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ABSTRACT 
 

 
 
 Emergence and spread of resistance to ciprofloxacin among Neisseria 

gonorrhoeae strains has reduced the options of effective treatment for 

gonococcal infections and has become a concern worldwide. Up until 2008, 

ciprofloxacin was recommended first-line therapy for treatment of presumptive N. 

gonorrhoeae infections in South Africa. At the time this MSc project was 

conceived, ciprofloxacin was still used as first-line therapy for presumptive 

gonococcal infections.  

 

A real-time polymerase chain reaction (PCR) assay was used to detect 

ciprofloxacin-resistant N. gonorrhoeae in DNA extracted from non-invasive urine 

samples collected as part of the national microbiological surveillance (NMS) 

programme during 2006-2007. The molecular epidemiology of ciprofloxacin-

resistant Neisseria gonorrhoeae was investigated by sequencing the quinolone 

resistance determining regions (QRDR) of the gyrA and parC genes of N. 

gonorrhoeae and performing N. gonorrhoeae multi-antigen sequence typing (NG-

MAST).  

 

As part of the NMS program for sexually transmitted infections (STIs) urine and 

urethral swabs were collected from men presenting with urethral discharge at 

primary health care clinics in Johannesburg (Gauteng), Cape Town (Western  
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Cape) and Kimberley (Northern Cape). Urine samples and cultured N. 

gonorrhoeae isolates from 2006-2007 were stored at -700C and available for this 

study.  Gonococci, previously isolated from urethral swabs, were subcultured 

directly onto New York City media.  Isolate identity was re-confirmed by typical 

colony morphology and biochemical tests.  Urine samples from Johannesburg 

were tested in order to develop the real-time PCR protocol.  Subsequently, 

paired urethral swab DNA and N. gonorrhoeae cultures were tested from NMS 

patients recruited in Kimberley and Cape Town. Where possible, the PCR assay 

results were compared with paired antibiotic susceptibility data for ciprofloxacin.  

 

Quinolone resistance determining regions (QRDR) for gyrA and parC were 

screened for known point mutations associated with resistance to ciprofloxacin. 

Detection of mutations by the real-time PCR assay generally agreed with the 

phenotype of either decreased susceptibility or resistance to ciprofloxacin.  All 

ciprofloxacin resistant gonococcal isolates had the same gyrA and parC 

mutations, which initially suggested that quinolone resistant N. gonorrhoeae 

(QRNG) in Kimberley, Cape Town and Johannesburg, may be attributed to the 

spread of a single clone.  The use of a more discriminatory typing scheme, 

Neisseria gonorrhoeae Multi-Antigen Sequence Typing (NG-MAST) genotyping, 

revealed that ciprofloxacin resistant gonococcal isolates in Johannesburg and 

Cape Town were heterogeneous, with sequence type (ST) 217 being most 

prevalent in both cities (5/16, Johannesburg; 7/11, Cape Town).  In contrast, all 

eight QRNG isolates from Kimberley were typed as ST 533. 
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The use of molecular methods allowed ciprofloxacin antimicrobial susceptibility 

determination by PCR in non-invasive specimens. This is useful in situations 

where bacterial cultures are unavailable or die before antimicrobial susceptibility 

testing can be performed. Molecular assays to detect ciprofloxacin resistance 

may guide physicians as to the most ideal antimicrobial combinations for 

individual patient treatment.  

 

As a result of emerging widespread resistance gonococci to ciprofloxacin, in 

2008, the Department of Health recommended that ciprofloxacin be removed as 

a first line therapy in the South African national sexually transmitted infections 

treatment guidelines for treatment of urethritis, cervicitis and their complications. 

Although ciprofloxacin is no longer used as a first-line therapy to treat 

gonorrhoea within our country, it may still be used in cases of severe penicillin 

allergy or as part of multi-drug therapy for gonococcal infections in the future. 

The ability to detect ciprofloxacin resistance by real-time PCR will be a useful 

technique in such situations.  
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CHAPTER 1: INTRODUCTION  
 

   
Neisseria gonorrhoeae, a Gram negative bacterium, is the aetiological agent of 

gonorrhoea, which remains the most frequent cause of the male urethritis 

syndrome (MUS) in South Africa (107).   

 

Up until August 2008, the South African national guidelines for the management 

of sexually transmitted infections (STIs) recommended ciprofloxacin 500 mg as a                                                                        

single oral dose for the treatment of presumptive gonococcal infections among 

men with MUS and scrotal swelling. In the revised guidelines, ciprofloxacin is still 

indicated for patient with severe penicillin allergy presenting to primary 

healthcare clinics (175). 

 

Within South Africa, STIs are managed syndromically (221). Integral to this 

approach is the requirement for periodic surveillance to assess both the 

microbiological causes of the various STI syndromes (aetiological surveillance) 

and antimicrobial resistance testing for key STI pathogens, notably Neisseria 

gonorrhoeae. Ciprofloxacin-resistant gonorrhoea was first reported as an 

emergent problem in South Africa’s Kwa-Zulu Natal Province in 2003 (126). 

Subsequent to that, the National Department of Health and National Institute for 

Communicable Diseases, in conjunction with a number of South African 

university laboratories, undertook a survey in 2004 to assess the prevalence of 

ciprofloxacin resistant gonorrhoea across the country (101,105). 
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The most prevalent mechanism contributing to fluoroquinolone resistance in the 

gonococcus involves mutations in the quinolone resistance-determining region 

(QRDR) of the gyrA gene and, often additional point mutations in the analogous 

region of the parC gene on the bacterial chromosome (52). Therefore, to 

understand the mechanisms of quinolone resistance in N. gonorrhoeae, analyses 

of both the gyrA and parC genes are important and necessary.    

 

The volatile nature of antimicrobial resistance in gonococci means that 

surveillance of resistance for public health purposes must be optimal, both in 

terms of obtaining a sufficiently large and representative sample of gonococcal 

isolates as well as using appropriate tools to identify resistance (188). Increasing 

use of nucleic acid amplification assays in industrialised countries and the 

widespread application of syndromic management principles in less developed 

countries has increasingly restricted the availability of gonococcal isolates for 

phenotypic detection of resistance rates (47,218). Logistic problems with 

gonococcal storage and transport and the intrinsic fragility of N. gonorrhoeae 

also impact adversely on viable isolate availability (47, 218).  

 

Molecular tools are being used to provide an understanding of the genetic basis 

of resistance as well as to supplement phenotypic antimicrobial susceptibility 

testing (63, 170, 207). These tools have not yet advanced to a stage where they 

can be used in place of phenotypic testing, mainly because the genetic 

determinants of resistance to most antibiotics are not yet fully known. In addition 
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resistance to several antibiotics in N. gonorrhoeae is potentially mediated by a 

number of independent genetic mechanisms. Nevertheless, for well 

characterised resistance mechanisms, molecular tools offer an accurate and 

objective means of detection and systems have been described for the detection 

of pivotal resistance determinants for public health purposes where viable 

isolates are not required (207).  

 

Typing of Neisseria gonorrhoeae has many applications including the definition of 

sexual networks, interventions to arrest disease outbreaks by defining the 

contacts of outbreak strains, confirmation or exclusion of possible treatment 

failures, monitoring the spread of subtypes of gonococci with altered diagnostic 

features, and the detection of the emergence and subsequent spread of antibiotic 

resistant gonococci (162). Gonococcal typing methods have progressed from 

single (e.g. auxotyping) to combination phenotypic systems (e.g. combined 

auxotyping and serovar determination). Genotyping systems are, however now 

regarded as being more sensitive than phenotypic methods (144). 

  

1.2 Aims and objectives of the study 

 

There were two working hypotheses and three specific objectives. 

 

Hypothesis 1: that invasive specimen can be used to detect antimicrobial 

resistance. 
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Hypothesis 2: that the information on gonococcal strains circulating in a 

community can be used to identify patterns of transmission of gonorrhea. 

 

To explore these two hypotheses within a population, the aim of the research 

presented in this dissertation was to detect and describe molecular epidemiology 

of ciprofloxacin-resistant Neisseria gonorrhoeae.  

The objectives were as follows: 

1. To establish a real-time PCR assay at the STI Reference Centre to 

detect quinolone resistance in gonococcal DNA extracted from male 

urine and swabs. 

 

2. To identify and compare point mutations in the quinolone resistance 

determining regions of the gyrA and parC genes of ciprofloxacin 

resistant gonococcal DNA. 

 

3. To use the high discriminatory power of NG-MAST to molecular 

subtyping of ciprofloxacin resistant strains with identical mutation 

patterns in QRDRs of the gyrA and parC genes. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1. HISTORICAL PERSPECTIVE 

Neisseria gonorrhoeae, the gonococcus, is a Gram-negative diplococcus which 

causes the sexually transmitted disease gonorrhoea.  Reference to the 

contagious nature of gonococcal infection dates back to biblical times (Leviticus 

15:1-15,19), making gonorrhoea one of the oldest recorded human diseases. 

Today, gonococcal infection remains a major global health problem, as more 

than sixty million cases are reported annually worldwide (31).  

 

 The first usage of the term “gonorrhoea”, by Galen in the second century, 

implied a “flow of seed”. For centuries thereafter, gonorrhoea and syphilis were 

confused, resulting from the fact that the two diseases were often present 

together in infected individuals. Paracelsus (1530) thought that gonorrhoea was 

an early symptom of syphilis. The confusion was further heightened by the 

classic blunder of English physician John Hunter, in 1767. Hunter intentionally 

inoculated himself with pus from a patient with symptoms of gonorrhoea and 

wound up giving himself syphilis. The causative agent of gonorrhoea, N. 

gonorrhoeae, was first described by Albert Neisser (90) in 1879 in the pustular 

exudates of a case of gonorrhoea. The organism was grown in pure culture in 

1885, and its aetiological relationship to human disease was later established 

using human volunteers in order to fulfil the experimental requirements of Koch’s 

postulates (76). 
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2.2   TRANSMISSION 

Maintenance and transmission of gonorrhoea are related to a subset of “core 

transmitters” who have unprotected sex with multiple partners and either are 

asymptomatic or choose to ignore the symptoms (119,155, 227). Both social (i.e., 

low socioeconomic status, urban residence, lack of education, limited access to 

health care, unmarried status,) and behavioral risk factors (i.e., commercial sex 

work, previous sexually transmitted infections, male homosexuality, early onset 

of sexual activity, unprotected sex, multiple partners, other high risk partners, 

drug use) have been identified for targeting by outreach/intervention and sexual 

transmitted infection control programs (10, 19, 103).  

 

The risk of acquiring gonorrhoea is multifactorial and is related to the number and 

sites of exposure. For heterosexual males, the risk of acquiring urethral infection 

from an infected female is about 20% for a single exposure and up to 80% for 

four exposures (76, 177). Due to anatomical considerations, the risk of infection 

for the female genital tract from a single exposure to an infected male is probably 

significantly higher. Transmission of rectal infection is also quite efficient, and 

recent studies among homosexual/bisexual men have demonstrated that urethral 

infection following fellatio with an infected partner may account for as much as 

26% of urethral infections diagnosed in this population (103). Among women, use 

of hormonal contraceptive methods is associated with an increased risk of 

gonococcal infection while barrier methods such as condoms and diaphragms 
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used with spermicidal foams and gels exert a protective effect against infection 

(76).  

 

2.3.    CLINICAL MANIFESTATIONS 

Gonorrhoea is generally a disease of mucous membranes, involving the urethra, 

endocervix, pharynx, rectum and conjunctiva. Gonorrhoea often presents as a 

copious discharge of pus, more apparent in the male than in the female (76). 

Asymptomatic infections are important from the public health perspective and 

enable on-going transmission.  

 

2.3.1.  GONOCOCCAL INFECTION OF THE MALE URETHRA 

N. gonorrhoeae infection of men most commonly occurs as an acute urethritis 

with dysuria and urethral discharge (Fig 2.1) (76, 178). The incubation period 

between organism acquisition and onset of symptoms averages 2 to 7 days 

(range, 1 to 14 days) (85). During this time gonococci are quiescent and cannot 

be cultured from the urethra for up to 40 hours after the initiation of infection, 

after which a purulent exudative process begins (54). These data suggest that 

gonococci enter a protective environment early in disease where they survive 

and replicate. It was proposed that, in men, the urethral epithelial cell is this 

sanctuary. In vitro infection assays and microscopic analyses of patient exudates 

indicate that gonococci are released from epithelial cells and that infected 

epithelial cells are subsequently shed from the mucosal surface to the urethral 

lumen (54).  
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After infection, 95 to 99% of men experience a urethral discharge that may be 

purulent (Fig 2.1), cloudy, or mucoid; the consistency of the discharge at 

presentation is affected by the length of time that the infection has been 

incubating and whether the patient has recently urinated (85). About 2.5% of men 

with gonorrhoea presenting to sexual transmitted disease clinics are truly 

asymptomatic (85), but the prevalence of asymptomatic urogenital gonorrhoea in 

men in high risk community-based populations may be as high as 4.7% (106). 

Men with asymptomatic urethritis are an important reservoir for transmission. In 

addition, such men and those who ignore their symptoms are at increase risk for 

developing complications. Ascending infection may result in gonococcal 

epididymo-orchitis, prostatitis, periurethral abscess, or urethral stricture (85), 

 

 
Fig 2.1: Purulent urethral discharge due to gonorrhoea (Photograph credit: D. 
Lewis) 
 

2.3.2.     INFECTION OF THE LOWER FEMALE GENITAL TRACT 
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Endocervical infection is the most common form of uncomplicated gonorrhoea in 

women (119). Although up to 50% of cases may be asymptomatic, symptomatic 

women may present with vaginal discharge, lower abdominal pain and 

sometimes dysuria (because of coexistent urethritis). After an incubation period 

of eight to ten days, patients may present with cervico-vaginal discharge (Fig 2.2) 

or inter-menstrual bleeding, and abdominal or pelvic pain; the presence of pain 

may suggest the presence of upper genital tract disease (178). Asymptomatic 

disease in females occurs worldwide at an estimated rate of over one million 

cases per year (178). 

 

Fig 2.2: Purulent endocervical exudate in gonococcal cervicitis (Photograph 
credit: C. Rodgers) 
 
 

The most common form of infection in prepubertal girls is a diffuse vaginitis with 

a secondary vulvitis (18). Gonococcal infection of the vaginal squamous 

epithelium of postpubertal women is uncommon, and in women with 

hysterectomies, the urethra is the most common primary site of infection (85). 

Symptoms of uncomplicated endocervical infection often resemble those of other 

conditions, such as cystitis or vaginal infections, and the symptoms of 
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gonococcal endocervicitis are clouded by frequent coinfection with Chlamydia 

trachomatis, Trichomonas vaginalis, and/or Candida albicans. Between 20 and 

75% of women are presented with a mucopurulent endocervical discharge (85). 

Endocervical gonorrhoea may also complicate pregnancy and is a recognised 

co-factor for spontaneous abortion, chorio-amnionitis, premature rupture of 

membranes, and premature delivery (178) 

 
 
2.3.3.    INFECTION OF THE UPPER FEMALE GENITAL TRACT 

Ascending gonococcal infection may occur in 10 to 20% of infected women and 

can result in acute pelvic inflammatory disease (PID) that may manifest as 

salpingitis (infection of the fallopian tubes), endometritis, and/or tubo-ovarian 

abscess, all of which can lead to scarring, ectopic pregnancies, sterility, and 

chronic pelvic pain (76, 178) (Fig 2.3). Ascent to the upper female genital tract 

may be facilitated through the ability of gonococci to exhibit twitching motility, in 

conjunction with hormonal changes which influence the expression of 

complement and molecules serving as gonococcal receptors within the female 

genital tract. The involvement of fallopian tubes or ovaries may result in sterility 

(54).  
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Fig 2.3: Pelvic inflammatory disease due acute gonococcal infection 
(Photograph credit: A. Amar) 
 

PID caused by N. gonorrhoeae generally occurs early, rather than late, in 

infection and often during or shortly after the onset of menstruation (85). In 

pregnant women, gonococcal infection is associated with increase risk of 

complications, including premature labour, premature rupture of the foetal 

membranes, spontaneous abortion, and infant morbidity (85). 

 

2.3.4.     PHARYNGEAL, ANORECTAL AND CONJUNCTIVAL INFECTIONS     

IN ADULTS 

N. gonorrhoeae may also cause pharyngeal and anorectal infections. Rectal 

gonorrhoea (proctitis) is most prevalent among homosexual men and 

heterosexual women (94). Unlike homosexual men who acquire gonococcal 

infection by penile-anal and oro-anal forms of sexual intercourse (and are more 

often symptomatic), most ano-rectal infections in women are considered to result 

from the inoculation of the anorectal mucosa with infectious vaginal discharge 
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and are rarely symptomatic (94). Rectal gonococcal infections are often 

asymptomatic, although some individuals experience acute proctitis with 

anorectal pain and itching, a mucopurulent discharge, bleeding, tenesmus, and 

constipation 5 to 7 days following infection (153). The rectum is relatively rich in 

inhibitory hydrophobic molecules since faeces contain 4-5% lipid consisting of 

fatty acids, sterols and bile acids (120). The gonococcal outer membrane is 

particularly permeable to fatty acids (123). Rectal isolates from homosexual men 

and heterosexual women, however, are more resistant to faecal lipids than 

cervical or urethral isolates (120). This then suggest that the host environment 

plays a role in the selection of gonococcal strains.  

 

Oropharyngeal gonococcal infection is seen in homosexual and bisexual men 

and heterosexual women who acquire the infection by engaging in orogenital 

sexual contact with an infected partner. Pharyngeal gonorrhoea is also seen 

occasionally in heterosexual men as a result of performing cunnilingus with an 

infected partner. Some reports have suggested that gonococci infection may 

cause acute pharyngitis or tonsillitis (178). Over 90% of oropharyngeal 

gonococcal infections are asymptomatic and are diagnosed by culture of the 

organism from the throat (76, 178). Since oral sex has been associated with 

urethral gonorrhoea, asymptomatic pharyngeal infection can serve as an 

unrecognised reservoir for transmission.  
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Fig 2.4: Adult gonococcal conjunctivitis (Photograph credit: D. Lewis) 
 

Eye involvement in adults occurs by autoinoculation of gonococci into the 

conjunctival sac from a primary site of infection, such as the genitals. The most 

common form of presentation is a purulent conjunctivitis, which may rapidly 

progress to panophthalmitis and loss of the eye unless promptly treated (Fig 2.4) 

(18). 

 

2.3.5    NEONATAL INFECTIONS  

N. gonorrhoeae infections in neonates commonly follow transmission of the 

organism from the infected mother to the infant during passage through the birth 

canal. Prolonged rapture of the membranes and consequent chorio-amnionitis in 

women infected with N. gonorrhoeae are also predisposing factors to neonatal 

disease. On rare occasions, children born by caesarian section may be infected 

with N. gonorrhoeae, but this usually follows prolonged rupture of the 

membranes (18). 
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Fig 2.5: Gonococcal ophthalmia neonatorum (Photograph credit: R. Ballard) 
 

Babies of infected women are potentially subject to a series of complications 

associated with, if not directly caused by, N. gonorrhoeae. These complications 

include foetal distress, neonatal distress, abortion, premature delivery, 

gonococcal conjunctivitis (“ophthalmia neonatorum”) (Fig. 2.5) and pharyngeal 

gonococcal infection (18). 

 

Neonatal prophylaxis may be directed against both gonococcal ophthalmia and 

chlamydial conjunctivitis. Instillation of a prophylactic agent into the eyes of all 

newborn infants is recommended. These days, antibiotic treatment with 

chloramphenicol ointment is the prophylactic method of choice. Tetracycline 

ointment, used in the past, is no longer recommended due to the high prevalence 

of tetracycline resistant gonorrhoea. Silver nitrate was also used in the past but 

has been associated with conjunctival scarning and is no longer recommended 

(18). 
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2.3.6.      DISSEMINATED GONOCOCCAL INFECTION (DGI) 

In a small percentage (approximately 0.5 to 3%) of infected individuals, 

gonococci invade the blood stream, resulting in disseminated gonococcal 

infection (DGI) (14, 18). Disseminated disease may also develop following 

infection at genital or extragenital sites, and repeated bouts of DGI have been 

observed in individuals with certain complement deficiencies (i.e., C7, C8 or C9) 

(54).  DGI is more common in women than in men (18).  Approximately 75% of 

the cases occur in women in association with menstruation or infection during the 

second and third trimesters of pregnancy. In men, DGI can follow either 

homosexual or heterosexual sexual activity. In 30 to 40% of cases, organisms 

from the bloodstream may localise in one or more joints to cause a purulent and 

destructive gonococcal arthritis. The most common forms of disseminated 

infection are the skin lesions and dermatitis-arthritis syndrome (75).  

 

Fig 2.6: Skin lesion of disseminated gonorrhoea (Photograph credit: J.W Harris) 
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Skin lesions begin as erythematous macules, commonly 1-3mm in diameter (Fig 

2.6). Typically, the skin lesions are found on the distal parts of the arms and legs. 

They frequently occur on the skin near the small joints of the toes or fingers and 

on the feet and hands. Microscopic examination of skin lesion biopsies will show 

superficial ulcers with pus formation and diffuse inflammation in the dermis and 

subcutaneous tissues. Patients with arthritis have multiple joints involved 

simultaneously or sequentially, and this is termed migratory polyarthritis. Knees, 

joints of the wrists and hands, ankles and elbows are most frequently involved. 

Joints which are readily accessible for examination, such as the knee, will show 

diffuse redness and swelling with demonstrable fluid, and needle aspiration will 

yield thick pus fluid (18). Neisseria gonorrhoeae may be isolated from blood, joint 

pus and/or rarely, skin lesions 

 

2.4 MICROBIOLOGY 

 

2.4.1.           Taxonomy of the Family Neisseriaceae 

The genus Neisseria belongs to the family Neisseriaceae, which has undergone 

many taxonomic changes (16). The genus Neisseria was assigned to the family 

Coccaceae until 1948 when the term Neisseriaceae was introduced (131). The 

family Neisseriaceae at that time also contained the strictly anaerobic Veillonella 

spp. The family Neisseriaceae now contains the genera Neisseria, Moraxella, 

Acinetobacter, and Kingella (16), which are differentiated from each other by cell 

morphology, oxidase and catalase reactions, the presence of carbonic 
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anhydrase, the production of acid from glucose, the ability to reduce nitrite, the 

presence of thymidine phosphorylase, nucleoside deoxyribosyl transferase, and 

thymidine kinase, and the presence of true waxes in the cell wall (16). 

 

The genus Neisseria contains species that are isolated from humans and other 

animals. The Neisseria species infecting humans have undergone few taxonomic 

changes. The most notable change in the taxonomy of the family has been a 

result of genetic studies. These led to the reassignment of N. catarrhalis to the 

genus Branhamella (26) and the inclusion of B. catarrhalis as a subgenus in the 

genus Moraxella (16). Because subgenus and subspecific epithets are not used 

(176), strains of B. catarrhalis should correctly be called Moraxella catarrhalis. 

However, because B. catarrhalis is distinctly different from the Moraxella spp. in 

cell morphology and has recently been recognised as a pathogen, the name B. 

catarrhalis is commonly used although no formal request has been made to have 

the name conserved taxonomically. 

 

2.4.2.  Taxonomy of Neisseria spp. 

The genus Neisseria contains 12 species and biovars isolated from humans 

(172). They can be identified by many characteristics, including their patterns of 

acid production from carbohydrates and their ability to reduce nitrate and to 

produce polysaccharide from sucrose. Although several human Neisseria 

species were described in the late 1800s, most were described in 1906, when 

von Lingelsheim cultured specimens to determine the etiology of meningitis (56). 
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Studies to characterise the Neisseria spp. were undertaken to determine the 

etiology of influenza, colds, and meningitis and to classify the species objectively 

(56, 214). During these studies, problems in identifying commensal Neisseria 

spp. were noted. It was found that colonial cell morphology could not be used for 

the classification of Neisseria spp. and that reproducible patterns of acid 

production from carbohydrates could not be obtained from subcultures of the 

same strain or from strains tested in different media (214). Attempts to classify 

Neisseria spp. were also hampered by a lack of differential tests such as the 

oxidase, nitrate reduction, and polysaccharide production tests (99). Because the 

oxidase reaction was not used as a differential test, oxidase-negative species 

were included in the family Neisseriaceae until 1974 (172). Consequently, the 

taxonomy of the genus has been confused and the data in many early 

publications on Neisseria spp. must be interpreted cautiously.  

 

The human Neisseria spp. can be divided into two major groups. The first group 

includes N. gonorrhoeae, N. meningitidis, N. lactamica, N. cinerea, N. 

flavescens, N. polysaccharea, and N. gonorrhoeae subsp. kochii. Species 

belonging to this group generally grow as non-pigmented, translucent colonies. 

The yellow-pigmented species, N. flavescens, is the only exception to this rule. 

The second group of species includes the saccharolytic commensal Neisseria 

species, N. subflava (including the N. subflava biovars perflava and flava, which 

can be referred to as N. perflava and N. flava), N. sicca, and N. mucosa. 
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Colonies of these species are generally opaque, although some strains of N. 

perflava grow as transparent, non-pigmented colonies. 

 

2.4.2.1  Morphology and basic structure of the pathogenic Neisseria 

The Neisseria resemble other Gram-negative organisms in terms of cell wall 

structure but are simpler versions with respect to genome size and other 

specialised structures (18) (Fig.2.7, 2.8). These organisms are structurally 

distinguished from other cocci by their ‘kidney-shaped’ diplococcal forms. This 

physical attribute is acquired during the septation of cells in a longitudinal plane 

at cell division, so that they appear microscopically with a flattened edge rather 

than a rounded edge between the two cells. Neisseria are commonly arranged in 

tetrads or pairs and occasionally can be seen as individual cells (18). Gonococci 

do not express a true polysaccharide capsule despite several early reports to the 

contrary (178). Other investigators have demonstrated that capsule production 

appeared to be dependent on the medium composition and other conditions in 

which the organism are grown (69). Also that capsules may be lost by 

manipulation of the organism prior fixation (69). However, Noegel et al (138) 

have reported that gonococci do produce a surface polysaccharide capsule, 

including provision of a hydrophilic and negatively charged cell surface. But the 

function of the capsule in gonococcal biology is largely undetermined. 
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Fig. 2.7 Diagrammatic and electron micrographic representation of 

Neisseria. In the upper section of the left quadrant is a thin section 

transmission electron micrograph, which shows the morphology of the cell 

membrane. The lower left quadrant is a phosphotungstic acid negative-

stain transmission electron micrograph where the cell stains black, and the 

pili can be seen extending from the cell. The pili are much longer than 

shown and would extend off the page. The right half drawing is developed 

from the electron micrograph and other data (18). 

 

The cell membrane of the Neisseria is composed of outer membrane proteins, 

lipids, lipopolysaccharides and has an inner peptidoglycan matrix (Fig.2.8). Porin 

proteins cover the cell membrane and form aqueous channels enabling the 

exchange of ions, dyes, antibiotics and other larger compounds to occur (Fig. 

2.8). Therefore, the cell membrane is a dynamic structure that is constantly 

adapting to changes within its external environment (18, 68).  
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Fig. 2.8 The membrane structure of Neisseria showing the structural 

features of the outer membrane, periplasmic membrane and cytoplasmic 

membrane. Opa, opacity proteins; LPS, lipopolysaccharides; PorA, class 1 

proteins (porin proteins); PorB, class 2, 3 proteins (porin proteins); P, 

proteins; PTG, peptidoglycan. This diagram was modified from Brooks et al 

(18). 
Fig 1. 2 
 

2.4.3.         MICROBIOLOGICAL CHARACTERISTICS OF N. gonorrhoeae 

Neisseria gonorrhoeae is a non-motile, non-spore-forming, Gram-negative 

coccus that characteristically grows in pairs (diplococci) with adjacent sides 

flattened. As mentioned above, within clinical specimens N. gonorrhoeae is 

typically intracellular and this is an important criterion for microscopic diagnosis 

of gonorrhoeae in clinical setups (Fig 2.9). Growth is best for most strains at 35oC 
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to 37oC, and many freshly isolated strains have a relative or absolute 

requirement for atmospheric CO2 in concentration around 5%. The atmosphere 

should be moist, and, with candle jars, moisture evaporating from the medium 

during incubation is usually sufficient for organism growth. All strains are strictly 

aerobic under usual growth conditions, but the organism grows anaerobically 

when nitrite is provided as an electron acceptor. Colonies appear in 24 to 48 

hours, but on most media viability is rapidly lost after 48 hours because of 

autolysis (68). 

 

Fig. 2. 9: Gram-stained smear of urethral exudates showing Gram-negative 
intracellular diplococci. (Photograph credit: D. Lewis)  
 

While most Neisseria species are not exacting in their nutritional requirements for 

growth, the pathogenic species, and N. gonorrhoeae in particular, are more 

nutritionally demanding. N. gonorrhoeae does not grow in the absence of the 

amino acid cysteine and a usable energy source (i.e. glucose, pyruvate or 

lactate). Some strains display requirements for amino acids, pyrimidines and 

purines as a result of defective or altered biosynthetic pathways. Demonstration 
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of amino acid growth requirements forms the basis of a strain typing method for 

gonococcal isolates called auxotyping (27). 

  

For clinical purposes, a satisfactory growth medium is chocolate agar enriched 

with glucose and other defined supplements. Isolation of gonococci from sites 

that normally contain high concentrations of saprophytic microorganisms, 

especially the pharynx, rectum, and cervix, may be difficult because of 

overgrowth of the hardier normal flora, a problem that is largely overcome by use 

of media containing antimicrobial agents that inhibit most nonpathogenic 

Neisseria and other species but permit growth of most strains of N. gonorrhoeae, 

N. meningitidis and N. lactamica (190).  

 

A variety of enriched selective media for culture of N. gonorrhoeae are available 

and include modified Thayer-Martin (MTM) medium, Martin-Lewis (ML) medium, 

GC-Lect medium (BD Biosciences), and New York City (NYC) medium. MTM, 

ML, and GC-Lect media are chocolate agar based media that are supplemented 

with GC agar base and haemoglobin for the growth of fastidious microorganisms, 

whereas NYC medium is a clear peptone-corn starch agar-based medium 

containing yeast dialysate, citrated horse plasma, and lysed horse erythrocytes 

(178). These media contain antimicrobial agents that inhibit other 

microorganisms and allow the selective recovery of N. gonorrhoeae, N. 

meningitidis and N. lactamica. Vancomycin and colistin, antimicrobials present in 

all four formulations, inhibit Gram-positive and Gram-negative bacteria (including 
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saprophytic Neisseria species), respectively. Trimethoprim is added to inhibit the 

swarming of Proteus spp. present in rectal and, occasionally, in cervicovaginal 

specimens. Nystatin, amphotericin B, or anisomycin is added to inhibit yeasts 

and molds. NYC medium also supports the growth of genital mycoplasmas and 

ureaplasmas (178). 

 

2.4.3.1 Examples of genetic adaptability in N. gonorrhoeae 

The linked features of adaptability and transmissibility are key elements for 

survival in these highly evolved bacteria. Examples include the genetic and 

phenotypic hypervariability of the cell surface structures important in mucosal cell 

adherence and attachment. The genetic hypervariability seen in these structures 

contributes significantly to the ‘non-clonal’ nature of the pathogenic Neisseria and 

include the pilin, porin and the outer membrane proteins (OMP) (Figs. 2.7 and 

2.8) (36). 

 

2.4.3.1.1  Pili 

Pili are microscopic hair-like structures surrounding the bacterial cell and the 

pilus assembly apparatus is activated for the transfer of DNA (17). Piliated cells 

also facilitate the expression of certain proteins to the cell surface necessary for 

the processes of transformation and the uptake of DNA (121). Each pilus is 

composed of repeating protein subunits and with hypervariable regions exposed 

to the cell surface (Fig. 2.8). Pili gain their variability from the rearrangement of 
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the expressed gene together with numerous copies of ‘silent’ genes. These silent 

genes are distributed throughout the genome as resources for adaptation (121). 

 

2.4.3.1.2 Porin protein 1 

PorB is the Omp1 equivalent porin in gonococci and is present as two mutually 

exclusive alleles, IA or IB. Its role is to function as a co-factor in the invasion of 

epithelial mucosa by forming a cell-to-cell channel regulating calcium ion intake 

(Fig.2.8). Calcium ion influx is a stimulatory signal for gonococcal entry and 

invasion (121). Porin proteins are comprised of highly conserved outer 

membrane sequences interspersed with hypervariable surface regions. These 

hypervariable regions allow protein PorB to undergo antigenic shifts via allelic 

variation, which can furthermore assist in the evasion of host responses (20). For 

example, gonococci possessing porin protein 1 of the protein 1A type, which are 

classically associated with disseminated gonococcal infections (DGIs), have the 

advantage of resisting serum-mediated killing of the organism (36, 164).  

 

2.4.3.1.3 Opacity proteins 

Opacity proteins (Opa) govern the colonial morphology of gonococci when 

cultivated on special media (opaque or transparent) and contribute to the 

mucosal binding and invasion of host epithelial cells. They are highly 

heterogenous proteins with approximately eleven gene copies present in the 

gonococcus (Fig. 2.8). Opa gene expression is independently controlled by a 

site-specific genetic mechanism (termed ‘slipped strand mispairing’) so that 
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within a few generations a single bacterium can simultaneously produce several, 

one, or none of these Opa proteins. Consequently, this genetic variation 

produces heterogenous populations, which are hypervariable in antigenic nature 

and opacity proteins (180). 

 

2.4.3.1.4 Antibiotic resistance 

Another important resource for bacterial survival is the acquisition of antibiotic 

resistance genes and those encoding antibiotic resistance may be of 

chromosomal or extrachromosomal (plasmid) origin. However, it would appear 

gonococci are different from other Gram-negative bacteria, in that their most 

resistant phenotype is not preferentially expressed. Rather, the organism seems 

to select and express at random an appropriate phenotype in response to its host 

and environmental influences (20). The sudden emergence of two gonococcal 

phenotypes (Mtr and Env) in response to the toxic nature of long chain fatty acids 

and bile salts present in the bowel, illustrates this well (20). The Mtr phenotype 

(multiple transferable resistance) expresses broad-spectrum resistance to these 

fatty acids, dyes and unrelated drugs, while Env (envelope), the antithesis, 

expresses hypersensitivity to precisely the same agents. Both of these 

phenotypes enhance bacterial survival in different environmental conditions. 

 

2.4.4  Diagnostic and laboratory-based tests 

Sexually transmitted infections (STIs) are most easily diagnosed using laboratory 

tests. These tests, however, require sophisticated equipment which most health 
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care settings in resource-poor countries can hardly afford. Factors determining 

the choice of diagnostic test for N. gonorrhoeae include test sensitivity and 

specificity, ability to assess antimicrobial susceptibility, ease of specimen 

collection, cost, biological site tested, tolerance of possible non-culture false 

positive results, specimen transport and laboratory capability.  

 

2.4.4.1. Gram Stain 

Gram stain is the key tool for the diagnosis of gonococcal urethritis in men, but its 

application to screening for asymptomatic infection is limited because of the 

requirement for uncomfortable endourethral swab specimen. A Gram stain of the 

presumptive diagnosis of N. gonorrhoeae infection is performed on thin smears 

of urethral exudates from men and is presumptively positive if the smear contains 

typical Gram-negative diplococci within polymorphonuclear (PMN) leukocytes 

(Fig.2.9). Unfortunately, other Neisseria species have similar morphological 

appearances which negate the use of microscopy for pharyngeal specimens (see 

below). Although commensal Neisseria species are not normal flora of anogenital 

sites, isolates of Neisseria meningitidis and non-pathogenic Neisseria species 

have been reported occasionally from anogenital sites among both men and 

women (178). 

 

In men, Gram stain of urethral smears has a sensitivity of >95% in symptomatic 

patients, and lower in asymptomatic patients (50-75%) (178). Gram stain of 

endocervical smears in women has a sensitivity of between 30-50%. In the 
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hands of an experienced technician this method results in a sensitivity of >99% 

(65). However, in less experienced hands the specificity may fall to about 50% 

(65). The normal flora of the female genital tract often includes Acinetobacter 

species which are Gram-negative and may look like gonococci. Acinetobacter 

can yield false positive Gram stain smears of cervical exudates (65).  

 

Direct smears of the pharynx and rectum are not considered to be reliable 

specimens primarily because the normal flora in these areas obscures gonococci 

or yield a high frequency of false-positive results. In particular, the diagnosis from 

direct stains of pharyngeal specimens is inappropriate owing to the variety and 

numbers of non-pathogenic N. meningitidis and commensal Neisseria species 

that colonise this area (50). The Gram stain can only be used as a near-patient 

test to provide an immediate presumptive diagnosis of gonorrhoea in 

symptomatic genital infections. 

 

2.4.4.2. Culture Tests 

Methods of gonococcal culture involves streaking specimens on a selective (e.g., 

Thayer-Martin or Martin-Lewis) or nonselective (e.g., chocolate agar) medium if 

specimens are from nonsterile or sterile sites, respectively. Inoculated media are 

incubated at 35oC-36.5oC in an atmosphere supplemented with 5% CO2 and 

examined at 24 hour intervals for up to 72 hours (49, 178). Supplemental CO2 

can be supplied by a CO2 incubator, candle-extinction jar, or CO2 –generating 

tablets (86). As described in section 2.4.3, media for N. gonorrhoeae isolation 
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usually contains a supplemented base medium and may be made selective by 

the inclusion of antibiotics.  

 

A presumptive identification of N. gonorrhoeae isolates recovered from a genital 

specimen on selective medium can be made with a Gram stain and oxidase test. 

A presumptive identification indicates only that a Gram-negative, oxidase positive 

diplococcus (e.g. a Neisseria species or Moraxella catarrhalis) has been isolated. 

A confirmed laboratory diagnosis of N. gonorrhoeae cannot be made on the 

basis of these tests alone. A presumptive test result is sufficient to initiate 

antimicrobial therapy in the context of clinically compatible symptoms, but 

additional tests must be performed to confirm the identity of an isolate as N. 

gonorrhoeae (82).  

 

The advantages of culture are high sensitivity and specificity, low cost, suitability 

for use with different types of specimens, and the ability to retain the isolate for 

additional testing. Retention of the isolate might be indicated for medicolegal 

purposes, antimicrobial susceptibility determination, and subtyping of isolates. 

The major disadvantage of culture for N. gonorrhoeae is that the specimen must 

be transported under conditions adequate to maintain the viability of organisms. 

Another disadvantage is that a minimum of 24-72 hours is required from 

specimen collection to the report of a presumptive culture result (82). 
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2.4.4.3.  Culture Confirmation Tests 

2.4.4.3a.  Sugar Utilisation Testing 

The traditional method of identification of this pathogen relies on its unique 

pattern of carbohydrate utilisation in cysteine trypticase agar (CTA) sugars (93). 

N. gonorrhoeae can be differentiated from other oxidase-positive Gram-negative 

diplococci as it produces acid from glucose alone, whereas other members of the 

Neisseria genus such as Neisseria lactamica and Neisseria meningitidis produce 

acid from both glucose and maltose. CTA method is based on fermentative 

species and is not sensitive enough to detect acid from oxidative species. CTA 

sugars are a cost-effective method of identification, but they require a heavy 

inoculum and prolonged incubation and can be difficult to interpret. Additionally, 

glucose negative N. gonorrhoeae isolates have been reported raising concerns 

about false-negative results, because CTA sugars have difficulty in differentiating 

between N. gonorrhoeae and N. cinerea (99). Some of these difficulties have 

been circumvented by the development of alternative rapid methods based on 

the presence of preformed enzymes for carbohydrate degradation. The rapid 

carbohydrate test is a nongrowth-dependent method for the detection of acid 

production from carbohydrates by Neisseria species. The four carbohydrates 

utilisation test systems widely used are: Neisseria Kwik test (Micro Bio Logics, St. 

Cloud, Minn.); Rapid Identification Method for Neisseria (RIM-N; Austin Biological 

Laboratories, Inc., Austin, Tex.); Gonobio Test (I.A.F. Production Inc., Lava, 

Quebec, Canada) and Minitek kit (Miniaturized Microbiology Differentiation 

System; BBL Microbiology System, Cockeysville) (49).  The evaluations of the 
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Rapid Identification Method for Neisseria have compared well with the 

conventional method, but may also not differentiate between N. gonorrhoeae and 

N. cinerea (85). The rapid non-growth tests have a specificity of 99% to 100% 

and are more sensitive than the CTA sugars. Some of the commercial tests 

include not only acid production tests, but also for other biochemical 

characteristics (such as enzyme production), including DNase and nitrate 

reduction. All tests must include appropriate control strain (85).   

 

2.4.4.3b. Immunological Testing 

The three most widely used immunological kits (49) are the MicroTrak N. 

gonorrhoeae culture confirmation test (An immunofluorescence test; Trinity 

Biotech, Bay, Ireland), the Phadebact Monoclononal GC test (A co-agglutination 

test; Pharmacia, Uppsala, Sweden) and GonoGen II (A membrane 

immunoassay; Key Scientific, Columbia, Texas), all of which employ monoclonal 

antibodies raised to specific epitopes on the two types of the major outer-

membrane protein, PIA and PIB (36). Whilst the specificity of these kits has been 

shown to be very high, N. gonorrhoeae strains giving negative results have been 

reported (49, 163). 

 

2.4.4.3c. Biochemical Testing 

One of the most common method routinely used in clinical microbiology settings 

for the identification of N. gonorrhoeae is the detection of preformed enzymes. 

The use of preformed enzymes as a tool for the differentiation of Neisseria spp 
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was first described by D’Amato et al (50), who reported the production of the 

enzymes gamma glutamyl transferase (GGT) by N. meningitidis and proline 

aminopeptidase (Pip/ProA) by N. gonorrhoeae (50). Molecular cloning and 

characterisation of the N. gonorrhoeae pip gene was performed in 1993 where it 

was confirmed that pip was a single copy gene and, while non-essential for 

growth in vitro was present in virtually all isolates of N. gonorrhoeae (1). 

Biochemical tests that detect the presence of preformed enzymes should be 

interpreted with caution because proline aminopeptidase (Pip/ProA)-negative N. 

gonorrhoeae have been reported (3). Consequently Pip/ProA negative 

gonococcal isolates generate ambiguous identifications ranging from “doubtful N. 

gonorrhoeae” to “presumptive Kingella kingea” when examined using these kits. 

False positive N. gonorrhoeae identification can also be generated when using 

these kits as many non-pathogenic Neisseria spp are Pip/ProA positive and 

some have been shown to grow well on selective media (97). However despite 

these reports the use of preformed enzyme based kits remains popular and they 

are widely used for the routine identification of N. gonorrhoeae. 

A range of commercially available biochemical kits are also widely used, 

including the Neisseria preformed Enzyme Test (PET, Key Scientific, Columbia, 

Texas), Gonochek II (E-Y Laboratories, SanMateo, CA), RapID NH (Remel, 

Lenexa, KS) and API NH (bioMérieux, I”Etoile, France). The Neisseria PET and 

Gonochek II are both single-use tubes containing chromogenic substrates that 

detect the presence of three preformed enzymes, each of which is indicative of a 

pathogenic Neisseria species, namely N. lactamica, N. meningitidis and N. 
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gonorrhoeae. The API NH and RapID NH kits employ a battery of tests, 

combining carbohydrate utilisation and preformed enzymes.  

 

2.4.4.4.    Nucleic Acid amplification Tests (NAATs) 

In the early 1990s, nucleic acid tests became available for routine use. These 

include both nucleic acid hybridisation assays and nucleic acid amplification tests 

(NAATs). The hybridisation assays include the Gen-Probe PACE II (Gen-Probe, 

San Diego, CA)) and the Digene Hybrid Capture II assays (Digene Corp., 

Beltsville, MD). These assays use a specific oligonucleotide probe to hybridise 

directly to N. gonorrhoeae nucleic acid present within a specimen. Reported 

sensitivity and specificity values of the hybridisation assays showed that these 

may be below that of bacterial culture (102).  To date, there have been four main 

commercial N. gonorrhoeae NAAT assays, including the Roche Cobas Amplicor 

(Roche Molecular Systems, Branchburg, NJ), the Gen-Probe APTIMA Combo 2 

(AC2; Gen-Probe), the Becton Dickinson ProbeTec assay (Becton Dickinson, 

Sparks, MD), and the Abbott Ligase Chain Reaction (LCx) (Abbott Laboratories). 

All of these use duplex NAAT assays, targeting both C. trachomatis and N. 

gonorrhoeae. In addition, each of these duplex assays has used a unique N. 

gonorrhoeae gene target and amplification technology. The Abbott LCx has 

previously been recalled because of manufacturing issues (30). In addition to the 

commercial assays, numerous in-house N. gonorrhoeae NAAT assays have also 

been described (33, 58, 182, 213). These have primarily used polymerase chain 
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reaction (PCR), have targeted various N. gonorrhoeae genes, and for the most 

part, have not been multiplexed with other assays.  

 

Real-time PCR assays have been widely used for the detection of Neisseria 

gonorrhoeae (182). The real-time PCR system is based on the detection and 

quantitation of a fluorescent reporter (35). The signal increases in direct 

proportion to the amount of PCR product in a reaction. The higher the starting 

copy number of the nucleic acid target, the sooner a significant increase in 

fluorescence is observed. There are four main fluorescent-monitoring systems for 

DNA amplification: (i) Taqman Probes; (ii) Molecular Beacons; (iii) Scorpions and 

(iv) SYBR Green (35)  

 

TaqMan probes are designed to anneal to an internal region of a PCR product. 

When the polymerase replicates a template on which a TaqMan probe is bound, 

its 5’ exonuclease activity cleaves the 5’ end of probe which contains the reporter 

dye (35). Then the activity of quencher (no FRET) and the reporter dye starts to 

emit fluorescence which increases in each cycle proportional to the rate of probe 

cleavage. Accumulation of PCR products is detected by monitoring the increase 

in fluorescence of the reporter dye. 

 

 Molecular beacons are similar to TaqMan probes but are not designed to be 

cleaved by the 5’ nuclease activity of Taq polymerase (35). These probes have a 

fluorescent dye on the 5’ end and a quencher dye on the 3’ end of the 
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oligonucleotide probe. A region at each end of the molecular beacon probe is 

designed to be complementary to itself, so at low temperatures, the ends anneal, 

creating a hairpin structure. This integral annealing property positions the two 

dyes in close proximity, quenching the fluorescence from the reporter dye. The 

central region of the probe is designed to be complementary to a region of the 

PCR amplification product (35). 

 

The scorpion probe maintains a stem-loop configuration in the unhybridized 

state. The fluorophore is attached to the 5’ end and is quenched by a moiety 

coupled to the 3’ end. The 3’ portion of the stem also contains sequence that is 

complementary to the extension product of the primer. This sequence is linked to 

the 5’ end of a specific primer via a non-amplifiable monomer. After extension of 

the Scorpion primer, the specific probe sequence is able to bind to its 

complement within the extended amplicons thus opening up the hairpin loop. 

This prevents the fluorescence from being quenched and a signal is observed. 

Thus, with Scorpion primer/probes, sequence-specific priming and PCR product 

detection is achieved using a single oligonucleotide. 

 

Hybridization probes are two DNA probes designed to anneal next to each other 

in a head-to-tail configuration on the PCR product (35). The upstream probe has 

a fluorescent dye on the 3’ end and the downstream probe has an acceptor dye 

on the 5’end. If both probes anneal to the target PCR product, fluorescence from 

the 3’dye is absorbed by the adjacent acceptor dye on the 5’ end of the second 
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probe. The second dye is excited and emits light at a third wavelength and this 

third wavelength is detected. If the two dyes do not align together because there 

is no specific DNA for them to bind, then FRET does not occur between the two 

dyes because the distances between the dyes are too great. A design detail of 

hybridization probes is the 3’ end of the second (downstream) probe is 

phosphorylated to prevent it from being used as a primer by Taq during PCR 

amplification (35). 

 

There are several advantages of N. gonorrhoeae NAATs. First, they offer 

improved sensitivity compared with bacterial culture. When compared with N. 

gonorrhoeae NAATs, gonococcal culture ranges in sensitivity from 85 to 95% for 

acute infections and may fall as low as 50% for females with chronic infection 

(11). The increased sensitivity of NAATs makes them particularly suitable for 

screening, enabling accurate diagnosis of both symptomatic and asymptomatic 

gonococcal infections, which is critical to control of the disease (88).  Secondly, 

specimens collected for NAAT assays do not require the organism to be viable 

for detection and so require less stringent transport conditions compared with 

those collected for bacterial culture. Finally, NAATs can be used effectively on 

noninvasive specimens such as urine and self-collected specimens. This is 

particularly useful for patients in remote regions where sexual health services 

may not be available and for special populations where religious or cultural 

restrictions otherwise restrict opportunities for specimen collection (61). 
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N. gonorrhoeae NAATs do have some limitations. These include the typical 

problems associated with the use of NAAT protocols, such as high cost (88), 

carryover contamination (88); inhibition of the reaction (191); high quality control 

requirements (22); and the absence of antibiotic resistance data (59). More 

importantly, there are sequence-related limitations that are unique to N. 

gonorrhoeae NAATs and include the generation of both false-negative and false 

positive results. This is because target sequences may either be absent in some 

N. gonorrhoeae subtypes or otherwise present in some commensal Neisseria 

strains. These limitations have lead to recommendations that N. gonorrhoeae 

NAAT-positive results should be confirmed by a 2nd NAAT before a positive 

result is reported (173). Overall, there is a broad range of technical challenges 

associated with the successful implementation of N. gonorrhoeae NAATs. 

 

Since N. gonorrhoeae is genetically a highly diverse species it should therefore 

be considered that, no single gonococcal NAAT target may be sufficiently 

conserved across all gonococci (12). For this reason, it may be prudent to also 

use a 2-target system for routine NAAT detection of N. gonorrhoeae. In addition, 

the 2-target system of the assay decreases the potential for sequence-related 

false negatives and can provide simultaneous confirmation of positive results. 

 

2.5   TYPING METHODOLOGIES   

Knowledge of gonococcal strains circulating in a community and of temporal 

changes in prevalent strains can identify patterns of transmission of gonorrhoea 



 38

and guide prevention and control efforts (208). A number of typing methods have 

been developed for N. gonorrhoeae based on phenotypic and genotypic 

characterisation of the bacterium. The ability of a typing scheme to distinguish 

between unrelated isolates measures its discriminatory power (80, 171). The 

discriminatory power is determined by the number of types defined by the test 

method and the relative frequencies of these types. Hunter and Gaston (80) 

proposed a single numerical index of discrimination, based on the probability that 

two unrelated isolates would be placed into different typing groups. This 

probability can be calculated from Simpson’s index of diversity. If typing results 

are to be interpreted with confidence, a discriminatory index (DI) of greater than 

0.90 is desirable (80,171).  

 

2.5.1  Phenotypic characterisation of N. gonorrhoeae isolates 

 

2.5.1.1  Auxotyping 

Auxotyping is the characterisation of gonococcal strains according to their 

nutritional requirements. The method was first developed by Catlin (27), where a 

chemically defined media was developed for N. gonorrhoeae growth 

requirements and used for gonococcal typing. Gonococci exhibited a diversity of 

nutritional requirements; strains were subdivided into distinct clusters (auxotypes) 

on the basis of their patterns of growth responses to thiamine, proline, arginine, 

methionine, isoleucine, and hypoxanthine (27).  
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Subsequently, other auxotyping systems have been developed which differ with 

respect to medium composition and the requirements determined (70). A large 

number of gonococcal auxotypes have been described and their geographical 

distribution has been extensively studied (70, 204). 

 

Gonococcal isolates that have no nutritional requirements are designated non-

requiring (NR), Zero, prototrophic (Proto), or wild type and those that require 

proline (Pro) are prevalent world wide. Arginine-requiring (Arg) isolates are 

widely distributed geographically but are less numerous. Isolates with multiple 

requirements have been isolated. These include, most notably, the arginine-, 

hypoxanthine-, plus uracil-requiring (AHU) and the proline-, citrulline- (arginine-) 

plus uracil-requiring (PCU or PAU) isolates (162). 

 

The AHU isolates, which were isolated infrequently prior to the 1950s, were 

found most frequently in the mid-1970s, when they accounted for as many as 

50% of isolates in cities in the United States and Denmark (98). AHU isolates 

were frequently found in areas geographically adjacent to the cities in which they 

were prevalent (95). In 1977 to 1978, PAU isolates accounted for approximately 

40% of isolates in Ontario, Canada (70). The PAU isolates have been spread to 

a limited number of geographical areas; they occurred frequently in other cities in 

Canada, the United States, Europe, and Japan (95). 
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Strains belonging to certain auxotypes were found to be associated with specific 

disease syndromes and antibacterial resistance. AHU isolates were frequently 

isolated from disseminated gonococcal infection (DGI) patients in many cities in 

the 1970s (128). AHU isolates are serum resistant (164) and highly susceptible 

to penicillin (128). PAU isolates have been associated with disseminated and 

asymptomatic gonococcal infections in Winnipeg, Manitoba, Canada (70). In 

contrast to the AHU isolates, PAU isolates are less susceptible to antimicrobial 

agents (70). 

 

In summary, auxotyping which is based on the nutrient growth requirement of 

strains, is complicated, labour-intensive, and time consuming. 

  

2.5.1.2 Plasmid profiles 

Bacterial plasmids are units which replicate independently of the bacterial 

chromosome. They are generally less than 1/20 the size of the bacterial 

chromosome, and also contain the information for self replication (57). The 

plasmids of N. gonorrhoeae have been described in relation to their mobilities in 

agarose gels. The cryptic 2.6-MDa plasmids from N. gonorrhoeae were first 

described in 1972 (57). This plasmid occurs in a majority of clinical isolates 

[96%], excluding isolates of the proline-, citrulline-, and uracil-requiring auxotype 

are plasmid free, and yet no function has been associated with the cryptic 

plasmid (48). Six types of β-lactamase plasmids, the 4.4-MDa (Asia), 3.2-MDa 

(Africa), 2.9-MDa (Rio), 3.05-MDa (Toronto), 4.0-MDa (Nîmes) and 6.5 MDa 
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(New Zealand) plasmids, have been identified in penicillinase-producing N. 

gonorrhoeae (PPNG) strains (142). Two conjugative plasmids, a 24.5-MDa and a 

25.2-MDa tetM-containing plasmid (possessed by high-level tetracycline resistant 

N. gonorrhoeae or TRNG, strains), have also been described (62).  

 

Plasmid profiles, in conjunction with auxotyping and more recently with 

serological classification, have permitted the characterisation of isolates from 

different geographical areas and the documentation of temporal changes in their 

distribution and prevalence (204). However, plasmid profiling is of limited value 

when a common plasmid or a common combination of plasmids is present (41). 

Also, since plasmids are mobile genetic elements, they may be lost or acquired 

independently of chromosomal genetic change. For example, the loss of 

resistance plasmids has previously been associated with fluoroquinolone use 

(89). 

  

2.5.1.3 Serological classification of gonococcal strains 

2.5.1.3.3 Serological classification with polyvalent antibodies.  

Serological typing methods for N. gonorrhoeae have been developed and refined 

during the last decade. Wang et al. (210) developed a microimmunofluorescence 

test with polyvalent antibodies against formalinised whole gonococcal cells that 

divided gonococcal strains into three groups, designated A, B, and C (Fig 2.10). 

Subsequently, a coagglutination test permitted Sandström and Danielsson to 

divide gonococci into three serologically distinct groups, designated WI, WII, and 
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WIII, that corresponded to the Wang serogroups A, B, and C, respectively (Fig 

2.10) (159,161).   

 

 

Fig. 2.10 Development of serological schemes for N. gonorrhoeae 
classification (http://www.cdc.gov/std/Gonorrhea/lab/sero.htm) 
 

In 1981, Buchanan and Hildebrandt developed an enzyme linked immunosorbent 

assay (ELISA) with partially purified gonococcal protein I (outer membrane 

protein, formally designated P.I but now designated Por) and divided gonococcal 

strains into nine principal outer membrane protein (POMP) serotypes (Fig 2.10) 

(21). Serotypes 1 to 3 corresponded to serogroup WI, serotypes 4 to 8 

corresponded to serotype WII and serotype 9 corresponded to serogroup WIII, 

respectively.  

 

The proportion of isolates belonging to the different W serogroups varied among 

geographical areas worldwide. For example, both penicillinase-producing N. 

gonorrhoeae (PPNG) and non-penicillinase-producing N. gonorrhoeae (non-

PPNG) isolates belonging to serogroup WII and WIII were generally more 
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resistant to other antibiotics than were isolates belonging to serogroup WI (23). 

Gonococcal strains of serogroup WII have been found to be associated with 

homosexually acquired rectal infections, whereas in one study WII/III strains 

were observed more often in women with concomitant rectal infection than in 

those without (37, 149). 

 

2.5.1.3.2 Serological classification with monoclonal antibodies.  

Tam et al. (183) developed monoclonal antibodies against gonococcal outer 

membrane proteins. Antibodies specific for epitopes on Porin molecules, P.IA or 

P.IB, were selected by screening against W-serogrouping reference strains in 

coagglutination tests and confirmed by radioimmune precipitation assays (Fig 

2.10) (183). 

 

Numerous serovars exist, reactive to various monoclonal antibodies. A standard 

panel of six P.IA-specific and six P.IB-specific monoclonal antibody reagents was 

subsequently selected (96). Strains characterised serologically by their reaction 

patterns with these reagents were designated as serovars (96). For example, by 

employing a set of monoclonal antibodies against PorA strains and another set 

against PorB strains, one can subdivide each of the serogroups into a wide 

variety of serovars (e.g., P.IA-6, P.IB-1), differ in their ability to react to certain 

members of the panel of monoclonal antibodies. Today, hundreds of specific 

serovars have been defined by these techniques (96). 
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The widely used serotyping of N. gonorrhoeae has some limitations. Over long 

periods of time, the reproducibility of this technique was less than 100% (64). 

Previous studies have also shown that serotyping may not be sufficiently 

discriminatory; because, some strains are nontypable (205).  

 

2.5.1.4 A/S classification of N. gonorrhoeae. 

 Both auxotyping and serological classifications lack the discriminatory power to 

differentiate gonococcal isolates. To overcome the limitations of either of these 

methods, an auxotype-serovar (A/S) classification system has been proposed 

(96). This dual classification system, based on two independent phenotypic 

characteristics that are stable in vitro, provide a greater resolution among 

gonococcal isolates than does a system based on one phenotypic characteristic. 

For example, an isolate that requires proline and belong to serovar IB-4 is 

assigned to the A/S class Pro/IB-4. The A/S classification of N. gonorrhoeae has 

been used alone or in conjunction with plasmid profiles and antimicrobial 

susceptibilities to perform detailed analyses of gonococcal strain populations. 

The A/S classification provides a discriminatory classification system for 

gonococcal isolates but does not always distinguish between epidemiologically 

related and unrelated isolates (141).  

 

2.5. 2    Genotypic characterisation of N. gonorrhoeae isolates 

 

2.5.2.1 Restriction endonuclease analysis (REA) 
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The first employed genotypic technique was restriction endonuclease (RE) 

analysis, which consists of extracting DNA from the organism and digesting the 

DNA in vitro with an appropriate restriction enzyme, followed by electrophoretic 

separation of the DNA fragments in either agarose gel or polyacrylamide gel. 

REs that recognise and cleave double stranded DNA at specific sites are used to 

digest DNA strands into a unique set of fragments. These patterns constitute a 

characteristic fingerprint for any particular DNA examined. Although several 

extraction procedures are available, problems such as mechanical shearing are 

often encountered during DNA extraction/isolation. Thus RE digestion patterns 

generated from such sheared DNA may not be through reflection of specific site 

cleavages by the REs used (147). Also resolution of DNA bands may be difficult 

unless the technique employs enzymes that cut rare DNA sequences. 

 

2.5.2.2 Random-primed PCR 

Another method is termed random-primed PCR which uses short DNA primers 

that bind to multiple sites to generate a polymerase chain reaction-based ladder 

of DNA products, the sizes of which depend on the spacing of the homologous 

sequences scattered about the chromosome (24). 

 

2.5.2.3 OPA typing 

The most extensively tested and discriminatory of the molecular techniques is the 

opa gene typing method (OPA typing) of O’Rouke et al. (141). For this method 

the 11 opa genes are amplified with a single pair of primers, the products are 
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digested with frequently cutting restriction enzymes, the restriction fragments are 

separated on polyacrylamide gels, and the patterns of bands produced by 

different strains are compared. The principal limitation of this method, as well as 

the other genetic typing methods based on the analysis of band patterns, is that 

the restriction fragment patterns are difficult to analyse objectively and are not 

easily stored in a data base. 

 

2.5.2.4 por sequencing 

The N. gonorrhoeae outer membrane protein PorB is universally present, is 

constitutively expressed at the cell surface, and does not undergo high frequency 

variation during the course of infection in smaller groups of sexual contacts (202). 

The antigenic expression of PorB within a strain is stable: however, diversities 

between strains form the basis for serogroup and serovar determination with 

monoclonal antibodies (MAbs) (96, 160). 

 

Attempts to map the epitopes of PorB recognised by serovar-specific MAbs by 

using amino acid alignments of the mature proteins as well as synthetic peptides 

have been published, but many epitopes remain unidentified (38). Thus, for 

several of the widely used MAbs, the exact antigenic epitopes of PorB are not 

identified. A two dimensional structural model of the topology of the porin PorB 

within the outer membrane has previously been predicted (202). The model 

predicts eight surface-exposed loops, which exhibit an extensive variation in 
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length and amino acid sequence and which are interspaced with nine more 

conserved predominately transmembrane or interspacing regions.  

 

The PorB proteins are classified into two different groups, PorB1a or PorB1b, on 

the basis of immunological and sequence homology. Any individual strain 

expresses only one of the groups, either PorB1a or PorB1b (202). However, 

naturally occurring strains that express PorB1a/PorB1b hybrids have been 

identified (38). The proteins PorB1a and PorB1b are encoded by mutually 

exclusive alleles of the porB gene, porB1a and porB1b, respectively. 

 

POR sequencing is based on the PCR amplification and sequencing of the entire 

porB gene followed by the analysing of exclusively shorter highly variably regions 

of the gene comprise a powerful method for genetic typing of N. gonorrhoeae. 

However sequencing of the whole por gene would be labour intensive, and most 

of the variation within por is likely to be captured by sequencing an internal 

fragment of the gene, which requires a single sequencing reaction for each DNA 

strand (199). Pyrosequencing, a recently described fast real-time DNA sequence 

analysis technology, has been used to sequence and analyse exclusively shorter 

highly variable regions of the porB gene (148). 

 

2.5.2.5 Multilocus sequence typing (MLST) 

Multilocus sequence typing (MLST) was developed by Maiden et al. (114) for the 

naturally transformable Gram-negative pathogen Neisseria meningitidis but has 
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since been applied to many pathogenic species (201). The procedure is 

essentially an updated version of multilocus enzyme electrophoresis (MLEE), 

which indexes variation within multiple core metabolic (‘housekeeping’) genes on 

the basis of differing electrophoretic mobilities of the gene products (166). A 

serious drawback of MLEE, and other gel-based methods such as pulsed-field 

gel electrophoresis (PFGE), is that it is often difficult to compare results between 

laboratories. This problem does not arise with MLST because variation within a 

sample of housekeeping genes is indexed directly by the nucleotide sequencing 

of internal gene fragments.  

 

The advantage of nucleotide sequencing is that it is a generic technology, the 

results of which are easily validated, stored and shared electronically. For MLST 

analysis, all unique sequences for a given locus are assigned an allele number 

in order of discovery; this is equivalent to the designation of ‘electromorphs’ in 

MLEE. The alleles present at each of the MLST loci for a given isolate are 

combined into an allelic profile and assigned a sequence type (ST) designation, 

equivalent to the ‘electrophoretic type’ (ET) designation used in MLEE (114, 

166). The higher discrimination of nucleotide sequencing means that compared 

with MLEE, MLST can attain similar levels of discrimination with fewer loci (201). 

Relationships among isolates are apparent by comparisons of allelic profiles.  

Closely related isolates have identical STs, or STs that differ at a few loci, 

whereas unrelated isolates have unrelated STs. 
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Application of the MLST scheme to N. gonorrhoeae is therefore advantageous as 

it can be used to analyse genetic relationships among gonococcal isolates, as 

well as among the Neisseriae. Another advantage of MLST is its ability to 

discriminate among species, facilitating species identification, and the detection 

of mixed bacterial cultures (12). 

 

2.5.2.6 N. gonorrhoeae Multi-Antigen Sequence Typing (NG MAST) 

NG MAST technique is based on the sequencing of the internal fragments of two 

highly polymorphic antigen-encoding loci, por and tbpB, thereby generating a 

simple numerical sequence type (ST) from the combined sequence data of the 

two genes by means of an internationally accessible web based data analysis 

system http://www.ng-mast.net (116, 133). 

 

As mentioned previously, the por gene encodes the gonococcal outer membrane 

porin. A typing method based on the complete sequence of this highly variable 

por gene has been evaluated and provide a substantial level of discrimination 

between isolates (148, 199). The tbpB gene encodes the β subunit of the 

transferring-binding protein, a surface-exposed peripheral component of the 

outer membrane that binds to the human iron binding protein transferrin (116). 

 

NG MAST produces unambiguous data that can easily be compared via the 

internet and is suitable for the identification of linked cases of gonorrhoea and the 

timely identification of transmission of antibiotic resistant strains, even within 
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large cities (133). Compared to OPA typing which relies on interpretation of 

bands in a gel, DNA sequence data (from the porB DNA sequence analysis, 

MLST and NG MAST) offer the advantage of being objective and easily shared 

with other investigators. Both porB DNA sequence analysis and NG MAST 

analysis have high discrimination powers sufficient to distinguish N. gonorrhoeae 

isolates and identify circulating clusters of strains. However NG MAST can 

further differentiate porB types due to sequence variations present in tbpB alleles 

which can contribute to different NG MAST alleles (108). 

 

2.5.2.7 Lipotyping 

The pathogenic Neisseria species N. meningitidis and N. gonorrhoeae possess 

an outer membrane protein (OMP) designated H.8, with conserved epitope 

recognised by H.8 monoclonal antibody (MAb) (73). Most nonpathogenic 

Neisseria do not bind the H.8 MAb. Additionally the H.8 OMP is immunogenic in 

humans during Neisserial disease (14) and has immunoprophylactic potential. 

The apparent molecular mass of H.8 OMP demonstrates strain variation, with a 

size range of 18 to 30 kDa (73). Studies have indicated that pathogenic Neisseria 

possess at least two genes encoding proteins that bind H.8 MAb (66). One of 

these genes encodes a lipoprotein with two domains: an N-terminal domain 

consisting of five imperfect repeats of the sequence Ala-Ala-Glu-Ala-Pro 

(AAEAP) and a C-terminal domain very similar to that of the azurins of other 

bacterial genera (217). Hence the predicted H.8 OMP is a lipoprotein 71 amino 

acids in length, composed of 13 to 19 repeats of a consensus sequence AAEAP 

with perfect 5-residue periodicity.  
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Lipoprotein subtyping is therefore based on the amplification of the lip gene by 

PCR and sequencing to determine the repeat number and sequence (196). 

Sequences of all Lip types or sequences are provided means of an 

internationally accessible web based data analysis system 

http://www.cdc.gov/nicdod/dastlr/gcdir/liptyping.html (29) to allow other 

investigators to compare the Lip patterns previously reported. It should be noted, 

however, that Lip subtyping is not sufficiently discriminatory to be used without 

additional gonococcal subtyping methods, such as A/S classification, TetM 

subtyping, β-lactamase plasmid profiles, or GyrA-ParC mutation analysis in 

fluoroquinolone-resistant isolates. 

 

2.6. ANTIMICROBIAL THERAPY AND RESISTANCE 

Antimicrobial chemotherapy has played a vital role in the treatment of human 

infectious diseases in the 20th century. Whilst antimicrobial agents have proven 

invaluable in the management of bacterial infectious diseases, resistance to 

these agents actually predates the introduction of first true antibiotic (penicillin) 

into clinical usage, and resistance continues to compromise the use of old and 

new antimicrobial agents alike (78). The clinical impact of resistance is immense, 

characterised by increased cost, length of hospital stay, disease-related 

complications (morbidity) and mortality, often as a result of inappropriate initial 

antimicrobial therapy.  
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2.6.1 Overview of the mechanisms of antimicrobial resistance 

 

Resistance to antibiotics can be caused by a variety of mechanisms:  

(i) the presence of an enzyme that inactivates the antimicrobial agent (β-

actamase, tetX gene);  

(ii) the presence of an alternative enzyme for the enzyme that is inhibited by the 

antimicrobial agent (aminoglycosides);  

(iii) a mutation in the antimicrobial agent’s target, which reduces the binding of 

the antimicrobial agent (ciprofloxacin; macrolides); 

(iv) post-transcriptional or post-translational modification of the antimicrobial 

agent’s target, which reduces binding of the antimicrobial agent (macrolides);  

(v) reduced uptake of the antimicrobial agent (tetracycline-the penB determinant);  

(vi) active efflux of the antimicrobial agent (tetracycline- the mtrR mutation);  

(vii) overproduction of the target of the antimicrobial agent (sulphonamide).  

Genetically these changes may be mediated by either chromosomal or extra-

chromosomal elements (plasmids) (189).  In the case of N. gonorrhoeae example 

of all or just some antimicrobial resistance mechanism have been described 

below. 

 

2.6.2  Sulphonamides and Trimethoprim 

Sulphonamides became available for clinical use between 1936 and 1937 (25). 

They are derived from sulfanilamide, which has chemical similarities to ρ-

aminobenzoic acid (PABA), a factor essential for bacterial folic acid synthesis. 
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Various substitutions at the sulphonyl radical attached to the benzene ring 

nucleus enhance the antibacterial activity and also determine the pharmacologic 

properties of the drug. Numerous studies have been made of the antibacterial 

action of sulphonamides and of the development of bacterial resistance (25).   

 

Resistance of N. gonorrhoeae to sulfonamides results from one of two 

mechanisms (87): i) oversynthesis of PABA, which effectively dilutes the effect of 

sulfonamides; and ii) genetic alteration of dihydropteroate synthetase, resulting in 

a mutant enzyme with a reduced affinity for sulfonamide. 

 

The discovery by Woods that sulphonamide competitively inhibits bacterial 

utilisation of PABA was followed by the recognition that PABA is an essential 

component of folic acid (215). Folic acid coenzymes function as carriers of single 

carbon units in the biosynthesis of methionine and several other amino acids, 

and also of purines and thymine. Thus, the bacteriostatic action of sulphonamide 

is due to the ultimate shortage of the essential end products of folic acid 

metabolism (216).  Various factors enhance the capacity of a given bacterial 

strain to multiply in the presence of a concentration of sulphonamide higher than 

the minimal inhibitory concentration (MIC) established for that strain under 

standard conditions.  

 

In the absence of any genetic change, the bacteriostatic action of sulphonamide 

may be reduced by exogenous supplementation of the bacterial environment with 
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PABA or with one or more of the essential products of folate metabolism. Genetic 

changes resulting in increased endogenous supplies of PABA, or in alteration of 

a PABA-utilising enzyme with consequent decreased affinity for sulphonamides, 

have also been proposed to account for increased resistance to sulphonamides 

(216). 

 

2.6.3   Penicillins 

Penicillins are a group of natural and semi-synthetic antibiotics containing the 

chemical nucleus 6-aminopenicillanic acid, which consists of a β-lactam ring 

fused to a thiazolidine ring. Penicillin and other β-lactam antibiotics exert their 

action by covalently binding to, and inactivating, penicillin binding proteins 

(PBPs), enzymes located in the cell envelope that participate in cell wall 

metabolism (51). Alterations in PBP-2 and PBP-1 decrease their affinity for the 

penicillins, and thus the susceptibility of the organism. PBP-1 and PBP-2 are 

encoded by the ponA and penA locus respectively (177).  

 

Changes in other loci such as mtr and penB produce additive effects. The mtr 

locus mediates resistance to a wide range of antibiotics, detergents and dyes, 

through an active efflux system (67). Mutations in the penB locus, which encodes 

for the PorB1-b porin, results in reduced permeability of the cell envelope to 

hydrophilic antibiotics and other compounds (87) 
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The combined effects of penA mutations, penB mutations and increased 

expression of mtr is said to increase the MIC of penicillins by 120 fold (177). 

Gonococci exhibiting these changes are termed chromosomally-mediated 

penicillin resistant N. gonorrhoeae (CMPR). 

 

Resistance to penicillins is also mediated by a plasmid-borne and inducible TEM-

1 type β-lactamase (8). This enzyme hydrolyses the β-lactam ring of penicillins, 

thus inactivating them. In contrast to the slow evolution and incremental increase 

in resistance associated with chromosomal changes, acquisition of the plasmid 

confers resistance in a single step and plasmids can be rapidly disseminated 

among N. gonorrhoeae strains. 

 

Penicillinase-producing N. gonorrhoeae (PPNG) were detected in 1976 in the 

United Kingdom and the USA (8, 145, 146). The United Kingdom-derived strain 

contained a 3.2 MDa “African” plasmid, which was isolated from a man who was 

diagnosed with gonorrhoea in Liverpool, UK but who had recently returned from 

Africa. The USA-derived strain contained a 4.4 MDa “Asia” plasmid, and was 

isolated from a US soldier who had acquired gonorrhoea in Philippines. 

Subsequently other TEM-1 type β-lactamase-containing plasmids have been 

described, for example the New Zealand (6.5 MDa), Nîmes (4.0 MDa), Toronto 

(3.05 MDa) and the Rio (2.9 MDa) plasmids (142). 
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Transmission of the resistance by conjugation required the presence of another 

mobilising plasmid, which was already present in the original Asian PPNG isolate 

but was not found in the African strains until 1981 (203). Thus the Asian strain 

initially disseminated more widely and more quickly. β-lactamase production 

(PPNG) and chromosomal changes (CMRNG) can co-exist in the same isolate. 

This is relevant because of the clinical use of penicillins in combination with β-

lactamase inhibitors, such as clavulanic acid. 

 

2.6.4   Aminoglycosides 

Aminoglycosides such as gentamicin, tobramycin, amikacin and streptomycin are 

commonly used antimicrobial agents in the treatment of infections by both Gram-

negative and Gram-positive organisms. 

 

The process of bacterial killing by aminoglycosides is multifactorial. The principal 

target of aminoglycosides is the 30S subunit of ribosomes (124). This binding 

prevents the elongation of the growing peptide chain by causing mis-reading or 

premature termination during peptide synthesis. By interfering with the translation 

of mRNA, protein production is altered, aberrant proteins are inserted in the cell 

membrane, cell permeability is increased, more aminoglycosides are taken up 

into the cell, and cell death ensues (124). 

 

Resistance to aminoglycosides emerges by one of four mechanisms: (i) 

alterations in the target site (ribosome) that prevent binding; (ii) loss of cell 
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permeability; (iii) expulsion by efflux pumps and (iv) enzymatic inactivation by 

aminoglycoside-modifying enzymes (AMEs) (124).  

 

Resistance to these antimicrobial agents is wide spread with more than 50 AMEs 

described. Depending on their type of modification, these enzymes are classified 

as aminoglycoside acetyltransferases (AAC), aminoglycoside adenyltransferases 

(also named aminoglycoside nucleotidyltransferases [ANT]), and aminoglycoside 

phosphotransferases (APH) (124). Aminoglycosides modified at aminogroup by 

AAC enzymes or at hydroxyl groups by ANT or APH enzymes lose their 

ribosome binding ability and thus no longer inhibit protein synthesis (124).  

 

In N. gonorrhoeae, resistance to spectinomycin or to aminoglycosides usually 

occurs via a single-step, chromosomal mutation, resulting in high-level resistance 

(115). The different ribosomal genes involved in spectinomycin and 

aminoglycoside resistance are linked. For example the loci responsible for 

resistance to streptomycin (str) and spectinomycin (spc) are genetically linked. 

Resistance due to mutations in str and spc loci results from alterations in the 

sensitivity of the 30S subunit of the gonococcal ribosome to streptomycin or 

spectinomycin, respectively (87).   

 

2.6.5  Tetracyclines 

Tetracyclines were discovered in the 1940s and have been used clinically to treat 

a variety of infections since the 1950s and are still widely used today for 

treatment of chlamydial and other infections (152). Tetracyclines penetrate the 



 58

bacterial cell by passive diffusion and act by inhibiting the attachment of 

aminoacyl-tRNA to the ribosome acceptor site, resulting in the inhibition of 

protein synthesis (165). A growing number of bacterial species have acquired 

resistance to the bacteriostatic activity of tetracycline. Most of the resistance 

genes code for one of the two important mechanisms of tetracycline resistance, 

either by efflux or ribosomal protection. These two widespread mechanisms of 

bacterial resistance to tetracycline do not destroy the compound. 

 

Efflux is mediated by an energy dependent efflux pump. The efflux proteins 

exchange a proton for a tetracycline-cation complex and are anti-reporter 

systems. Efflux determinants from Gram-negative bacteria (Tet A to Tet E, Tet G 

and Tet H) have a have a common genetic organisation that is different from that 

in Gram-positive bacteria. They all contain structural gene and a repressor gene 

that are expressed in opposite directions from overlapping operator regions 

(165).  

 

Protection of the ribosome from the action of tetracycline as a mechanism of 

tetracycline resistance was discovered in streptococci (165). Tetracycline 

resistance can result from the production of a protein that interact with the 

ribosome such that protein synthesis is unaffected by the presence of the 

antibiotic. These proteins exhibit homology to elongation factors EF-Tu and EF-G 

and exhibit ribosome-dependent GTPase activity (165).  They act by binding to 
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the ribosome, thereby changing its conformation and inhibiting the binding of 

tetracycline. Tet M and Tet O are the best characterised of these proteins.  

 

The tetX gene codes for an enzyme which inactivate tetracyclines. This enzyme 

is a novelty because it is the first and the only enzyme described which 

inactivates tetracycline. However it does not seem to have much clinical 

relevance since it requires oxygen to function and is found only in strict 

anaerobes. The tetX genes have been identified on transposable elements found 

in anaerobic bacteria of the genus Bacteroides (225). 

 

Tetracycline resistance in Neisseria gonorrhoeae is mediated by two major 

mechanisms: expression of a plasmid-encoded TetM protein and mutations in 

endogenous genes (chromosomally mediated resistance). tetM in N. 

gonorrhoeae exists as two slightly different “Dutch’’ and ‘’American’’ types 

located on a large self-mobilising 25.2 MDa plasmid (62). A study of the 

molecular epidemiology of the tetM gene suggests that the Dutch type may have 

originated in the Far East and the American type on the African continent. The 

TetM plasmid is widely dispersed in the normal genital tract flora; the mobility of 

the plasmid and the selective pressure created by use of tetracyclines to treat 

other STIs has contributed to the widespread dispersal of the tetracycline 

resistant N. gonorrhoeae (TRNG) phenotype (225). 
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High-level chromosomally mediated resistance to tetracycline in N. gonorrhoeae, 

is mediated by a combination of three gene mutations (79): (i) the mtrR mutation, 

which results in over-expression of an nonspecific efflux pump (MtrC-MtrD-MtrE) 

that promotes the efflux of a range of hydrophobic agents and detergents; (ii) the 

penB determinant, which is a mutated porin IB that decreases the influx of 

tetracycline into the cell, and (iii) the rpsJ1 allele, which results in altering the 

rRNA-binding site for tetracycline, thus lowering the affinity of the antibiotic for 

the ribosome. Although the combination of these mutations does not confer a 

level of tetracycline resistance as high as that observed with tetracycline-specific 

efflux pumps or the TetM determinant, the mtrR-penB-rpsJ1 gene triad is highly 

effective and provides levels of resistance above those clinically achievable at 

the site of infection (79). 

 

2.6.6   Macrolides 

Macrolide antibiotics are chemically distinct inhibitors of bacterial protein 

synthesis (187). Macrolides inhibit protein synthesis in susceptible organisms by 

binding reversibly to the peptidyl-tRNA binding region of the 50S ribosomal 

subunit, inhibiting the translocation of a newly synthesised peptidyl-tRNA 

molecule from acceptor site on the ribosome to the peptidyl (donor site) (137).  

Intrinsic resistance to macrolide antibiotics in Gram-negative bacilli is due to low 

permeability of the outer membrane to these hydrophobic compounds. The 

enzymes EreA and EreB, encoded by the ereA and ereB genes, which hydrolyse 

the lactone ring of the macrocyclic nucleus, and the phosphotransferases types I 
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and II which inactivate macrolides by introducing a phosphate on the 2’-hydroxyl-

group of the amino sugar have been found in members of the family 

Enterobacteriaceae (211). 

 

Three different mechanisms of acquired macrolide resistance have been found in 

Gram-positive bacteria (211) namely post-transcriptional modification of the 23S 

rRNA, efflux and enzymatic inactivation. Post-transcriptional modification of the 

23S rRNA by the adenine-N6-methyltransferase was the first mechanism of 

macrolide resistance to be described. Target modifications alter a site in 23S 

rRNA common to the binding of macrolide antibiotics. Modification of the 

ribosomal target confers cross resistance to macrolides antibiotics and remains 

the most frequent mechanism of resistance. A number of different antibiotic 

resistance genes code for efflux proteins, which pump the antibiotic out of the cell 

or the cellular membrane, keeping intracellular concentrations low and ribosomes 

free from antibiotic (211). The mef (macrolide efflux) genes have been found in a 

variety of Gram-positive genera (112). Many of these genes are associated with 

conjugative elements located in the chromosome and are readily transferred 

conjugally across species and genus barriers (112). Unlike target modification, 

which causes resistance to structurally distinct antibiotics, enzymatic inactivation 

confers resistance mostly only to structurally related drugs. As with 

Enterobacteriaceae, ereA and ereB genes have been identified in 

Staphylococcus aureus (211). 
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The MtrR repressor-regulated MtrC-MtrD-MtrE efflux system of N. gonorrhoeae 

exports macrolides. Increased efflux may occur by deletion or insertional 

inactivation of either the mtrR gene or the mtrR promoter (168).The mef 

(macrolide efflux) genes has been detected in some isolates, although its 

contribution to gonococcal macrolides resistance remains unclear (113). 

Expression of several 23S rRNA methylases, encoded by the ermB, ermC and 

ermF genes, is responsible for modification of the gonococcal ribosomal target 

(40). These methylases genes are associated with conjugative transposons 

which facilitate interbacterial spread. Mutations in the peptidyltransferese loop of 

domain V of 23S rRNA also confer gonococcal resistance to macrolides (137). 

 

2.6.7 Quinolones 

Quinolone drugs are widely used class of synthetic antibacterial compounds (53). 

First generation (acidic) quinolones include nalixidic acid and oxolinic acid. 

Subsequent generations have been modified to increase spectrum and potency. 

The most significant modification has been the addition of a fluorine atom at 

position C-6 in fluoroquinolones such as ciprofloxacin, which result in 

considerable increase in activity. The newer drugs also commonly contain a 

secondary amine in addition to the carboxylic acid group common to most 

quinolones, making the drug amphoteric rather than acidic (6). More recent 

modifications that increase drug potency include the presence of a methoxy 

group at C-8 (53).  
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Fluoroquinolones have a broad spectrum of antibacterial activity, commonly used 

in both clinical and veterinary medicine. Their strong activity against Gram-

negative bacteria, excellent diffusion throughout tissue, and especially the ease 

of their oral administration, justify this widespread adoption (53). To date, three 

mechanisms of resistance to quinolones are currently recognized: mutations that 

alter the drug targets, mutations that reduce drug accumulation and plasmids that 

protect cells from the lethal effects of quinolones (77). For N. gonorrhoeae, the 

main mechanism involves mutations in the quinolone resistance-determining 

region (QRDR) of the gyrA gene and, occasionally additional point mutations in 

the analogous region of the parC gene on the bacterial chromosome. 

 

2.6.7.4 Target alterations 

 Quinolones act by inhibiting the action of type II topoisomerases, DNA gyrase 

and DNA topoisomerase IV (52). The subunits of DNA gyrase are GyrA, a 97-

kDa protein encoded by the gyrA gene, and GyrB, a 90-kDa protein encoded by 

the gyrB gene. The main function of this enzyme is to catalyse the negative 

supercoiling of DNA, to remove both positive and negative supercoils, and to 

catenate and decatenate closed circular molecules.  Topoisomerase IV is an 

A2B2 enzyme as well, encoded by parC and parE (referred to as grlA and grlB in 

S. aureus). The parC and parE subunits are highly homologous to gyrA and 

gyrB, respectively. The main aim of topoisomerase IV seems to be associated 

with decatenating the daughter replicons (77). The two enzymes, DNA gyrase 

and topoisomerase IV, work together in the replication, transcription, 
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recombination, and repair of DNA. The enzymes transiently break both strands of 

double-stranded DNA, and, in an ATP-dependent reaction, pass a second DNA 

double helix through the break, which is then resealed (91). 

 

 Quinolones block the reaction and trap gyrase or topoisomerase IV as a drug-

enzyme-DNA complex, with subsequent release of lethal, double-stranded DNA 

breaks (71). A few bacteria are able to function with only DNA gyrase, but most 

bacteria have both enzymes. In gram-negative bacteria, gyrase is more 

susceptible to inhibition by quinolones than is topoisomerase IV (60), whereas, in 

gram-positive bacteria, topoisomerase IV is usually the prime target, and gyrase 

is intrinsically less susceptible (55,136). Each of the target enzymes has a 

quinolone resistance determining region (QRDR), a region of DNA encoding a 

portion of the DNA-binding surface of the enzyme, at which amino acid 

substitution can diminish quinolone binding.  

 

Alteration of the GyrA subunits of DNA gyrase, particularly at Ser-91 and Asp-95, 

appears to play a central role in conferring high-level quinolone resistance in N. 

gonorrhoeae. Mutations in codons 67, 81, 82, 83, 84, 87 and 106 of gyrA have 

been observed to be responsible for the development of quinolone resistance in 

Escherichia coli (60). The presence of a single mutation in the above-mentioned 

positions of the QRDR of gyrA usually results in high-level resistance to nalidixic 

acid, but to obtain high levels of resistance to fluoroquinolones, the presence of 

additional mutations in gyrA and/or in another target such as parC is required. In 
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gyrB of E. coli, substitutions resulting in resistance to quinolones have been 

described at positions 426 (Asp-426 to Asn) and 447 (Lys-447 to Glu) (228). 

Substitutions at position 426 seem to confer resistance to all quinolones, 

whereas those at position 447 result in an increased level of resistance to 

nalidixic acid, but a greater susceptibility to fluoroquinolones (228). 

 

Conversely, in S. aureus or S. pneumoniae, the initial target mutations occur 

more frequently in parC, whereas, in highly resistant strains, additional mutations 

are found in gyrA and parE (55,136). The role of amino acid substitutions in parE, 

resulting in the development of quinolone resistance in clinical isolates appears 

to be irrelevant in N. gonorrhoeae (156). However one substitution (Leu-445 to 

His) has been described in parE of a single quinolone-resistant in vitro mutant of 

E. coli. This mutation only seems to affect the quinolone MIC value in the 

presence of a concomitant mutation in gyrA (174).  

 

Once a first-step mutation has reduced the susceptibility of DNA gyrase in a 

gram-negative organism, additional mutations in gyrA or mutations in gyrB or 

parC can further augment resistance, although, by themselves, they would be 

ineffective in a bacterial cell with wild-type GyrA, because the most-susceptible 

target sets the level of susceptibility. A plausible mechanism for how these 

substitutions decrease susceptibility is that they reduce drug affinity. In support of 

this model, single and double substitutions in the QRDR of E. coli gyrase have 

been shown to reduce the binding of quinolones to the enzyme-DNA complex 
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(9). Alternatively, mutations may marginally impair target enzyme function and, 

thus, reduce the formation of enzyme-DNA complexes and lethal double-

stranded breaks in DNA (81).  

 

2.6.7.5 Decreased uptake 

To reach their targets, quinolones must cross the cell wall and cytoplasmic 

membrane of gram-positive bacteria; in gram-negative bacteria, quinolones must 

traverse an additional outer membrane barrier. Quinolones may cross the outer 

membrane in two different ways: through specific porins or by diffusion through 

the phospholipid bilayer (32). The degree of diffusion of a quinolone is greatly 

associated with, and dependent on, its level of hydrophobicity. All quinolones 

may cross the outer membrane through the porins, but only those with a greater 

level of hydrophobicity may diffuse through the phospholipid bilayer.  

 

Decreased quinolone uptake may be associated with two factors: an increase in 

the bacterial impermeability to these antibacterial agents or the over-expression 

of efflux pumps (2, 209). Alterations in the composition of porins and/or in the 

lipopolysaccharides may alter bacteria susceptibility profiles. In 

lipopolysaccharide-defective mutants, increased susceptibility to hydrophobic 

quinolones has been described, without alterations in the level of resistance to 

the hydrophobic quinolones (72). Alterations in membrane permeability are 

usually associated with decreased expression of porins. This has been described 

both in E. coli and other Gram-negative bacteria (72). Both mechanisms of 



 67

resistance are mutational, arising in an individual organism and then passing 

vertically to surviving progeny. Neither mechanism seems to transfer effectively 

on mobile genetic elements (157). 

 

2.6.7.6 Transferability of quinolone resistance 

Plasmid-mediated resistance to nalidixic acid was first reported in 1987 from 

clinical isolates of S. dysenteriae (129), although, the plasmid involvement was 

later refuted (7). However, a re-visit to this literature cannot fully rule out the 

possibility of plasmid involvement in the quinolone resistance, since there seems 

no alternative interpretation for the findings that plasmid-carrying strains had 

higher survival advantage under nalidixic acid stress and that they generated 

1000-fold higher nalidixic acid-resistant mutants than their parental plasmid-free 

strains even though it was suspected that the plasmid might act as a mutator 

factor specific for nalidixic acid resistance (7). 

 

In 1998, Martinez-Martinez et al. made an inadvertent but crucial discovery 

during a study of a plasmid, pMG252 that produced an unusual multidrug 

resistance phenotype including resistance to quinolones, β-lactams, 

aminoglycosides, sulphonamides, trimethoprim and chloramphenicol (118). 

Plasmid pMG252 came initially from a ciprofloxacin-resistant strain of K. 

pneumoniae isolated in 1994 from the urine of a patient at the University of 

Alabama in the USA (118). This identical plasmid was also found in two 

additional strains of K. pneumoniae and one strain of E. coli from patients in the 



 68

same institution over a period of 5 months. The plasmid had a broad host range 

and was transferred by conjugation from E. coli to Citrobacter freundii, 

Salmonella typhimurium and Pseudomonas aeruginosa. The plasmid-bearing 

conjugants displayed enhanced resistance, with 4- to 16-fold increases in 

minimum inhibitory concentration (MIC) values of nalidixic acid, norfloxacin, 

ciprofloxacin, clinafloxacin, levofloxacin, pefloxacin and trovafloxacin, confirming 

for the first time the involvement of a plasmid in quinolone resistance (118). 

Cloning and nucleotide sequence analysis of plasmid pMG252 revealed a gene 

responsible for the plasmid mediated quinolone resistance (PMQR) (192). This 

gene, named qnr (GenBank accession number AY070235), encodes a protein, 

Qnr, of 218 amino acid residues. Qnr belongs to the pentapeptide repeat family, 

in which almost every fifth amino acid is either leucine or phenylalanine and each 

pentapeptide repeat likely forms a sheet that is important for protein–protein 

interactions (223). Purified Qnr protein was shown to bind to and protect both 

DNA gyrase and topoisomerase IV from inhibition by ciprofloxacin (193).  

 

Two more kinds of PMQR determinants have been described in E. coli, namely 

AAC(6)-Ib-cr and QepA (224).  AAC(6)-Ib-cr is a variant of AAC(6)-Ib and is 

responsible for reduced susceptibility to ciprofloxacin or norfloxacin by N-

acetylation of a piperazinyl amine. QepA is a quinolone efflux pump protein and 

shows a considerable similarity to the MFS types of efflux pumps belonging to 

the 14-transmembrane segment family of environmental actinomycetes. 
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The development of plasmid mediated quinolone resistance (PMQR) through 

decreased drug accumulation has not yet been described in N. gonorrhoeae. 

 

2.6.8 Cephalosporins 

Brotzu discovered cephalosporins in 1945 as naturally occurring substances 

produced by the fungus Cephalosporium acremonium, now known as 

Acremonium chrysogenum (158). The first widely used cephalosporin was 

cephalothin, introduced to the market in 1962 for parenteral use. Similar to 

penicillins, cephalosporins act by binding to penicillin-binding protein (PBPs) of 

susceptible organisms, thereby interfering with the synthesis of peptidoglycan of 

the bacterial cell wall. In addition, these β-lactam agents may produce 

bactericidal effects by triggering autolytic enzymes in the cell envelope. 

 

Cephalosporins are usually classified by ‘generations’ which roughly correspond 

to the time of their introduction and antibacterial activity. The first–generation 

(narrow-spectrum) drugs, exemplified by cephalothin and cefazolin, have good 

Gram-positive activity and relatively modest Gram-negative activity. The second-

generation (expanded-spectrum) cephalosporins are stable against certain β–

lactamases found in Gram-negative bacteria and as a result, have increased 

activity against Gram-negative organisms. Third-generation (broad-spectrum) 

cephalosporins are generally less active than the narrow-spectrum agents 

against Gram-positive cocci (134, 158). Their potent broad spectra of Gram-
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negative activity are due to their stability to β–lactamases and their ability to pass 

through the outer cell envelopes of Gram-negative bacilli (134). 

 

The increase in QRNG resulted in the cessation of fluoroquinolones therapy and 

the increased use of third-generation cephalosporins, such as cefixime and 

ceftriaxone, as the treatment of choice for gonorrhoea. The most active of this 

group of ‘extended spectrum’ cephalosporins is ceftriaxone. This high intrinsic 

activity on N. gonorrhoeae, together with a long half-life, success in eradicating 

the organism from all sites of infection and availability as a cheaper generic 

preparation has recently seen it widely adopted globally as an effective treatment 

(135). Disadvantages of ceftriaxone are that it is given as an intramuscular 

injection that is locally painful and requires co-administration of a local 

anaesthetic. There are also practical reasons for avoiding injectable agents in 

less resourced settings with high rates of HIV. For these reasons, the use of a 

number of oral formulations of third generation cephalosporins has been 

explored. The most widely recommended oral third-generation cephalosporin is 

cefixime, although some countries have made use of other oral agents in this 

group including ceftibuten, cefozopran, cefdinir and cefpodoxime (158).   

 

Recently, there have been an increasing number of studies of treatment failure in 

gonorrhoea treated with oral third-generation cephalosporin regimens, most 

notably cefixime and ceftibuten (111). Treatment failures with oral cephalosporins 

were first reported in Japan in 2001 and continue to be recorded in Australia and 

elsewhere (4, 111). The clinical treatment failures with oral cephalosporins have 
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been paralleled by laboratory data showing increasing in-vitro resistance to these 

antibiotics in N. gonorrhoeae (as measured MIC) (130). Although affected strains 

also have decreased susceptibility in vitro to ceftriaxone, this is not yet at MIC 

levels that translate into loss of clinical efficacy. 

 

A number of chromosomal genes have now been regarded as relevant to the 

increased MICs reported for both oral and parenteral cephalosporins. Earlier 

studies paid considerable attention to alterations in penicillin-binding protein 2 

(PBP2), encoded by the pen A gene, and in particular to the presence of a 

mosaic PBP2 in gonococci from treatment failures with oral cephalosporins (5). 

PBP2 is the major target of β-lactam antibiotics in N. gonorrhoeae, having a 10-

fold greater affinity for penicillin than the other major target site, PBP1, which is 

encoded by ponA. Many have suggested that the presence of a mosaic PBP2 is 

a pivotal requirement for decreased susceptibility to both the oral and parenteral 

cephalosporins and is associated with decreased affinity for oral cephalosporins 

(110, 139). A number of specific loci within the mosaic PBP2 are said to be 

relevant to the development of this ‘resistance’ (184). However it should be noted 

that, whilst most of the N. gonorrhoea strains that are resistant to oral 

cephalosporins possess mosaic penA genes, the mosaic pattern is also seen in a 

small proportion of susceptible strains (139). 

 

Other genetic changes associated with increases in MICs for penicillins, cefixime 

and ceftriaxone include the de-repression of an efflux pump inhibitor by 
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mutations in mtr. This change is almost always being combined with an alteration 

in penB, which encodes for the porin PorBI-b, and changes in ponA, which 

encodes PBP1 (167). Other lesions have also been described including 

mutations in pilQ (formerly known as penC) (154). If a mosaic PBP2 is then 

added to this mix of different genetic combinations, different levels of 

cephalosporin resistance will be detected, as was the case in the study by Ito et 

al. (84). These combinations of changes were said to define an unambiguous 

association between penA mosaic alleles, polymorphisms in genes and raised 

MICs to cefixime and ceftriaxone (110). These different mutations and 

combinations of genetic changes, however, have differential effects on the oral 

and parenteral cephalosporins in vitro (in terms of MICs) and in vivo (in terms of 

clinical outcomes). It appears that the full range of genetic changes and the 

interactions between the different alterations has yet to be elucidated. 

 

2.6.9 Syndromic Management 

Within South Africa, STI care at the primary level is being achieved with a 

strategy called "syndromic management." This approach is based on identifying 

the major groups of signs and symptoms (syndromes) commonly associated with 

certain infections (132). Through the syndromic management approach, patients 

are diagnosed and treated on the basis of these syndromes, rather than on the 

basis of specific STIs. STI control programs need to identify the common 

syndromes in the area, the organisms responsible for them, and effective 

antibiotics. Simple standard guidelines in the form of flow charts for each 
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syndrome should then be developed for use by primary level health care workers 

(Fig 2.11, Fig 2.12).  
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Fig. 2.11 Syndromic treatment regimen for male urethritis syndrome (175). 
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Treatment is prescribed to deal with the infections commonly associated with the 

syndrome in the region (Fig 2.11, Fig 2.12) (104).  The syndromic approach has 

been researched and tested in several countries and is developed and 

recommended by WHO and other international agencies (219). This approach 

facilitates rapid diagnosis and treatment without requiring sophisticated, time-

consuming laboratory tests or advanced medical skills. 

 

As the syndromic approach is based on self-reported symptoms, it does not 

detect or treat patients with asymptomatic infections (15). Another disadvantage 

is that no single algorithm is appropriate for every setting. For example, in Papua 

New Guinea, where chancroid is rare and most ulcers are caused by Klebsiella 

granulomatis, treatment should be directed at the latter rather than at both 

chancroid and syphilis, as practiced in East Africa (151). Also in view of changing 

antimicrobial susceptibility patterns and continuing research, algorithms will need 

to be regularly updated. 
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Fig. 2.12 Syndromic treatment regimen for vaginal discharge syndrome 

(175). 
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Over-diagnosis and over-treatment are the major disadvantages of syndromic 

management (15). Over-treatment in female patients with virginal discharge is 

especially common, where cervicitis (due to gonorrhoea and/or chlamydial 

infection) is not the predominant cause of the discharge. In order to assess the 

effectiveness of the syndromic approach, it is necessary to carry out regular 

evaluations of the accuracy of diagnoses and patient satisfaction by using 

laboratory tests. Cheaper and more effective laboratory approaches for STI 

diagnosis and screening (for both symptomatic and asymptomatic individuals) 

are required to ensure quality of care in STI clinics in resource-poor settings. 

 

2.7 Laboratory-based methods for detecting antimicrobial resistance 

The control of gonorrhoea caused by resistant gonococcal strains is facilitated, in 

part, by the rapid laboratory identification of resistant strains infecting patients for 

whom therapy is unsuccessful and of strains isolated during epidemics 

associated with the rapid spread of resistant strains (100). Laboratory methods 

for susceptibility testing of gonococci are similar to those of other bacteria. 

However, N. gonorrhoeae has specialised growth requirements and efforts to 

handle this fastidious organism have led to the development of a plethora of 

tests, with numerous variations in methodology. The susceptibility of an isolate to 

an antimicrobial agent is generally expressed as the MIC, i.e., the minimal 

concentration of an antimicrobial agent required to inhibit growth of the isolate 

(150). 
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2.7.1 Agar dilution methods 

The agar dilution MIC is the definitive susceptibility test (150). It is a labour 

intensive method and is only performed in specialised laboratories, but it is 

relatively inexpensive when large numbers of strains are tested in batches. If 

susceptibility testing of N. gonorrhoeae is performed for epidemiological 

purposes, rather than for individual case management, delay in treatment is not 

an issue. A simplified ‘breakpoint’ method, using a smaller number of antibiotic 

concentrations, is useful for screening large numbers of strains when the 

frequency of resistance is expected to be low. Tests of this type require 

experienced staff and access to antibiotic powders of known potency. Strains 

must be stored, which involves extra handling and subculture and resources. 

 

Although Mueller-Hinton medium has been controlled for antimicrobial 

susceptibility testing and is recommended for testing non-fastidious bacterial 

species, it does not support satisfactory growth of all strains of N. gonorrhoeae 

(13). Unlike Mueller-Hinton agar, which shows good lot-to-lot reproducibility for 

susceptibility testing, lot-to-lot variations of different media (e.g., Proteose 

peptone or GC agar base) used to grow N. gonorrhoeae have been noted (179). 

These media variations may disproportionately affect MIC results for 

antimicrobial agents (15). Thus, different lots of the medium base (or 

components) must be evaluated to ensure adequate growth of isolates and 

reproducibility of results of susceptibility tests for reference strains. With use of a 

suitable lot of medium, reproducible results may be obtained if procedures, 
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including preparation and storage of plates, growth and preparation and storage 

of inoculum, and incubation conditions, are followed precisely. 

 

The World Health Organization Scientific Group formerly recommend that agar-

dilution susceptibility test be performed on a “chocolate” agar medium consisting 

of Proteose peptone no 3 (Difco, Detroit, MI) agar medium supplemented with 

1% (vol/vol) hemoglobin solution (Difco) and 1% (vol/vol) IsoVitaleX(BBL) and 

containing log2 dilutions of antimicrobial agents (220, 222). The same medium 

without added antimicrobial agent is inoculated to test for adequate growth of 

isolates. For routine use, plates can be stored for two weeks at 4oC in a sealed 

container that prevents desiccation of the medium. However it should be noted 

that the use of hemoglobin-supplemented antibiotic medium is not recommended 

for agar dilution MIC testing. 

 

For a number of years the CDC now recommends that agar-dilution susceptibility 

testing of strains of N. gonorrhoeae should be performed using GC-agar base 

(BBL) supplemented with 1% (vol/vol) IsoVitaleX (28). The same media is 

recommended by the Clinical Laboratory Standards Institute (CLSI) (34). Media 

should be inoculated with 104 cfu/ml, which is in accordance with the 

recommendations of the CLSI (34). Preliminary results suggest that MICs 

obtained with this procedure are generally higher than those obtained on 

supplemented chocolate agar inoculated with 103 cfu. 
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In summary, agar dilution methods currently in use are not uniform, and different 

MIC values expressed in mg/l may be obtained when the same strains are tested 

in different laboratories or on different media in the same laboratory (100). 

Variables include type of growth medium (basal medium and supplements), 

inoculum size, incubation conditions and incubation time. As in any test method, 

the one variable most difficult to control is reading the endpoint, which is 

subjective. However, the extent of variability in endpoint determination can be 

reduced by including standard strains in each batch of tests for quality control 

QC. 

 

2.7.2 Disc diffusion methods 

Disc-diffusion testing is most applicable for rapid screening of small numbers of 

gonococcal isolates and may be limited to those antimicrobial agents being used 

for therapy. Test results can be useful to guide selection of therapy for individual 

patients or to focus disease intervention activities for outbreak control. Results for 

disc-diffusion susceptibility tests may be available within 24 hours of the isolation 

of the strain. Sizes of the zones of inhibition are measured with calipers or with a 

millimeter ruler. Inhibition zone sizes for the interpretation of disc-diffusion 

susceptibility results have been recommended for various antimicrobial agents 

and discs of different concentrations (220). As zone sizes of different 

international standards vary, most investigators use the CLSI guidelines for the 

interpretation of disc-diffusion susceptibility results (13, 34).  
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The media for disc-diffusion susceptibility testing must also be controlled for lot-

to-lot variation by use of strains with known susceptibilities. Disc-diffusion testing 

depends on the diffusion into the medium of the antimicrobial agent contained in 

the disc that is placed on the medium. The rate of diffusion of the antibiotic will 

vary with the molecular weight of the antibiotic and medium and incubation 

conditions (e.g., type of medium, moisture content of medium, depth of medium 

and humidity of incubation chamber). The test results obtained with use of an un-

calibrated procedure must be interpreted cautiously and should be confirmed 

with a calibrated susceptibility test system. In addition, the inhibition zone sizes 

obtained by other procedures (e.g., chocolate agar) may not be the same as 

those obtained on supplemented GC-base medium, and such procedures should 

be independently controlled using reference strains with known susceptibilities 

(100). 

 

2.7.3 E-test 

Antimicrobial susceptibility testing with the E-test® antimicrobial gradient strip is 

technically as simple to perform as the disc diffusion test, but provides 

semiquantitative MIC results (150). The strip is impregnated with a standard 

gradient of antimicrobial agent and the front of the strip has MIC values that are 

to be read in correspondence with inhibition of growth on the plate after 

incubation.  
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Antimicrobial susceptibility testing of N. gonorrhoeae is performed on GC base 

medium plus 1% defined growth supplement. The standardisation of the 

inoculum and methods for the inoculation of the test plate are the same for the E-

test® as they are for the disc diffusion test for N. gonorrhoea. Strict quality control 

practices are of extreme importance in order for the proper performance and 

appropriate interpretation of the antimicrobial susceptibility test.  

 

The strip is placed on the surface of an inoculated plate and the endpoint (MIC) 

is determined by reading the point where the inhibition zone intersects the strip 

(Fig 2.13).  
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Fig. 2.13 Detection of ciprofloxacin resistant N. gonorrhoeae using E-test 
(MIC=3mg/l) (Photograph credit: D. Lewis) 
 

 

MICs obtained with this method in reference laboratories tend to be slightly lower 

than those obtained by conventional agar dilution methods (150). Endpoint 

interpretation poses the same problem as for disc diffusion test, i.e. determining 

the precise edge of the inhibition zone. The ease of use of the E-test makes it 

attractive as a potential standard method. However, the test strips are very 

costly, particularly when testing susceptibility to multiple antibiotics for 

epidemiological purposes. 
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CHAPTER 3: MATERIALS AND METHODS 

 
 
3.1 Bacterial isolates 
 
 
3.1.1 N. gonorrhoeae isolates 
 
Gonococci were isolated from urethral swabs taken from men presenting with                              

urethral discharge, to primary health care (PHC) clinics in Gauteng 

(Johannesburg), Northern Cape (Kimberley) and Western Cape (Cape Town) 

provinces as part of the National Microbiological Surveillance (NMS) programme 

coordinated at the NICD’s STI Reference Centre (Table 3.1). At the time of the 

study, microbiological surveillance was only conducted in the three provinces and 

49 isolates were chosen based on the increasing MIC values and budget 

limitations.  

 

Table 3.1. Characteristics of the population from which samples were collected   

Category 
Johannesburg, 
Gauteng 

Kimberley, 
Northern Cape 

Cape Town, 
Western Cape 

Months of survey Jan-April 2007 March-Aug 2006 
Nov 2006,  
Jan-Feb 2007 

No. of MUS enrolled 217 158 290 

Total gonorrhoea cases 157 59 259 

GC M-PCR Pos 154 50 247 

GC Culture Pos 151 35 243 
No of isolates (%) selected 
for study 24 (16%) 9 (26%) 16 (7%) 
Susceptibility phenotypes of 
selected isolates 16R,2I,6S 4R,5S 11R,5S 

S = Susceptible; I = Intermediate/Reduced Susceptibility; R = Resistant 

 



 85

 A total of 35 resistant isolates, 2 isolates with intermediate susceptibility and 12 

fully susceptible isolates were consecutively selected to validate and assess the 

performance of the real-time PCR in order to detect quinolone resistant Neisseria 

gonorrhoeae (QRNG) (Table 3.2).  Of these, 24 isolates (i.e. 16 resistant, 2 

intermediate and 6 susceptibility) were consecutively chosen from the 

Johannesburg strain collection, 9 isolates (i.e. 4 resistant and 5 susceptibility) 

from the Kimberley strain collection, and 16 isolates (i.e. 11 resistant and 5 

susceptibility) from the Cape Town strain collection(Tables 3.2 and 3.3).  

 

Table 3.2. Description of specimen used on different assays 

Category 
Specimen 

type 
Johannesburg, 
Gauteng 

Kimberley, 
Northern 
Cape 

Cape Town, 
Western 
Cape 

Assay validation 

Urines 24 (16R,2I,6S) − − 

Swabs 24 (16R,2I,6S) − − 

Cultures 24 (16R,2I,6S) − − 

Testing of clinical 
specimens  

Swabs − 

9 (4R,5S) and 
18 (no MIC 
data) 16 (11R,5S) 

Cultures − 9 (4R,5S) 16 (11R,5S) 

Sequencing 
Cultures 24 (16R,2I,6S) 9 (4R,5S) 16 (11R,5S) 

Swabs* − 5 (2R,3S) − 

NG MAST 
Cultures 24 (16R,2I,6S) 9 (4R,5S) 16 (11R,5S) 

Swabs* − 5 (2R,3S) − 
S = Susceptible; I = Intermediate/Reduced Susceptibility; R = Resistant 

∗ Swabs only tested for Kimberley patients where a discrepancy existed between the real-time 
PCR assay results for cultures and swabs 
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Table 3.3.  Number of isolates selected and the susceptibility phenotype by 

Province 

Previous 
susceptibility 

phenotype 

City and Province 
Johannesburg, 

Gauteng 
Kimberley, 

Northern Cape 
Cape Town, 

Western Cape 

Susceptible GP-07-MUS-125 NC-06- MUS- 045 WC-06-MUS- 181 

Susceptible GP-07-MUS-136 NC-06-MUS- 079 WC-06-MUS- 182 

Susceptible GP-07-MUS-149 NC-06-MUS- 085 WC-06-MUS- 189 

Susceptible GP-07- MUS-151 NC-06-MUS- 103 WC-06-MUS- 200 

Susceptible GP-07- MUS-159 NC-06-MUS- 105 WC-06-MUS- 228 

Susceptible GP-07- MUS-170   

Intermediate GP-07- MUS-148   

Intermediate GP-07- MUS-187   

Resistant GP-07- MUS- 002 NC-06-MUS- 056 WC-06-MUS- 010 

Resistant GP-07- MUS- 006 NC-06-MUS- 100 WC-06-MUS- 012 

Resistant GP-07- MUS- 016 NC-06-MUS-135 WC-06-MUS- 013 

Resistant GP-07- MUS- 018 NC-06-MUS- 144 WC-06-MUS- 022 

Resistant GP-07- MUS- 026  WC-06-MUS- 050 

Resistant GP-07- MUS- 029  WC-06-MUS- 071 

Resistant GP-07- MUS- 031  WC-06-MUS- 105 

Resistant GP-07- MUS- 036  WC-06-MUS- 131 

Resistant GP-07- MUS- 038  WC-06-MUS- 196 

Resistant GP-07- MUS- 040  WC-06-MUS- 239 

Resistant GP-07- MUS- 064  WC-06-MUS- 243 

Resistant GP-07- MUS- 097   

Resistant GP-07- MUS-120   

Resistant GP-07- MUS- 166   

Resistant GP-07- MUS- 168   

Resistant GP-07- MUS- 171   

Total Isolates 24 9 16 
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Four control strains were used to validate the E-test procedure, namely Neisseria 

gonorrhoeae ATCC 49226 (ciprofloxacin MIC < 0.002 µg/ml, CipS), WHO A 

(ciprofloxacin MIC < 0.002 µg/ml, CipS), MAL058 (ciprofloxacin MIC = 0.25 

µg/ml, CipI) and ESN306 (ciprofloxacin MICs, ≥1 µg/ml, CipR). In house and 

WHO controls (222) were also used for both sequencing and real-time PCR and 

are as follows: WHO A, MAL058 and ESN306 (Table 3.4). In house controls, 

MAL058 and ESN306 were selected based on their phenotypic characteristics, 

and previous sequencing data was not available. 

 

Table 3.4.  Susceptibility to ciprofloxacin of N. gonorrhoeae control strains and 

associated gyrA and parC alterations 

Control 
Strain 

Ciprofloxacin 

MIC (µµµµg/ml) 

GyrA ParC 

Ser91 
(TCC) 

Asp95 
(GAC) 

Asp86 
(GAC) 

Neisseria 
gonorrhoeae 
ATCC 49226 < 0.002 

Ser91 

(TCC) 

Asp95 

(GAC) Asp86 (GAC) 

WHO A < 0.002 

Ser91 

(TCC) 

Asp95 

(GAC) Asp86 (GAC) 

MAL058 0.25 

Phe91 

(TTC) 

Gly95 

(GGC) Asp86 (GAC) 

ESN306 ≥1 

Phe91 

(TTC) 

Gly95 

(GGC) Asn86 (AAC) 

 

3.1.1.1 Other Neisseria isolates 

Three different non gonococcal Neisseria cultures were provided by Ms. Ruth 

Mpembe from the Respiratory and Meningeal Pathogens Reference Unit 

(RMPRU) at NICD/NHLS to be used for sensitivity and specificity of the primers 
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used in the real time PCR assay for the detection of QRDR mutations. One of 

each non gonococcal Neisseria species received was namely: Neisseria 

lactamica (ATCC4418), Neisseria meningitidis (ATCC13077) and Neisseria 

mucosa (ATCC19696). 

 

3.1.1.2 Urinary Tract Infection isolates 

Urines from 17 patients were collected as part of routine clinical investigation at 

the Johannesburg General Hospital, and cultured isolates were provided by Dr 

Olga Perovic. A total of 6 bacteria species were isolated from the 17 cultured 

urines:  10x Escherichia coli, 2x Klebsiella pneumoniae, 1x Proteus mirabilis, 2x 

Pseudomonas auruginosa, 1x Acinetobacter baumannii and 1x Klebsiella 

oxytoca. 

 
3.1.2 Culture 

The frozen gonococcal cultures, in Microbank™ vials (Pro-Lab Diagnostic, 

Richmond Hill, Canada) kept at -70oC, were thawed and subcultured directly onto 

New York City media [Diagnostic Media Products (DMP), National Health 

Laboratory Services (NHLS), Johannesburg, South Africa]. The inoculated plates 

were incubated immediately at 35-37oC in a humid atmosphere containing 3-10% 

CO2 in a candle jar. Plates were incubated for at least 48 hours and examined 

after 24-48 hours. Typical colonies, 0.5 - 1mm in diameter, varied from grey to 

white in colour, transparent to opaque and with convex or flat profiles.  Suspect 

colonies were subcultured onto non-selective chocolate agar to ensure purity and 
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to provide sufficient growth for other tests. Typical colonies were picked for Gram 

staining and microbiological examination, as well as oxidase testing.  

 

3.1.3 Confirmatory tests for Neisseria gonorrhoeae 

 

3.1.3.1 Gram staining 

N. gonorrhoeae isolates were Gram stained to confirm typical Neisserial 

morphology (131). Single colonies were emulsified in a drop of saline on a glass 

slide, dried, and stained. The fixed or dried smears were covered with crystal 

violet (DMP, NHLS; Johannesburg, South Africa) for 1 min and rapidly washed 

with running water. The slides were flooded with iodine (DMP, NHLS; 

Johannesburg, South Africa) for 1 min, and then rinsed gently with running water.  

The smears were decolourized with acetone-alcohol (DMP, NHLS, 

Johannesburg, South Africa) until the drops falling off the slides were no longer 

blue. The decolouration was stopped by rinsing the slides quickly in running 

water and draining off the excess water. The smears were counterstained with 

safranin (DMP, NHLS; Johannesburg, South Africa) for 1 minute. The slides were 

rinsed with running water, gently blotted with absorbent paper and air-dried. The 

slides were read with a 100x objective using a light microscope with immersion 

oil. Typical Gram-negative diplococci with flattened adjacent sides were 

consisted with the presence of N. gonorrhoeae.  
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3.1.3.2  Oxidase test 

The identity of N. gonorrhoeae isolates was confirmed by the oxidase reaction 

(131). A few drops of oxidase reagent (tetramethyl-p-phenylene diamine 

hydrochloride) (Davis Diagnostics, Brampton, Canada) were placed on a piece of 

filter paper and a part of a colony was transferred onto the filter paper with a 

wooden stick or platinum loop. Gonococcal colony material turned pink and then 

rapidly deepened to purple indicating the presence of oxidase. 

 

3.1.3.3  Phadebact monoclonal antibody test 

N. gonorrhoeae isolates were also reconfirmed by a co-agglutination technique 

called the Phadebact Monoclonal GC OMNI test (Pharmacia, Uppsala, Sweden) 

(131). The test was carried out according to manufacturer’s instructions. A light 

suspension of the suspect colony was made in saline. The suspension was 

heated in a boiling water bath for 5 min and allowed to cool at room temperature. 

At least one drop of the WI reagent and one drop of the WII/III reagent was 

added onto a test card.  A drop of heated suspension was added to each 

reagent.  The reagents on the card were mixed gently and the card was rotated 

for one minute before reading.  Visible agglutination indicated the presence of N. 

gonorrhoeae.  

 

A reaction in either WI or WII/III gonococcal reagents constituted a positive 

result.  A positive reaction of the same strength in both reagents was an 

equivocal result. For equivocal results, the treated suspension was diluted 2-4x 
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with 0.9% saline and tested again. Lack of reaction in both WI and WII/III 

gonococcal reagents constituted a negative result. A negative result strongly 

suggested that the bacteria tested were not N. gonorrhoeae. 

 

3.1.3.4 BBL crystal™ Neisseria/Heamophilus (N/H) identification kit 

N. gonorrhoeae isolates were initially identified by a fluorogenic and chromogenic 

substrate utilizing test called the BBL Crystal Identification System (Becton, 

Dickson and Company, Maryland, USA) (131).  The procedure was carried out 

according to manufacturer’s instructions.  An inoculum fluid tube was labeled with 

the specimen number. Using aseptic techniques, presumptive N. gonorrhoeae 

colonies were picked from the 24 h culture media. Colonies were suspended in a 

tube of BBL Crystal ANR, GP, RGP, N/H ID Inoculum Fluid. The tube was re-

capped and vortexed for approximately 10−15 sec. The turbidity of the 

suspension was equivalent to a McFarland No. 3 standard. The entire content of 

the inoculum fluid tube was transferred into the target area of the BBL Crystal 

base.  The inoculum was rolled gently along the tracks until all of the wells were 

filled. The BBL Crystal N/H ID panel lid was aligned, so that the labeled end of 

the lid was on top of the target area of the base. The lid was pushed down until a 

slight resistance was felt. The BBL Crystal N/H ID panel contained 29 enzymatic 

and biochemical substrates (Table 3.5). 
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Table 3.5.  Substrates used in the BBL crystal™ N/H identification system 

Panel 
location 

Substrate/Enzyme 
tested 

Positive 
Reaction 

Negative 
Reaction 

Typical N. 
gonorrhoeae 

response 

4A 
Fluorescent negative 

control (FC) 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well  

2A 4MU-phosphate 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Negative (0) 

1A L-proline-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Positive (1) 

4B L-serine-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Positive (4) 

2B LYS-ALA-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Positive (2) 

1B L-tryptophan-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Positive (1) 

4C L-phenylalanine-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Positive (4) 

2C 
N-succinyl-ALA-PRO-

ALA-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Negative (0) 

1C ALA-ALA-PHE-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Positive (1) 

4D L- glutamic acid-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Negative (0) 

2D L-arginine-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Positive (2) 

1D Ornithine-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well 

Positive (1)/ 
Negative (0) 

4E Glycine-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Positive (4) 

2E GLY-PRO-AMC 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well 

Positive (2)/ 
Negative (0) 

1E 4MU-β-D-galactose 

blue 
fluorescence 

>FCT well 

blue 
fluorescence 
≤FCT well Negative (0) 

4F Saccharose Gold/Yellow Orange/Red Negative (0) 

2F Maltotriose Gold/Yellow Orange/Red Negative (0) 
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1F Carubinose Gold/Yellow Orange/Red Negative (0) 

4G Pyranose Gold/Yellow Orange/Red 
Positive (4)/ 
Negative (0) 

2G Maltobiose Gold/Yellow Orange/Red Negative (0) 

1G Dissacharide Gold/Yellow Orange/Red Negative (0) 

4H Riberol Gold/Yellow Orange/Red Negative (0) 

2H Levulose Gold/Yellow Orange/Red Negative (0) 

1H 
p-nitrophenyl-

phosphorylcholine Yellow Colourless Negative (0) 

4I 
γ-L-glutamyl-p-

nitroanilide Yellow Colourless Negative (0) 

2I 
p-nitrophenyl-

phosphate Yellow Colourless Negative (0) 

1I 
o-nitrophenyl-β-D-

galactoside (OPNG) Yellow Colourless Negative (0) 

4J Urea Aqua/Blue Yellow/Green Negative (0) 

2J Resazurin Pink Blue/Purple Negative (0) 

1J Ornithine Purple Yellow/Gray 
Positive (1)/ 
Negative (0) 

 

The inoculated panels were placed in incubation trays. All panels were incubated 

face down (larger windows facing up; label facing down) in a non-CO2 incubator 

with 40 – 60% humidity.  The incubation time for panels was 4 h at 35 – 37°C. 

After the recommended period of incubation, the panels were removed from the 

incubator.  All panels were read face down using the BBL Crystal Panel Viewer. 

The colour reaction chart and Table 3.6 was used for the interpretation of the 

reactions. The results pad was used to record reactions. The regular (white) light 

source was used to read columns F thru J first. The UV light source in the panel 

viewer was used to read columns A thru E (fluorescent substrates). A fluorescent 

substrate well was considered positive only if the intensity of the fluorescence 
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observed in the well was greater than the negative control well (4A). Each 

positive test result (except 4A) was given a value of 4, 2, or 1, corresponding to 

the row where the test was located (Table 3.6). A value of 0 (zero) was given to 

any negative result. The values resulting from each positive reaction in each 

column were then added together. A 10-digit number was generated; this was 

the profile number (Table 3.6). 

 

Table 3.6.  Calculation of BBL crystal™ N/H identification kit profile number 

Example A B C D E F G H I J 
4 ∗ + + − + − − − − − 

2 − + − + − − − − − − 
1 + + + − − − − − − − 

Profile 1 7 5 2 4 0 0 0 0 0 
*(4A) = fluorescent negative control 

 

The resulting profile number and cell morphology were entered on a PC in which 

the BBL crystal™ N/H identification system Electronic Codebook has been 

installed to obtain the tested isolate identification. According to the 

manufacturer’s information, out of 513 isolates tested, the sensitivity of the BBL 

crystal™ N/H identification system without supplemented tests was 89.5%, 

whereas with supplemented tests the sensitivity was 93.6%. The specificity of the 

BBL crystal™ N/H identification system was 94.9%. 

 

3.1.4 Epsilon Test (E-test®) 

E-test® is a quantitative technique for determining the anti-microbial susceptibility 

of both non-fastidious Gram negative and Gram positive aerobic bacteria.  The 
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system comprises a predefined antimicrobic gradient which is used to determine 

the MIC, in µg/ml, of individual agents against micro-organisms as tested on agar 

media. The E-test was performed as specified in the manufacturer’s product 

package insert (AB Biodisk, Solna Sweden). An inoculum of N. gonorrhoeae, 

with a density of a 0.5 McFarland standard (equivalent to 1.5x108 cfu/ml), was 

prepared in saline directly from a fresh overnight subculture and applied to the 

surface of a culture plate GC agar base plus 1% IsoVitalex, by using a cotton 

swab and then allowed to dry.  Four control strains namely Neisseria 

gonorrhoeae ATCC 49226, WHO A, MAL058 and ESN306 were used to validate 

the test as a necessary component of the study design.   

 

Ciprofloxacin E-test strips were allowed to reach room temperature prior to use.  

When the inoculated agar surface was completely dry, the ciprofloxacin E-test 

package was opened.  Using sterile forceps, the ciprofloxacin E-test strip was 

applied to the inoculated agar surface, ensuring that the MIC scale was facing 

upwards and that the concentration maximum was nearest the rim of the plate.  

The whole length of the strip was completely in contact with the agar surface.  Air 

pockets were removed, if necessary, by pressing gently on the strip with forceps, 

always moving from the minimum concentration upwards.  Small bubbles under 

the strip did not affect the results. Once applied, the strip was not moved 

because of the instantaneous release of antibiotic into the agar.   

 

The inoculated plates were incubated immediately at 35-37oC in a >70% humid 
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atmosphere containing 3-10% CO2 in a candle jar. Plates were incubated for at 

least 48 hours and examined after 24-48 hours. Bacterial growth was distinctly 

visible after the required period of incubation.  The MIC value was read at the 

point of intersection between the inhibition ellipse edge and the E-test strip (Fig 

2.12). When the inhibition ellipse was below the strip i.e. the zone edge does not 

intersect the strip, the MIC was reported as less than (<) the lowest value on the 

reading scale. Clinical Laboratory Standards Institute (CLSI) (34) guidelines were 

used for the interpretation of E-test results for N. gonorrhoeae (Table 3.7). 

 

Table 3.7.  CLSI interpretation criterion for ciprofloxacin susceptibilities of the N. 

gonorrhoeae isolates (34) 

Category of strain MIC (µµµµg/ml) ranges 

Fully susceptible (cips) ≤0.06 µg/ml 

Less/Intermediately (cipi) >0.6 µg/ml to <1.0µg/ml 

Resistant (cipr) 

 

greater or equal to than 1.0µg/ml 
  

 

3.2 Specimens for molecular experiments 

 Specimens were selected to assist with the development of a real-time PCR 

assay to detect quinolone-susceptibility in DNA extracted from genital specimen 

(see Section 3.4.2). Once developed, this PCR assay was used to test DNA 

extracted from NMS patients’ urethral swabs and culture. 
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3.2.1 Gauteng specimens 

N. gonorrhoeae culture and both urine and urethral swab specimens were also 

collected from men presenting with gonorrhoea at a PHC clinic in Johannesburg, 

Gauteng Province in 2007 as part of the NMS programme coordinated at the 

NICD‘s STI Reference Centre.  A total of 24 consecutively paired urine and 

urethral swab specimens from NMS patients, in whom N. gonorrhoeae has been 

previously isolated were selected based on established ciprofloxacin MIC results 

(i.e. 16 resistant, 2 intermediate susceptible and 6 susceptible).  The 24 urine 

specimens were used to validate the real-time PCR assay. 

 

3.2.2 Northern Cape specimens 

Urethral swabs were collected from males presenting with gonorrhoea at PHC 

clinics in Kimberley, Northern Cape Province in 2006 as part of the NMS 

programme. A total of 38 isolates were initially grown and then stocked in 

Kimberley (NHLS Laboratories). Only 17 of these were viable when re-cultured 

for MIC determination at NICD‘s STI Reference Centre in 2007. The ciprofloxacin 

susceptibility profiles for the remaining 21 gonococci were unknown. The real-

time PCR assay, once developed, was used to determine susceptibility to 

ciprofloxacin for 9 of the previously cultured 17 strains (5 resistant and 4 

susceptible) based on urethral swab DNA extracted previously for prior 

aetiological studies. The remaining 8 gonococci isolates were not viable on 

subculture at the time of the current work. The protocol was further used on 
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swabs from 21 patients with unknown MICs to determine mutations in gyrA and 

parC genes. 

 

3.2.3 Western Cape specimens 

Urethral swab specimens were collected from men presenting with gonorrhoea 

attending a PHC clinic in Cape Town, Western Cape Province in 2006 as part of 

the NMS programme.  A total of 16 swab specimens, from patients known to be 

N. gonorrhoeae culture positive, were consecutively selected based on known 

MIC results of these previously isolated strains.  These 16 swabs come from 11 

patients with known ciprofloxacin resistant gonorrhoea and from 5 patients with 

known ciprofloxacin susceptible gonorrhoea. These 16 urethral swabs were also 

processed using the developed protocol for the detection of quinolone 

susceptibility by real-time PCR assay. 

 

3.2.4 Specimen used to assess the sensitivity and specificity of the QRDR 

real-time PCR assay 

In order to detect cross reactivity of the real-time PCR, urine and swab 

specimens were selected for testing from 21 male patients who had non-

gonococcal urethral disease. These men were recruited as part of NMS activities 

but were determined to be both culture and PCR negative for N. gonorrhoeae. 

These 21 men were infected either singly (X14) or in combination (X5) with 

Chlamydia trachomatis (CT), Trichomonas vaginalis (TV) and/or Mycoplasma 

genitalium (MG); two of these men had no pathogens detected. 
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Cultures from 17 patients with urinary tract infections were also processed using 

real-time PCR (see section 3.1.1.2) in order to assess the specificity of the 

assay. 

 

The PCR assay was also run without probes, in order to see if the primers can 

bind to gyrA and parC genes of other bacteria for example C. trachomatis, T. 

vaginalis, M. genitalium, N. lactamica, N. meningitidis, N. mucosa and the six 

urinary tract infection-causing organisms. The sensitivity and specificity of the 

primers was validated using DNA isolated from the following specimens: urine 

and swabs of patient with non-gonococcal urethral discharge, cultures from 

patients with urinary tract infections and cultures from non-gonococcal Neisseria 

species. To visualize PCR products, 1µl of PCR products, including the 1000bp 

marker were run on an Agilent 2100 Bioanalyzer (Chemetrix, Midrand, South 

Africa). The expected product size was 72bp for both gyrA and parC PCR. 

 

3.3 Nucleic acid preparation 

Nucleic acids were extracted from cultures, swabs and urines, using either 

manual or automated extraction methods. Pure genomic DNA for the positive 

controls used in the M-PCR assay were received from the American Type 

Culture Collection (ATCC). Positive controls included genomic DNA from 

Neisseria gonorrhoeae (ATCC-700825), Chlamydia trachomatis (VR-885), 

Trichomonas vaginalis (ATCC-30001) and Mycoplasma genitalium (ATCC-

33530).  
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3.3.1   Nucleic acid extraction using the QIAamp Viral RNA Kit 

Nucleic acids were extracted by using the QIAamp Viral RNA kit (Qiagen, 

Doncaster Vic, Australia) and performed according to the manufacturer’s 

instructions.  Briefly, 140 µl samples were lysed by adding 560 µl lysis buffer and 

incubated at room temperature for 10 min.  After incubation, 560 µl of absolute 

ethanol was added and the lysate was loaded onto a QIAamp spin column. The 

salt and the pH conditions ensured that RNA/DNA binded to the silica-gel column 

during two configuration steps. Nucleic acids were washed free of contaminants 

using two different buffers.  Nucleic acids were eluted in 100 µl Buffer AE or 

elution buffer and stored at -70oC for further use. 

 

3.3.2   Nucleic acid extraction using an automated extractor 

The isolation of nucleic acids from cultures, swabs and urines were performed by 

using an automated DNA extractor, X-tractor GeneTM kit (Corbett Robotics, Eight 

Mile Plains, Australia), following the manufacturer’s guidelines and eluting in 

100µl of elution buffer. 

 

The configuration of the extraction process was stepped through with the aid of 

the X-Tractor GeneTM Wizard.  Sample information was either entered or 

imported into the run file to complete the software setup.  A template was created 

from the initial run enabling rapid set-up time for subsequent extractions. 
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Samples (200µl), reagents and consumables (e.g. filtered tips) were then loaded 

onto the workstation.  A 180µl volume of sample was added to lysis buffer and 

mixed.  The lysed sample was loaded onto a capture plate containing a glass 

fibre matrix to which nucleic acids would specifically bind.  Unbound waste was 

removed during successive wash steps and the samples were dried under 

vacuum. 

 

The capture plate was automatically moved to the Elution station and 100µl of 

nucleic acid was eluted under vacuum into individual cluster tubes (1.2 mL or 

0.65 mL volume capacity) in a 96-well rack format.  Eluted nucleic acid was 

stored at -70oC until used for PCR.  

 

3.4   Real-Time PCR  

Real-time PCR technology was used to detect pathogens causing male urethral 

discharge and also to detect susceptibility in the QRDRs of the gyrA and parC 

genes. Taqman probes were used in the real-time PCR assay, in order to bind to 

the amplification products and fluorescence resonance energy transfer chemistry 

is used to specifically detect the amplification product.  

 

3.4.1 Detection of N. gonorrhoeae DNA using Multiplex PCR (M-PCR) 

A multiplex PCR (M-PCR) is a single PCR test which incorporates multiple primer 

pairs each targeting a specific gene, resulting in multiple amplification products. 

The M-PCR protocol, recently published by Mhlongo S, et al (122), was originally 
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developed from CDC and the method was transferred to NICD STI Reference 

Centre in the year 2005.  The M-PCR procedure detected the presence of STI 

discharge causing organisms (e.g. N. gonorrhoeae (GC), C. trachomatis (CT), T. 

vaginalis (TV) and M. genitalium (MG). This M-PCR amplified the DNA from the 

cytosine DNA methyltransferase gene of N. gonorrhoeae, the 7.4 Kb cryptic 

plasmid of C. trachomatis, the repeated DNA sequence of T. vaginalis and the 

dihydrolipoamide dehydrogenase gene of M. genitalium. All real-time PCR 

amplification reactions were conducted using the RotorGene 3000 instrument, 

(Corbett Research, Mortlake, Australia) which is comprised of a fluorometer and 

a thermal cycler for the detection of fluorescence during the cycling process. The 

primers and probes were manufactured and obtained from the University of Cape 

Town and Southern Cross Biotechnology (Cape Town, South Africa) respectively 

(Table 3.8). 

 

PCR amplification was performed in a 25µl reaction mixture containing the 

following constituents: 5µl 10X PCR Buffer (Applied Biosystems, Foster City, 

USA), 8µl of 25 mM MgCl2 (Applied Biosystems, Foster City, USA), 0.4µl of 

50mM dNTP w/dUTP (Bioline, London, UK), 8.2µl of sterile water, 0.2µl of each 

set of forward and reverse primers per each organism (0.2µM final concentration 

of each), 0.2µl of each probe (0.2µM final concentration of each), 1µl of 5U/µl 

Amplitaq Gold (Applied Biosystems, Foster City, USA) and 25µl of DNA template.  

The cycling started with a 2 min hold at 50oC and a 10 min Taq activation step at 

95oC followed by 50 cycles of denaturation at 95oC for 20 sec, and 
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annealing/extension at 60oC for 60 sec. The fluorescence signal was measured 

once in each cycle at the end of the extension step.   

 

Table 3.8.  Primers and probes for the detection of STI discharge causing 
organisms  
MPCR primer, 

probe and 
fluorophore 

Primer 
name 

Sequence (5’ to 3’) 

  
 Primers for GC 

Forward GC-019 GGA TAC GAC GTA ACC TTG ACT ATG G   
Reverse GC-020 CCG ATG TAG AAG ACC CTT TTG C  
Probe for GC GC-023 CA ACG CCA AAG ACT ACG GTG TAG CAC AG 
Fluorophore Roxa  
 

Primers for CT   

Forward CT-008  GGA TTG ACT CCG ACA ACG TAT TC  
Reverse CT-009  ATC ATT GCC ATT AGA AAG GGC ATT  
Probe for CT CT-010 TT ACG TGT AGG CGG TTT AGA AAG CGG [ 
Fluorophore 6-FAMb  
 
Primers for TV   
Forward TV-001 AAA GAT GGG TGT TTT AAG CTA GAT AAG G 
Reverse TV-002 TCT GTG CCG TCT TCA AGT ATG C  
Probe for TV TV-011 AG TTC ATG TCC TCT CCA AGC GTA AGT 
Fluorophore CY5c  
 
Primers for MG   
Forward MG-041: CGG ATC AAG ACC AAG ATA CTT AAC TTT  
Reverse MG-042: AGC TTG GGT TGA GTC AAT GAT AAA C  
Probe for MG MG-048 CC AGG GTT TGA AAA AGC ACA ACA AGC TG 
Fluorophore Joed  
 
a Rox emits light at 602 nm 
b 6-FAM (6-carboxyflourescein) emits light at 520 nm 
c CY5 emits light at 667 nm. 
d Joe emits light at 548 nm 
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3.4.2 Real-Time PCR assay for the detection of QRDR 

The real-time PCR assay used to detect susceptibility of QRDR in DNA extracted 

from urine and swabs were based on a recently published article (63), which was 

developed for gonococcal isolates rather than DNA extracted from non-invasive 

samples. The primers and probes were manufactured and obtained from the 

University of Cape Town and Southern Cross Biotechnology (Cape Town, South 

Africa) respectively (Table 3.9).  Probes encompass the DNA regions encoding 

for amino acids 91 and 95 of GyrA and amino acids 86, 87 and 88 of ParC, the 

loci most often associated with resistance. The sequence of the gyrA probe (see 

Table 3.9) is backward and will bind TCC and GAC. The assay was modified by 

the inclusion of an internal control. The cytosine methyltransferase gene was 

used to confirm the presence of N. gonorrhoeae in all samples (see section 

3.4.1).  
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Table 3.9.  Primers and probes for the ABI QRNG QRDR susceptibility detection 
system 

QRDR primer, 
probe and 

fluorophore 
Primer and 
probe name Sequence (5’ to 3’) 

gyrA  
Primers 
Forward GyraABI1 TTG-CGC-CAT-ACG-GAC-GAT 
Reverse GyraABI2 GCG-ACG-TCA-TCG-GTA-AAT-ACC-A 
Probe GyrAWT91.95 TGT-CGT-AAA-CTG-CGG-AA 
Fluorophore 6-FAMa  

parC  
Primers 
Forward ParCABI1 TGA-GCC-ATG-CGC-ACC-AT 
Reverse ParCABI2 GGC-GAG-ATT-TTG-GGT-AAA- TAC-CA 
Probe ParCWT86.87.88 CGG-AAC-TGT-CGC-CGT 
Fluorophore Joeb  

cytosine 
methyltransferase  

 

Primers  

Forward GC-019 
GGA TAC GAC GTA ACC TTG ACT ATG 
G  

Reverse GC-020 CCG ATG TAG AAG ACC CTT TTG C  

Probe GC-023 
CA ACG CCA AAG ACT ACG GTG TAG 
CAC AG 

Fluorophore Roxc  
   
a 6-FAM (6-carboxyflourescein) emits light at 520 nm 
b Joe emits light at 548 nm. 
c Rox emits light at 602 nm 
 

PCR amplification was performed in a 25µl reaction mixture containing the 

following constituents: 2.5µl 10X PCR Buffer (Roche Diagnostics, Mannheim, 

Germany), 4µl of 50 mM MgCl2 (Roche Diagnostics, Mannheim, Germany) , 0.2µl 

of 50mM dNTP mix (Roche Diagnostics, Mannheim, Germany), 6.9µl of sterile 

water, 0.1µl of each set of forward and reverse primers (0.2µM final 

concentration of each), 0.25µl of each probe (0.2µM final concentration of each), 
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0.5µl of 5U/µl Amplitaq Gold and 10µl of DNA template.  The cycling started with 

a 2 min hold at 50oC and a 10 min denaturation step at 95oC followed by 40 

cycles of denaturation at 95oC for 30 sec, annealing at 60oC for 30 sec and 

extension at 72oC for 30 sec. The fluorescence signal was measured once in 

each cycle at the end of the extension step.   

 

Controls included a known wild type (WT) QRDR DNA sequence (WHO A) and 

two QRNG strain with known QRDR mutations in either the gyrA gene alone 

(MAL 058) or in both the gyrA and parC genes (ESN306). The amplification plot 

for a WT strain showed exponential signal increase. This indicated that the gyrA 

and parC loci of WT strains were amplified. For mutant strains, no exponential 

increases in fluorescence were observed for either locus. Strains with 

intermediate resistance showed signal amplification for the parC locus only, 

indicating the presence of gyrA mutation. The amplification plot of all the controls 

showed an exponential fluorescence increase for the cytosine methyltransferase 

gene confirming the presence of N. gonorrhoeae. 

 

3.5   QRDR amplification and direct sequencing 

 

3.5.1 gyrA and parC PCR amplification for DNA sequencing 

PCR was performed to amplify the gyrA and parC genes of the gonococcal 

isolates, following which these genes were sequenced to determine the presence 

of mutations. Published oligonucleotide primers (43, 45, 63) for the PCR 

amplification are documented in Table 3.10.   



 107

 

Table 3.10.  Sequences and location of oligonucleotide primers for the 
amplification of QRDR of the gyrA and parC 
Primer Primer 

name 
Nucleotide Sequence 

(5’ to 3’) 
Nucleotide 
Position 

gyrA    
Forward NG-GYRA-Z ATG TGA GAT TTT CGC CAT GCG G  2332-2353 
Reverse NG-GYRA-B CAA ATT CGC CCT CGA AAC CCT  2702-2722 
  391bp product 
parC    
Forward NG-PARC-Z CAG CGG CGC ATT TTG TTT GC 145-164 
Reverse NG-PARC-B AAC TAC GAC GGC GCG TTT GA 454-473 
  329bp product 

 

QRDR’s were amplified from culture DNA extracts using methodologies 

previously described for gonococcal isolates (42, 44).  QRDRs were also 

amplified from the urethral swabs, in cases where the results of real-time PCR 

assay to detect altered QRDRs for urethral swabs did not agree with the results 

using culture-based DNA extracts. PCR was performed by adding 5µl of DNA 

extract into a PCR master mix making the total volume to 25µl. PCR was 

performed using the GeneAmp PCR System 9700 (Applied Biosystems, Foster 

City, USA).  The PCR master mix contained: 12.5 µl of 2X ImmoMix containing 

ImmolaseTM DNA Polymerase and Ultra-pure dNTPs (Bioline, London, UK), 0.5 

µl of MgCl2 (2.5 mM final concentration) 6.8 µl of sterile water and 0.1 µl each of 

forward and reverse primers (0.2µM final concentration of each). The primers 

were manufactured by and obtained from the University of Cape Town (Cape 

Town, South Africa). PCR cycling conditions were as follows: 35 cycles of 94oC 

for 30 sec, 55oC for 30 sec and 72oC for 45 sec.  Depending on the size of the 

fragment to be analyzed, 5µl of PCR products,  including the 100bp marker, were 
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electrophoresed on a 2% agarose gel containing ethidium bromide at a 

concentration of 1µg/ml. Gels were run in 1X Tris-boric acid buffer (TBE) 

(Promega, Madison, USA) at 120 volts for 1h.  The expected product sizes were 

391 bp for gyrA and 329 bp for parC.  DNA bands were visualized on an 

ultraviolet (UV) transluminator (Sygene, Maryland, USA) and their sizes 

estimated by comparison with a 100 bp DNA molecular weight marker (Promega, 

Madison, USA). 

 

3.5.2  Direct Sequencing 

Direct DNA sequencing was performed to identify mutations in the gyrA and parC 

genes of the gonococcal isolates. 

 

3.5.2.1 Purification and concentration of PCR products from PCR 

reactions 

PCR products with the correct gyrA and parC molecular weight were purified by 

using the MSB Spin PCRapace kit (Invitek, Berlin, Germany).  A spin filter was 

placed into a 2.0 ml receiver tube.  A 250µl volume of binding buffer was added 

to the PCR sample and mixed by pipetting or vortexing.  The sample was 

completely transferred onto a corresponding spin filter and centrifuged for 3 min 

at 12 000 rpm with the cap closed.  After centrifugation the spin filter was placed 

into a new 1.5 ml receiver tube.  At least 10µl of elution buffer was added directly 

onto the center of the spin filter and incubated at room temperature for 5 min with 

cap closed.  The spin filter tube was centrifuged for 1 min at 10 000 rpm.  The 
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spin filter was then discarded and the filtrate or the purified PCR product was 

processed immediately. 

 

3.5.2.2 Cycle Sequencing 

At least 2µl of the purified PCR product was used to determine the DNA 

concentration (in ng/µl) using the NanoDrop (Nanodrop Technologies, 

Wilmington, USA) spectrophotometer. Purified PCR products were diluted to a 

concentration of 25 fmol which was used for cycle sequencing.  The reaction 

mixture for the cycle sequencing contained: 1µl of the Big Dye terminator 

(Applied Biosystems, Foster City, USA), 1µl of the 5 µM forward primer, 1.5 µl of 

5X Big Dye sequencing Buffer (Applied Biosystems, Foster City, USA), 4.5 µl of 

deionised water and 2µl of the purified PCR product.  PCR was performed using 

the GeneAmp PCR System 9700 (Applied Biosystems, Foster City, USA). PCR 

cycling conditions were as follows: 94oC for 1 min followed by 25 cycles of 95oC 

for 30 sec, 50oC for 20 sec, and 60oC for 4 min. 

 

3.5.2.3 Removal of DyeDeoxy terminators from DNA cycle 

sequencing reactions of PCR products  

Cycle sequencing products were further purified by using the MSB Spin 

PCRapace kit (Invitek, Berlin, Germany).  A spin filter was placed into a 2.0 ml 

receiver tube.  A 500µl of binding buffer was added to the completed cycle 

sequencing reaction and mixed by pipetting or vortexing.  The sample was 

completely transferred onto a corresponding spin filter and centrifuged for 4 min 
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at a maximum speed with the cap closed.  After centrifugation, the spin filter was 

placed into a new 1.5 ml receiver tube.  At least 5µl of elution buffer was added 

directly onto the center of the spin filter and incubated at room temperature for 5 

min with the cap closed.  The spin filter tube was centrifuged for 1 min at 10 000 

rpm.  The spin filter tube was discarded and the filtrate or the purified cycle 

sequencing product was processed immediately. 

 

3.5.2.4 DNA Sequencing 

At least 13 µl of Hi-Di Formamide (Applied Biosystems, Foster City, USA) was 

added into 2µl of purified cycling sequencing product and mixed by pipetting.  

The purified cycle sequencing product was denatured at 94oC for 2 min and 

immediately cooled on ice for 2 min.  The products were sequenced, using an 

ABI PRISM® 310 Genetic Analyzer (Applied Biosystems, Foster City, USA).  

Data were aligned with QRDR DNA sequences corresponding to amino acids 91 

to 95 of GyrA (GenBank accession no. U08817) and amino acids 86 to 92 of 

ParC (GenBank accession no. U08907).  The three different DNA sequence 

profiles identified were the wild type S; mutant I; mutant R and were 

corresponding to the observed ciprofloxacin MIC of the corresponding 

gonococcal isolates using E tests (S, susceptible; I, intermediate resistance; R, 

resistant).  
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3.6   N. gonorrhoeae Multi-Antigen sequence typing (NG MAST)  

If the DNA sequence patterns of the QRNG strains were identical, further 

characterization was performed by using the N. gonorrhoeae Multi-Antigen 

Sequence Typing (NG-MAST) technique (116). Primers used for PCR and 

sequencing are shown in Table 3.11. These primers amplified sequences within 

two gonococcal genes, por and tbpB. 

 

Table 3.11. Sequences and location of primers used for NG MAST. 

Primer Nucleotide Sequence  
(5’ to 3’) 

Nucleotide 
Position 

por   
Forward CAA GAA GAC CTC GGC AA 350-366 
Reverse CCG ACA ACC ACT TGG T 1086-1071 
  737bp product 
tbpB   
Forward CGT TGT CGG CAG CGC GAA AAC 1098-1118 
Reverse TTC ATC GGT GCG CTC GCC TTG 1686-1666 
  589bp product 

 

3.6.1  por PCR 

The PCR reaction of the por gene fragment was performed in a reaction volume 

of 50µl, using the GeneAmp PCR System 9700 (Applied Biosystems, Foster 

City, USA).  The reaction mixture contained the following: 5µl of 10X PCR buffer 

(Roche, Basel, Switzerland), 0.5µl of 2.5U Taq polymerase (Roche, Basel, 

Switzerland), 5µl of DNA lysate, 5µl of each 0.2mmol/l dNTP (Invitrogen, 

California, USA), 0.5µl of each 100pmol forward and reverse por primer 

(Invitrogen, California, USA), and deionised water to a volume of 50µl.  The PCR 

cycle involved an initial denaturation of 4 min at 95oC, followed by 25 cycles of 30 



 112

sec at 95oC, 30 sec at 58oC, and 1 min at 72oC, followed by a final extension of 

10 min at 72oC and cooling to 4oC. 

 

3.6.3  tbpB PCR 

The PCR reaction of the tbpB gene fragment was performed in a reaction volume 

of 50µl, using the GeneAmp PCR System 9700 (Applied Biosystems, Foster 

City, USA).  The reaction mixture contained the following:  5µl of 10X PCR buffer 

(Roche, Basel, Switzerland), 0.5µl of 2.5U Taq polymerase (Roche, Basel, 

Switzerland), 5µl of DNA lysate, 5µl of each 0.2mmol/l dNTP (Invitrogen, 

California, USA), 1µl of each 50pmol forward and reverse tbpB primer 

(Invitrogen, California, USA), and deionised water to a volume of 50µl.  The PCR 

cycle involved an initial denaturation of 4 min at 95oC, followed by 25 cycles of 30 

sec at 95oC, 30 sec at 69oC, and 1 min at 72oC, followed by a final extension of 

10 min at 72oC and cooling to 4oC. 

 

3.6.3  Agarose gel electrophoresis 

Five microlitres of PCR products including the 100bp marker were 

electrophoresed on a 2% agarose gel (Seaken® LE Agarose, Lonza, Rockland, 

USA) containing ethidium bromide at a concentration of 1µg/ml in order to 

separate the DNA fragments by size.  Gels were run in 1X TBE (Promega, 

Madison, USA) at 120 volts for 1 h.  The expected product size for por was 737 

bp and for tbpB was 589 bp.  DNA bands were visualized on an UV 

transluminator (Syngene, Maryland, USA) and their size estimated by 
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comparison with a 100 bp DNA molecular weight marker (Promega, Madison, 

USA). 

 

3.6.4  Purification of PCR products and DNA Sequencing  

PCR products with the correct por and tbpB molecular weight were purified by 

using the MSB Spin PCRapace kit (Invitek, Berlin, Germany) (see section 

3.5.2.1).  Purified PCR products were diluted to a concentration of 25 fmol which 

was used for cycle sequencing (see section 3.5.2.2). Cycle sequencing products 

were further purified by using the MSB Spin PCRapace kit (Invitek, Berlin, 

Germany) (see section 3.5.2.3).  Both strands of DNA amplified from the por and 

tbpB genes were sequenced by using the ABI PRISM® 310 Genetic Analyzer 

(Applied Biosystems, Foster City, USA) (see section 3.5.2.4).  The trace files 

from the forward sequencing reactions were analysed to the correct length.  For 

por, a sequence of 490bp was used to define the alleles, starting at the 

conserved sequence TTGAA and for tbpB a sequence of 390bp was selected for 

defining alleles, starting at the conserved sequence CGTCTGAA. 

 

3.6.5 Data analysis 

The edited and trimmed por and tbpB sequences were initially compared with 

each other by use of the Non-Redundant Database (available at 

http://www.mlst.net) (133) and each allele numbers were assigned to each 

different por and tbpB.  Sequence and the corresponding sequence type (ST) 

were assigned on the basis of the combination of the alleles at the 2 loci by using 
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the NG MAST website (http://www.ng-mast.net) (116).  Clusters of isolates, 

defined as more than one isolate having the same ST, and single types were 

identified by ST number assignment.  

 

3.7 Handling of Data 

Data were entered, cleaned and analysed using a Microsoft Office Excel 2003 

database. A chi-squared (χ2) test was used to determine associations between 

the NG MAST ST and the ciprofloxacin resistance phenotype with the level of 

significance set at p=0.05.  

 

3.8 Ethics 

The Human Research Ethics Committee of the University of Witwatersrand has 

approved the collection of clinical specimen as part of the national STI NMS 

programme (Protocol M051024).  In addition, approval was also been given for 

this current project, using stored DNA extracts from urine specimens and stored 

gonococci isolated from urethral swabs of male participants in various cities as 

part of the surveillance programme (Protocol M060508). 
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CHAPTER 4: RESULTS 

 

4.1. Strain identification   

In total, 49 Neisseria gonorrhoeae isolates were re-cultured from stock vials, 24 

from Gauteng (GP), 9 from the Northern Cape (NC) and 16 from the Western 

Cape (WC). The identities of all 49 gonococcal isolates were confirmed by typical 

colony morphology and Gram stain appearance, oxidase positivity, and by 

immunological testing using the Phadebact® Monoclonal GC test.  These isolates 

were identified as Gram-negative, oxidase positive and all isolates belong to the 

WII/III serogroup (Table 4.1). All isolates were also correctly identified using the 

BBL Crystal Neisseria/Heamophilus (N/H) Identification System.  The E-test 

method for MIC determination was repeated on all isolates in order to confirm the 

ciprofloxacin susceptibility profile.  On the basis of the susceptibility criteria based 

on those of CLSI (28), the susceptibility criteria of all isolates from Gauteng and 

Western Cape had the same susceptibility profile as previously determined.  

Gonococcal isolates from Northern Cape had different ciprofloxacin MIC results 

from those reported by the original microbiology surveillance team working at 

Northern Cape in 2007.  Of the nine viable gonococcal isolates, from Northern 

Cape, selected for this study, five were originally reported as susceptible to 

ciprofloxacin (MIC≤0.003) and four were resistant (MIC≥1.0). On repeat of the 

susceptibility testing, using stock isolates, eight isolates were determined to be 

resistant to ciprofloxacin (MIC ≥1.0) and only one isolate was susceptible (MIC ≤ 
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0.003) (Table 4.1).The MIC testing was repeated three time and the same 

susceptibility phenotype was found each time.  
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Table 4.1:  Strain identification and ciprofloxacin susceptibility profiles 

Patient Specimen ID 
Gram-negative 
cocci present 

Oxidase 
Test Phadebact BBL Profile 

Ciprofloxacin 
MIC (µg/ml) 

Susceptibility to 
Ciprofloxacin 

GP-07-MUS-002 Yes Pos WII/WIII N. gono 98.99% 2 Resistant 

GP-07-MUS-006 Yes Pos WII/WIII N. gono 99.51% 4 Resistant 

GP-07-MUS- 016 Yes Pos WII/WIII N. gono 99.89% 3 Resistant 

GP-07-MUS -018 Yes Pos WII/WIII N. gono 99.89% 3 Resistant 

GP-07-MUS- 026 Yes Pos WII/WIII N. gono 98.99% 4 Resistant 

GP-07-MUS-029 Yes Pos WII/WIII N. gono 99.89% 1 Resistant 

GP-07-MUS-031 Yes Pos WII/WIII N. gono 99.89% 3 Resistant 

GP-07-MUS-036 Yes Pos WII/WIII N. gono 99.08% 4 Resistant 

GP-07-MUS-038 Yes Pos WII/WIII N. gono 97.00% 3 Resistant 

GP-07-MUS-040 Yes Pos WII/WIII N. gono 99.89% 4 Resistant 

GP-07-MUS-064 Yes Pos WII/WIII N. gono 98.99% 2 Resistant 

GP-07-MUS-097 Yes Pos WII/WIII N. gono 99.98% 1 Resistant 

GP-07-MUS-120 Yes Pos WII/WIII N. gono 99.93% 6 Resistant 

GP-07-MUS-125 Yes Pos WII/WIII N. gono 99.93% <0.002 Susceptible 

GP-07-MUS-136 Yes Pos WII/WIII N. gono 99.93% <0.002 Susceptible 

GP-07-MUS-148 Yes Pos WII/WIII N. gono 98.99% 0.064 Intermediate 

GP-07-MUS-149 Yes Pos WII/WIII N. gono 94.19% <0.002 Susceptible 

GP-07-MUS-151 Yes Pos WII/WIII N. gono 97.73% <0.002 Susceptible 

GP-07-MUS-159 Yes Pos WII/WIII N. gono 99.86% 0.006 Susceptible 

GP-07-MUS-166 Yes Pos WII/WIII N. gono 99.51% 3 Resistant 

GP-07-MUS-168 Yes Pos WII/WIII N. gono 98.99% 3 Resistant 

GP-07-MUS-170 Yes Pos WII/WIII N. gono 94.91% <0.002 Susceptible 

GP-07-MUS-171 Yes Pos WII/WIII N. gono 98.99% 1.5 Resistant 

GP-07-MUS-187 Yes Pos WII/WIII N. gono 98.99% 0.094 Intermediate 

NC-06-MUS-045 Yes Pos WII/WIII N. gono 79.69%  2 Resistant 

NC-06-MUS-056 Yes Pos WII/WIII N. gono 98.99% 1 Resistant 
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Patient Specimen ID 
Gram-negative 
cocci present 

Oxidase 
Test Phadebact BBL Profile 

Ciprofloxacin 
MIC (µg/ml) 

Susceptibility to 
Ciprofloxacin 

NC-06-MUS-079 Yes Pos WII/WIII N. gono 99.98% 1 Resistant 

NC-06-MUS-085 Yes Pos WII/WIII N. gono 99.08% 1  Resistant 

NC-06-MUS-100 Yes Pos WII/WIII N. gono 99.98% 1  Resistant 

NC-06-MUS-103 Yes Pos WII/WIII N. gono 99.51% 2 Resistant 

NC-06-MUS-105 Yes Pos WII/WIII N. gono 99.89% 0.003 Susceptible 

NC-06-MUS-135 Yes Pos WII/WIII N. gono 97.88%  2 Resistant 

NC-06-MUS-144 Yes Pos WII/WIII N. gono 99.89% 4  Resistant 

WC-06-MUS-010 Yes Pos WII/WIII N. gono 94.28% 4 Resistant 

WC-06-MUS-012 Yes Pos WII/WIII N. gono 99.89% 2 Resistant 

WC-06-MUS-013 Yes Pos WII/WIII N. gono 98.99% 2 Resistant 

WC-06-MUS-022 Yes Pos WII/WIII N. gono 99.99% 2 Resistant 

WC-06-MUS-050 Yes Pos WII/WIII N. gono 99.86% 8 Resistant 

WC-06-MUS-071 Yes Pos WII/WIII N. gono 99.51% 4 Resistant 

WC-06-MUS-105 Yes Pos WII/WIII N. gono 98.99% 8 Resistant 

WC-06-MUS-131 Yes Pos WII/WIII N. gono 98.99% 4 Resistant 

WC-06-MUS-181 Yes Pos WII/WIII N. gono 99.86% <0.002 Susceptible 

WC-06-MUS-182 Yes Pos WII/WIII N. gono 95.13% <0.002 Susceptible 

WC-06-MUS-189 Yes Pos WII/WIII N. gono 99.86% <0.003 Susceptible 

WC-06-MUS-196 Yes Pos WII/WIII N. gono 98.99% 8 Resistant 

WC-06-MUS-200 Yes Pos WII/WIII N. gono 97.00% <0.002 Susceptible 

WC-06-MUS-228 Yes Pos WII/WIII N. gono 94.68% <0.002 Susceptible 

WC-06-MUS-239 Yes Pos WII/WIII N. gono 99.86% 4 Resistant 

WC-06-MUS-243 Yes Pos WII/WIII N. gono 97.03% 8 Resistant 

GP= Gauteng isolates; NC= Northern Cape isolates; WC= Western Cape isolates 
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4.2. Real-time PCR results 

 

4.2.1. Real-time QRDR detection PCR results: Controls 

Results from the real-time PCR assay developed to detect susceptibility in the 

QRDRs for the controls used in this study correlated 100% with the ciprofloxacin 

MICs (Figures 4.1, 4.2 and 4.3).  All control strains showed exponential signal 

increase of the cytosine methyltransferase, which confirms the presence of N. 

gonorrhoeae (Table 4.3).  

 

The amplification plot for a WT ciprofloxacin susceptible (CipS) strain (WHO A) 

showed exponential signal increase.  This indicates WT strains were positively 

amplified, with a Ct of 16.98 cycles and 15.31 cycles for the gyrA and parC loci, 

respectively (Figures 4.1 and 4.2).   

 

For strains with reduced ciprofloxacin susceptibility (CipI) and strains with 

ciprofloxacin resistant (CipR), no exponential fluorescence increases were 

observed (Figure 4.1).  The CipI control N. gonorrhoeae strain (MAL058) showed 

signal amplification for the parC locus but nor the gyrA locus (with a mean Ct of 

12.61 cycles for parC).   

 

CipR control N. gonorrhoeae strains (ESN306) failed to show signal amplification 

at either locus (Figures 4.1 and 4.2). Curves were analogous when either one or 

two mutations were present in gyrA or parC genes. 
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No. Colour Name Type Ct 

1 
 

WHO A Positive Control 16.98 

2 
 

MAL- 058 Unknown NEG (NTC) 

3 
 

MAL- 058 Unknown NEG (NTC) 

4 
 

ESN- 306 Unknown NEG (NTC) 

5 
 

ESN- 306 Unknown NEG (NTC) 

6 
 

Neg ct Unknown NEG (NTC) 

Figure 4.1: Quantitation data for gyrA: The WT (WHO A) strain was positively 
amplified for the gyrA loci and whereas no amplification was observed for the  
CipI

 
(MAL-058) and CipR

 
(ESN-306) strains for the gyrA loci. 
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No. Colour Name Type Ct 

1  WHO A Positive Control 15.31 

2  MAL- 058 Unknown 12.66 

3  MAL- 058 Unknown 12.56 

4  ESN- 306 Unknown NEG (NTC) 

5  ESN- 306 Unknown NEG (NTC) 

6  Neg. ct Unknown NEG (NTC) 

Figure 4.2: Quantitation data for parC: The WT (WHO A) and  
CipI

 
(MAL-058) strains were positively amplified for the parC loci and whereas no 

amplification was observed for the CipR (ESN-306) strain for the parC loci. 
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No. Colour Name Type Ct 

1  WHO A Positive Control 19.07 

2  MAL- 058 Unknown 18.68 

3  MAL- 058 Unknown 16.80 

4  ESN- 306 Unknown 16.94 

5  ESN- 306 Unknown 19.65 

6  Neg ct Unknown NEG (NTC) 

Figure 4.3: Quantitation data for cytosine methyltransferase: All control   
strains were positively amplified for the cytosine methyltransferase gene. 
 

 

 

4.2.2 Specificity of the Real-Time PCR 

The specificity and cross reactivity of the primers and probes were tested on 

DNA extracted from 21 paired urine and urethral swab specimens from men with 

urethral discharge but for whom culture and PCR assays were negative for N. 
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gonorrhoeae (Table 4.2). The real-time M-PCR assay for the detection of STI 

discharge causing organisms was able to detect T. vaginalis, C. trachomatis and 

M. genitalium whereas the real-time PCR for the detection of gonococcal gyrA 

and parC genes showed no signal amplification in both urine and swabs even 

after 35 cycles.  

 

The PCR assay was also run without probes, in order to see if the primers can 

bind to gyrA and parC genes of other bacteria. The primers bound to both QRNG 

controls and N. gonorrhoeae positive urine specimens, in the absence of probes, 

producing a 72bp amplicon size for gyrA and parC (Fig 4.4). These results 

showed that the primers were able to bind to the gyrA and parC genes of N. 

gonorrhoeae.  All six urinary tract causing organisms, N. lactamica, N. 

meningitidis and N. mucosa as well as T. vaginalis, C. trachomatis and M. 

genitalium were all positive for the 72bp amplicon size (Fig.4.5 and 4.6), 

indicating that the primers were also able to bind to gyrA and parC genes of other 

bacteria. This experiment demonstrated the non-specificity of the primers and 

confirms that the specificity of the assay is dependant upon the probes. 
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A  

B  

Fig.4.4: Electrophoresis for a gyrA (A) and parC (B) PCR run without probes on 

N.gonorrhoeae positive controls (lanes 1 to 3), PCR negative control (lane 12 with 

non specific bands, due to primer dimers), N. gonorrhoeae positive urine specimens 

(lane 4-11) with a 1000bp ladder (L). Note: The marker mixture for the DNA1000 Lab 

Chip contains lower and upper molecular size markers (10 and 1,500 bp) which the 

Bioanalyzer uses as references when sizing DNA fragments. 
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C  

D  

Fig. 4.5: Electrophoresis for a gyrA (C) and parC (D) PCR run without probes on 

other Neisseria species. N.gonorrhoeae positive controls (lanes 1 to 2), PCR negative 

control (lane 3), three non-gonococcal Neisseria species (lanes 4 to 6), CT (lanes 7to 8), 

TV (lanes 9 to10) and MG (lanes 11 to 12) positive urine specimens and a 1000bp 

ladder (L). 
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E  

F 
Fig.4.6: Electrophoresis for a gyrA (E) and parC (F) PCR run without probes on UT 

organisms. N.gonorrhoeae positive controls (lanes 1 to 3); PCR negative control (lane 

4); six urinary tract causing organisms (lanes 5 to 12) and with a 1000bp ladder (L). 
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Table 4.2: Real-Time PCR results for the detection of gonococcal gyrA and parC genes in paired urine and 
urethral swab specimen from 21 MUS patients with non-gonococcal urethral discharge 

Patient Specimen ID 

Bacteriology 

Pathogens  
detected by 
Real-Time 

Multiplex-PCR 

Real-time PCR products for wild type gonococcal 
gyrA and parC detected 

Microscopy Culture 

Urines Urethral swabs 

GNDC present 
on urethral 

smear 

 
 
 
Pus cells on 
urethral 
smears 

N. gonorrhoeae 
culture gyrA parC gyrA parC 

GP-07-MUS-022 Negative 1+ Negative TV No No No No 

GP-07-MUS-043 Negative 0 Negative TV No No No No 

GP-07-MUS-048 Negative 3+ Negative CT+MG No No No No 

GP-07-MUS-054 Negative 1+ Negative MG No No No No 

GP-07-MUS-055 Negative 1+ Negative CT+TV+MG No No No No 

GP-07-MUS-056 Negative 0 Negative MG No No No No 

GP-07-MUS-063 Negative 0 Negative TV No No No No 

GP-07-MUS-078 Negative 2+ Negative MG No No No No 

GP-07-MUS-088 Negative 2+ Negative CT+MG No No No No 

GP-07-MUS-100 Negative 3+ Negative MG No No No No 

GP-07-MUS-105 Negative 0 Negative TV No No No No 

GP-07-MUS-107 Negative 0 Negative CT No No No No 

GP-07-MUS-108 Negative 0 Negative CT No No No No 
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Patient Specimen ID 

Bacteriology 

Pathogens  
detected by 
Real-Time 

Multiplex-PCR 

Real-time PCR products for wild type gonococcal 
gyrA and parC detected 

Microscopy Culture 

Urines Urethral swabs 

GNDC present 
on urethral 

smear 

 
 
 
Pus cells on 
urethral 
smears 

N. gonorrhoeae 
culture gyrA parC gyrA parC 

GP-07-MUS-112 Negative 1+ Negative None No No No No 

GP-07-MUS-115 Negative 1+ Negative CT+MG No No No No 

GP-07-MUS-135 Negative 0 Negative TV No No No No 

GP-07-MUS-154 Negative 2+ Negative TV No No No No 

GP-07-MUS-156 Negative 0 Negative CT No No No No 

GP-07-MUS-157 Negative 0 Negative None No No No No 

GP-07-MUS-163 Negative 1+ Negative CT No No No No 

GP-07-MUS-193 Negative 0 Negative CT+TV No No No No 

1 Urethral smears were scored as follows:  0= less than 5 pus cells/hpf 
1+= 5-9 pus cells/hpf 
2+= 10-15 pus cells/hpf; 
3+= greater than 15 pus cell/hpf 
hpf= high power field oil immersion x100 

2. Abbreviations are as follows:  GNDC= Gram negative diplococci 
TV= Trichomonas vaginalis  
CT=Chlamydia trachomatis 
 MG=Mycoplasma genitalium 
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Further evaluation of the specificity was conducted by performing the real-time 

PCR on cultures obtained from 17 patients with urinary tract pathogens (Table 

4.3).  PCR results showed no exponential fluorescence increases for these 

strains, hence no cross-reactivity observed. These results further confirmed the 

specificity of our assay. 

 

Table 4.3: Real-Time PCR results for the detection of gyrA and parC genes 
in DNA extracted from 17 cultured Gram-negative urinary tract pathogens 

Patient Specimen ID Organism 
Real-Time PCR products for wild type 
gonococcal gyrA and parC detected  

    gyrA parC 

TJG4361408 Escherichia coli No No 

TJG4355953 Escherichia coli No No 

TJG4354696 Escherichia coli No No 

TJG4356637 Escherichia coli No No 

TJG4364852 Escherichia coli No No 

TJG4364045 Escherichia coli No No 

TJG4370758 Escherichia coli No No 

TJG4370628 Escherichia coli No No 

TJG4362808 Escherichia coli No No 

TJG4363790 Escherichia coli No No 

TJG4362360 
Klebsiella  

pneumoniae No No 

TJG4356283 Proteus mirabilis No No 

TJG4355387 
Klebsiella 

pneumoniae No No 

TJG4356801 
Pseudomonas 

aeruginosa No No 

TJG4367884 
Acinetobacter 

baumannii No No 

TJG4370166 
Pseudomonas 

aeruginosa No No 

TJG4370652 Klebsiella oxytoca No No 
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4.2.3 Results of the Real-Time PCR assay to detect susceptibility in the 

QRDRs of surveillance specimens 

The assay successfully amplified the selected portion of cytosine 

methyltransferase, gyrA and parC genes from DNA extracted from swab and 

gonococcal culture samples from participants in the Gauteng, Northern Cape and 

Western Cape microbiological surveillance programme (Table 4.4, 4.5 and 4.6), 

and also from DNA extracted from participants’ urine samples from Gauteng 

(Table 4.4).  All 49 samples showed exponential signal increase of the cytosine 

methyltransferase, which confirms the presence of N. gonorrhoeae in the 

samples (Table 4.4, 4.5 and 4.6).  

 

 All sixteen ciprofloxacin resistant samples from Gauteng, had gyrA and parC 

gene mutations, whereas five of six susceptible isolates had no detectable 

mutations gyrA or parC genes (Table 4.4).  One of the ciprofloxacin susceptible 

isolates (i.e. GP-07-MUS-159) had a detectable mutation in parC only. Both 

isolates with reduced ciprofloxacin susceptibility (GP-07-MUS-148 and GP-07-

MUS-187) had detectable mutations in the gyrA gene and no mutation in the 

parC gene.  
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Table 4.4: Real-Time PCR results for urine, urethral swab and cultured gonococci from 24 MUS patients 
recruited in Gauteng 

Patient Specimen ID 
Ciprofloxacin 
(µg/ml) 

Real-Time PCR 

Urine Urethral Swab 
 

Urethral Culture 

gyrA par C 

cytosine 

methyltran
sferase gyrA par C 

cytosine 
methyltrans

ferase gyrA par C 

cytosine 
methyltrans

ferase 

Ciprofloxacin Susceptible 

GP-07-MUS -125 <0.002 YES YES YES YES YES YES YES YES YES 

GP-07-MUS -136 <0.002 YES YES YES YES YES YES YES YES YES 

GP-07-MUS -149 <0.002 YES YES YES YES YES YES YES YES YES 

GP-07-MUS -151 <0.002 YES YES YES YES YES YES YES YES YES 

GP-07-MUS -159 0.008 YES NO YES YES NO YES YES NO YES 

GP-07-MUS -170 <0.002 YES YES YES YES YES YES YES YES YES 

Ciprofloxacin Intermediate 

GP-07-MUS -148 0.064 NO YES YES NO YES YES NO YES YES 

GP-07-MUS -187 0.125 NO YES YES NO YES YES NO YES YES 

Ciprofloxacin Resistance 

GP-07-MUS -2 4 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -6 8 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -16 8 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -18 1.5 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -26 4 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -29 1 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -31 3 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -36 2 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -38 3 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -40 6 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -64 1.5 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -97 1.5 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -120 4 NO NO YES NO NO YES NO NO YES 
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Patient Specimen ID 
Ciprofloxacin 
(µg/ml) 

Real-Time PCR 

Urine Urethral Swab 
 

Urethral Culture 

gyrA par C 

cytosine 

methyltran
sferase gyrA par C 

cytosine 
methyltrans

ferase gyrA par C 

cytosine 
methyltrans

ferase 

Ciprofloxacin Resistance 

GP-07-MUS -166 4 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -168 4 NO NO YES NO NO YES NO NO YES 

GP-07-MUS -171 1.5 NO NO YES NO NO YES NO NO YES 
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No mutations were detected in the samples (cultures and swabs) from patient 

with susceptible N. gonorrhoeae isolates from the Western Cape (n=5) and 

Northern Cape (n=1) (Table 4.5). All eleven resistant samples (culture and 

swabs) from the Western Cape, had gyrA and parC mutations. Three of the eight 

resistant samples from the Northern Cape had gyrA and parC mutations in DNA 

extracted from both cultured N. gonorrhoeae and a paired urethral swab. 

However, results of the real-time PCR analysis of DNA extracted from the 

remaining five paired N. gonorrhoeae cultures and urethral swabs were not in 

agreement. The cultures had a ciprofloxacin resistant phenotype and failed to 

produce an amplified product using the real-time PCR, consistent with a CipR 

genotype. The QRDR of these fine culture-based DNA extracts were 

subsequently shown by DNA sequencing to possess the same gyrA and parC 

QRDR mutations as the rest of the ciprofloxacin resistant specimen (Table 4.5). 

The urethral swab real-time PCR results were consistent with a CipS (WT) 

genotype, suggesting that the N. gonorrhoeae culture stock and urethral swabs 

were from different patients. This was confirmed by DNA sequencing of the gyrA 

and parC genes. 
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Table 4.5: Real-Time PCR results for urethral swabs and cultured gonococci 
from patient with urethral discharge from the Western Cape (16) and from the 
Northern Cape (9) 

Patient 
Specimen ID 

Ciprofloxacin 
(µg/ml) 

Real-Time PCR 

Swabs Cultures 

gyrA parC 
cytosine 

methyltransferase gyrA parC 
cytosine 

methyltransferase 

Ciprofloxacin Susceptible 

NC-06-MUS-105 0.003 YES YES YES YES YES YES 

WC-06-MUS-181 <0.002 YES YES YES YES YES YES 

WC-06-MUS-182 <0.002 YES YES YES YES YES YES 

WC-06-MUS-189 <0.002 YES YES YES YES YES YES 

WC-06-MUS-200 <0.002 YES YES YES YES YES YES 

WC-06-MUS-228 <0.002 YES YES YES YES YES YES 

Ciprofloxacin Resistance 

NC-06-MUS-045 2 NO NO YES NO NO YES 

NC-06-MUS-056 1 NO NO YES NO NO YES 

NC-06-MUS-079∗ 1 Yes Yes YES NO NO YES 

NC-06-MUS-085∗ 1 Yes Yes YES NO NO YES 

NC-06-MUS-100 1 NO NO YES NO NO YES 

NC-06-MUS-103∗ 
2 Yes Yes YES NO NO YES 

NC-06-MUS-135+ 2 Yes Yes YES NO NO YES 

NC-06-MUS-144+ 4 Yes Yes YES NO NO YES 

WC-06-MUS-010 12 NO NO YES NO NO YES 

WC-06-MUS-012 4 NO NO YES NO NO YES 

WC-06-MUS-013 16 NO NO YES NO NO YES 

WC-06-MUS-022 3 NO NO YES NO NO YES 

WC-06-MUS-050 8 NO NO YES NO NO YES 

WC-06-MUS-071 12 NO NO YES NO NO YES 

WC-06-MUS-105 6 NO NO YES NO NO YES 

WC-06-MUS-131 16 NO NO YES NO NO YES 

WC-06-MUS-196 8 NO NO YES NO NO YES 

WC-06-MUS-239 2 NO NO YES NO NO YES 

WC-06-MUS-243 6 NO NO YES NO NO YES 

∗ = original MICs on isolated gonococci, determined in Kimberley at the time of the surveillance (prior 

to stocking cultures), were 0.002µg/ml for patient’s NC-06-MUS-079; NC-06-MUS-085 and NC-06-
MUS-103. 

+ = original MICs on isolated gonococci were >1µg/ml for patient’s NC-06-MUS-135 and NC-06-MUS-
144. 
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The assay successfully amplified the selected portion of gyrA and parC swabs 

samples among the strains with unknown antimicrobial resistant profile from the 

Northern Cape. Fifteen isolates had no detectable mutations in gyrA and parC 

and six isolates had mutation in gyrA and parC (Table 4.6).  

 

Table 4.6: Real-time PCR results from the Northern Cape urethral swabs 
with unknown MIC results 

Material 
Tested 

Gyr A Par C 
cytosine 

methyltransferase 

 

No. Pos No. Neg. No. Pos No. Neg. No. Pos No. Neg. 

Swabs 15 0 15 0 21 0 

0 6 0 6 0 0 

 

All 35 ciprofloxacin-resistant (CipR) gonococcal isolates had mutations in both 

gyrA and parC QRDRs (Table 4.7).  The two Gauteng isolates with reduced 

ciprofloxacin susceptibility (CipI) had mutations in gyrA.  All samples (swabs and 

culture) tested had identical gyrA and parC mutations, except the five urethral 

swabs collected from Northern Cape (i.e. NC-06-MUS-079; NC-06-MUS-085; 

NC-06-MUS-103; NC-06-MUS-135 and NC-06-MUS-144). 
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Table 4.7:  Summary of real-time PCR results for urines (Gauteng only), 
urethral swab and cultured gonococci from 49 men attending clinics in 
Gauteng, the Northern Cape and the Western Cape 

Ciprofloxacin 
susceptibility 

profile 
Specimen 

Tested 
Number 
tested gyrA PCR Product parC PCR Product 

   
No.  
Pos 

No.  
Neg 

No. 
Pos 

No.  
Neg 

Susceptible 
 

Cultures 12 12 0 11 1 

Urines 6
† 

6 0 5 1 

Swabs 12 12 0 11 1 

Intermediate 

Cultures 2 0 2 2 0 

Urines 2
† 

0 2 2 0 

Swabs 2 0 2 2 0 

Resistant 
 

Cultures 35 0 35 0 35 

Urines 16
† 

0 16 0 16 

Swabs 35∗ 5 30 5 30 

∗  The real-time PCR results obtained using urethral swabs from 5/8 resistant gonorrhoea cases 
    are in doubt (see discussion). 
† Urines were only taken from patients recruited in Gauteng. 

 

4.3. Sequencing results 

Results of gyrA and parC QRDR sequencing are summarized in Tables 4.8, 4.9 

and 4.10.  The mutations within the QRDRs of gyrA and parC of 35 isolates of N. 

gonorrhoeae are shown, by ciprofloxacin susceptibility category, gyrA and parC 

QRDR alteration, and geographical origin of isolates.  The two CipI isolates from 

Gauteng exhibited the identical point mutations in the gyrA gene only (TCC to 

TTC, Ser91→ Phe; GAC to GGC, Asp95→ Gly), at amino acid positions 91 and 

95.  CipR isolates from Gauteng, Northern Cape and Western Cape, exhibited 
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the same point mutation pattern in gyrA (TCC to TTC, Ser91→ Phe; GAC to 

GGC, Asp95→ Gly) as well as an additional point mutation (GAC to AAC, 

Asp86→Asn) in the parC gene.  All CipS isolates had wild type QRDR DNA 

sequences with the exception of the (GP-07-MUS-159) isolate which had a 

mutation in parC at the codon encoding for amino acid 86(GAC to AAC, 

Asp86→Asn).  Sequencing results of the five paired N. gonorrhoeae cultures and 

urethral swabs from Northern Cape were still inconsistent which agreed with the 

real-time PCR findings (Table 4.9). 
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Table 4.8:  Sequencing results for gyrA and parC QRDRs of N. gonorrhoeae isolates from Gauteng 

Ciprofloxacin 
susceptibility 
phenotype   

  Amino acid codon at indicated position in: 

  GyrA ParC 

  90 91 92 93 94 95 96 86 87 88 89 90 91 92 

  WT 
Asp 
GAT 

Ser 
TCC 

Ala 
GCA 

Val 
GTT 

Tyr 
TAC 

Asp 
GAC 

Thr 
ACC 

Asp 
GAC 

Ser 
AGT 

Ser 
TCC 

Ala 
GCC 

Tyr 
TAT 

Glu 
GAG 

Ala 
GCG 

S GP-07-MUS-125                     

S GP-07-MUS-136                     

S GP-07-MUS-149                     

S GP-07-MUS-151                     

S GP-07-MUS-159                          
Asn 
AAC                         

S GP-07-MUS-170                     

I GP-07-MUS-148  
Phe 
TTC    

Gly 
GGC         

I GP-07-MUS-187     
Phe 
TTC             

Gly 
GGC                           

R GP-07-MUS-002  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-006  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-016  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-018  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-026  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-029  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-031  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-036  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       
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Ciprofloxacin 
susceptibility 
phenotype   

  Amino acid codon at indicated position in: 

  GyrA ParC 

  90 91 92 93 94 95 96 86 87 88 89 90 91 92 

  WT 
Asp 
GAT 

Ser 
TCC 

Ala 
GCA 

Val 
GTT 

Tyr 
TAC 

Asp 
GAC 

Thr 
ACC 

Asp 
GAC 

Ser 
AGT 

Ser 
TCC 

Ala 
GCC 

Tyr 
TAT 

Glu 
GAG 

Ala 
GCG 

R GP-07-MUS-038  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-040  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-064  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-097  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-120  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-166  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-168  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R GP-07-MUS-171  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

                 

S = Susceptible; I = Intermediate/Reduced Susceptibility; R = Resistant 
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Table 4.9:  Sequencing results for the gyrA and parC QRDRs of paired N. gonorrhoeae isolates and urethral 
swabs from the Northern Cape 
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                                                Amino acid (codon) at indicated position in:  

GyrA ParC 
90 91 92 93 94 95 96 86 87 88 89 90 91 92 

  
  

WT 
Asp 
(GAT) 

Ser 
(TCC) 

Ala 
(GCA) 

Val 
(GTT) 

Tyr 
(TAC) 

Asp 
(GAC) 

Thr 
(ACC) 

Asp 
(GAC) 

Ser 
(AGT) 

Ser 
(TCC) 

Ala 
(GCC) 

Tyr 
(TAT) 

Glu 
(GAG) 

Ala 
(GCG) 

S S CULTURE NC-06-MUS-105               

 S SWAB NC-06-MUS-105               

                  

R R CULTURE NC-06-MUS-045  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

 R SWAB NC-06-MUS-045  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

                  

R R CULTURE NC-06-MUS-056  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

 R SWAB NC-06-MUS-056  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

                  

R R CULTURE NC-06-MUS-079  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

 S SWAB NC-06-MUS-079               

                  

R R CULTURE NC-06-MUS-085  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

 S SWAB NC-06-MUS-085               

                  

R R CULTURE NC-06-MUS-100  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

 R SWAB NC-06-MUS-100  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

                  

R R CULTURE NC-06-MUS-103  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       
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                                                Amino acid (codon) at indicated position in:  

GyrA ParC 
90 91 92 93 94 95 96 86 87 88 89 90 91 92 

  
  

WT 
Asp 
(GAT) 

Ser 
(TCC) 

Ala 
(GCA) 

Val 
(GTT) 

Tyr 
(TAC) 

Asp 
(GAC) 

Thr 
(ACC) 

Asp 
(GAC) 

Ser 
(AGT) 

Ser 
(TCC) 

Ala 
(GCC) 

Tyr 
(TAT) 

Glu 
(GAG) 

Ala 
(GCG) 

 S SWAB NC-06-MUS-103               

                  

R R CULTURE NC-06-MUS-135  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

 S SWAB NC-06-MUS-135               

                  

R R CULTURE NC-06-MUS-144  
Phe 
(TTC)    

Gly 
(GGC)  

Asn 
(AAC)       

 S SWAB NC-06-MUS-144               

                            

 S = Susceptible ; R = Resistant 
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Table 4.10:  Sequencing results for gyrA and parC QRDRs of N. gonorrhoeae isolates from the Western Cape 

Ciprofloxacin 
susceptibility 

phenotype 

 

 
Amino acid codon at indicated position in: 

GyrA ParC 

 90 91 92 93 94 95 96 86 87 88 89 90 91 92 

  WT 

Asp 
GAT 

Ser 
TCC 

Ala 
GCA 

Val 
GTT 

Tyr 
TAC 

Asp 
GAC 

Thr 
ACC 

Asp 
GAC 

Ser 
AGT 

Ser 
TCC 

Ala 
GCC 

Tyr 
TAT 

Glu 
GAG 

Ala 
GCG 

S WC-06-MUS-181                                                         

S WC-06-MUS-182                                                         

S WC-06-MUS-189                                                         

S WC-06-MUS-200                                                         

S WC-06-MUS-228                                                         

R WC-06-MUS-010  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-012  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-013  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-022  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-050  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-071  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-105  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-131  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-196  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-239  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

R WC-06-MUS-243  
Phe 
TTC    

Gly 
GGC  

Asn 
AAC       

S = Susceptible; R = Resistant 
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4.4. NG-MAST Results 

The primers amplified the internal fragments of por and tbpB from all of the 

isolates, from which trimmed sequences were obtained for both genes (Table 

4.11).  There were 18 different por alleles and 17 different tbpB sequences, 

resulting in 28 different 2-locus allelic profiles.  Each allelic profile was assigned a 

different sequence type (ST) number.  The correctly trimmed sequences of all 

known por and tbpB alleles are available at the NG-MAST web site 

(http://www.ng-mast.net).   

 

A total of 16 QRNG isolates from Gauteng and were resolved into 12 STs, 7 of 

which were represented by two different clusters of ST217 (n=5) and ST3226 

(n=2).  Two isolates from Gauteng with reduced susceptibility to ciprofloxacin 

were resolved into two unique STs (ST2670 and ST3238).  A total of six isolates 

from Gauteng with susceptibility to ciprofloxacin were resolved into five new STs 

(Table 4.11).   

 

All eight QRNG isolates from Northern Cape had an identical NG MAST profile 

(ST533). One isolate from Northern Cape with susceptibility to ciprofloxacin was 

resolved into one unique ST. In order to investigate the inconsistent genotypic 

results between swabs and culture, an attempt to generate tbpB and por gene 

amplicons was attempted for NG MAST analysis. Unfortunately, the PCR assay 

failed due to the DNA concentration being too low as a result of the samples 

being too old. Hence, the NG MAST for the five urethral swabs was not done due 
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to the fact that the PCR targeting the tbpB and por gene did not produce 

sufficient PCR product for sequencing. 

 

A total of 11 QRNG isolates from Western Cape were resolved into 5 STs, 

consisting of four unique STs and a clone of 7 isolates (ST217).  All five 

ciprofloxacin susceptible isolates from the Western Cape were resolved into 

unique STs, of which two known ST (ST502 and ST607) and three new ST 

(ST3312, ST3318, ST3325) (Table 4.11).  Among the 49 isolates, the most 

common alleles were por-158 and tbpB-4, which were present in 13 and 30 

QRNG isolates, respectively.  The most common ST was ST-217, which 

possessed the most common alleles at each locus (por-158 and tbpB-4), and 

was represented by 12 QRNG isolates (Table 4.11). 

 

Table 4.11:  NG-MAST genotypes of N. gonorrhoeae isolates from three 
South African provinces 
Gauteng Province (n= 24) 

No. 

Ciprofloxacin 
susceptibility 

phenotype Patient ID 
por 

Allele 
tbpB 
Allele 

Sequence Type 
(ST) 

1 S GP-07-MUS-125 121 165 2652 

2  S GP-07-MUS-136 1662 747 3317 

3 S GP-07-MUS-149 1662 616 2659 

4  S GP-07-MUS-151 35 713 3173 

5  S GP-07-MUS-159 121 61 2660 

6  S GP-07-MUS-170 1662 616 2659 

7 I GP-07-MUS-148 1953 729 3238 

8 I GP-07-MUS-187 123 4 2670 

9  R GP-07-MUS-002 1649 4 2640 

10  R GP-07-MUS-006 158 4 217 

11  R GP-07-MUS-016 158 4 217 

12  R GP-07-MUS-018 1922 616 3226 

13  R GP-07-MUS-026 158 4 217 

14  R GP-07-MUS-029 158 4 217 
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15  R GP-07-MUS-031 1922 616 3226 

16  R GP-07-MUS-036 1952 4 3239 

17  R GP-07-MUS-038 121 728 3253 

18  R GP-07-MUS-040 1922 719 3237 

19  R GP-07-MUS-064 361 4 524 

20  R GP-07-MUS-097 368 4 534 

21  R GP-07-MUS-120 1655 4 2647 

22  R GP-07-MUS-166 220 4 2661 

23  R GP-07-MUS-168 158 4 217 

24  R GP-07-MUS-171 121 4 531 
      

Northern Cape Province (n= 9)    

No. 

Ciprofloxacin 
susceptibility 

phenotype Patient ID 
por 

Allele 
tbpB 
Allele 

Sequence Type 
(ST) 

1  S NC-06 -MUS -105 121 49 189 

2  R NC-06 -MUS -045 367 4 533 

3  R NC-06 -MUS -056 367 4 533 

4  R NC-06 -MUS -079 367 4 533 

5  R NC-06 -MUS -085 367 4 533 

6  R NC-06 -MUS -100 367 4 533 

7  R NC-06 -MUS -103 367 4 533 

8  R NC-06 -MUS -135 367 4 533 

9  R NC-06 -MUS -144 367 4 533 

       
Western Cape Province (n= 16)    

No. 

Ciprofloxacin 
susceptibility 

phenotype Patient ID 
por 

Allele 
tbpB 
Allele 

Sequence Type 
(ST) 

1 S WC-07-MUS-181 2010 750 3325 

2 S WC-07-MUS-182 406 21 607 

3 S WC-07-MUS-189 251 165 502 

4 S WC-07-MUS-200 123 745 3312 

5 S WC-07-MUS-228 123 746 3318 

6 R WC-07-MUS-010 158 4 217 

7 R WC-07-MUS-012 35 612 2797 

8 R WC-07-MUS-013 158 650 2798 

9 R WC-07-MUS-022 1667 4 2668 

10 R WC-07-MUS-050 158 4 217 

11 R WC-07-MUS-071 158 4 217 

12 R WC-07-MUS-105 158 4 217 

13 R WC-07-MUS-131 158 4 217 

14 R WC-07-MUS-196 158 4 217 

15 R WC-07-MUS-239 361 4 524 

16 R WC-07-MUS-243 158 4 217 



 146

 

 

 

Typing of the 49 isolates revealed 5 ST clusters: ST 217 (12 isolates), ST 533 (8 

isolates), ST 524 (2 isolates), ST 2659 (2 isolates), and ST 3226 (2 isolates) (Fig 

4.7.). Three of the five ST clusters (ST217, ST524 and ST533) within this dataset 

have been previously described and are documented at the NG-MAST website 

(133) and the remaining two clusters (ST2659 and ST3266) were new. The 

remaining 23 STs comprised single isolates, of which 4 STs (ST189, ST502, 

ST534 and ST607) have been previously described and are documented at the 

NG-MAST website (133) and the remaining 19 STs were new.  

 

Isolates of a given ST were typically identical or closely related with regard to 

antibiotic-resistance profile and region of isolation. The largest cluster of the N. 

gonorrhoeae in this study isolates belong to ST217, which was significantly 

associated with QRNG (p=0.0109). The presence quinolone resistance in the 

Northern Cape and the Western Cape was significantly associated with ST533 

(p=0.0001) and ST217 (p=0.0397) respectively. There was no significant 

association between Gauteng province and any of the 5 ST clusters, due to small 

sampling size. 
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Figure 4.7:  Distribution on N. gonorrhoeae isolates according to NG-MAST 
sequence type for the five ST clusters and the unique ST  

S = Susceptible; I = Intermediate/Reduced susceptibility; R = Resistant 
 
 

4.5 Summary of results 
 

4.5.1 Assay validation 

 In summary, the assay successfully amplified the selected portion of gyrA and 

parC of all samples from Gauteng. All point mutations were easily discriminated 

and the mutation status obtained by real-time PCR generally agreed with the 

phenotype of either decreased susceptibility or resistance to ciprofloxacin (Table: 

4.12).  

 

4.5.2 Testing of clinical isolates 

The assay successfully amplified the selected portion of gyrA and parC of all 

samples from Northern Cape and Western Cape.  The real-time PCR results 
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agreed with the antimicrobial susceptibility phenotypes of the Western Cape 

samples. However, inconsistent results of the paired N. gonorrhoeae cultures 

and urethral swabs from Northern Cape were observed.  

 

4.5.3 Sequencing 

All quinolone resistant isolates (QRNG) had identical mutations; for gyrA, Ser 

(TCC) to Phe (TTC) at amino acid (AA) position 91 and Asp (GAC) to Gly (GGC) 

at AA position 95, and for parC Asp (GAC) to Asn (AAC) at AA position 86.  The 

two intermediate isolates had the same two gyrA mutations but no mutations in 

the parC gene.  Eleven of twelve susceptible isolates had wild type gyrA and 

parC genes.   

 

4.5.4 NG MAST 

NG MAST has demonstrated heterogeneity among the strains in Johannesburg 

and Cape Town; in contrast, all eight QRNG isolates from Kimberley has the 

same sequence type (Table: 4.12). The prevalent STs were ST217 and ST533. 
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Table: 4.12:  Summary of the results from three South African provinces  

Category   Johannesburg, Gauteng (x 24) 
Kimberley, Northern Cape  
      (x 9 MIC data) 

Cape Town, Western Cape       
(x16) 

    Urine Swab Culture Swab Culture Swab Culture 

Susceptibility 
phenotype       16R, 2S,6S   8R, 1S   11R, 5S 

Assay validation 
gyrA 

6xPos; 
18xNeg. 

6xPos; 
18xNeg. 6xPos; 18xNeg.         

parC 
7xPos; 
17xNeg. 

7xPos; 
17xNeg. 7xPos; 17xNeg.         

Testing of clinical 
specimens  

gyrA − − − 6xPos; 3xNeg. 1xPos; 8xNeg.  5xPos; 11xNeg.  5xPos; 11xNeg.  

parC − − − 6xPos; 3xNeg. 1xPos; 8xNeg.  5xPos; 11xNeg.  5xPos; 11xNeg.  

Sequencing gyrA − − 
18x (Ser91→Phe) 
& (Asp95→Gly) 

3x (Ser91→Phe) 
& (Asp95→Gly)* 

8x (Ser91→Phe) & 
(Asp95→Gly)   

11x 
(Ser91→Phe) & 
(Asp95→Gly) 

parC − − 17x (Asp86→Asn) 
3x 
(Asp86→Asn)* 8x (Asp86→Asn)   

11x 
(Asp86→Asn) 

NG MAST       
4X known ST;       
16x new ST   2x known ST   

4x known ST;     
6x new ST 

S = Susceptible; I = Intermediate/Reduced Susceptibility; R = Resistant 
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CHAPTER 5:  DISCUSSION  

 

Gonococci are fastidious organisms and are difficult to culture successfully 

especially in resource poor settings. Advances in DNA amplification 

technology have resulted in improved performance of molecular detection and 

allow use of non-invasive samples, such as urine.  Nucleic acid amplification 

tests (NAATs) also allow the testing of non-viable organisms, overcoming the 

transport difficulties encountered when trying to collect viable gonococcal 

isolates in countries like South Africa.  Real-time PCR assays enable rapid 

results to be produced in the laboratory setting, enabling prompt clinical 

decisions to be made in the field.  Real time PCR assays also lend 

themselves to approaches incorporating multiplexing technology, allowing 

simultaneous detection of more than one target.   

 

In this study, the real-time fluorometric PCR amplified the gyrA and parC 

genes, the two regions in the N. gonorrhoeae genome associated with 

quinolone resistance. The primers used for the detection of QRDR 

successfully amplified these two genes in three different non gonococcal 

Neisseria species namely: N. lactamica, N. meningitidis and N. mucosa but 

when the probes were included, no amplification was observed. The gyrA 

primers were able to amplify urinary tract causing organism (which are E. coli, 

K. pneumoniae, P.mirabilis, P. auruginosa, A. baumannii and K. oxytoca) and 

also on NMS patient infected with C. trachomatis, T. vaginalis and/or M. 

genitalium, showing an amplicon size of 72bp. However with parC primers, 

the urinary tract causing organism had very faint bands for the 72bp amplicon 
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(but darker on other amplicons), including the CT positive specimen. When 

the probes were included, no amplification was observed with urinary tract 

causing organism, CT, TV, and MG positive specimens. Hence, the QRDR 

PCR run with probes was found to be more specific to Neisseria gonorrhoeae.  

 

For all surveillance samples from patients with gonorrhoea recruited in 

Gauteng and the Western Cape, the mutation results inferred from the real-

time fluorometric PCR were completely consistent with the results obtained 

from conventional sequencing analysis and that of the susceptibility testing. 

These results corresponding with the results of the conventional sequencing 

confirm the reliability of the real-time fluorometric PCR protocol for 

susceptibility analysis. The observed association between mutation in the 

gyrA gene and resistance to fluoroquinolones was consistent with that 

reported in previous studies (43; 109).  

 

However, results of the real-time PCR analysis of DNA extracted from the 

remaining five of the nine paired N. gonorrhoeae cultures and urethral swabs 

from the Northern Cape were not in agreement. The QRDR of these fine 

culture-based DNA extracts were subsequently shown by DNA sequencing to 

possess the same gyrA and parC QRDR mutations as the rest of the 

ciprofloxacin resistant specimen. This may be due to technical issues such as 

mislabeling of swabs during sample collection or mislabeling of stock cultures 

during cultures storage. Attempts to resolve the issue by NG MAST failed due 

to insufficient DNA template availability. Fifteen isolates with unknown 

antimicrobial resistant profile from the Northern Cape had no detectable 

mutations in gyrA and parC and six isolates had mutation in gyrA and parC. 
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Based upon these results we were able to predict that 29% of N.gonorrhoeae 

isolates in the Northern Cape were resistant ciprofloxacin. 

 

The real-time PCR assay originally developed for cultured N. gonorrhoeae 

isolates, by Giles et al. (63), with the inclusion of the internal control, might 

prove valuable in settings where rapid determination of quinolone resistance 

to N. gonorrhoeae is desired from the clinical specimen. It is a faster method 

than that of culture and traditional agar-dilution or disc susceptibility testing 

and does not require expensive sequencing equipment. Furthermore, in the 

age of nucleic acid amplification testing for gonococcal and chlamydial 

infection, using urine as a specimen for drug resistance genotyping is a 

valuable capability, precluding laborious culture and isolation methods and 

supplanting a requirement for urethral swab specimens. However, this current 

real-time PCR assay has some disadvantages. Gonococci could potentially 

harbour gyrA and parC mutations outside the probe binding regions or other 

mechanisms of resistance e.g. efflux. These genetic changes would not be 

detected by the real-time PCR assay. 

 

Sequencing of QRDRs in gyrA and parC were chosen for this analysis, on the 

basis of the findings of previous studies, which indicate this is the sole 

mechanism of quinolone resistance in N. gonorrhoeae at the present time 

(226). Consistent QRDR mutation patterns associated with fluoroquinolone 

resistance and clinical treatment failure have been reported in multiple 

investigations (186, 196,197). Therefore, these QRDR mutation patterns are 

potential molecular markers that can be used as a tool for QRNG surveillance. 
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In the present study, the molecular characterization of QRDRs (for both 

Gauteng and Western Cape) was in complete agreement with susceptibility to 

ciprofloxacin, as previously determined for these strains. The QRDRs of our 

resistant isolates showed mutation patterns that were consistent with 

previously reported patterns (39,186,196,197). The literature suggests that 

CipR isolates had more than one mutations in the gyrA QRDR and one 

mutation in the parC QRDR. A combination of N. gonorrhoeae QRDR 

mutations at gyrA Ser91→Phe and Asp95→Gly, with a parC mutation at 

either Asp86→Gly or Ser87→Arg, has been associated with high levels of 

resistance (181). Trees et al. (194) identified double mutation patterns at gyrA 

91/95, in combination with either parC 87/91 or parC 87/116, by use of 

restriction enzyme analysis of strains with MICs that ranged from 16 to 

64µg/ml.  

 

In the present study, the two isolates that had double mutations at codon 91 

and 95 of gyrA alone had intermediate resistance, while the isolates that had 

mutations at codons 91 and 95 of gyrA, with an additional mutation at codon 

86 of parC, were resistant to ciprofloxacin. These results are consistent with 

the hypothesis proposed by Trees et al. (194), which indicated that, although 

mutations in the gyrA QRDR can afford low level resistance, additional 

mutations within the parC QRDR facilitate high level resistance to 

fluoroquinolones (194).  

 

This study also supports previous results (109) indicating that strains 

containing identical gyrA/parC QRDR alteration patterns frequently exhibit 

different MICs to ciprofloxacin. Examples in the current study are the 35 
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isolates that exhibited gyrA point mutations in the codon 91 and 95 and parC 

point mutations in the codon 86.  These isolates had a ciprofloxacin MIC 

range of 1.0 to 8.0 µg/ml and the two isolates with only gyrA point mutations in 

the codon 91 and 95 had a ciprofloxacin MIC range of 0.064 to 0.125 µg/ml. It 

appears that the presence of parC QRDR alterations facilitates high 

ciprofloxacin MICs, but the actual MIC may be influenced by other 

characteristics of the strain, such as reduced intracellular drug accumulation, 

as described by Tanaka et al. (185). 

 

All except one gonococcal isolates susceptible to ciprofloxacin had no 

mutations in gyrA and parC. The one strain (GP7 MUS 159) with mutation at 

parC gene only, had a ciprofloxacin MIC of 0.006 µg/mL. This then suggest 

that the presence of mutation in parC only, does not lead to decreased 

susceptibility of gonococci to ciprofloxacin. 

 

The association between ciprofloxacin MICs and QRDR alterations, reflecting 

clinical resistance, was generally well accepted by other investigators namely 

Giles, et al, Ison, et al, Shigemura, et al and Trees, et al. (63,83,169,195). 

There were however, three studies that were unable to discern such a 

correlation namely Lindback, et al., Vereshchagin, et al. and Yang, et al. 

(109,206, 226). Some specific examples from the Russian study include high 

level ciprofloxacin resistance in the absence of gyrA and parC changes 

expressed in four strains and little distinction in terms of ciprofloxacin MICs 

was observed for QRNGs with double gyrA changes only and those with an 

additional parC change (MIC range 4 to ≥ 32g/mL for both) (206). 
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Furthermore, the amino acid substitution Ser-87→Arg in parC, normally 

associated with high levels of ciprofloxacin resistance was not a characteristic 

of these QRNGs (206). On closer examination it was apparent that there were 

problems inherent in the experimental design of these studies, such as, 

QRNGs in the advanced stages of fluoroquinolone resistance (ciprofloxacin 

MICs ≥ 4g/mL) were examined only, so that an evolving resistance 

corresponding to QRDR change would not have been apparent (109,206, 

226). A set of control strains representing each different level of resistance 

was also omitted, casting some doubt on the validity of the results. 

Nonetheless, the conclusions of Yang et al. (226) agreed with the general 

principles presented in our sequencing results for molecular changes relating 

to quinolone resistance in gonococci, namely that:- parC changes are 

associated with higher ciprofloxacin MICs; parC changes are not the primary 

determinant specifying resistance to ciprofloxacin; and gyrA mutations are 

necessary for the quinolone resistance phenotype. 

 

The present study also has important implications for public health. The 

sequence data presented in this study indicate the existence of identical gyrA 

and parC mutations among gonococcal strains expressing ciprofloxacin 

resistance, which result in amino acid changes in gyrA (Phe-91 and Gly-95) 

and parC (Asn-86). These data also raised the possibility that the observed 

increase in the relative prevalence of CipR strains may have been due to the 

appearance of a single-strain outbreak. In order to further address this 

question, highly discriminatory genotyping by NG-MAST was performed. 

When these isolates were further genotyped by NG-MAST, several different 



 156 

sequence types were observed. The NG-MAST genotyping data do not 

support the hypothesis of a single strain outbreak at the time of the collection 

of the specimens. However, given the possibility of the development of further 

mutations in the por and tbpB genes overtime the typing results cannot be 

used to comment upon whether the first ciprofloxacin resistant isolates in 

South Africa were clonal or not. In addition, the initial recognition of 

ciprofloxacin resistance in South Africa appeared in Durban, a city in Kwa-

Zulu Natal Province that is geographically distant to Johannesburg, Cape 

Town and Kimberly (126,127). 

 

Recognition of endemic QRNG as a partially clonal event suggests that 

control efforts similar to those used in other outbreaks of infectious disease 

could be considered as a public health strategy (92,198). Rapid identification 

of endemic transmission of QRNG within a community, combined with tools 

that identify strain and resistance markers, could allow a redirection of 

resources to identify and treat contacts and extended sexual networks. 

However, such an approach is very costly and would not be affordable in the 

South African context. 

 

A gene sequence-based typing method, NG-MAST, with high discriminatory 

power was applied in this study, to all 49 N. gonorrhoeae isolates recovered 

from patients in Gauteng, Western Cape and Northern Cape Provinces. This 

typing method was also used to distinguish between the QRNG from the three 

South African provinces. The NG-MAST web site (http://www.ng-mast.net), 

which is currently hosted by Imperial College London, maintains the central 

database that includes the sequences of all known alleles at each locus and 
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details of the known STs. Investigators can assign their alleles and STs by 

interrogating the web site and can obtain allele numbers and ST numbers for 

new alleles or strains, which then become available to others via the public 

database. In this way, isolates recovered in one city can be compared with 

those from other cities or other countries. The ability to compare gonococcal 

isolates from different cities or countries may be less important for gonorrhea 

than for many other diseases, but is likely to be useful in the case of antibiotic 

resistant strains that may be imported into several countries from a common 

source. 

 

In this study, there was more clustering among the ciprofloxacin-resistant 

isolates than among the susceptible and intermediate resistance isolates. The 

large ST clusters (ST217 and ST533) suggested that multiple clonal 

transmissions existed in Gauteng, Western Cape and Northern Cape 

Provinces. The remaining twenty three STs had only one or two isolate each, 

which may be due to the limited strain collection, or the local emergence of 

new STs, or the recent introduction of foreign STs.  

 

The presence of QRNG in the Northern Cape was significantly associated 

with ST533 (p<0.0001), however concrete epidemiological conclusions were 

limited because genotyping was performed on a limited number of isolates. 

ST217 constitutes the largest cluster of QRNG isolates from Gauteng and 

Western Cape, however the presence of QRNG in the Western Cape was 

significantly associated with ST217 (p=0.0397), but not in Gauteng 

(p=0.7416).The ease of travel around the world allows for the introduction of 

foreign strains into a community. Cape Town, which is in the Western Cape 
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Province, is Africa’s most popular destination for tourism. The Gauteng 

goldmines and its economic centre in Johannesburg also draw its workforce in 

the form of migrant workers from the different cities in South Africa and 

facilitate bidirectional spread of isolates.  

 

QRNG isolates with ST 217 have previously been reported from Europe as 

described on the database (133), Durban (125) and Pretoria (46). De Jongh et 

al (46) has demonstrated that typing of 10 QRNG isolates from Pretoria can 

be resolved into five new STs and a cluster of four isolates of ST217. 

Whereas, in Durban, typing of 35 QRNG isolates by Moodley et al (125) has 

revealed two clusters: ST217 (20 isolates), and ST524 (4 isolates). The 

remaining eleven STs comprised of single isolates. Although isolates with ST 

217 have previously been seen in Europe, it cannot be determined whether 

the resistance seen in South Africa is the result of the introduction of already 

resistant strains into the area with subsequent spread, independent resistance 

development in the area, or both.  

 

In Scotland, genotyping of the 2002 isolates by NG MAST showed that ST147 

was one of the main sequence types associated with ciprofloxacin resistance 

(147). However, a high number of QRNG strains belonging to ST225 were 

identified in Sweden during 2005 (140), England from 2003-2004 (117), 

Scotland from 2004-2006 (143), in Australia in 2005 (212) and in Denmark 

from 2005-2006 (74). 

 

The NG MAST data presented in this study was cross sectional and the 

longitudinal data is required to address the issue of spread or clonal selection 
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of ciprofloxacin resistant genotypes within any population. One of the 

longitudinal data presented by Martin et al (117) has demonstrated that typing 

isolates by NG-MAST, in conjunction with the demographic and behavioral 

data, has shown that the transmission of QRNG in London appears to have 

changed over the course of 4 years. In 2000, QRNG was predominantly 

isolated from heterosexuals in London, had unique sequence types (STs) and 

were associated with foreign travel. From 2001 onward, QRNG was more 

frequently isolated from MSM and from 2003 onward, QRNG was no longer 

significantly associated with heterosexuals. In 2002 and 2003, 3 of the 4 

largest ST clusters were associated with MSM. Another study by Palmer et al 

(116) has demonstrated that typing isolates by NG-MAST, in combination with 

the epidemiological data, has revealed sustained transmission of several 

gonococcal strains predominately within the largest metropolitan area of 

Scotland. Clusters of isolates were associated with transmission within the 

United Kingdom, whereas isolates with unique STs were associated with 

foreign travel. Hence more extensive typing of national and international N 

gonorrhoeae isolates needs to be performed to inform on the transmission 

patterns of resistant organisms in South Africa.  

 

In conclusion, our study has shown that the real-time PCR assay may assist 

in detection of presumptive QRNG isolates by showing failure to detect 

susceptibility to ciprofloxacin. This approach has the potential to enhance 

public health-based surveillance of antimicrobial resistance in gonococci. 

Further, this molecular tool provides a convenient method for detecting 

fluoroquinolone resistance in non-invasive samples, which is of advantage in 
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resource-poor and rural settings. This study has also confirmed that the NG-

MAST analysis has a higher discrimination power than gyrA and parC DNA 

sequence analysis, and that this typing technique is able to distinguish N. 

gonorrhoeae isolates and to identify circulating clusters of strains.  
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