APPENDIX H CONSTANT VOLTAGE BEHIND
TRANSIENT REACTANCE GENERATOR
MODEL

The improved two generator model uses the constant voltage behind transient

reactance generator model. This model ignores magnetic saliency; assumes the
operating reactance of the generator is the transient reactance, x,, and considers

the voltage behind transient reactance to be a constant.

This appendix discusses the accuracy with which the constant voltage behind
transient reactance generator model models the actual generator voltage and the

actual generator reactance.
H.1 ACCURACY OF THE GENERATOR VOLTAGE

In the Eskom network out-of-step tripping happens during the first slip cycle.

Hence, to determine whether a constant voltage generator model could be used it

should be shown that the voltage, E = E, + j Eq , behind transient reactance

stays constant during the first slip cycle.

The voltage behind transient reactance decays according to [45, p114]:

i, __E, i
dt T, '
dE, E, -E,
=- . H.1-
dt T, (H.1-6)

Typically T, is large and T, (;o is small. Hence, dE(; / dt is small and dE, / dt is

large (figure H.1).
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For normal steady state operation Eq is larger than E, (Appendix F, figure F.1).

Hence, a rapid change in E, does not make ‘E ‘ change rapidly.

To show the decay in ‘E ‘ is small we trace the Koeberg generator voltage for the

first slip cycle (figure H.1). The case considered is where Mpumalanga and the

Western-Cape are slipping poles.

Table H.1 lists the values used for 7}, and T, .

Figure H.1 shows it is reasonable to assume ‘E ‘ is constant for at least the first

slip cycle. Therefore, when only the first slip cycle is considered it is acceptable

to assume a constant generator voltage.
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FIGURE H.1 Decay in E, and E, measured at Koeberg

Table H.1 7, and T, of the Koeberg generator

TIME CONSTANT
T, T,
seconds seconds
10.9 1.6
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H.2 ACCURACY OF THE GENERATOR REACTANCE

The constant voltage behind transient reactance generator model computes

armature reaction, x,, using (Appendix D, section D.7-a):

Cox, tx
x =4 7 (H.2)
2
This section shows the accuracy with which x; represents armature reaction

depends on the angle the generator current forms with the g-axis.
H.2.1 Armature reaction

Armature reaction represents the voltdrop due to the armature, i.e. stator, current.
The voltdrop is obtained by grouping all the stator current terms in the equation
used to compute the terminal voltage. The case considered is where the generator

1s in the transient state.

The flux linking the d- and g-axis of the generator when in the transient state is

shown in figure H.2.

It follows from figure H.2 that to obtain x, the equation used to compute the
terminal voltage should be written in terms of the stator currents, i, and i . the q-

axis flux linkage, ‘¥, , and the field flux linkage, ¥/, .
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FIGURE H.2 The d- and g- axis equivalent circuits of a generator in the transient

state [1, p184]. When in the transient state i,, =i,, =0

To obtain the equations used to compute the terminal voltage, we note the per unit

stator voltage equations are [1, p86]:

€; = p\Pd _quWr _Raid (H3-a)
e,=p¥, +¥w -RI (H.3-b)
e, = p¥, — R i, (H.3-¢)

The transformer voltage terms, p¥, and p¥,, can be ignored [1, p170] and the
per unit value of w, can be set equal to 1 p.u. (hence w,'¥ =¥  and

wW,=¥,) [1, pl74]. Therefore, when i, =0 the stator terminal voltage can be

computed using:
e, =¥, - R, (H.4-a)
e,=¥,-R,i (H.4-b)

To express e, and e, interms of 7,, i, ¥, and ¥, we apply Kirchhoff’s

voltage law to the equivalent circuits shown in figure H.2. We obtain:
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W, =—Li,+ L,y (H.5-a)

Y, =¥, -Li, (H.5-b)
V,=%,+L,i, (H.5-¢)
W, =-L,i, +L,i, (H.5-d)
¥, =Y, -Li, (H.5-¢)
¥, =%, +L,i, (H.5-f)
From equation H.5-f, we obtain:
ilq =¥ (1.6)

Substitution into equation H.5-d, gives:

w =g iap | u ¥
ag = “hogly T Ly I
lq

La La
Y, | 1+— ==L, i +—F
L

lq

L aq’q lg

L, +L L
\paq[u]:_L i+

lg

_ LiLy, (—i )+ L Ly [&j
q

aqg —
L,+L, L,+L,| L,

, Y
¥, =L,|-i+—~
qu

where: I I
L S (H.7)
1 L,+L,
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The substitution of equation H.7 into equation H.5-e gives:

W o=L |—i By Li
q — “aq _lq+L_ L (H.8)

The substitution of equation H.8 into equation H.4-a gives (w=1 p.u.)

e :[(L +L )i —R,i }—L’ htl H.9
d 1 aq )" q a’d aq L ( )

lg

The rotor base fluxes induce the speed voltage. Therefore, by grouping the rotor

based fluxes of equation H.9 the equation for £, is obtained. The equation is:

v, L L (¥
E =-I 4 | __"e"lq lg
d aq[ qu J Laq +qu [L (HlO)

lq

The similarity between the d- and g-axis in figure H.2 allows writing:

' ¥,
W =L 1+ (H.11)
Ly,
. L,L
Where: L, = S
L,+Ly,

By using mathematical manipulation similar to the manipulation used to obtain

equation H.9, it can be shown (w=1 p.u.):

' . . ! ‘Pﬁi
eq = [_ (Ll + Lad )ld - Ralq ]+ Lad L_ (H 12)
fd
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Therefore, expressed in terms of the field and g-axis flux we have (w=1 p.u.):

L,L L,L, (¥
e, =|| L +—"0 i —R,i, |- H.13-
‘ Hz Laq+qu]q “’} L, +L, | L, (H13-2)

L L. L L. v
e,=|—|L+—L i, R, [+—L | L (H.13-b)
1 Ly+L, Ly+L,\ Ly,

Armature reaction represents the voltdrop due to armature current. Hence, by

grouping the terms in equation H.13 containing armature current the d- and g-axis

components of the armature reaction are obtained. Hence:

armature Laq qu . .
etrmae =\ [+ 4\ R, (H.14-a)
L,+L,
L L
el = L +—L—li — R, (H.14-b)
L,+Ly,

When resistance is neglected, we have [1, p146 and p185]:

e:ilrmature — Ll +ﬂ l.q
L, . T L, .

=xi (H.15-a)

e;rmature - _ Ll +ﬂ l.d
L,+Ly,

=—x,i, (H.15-b)

When modelling the generator as a voltage, E,, behind the reactance, x,, we

have:
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X, +x

' n '
e;zrmature — _[ xd 2 xq Jld (H16'b)

Form equation H.15 and equation H.16 it follows for generators with x,, = x;] we

have:

earmature _ Xa + xq i = x'i
e = 225 =, (H.17-a)

) x' +x' '
e;rmatuie — _( d 5 4 }'d = _xdl'd (H17-b)

H.2.2 Armature reaction and x,

Equation H.17 shows that equation H.2 describes armature reaction accurately

when x, =x,.

When x,, # x; the accuracy with which equation H.2 describes armature reaction

depends on the angle that develops between the generator g-axis and the stator

current. To illustrate, consider the case where I is positioned with respect to the

q-axis such that i, =0 and i, # 0. The armature reaction is then e,;”**" = —x,i,.

When 1 is positioned with respect to the g-axis such that i, #0 and i, =0 the

armature reaction is e;™ """ = x i .

Which one of the two examples is best approximated by (xd +x, )/ 2 depends on

whether it is x, or x;I that is numerically the closest to (x;, + xq) 2.
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