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APPENDIX H CONSTANT VOLTAGE BEHIND

TRANSIENT REACTANCE GENERATOR

MODEL

The improved two generator model uses the constant voltage behind transient

reactance generator model. This model ignores magnetic saliency; assumes the

operating reactance of the generator is the transient reactance, '

ix , and considers

the voltage behind transient reactance to be a constant.

This appendix discusses the accuracy with which the constant voltage behind

transient reactance generator model models the actual generator voltage and the

actual generator reactance.

H.1 ACCURACY OF THE GENERATOR VOLTAGE

In the Eskom network out-of-step tripping happens during the first slip cycle.

Hence, to determine whether a constant voltage generator model could be used it

should be shown that the voltage, =
'

E
'

dE j+
'

qE , behind transient reactance

stays constant during the first slip cycle.

The voltage behind transient reactance decays according to [45, p114]:
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(H.1-a)

(H.1-b)

Typically '

doT  is large and '

qoT  is small. Hence, dtdEq
'  is small and dtdEd

'  is

large (figure H.1).
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For normal steady state operation '

qE  is larger than '

dE  (Appendix F, figure F.1).

Hence, a rapid change in '

dE  does not make '
E  change rapidly.

To show the decay in '
E  is small we trace the Koeberg generator voltage for the

first slip cycle (figure H.1). The case considered is where Mpumalanga and the

Western-Cape are slipping poles.

Table H.1 lists the values used for '

doT  and '

qoT .

Figure H.1 shows it is reasonable to assume '
E  is constant for at least the first

slip cycle. Therefore, when only the first slip cycle is considered it is acceptable

to assume a constant generator voltage.

 FIGURE H.1 Decay in '

dE  and '

qE  measured at Koeberg

Table H.1 '

doT  and '

qoT  of the Koeberg generator

TIME CONSTANT
'

doT

seconds

'

qoT

seconds

9.10 6.1
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H.2 ACCURACY OF THE GENERATOR REACTANCE

The constant voltage behind transient reactance generator model computes

armature reaction, '

ix , using (Appendix D, section D.7-a):

2

''

' qd

i

xx
x

+
= (H.2)

This section shows the accuracy with which '

ix  represents armature reaction

depends on the angle the generator current forms with the q-axis.

H.2.1 Armature reaction

Armature reaction represents the voltdrop due to the armature, i.e. stator, current.

The voltdrop is obtained by grouping all the stator current terms in the equation

used to compute the terminal voltage. The case considered is where the generator

is in the transient state.

The flux linking the d- and q-axis of the generator when in the transient state is

shown in figure H.2.

It follows from figure H.2 that to obtain '

ix  the equation used to compute the

terminal voltage should be written in terms of the stator currents, di  and qi ; the q-

axis flux linkage, q1Ψ , and the field flux linkage, fdΨ .
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FIGURE H.2 The d- and q- axis equivalent circuits of a generator in the transient

state [1, p184]. When in the transient state 021 == qd ii

To obtain the equations used to compute the terminal voltage, we note the per unit

stator voltage equations are [1, p86]:

darqdd iRwpe −Ψ−Ψ=

qardqq iRwpe −Ψ+Ψ=

000 iRpe a−Ψ=

(H.3-a)

(H.3-b)

(H.3-c)

The transformer voltage terms, dpΨ  and qpΨ , can be ignored [1, p170] and the

per unit value of rw  can be set equal to 1 p.u. (hence qqrw Ψ=Ψ  and

ddrw Ψ=Ψ ) [1, p174]. Therefore, when 00 =i  the stator terminal voltage can be

computed using:

daqd iRe −Ψ−=

qadq iRe −Ψ=

(H.4-a)

(H.4-b)

To express de  and qe  in terms of di , qi , q1Ψ  and fdΨ  we apply Kirchhoff’s

voltage law to the equivalent circuits shown in figure H.2. We obtain:
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fdaddadad iLiL +−=Ψ

dladd iL−Ψ=Ψ

fdfdadfd iL+Ψ=Ψ

(H.5-a)

(H.5-b)

(H.5-c)

qaqqaqaq iLiL 1+−=Ψ

qlaqq iL−Ψ=Ψ

qqaqq iL 111 +Ψ=Ψ

(H.5-d)

(H.5-e)

(H.5-f)

From equation H.5-f, we obtain:

q
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q
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1

Ψ−Ψ
= (H.6)

Substitution into equation H.5-d, gives:

where:
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The substitution of equation H.7 into equation H.5-e gives:
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The substitution of equation H.8 into equation H.4-a gives ( 1=w  p.u.)
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The rotor base fluxes induce the speed voltage. Therefore, by grouping the rotor

based fluxes of equation H.9 the equation for '

dE  is obtained. The equation is:
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The similarity between the d- and q-axis in figure H.2 allows writing:

Where:
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By using mathematical manipulation similar to the manipulation used to obtain

equation H.9, it can be shown ( 1=w  p.u.):
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Therefore, expressed in terms of the field and q-axis flux we have ( 1=w  p.u.):
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(H.13-b)

Armature reaction represents the voltdrop due to armature current. Hence, by

grouping the terms in equation H.13 containing armature current the d- and q-axis

components of the armature reaction are obtained. Hence:
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When resistance is neglected, we have [1, p146 and p185]:
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(H.15-b)

When modelling the generator as a voltage, '

iE , behind the reactance, '

ix , we

have:
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Form equation H.15 and equation H.16 it follows for generators with ''

qd xx =  we

have:
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(H.17-b)

H.2.2 Armature reaction and 
'

i
x

Equation H.17 shows that equation H.2 describes armature reaction accurately

when ''

qd xx = .

When ''

qd xx ≠  the accuracy with which equation H.2 describes armature reaction

depends on the angle that develops between the generator q-axis and the stator

current. To illustrate, consider the case where I  is positioned with respect to the

q-axis such that 0=qi  and 0≠di . The armature reaction is then dd

armature

q ixe '
−= .

When I  is positioned with respect to the q-axis such that 0≠qi  and 0=di  the

armature reaction is qq

armature

d ixe '
= .

Which one of the two examples is best approximated by ( ) 2''

qd xx +  depends on

whether it is '

dx  or '

qx  that is numerically the closest to ( ) 2''

qd xx + .


