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The analytical development pursued by the author is presented in Chapters 4
and 5. With regard to the stationary stability analysis presented in Chapter
4,-good experimental correlation was achieved with respect to the laboratory
measurements. The definition of the regions of instability of the steady state
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the datum solution came from a desire to identify regions where the trivial
uncoupled lateral linear motion was unstable, thus emphasising the impor-
tance of the non-linear coupling between the lateral and Iongitudinal motion

and consequently the state of tuning of the system. By applying a harmonic
balance method, this approach would directly account for all conditions of
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the experimental results extracted from the laboratory experiment, it would
be advantageous to further interrogate the quasi-static equations of motion de-
veloped in chapter 5, via a study based on the method of multiple scales. Such
a stildy is currently being pursued at this University (Aligianis[1993]). This

study is intended to examine the nonlinear steady state response, and the sta-
a
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I'CSpUlmc QIf€Cuy 1Us optlilis g

torv
J

IS B [ V% N
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model, Further fundamental deveiopmen quire an .
response in the presence of a non-stationary excitation. The simulation of the
laboratory model to a swept sine excitation exhibits peculiar behaviour. Such
behaviour requires experimental corroboration, as well as fundamental analyt-
ical studies in order to assess the implications of such response on the system
behaviour with regard to increased winding velocities. This would represent a
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further extension to the stationary analysis suggestea aoove.

The numerical simulation presented in Chapter 5, illustrated the danger of

1 mode technique directly to the equations of motion. This
was particularly frustrating, but a worthwhile experience .for. the author. The
initial results from the normal mode simulation were convxnﬁln]g; to the extent

uil

P | Aramma annarant once

i 3 . ' _ . h
that the severity of the problem only became apparent onc

was available. It is clear irom this : :
purely on a numerical simulation is a dangerous exercise and should be viewed
with skepticism until experimental correlation is achieved. It is in this regard
th;t c.:’nvt;:'mm of the final simulation of the mine hoist system is levelled. The
correlation of this system is based on observations provided by Dimitrio'u. and
Whillier. Although a video motion analysis system was developed to facilitate
such a correlation, and such a study is currently in progress, a number of
correlations would be required to convincingly satisfy this criticism. It was
decided at this stage to correlate the simulation results broadly with a system
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 which was known by Industry to exhibit adverse dynamic motion, and which

had received a great deal of attention in the past, but had not as yet been

essfully simulated over the entire ascending and descending winding cycle.

succ : :
Further experimental correlation is clearly necessary, and is currently being




pursued with a major mining house. It is interesting to note that on this
particular winder, resonance occurs on the ascending cycle to the extent that
the vibration of the headgear superstructure is visible and audible. As a result
the winder speed has been reduced from 15 m/s to 13.8 m/s.

The definition of damping mechanisms capable of correctly predicting the lat-
eral and longitudinal dissipation characteristics of mine hoist ropes requires
substantial experimental effort. Rudimentary tests were carried out by the
author, and a general proportional damping model was applied to model the
longitudinal dissipation. Although Mankowski[1988](1990] has examined the
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whirling motion, further studies will be required. The damping mechanism
assumed in a dynamic simulation may exert a significant influence on the sim-
ulated response, and consequently until accurate data is available, a numerical
simulation can be viewed as approximate at best. Conversely, an over ambi-

tious degree of accuracy would be naive.

In the process of developing the analytical model of the mine hoist system, —
it was assumed that no lateral motion occurs in the vertical rope. Dimitriou
and Whillier observed that such motion was related to the adverse catenary
motion on the ascending cycle, and hypothesised that it may promote mutual
excitation of the catenary via the vertical rope and vice versa. The neglect
of the lateral motion in this study was chiefly due to the added complexity

associated with accounting for such motion in the discretised model. Such de-

tail would require the incorporation of a substantial number of lateral modes,
significantly extending the computational effort. It is _the a.uth_ors’ 0pigion tha'?
sxilchJietaiI' should be incorporated only after a fundamental appreciation of
the system behaviour has been achieved. Simple laboratory tests confirm that
violent interactions between the lateral motion on the catenary and vertical

. . MLt -anresents a further aspect for consideration. Such
section can arise. 111§ TEPIESEnLsS & iurvi pec .

motion was experimentally moni _ : _ :
in appendix I. A further limitation on the current mine hoist model is th.at. it
assumes that the winder is an ideal energy source, and the headgear is rigid.
wvit—};”the advent of advanced winder motors, the electrical winder characteris-
tics are receiving attention in the context of controlling the longitudinal system
due to transients induced during the acceleration and deceleration
winding cycle. This development has been promoted by new
ch permits the lowering of the rope factor of safety on instal-
lations with such control, enabling winding to depths of 4000 m without the

_ useof subshafts. Kaczmarczyk [1993] is currently investigating the simulated

response of the hoist system by including the electrical characteristics of the

behaviour
phase of the
legislation whi

winder motor.




It is natural to question whether an effective strategy exists whereby adverse
catenary motion can be corrected or controlled on an existing installation.
This is a difficult issue to address, since experience indicates that such strate-
gies ultimately lead to a lowering of the winding velocity, and a consequent

motors, it is natural to consider active control strategies. These have not been
considered previously. Due to the high drum inertia such strategies cannot be
affected directly by the winder. However, it may be possible that if the sheave
is energised to equalise the tension between the catenary and vertical system,

then an effective strategy may develop to correct such motion. A simulation of
ding cvcle of the Kloof hoist system with a low sheave inertia at 14.8
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m/s resulted in a greatly reduced catenary motion. This aspect is currently

being investigated with the aid of the laboratory model.

This study has provided a substantial challenge to the candidate. It is natu-
ral to be self critical of certain analytical aspects of the work. For instance,

it wou 1d have been particularly satisfying to complement the simulation of
1T WOuUld [avVl DCTiI parviviaiy Y g I

the method of multiple scales. The peculiar motion obtained with the non-
stationary excitation also represented an attractive avenue of analytical study.
In this rt;ga,rd the candidate had to continually redirect the eﬁort towards a
practical outcome, even when the analytical aspects of the subject could have

otivated through personal interest. On the otherhand, the experience

been m
. P 'R il o oo dlanl svstam where it 1 difﬁc‘.,‘.lt to Obtain “h"S-
gained trom dealing Witll a pratiltdl 5ysueii, phy

ical measurements and quantify the physical parameters accurately, provided
valuable experience in that the results achieved required continued critical

appraisal

Clearly further analytical studies are t be pursued in the laboratory and on
. o a1 £ abae Tt is hoped that this study will provide support
site to extend this work Iurtner. 1iv is AOpPeQ Lhas y P pp

to future researches in the ;28 W :
the University to facilitate an informed assessment of existing installations on

behalf of the mining industry.




Appendix A
Excitation Definition

This appendix considers the definition of the excitation mechanisms applied
in the stationary stability analysis, and in the non-linear numerical simulation

of the system. In the stationary stability analysis the excitation accounts for

the stationary periodic displacements which occur at the winder drum during
constant velocity winding, due to the coiling mechanism. In the numerical
simulation, the excitation definition comprises of the former excitation, as well

as those excitation mechanisms which give rise to transient system response
at various stages of the winding cycle.

During ascent of the conveyance, the winding cycle consists of an initial accel-

eration to achieve theno al-w g . e ¢ ,
at a constant winding speed until it decelerates as the conveyance approaches

the bank at the head of the shaft. In the process of winding, the rope is coiled
_ onto the drum, and forced displacement excitation occurs at the drum due to
the Lebus liner and the resulting coiling pattern. During the constant velocity

xcitation imparted to the system via the coiling pattern is periodic

phase, the e
and stationary. Since it is not possible to wind the entire length of rope onto

the drum in a single layer, multiple layers are required. Typically four layers
of rope are wound onto the drum. At the end of a layer, as the rope reaches
the drum flange, it changes its traverse direction and rises a full rope diameter
to continue coiling on the next layer. The layer change imparts appreciable
longitudinal and in-plane lateral transients to the system. Following the layer
change, due to the reversal of the traverse direction, the out-of-plane lateral
excitation due to the coilin i 0

of the previous layer. Consequently stationary periodic excitation only occurs
during the constant velocity phase of the wind, whilst the rope is traversing

across the drum surface. Transient excitations occur during the acceleration
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and deceleration phases, as well as during a layer change Thus the excitation
appiied to the system, and considered in this appendix consists of:

Longitudinal and lateral in and out of plane stationary periodic excita-

tion due to the Lebus liner coil cross-over profile.
itudinal excitation due to the acceleration/deceleration profile.

Longitudinal and in-plane lateral excitation due to a layer change.

Other excitation sources not considered in this study may arise due to ovality
of the winder drum and head sheave, or due to shaft steelwork misalignment.
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Figure A.1: Mankowski[1982], Figure 2.4(a): Winder drum fitted with a Lebus

liner
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Dimitriou and Whillier [1973] identified the Lebus coiling mechanism as the

primary source of periodic excitation applied to the system during the constant
velocity winding phase. They considered the lateral out-of-plane excitation due

4 tbhn ~niling moachaniem ta he most sionifidant. and analveed the freauency
0 ti€ Coiling mecdnanisiii (O Le IHIUSL Sigliliitalis, allll allalyscl vic iequeicy

content of the wave form. In this analysis, they examined a symmetrical 180°
Lebus liner, as well as asymmetrical designs with multiple cross over regions.
Their analysis demonstrated that in the case of the 180° symmetrical liner,
periodic excitation occurred, with a fundamental frequency of twice the angu-
lar velocity of the drum. Also the first and second harmonics of the lateral
out-of-plane excitation were of a similar order and considered significant. With
regard to asymmetrical liners, it was demonstrated that the excitation was pe-
riodic with a fundamental excitation at the angular velocity of the drum. The
amplitude of the harmonics varied in magnitude with the degree of asymmetry,

_ but noobvious advantage could be found. Since 180° symmetrical Lebus liners

are commonly used in the mining industry, the definition of the excitation is
based on this configuration.

A 180° lined Lebus drum consists of two parallel grooved circular shells offset
from one another by half a rope diameter. The shells are joined at the cross-
over insert, which maintains the continuity of the grooves, as illustrated in
figure A. CYOnsequently a coil cross-over occurs twice per drum revolution. ’.l"he
cross-over geometry induces excitation in the lateral out of plane w-direction,
and in the axial u-direction of the rope. The axial excitation occurs due to
the difference in arc length between the diametral arc and that traversed at
the cross-over interface. Excitation normal to the drum or in the in-plane v-

direction occurs on the second and higher layers as a consequence of the rope

Ui1L1 O vavas LR L 9

~ rising over underlying coils of the lower layers.

The lateral in-plane displacement of the rope on the second rope layer is cal-
culated from the geometry of the underlying layer as illustrated in figure A.2.
3
V34
2

fn;{l.—
\

On the third layer the rope will rise through twice this distance, whilst on the

——fourth layer it-will rise through three times this distance etc. Thus accounting

for the layer number, n:

ﬁ\l

vnz(n—'l)(l "'E“}G
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where v, represents the in-plane amplitude during the n'* layer.

The magnitude of the displacement in the u direction can be calculated by
considering the geometric properties of the cross-over region as illustrated in
figures A.3,A.2. During a cross-over the axial velocity of the rope increases to

over, and that whlch would be traversed in the absence of a cross-over. Thus
relative to the nominal axial displacement due to the winding velocity, this
difference represents the additional axial displacement applied to the system.

This difference is calculated as:

2vn

u = Raf[1+ (2R ﬂ)z +(g )2]2 — Ra4f3

d2
u (0,125 4 0.018(n — 1)) 53

Figure A.4 illustrates the physical motion of the rope in the u,v,w directions
for one rotation of the drum!. The motion in the u direction 1llustrates that the
average winding velocity is slightly larger than that of the peripheral velocity
of the drum. This is reflected by the dotted line in figure A.4 (a). The periodic

component of the longltudlnal motion is consequently the motion relative to

in figure A.5 (a). The lateral in-plane displacement
this line, as presented g (a). p

v due to the rope rising over an underlying coil is presented in figure A.4
(b). This motion consists of periodic pulses. Figure A.4 (c) presents the

., woflont thncn ~AF tha Wlanf vnina ..l..,l..- L VA

IThe physlcal parameters employ yed reflect those of the Klool mine winder - V, =
15m/s, Rg = 2.14m,d = 48mm, B = 0. rad, where V., Rq,d, B represent the nominal
cross over arc respectively.

winding velocity, the drum radius, the rope di ameter nd t?e
nlacoment am

Note that these plOLs reucu. the uinl.uu.\, n

layer ie. u 3 h :
placement proﬁle u is calculated contmuously with respect to the . Cross-over arc ,B, via

u(6) = [(Rab)* +( £)2 4 (M)z]i - ]Rdﬂ 0 < 6 < /2, and a similar relationship for

upwind on the second
on CONC
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v is calculated as a triangular pulse of magnitude

“ e hanhadll 22 QC

S

lomlannrman

/l << B. The Ulapld\.culcu P




lateral out-of-plane displacement w, and reflects the total lateral displacement
for one revolution. This displacement comprises of both the average traverse
velocity ( reflected by the dotted line ) and the periodic displacement at the

coil cross-over, as presented in Figure A5,

Vii La

The Fourier spectra of the periodic wave-forms presented in figure A.5 are
presented in figure A.6. Figure A.7 presents the periodic wave forms and their
reconstruction from the first and second harmonics of the Fourier spectrum.

The periodic displacement functions are:

u(t) = z‘: Re(U, &™)

n=1

v(t) = i Re(V, &™)

n=1

w(t) = 22: Re(W, /™)

n=1

The harmonic amplitudes Uy, V., Wy, are complex and contain both amplitude

and phase information. For a 180° Lebus liner, the excitation frequency  is
o1 2i I and tha drium diameter R hy:

related to the nominai Windiﬂg V‘cu‘;ciuy’ Ve allQ uviil QiU GlaliiCuTl iyd O)y. |

m > V4

1 =2V./Rq

It is evident from the spectra presented in figure A.6 that the most significant

excitation occurs in the out-of-plane lateral direction (w), and is an order of

magnitude large
Although the longitudina
consequently significant perio

] excitation is small, the axial stiffness is high and
dic axial forces can be generated?.

The displacement profiles presented in figures A.4,A.5 were constructed numer-

ically. A Fourier transform of the displacement profiles provided the amplitude
£ aach wave form. In this way, both the magnitude

and phase information of each
and phase relationships between

assessed for use in either the sta

the longitudinal and lateral excitations can be
bility analysis, or the numerical simulation®.

2Dimitriou and Whillier {1973} estimate the axial forces due to the longitudinal excitation

to be of the order of 5KN. . . ‘
3This definition was applied in the non-linear normal mode simulation. An alternative

on, as applied by Mankowski, was applied to the quasi-static model, and is defined

[
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Figure A.2: Geometry of rope layers
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Figure A.3: Cross-over geometry
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(b) In-plane Lateral Motion v
(c) Out-of-plane Lateral Motion w

V = 15m/s, f = 02rad., d = 48mm, Ry = 2.14m.
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———— Figure A5 Periodic motion per drum revolution

(a) Longitudinal Motion u

AN T claem .
(b) In-plane Lateral Motion v

(c) Out-of-plane Lateral Motion w

V = 15m/s, B = 0.2rad., d = 48mm, Rq = 2.14m.
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Figure A.6: Displacement spectra
(a) Longitudinal Spectrum u
(b) In-plane Lateral Spectrum v
(c) Out-of-plane Lateral Spectrum w

V =15m/s, B = 0.2rad., d = 48mm, Rq = 2.14m.
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(a) Longitudinal Motion u
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A.2 Acceleration/Deceleration Excitation

The longitudinal transient response of the system due to the initial accelera-
tion or deceleration profile is commonly viewed as the most significant aspect

of the dynamic response. Consequently many studies in the mining industry

have focussed on longitudinal oscillations such as Vaughan[1903, 1917], Pollock

and Alexander{1951], Perry and Smith[1932], Greenway[1989], whilst neglect-

ing the coupled dynamics of the catenary. The inertial loading due to the
acceleration and deceleration profile is significant and is modelled in modal
space by applying a co-ordinate transformation to the system. Considering

the inertial term in the longitudinal equation of motion [1+4¢8(L) + né(ly)]ue,
where ( = I/pAR? and n = M/pA, and applying a co-ordinate transformation:

u=u+u(t)

where u represents the dynamic motion at any point along the rope relative to

an axial rigid body motion %(t). Since the rigid body motion is not a function

of the spatial variable, the equivalent inertial load applied to the system is:

F(s,t) = —[1 + C6(Lc) + n8(L)T(t)

d 3 ualnafpd in moda-l Spa:ce as:

wautia 222 234

(1) = —— [+ ¢B(k) + (L)) ds

the equivalent modal force applied to the i** mode;
leration or deceleration of the system; m;;, ¢; represent
f the t* longitudinal mode respectively, as
al mode model.

where P;(t) represents
ii(t) represents the acce
the modal mass and mode shape o
defined in Appendix C for the norm
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A.3 Layer Change Excitation

At a layer change the effective radius of the drum increases/decreases by one
rope diameter (d) over the cross-over arc, during the up or down wind respec-

tively. Immediately after this, the rope reverses its direction ot traverse. ‘lhe
reversal of the transverse motion causes the lateral out-of-plane excitation to
change in phase by 180°. If the winder is treated as an ideal energy source, with
a constant drum speed, then in order to accommodate the effective change in
diameter at a layer change, the rope experiences a velocity change in a direc-
tion tangential and normal to the drum surface. The change in velocity results
in a longitudinal and in plane lateral acceleration of the system, and conse-
quently longitudinal and lateral in plane transient response. Since the system

is non-linear, these pulses may pre-empt a jump to an alternative dynamic

state. For thisre "
A simple approach is developed below to approximate the acceleration pulse

induced by a layer change.

Filler
Rope g
B

(Y.

\ [\

\J

~

[\

Figure A.8: Filler geometry
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In figure A, the detail of a 180° Lebus liner is presented, whilst figure A.8
presents a section of the liner at the drum flange. A filler is positioned on

the drum flange to achieve a layer change. In this figure, the layer change
occurs over an arc length (. If it is assumed that the winder is an ideal energy

. dhen dhhn A
SOUrcCe, uLIICll LUT aligulal v Ll s
i

------- h ular velocity of the drum w remains constant. During the
1
U

layer change the rope changes its radial position by

assumed that the radial profile is:
 aain(%
r(0) = dsin (Qﬂ

For a constant angular velocity w of the drum, § = wt:

t
r(t) = dsin’(%

The radial acceleration of the rope is given as:

F(0) = 5 Peon Ty

The axial acceleration is determined from the change of the arc length s of the

profile.

dr g1
o(8) = [ 1+ (g1 Rt

Substituting for the profile r(6) and simplifying:
1 md, [P . 2
s(0) = RaB + -273:(5—5) _/0 sin’(5

Converting to the time domain and carrying out the differentiation with respect

.
- wws sae

[P
LO L11ILIC.

on-bv one rope diameter. If2tis
g9 v I L\Il.l\/ AT A= 2N v
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In view of the previous section, the addi
co-ordinates, for the normal mode model, is given by:

In the quasi-static model, the longitudinal excitation due to the layer change
is applied through a displacement at the drum. Across the arc of the layer

change, this displacement is given by:

_ 1y P Tl
u(8) = 57-(53 /osm(ﬂ)dﬂ

lacement is held constant until the next layer change, where an ad-

" : jon i lied in a step-wise manner until the end
of the wind.
A co-ordinate transformation is applied to account for the inertial lo
the in-plane lateral direction. Since the catenary is restrained in the lateral
direction at the sheave end, the displacement varies from that at the drum,

linearly to zero at the sheave. Thus the co-ordinate transformation applied is:

v=v+(1- %)r(t} |

where T represents the dynamic motion f the cable w1t'h respect to the rigid

body motion r(¢). Thus the i inert i :

Fifs,t) = =(1 = D)

. - al 1 1 4 : i
This equivalent modal load applied to the ™ mode can be evaluated in the

usual manner as:

Qut) = = [ FO - PR(e)ds
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These loads are calculated at the appropriate time during the wind. It is
interesting to note that since the layer change occurs over a short time interval,

the radial acceleration is significant and is of the order of 30g, whilst that of

the axial acceleration is of the order of 2g. Figure A.9 presents a plot of the

RIS ISP LI PR 3 i i
physical rope displacement in the region of the layer change, and the associated

axial and normal acceleration of the rope, as a function of drum rotation. It is
pertinent to note that radial acceleration is inversely proportional to the square
of the arc length, whilst the axial acceleration is inversely proportional to the
cube of the arc length (B); thus the layer change transient can be significantly
reduced by increasing the riser and cross-over arct.

4A long filler is undesirable since it lead additional wear of the rope strands
perience regarding the cross-over arc length is that the stability of the coiling patt
adversely affected with an increase in the cross-over arc. Currently the maximum cross-over

arc is of the order of 30°.

ern is
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Figure A.9: Layer change transient excitation
(a) Radial Displacement (mm)
(b) Radial Acceleration #(t) (g)
(c) Axial Acceleration 3(t) (g)
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A.4 Excitation Definition for the Quasi-Static
Model

h the " NK sottware A NO hle

to define the geometry of the coil cross over region by means of a look-up table.
This is advantageous since the impulsive nature of ‘Ehe e)fcitation is retained for
little additional computational effort. Mankowski|1982] defined the coil cross
over excitation by means of versine functions in terms of the period of the

Lebus frequency 7, the duration of the Lebus cross-over g, a.nd tlTe delay time
between two successive layer cross overs 7;. The forcing function displacements
DEUTWECI]L t WU SULLTOOL YU 1y T Liveoo a g I

are illustrated in figure (A.10). These functions are defined by:

T =7Ry/Ve
5 =T1B/™
Td=T—T8
w=mr]1g

w(0,t) = LT[l — cos(wt)] 0<t<7p
t) [

v(0,t) = ;V_l ~cos(2wt)] 0<t< 7
w(0,t) = 1W[l — cos(wt)] 0<t=7p
u(0,t) =Ult —78)/ra T8<tST
v(0,t) =0 T <t<T
w(0,t) = d/2 Tp<t<T

where 2(0.1). v(0.1). w(0,t) refers to the periodic forced displacement at the
dl:;lm in\ tilel ylonéit;u;iinal; in-plane lateral, and out-of-plane lateral directions
respectively; d refers to the rope diameter, 3 refers to the arc of the layer cross
over region, V. the surface speed of the drum, and Ry refers to the winder

drum radius.
T ~ (0.125 + 0.018(n — 1)*)d*/Raf3

V = (n—1)(1 — v3/2)d = 0.134(n — 1)d
W =d/2

here I7. V. W are determined by considering the geometry of the layer cross-
w e b )

over region, and n represents the layer number. The_ lateral-excitation i.s ap-
plied to the catenary by a co-ordigqte Fransforrzlatlor{, W;thh re’s‘ults in an
—;:quiyalent inertial load being applied in the transtormed reterf:nce tran?e. The
versine function is easily differentiated in the cross-over region allowing the

forcing function to be defined as a function of shaft depth for the in and out-

f-pl Vi o1 o doc and defined in a look-up table.
OI-pla.ne jateral ImoOacs, alila aTiiis D




1

v
W
w4
. P
" 3
; f‘\ ““"‘E"—T\
- T

Figure A.10: Lebus coil-cross over excitation - Versine functions




Appendix B

4

Parametric Response due to

1€
Longitudinal Excitation Only

This appendix documents work carried out in the early stages of the study,
where the lateral stability of the catenary was examined in the absence of cable
curvature and axial transport velocity, due to stationary longitudinal excitation
at the winder drum. The equations of motion developed in chapter 3, including
relative proportional viscous damping and excluding cable curvature and axial

transport velocity are:

(1 + C6(3 - ll) + 7’6(3 - lZ))“tt = Czusa + LUt ss

+62(va”ss + wswaa)[H(s) - H(8 - 11)] (Bl)
Vi = Ty + MiVtss t+ c? [(usvs)a + %(va)zvu + %(wfvs)a] (BZ)
Wy = Ty + PWess + € [(u,w,), + 3(ws)*wss + %(”3“”)’] (B.3)

Where s refers to the axial co-ordinate measured along the rope from the
drum to the suspended mass. 0z refer to the length of the catenary and

 total length of the rope respectively. c?, and ¢ represent the longitudinal and

lateral wave speeds. ( = ;,7%,-,17 = :—fg, and I, R, M, E, A refer to the sheave

inertia, sheave radius, conveyance mass, modulus of elasticity, and effective

steel area of the rope respectively. u, j represent the longitudinal and lateral
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damping mechanism respectively. Lateral damping is low, of the order of 0.02%
of critical, and will consequently be discarded at this stage of the analysis.
Longitudinal damping is more appreciable, and is of the order of 1.5% for the
rst mode, and is therefore retained. Damping is discussed in more detail in

JESUSAVRES DAV A N

H r1

[«

naptero

In the absence of lateral excitation, the lateral motion may be assumed to be
trivial, and hence the response of the rope is purely longitudinal. The purpose
of the analysis was to examine where such a solution would be stable. In the
absence of lateral motion, the longitudinal equation of motion reduces to:

(14 ¢6(s — Iy) + 76(s — 1a) Juee = €*tss + Hllt,ss (B.4)

This is a linear equation, and the steady state longitudinal response due to
harmonic excitation at the winder drum, u(0,¢) = Re( i Unei™), can be

formulated in closed form?. The axial system response in the catenary section

of the rope to such an excitation is presented in appendix C as:

u(sl’t) = RC[Z[ATLCOS/\“S + anin/\n.s]ej"m]

n=1

where A\, = ﬁcﬂ, and A,, B, are defined in Appendix C.

_ Qnsubstituting the solution for the longitudinal response into equations (B.2),(B.3),

the linearised form of the lateral variational equations of motion contain iden-

tical terms, and thus only one of the two need be considered. Instability of

the trivial solution predicts departure from longitudinal motion to non-planar
of

motion. The severity of this motion
the system, and whether internal resonance occurs, which would further pro-

mote the coupling between the lateral and longitudinal motion. The linearised

12V VT vaas SRS

variational equation governing the lateral stability of the catenary is:

(B.5)

Vg = CoUss + c? [u,v,],

relative proportional viscous damping, and consequently the
es in proportion to the natural frequency, and the higher

e P PR
This model accounts tor

more damped. On site drop test measurements are presented

modes become successively
hat a general proportional damping mechanism may be more

in appendix G, and indicate t

anneranriate
riate.

appivpy
2

—2Q represents the coil cross-over frequency.




This equation is converted to an or dlnary differential equation with periodic

- —— f nrtian avnanainn far 'n{e 1‘\ age

CoemCIean Dy appLymg ali 'E'g" ifunction eXpansion ior v\Ss,i; as:

where the eigenfunction ¢;(s) which satisfies the boundary conditions is:

$i(s) = sin(%s)

ubstitution of equation (B.6) into equation d orthogona g wit
respect to ¢;(s) results in a set of coupled ordmary dlfferentlal equatlons with

periodic coeflicients:

Jﬁl+[\w3 .|+$'“H D;; ]COS(th)]{fnl=!0l(B-7)
I I ==l

Ja I ) v )

rix [D;;]ncosnf)t is identical to that derived in Ap-
here the axial harmonics of the excitation U, e "

[Dij)ncosn(t = Re([Wyw(nwt)))
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B.1 Stability Analysis

The variational equations of motion governing the lateral stability of the sys-
tem are linear equations with time varying coefficients. At this stage of the
study, the lateral stability of the system due to longitudinal excitation was

considered as a potential indicator for large amplitude catenary motion. Dim-

itriou and Whillier{1973], Mankowski[1982] and Backeberg[1984] were aware of

the potential influence of parametric excitation and response, however no for-
mal mathematical development was performed to examine this phenomenon.
Intuitive criteria centred around the observation that regions of main para-
metric resonance® may exist where a lateral mode tunes to half the frequency
of the Lebus coil cross-over frequency. This is often termed subharmonic res-
onance, as identified by Dimitriou and Whillier[1973], where lateral response
occurs at a subharmonic O 1 itati — Dimitri

Whillier[1973] discussed subharmonic resonance with regard to the experiment
of Melde (1859), and the analysis of Lubkin and Stoker[1943]. In this discus-

— sien, It was proposed that subharmonic resonance would be amplified if a

longitudinal mode was simultaneously resonant. Dimitriou and Whillier[1973]
did not identify this condition with internal resonance, where the longitudinal

nnnnnn wantly the nanlinear con-
AL A AN A

mode tunes to twice the lateral mode, and consequently the nonlinea

pling which subsequently arises, where autoparametric resonance conditions
develop. It was recognised that regions of combination resonance in mechani-
"1 eoetara had heen reported in the literature, but as no formal analysis was

Cai sysiemis na Ve 2Ly . .
performed proving their existence in the context of the mine hoist system, they

were not considered.

The complexity of the mine rope pro i :

reality the rope is moving with an axial transport velocity, and consequently
the natural frequencies of the system are continuously changing. This effect
is-of considerable-importance in the mine hoist system, since the travelling
system may pass through a region of instability sufficiently rapidly to contain
the growth of the lateral amplitude to an acceptable value. Thus in reality

3 1iLaley +a ha a fiinctian A
the importance of th f both

e region of instability is likely to be a function of both
the transport velocity and the amplitude of the parametric excitation. This
conforms to the case of a parame

trically excited system with non stationary
as discussed by by Nayfeh and Asfar[1988], Neal and Nayfeh[1990],

parameters, as Y

and considered extensively by Mitropolskii[1965].

ce occurs when {Ip = Zw;.

3Main parametric resonan
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B.2 Parametric Resonance of MDOF Systems

Hs'u[1963] considered the primary regions of instability of a a multi-degree
of freedom system subjected to periodic parametric excitation, where the pe-

riodic excitation was represented as a Fourier expansion containing an infi-
nite series of harmonic functions. In his method, a perturbation approach

i ~f tha rasiane of narametric instabilitv \'xrhnn

was applied to analyse the size of the regions of parametric instability, when
the parametric coupling terms are small. N a.yfeh[1973§, 199?] reconsidered
this and other problems related to parametrically excited linear and non-
linear systems, by applying the method of multiple scales . More recently

Szemplinska-Stupnika[1978] and Takahashi[1981a] have extended the method

of the generalised harmonic balance as proposed by Bolotin[1964], to include

combination resonance regions. Unlike perturbation techniques, the harmonic

balance methods are not limite conc . .
use of ultraspherical polynomial approximation techniques, employ¥n.g Flo-
auet stabilitv theory have also been proposed (Sinha et al.[1979], Srinivasan
and Sankar[l | ethods are computationally intensive for any
sizeable system. Hsu’s[1963] method was initial!y applied to study the system.
In retrospect, Nayfeh’s[1973b] method'of multiple scales is r.norf:hconvemgnt,

55, i 13 mancion and does no
as it results in a unitormly valid expansion, and aoes not require e averaging
techniques applied by Hsu[1963].

lts may be applied directly to a system of equations of the

e ’al 1082 requ
risu’sj{ivog) resu
form:

/ \

{z} + (e i[D’]cosswt + [wf]) {z} = {0}

=1

arametric coupling matrix of the s harmonic,

s ents the p o
where [D]" repres ric full matrix, and [w?] is a diagonal matrix with

i ay be a non-symmet .
'whlz: h may al to theysquafé of the linear natural frequencies of the system,
1ts terms equ .
which are (al.ssumed to be distinct, and s refers to the s** harmonic of the

excitation frequency w.
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B.2.1 Hsu’s Perturbation Solution

In analysing the system, Hsu[1963] represented the equations of motion in first
order form as:

dzi
da
%‘t)l'*'w?xt = f,-(z,-,w,-,t) (BS)

where the solution z;(t) contains a component representing the free response
of the linear solution, a
€

zi(t) = Ai(t)coswit + Bi(t)sinwit + }_j e?z? (B.9)

g=1

' n dx(‘I)
w: = 2 = wi(—Ai(t)sinwit + Bi(t)coswit) + e = (B.10)
g=1

The first two terms on the right

i .. . .
variational part of the solu ion, tion

part of the solution. In essence the variational component of the solution
represents the response of the system to an initial disturbance or a variation

L UOViAVe Vaa =Y

- f the trivial solution. If this component of the solution is stable, then the

disturbance remains bounded, and the response to the disturbance is essentially
dictated by the free response of the systern However in a region of instability,

ian erows without }\nnnd indicating
]

the va,natlona,l component of the solution grows withoul bound, indicatin
that the system is unstable if subjected to an arbitrarily small disturbance.

(B.10) above, A;, B; are assumed to vary slowly with time, and

lll cquauuu \&F.av)
consequently are a.ssumed time independent, when differentiating with respect

to time. However, since A;, B may be functions of time, the condition of slowly

vhe
varying parameters is gsatisfied only when:

QU
EU
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Substitution of the assumed solution (B.9), into the equation motion (B.8)
resuits in:

w.-(—-A:»sinw,-t — w;A;coswit + B;cosw,-t — w; Bisinw;t) +
' d*z!

2 . 2
w?(Ajcoswit + Bisinwit) + w; E eIzl + ) € dtzi

S n
—e{zzdfjcosswtaf:j} (B.11)

s=1;=1

Considering only the first order powers* of ¢ and equating terms, the follow-
ing system of equations are obtained; the solution of which determines the

coefficients A;, B;:

dA; dB; o
—chosu,-t + —d?-sznw,-t =0 (B-12)
dA; . dB; d’z] | 2.1y_
—wi—’jsznw;t + wiTi‘t-coswit + f('a?" +wiz;) =
S n
€ L]
- 3 El Zl{dijAj(COS(w]' + sw)t
s=1 3=
+ cos(w; — sw)t) + df; Bj(sin(w; + sw)t
+ sin(w; - sw)t)} (B.13)

Hsu[1963] then proceeded by consi

of the solution separately. Those terms which result in small divisors are
retained in the variational part of the solution, whilst the remaining terms are
carried to the perturbation component of the solution. If one assumes that
the system is tuned such that w; are distinct and w; £ sw are not close to *w;,
then all the terms on the right hand side of equation (B.13) are retained in the

nded The eauations Apnrribing

perturbation part of the solution, which is bounded. lhe equations descr
the variational part of the solution are:

would define the

second and subsequent regions
the primar
y the primary parametric region is considered by Hsu[1963].

4Expansions developed to higher order
of instability. These are kno
region, and consequently onl
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dA; dB;

—&Tcosw,t + —Et—smw,t =0

dA dB

dt'smw.t + dt'cosu,-t =0 (B.14)

Solving for A;, B; leads to constant coefficients, and thus the solution is bounded
and stable.

However in cases where w; & sw is close to w;, the stability of th

be examined as small divisor terms occur in the perturbation part of the solu-
tion z(9), and are consequently carried to the variational part of the solution.
_ The variational equations can be transformed into a set of autonomous equa-

tions by applying the Kryoloff-Bogoliuboff-Van der Pohl averaging technique,
B; are slowly varying functions of time relative to

of the systpm must

iii 1iiaOv

where it is assumed that A;,
the averaging period, and are therefore treated as constants. The stability of

t
these autonomous equations, iati

solution, can then be determined by examining the characteristic roots of the

mous equations.

nner, Hsu[1963] determined that for an undamped sys-

Proceeding in this ma
ble and grow without bound if the following

tem, the motion would be unsta
conditions were satisfied.

w =2 Main parametric resonance
w= %(w,- + w;) Combination parametric resonance

Further analysis provides the regions of instability as a function of the pertur-

bation coefficient e. These regions are given by:

Main parametric resonance

. .|(8) ow;  €lda|®
o ddl® |, 2, AT
] 23w 8 Swi

Combination sum lype parametric TeSONANCE:

1 1
9\ ? . ) dDq)\ 2
Wi +wj € (df;)d‘;: <w< wi +wJ + _e_ ( 17 th
~ e 3 28 \ wiw;
8 L8 \ Wiy ) \ ;
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Combination difference type parametric resonance

L 1
wi—wj € —dPdP\’ o Wi € —ddP\*?
3 2s wiw; 8 2s WiWw;

These regions are termed main and combination sum and difference type res-

onances respectively. These results confirm that in a coupled system, the

diagonal terms of the parametric coupling matrix dff ) govern the size of the
main parametric resonance region, whilst the off diagonal terms df]’i) govern
the size of the combination parametric resonance region. Difference type reso-

nances can only occur if d,(;-) dg-? < 0 and conversely sum type can only occur if

df;’dg? > 0. Thus only sum type combination resonances will occur if the cou-

1 4

pling matrix is symmetric, whilst both may occur 1




