +Nmﬂ dxds. ... (29)

The values of mx.\mx and Bw|dx obtained from 7 are

Ou _ a [ —ma . .
o = T ) o P g 2=l coum i,

b e e (A e
B = (o) ;.o exp Aiw [(mZ~1+2(1-0)]e-™cos mx dm, ;
where o Z=z—}a. cen (A1)
These may be written . : .
4m(1 —0) ou Z 21-0)Z+0) O
C e mTRTR | |
4r(1<0) 8w 2Z(Z+Dx (1 -20)x e (A12)
a o R tTTm o ; .
where L I=aP(l-0) veein (AL3)
and C R=(Z+0 4 e (A1)
Remembering that Z is positive and }>0> —1, we may write
20 =0)(Z+1) _ 4n(1—0) 2| _ (1-20)Z+0)
R . 7 g ‘wx ST R
,mwium a fortiori . o
e lwwmmiv viquv WIH e ;Nmmwiﬂ. o (AL5)
and i ) ) .
(3 INQVAN+AW~VM+G |varlm_a_ V%iwlqv. WIM - memq_x_“ .
mmﬁbw a fortiori .
| v
| R L ST
From (A15) and (A16), , . ‘
’ —25)2 2(1 .~ )2 i
W %qv > 167 mw o) _HAWIMVN + Awmvﬂ_ > 120 M%. Ll (A17)

We may substitute these limits in (A9), where the integral is to be extended
over all values of x and all positive values of Z, and then doubled to allow for the
half of the crystal below the glide plane. In the exponential term we substitute
Z for 2. The result is : .

2(3 =207 (Aa) >(167%(1 —0)*[a)[(AJa)>2(1 201 (Ala), ......(ALS)
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whete : -

: 7 exp[4—m(x? +Z2)/A]

5\3%;-8 P2 0P

To evaluate J(A/a), we write x =7 cos 6; Z =7 sin 0, and obtain
) " e—4nrlA

‘.N.Qw\av,u R.cbwmnommm+?mm=m+0nx%&\

e 4 A tan-1 5 mwv
. . 0 N‘N
) "N_,o . 7 |NN T N,&\.
<§.,E.:m r={tans, this becomes

- Qs —iw
TND=2 [,

The factor (2s —4w)/sin (25 —4#) varies wE% between the values 1 and i

dedZ.  ......(A19)

.

e~UntiDtanean ¢ gs,

" in the range of integration, and we may réplace it by a mean value 1°3. Since

we are concerneéd only with very small values of {/A, the exponential factor is
practically unity except near s=47, and then falls rapidly to zero. We therefore

8o
take as an approximate value %?(&HN.@;. tan sds = —2-6 In coss,, where
0 .

(4nl/A) tansy=1; sy=dm —4nl/A. So °

J(AJa)~2-6In (A[4n?). coeen (A20)
Combining (A8), (A9), (A18) and (A20), we obtain equation (8) of the text.
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