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C H A P T E R       4 

SIMULATION STUDY RESULTS AND DISCUSSION 

 

4.1        Fitting the Models to the Simulated Data 

 

Parameter estimates were obtained for models under 29 different covariance 

structures, 25 of which had valid parameter estimates and four of which had invalid 

parameter estimates (Table 3.1). These parameter estimates were used to fit models to 

the simulated data sets using SAS PROC MIXED (ver. 9.1) (Appendix C2). Under 

each covariance specification, including a model with invalid covariance parameter 

estimates, 250 data sets were simulated, resulting in 26 different covariance structure 

specifications. The three other models with invalid covariance parameter estimates 

could not be considered as their random effects covariance matrix was not positive 

definite. All of the models under consideration were fitted to each of the simulated 

data sets. Parameter estimates and their confidence intervals were extracted for the 

fixed effects of the model, as well as the AIC, BIC and AICc each time a model was 

fitted to a simulated data set.  

 

Convergence did not occur in all cases; therefore some models had fewer fitted results 

than others. For data sets modelled with UN error covariance structure with no 

random effects, I investigated the fitted model under ωi = CS and Σ = CSH, which 

was only successfully fitted to 139 out of the 250 data sets. In order to determine if 

nonconvergence was due to the number of iterations or if it was true nonconvergence, 

I increased the number of iterations from 50 to 50000 for one of the simulated data 

sets. The model still did not converge for this data. The convergence criterion 
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gradually reached a constant value, greater than the required level, remaining at this 

value after each iteration, and therefore would not meet the convergence requirement. 

The cases where this model was successfully fitted were also investigated, and I found 

that in these cases non-valid values for the variance components were obtained. This 

fitted model performed very poorly under all the simulated models, only being 

successfully fitted to 3063 out of a total of 6500 data sets (Table 4.1). 

 

 

 

Assumed Covariance Structures 

ωi Σ 

Number 
Converged 

Percentage 
Converged 

Percentage 
Converged 
when model 

correct 

Percentage 
Converged 
when model 
not correct 

VC None 6500 100.00% 100.00% 100.00% 
 Intercept only 6500 100.00% 100.00% 100.00% 
 VC 6500 100.00% 100.00% 100.00% 
 CS 6500 100.00% 100.00% 100.00% 
 CSH 6329 97.40% 100.00% 97.26% 
 ARH(1) 6391 98.32% 100.00% 98.26% 
 UN 6500 100.00% 100.00% 100.00% 
      
CS None 6500 100.00% 100.00% 100.00% 
 CSH 3063 47.12% 54.00% 46.85% 
 TOEP  5470 84.15% - 84.15% 
      
CSH None 6500 100.00% 100.00% 100.00% 
 CSH 3336 51.32% 49.60% 51.39% 
 ARH(1) 3339 51.37% 53.20% 51.30% 
 UN 3705 57.00% 63.60% 56.74% 
      
AR(1) None 6500 100.00% 100.00% 100.00% 
 Int. only 6500 100.00% 100.00% 100.00% 
 VC 6500 100.00% 100.00% 100.00% 
 CSH 6038 92.89% 98.40% 92.67% 
 ARH(1) 6041 92.94% 99.20% 92.69% 
 UN 6500 100.00% 100.00% 100.00% 
      
ARH(1) None 6500 100.00% 100.00% 100.00% 
 VC 6365 97.92% 94.80% 98.05% 
 CSH 5540 85.23% 79.20% 85.47% 
 ARH(1) 5554 85.45% 80.00% 85.66% 
 UN 5771 88.78% 76.80% 89.26% 
      
TOEP None 6500 100.00% 100.00% 100.00% 
 CS 6091 93.71% - 93.71% 
 TOEP  6284 96.68% - 96.68% 
      
UN None 6500 100.00% 100.00% 100.00% 

 

Table 4.1: Summary of models fitted to the simulated data, where a (-) indicates a model 
which could not be used to simulate data as the random effects covariance was not 
positive-definite. 
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For a model to be considered as a robust model, it needed to be successfully fitted to 

all data sets under each simulated covariance structures. Non-convergence or invalid 

parameter estimates is generally an indicator of problems with the parameterisation of 

the model (Verbeke & Molenberghs, 2000), or failure of the optimisation procedure, 

therefore not all models are appropriate under all conditions. Those combinations of 

covariance structures which did not fit all data sets were therefore not considered as 

robust models. In some cases (see Appendix A1) the model from which a data set was 

generated was not successfully fitted to the data, notably the model under ωi = CSH 

and Σ = CSH, which was only fitted successfully to 124 out of 250 data sets generated 

from the same model.  Models fitted to the data which had non-positive definite 

random effects covariance matrices estimated for the original data set, namely models 

with ωi = CS and Σ = TOEP, with ωi = TOEP and Σ = CS, and with ωi = TOEP and Σ 

= TOEP, were investigated. It was found that although these models showed a 

relatively high percentage of convergence, the random effects covariance structures 

estimated were non-positive definite. The model which obtained a zero estimate for 

the diagonal CS parameter of the random effects covariance matrix when fitted to the 

original data set (model with  ωi = VC and Σ = CS), obtained estimates for all data 

sets. On investigation of the covariance parameters estimated, it was found that the 

diagonal CS parameter of the random effects covariance matrix was still estimated as 

zero, resulting in equal estimates for all variances and covariances of the random 

effects covariance matrix. 

 

The simpler models tended to fit all of the simulated data sets (Table 4.1). The models 

that did fit all datasets successfully were the models fitted without random effects; the 

two random intercept models with fitted error covariance structures ωi = VC and ωi = 
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AR(1); all random intercept and slope models where ωi = VC, except when 

heterogeneous random effects covariance structures were fitted; and random intercept 

and slope models where ωi = AR(1) and Σ = UN and where ωi = AR(1) and Σ = VC. 

These models which were successfully fitted either had five or less parameters, or 

were models without random effects. 

 

4.2       Criteria for Selecting the Best Model 

 

The AIC, BIC and AICc were extracted for each model fitted. These are the criteria 

recommended for choosing between models with different covariance structures 

(Wolfinger, 1993; Davis, 2002; Demidenko, 2004). The mean, standard error, 

minimum and maximum of the information criteria were calculated for each fitted 

model for each set of simulated data. For each simulated data set, it was noted which 

models obtained AIC, BIC, and AICc values within two units of the minimum (the 

threshold value for differences between AIC values of the best fitting models 

specified by Duong (1984), Burnham and Anderson (2002) and Jones (1993)) for the 

models fitted to the data set. This information was then summarised across all of the 

data sets that were simulated from the same model. For the data sets simulated under 

each model, for each of the different models fitted, the percentage of occurrences 

where the model was within two units of the minimum AIC, BIC or AICc was 

calculated. These results are summarised and discussed in Section 4.3, with full 

results appearing in Appendix A1 (summary measures), and A2 (percentage within 

two units of the minimum values). 

 



 90 

To determine the robustness of the linear mixed effect model against misspecification 

of the covariance structure, the method described in Verbeke and Lesaffre (1997) and 

Jacqmin-Gadda et al. (2007) was used. In these simulation studies the authors 

investigated the robustness of the maximum likelihood estimator of fixed effects from 

a linear mixed model when the error distribution was misspecified. In order to 

determine the robustness of the estimates, the authors used the coverage rates for the 

95% confidence interval of the fixed parameter estimates. The proportion, π̂ , of 95% 

confidence intervals containing the true population parameter could then be calculated 

along with a confidence interval for π , the true proportion of confidence intervals that 

contain the true population parameter. I used the Wilson score confidence interval for 

π , as recommended by Brown, Cai and DasGupta (2001), because the standard 

interval for percentages using the normal approximation behaves very poorly when 

percentages are close to 0% or 100%, leading to confidence intervals that exceed 

100% or that are less than 0% (Wilson, 1927). The Wilson confidence interval is 

defined as 
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sets where the true parameter value was contained within the confidence interval, n is 

the total number of data sets, and z is the 100(1-α/2)th percentile of the standard 

normal distribution. When calculating the confidence interval for a set of simulated 

data, where there are 250 data sets, the Wilson confidence intervals and those 

obtained using the normal approximation to the binomial are quite different, where the 

upper limit of the normal confidence interval often exceeds 100%. The Wilson 

confidence limits when calculated for all the simulated data (i.e. 6500 data sets) are 
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very similar to those obtained by the normal approximation. When estimated values 

are obtained for the full set of simulated data, if an estimated coverage probability 

falls outside the limits of between 94% and 96%, then the confidence interval of the 

estimated proportion will not contain 95%, and so the estimated value for the 

coverage probability will be significantly different from 95%. These results are 

summarised and discussed in Section 4.4 and the full results for each simulated model 

are presented in Appendix A3, which includes the Wilson confidence interval for each 

estimated coverage probability. 

 

4.3       Analysis of Information Criteria 

 

The information criteria, AIC, BIC and AICc, were used in two ways to determine 

which models fit the simulated data best. Firstly, for each simulated model, the mean 

AIC, BIC and AICc values were calculated for each fitted model (Appendix A1). The 

standard errors for these means were also calculated, and in general, were close to one 

for most models. To summarise these values into one value for each fitted model, the 

overall mean AIC, BIC and AICc values across all simulated models were calculated 

for each fitted model. Models with overall AIC, BIC or AICc values within two units 

of the minimum mean values, and which were successfully fitted to all simulated data 

sets, were considered as generally good fitting models. A summary of the AIC, BIC 

and AICc values for the models successfully fitted to all the simulated data sets 

appears in Table 4.2.  

 

When summarised over all simulated data sets, the standard error of the mean 

information criteria was 0.22 to 0.23, except for the OLS model which had a standard 
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error of 0.27. The overall mean AIC, BIC, and AICc values for all fitted models were 

444.29, 444.66, and 448.96 respectively, the overall minimum and maximum AIC 

values were 432.12 and 492.05 respectively, the overall minimum and maximum BIC 

values were 437.30 and 505.00 respectively, and the overall minimum and maximum 

AICc values were 432.12 and 494.41 respectively.  

 

The models that obtained low mean AIC, BIC and AICc values tended to be those 

models with less complex error covariance structures, such as VC, CS, AR(1) or 

TOEP, and consequently fewer covariance parameters (six or less). To demonstrate 

this, the mean information criteria were plotted against the number of covariance 

parameters in the fitted models (Fig. 4.1). Kruskal-Wallis non-parametric tests were 

calculated to accompany this plot, and show that models with more complex error 

covariance structures (i.e. UN, CSH or ARH(1) structures) obtained significantly 

higher mean information criteria at the 5% level of significance, but not at the 1% 

level. The models with heterogeneous covariance parameters, as well as for 

unstructured covariance matrices, obtained comparatively higher mean AIC, BIC and 

AICc values. Both the AIC and AICc, which in general obtained very similar mean 

values, show that the no random effects model with ωi = TOEP obtained the lowest 

mean value compared to all other fitted models. The means for the BIC, which 

penalises more heavily for extra parameters compared to the AIC and AICc, indicate 

that the random intercept model with ωi = VC performed the best, with the no random 

effects model with ωi = CS obtaining the second lowest mean value. The mean AIC 

and AICc values were generally quite close, as shown in Fig. 4.1.  
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Fitted Model AIC BIC 
ωi Σ No. 

Par 
mean se min max mean se min max 

VC None 1 483.33 0.27 480.96 486.26 484.62 0.27 482.26 487.55 
 Int. 

only 
2 439.74 0.23 435.00 484.19 442.30 0.23 437.59 486.11 

 VC 3 439.55 0.23 434.95 484.28 442.95 0.23 438.91 486.30 
 CS 3 441.96 0.23 436.56 485.18 444.71 0.23 439.22 488.43 
 UN 4 439.60 0.22 435.47 486.17 444.35 0.22 439.80 490.61 
           
CS None 2 439.75 0.23 435.00 484.69 442.35 0.23 437.59 487.28 
           
CSH None 10 441.88 0.23 437.10 487.49 448.36 0.23 443.58 493.97 
           
AR(1) None 2 446.14 0.22 439.97 484.67 448.73 0.22 442.56 487.26 
 Int. 

only 
3 439.50 0.22 435.25 485.10 443.30 0.22 439.12 488.29 

 VC 4 439.32 0.22 435.26 485.18 443.91 0.22 439.97 488.48 
 UN 6 439.11 0.22 432.42 486.94 445.14 0.22 438.88 492.66 
           
ARH(1) None 10 448.45 0.22 441.00 487.49 454.93 0.22 447.48 493.96 
           
TOEP None 4 439.05 0.22 432.12 486.48 444.24 0.22 437.30 491.66 
           
UN None 10 442.63 0.23 433.94 492.05 455.59 0.23 446.90 505.00 

Fitted Model AICc     
ωi Σ No. 

Par 
mean se min max     

VC None 1 483.36 0.27 481.00 486.30     
 Int. 

only 
2 439.85 0.23 435.12 484.27     

 VC 3 439.55 0.23 434.95 484.28     
 CS 3 442.09 0.23 436.68 485.36     
 UN 4 439.95 0.22 435.84 486.48     
           
CS None 2 439.87 0.23 435.12 484.80     
           
CSH None 10 442.49 0.23 437.71 488.10     
        
AR(1) None 2 446.26 0.22 440.09 484.79  
 Int. 

only 
3 439.73 0.22 435.49 485.28  

 VC 4 439.32 0.22 435.26 485.18  
 UN 6 439.65 0.22 433.03 487.43  
        
ARH(1) None 10 449.07 0.22 441.61 488.10  
        
TOEP None 4 439.05 0.22 432.12 486.48  
        
UN None 10 445.00 0.23 436.31 494.41  

Note:  
Int. only = Intercept only 
No. Par = Number of 
parameters 
se = standard error 
min = minimum 
max = maximum 

Table 4.2: Summary measures of AIC, BIC and AICc values for models successfully 
fitted to all simulated data sets. 
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The mean AIC, BIC, and AICc values for the OLS model were about 10% larger than 

the values obtained for the best fitting models. Therefore the OLS model, which had 

the smallest number of parameters (one covariance parameter), did not fit the data 

sufficiently well, as evidenced by the large AIC, BIC and AICc values. 

 

The overall mean AIC, BIC and AICc values can only give an indication of which 

models are performing better than others when the variability of these criteria between 

different simulated data sets is small. As the standard errors of the mean AIC, BIC 

and AICc values were small (Table 4.2), ranging between 0.22 and 0.23 for all models 

except the OLS model, which had a standard error of 0.27, this method of comparing 

fitted models can be justified in this case. A clearer indication that a model was 

Fig. 4.1: Mean of the AIC, BIC, and AICc values as a function of the number of 
covariance parameters. The OLS model has been excluded. Kruskal Wallis tests testing 
if the mean information criteria are significantly higher for models with either UN, CSH 
or ARH(1) error covariance structures are included. 

Kruskal Wallis (KW) tests testing if the mean information criteria 
of models with less complex error covariance strucutues is less than 
the mean of models with more complex covariance structures. 
 
AIC   : KW Chi-squared value = 4.1143; df = 1; p-value = 0.0425 
BIC   : KW Chi-squared value = 5.6000; df = 1; p-value = 0.0180 
AICc : KW Chi-squared value = 4.8286; df = 1; p-value = 0.0280 
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performing well would be if the fitted model consistently obtained information criteria 

within two units of the minimum across all simulated data sets. Therefore a second 

means of comparing between models was developed based on the AIC, BIC and AICc 

values. For each simulated model, the percentage of times a model produced an AIC, 

BIC or AICc within two units of the respective minimum was calculated for each 

fitted model (Appendix A2). In order to have one percentage value with which to 

compare different fitted models, each fitted model’s percentage values were averaged 

over all simulated models. These results appear in Table 4.3.  

 

The mean percentage values showed a similar trend to the mean AIC, BIC and AICc 

values. The simpler models tended to have information criteria within two units of the 

respective minimum more often than the more complicated models. Models which 

performed particularly well under this analysis were the random intercept model with 

ωi = VC, and the no random effects model with ωi = CS, both models having only two 

covariance parameters. Both of these models were within two units of the minimum 

BIC more than 55% of the time on average, and within two units of the minimum AIC 

and AICc values more than 43% of the time. The lowest percentages for both of these 

models were recorded for data simulated under AR(1) or ARH(1) models with no 

random effects. The CS model with no random effects and the random intercept 

model with independent errors should have similar results as these two models result 

in the same parameterisation of the variance, Vi (Davis 2002, p. 137). The top 

performing model according the AIC and AICc values was the model with ωi = VC 

and Σ = VC, which obtained values for these criteria within two units of the minimum 

more than 45% of the time. The model with ωi = VC and Σ = UN, the two random 

intercept models with ωi = VC and with ωi = AR(1), and the no random effects model 
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with ωi = TOEP, obtained AIC and AICc values with 2 units of the respective 

minimum more than 30% of the time.  

 

 

 

Fitted Model 

ωi Σ 

Percentage 
fits where 
model was 
within 2 
units of 
the AIC 

Percentage 
fits where 
model was 
within 2 
units of 
the BIC 

Percentage 
fits where 
model was 
within 2 
units of 
the AICc 

VC None 3.02 3.42 3.05 
 Int. only 43.81 57.14 46.07 
 VC 47.11 32.80 43.93 
 CS 25.08 29.91 25.70 
 UN 30.39 10.50 24.59 
     
CS None 43.70 55.85 45.82 
     
CSH None 12.65 4.15 11.45 
     
AR(1) None 14.33 17.50 14.86 
 Int. only 44.01 19.90 36.98 
 VC 33.56 13.60 27.48 
 UN 26.16 9.14 21.45 
     
ARH(1) None 4.16 1.75 3.99 
     
TOEP None 32.61 19.41 30.70 
     
UN None 7.90 0.68 4.14 
     

 

 

The percentage of cases where the AIC, BIC or AICc values of the OLS model were 

within two units of the minimum was much lower (close to 3%) compared to the best 

fitting models (close to 50%) (Table 4.3). On closer inspection, the cases where the 

OLS model did have AIC or BIC values close to the minimum were all for data 

simulated under the OLS model (Table 4.4). 

 

Table 4.3: Percentage occurrences where fitted models produced AIC, BIC or AICc 
values within two units of the minimum. 
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Fitted Model 

ωi Σ 

Percentage 
fits where 

correct 
model was 
within 2 
units of 
the AIC 

Percentage 
fits where 
incorrect 

model was 
within 2 
units of 
the AIC 

Percentage 
fits where 

correct 
model was 
within 2 
units of 
the BIC 

Percentage 
fits where 
incorrect 

model was 
within 2 
units of 
the BIC 

Percentage 
fits where 

correct 
model was 
within 2 
units of 

the AICc 

Percentage 
fits where 
incorrect 

model was 
within 2 
units of 

the AICc 
VC None 81.60 0.00 92.40 0.00 82.40 0.00 
 Int. 

only 
75.60 43.23 89.20 56.35 78.40 45.50 

 VC 69.20 46.78 37.20 32.80 58.80 43.71 
 CS 71.20 23.31 56.00 28.74 64.80 24.19 
 UN 42.00 30.16 7.20 10.59 34.80 24.34 
        
CS None 75.60 43.12 83.20 55.20 77.60 45.26 
        
CSH None 40.00 11.74 14.00 3.84 36.80 2.82 
        
AR(1) None 77.60 12.30 90.80 15.12 80.40 12.77 
 Int. 

only 
79.60 43.81 88.00 20.30 51.20 37.10 

 VC 38.00 33.92 11.20 13.86 28.40 27.90 
 UN 52.40 24.08 24.00 7.86 48.40 19.26 
        
ARH(1) None       
        
TOEP None 68.00 30.34 52.00 17.34 67.20 28.29 
        
UN None 23.6 7.36 3.60 0.59 13.2 3.82 
        

 

 

Table 4.4 compares how well a fitted model performs when fitted to data simulated 

from the same model versus when it is fitted to data simulated under a different model 

(i.e. when it is incorrectly fitted to a data set). This table shows that, with respect to 

the AIC and AICc values, the percentage of model fits with information criteria 

within two units of the minimum when a model is fitted to data simulated from the 

same model is always higher compared to the percentage when fitted to data 

simulated under a different model. The percentage values for the BIC indicate that the 

model with ωi = VC and Σ = UN and the model with ωi = AR(1) and Σ = VC have 

Table 4.4: Percentage occurrences where fitted models produced AIC, BIC or AICc 
values within two units of the minimum when fitted to data simulated from the same 
model and the percentage when fitted to data simulated from other models.  
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lower percentage of model fits with BIC within two units of the minimum where data 

was fit the correct model versus when fit to the incorrect model. Both the percentages 

for the AIC and for the AICc showed the smallest difference between correct and 

incorrect model fits for the model with ωi = AR(1) and Σ = VC, where the difference 

for AICc was less than 1% and for AIC was close to 4%. The smallest difference in 

the BIC percentage values between correct and incorrect model fits was for the model 

with ωi = VC and Σ = UN. The largest difference between correct and incorrect 

models for all three information criteria was for the no random effects model with ωi 

= AR(1). The differences in percentages for the AIC and AICc values were both over 

65%, and the difference for the BIC was over 75%. There were large differences in 

percentage values for the AIC and AICc value for the model with ωi = VC and Σ = 

CS. This was the model fitted with equal elements in the covariance structure for the 

random effects. 

 

Table 4.5 shows, for each set of simulated data, pairs of fitted models which both 

obtained AICc values within two units of the minimum more than 40% of the time. 

This table was created to show which models are “interchangeable”, in that they 

obtain similar fits to the data, making it difficult to distinguish which model is best 

using the information criteria. The AICc was chosen as it is corrected for bias 

compared to the regular AIC, and does not penalise for additional parameters as 

severely as the BIC, as discussed in Chapter 2 (McQuarrie & Tsai, 1998). Models 

which together obtained low AICc values close to the minimum the most often are the 

random effects model with ωi = VC and Σ = VC, the random intercept model with ωi 

= VC, and the no random effects model with ωi = CS. Together with these three 

models, the random intercept model with ωi = AR(1) also obtained close to the 
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minimum AICc for many of the simulated models. Only the OLS model included 

itself and the AR(1) no random effects model, along with the three previously 

mentioned models, as most frequent best fitting models. The OLS model had the 

highest number of model pairs obtaining AICc values close to the minimum for more 

than 40% of the simulated data sets. Data simulated under the random intercept 

models with ωi = AR(1) and ωi = ARH(1) were two of only twelve models with best 

fitted models differing from those mentioned above. In these two cases the no random 

effects model, random intercept model, and the random effects model with Σ = VC, 

each with AR(1) error structure, most often obtained the lowest AICc values. The data 

simulated under ωi = AR(1) random effects models with either Σ = CSH, ARH(1) and 

UN had minimum AIC values when either of these three model were fit to the data. 

The models with the most number of parameters (i.e. the heterogeneous error models 

with heterogeneous random effects or UN random effects structure, as well as the no 

random effects model with Σ = UN) did not have any pairs of models frequently 

obtain minimum AICc values. 
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True Model 
ωi Σ 

Fitted model pairs which both obtained AICc values within 2 units 
of the minimum for more than 40% of the simulated data sets 

VC None 1-2; 1-3; 1-8; 1-15; 2-3; 2-8; 2-15; 3-8; 3-15; 8-15;  
 Int. only 2-3; 2-8; 2-16; 3-8; 8-16 
 VC 2-3; 2-8; 2-16; 3-8; 8-16 
 CS - 
 CSH 2-3; 2-8; 3-8 
 ARH(1) 2-3; 2-8; 2-16; 3-8; 8-16 
 UN 2-3; 2-8; 2-16; 3-8; 8-16 
   
CS None 2-3; 2-8; 2-16; 3-8; 8-16 
 CSH 2-3; 2-8; 2-16; 3-8; 8-16 
   
CSH None 2-3; 2-8; 2-16; 3-8; 8-16 
 CSH - 
 ARH(1) - 
 UN - 
   
AR(1) None 15-16; 15-17; 16-17 
 Int. only 2-3; 2-8; 2-16; 3-8; 8-16 
 VC 2-3; 2-8; 3-8 
 CSH 18-19; 18-20; 19-20 
 ARH(1) 18-19; 18-20; 19-20 
 UN 18-19; 18-20; 19-20 
   
ARH(1) None 15-16; 15-17; 16-17 
 VC 2-8 
 CSH - 
 ARH(1) - 
 UN - 
   
TOEP None 2-8  
   
UN None - 
   

 

 

 

 

 

 

 

Model numbers for Assumed Models 
1 :   ωi = VC, Σ = None;          2 :   ωi = VC, Σ = intercept only; 3 :   ωi = VC, Σ = VC;  
4 :   ωi = VC, Σ = CS;            5 :   ωi = VC, Σ = CSH;     6 :   ωi = VC, Σ = ARH(1);  
7 :   ωi = VC, Σ = UN;        8 :   ωi = CS, Σ = None;     9 :   ωi = CS, Σ = CSH;  
10 : ωi = CS, Σ = TOEP;         11 : ωi = CSH, Σ = None;   12 : ωi = CSH, Σ = CSH;  
13 : ωi = CSH, Σ = ARH(1);   14 : ωi = CSH, Σ = UN;   15 : ωi = AR(1), Σ = None;  
16 : ωi = AR(1), Σ = intercept only; 17 : ωi = AR(1), Σ = VC;   18 : ωi = AR(1), Σ = CSH;  
19 : ωi = AR(1), Σ = ARH(1);  20 : ωi = AR(1), Σ = UN;  21 : ωi = ARH(1), Σ = None;  
22 : ωi = ARH(1), Σ = VC;       23 : ωi = ARH(1), Σ = UN;  24 : ωi = ARH(1), Σ = ARH(1);  
25 : ωi = ARH(1), Σ = UN;      26 : ωi = TOEP, Σ = None; 27 : ωi = TOEP, Σ = CS; 
28 : ωi = TOEP, Σ = TOEP;     29 : ωi = UN, Σ = None 
 

Table 4.5: For each simulated model set the fitted model pairs that both obtained 
within 2 units of the minimum AICc value for more than 40% of the simulated 
data sets. 
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4.4        Analysis of Coverage Probabilities 

 

To determine the robustness of the models, the coverage probabilities were calculated 

for the 95% confidence intervals of the fixed effects for each fitted model under each 

simulated model. As there were a large number of comparisons to make, these 

coverage probabilities appear in Appendix A3. The average coverage probabilities 

were calculated for each fitted model over all the simulated data sets. These results are 

presented in Table 4.6 for those models which were successfully fitted to all of the 

simulated data sets. 

 

 

 

ωi Σ Intercept Gender  
(male = 1) 

Age Gender×Age 

VC None 98.86 98.55 99.31 99.11 
 Int. only 94.18 93.75 92.42 92.09 
 VC 93.14 92.66 93.06 93.03 
 CS 91.65 91.51 95.14 94.97 
 UN 95.77 95.25 95.69 95.28 
      
CS None 94.18 93.75 92.43 92.09 
      
CSH None 94.00 93.77 92.48 92.49 
      
AR(1) None 98.05 97.65 98.40 98.18 
 Int. only 94.91 94.46 93.65 92.89 
 VC 93.72 92.97 93.71 93.18 
 UN 95.65 95.05 95.29 94.92 
      
ARH(1) None 97.83 97.80 98.22 98.17 
      
TOEP None 95.69 95.08 94.38 94.12 
      
UN None 93.35 92.26 92.95 92.28 

 

 

 

Table 4.6: Mean coverage probabilities of fixed effects for each fitted model which was 
successfully fitted to all the simulated data. 

Test for Ho: The coverage probability is 95%. This hypothesis is rejected for values less than 
94% or greater than 96%. 
 
Values less than 94% (italics) with           background. 
 
Values between 94% and 96% (normal font) with           background. 
 
Values more than 96% (bold) with           background. 
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Each model was fitted to 26 sets of simulated data, each set containing 250 data sets. 

In total, each model was fitted to 6500 data sets. To get an approximate non-rejection 

region for the hypothesis that the true coverage probability of the 95% confidence 

interval is 95%, the normal approximation was used. To do this, it needs to be 

assumed that the 6500 data sets represent a random sample of data sets. To reject this 

hypothesis, the average coverage probability needs to be less than 94% or more than 

96%. These results are displayed in Table 4.6. A robust model should result in 

accurate estimates of the fixed effects, as well as accurate standard errors of these 

estimates. If a model is predicting the fixed effects well under all of the simulated 

models then the coverage probability of the 95% should be between the 94% and 

96%. If the coverage probabilities are above 96%, then this means that the variances 

have been overestimated, resulting in an overly conservative model. If the coverage 

probabilities are below 94%, then estimates are either biased or the variance is under 

estimated. 

 

The model with ωi = TOEP and no random effects, as well as the random intercept 

and slope models with ωi = VC and Σ = UN and with ωi = AR(1) and Σ = UN, 

obtained coverage probabilities that were within the limits. All three of these models 

were determined by the AIC and BIC analysis to fit the data relatively well. The 

random intercept model with ωi = VC, the no random effects model with ωi = CS, and 

the random intercept and slope model with ωi = VC and Σ = VC had coverage 

probabilities that were significantly below 95%, despite being the models that, 

according to the AIC and BIC measures, fit the data the best. The AR(1) and VC error 

models with no random effects had coverage probabilities that were significantly 

more than 95%, indicating that these models were overestimating the variance.  
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The performance of these models was then investigated for each simulated model 

(Appendix A3). Each model’s performance was based on how many confidence 

intervals of the coverage probabilities contained 95%. Of the three models that 

obtained coverage probabilities close to 95%, the random intercept and slope model 

with ωi = VC and Σ = UN performed the best, with only two coverage probabilities 

significantly higher, and only one coverage probability significantly lower than 95%. 

The random intercept and slope model with ωi = AR(1) and Σ = UN also performed 

well, with six coverage probabilities significantly more than 95% and one coverage 

probability significantly lower than 95%. The random effects with ωi = TOEP 

performed slightly worse, with eight coverage probabilities significantly above and 

four coverage probabilities significantly below 95%.  

 

Approximately 15% of the simulated models had coverage probabilities for the 

random intercept model with ωi = AR(1) that were significantly below 95%. The no 

random effects model with ωi = CS, the random intercept model with ωi = VC, and the 

random intercept and slope models with ωi = VC and Σ = CS, ωi = VC and Σ = VC, 

and with ωi = AR(1) and Σ = VC did not perform very well in relation to the coverage 

probabilities as each of these models had more than 25% coverage probabilities below 

95%. The no random effects models with ωi = AR(1) and ωi = VC had coverage 

probabilities significantly higher than 95% for 76% and 92% of the simulated models 

respectively. Both of these models produced coverage probabilities that were 

reasonable for simulated models under no random intercept models with ωi = AR(1), 

ωi = ARH(1) and ωi = VC. 

 

 



 104 

4.5        Discussion 

 

Verbeke and Lesaffre (1997) showed that the fixed effects estimates of the linear 

mixed effects model were robust to misspecification of the distribution of the random 

effects. In their study they assumed that the covariance structure was correctly 

specified, but that the random effects were not normal. The purpose of this study was 

to determine the robustness of the fixed effects estimates of the linear mixed effect 

model when the covariance structure was misspecified, assuming that the random 

effects were normally distributed. The results show that the linear mixed effects 

model is not robust to misspecification of the covariance structure, although there are 

certain covariance structures that perform better when misspecified compared to 

others. 

 

This study supports the findings of Jacqmin-Gadda et al. (2007), who showed that 

random intercept and slope models were more robust than random intercept models. 

In this study, the random intercept models fit relatively well according to the 

information criteria, but had coverage probabilities that were too low. Under certain 

covariance combinations, the random intercept and slope models obtained coverage 

probabilities that indicated robustness. This applies to simple covariance structures, 

and generally when the correlation between observations on the same subject is only 

described by either the random errors or the random effects covariance structures. 

Certain covariance structures were shown to be “interchangeable”, as they obtained 

similar fits consistently, and for data simulated from various covariance structures. In 

particular, the random effects model with ωi = VC and Σ = VC, the random intercept 

model with ωi = VC, and the no random effects model with ωi = CS obtained similar 



 105 

fits the most often. It would be expected that the random intercept model with ωi = 

VC and the no random effects model with ωi = CS would obtain similar fits as the 

resulting covariance structure for the responses should be the same under these two 

models, but where one model includes random effects and the other does not. These 

three covariance structures did not frequently fit the data well under all generating 

models. For example, these models did not perform well when fitted to data generated 

from random intercept models with either AR(1) or ARH(1) errors, random effects 

models with AR(1) errors and complex random effects structures. Therefore the 

flexibility of these models is limited. 

 

A comparison was also made between an OLS model, assuming independent errors 

and no random effects, and other linear mixed effects models. The OLS model fitted 

the data much worse, as the AIC, BIC and AICc values were much higher compared 

to the other linear mixed effects models. The coverage probabilities of the OLS model 

were too high, indicating an overestimation of the standard error. This is what is 

expected when the correlation between repeated measurements is ignored 

(Fitzmaurice et al. 2004). 

 

As well as fitting the data well, a robust model should obtain parameter estimates of 

the fixed effects that are close to the true values, as these parameter estimates are 

largely what a researcher would require from the model, and obtain inferences that 

accurately describe the expected range of the parameters. Even though quite a number 

of models were identified by the information criteria analysis as fitting the data 

similarly, based on the analysis of the coverage probabilities, only three of these 

models obtained coverage probabilities close to the confidence level. These three 
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models therefore obtained parameter estimates for the fixed effects that were the 

closest to the true parameter values, as well as standard errors that were reasonable. 

Good choices for the covariance structure therefore include the random intercept and 

slope model with ωi = VC and Σ = UN, the random intercept and slope model with ωi 

= AR(1) and Σ = UN, and the no random effects model with ωi = TOEP. 

 

This analysis shows that even though the underlying covariance structure of the data 

may be complicated, it may not be necessary to fit a model to this data with the same 

parameterisation. A simpler covariance structure can result in a better fit with 

parameter values closer to the true parameter values. Therefore it appears that the 

maximisation routine used by default by SAS PROC MIXED (ver. 9.1) is not very 

successful when fitting complicated models with many parameters. Since certain 

models were not successfully fitted to simulated data generated from the same model, 

it indicates that the optimisation procedure is not always successful at fitting models 

with certain, usually more complex, covariance structures, not because the covariance 

structure is misspecified, but because the optimum solution is not located by the 

procedure. This is most likely due to the large number of covariance parameters, but 

small number of subjects in the PR data set. 


