CHAPTER 4

SIMULATION STUDY RESULTSAND DISCUSSION

4.1 Fitting the Modelsto the Simulated Data

Parameter estimates were obtained for models u2@erdifferent covariance
structures, 25 of which had valid parameter esesaind four of which had invalid
parameter estimates (Table 3.1). These parameéieraéss were used to fit models to
the simulated data sets using SAS PROC MIXED (9¢t) (Appendix C2). Under
each covariance specification, including a modehwmvalid covariance parameter
estimates, 250 data sets were simulated, resuiti@§ different covariance structure
specifications. The three other models with inval@ariance parameter estimates
could not be considered as their random effectamtavce matrix was not positive
definite. All of the models under consideration aéditted to each of the simulated
data sets. Parameter estimates and their confidatex®als were extracted for the
fixed effects of the model, as well as the AIC, Biftd AlCc each time a model was

fitted to a simulated data set.

Convergence did not occur in all cases; thereforeesmodels had fewer fitted results
than others. For data sets modelled with UN ermragance structure with no
random effects, | investigated the fitted model ema, = CS andX = CSH, which

was only successfully fitted to 139 out of the 2fQa sets. In order to determine if
nonconvergence was due to the number of iteraboifsit was true nonconvergence,
| increased the number of iterations from 50 to(&D@r one of the simulated data

sets. The model still did not converge for thisadathe convergence criterion
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gradually reached a constant value, greater thamdtuired level, remaining at this
value after each iteration, and therefore wouldmegt the convergence requirement.
The cases where this model was successfully fitter@ also investigated, and | found
that in these cases non-valid values for the veeiaomponents were obtained. This
fitted model performed very poorly under all thenslated models, only being

successfully fitted to 3063 out of a total of 65¥3a sets (Table 4.1).

Table 4.1: Summary of models fitted to the simuatata, where a (-) indicates a model
which could not be used to simulate data as théammneffects covariance was not
positive-definite.

Assumed Covariance Structures Number Per centage Per centage Per centage
Converged Converged Converged Converged
o z when model when model
correct not correct
VC None 6500 100.00% 100.00% 100.00%
Intercept only 6500 100.00% 100.00% 100.00%
VC 6500 100.00% 100.00% 100.00%
Cs 6500 100.00% 100.00% 100.00%
CSH 6329 97.40% 100.00% 97.26%
ARH(1) 6391 98.32% 100.00% 98.26%
UN 6500 100.00% 100.00% 100.00%
Cs None 6500 100.00% 100.00% 100.00%
CSH 3063 47.12% 54.00% 46.85%
TOEP 5470 84.15% - 84.15%
CSH None 6500 100.00% 100.00% 100.00%
CSH 3336 51.32% 49.60% 51.39%
ARH(1) 3339 51.37% 53.20% 51.30%
UN 3705 57.00% 63.60% 56.74%
AR(1) None 6500 100.00% 100.00% 100.00%
Int. only 6500 100.00% 100.00% 100.00%
VC 6500 100.00% 100.00% 100.00%
CSH 6038 92.89% 98.40% 92.67%
ARH(1) 6041 92.94% 99.20% 92.69%
UN 6500 100.00% 100.00% 100.00%
ARH(1) None 6500 100.00% 100.00% 100.00%
VC 6365 97.92% 94.80% 98.05%
CSH 5540 85.23% 79.20% 85.47%
ARH(1) 5554 85.45% 80.00% 85.66%
UN 5771 88.78% 76.80% 89.26%
TOEP None 6500 100.00% 100.00% 100.00%
Cs 6091 93.71% - 93.71%
TOEP 6284 96.68% - 96.68%
UN None 6500 100.00% 100.00% 100.00%
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For a model to be considered as a robust modeéetied to be successfully fitted to
all data sets under each simulated covariancetstagc Non-convergence or invalid
parameter estimates is generally an indicator olblpms with the parameterisation of
the model (Verbeke & Molenberghs, 2000), or failofehe optimisation procedure,
therefore not all models are appropriate undecatiditions. Those combinations of
covariance structures which did not fit all datéssgere therefore not considered as
robust models. In some cases (see Appendix Alntiael from which a data set was
generated was not successfully fitted to the datggbly the model undas; = CSH
andX = CSH, which was only fitted successfully to 124 o250 data sets generated
from the same model. Models fitted to the datacWwhihad non-positive definite
random effects covariance matrices estimated otiginal data set, namely models
with @ = CS andZ = TOEP, withe; = TOEP and = CS, and withw; = TOEP and

= TOEP, were investigated. It was found that algfouhese models showed a
relatively high percentage of convergence, the san@ffects covariance structures
estimated were non-positive definite. The modelcltobtained a zero estimate for
the diagonal CS parameter of the random effectartawvce matrix when fitted to the
original data set (model withm; = VC andX = CS), obtained estimates for all data
sets. On investigation of the covariance paramedstisnated, it was found that the
diagonal CS parameter of the random effects covegianatrix was still estimated as
zero, resulting in equal estimates for all variahemd covariances of the random

effects covariance matrix.

The simpler models tended to fit all of the simethtlata sets (Table 4.1). The models

that did fit all datasets successfully were the eteditted without random effects; the

two random intercept models with fitted error coaace structure®; = VC andw; =
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AR(1); all random intercept and slope models where= VC, except when
heterogeneous random effects covariance struciges fitted; and random intercept
and slope models whewe = AR(1) andX = UN and wheren; = AR(1) andX = VC.
These models which were successfully fitted eitied five or less parameters, or

were models without random effects.

4.2  Criteriafor Selecting the Best M odel

The AIC, BIC and AICc were extracted for each mouétd. These are the criteria
recommended for choosing between models with @iffercovariance structures
(Wolfinger, 1993; Davis, 2002; Demidenko, 2004).eTimean, standard error,
minimum and maximum of the information criteria wezalculated for each fitted
model for each set of simulated data. For eachlated data set, it was noted which
models obtained AIC, BIC, and AICc values withinotwnits of the minimum (the
threshold value for differences between AIC valwdsthe best fitting models
specified by Duong (1984), Burnham and Anderso®22@nd Jones (1993)) for the
models fitted to the data set. This information wesn summarised across all of the
data sets that were simulated from the same mbdelthe data sets simulated under
each model, for each of the different models fittdkte percentage of occurrences
where the model was within two units of the minimuiC, BIC or AICc was
calculated. These results are summarised and degus Section 4.3, with full
results appearing in Appendix Al (summary measu@s) A2 (percentage within

two units of the minimum values).
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To determine the robustness of the linear mixeelcétinodel against misspecification
of the covariance structure, the method describederbeke and Lesaffre (1997) and
Jacgmin-Gaddaet al. (2007) was used. In these simulation studies tinhoas
investigated the robustness of the maximum likelthestimator of fixed effects from
a linear mixed model when the error distributionswaisspecified. In order to

determine the robustness of the estimates, the@utised the coverage rates for the

95% confidence interval of the fixed parametermeates. The proportionT, of 95%
confidence intervals containing the true populapanameter could then be calculated
along with a confidence interval far, the true proportion of confidence intervals that
contain the true population parameter. | used tisd score confidence interval for
m, as recommended by Brown, Cai and DasGupta (20fHgause the standard
interval for percentages using the normal approkonabehaves very poorly when
percentages are close to 0% or 100%, leading tdidemte intervals that exceed
100% or that are less than 0% (Wilson, 1927). Thisa confidence interval is

defined as

1/2

(- 72) + =)

2
CLw=1m%* -
W 4n

n+z°
wheren=¢/n, i=¢/n, C=¢+2°/2, andn=n+2z>. ¢ is the number of data
sets where the true parameter value was contairtbahvihe confidence intervat is
the total number of data sets, ands the 100(1x/2)" percentile of the standard
normal distribution. When calculating the confidennterval for a set of simulated
data, where there are 250 data sets, the Wilsofidemce intervals and those
obtained using the normal approximation to the tiia are quite different, where the
upper limit of the normal confidence interval oftexceeds 100%. The Wilson

confidence limits when calculated for all the siatad data (i.e. 6500 data sets) are
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very similar to those obtained by the normal appnation. When estimated values
are obtained for the full set of simulated dataanf estimated coverage probability
falls outside the limits of between 94% and 96%ntlthe confidence interval of the
estimated proportion will not contain 95%, and $@ testimated value for the
coverage probability will be significantly differerfrom 95%. These results are
summarised and discussed in Section 4.4 and thesfullts for each simulated model
are presented in Appendix A3, which includes thés@i confidence interval for each

estimated coverage probability.

4.3  Analysisof Information Criteria

The information criteria, AIC, BIC and AICc, wersad in two ways to determine
which models fit the simulated data best. Firdiby,each simulated model, the mean
AIC, BIC and AICc values were calculated for eaitted model (Appendix Al). The
standard errors for these means were also caldulatel in general, were close to one
for most models. To summarise these values intovahee for each fitted model, the
overall mean AIC, BIC and AICc values across atiidated models were calculated
for each fitted model. Models with overall AIC, B8 AlCc values within two units
of the minimum mean values, and which were sucuabgditted to all simulated data
sets, were considered as generally good fittingeatsodd summary of the AIC, BIC
and AICc values for the models successfully fittedall the simulated data sets

appears in Table 4.2.

When summarised over all simulated data sets, tAedard error of the mean

information criteria was 0.22 to 0.23, except fog OLS model which had a standard
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error of 0.27. The overall mean AIC, BIC, and Alzadues for all fitted models were
444.29, 444.66, and 448.96 respectively, the ovenalimum and maximum AIC
values were 432.12 and 492.05 respectively, theativminimum and maximum BIC
values were 437.30 and 505.00 respectively, andyibeall minimum and maximum

AICc values were 432.12 and 494.41 respectively.

The models that obtained low mean AIC, BIC and Alatues tended to be those
models with less complex error covariance strustuseich as VC, CS, AR(1) or
TOEP, and consequently fewer covariance paraméeror less). To demonstrate
this, the mean information criteria were plottedaiagt the number of covariance
parameters in the fitted models (Fig. 4.1). Kruské&lllis non-parametric tests were
calculated to accompany this plot, and show thatlefsowith more complex error
covariance structures (i.e. UN, CSH or ARH(1) dinues) obtained significantly
higher mean information criteria at the 5% levelsajnificance, but not at the 1%
level. The models with heterogeneous covariancearpaters, as well as for
unstructured covariance matrices, obtained compahathigher mean AIC, BIC and
AICc values. Both the AIC and AICc, which in gerlepatained very similar mean
values, show that the no random effects model wjth TOEP obtained the lowest
mean value compared to all other fitted models. Weans for the BIC, which
penalises more heavily for extra parameters condp@ar¢he AIC and AlCc, indicate
that the random intercept model with= VC performed the best, with the no random
effects model withw; = CS obtaining the second lowest mean value. ThenmdC

and AICc values were generally quite close, as shovFig. 4.1.
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Table 4.2: Summary measures of AIC, BIC and AlCaes for models successfully

fitted to all simulated data sets.

Fitted M odel AIC BIC
o z No. mean se min max mean S€ min magx
Par

VC None 1 483.33 0.27| 480.9¢ 486.46 484.62 0|27 .2882 487.55
Int. 2 439.74 | 0.23| 435.00 484.1p 442.30 0.3 43759 148p.
only
VC 3 439.55| 0.23| 434.95 484.2B 44295 0.p3  438.9186.30
CS 3 441,96 0.23| 43656 48548 444.y1 023 439.2B8.43
UN 4 439.60 | 0.22| 435.47 486.1f 444.35 0.p2  439.800.61

CS None 2 439.75 0.23 435.00 484.649 442)35 (.23 .593]7 487.28

CSH None 10 441.88 0.23 437.10 48749  448[36 (.2313.58 | 493.97

AR(1) None 2 446.14| 0.22| 4399y 484.47 448[r3  0[2242.56 | 487.26
Int. 3 439.50 | 0.22| 43525 485.1p 443.30 0.2 439.12 248B.
only
VC 4 439.32 | 0.22| 435.26 485.1B 443.91 0.p2 439.9488.48
UN 6 439.11 | 0.22| 432.47 486.90 44514 0.p2 438.882.66

ARH(1) [ None 10 448.45|  0.22 441.00 487.49 454[93 20[2447.48| 493.96

TOEP None 4 439.05 0.22 432.12 48648 444{24 (.2287.30 | 491.66

UN None 10 442,63 0.23 43394 49205 45559 023 6.9M| 505.00

Fitted M odel AlCc
O; x No. mean se min max
Par

VC None 1 483.36 0.27] 481.00 486.30
Int. 2 439.85| 0.23| 435.12 484.2f
only
VC 3 439.55| 0.23| 434.95 484.2B
CS 3 442.09( 0.23| 436.68 485.36
UN 4 439.95| 0.22| 435.84 486.4B

CS None 2 439.87 0.23 435.12  484.80

CSH None 10 442.49 0.23 437.71  488.10

Note:

AR(1) None 2 446.26 0.22] 440.0p  484.19 Int. only = Intercept only
Int. 3 439.73 | 0.22| 43549 485.2B No. Par = Number of
only parameters
VC 4 | 439.32| 0.22] 43524 485.1B se = standard error
UN 6 439.65| 0.22( 433.03 487.4B min = minimum

max = maximum

ARH(1) [ None 10 449.07) 0.22 441.60  488.10

TOEP None 4 439.05 0.22 432.12 486.48

UN None 10 445,00, 0.23] 436.31 494.41
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458

Kruskal Wallis (KW) tests testing if the mean infation criteria

456 { of models with less complex error covariance stiues is less than
the mean of models with more complex covarianagsires. =
454 -

AIC : KW Chi-squared value = 4.1143; df
452 | BIC : KW Chi-squared value = 5.6000; df
AlICc : KW Chi-squared value = 4.8286; df

1; p-v&aki 0.0425
1; p-vatue.0180
1; p-vaiu8.0280
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Fig. 4.1: Mean of the AIC, BIC, and AICc valuesaafinction of the number of
covariance parameters. The OLS model has beendadtliKruskal Wallis tests testing
if the mean information criteria are significantiygher for models with either UN, CSH
or ARH(1) error covariance structures are included.

The mean AIC, BIC, and AICc values for the OLS mogdere about 10% larger than
the values obtained for the best fitting modelser€fore the OLS model, which had
the smallest number of parameters (one covariaacangeter), did not fit the data

sufficiently well, as evidenced by the large AIQCBand AICc values.

The overall mean AIC, BIC and AICc values can ogiye an indication of which

models are performing better than others when &niability of these criteria between
different simulated data sets is small. As the daah errors of the mean AIC, BIC
and AICc values were small (Table 4.2), rangingveen 0.22 and 0.23 for all models
except the OLS model, which had a standard err@.2¥#, this method of comparing

fitted models can be justified in this case. A mdeaindication that a model was
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performing well would be if the fitted model cortsistly obtained information criteria
within two units of the minimum across all simuldtdata sets. Therefore a second
means of comparing between models was developed lmesthe AIC, BIC and AICc
values. For each simulated model, the percentaggeneé a model produced an AIC,
BIC or AICc within two units of the respective mmmum was calculated for each
fitted model (Appendix A2). In order to have oneqgamtage value with which to
compare different fitted models, each fitted mosl@ércentage values were averaged

over all simulated models. These results appe@abie 4.3.

The mean percentage values showed a similar teetftetmean AIC, BIC and AlICc
values. The simpler models tended to have infonatriteria within two units of the
respective minimum more often than the more comapdit models. Models which
performed particularly well under this analysis véiie random intercept model with
o; = VC, and the no random effects model with= CS, both models having only two
covariance parameters. Both of these models wdtenwtiwo units of the minimum
BIC more than 55% of the time on average, and witwio units of the minimum AIC
and AICc values more than 43% of the time. The kivpercentages for both of these
models were recorded for data simulated under AR(IARH(1) models with no
random effects. The CS model with no random effeetd the random intercept
model with independent errors should have simesuits as these two models result
in the same parameterisation of the variare,(Davis 2002, p. 137). The top
performing model according the AIC and AICc valwess the model withw; = VC
andX = VC, which obtained values for these criteriahmttwo units of the minimum
more than 45% of the time. The model with= VC andX = UN, the two random

intercept models witlm; = VC and withem; = AR(1), and the no random effects model
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with ®; = TOEP, obtained AIC and AICc values with 2 unifstbe respective

minimum more than 30% of the time.

Table 4.3: Percentage occurrences where fitted lm@deduced AIC, BIC or AlCc

values within two units of the minimum.

Fitted M odel Percentage | Percentage | Percentage
fitswhere | fitswhere | fitswhere
model was | model was | model was

o) z within 2 within 2 | within 2
units of units of units of
the AIC the BIC the AlCc

VvVC None 3.02 3.42 3.05
Int. only 43.81 57.14 46.07
VC 47.11 32.80 43.93
CSs 25.08 29.91 25.70
UN 30.39 10.50 24.59
CS None 43.70 55.85 45.82
CSH None 12.65 4.15 11.45
AR(1) None 14.33 17.50 14.86
Int. only 44.01 19.90 36.98
VC 33.56 13.60 27.48
UN 26.16 9.14 21.45
ARH(1) None 4.16 1.75 3.99
TOEP None 32.61 19.41 30.70
UN None 7.90 0.68 4.14

The percentage of cases where the AIC, BIC or Al@laes of the OLS model were
within two units of the minimum was much lower (®oto 3%) compared to the best
fitting models (close to 50%) (Table 4.3). On closespection, the cases where the
OLS model did have AIC or BIC values close to thmmimum were all for data

simulated under the OLS model (Table 4.4).
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Table 4.4: Percentage occurrences where fitted lm@deduced AIC, BIC or AICc

values within two units of the minimum when fitterldata simulated from the same

model and the percentage when fitted to data siteaifsFom other models.

Fitted M odel Percentage | Percentage | Percentage | Percentage | Percentage | Percentage
fitswhere | fitswhere | fitswhere | fitswhere | fitswhere | fitswhere
correct incorrect correct incorrect correct incorrect
> model was | model was | model was | model was | model was | model was
oi within 2 within 2 within 2 within 2 within 2 within 2
units of units of units of units of units of units of
the AIC the AIC the BIC the BIC the AlCc the AlCc
VC None 81.60 0.00 92.40 0.00 82.40 0.00
Int. 75.60 43.23 89.20 56.35 78.40 45.50
only
VC 69.20 46.78 37.20 32.80 58.80 43.71
CS 71.20 23.31 56.00 28.74 64.80 24.19
UN 42.00 30.16 7.20 10.59 34.80 24.34
CSs None 75.60 43.12 83.20 55.20 77.6(Q 45.2¢
CSH None 40.00 11.74 14.00 3.84 36.80 2.82
AR(1) None 77.60 12.30 90.80 15.12 80.40 12.77
Int. 79.60 43.81 88.00 20.30 51.20 37.10
only
VC 38.00 33.92 11.20 13.86 28.40 27.90
UN 52.40 24.08 24.00 7.86 48.40 19.26
ARH(1) | None
TOEP None 68.00 30.34 52.00 17.34 67.2( 28.29
UN None 23.6 7.36 3.60 0.59 13.2 3.82

Table 4.4 compares how well a fitted model perfommen fitted to data simulated
from the same model versus when it is fitted t@datnulated under a different model
(i.e. when it is incorrectly fitted to a data séfhis table shows that, with respect to
the AIC and AICc values, the percentage of model With information criteria

within two units of the minimum when a model igdd to data simulated from the
same model is always higher compared to the pexgenivhen fitted to data

simulated under a different model. The percentadees for the BIC indicate that the
model withw; =

VC andX = UN and the model witlm; = AR(1) andX = VC have
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lower percentage of model fits with BIC within twaits of the minimum where data
was fit the correct model versus when fit to theomect model. Both the percentages
for the AIC and for the AICc showed the smalledtedence between correct and
incorrect model fits for the model with; = AR(1) andX = VC, where the difference
for AICc was less than 1% and for AIC was clos&%. The smallest difference in
the BIC percentage values between correct andrectomodel fits was for the model
with @; = VC andX = UN. The largest difference between correct amzbrirect
models for all three information criteria was fetno random effects model wikh

= AR(1). The differences in percentages for the Ar@ AlCc values were both over
65%, and the difference for the BIC was over 75%eré were large differences in
percentage values for the AIC and AICc value fa mhodel withm; = VC andX =
CS. This was the model fitted with equal elementthe covariance structure for the

random effects.

Table 4.5 shows, for each set of simulated datas ud fitted models which both
obtained AICc values within two units of the minimumore than 40% of the time.
This table was created to show which models aréeftmangeable”, in that they
obtain similar fits to the data, making it diffitdb distinguish which model is best
using the information criteria. The AICc was chosan it is corrected for bias
compared to the regular AIC, and does not pendbfiseadditional parameters as
severely as the BIC, as discussed in Chapter 2 (Mo@@ & Tsai, 1998). Models
which together obtained low AICc values close ® itinimum the most often are the
random effects model witty; = VC andX = VC, the random intercept model with

= VC, and the no random effects model with= CS. Together with these three

models, the random intercept model with = AR(1) also obtained close to the
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minimum AICc for many of the simulated models. Ot OLS model included
itself and the AR(1) no random effects model, alomigh the three previously
mentioned models, as most frequent best fitting efeodThe OLS model had the
highest number of model pairs obtaining AICc valalese to the minimum for more
than 40% of the simulated data sets. Data simulatetker the random intercept
models withm; = AR(1) andw; = ARH(1) were two of only twelve models with best
fitted models differing from those mentioned abdwethese two cases the no random
effects model, random intercept model, and the aanéffects model wittt = VC,
each with AR(1) error structure, most often obtdittee lowest AlCc values. The data
simulated unde®; = AR(1) random effects models with eitt®~= CSH, ARH(1) and
UN had minimum AIC values when either of these ¢hneodel were fit to the data.
The models with the most number of parameterstfieeheterogeneous error models
with heterogeneous random effects or UN randonceffstructure, as well as the no
random effects model witk = UN) did not have any pairs of models frequently

obtain minimum AICc values.
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Table 4.5: For each simulated model set the fittedel pairs that both obtained

within 2 units of the minimum AICc value for motfgain 40% of the simulated

data sets.
True Model Fitted model pairswhich both obtained AlCc valueswithin 2 units
; ) of the minimum for morethan 40% of the ssmulated data sets
VC None 1-2; 1-3; 1-8; 1-15; 2-3; 2-8; 2-15; 3-813; 8-15;
Int. only 2-3; 2-8; 2-16; 3-8; 8-16
VC 2-3; 2-8; 2-16; 3-8; 8-16
CSs -
CSH 2-3; 2-8; 3-8
ARH(1) 2-3; 2-8; 2-16; 3-8; 8-16
UN 2-3; 2-8; 2-16; 3-8; 8-16
CSs None 2-3; 2-8; 2-16; 3-8; 8-16
CSH 2-3; 2-8; 2-16; 3-8; 8-16
CSH None 2-3; 2-8; 2-16; 3-8; 8-16
CSH -
ARH(1) -
UN -
AR(1) None 15-16; 15-17; 16-17
Int. only 2-3; 2-8; 2-16; 3-8; 8-16
VC 2-3; 2-8; 3-8
CSH 18-19; 18-20; 19-20
ARH(1) 18-19; 18-20; 19-20
UN 18-19; 18-20; 19-20
ARH(1) None 15-16; 15-17; 16-17
VC 2-8
CSH -
ARH(1) -
UN -
TOEP None 2-8
UN None -

Model numbers for Assumed Models

1: o;=VC,X=None;
4. o=
7. o=
10 :m; = CS,X = TOEP;

13 o
16 L

19 :@; = AR(1),X = ARH(2);
22 :®; = ARH(1),X = VC;
25 :®; = ARH(1),X = UN;
28 :m; = TOEP.X = TOEP;

VC,X =CS;
VC,X = UN;

2 :o; = VC, X = intercept only;
5:@; =VC,X =CSH;

8: ®; = CS,X = None;

11 ®; = CSH,X = None;
CSH,X = ARH(2); 14 :»; = CSH,X = UN;
AR(1),X = intercept only; 17 &; = AR(1),X = VC;

20 :; = AR(1),X = UN;

23 ‘@ = ARH(1),X = UN;

26 .w; = TOEP.,X = None;

29 w; = UN, X = None

3:0,=VC,X=VC;

6 : @ = VC,X = ARH(1);

9. =CS,X =CSH;

12 »; = CSH,X = CSH;

15 :o; = AR(1),X = None;

18 :; = AR(1),X = CSH,;

21 :0; = ARH(1),X = None;
24 :; = ARH(1),X = ARH(2);
27 w; = TOEP,X =CS;
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4.4 Analysis of Coverage Probabilities

To determine the robustness of the models, therageeprobabilities were calculated
for the 95% confidence intervals of the fixed eféefor each fitted model under each
simulated model. As there were a large number ohparisons to make, these
coverage probabilities appear in Appendix A3. Threrage coverage probabilities
were calculated for each fitted model over allghulated data sets. These results are
presented in Table 4.6 for those models which vgeiecessfully fitted to all of the

simulated data sets.

Table 4.6: Mean coverage probabilities of fixedeef§ for each fitted model which was
successfully fitted to all the simulated data.

oy X Intercept Gender Age GenderxAge
(male = 1)
VC None 98.86 98.55 99.31 99.11
Int. only 94.18 93.75 92.42 92.09
vC 93.14 92.66 93.06 93.03
CSs 91.65 91.51 95.14 94.97
UN 95.77 95.25 95.69 95.28
CS None 94.18 93.75 92.43 92.09
CSH None 94.00 93.77 92.48 92.49
AR(1) None 98.05 97.65 98.40 98.18
Int. only 94.91 94.46 93.65 92.89
VC 93.72 92.97 93.71 93.18
UN 95.65 95.05 95.29 94.92
ARH(1) None 97.83 97.80 98.22 98.17
TOEP None 95.69 95.08 94.38 94.12
UN None 93.35 92.26 92.95 92.28

Test for H: The coverage probability is 95%. This hypothésiejected for values less than
949% or greater than 96%.

Values less than 94% (italics) wi1 backond.
Values between 94% and 96% (normal font) vl_l background.

Values more than 96% (bold) wit[ |  backgmbu
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Each model was fitted to 26 sets of simulated dzdah set containing 250 data sets.
In total, each model was fitted to 6500 data SBbsget an approximate non-rejection
region for the hypothesis that the true coveragbaiility of the 95% confidence
interval is 95%, the normal approximation was usé&d. do this, it needs to be
assumed that the 6500 data sets represent a resataple of data sets. To reject this
hypothesis, the average coverage probability neette less than 94% or more than
96%. These results are displayed in Table 4.6. Busb model should result in
accurate estimates of the fixed effects, as welh@surate standard errors of these
estimates. If a model is predicting the fixed effewell under all of the simulated
models then the coverage probability of the 95%ukhde between the 94% and
96%. If the coverage probabilities are above 9@%n tthis means that the variances
have been overestimated, resulting in an overlyseomtive model. If the coverage
probabilities are below 94%, then estimates ateeeibiased or the variance is under

estimated.

The model withw; = TOEP and no random effects, as well as the ranigencept
and slope models witlw; = VC andX = UN and withem; = AR(1) andX = UN,
obtained coverage probabilities that were withia limits. All three of these models
were determined by the AIC and BIC analysis totlig data relatively well. The
random intercept model wiik; = VC, the no random effects model with= CS, and
the random intercept and slope model with= VC andX = VC had coverage
probabilities that were significantly below 95%,sdée being the models that,
according to the AIC and BIC measures, fit the da¢abest. The AR(1) and VC error
models with no random effects had coverage proitiakilthat were significantly

more than 95%, indicating that these models weegestimating the variance.
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The performance of these models was then investighir each simulated model
(Appendix A3). Each model's performance was basedhow many confidence
intervals of the coverage probabilities containé®09 Of the three models that
obtained coverage probabilities close to 95%, #melom intercept and slope model
with ®; = VC andX = UN performed the best, with only two coveragehbatilities
significantly higher, and only one coverage probgbsignificantly lower than 95%.
The random intercept and slope model vath= AR(1) andX = UN also performed
well, with six coverage probabilities significantigore than 95% and one coverage
probability significantly lower than 95%. The ramdoeffects with®w; = TOEP
performed slightly worse, with eight coverage piubtes significantly above and

four coverage probabilities significantly below 95%

Approximately 15% of the simulated models had cager probabilities for the
random intercept model witt; = AR(1) that were significantly below 95%. The no
random effects model witly; = CS, the random intercept model with= VC, and the
random intercept and slope models with= VC andX = CS,®; = VC andX = VC,
and withe; = AR(1) andX = VC did not perform very well in relation to tikeverage
probabilities as each of these models had more2b&# coverage probabilities below
95%. The no random effects models with= AR(1) ande®; = VC had coverage
probabilities significantly higher than 95% for 768d 92% of the simulated models
respectively. Both of these models produced coweragobabilities that were
reasonable for simulated models under no randoendept models witlm; = AR(1),

0= ARH(l) andm; = VC.
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45 Discussion

Verbeke and Lesaffre (1997) showed that the fixtdcts estimates of the linear
mixed effects model were robust to misspecificatbihe distribution of the random
effects. In their study they assumed that the d¢amee structure was correctly
specified, but that the random effects were notmabr The purpose of this study was
to determine the robustness of the fixed effectsneses of the linear mixed effect
model when the covariance structure was misspédciBssuming that the random
effects were normally distributed. The results shibvat the linear mixed effects
model is not robust to misspecification of the atasace structure, although there are
certain covariance structures that perform betteerwmisspecified compared to

others.

This study supports the findings of Jacgmin-Gaddal. (2007), who showed that
random intercept and slope models were more rabast random intercept models.
In this study, the random intercept models fit tie&y well according to the
information criteria, but had coverage probab#itibat were too low. Under certain
covariance combinations, the random intercept aoplesmodels obtained coverage
probabilities that indicated robustness. This a&gplo simple covariance structures,
and generally when the correlation between obsensibn the same subject is only
described by either the random errors or the ranefbects covariance structures.
Certain covariance structures were shown to besf@htangeable”, as they obtained
similar fits consistently, and for data simulatednfi various covariance structures. In
particular, the random effects model with= VC andX = VC, the random intercept

model withm; = VC, and the no random effects model witfe CS obtained similar
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fits the most often. It would be expected that thedom intercept model witky; =
VC and the no random effects model wih= CS would obtain similar fits as the
resulting covariance structure for the responsesildhbe the same under these two
models, but where one model includes random efi@atsthe other does not. These
three covariance structures did not frequentlytifé data well under all generating
models. For example, these models did not perfoethwhen fitted to data generated
from random intercept models with either AR(1) dRIA(1) errors, random effects
models with AR(1) errors and complex random effestisictures. Therefore the

flexibility of these models is limited.

A comparison was also made between an OLS modaljrasg independent errors
and no random effects, and other linear mixed &ffewdels. The OLS model fitted
the data much worse, as the AIC, BIC and AICc v&lere much higher compared
to the other linear mixed effects models. The cagerprobabilities of the OLS model
were too high, indicating an overestimation of gteandard error. This is what is
expected when the correlation between repeated uresaents is ignored

(Fitzmauriceet al. 2004).

As well as fitting the data well, a robust modebsld obtain parameter estimates of
the fixed effects that are close to the true valassthese parameter estimates are
largely what a researcher would require from thedehoand obtain inferences that
accurately describe the expected range of the measn Even though quite a number
of models were identified by the information cngeranalysis as fitting the data
similarly, based on the analysis of the coveragebabilities, only three of these

models obtained coverage probabilities close to dmefidence level. These three
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models therefore obtained parameter estimateshirfiked effects that were the

closest to the true parameter values, as wellaslatd errors that were reasonable.
Good choices for the covariance structure therafaeide the random intercept and

slope model withw; = VC andX = UN, the random intercept and slope model with

= AR(1) andX = UN, and the no random effects model with= TOEP.

This analysis shows that even though the underlgmgariance structure of the data
may be complicated, it may not be necessary ta fitodel to this data with the same
parameterisation. A simpler covariance structure cesult in a better fit with
parameter values closer to the true parameter sallieerefore it appears that the
maximisation routine used by default by SAS PROKED (ver. 9.1) is not very
successful when fitting complicated models with gngrarameters. Since certain
models were not successfully fitted to simulatethdgenerated from the same model,
it indicates that the optimisation procedure is algtays successful at fitting models
with certain, usually more complex, covariancedtrtes, not because the covariance
structure is misspecified, but because the optinsahution is not located by the
procedure. This is most likely due to the large hamof covariance parameters, but

small number of subjects in the PR data set.
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