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Abstract 
 

Introduction: Chronic peridontitis is an inflammatory disease that is caused by the 

accumulation of bacteria in the form of a biofilm in the periodontal pocket. It can be 

treated with oral hygiene in conjunction with β-lactam antibiotics. Many oral 

anaerobic bacteria associated with chronic periodontal diseases have developed 

resistance to β-lactam antibiotics by virtue of their production of β-lactamase 

enzymes. This study investigated the prevalence of β-lactamase-producing anaerobic 

bacteria in the oral cavities of South African patients with periodontitis and the genes 

responsible for these enzymes production.  

 

Methods: Periodontal pocket debri was collected from 48 patients with chronic 

periodontitis and cultured anaerobically on blood agar plates with and without β-

lactam antibiotics. Presumptive β-lactamase-producing isolates were evaluated for 

definite β-lactamase production using the nitrocefin slide method and identified using 

the API Rapid 32A system. Antimicrobial sensitivity was performed using a disc 

diffusion test. Isolates were screened for the presence of the BlaTEM and BlacfxA genes 

using Polymerase Chain Reaction (PCR). Amplified PCR products were sequenced 

and the BlacfxA gene was further characterized using Genbank databases. Seventeen 

isolates containing BlacfxA gene were subjected to broth microdilution technique to 

determine minimum inhibitory concentrations of Amoxycillin, Augmentin, and 

Penicillin.  

 

Results: Seventy five percent (36 of 48) of patients carried, on average 2 strains of β-

lactamase-producing oral anaerobic bacteria, which constituted 10% of the total 

cultivable oral flora. A total of 85 oral anaerobes were isolated from patients. The 
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predominant isolates were gram negative species such as Prevotella spp (58%), 

Bacteroides spp (18%) and Porphyromonas spp (7%). The disc diffusion 

antimicrobial sensitivity test showed that 40% of the strains were resistant to β-lactam 

antibiotics. PCR results revealed that none of the anaerobes carried BlaTEM. The 

BlacfxA gene was identified in 51% of the β-lactamase-producing bacteria. Variants of 

the BlacfxA gene included cfxA2 (77%), cfxA3 (14%) and cfxA6 (9%). Minimum 

inhibitory concenration antimicrobial susceptibility test results showed that more than 

53% of the strains were resistant to β-lactam antibiotics when the BlacfxA gene was 

present. 

 

Conclusions: A high prevalence of β-lactamase-producing oral anaerobic bacteria 

was found in South African patients with chronic periodontitis. Although, it 

comprised 10% of their oral flora these anaerobes can protect non-β-lactamase-

producers by releasing these enzymes into the environment. The most prevalent β-

lactamase gene in this population was BlacfxA subcategory cfxA2 which has 

epidemiological implications and genetic transfer can occur among these bacteria. On 

average fifty percent of the isolates that carried this gene were resistant to β-lactam 

antibiotics therefore alternative antimicrobial agents should be considered in patients 

that are non-responsive to β-lactam antibiotics. This study indicates that there is a 

need for education in the dental community regarding antibiotic resistance and regular 

surveillance with diagnostic testing is needed.  
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Chapter 1 Introduction 
 

Chronic periodontal disease is an inflammatory disease of gingiva which affects 70% 

- 80% of adults worldwide (Marsh and Martin, 1999). This disease is more prevalent 

in developing countries. It is caused by accumulation of subgingival plaque which is a 

bacterial biofilm containing predominantly gram negative anaerobic oral bacteria, 

such as Prevotella spp, Porphyromonas spp, and Fusobacterium spp. Bacterial by 

products and host response causes tissue damage which results in loosening of the 

tooth, occasional pain, discomfort and eventually tooth loss. Treatment of 

periodontitis is by oral hygiene techniques used in conjunction with β-lactam 

antibiotics. However studies have demonstrated that a wide variety of periodontal 

pathogens have developed resistance to β-lactam antibiotics by virtue of their 

production of enzymes known as β-lactamases.  

 

β -lactamase-producing bacteria release the β-lactamase enzyme into their 

environment resulting in resistance to antimicrobial therapy and they may also convey 

protection from antimicrobials to other susceptible oral bacteria. Mechanisms of 

bacterial resistance to antimicrobials have been attributed to resistance genes which 

are transferred between related species, and commensal and pathogenic bacteria in the 

oral biofilm. 

 

A preliminary study conducted in South Africa showed 69% of patients with chronic 

periodontitis harbouring β-lactamase-producing anaerobes with a mean of one to two 

strains per patient. However this study did not determine the prevalence of the β-

lactamase genes that encode for the β-lactamse enzymes, and did not test the
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antimicrobial susceptibility of the periodontal pathogens. Therefore, this study was 

conducted to isolate and identify β-lactamase-producing oral anaerobes from 

periodontal pocket debris of patients with chronic periodontitis, determine their 

prevalence, analyse their antimicrobial sensitivity profile and identify the genes 

responsible for β-lactamase production in oral anaerobes in this population. 

 

1 Literature review 

1.1 Periodontitis and Gingivitis 
 
Gingivitis is the mildest form of periodontal disease that affects 30-50% of adults 

worldwide (Pihlstrom et al., 2005). It is caused by the dental plaque which is a 

bacterial biofilm on the teeth adjacent to the gingiva. Although gingivitis is a mild 

form of periodontitis, it does not affect the underlying structures of the teeth and is 

reversible, but progresses to periodontitis if left untreated (Pihlstrom et al., 2005). 

However, in some cases gingivitis may exist for prolonged periods before developing 

into periodontitis. The transition into chronic periodontitis may be due to selective 

overgrowth of plaque species due to impairment of the host defences, infection and 

proliferation of a newly arrived pathogen in the gingival area or activation of immune 

responses that damage host tissue (Samaranayake, 2002). 

 

Periodontitis is an extension of the inflammatory process that extends into the 

periodontal ligament, cementum and the alveolar bone surrounding the teeth 

(Nisengard and Newman, 1994). A localized inflammatory response occurs due to the 

formation of a periodontal pocket forming between the gingiva and tooth root from 

the accumulation of subgingival plaque (Samaranayake, 2002).  
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The periodontal pocket gets deeper as the disease progresses with further destruction 

of the tooth’s supporting structures (Figure 1.1) such as the alveolar bone (Pihlstrom 

et al., 2005).  

 

 

Figure 1.1 Progression of periodontal diseases (Bingham, 2010) 
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The depth of the pocket indicates an inflammatory response that results in the 

swelling of gingival tissues at the top of the pocket and the loss of collagen 

attachment of the tooth to the alveolar bone at the base of the pocket. Pockets can 

extend from 4 to 12 mm in depth and can harbour from 107 to 109 bacterial cells 

(Loesche and Grossman, 2001). Destruction of the tooth’s supporting structures 

results in loosening of the tooth, occasional pain and discomfort and eventual tooth 

loss (Samaranayake, 2002, Southard and Godowski, 1998, Fosse et al., 2002, 

Pihlstrom et al., 2005).  

 

Chronic periodontitis occurs mostly in adults as a slowly progressive chronic disease 

which is very common amongst the general population affecting about 70% - 80% of 

all adults (Marsh and Martin, 1999, Nisengard and Newman, 1994). Periodontitis with 

slight to moderate destruction is characterized by loss of up to one third of the teeth’s 

supporting tissues and probing depths of up to 6mm with clinical attachment loss of 

up to 4 mm. The disease may be localized, involving one area of a tooth’s attachment 

or it may be generalized, involving several teeth or the entire dentition. Advanced 

destruction of the teeth’s periodontal tissues, periodontal probing depths greater than 

6 mm with attachment loss greater than 4 mm, and radiographic evidence of bone loss 

and tooth mobility are signs of an advanced level of chronic periodontitis (Armitage, 

1999, Loesche and Grossman, 2001). This disease is more prevalent in developing 

countries, and it has been found that prevalence and severity increase with age 

(Pihlstrom et al., 2005). 

 

Chronic periodontitis results in the inflammation of the peridontium which then 

releases inflammatory cytokines, lipopolysaccharides, bacterial products and bacteria 
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into the systemic circulation. The presence of these products, bacteria and immune 

cells promotes atherosclerosis and affects blood coagulation and the function of 

platelets, which all in all contributes to the onset of a stroke (Li et al, 2000). A number 

of proposed mechanisms exist in which oral anaerobic bacteria may trigger pathways 

leading to cardiovascular disease. Oral anaerobes can be distributed to distant sites of 

the body especially in immuno-compromised patients such as those that are suffering 

from diabetes, malignancies or rheumatoid arthritis (Li et al, 2000). Diabetes mellitus 

is due to an absolute or relative deficiency of insulin. This syndrome is a risk factor 

for severe periodontal disease, and severe periodontitis often coexists with diabetes 

(Li et al, 2000). 

 

1.2 Causative organisms 
 
The microflora of the mouth consists of more than seven hundred different aerobic 

and anaerobic bacteria which exist in the form of dental plaque (Legg and Wilson, 

1990). The oral cavity represents a perfect example of microbial ecology. Below the 

gum line, the number of bacteria ranges from 1×103 in a healthy shallow crevice to 

more than 1×108 in a periodontal pocket (Nisengard and Newman, 1994).  

 

Normally bacteria in the oral cavity coexist mutually, but under certain conditions 

which favour some putative pathogens over other species, periodontal diseases are 

initiated (Mayrand and Grenier, 1998). As dental plaque matures to a state that is 

associated with periodontal disease, and increasing severity of the disease the 

prevalence and concentration  of gram negative and anaerobic bacteria increases 

(Pihlstrom et al., 2005). Anaerobic bacteria have long been recognised as the 
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microorganisms that cause gingivitis and periodontitis and many of these bacteria are 

responsible for the initiation and progression of periodontal disease as are gram 

negative species (Legg and Wilson, 1990, Kim et al., 2011).  

 

Oral bacterial species exist in microbial complexes in supragingival and subgingival 

plaque, by growing in these complexes oral bacteria are able to express resistance to 

the host’s immune system and antimicrobial agents, therefore the purpose of these 

microbial complexes is to promote growth and survival of oral bacteria (Socransky et 

al., 1998, Haffajee et al., 2008). The different microbial complexes have been 

associated with the sequence of colonization of the oral bacteria as well as periodontal 

disease severity (Holt and Ebersole, 2005).  

 

The microbial complex that is affiliated with periodontal diseases is known as the 

“red complex”, this complex includes putative periodontal pathogens such as 

Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia 

(Socransky et al., 1998). Oral anaerobic bacteria species of the red complex appear 

later in biofilm development in the periodontal pocket. The red complex oral 

anaerobes are associated with clinical periodontal symptoms such as; bleeding upon 

probing of diseased sites, deep periodontal pockets and advanced lesions (Holt and 

Ebersole, 2005).  

 

The second microbial complex that has been observed in subgingival and 

supragingival plaque of patients diagnosed with chronic periodontitis is known as the 

“orange complex “. Members of the orange complex are Fusobacterium nucleatum, 

Prevotella intermedia, Campylobacter rectus, Prevotella nigrescens, 
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Peptostreptococcus micros and Eubacterium nodatum (Socransky et al., 1998). Oral 

anaerobes of the orange complex are associated with the gingival redness, bleeding 

upon probing of the periodontal pocket and deeper peridontal pockets. These bacterial 

species are also associated with the red microbial complex (Haffajee et al., 2008). 

Deeper periodontal pockets harbour more plaque containing red and orange complex 

bacterial species. These pockets produce more gingival crevicular fluid thus providing 

essential nutrients for the orange and red complex bacterial species (Haffajee et al., 

2008). 

 

Other oral anaerobes that have been associated with periodontal disease include 

Capnocytophaga gingivalis, Bacteroides capillosus, Prevotella spp, Bacteroides 

ureolyticus, Eikenella corrodens and Veillonella spp  (Savitt and Socransky, 1984). 

Veillonella species which are normally found in the human intestinal and respiratory 

tract  have been isolated from human dental plaque in patients with periodontal 

disease (Nisengard and Newman, 1994). Many of these bacteria derive some of their 

nutrients from the gingival crevicular fluid, which is a tissue transudate that seeps into 

the periodontal area (Loesche and Grossman, 2001).  

 

Infection of tissue with these and other organisms is usually accompanied by the 

release of bacterial leucotoxins, fibrolysins, endotoxins and proteases which damage 

the gingival tissues and trigger host cell populations to express hydrolytic enzymes, 

and evoke both antibody mediated and cell-mediated immune responses.  

These immune responses are usually protective, but a sustained microbial challenge 

and immune response results in the breakdown of tissues (Nisengard and Newman, 

1994, Mayrand and Grenier, 1998).  



8 
 

1.3 Pathogenesis 
 

Both the host and oral bacteria in the periodontal biofilm play a role in damage of the 

tissue by release of proteolytic enzymes that recruit polymorphonuclear leucocytes 

into the tissues (Nisengard and Newman, 1994, Pihlstrom et al., 2005). The 

neutrophils, lymphocytes, plasma cells and macrophages vary in number depending 

on the disease status of the tissue (Nisengard and Newman, 1994). Several 

components of the host’s immune system are active in the pathogenesis of periodontal 

diseases and these immune responses may be beneficial or destructive.  

1.3.1  Host immune response 
 

The immune response removes bacterial products such as antigens and enzymes that 

have penetrated the tissue, it also prevents bacterial growth (Loesche and Grossman, 

2001). These responses are usually protective, but a sustained microbial challenge and 

presence of effector molecules released by resident and migrating cells together with 

inflammatory mediators results in the breakdown of both soft and hard tissue, 

mediated by cytokine and prostanoid cascades (Pihlstrom et al., 2005, Bartold et al., 

2010). Both hypo-responsiveness and hyper-responsiveness of certain pathways that 

form part of the host inflammatory response result in tissue destruction (Bartold et al., 

2010).  

 

Bacterial antigens can penetrate the crevicular epithelium and evoke both humoral 

antibody-mediated and cell-mediated immune responses (Pihlstrom et al., 2005).  

Prostaglandins and cytokines generated during the inflammatory response can 

stimulate bone resorption (Marsh and Martin, 1999). In chronic periodontitis 

osteoclast activity is enhanced without a corresponding increase in bone formation, 
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which results in inflammatory-mediated bone loss. Osteoclasts are multinucleated 

cells that are responsible for bone resorption, these cells have been shown to resorb 

alveolar bone in periodontal disease studies (Bartold et al., 2010).  

 

1.3.2  Bacterial pathogenesis 
 

Periodontal pathogens possess numerous mechanisms that permit them to directly 

damage the periodontium or indirectly compromise the host response (Nisengard and 

Newman, 1994). These include factors influencing bacterial colonization, bacterial 

adhesion, coaggregation, proliferation, interbacteria relationships and host factors and 

tissue destruction (Marsh and Martin, 1999). P.  gingivalis produces a number of 

factors that can be associated with virulence including fimbriae, collagenase, 

lipopolysaccharide, endotoxins, toxic proteases and a capsular polysaccharide which 

provides resistance to host defenses such as antibodies and inhibition of phagocytosis 

by the hosts immune cells (Nisengard and Newman, 1994). The collegenase produced 

by P. gingivalis degrades fibrogen, and another protease called thiol-proteinase 

contributes to the degradation of the collagenous periodontal ligament that connects 

teeth to alveolar bone (Marsh and Martin, 1999). P.  endodontalis produces type IV 

collagen which may contribute to the pathogenesis of endodontic infections. P. 

intermedia and P. gingivalis possess the ability to destroy immunoglobulins and 

complement components (Nisengard and Newman, 1994).  

 

F. nucleatum along with members of the red complex secrete serine proteases. These 

proteases degrade elements of the periodontal connective tissue and host defense 

systems. The 65 kDa F. nucleatum protease was found to degrade extracellular matrix 
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proteins and is thought to play a role in both the nutrition and pathogenicity of 

periodontal pathogens. The breakdown of the extracellular matrix proteins may 

contribute to the damage of periodontal tissues (Signat et al., 2011).  T. denticola is an 

oral spirochete that is resistant to human β-defensins. Defensins interact strongly with 

lipopolysaccharides (LPS) due to the negative charge of LPS.  

These bacteria lack a traditional LPS which numerous gram negative bacteria posses, 

therefore β-defensins cannot interact with the LPS of this oral spirochete. This 

resistance confers a survival advantage allowing it to survive in the periodontal pocket 

(Brissette and Lukehart, 2002). Another bacterial enzyme known as phospholipase A 

may initiate alveolar bone resorption as a precursor for prostaglandin. The 

combination of the direct effects of the bacteria on the periodontal tissues and indirect 

effects achieved by influencing host responses both influence the responses of the 

periodontium to the periodontal pathogens (Nisengard and Newman, 1994). Once a 

periodontal pocket has formed and the pocket is full of periodontal pathogens and 

there is no adequate treatment active periodontitis commences. This leads to loss of 

the tooth’s supporting structures and will eventually lead to tooth loss (Pihlstrom et 

al., 2005). 

 

1.4 Treatment of periodontal disease 
 

The main aim of periodontal therapy is to control the infection by reducing the 

number of bacteria which are in the form of dental plaque in the periodontal pocket. 

The rationale of treatment depends upon the identification of as many environmental 

and host factors as possible (Nisengard and Newman, 1994).  
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Treatment includes implementing oral hygiene measures and antibiotic therapy 

(Nisengard and Newman, 1994).  

 

1.4.1  Oral hygiene measures 
 

Oral hygiene involves mechanical procedures such as scaling and root planning that 

remove subgingival calculus, reducing the infection in shallow to medium depth 

pockets. Patient home care which involves brushing, use of antimicrobial mouth 

rinses and flossing regularly can maintain the health of the pocket. Chlorhexidine di-

gluconate mouth rinse is considered the most effective antimicrobial compound for 

oral use. Chlorhexidine has the advantage of inhibiting the development of plaque and 

gingivitis (Loe, 2000). Cetylpyridinium chloride is a quaternary ammonium 

compound that is used in some mouthwashes, this compound has demonstrated a 

moderate degree of efficacy as an antiplaque agent and in the reduction of gingivitis 

(Santos et al., 2004). 

 

A clinical-trial done by Santos et al (2004) evaluated the short-term clinical and 

microbiological efficacy of 0.05% chlorhexidine and cetylpyridinium chloride used as 

an adjunctive oral-hygiene method for patients with periodontitis. They found that the 

plaque levels and the total subgingival anaerobic microflora had been reduced 

significantly in patients who used the mouth rinse. Although chlorhexidine and 

cetylpyridinium chloride  are effective in decreasing the number of periodontal 

pathogens they have undesirable side effects such as staining of the teeth, and 

irritation of soft tissue (Loe, 2000, Santos et al., 2004) 
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Stannous fluoride is used in toothpastes and oral mouth rinses. In a study in 1985 it 

was noted that a single subgingival application of stannous fluoride reduced the 

amount of black pigmented gram negative anaerobic bacteria but had little effect in 

reducing the total bacterial count (Schmid et al., 1985). There are few investigations 

on the effect of fluoride in periodontics although it is effective in controlling 

gingivitis by reducing plaque accumulation (Brecx et al., 1990, Paine et al., 1998).  

 

Oral hygiene has the advantage of being a localized method of removal of the 

pathogenic bacteria, but does not always eliminate all the bacteria due to their 

presence within the periodontal tissues, or in the presence of deeper pockets their 

inaccessibility to the instrumentation, therefore the numbers of bacteria remain 

relatively constant in these deep pockets (Southard and Godowski, 1998, Loesche and 

Grossman, 2001). Antibiotics are frequently prescribed for patients with periodontitis 

usually as adjuncts to conventional mechanical treatment. Serrano et al. (2011) 

demonstrated that systemic antibiotics significantly improved the clinical outcome of 

periodontal therapy.  

 

1.4.2  Antibiotics 
 

β-lactam antibiotics (Figure 1.2) are the most widely used group of antibiotics for 

treating periodontal conditions because of their suitable antimicrobial spectrum, 

bactericidal activity, low incidence of adverse effects and cost effectiveness (Wilke et 

al., 2005, Ioannidis et al., 2009, Iwahara et al., 2006). They are classified together as a 

result of their common core structure which is the β-lactam ring and are separated on 

the basis of another ring structure bound to the β-lactam ring (Wilke et al., 2005, 
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Williams, 1999). These antibiotics also have structural similarities with the binding 

sites of the bacterial substrates which enable them to attach to and inactivate the 

transpeptidases involved in the synthesis of the bacterial cell wall (Williams, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Chemical structure of β-lactam antibiotics (Lilly et al,. 2002) 

 

Tetracyclines are also used in the treatment of periodontal diseases. These antibiotics 

inhibit bacterial protein synthesis by binding to the 30S ribosomal subunit of bacteria 

and preventing access of aminoacyl tRNA to the acceptor site on the mRNA-ribosome 

complex. This results in the disruption of the formation of the initiation complex 

required for amino acid protein synthesis (Soares et al., 2012).  Tetracyclines have the 

advantage of being able to inhibit collagenase therefore inhibiting tissue breakdown in 

periodontal disease. However bacteria have developed resistance to tetracycline over 

the years and use various mechanisms to resist the antimicrobial agents.  
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These strategies include (i) limitation of access of tetracycline to the target site, (ii) 

alteration of the ribosome to prevent binding of the antibiotic, and (iii) producing 

tetracycline inactivating enzymes (Soares et al., 2012, Ramos M M et al., 2009). 

The most common tetracycline resistance genes that have been found to confer 

resistance to gram negative periodontal pathogens are tet(M) and tet(Q) (Lacroix and 

Walker, 1996, Ioannidis et al., 2009). Other antibiotics used in the treatment of  

chronic periodontitis include metronidazole, clindamycin, and doxycycline (Kapoor et 

al., 2012). 

 

Studies have shown that periodontal microorganisms in patients with chronic 

periodontitis can be resistant to the antibiotics that are commonly used including β-

lactam antibiotics (Ardila et al., 2010, Handal and Olsen, 2002, Iwahara et al., 2006, 

Ramos M M et al., 2009, Wilke et al., 2005). Various studies have also shown an 

increase in the levels of resistance to tetracycline antibiotics over the years in patients 

with periodontal diseases (Fiehn and Westergaard, 1990, Kornman and Karl, 1982, 

Abu Fanas et al., 1991). 

 

1.5 Drug resistance 
 

Antimicrobial resistance has become a widespread phenomenon compromising the 

efficacy of antibiotics. The main reason for the rapid growth in resistance can be 

attributed to the misuse of antibiotics in a region (Ardila et al., 2010, Ioannidis et al., 

2009).  Studies have indicated that antibiotic misuse and overuse affect the 

commensals and pathogenic bacteria, which could result in the commensals serving as 

reservoirs of antibiotic resistance determinants for the pathogens (Wilke et al., 2005, 
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Kim et al., 2011). Bacterial resistance to these antibiotics has been extensively 

described and attributed to resistance genes (Ioannidis et al., 2009). Antimicrobial 

resistance can be classified into three groups: intrinsic, mutational and acquired 

resistance.  

 

Intrinsic resistance is innate resistance to antibiotics that occurs naturally in 

microorganisms. Mutational resistance is due to mutations in the chromosome of 

bacterial species. Upon reproduction of the microorganisms the progeny produced 

will be genetically altered and result in bacterial populations that are resistant to 

antimicrobial agents. Acquired resistance occurs when a microorganism acquires 

genes that code for antibiotic resistance from another microorganism (Soares et al., 

2012). 

 

Resistance to β-lactam antibiotics arises through several mechanisms such as: (i) 

modification of the penicillin-binding protein which may occur through the mutations 

in the chromosomal genes encoding the enzymes which is known as intrinsic 

resistance.  Another strategy is through the acquisition of foreign homologous genes 

or fragments of genes from related species encoding new penicillin-binding-proteins 

(Gjermo et al., 2002, Wilke et al., 2005). (ii) Decreased access of the antibiotic to the 

targets in the bacterial cell by reduced permeability of the outer-membrane of the 

pathogenic bacteria, this mechanism is observed in gram negative bacteria due to the 

composition and structure of the cell wall of these microorganisms. The outer 

membrane of gram negative bacteria functions as an impenetrable barrier to some 

antibiotics, however some β-lactam antibiotics such as ampicillin and amoxicillin are 

small enough to penetrate through porin pores of the microbes (Soares et al., 2012). 
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(iii) The final resistance mechanism is inactivation of the antibiotic by bacterial 

production of inactivating destructive enzymes (Figure 1.3) known as β-lactamases 

(Handal and Olsen, 2000, Williams, 1999).  

 

Kim et al. (2011) suggested that horizontal gene transfer of resistance determinants 

can occur in the oral biofilm, therefore exchange of mobile genetic elements between 

commensals pathogenic bacteria can contribute to the emergence of drug resistance in 

the oral cavity.  A study by Tribble et al. (2007) demonstrated that Porphyromonas 

gingivalis is capable of conjugal transfer of chromosomal and plasmid DNA which 

provide a useful way to transfer resistance genes. The most frequent and most 

efficient mechanism of resistance to β-lactam antibiotics is the production of β-

lactamase enzymes which have been found in a variety of putative periodontal 

anaerobic bacteria such as Prevotella spp and Fusobacterium spp (Wilke et al., 2005, 

Iwahara et al., 2006, Williams, 1999).  

 

1.6 β-lactamase enzymes 
 

β-lactamase enzymes are the major cause of bacterial resistance to  β-lactam 

antibiotics (Bush et al., 1995). These enzymes are commonly detected in diseased 

periodontal sites and have been proven to be positively correlated with increased 

periodontal pocket depth (Soares et al., 2012). Number of different types of β-

lactamase enzymes have been isolated and characterized. They have been organized 

into four classes (A to D) on the basis of their sequence similarities and biochemical 

characteristics (Williams, 1999, Wilke et al., 2005).  
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These destructive enzymes are widespread amongst gram-negative and gram-positive 

bacteria (Handal and Olsen, 2000, Wilke et al., 2005, Brook, 2009). In the oral cavity 

containing a mixed population of both gram-negative and gram-positive bacteria, β-

lactamase enzymes are generally excreted into the environment and confer protection 

to the microorganisms producing the enzyme and non- β-lactamase producers present 

at the site of infection (Herrera et al., 2000, Brook, 2009).These enzymes are 

important in gram negative bacteria as they are the major defense mechanism of these 

pathogens against β-lactam antibiotics (Wilke et al., 2005). The outer-membrane of 

the gram negative pathogens forms a permeable barrier that limits the entry of the β-

lactam compounds into the cell. Decreased permeability in concert with production of 

β-lactamases confers maximal protection of the microbes from  β-lactam antibiotics 

(Handal and Olsen, 2000).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.3 Activity of β-lactam antibiotics and β-lactamases in Gram negative 

bacteria (Wang et al,. 1999)  



18 
 

β-lactamases are almost ubiquitous in bacteria, when produced in small quantities, 

many contribute little to antibiotic resistance and may play a physiological role in 

peptidoglycan metabolism (Livermore, 1993, Medeiros, 1997). They have been 

detected in dark pigmented Prevotella species and Capnocytophaga species in 

patients diagnosed with chronic periodontitis (van Winkelhoff et al., 1997). The β-

lactamase enzymes produced by Prevotella strains have the properties of the class A 

group of β-lactamases, which hydrolyze most penicillins (Iwahara et al., 2006).  

These enzymes catalyze the hydrolysis of the β-lactam ring of the antibiotics which 

results in the splitting of the amide bond. This then results in the production of 

inactive products and the antibiotic can no longer inhibit bacterial cell wall synthesis 

(van Winkelhoff et al., 1997, Williams, 1999, Handal and Olsen, 2000).  

 

Studies have demonstrated that the most common β-lactamase producing oral 

anaerobic bacteria belong to the genus Prevotella, Fusobacterium, Capnocytophaga 

and Veillonella (van Winkelhoff et al., 1997, Handal et al., 2005, Patel, 2011). A high 

prevalence of β-lactamase producing oral anaerobic bacteria has been reported in 

different countries. In the Spanish population the prevalence was 87%, in Dutch 

population 73%, in France 53% whereas in South African patients 69% (van 

Winkelhoff et al., 1997, Fosse et al., 1999, Herrera et al., 2000, Patel, 2011). 

 

1.7 β-lactamase inhibitors 
 

Strategies have been implemented to inhibit β-lactamase resistance to β-lactam 

antibiotics, these strategies include modification of the antibiotic structure so that it is 

no longer a substrate for the enzyme and inhibition of the β-lactamase enzyme using a 
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compound known as a β-lactamase inhibitor (Williams, 1999, Handal and Olsen, 

2000). β-lactamase inhibitors are structurally related to penicillin as they consist of 

the amide bond of the β-lactam group of antibiotics, but they have a modified side 

chain. These structural features enable the inhibitors to bind irreversibly to β-

lactamases and inactivate the enzymes (Handal and Olsen, 2000). β-lactamases often 

exhibit a high affinity for those compounds, and the success or failure of the 

compounds depends on their ability to inactivate clinically important β-lactamases 

(Livermore, 1993, Handal and Olsen, 2000). 

 

The combination of a β-lactamase inhibitor with a substrate β-lactam antibiotic can 

prove a useful treatment option, as the β-lactamase inhibitor restores the activity of 

the antibiotic (Livermore, 1993, Williams, 1999). Clavulanic acid is an example of 

these inhibitors and it is usually administered in combination with amoxicillin 

forming a compound known as Augmentin ® (Handal and Olsen, 2000). 

Susceptibility tests including clavulanic acid are considered reliable, since all of the 

TEM- and SHV- derived β-lactamases are inhibited by clavulanic acid (Handal and 

Olsen, 2000). Amoxicillin-clavulanic acid is amongst the most widely used agent for 

treating periodontal diseases (Syed and Loesche, 1972). 

 

1.8 β-lactamase genes 
 

β-lactamase enzymes are encoded by chromosomal DNA or plasmid DNA. 

Chromosomal DNA is relatively stable and chromosomal β-lactamases are universal 

in a specific bacterial species. The spread of β-lactamase genes has been attributed to 
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their integration within mobile genetic elements such as plasmids or transposons 

which carry the genes and facilitate the transfer of genetic material between microbes.  

This mobility is important as it allows for the spread of resistance genes through 

several bacterial communities (Williams, 1999, Wilke et al., 2005). Studies of these 

transposons suggest that they play a significant role in the spread  of drug resistance 

(Arzese et al., 2000). 

 

Plasmid β-lactamases are present in many species of gram negative bacteria, and the 

most common of these β-lactamases is the TEM-type enzyme. A study by Lacroix 

and Walker (1992) found a strain of Eikenella corrodens isolated from a periodontal 

pocket, and containing the TEM-1 β-lactamase gene in association with a 

streptomycin resistance gene. They found that the sequence of this β-lactamase gene 

had one nucleotide difference with the β-lactamase gene carried on transposon Tn3 

(Handal et al., 2005, Lacroix and Walker, 1992). 

 

Another mechanism used in the circulation of resistance genes involves integrons. 

These genetic elements consist of an integrase gene with adjacent gene cassettes that 

commonly contain antibiotic resistance genes. Integrons have been identified carrying 

genes for β-lactamases of Ambler classes A, B, and D (Handal et al., 2005).  

Gram negative bacteria such as most periodontal pathogens can synthesize all four 

classes of β-lactamases, and expression of the genes is either constitutive or inducible 

(Handal and Olsen, 2000). Constitutive production of genes is when they are 

continuously expressed as a resistance mechanism, whereas when genes are only 

induced to produce their products by exposure to a challenging substance they are 

termed as inducible genes (Handal and Olsen, 2000). Once expressed β-lactamase 
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enzymes are secreted into the periplasmic space in gram negative bacteria (Wilke et 

al., 2005). 

β-lactam resistance is also associated with resistance to tetracycline by production of 

tet and erm genes which results in resistance to erythromycin (Handal et al., 2005). A 

high prevalence of tetM, tetQ and blaTEM genes in the subgingival plaque and tongue 

of patients with periodontitis has been noted (Ioannidis et al., 2009) but resistance due 

to the enzymes in these patients was not established. Although the genetic basis of β-

lactamase production by oral anaerobic bacteria has not been clarified, blaCfxA genes 

are known to be present in these organisms.  

 

1.8.1  BlaCfxA genes 
 

BlaCfxA (CfxA) genes are highly prevalent in Prevotella species and Capnocytophaga 

species isolated from periodontal pockets (Fosse et al., 2002, Handal et al., 2005). 

Horizontal gene transfer might explain the spread of closely related gene sequences 

among these periodontal species (García et al., 2008). CfxA has also been shown to 

transfer among Bacteroides strains, transference amongst this species has been found 

to be associated with the conjugative transposon Tn 4555 (García et al., 2008).  

 

A study by Fosse et al (2002) identified the CepA/cblA β-lactamase gene in a 

Prevotella bivia strain isolated from a periodontal pocket. This gene belongs to the 

main β-lactamase resistance gene families (blaTEM, blaOXA, blaAmpC, blaCfxA, and 

blaCepA/cblA), and is commonly associated with Bacteroides fragilis (Fosse et al., 

2002). They proposed further studies on the eventuality of a simultaneous carriage of 

CepA/CblA and CfxA on the same chromosomal transposon. 
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CfxA and CfxA2 genes have been isolated from oral infection sites as well as from the 

causative organisms isolated from these infection sites which suggests that these 

genes are responsible for the production of β-lactamases (Fosse et al., 2002, Iwahara 

et al., 2006). Giraud-Morin et al. (2003) suggested that the CfxA/CfxA2 partition could 

be partly related to the genus and partly to the geographical origin of the enzyme-

producing strains because CfxA gene predominated in North America whereas CfxA2 

predominated in France (Parker and Smith, 1993, Madinier et al., 2001).Whereas a 

study in the United Kingdom showed the presence of both the genes present in 

Prevotella species (Iwahara et al., 2006). However not much is known about β-

lactamase-producing bacteria in South Africa. 

 

1.9 Aim 
 

The purpose of this study was to investigate the prevalence of β-lactamase-producing 

anaerobic oral bacteria in the oral cavities of South African patients suffering with 

periodontitis and identify the genes responsible for this enzyme production.  

 

1.10   Objectives 
 

1. To isolate and identify β-lactamase producing oral anaerobic bacteria from the 

periodontal pocket debris 

2. To determine the prevalence of β-lactamase producing oral anaerobic bacteria 

3. To analyse the antimicrobial sensitivity profile of β-lactamase-producing oral 

anaerobic bacteria 

4. To determine the most prevalent gene/s responsible for β-lactamase 

production in oral anaerobic bacteria in this population.  
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Chapter 2 Materials and Methods 
 
 

2.1 Study population  
 
This study was conducted at the Oral and Dental teaching Hospital of the University 

of the Witwatersrand, Johannesburg.  

Sample size estimation for the confidence interval around a proportion was done 

using the formula:  

(Eng, 2003) 

The parameters used for the sample size estimation are as follows:  

Confidence level 95% and Confidence width 0.30 

Proportion estimate from a previous study by Patel (2011) is 0.31. 

 

Based on this sample size calculation, at least 37 patients were supposed to be 

included which was increased to 48 in case of laboratory accidents. Bacterial samples 

were obtained from a total of forty eight patients diagnosed with chronic periodontitis. 

Patients diagnosed with severe to moderate forms of chronic periodontitis (Figure 2.1) 

and with pocket depths of more than five millimeters (≥ 5 mm) were asked to 

participate in the study. Ethics clearance was obtained from the Human Research 

Ethics Committee (certificate number: M 110112) and written consent was obtained 

from all the participants (Appendix 1.1, 1.2). Patients with a history of previous 

periodontal treatment, necrotizing ulcerative gingivitis, diabetes or those that had 

consumed systemic antimicrobials or anti-inflammatory drugs four weeks prior to the 

study, were excluded from participating. 
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2.2 Sample collection 
 

Pocket depths were measured using periodontal probes (Figure 2.1) and the two 

deepest periodontal pockets in the oral cavity were selected for microbiological 

sampling. Samples were collected over a time period of 7 months by clinicians in the 

presence of the investigator. After careful removal of supragingival plaque and 

isolation of samples with cotton rolls, a fine sterile paper point (DiaDent, Diamond 

Dental Industries) was inserted into the pocket (subgingival area) and left in place for 

ten seconds. Paper points from the two selected sites were pooled in one milliliter of 

reduced transport fluid (Syed and Loesche, 1972) and processed within an hour of 

sampling to ensure the viability of anaerobic bacteria.  The laboratory procedure is 

depicted in a flow diagram in Chapter 7, Appendix 1.3. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.1 Probe in periodontal pocket (Raffetto, 2004) 
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2.3 Isolation of bacteria 
 

Samples were vortexed for thirty seconds using the Vortex Genie 2 (Lasec│SA, 

South Africa). Three serial ten fold dilutions were prepared using 900 µl of phosphate 

buffered saline. A 100 µl of 10-2, 10-3, 10-4 dilutions containing the sample was spread 

on non-selective blood agar plates supplemented with 5mg/l of haemin (Sigma-

Aldrich, South Africa) and 1 mg/l of menadione (Sigma-Aldrich, South Africa) for 

the enumeration of total anaerobic bacteria. 

 

To determine the proportions of subgingival microflora resistant to amoxicillin based 

on β-lactamase production  of the anaerobic bacteria, a 100 µl of the appropriate 

dilution (10-1 and 10-2) containing the sample was spread onto blood agar plates 

enriched with haemin and menadione and supplemented with 3µg/ml of amoxicillin 

only (Smithkline Beecham). A 100 µl of the dilutions was also spread onto blood agar 

plates supplemented with 3µg/ml of amoxicillin and 0.75 µg/ml of clavulanic acid 

(Smithkline Beecham). 

 

All the inoculated blood agar plates were incubated for one week at 37º C in a jar 

sealed with silicone, containing an anaerobic gaspak (Davies diagnostic, South 

Africa) and an anaerobic indicator strip (Becton, Dickson and Company, USA).  

The number of colony forming units (cfu) was determined in each plate. Colonies that 

grew on amoxicillin supplemented plates but did not grow on amoxicillin-clavulanic 

acid supplemented plates were considered as presumptive producers of β-lactamase 

and were sub-cultured (further 7 days) onto non-selective blood agar plates under 

anaerobic and aerobic conditions to eliminate any facultative bacteria.  
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The blood agar plates sub-cultured to test for aerobic colonies were placed in an 

anaerobic jar and a candle was placed in the jar to create a carbon dioxide (CO2) 

environment (Figure 2.2). The blood agar sub-cultured for anaerobic conditions were 

placed in a jar containing an anaerobic gaspak (Davies diagnostic, South Africa) and 

an anaerobic indicator strip (Becton, Dickson and Company, USA). Both jars were 

incubated at 37ºC for one week.   

 

 

 

Figure 2.2 Anaerobic jar with anaerobic gaspak and an anaerobic indicator strip 

for anaerobic conditions. Candle jar for creating CO2 conditions.  
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2.4 Identification of β-lactamase producing bacteria 
 

Colonies that grew under anaerobic conditions only were considered as strict 

anaerobes and they were then further evaluated for β-lactamase production using the 

nitrocefin paper disc spot test (Figure 2.3), in which a filter paper disc (diameter 7cm) 

was placed in a petri dish and impregnated with nitrocefin solution (1 ml). An isolated 

colony was then applied to the impregnated paper with a loop; and if a pink to red 

reaction developed within 5 - 15 minutes, it indicated β-lactamase presence and was 

considered positive (Montgomery et al., 1979). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Nitrocefin Test in which bacterial cultures that are positive for β-

lactamase production change the colour of the reagent from yellow to 

pinkish-red as seen in cultures 1 and 2. Bacteria that don’t produce β-

lactamase enzymes do not produce a colour change as seen with 

culture 3 
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Microbial colonies that had a positive result for the Nitrocefin Paper Disc Spot test 

were identified using the gram stain technique and API Rapid 32-A system 

(Biomérieux, La Balmes Les Grottes, France), which is a standardized system for 

identification of anaerobes. This system uses 29 miniaturized enzymatic tests and a 

database to identify anaerobic microorganisms. Test procedure was followed as 

recommended by the manufacturer. Microbial colonies harvested from blood agar 

were suspended in 2ml of sterile distilled water using a swab. Fifty five microlitres of 

the inoculum was dispensed into each cupule of the API strip (Figure 2.4). The URE 

Cupule (1.0) was covered with 2 drops of mineral oil, then the lid was placed on the 

strip, followed by incubation of the strip at 37 ºC for 4 - 4 ½ hours in aerobic 

conditions. 

 

 

 
 
 
Figure 2.4 API Rapid ID 32 A strip 
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The following reagents were added to the applicable test’s to reveal reactions: 

- NIT test (cupule 0.0) : 1 drop of NIT 1 and NIT 2 reagents  

- IND test (cupule 0.1) : 1 drop of James reagent 

- PAL to SerA test’s (cupules 0.2 to 0.E) : FB reagent (1 drop) 

The reactions were read after 5 minutes according to the reading table (Table 2.1), and 

results recorded on the result sheet. Results were interpreted by coding them into a 

numerical profile (Figure 2.5 to 2.8) and identification of the microbial colony was 

obtained using the APIweb TM database. Isolates were stored in Microbank™ vials 

(Davies Diagnostics, South Africa) and 2% skim milk and stored at – 70 º C for 

further research. 

 

 

 

 

Figure 2.5 API Rapid 32A color changes of Porphyromonas gingivalis  
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Figure 2.6 API Rapid 32 A numerical profile of Porphyromonas gingivalis  

 

 

 

 

Figure 2.7 API Rapid 32 A colour change reaction of Actinomyces meyeri 
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Figure 2.8 API Rapid 32 A numerial profile of Actinomyces meyeri 
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Table 2.1: Reading table for interpretation of the Rapid ID 32 A results (Biomérieux, La Balmes Les Grottes, France) 
  
Cupule Test Active  

Ingredients 
QTY 
(mg/cup.) 

Reactions/ 
Enzymes 

Result 
Negative Positive 

1.0 
1.1 

URE 
ADH 

Urea 
L-arginine 

0.96 
0.77 

UREase 
Arginine DiHydrolase yellow red 

1.2 
1.3 
1.4 
 
1.5 
1.6 
1.7 
 
1.8 
1.9 

αGAL 
βGAL 
βGP 
 
αGLU 
βGLU 
αARA 
 
βGUR 
βNAG 

4-nitrophenyl-αD-galactopyranoside 
4-nitrophenyl-βD-galactopyranoside 
4-nitrophenyl-βD-galactopyranoside 
6-phosphate-2CHA 
4-nitrophenyl-αD-glucopyranoside 
4-nitrophenyl-βD-glucopyranoside 
4-nitrophenyl-αL-arabinofuropyranoside 
4-nitrophenyl-βD-glucuronide 
4-nitrophenyl-N-acetyl-βD-glucosaminide 

0.026 
0.052 
0.034 
 
0.026 
0.026 
0.024 
 
0.026 
0.028 

α-GALactosidase 
β-GALactosidase 
β-GALactosidase 6 Phosphate 
 
α-GLUcosidase 
β-GLUcosidase 
α-ARAbinosidase 
 
β-GlucURonidase 
N-acetyl-β-Glucosaminidase 

colorless yellow 

1.A 
1.B 

MNE 
RAF 

D-mannose 
D-raffinose 

056 
0.56 

MaNnosE fermentation 
RAFfinose fermentation red yellow-orange 

1.C GDC Glutamic acid 0.56 Glutamic acid DeCarboxylase yellow-vert blue 
1.D αFUC 4-nitrophenyl-αL-fucopyranoside 0.024 α-FUCosidase colorless yellow 
0.0 NIT Potassium nitrate 0.14 Reduction of NITrates colorless Red 
0.1 IND L-tryptophan 0.056 INDole production colorless pink 
0.2 PAL 2-naphthyl-phosphate 0.04 Alkaline Phosphatase colorless purple 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.A 
0.B 
0.C 
0.D 
0.E 

ArgA 
ProA 
LGA 
PheA 
LeuA 
PryA 
TryA 
AlaA 
GlyA 
HisA 
GGA 
SerA 

L-arginine-β-naphythylamide 
L-proline-β-naphythylamide 
L-leucyl-L-glycine- β-naphythylamide 
L-phenylalanine- β-naphythylamide 
L-leucine- β-naphythylamide 
Pyroglutamic acid  β-naphythylamide 
L-tyrosine- β-naphythylamide 
L-alanyl-L-alanin-β-naphythylamide 
L-glycine-β-naphythylamide 
L-histidine-β-naphythylamide 
L-glutamyl-L-glutamic acid  β naphythylamide 
L-serine- β-naphythylamide 

0.056 
0.048 
0.052 
0.048 
0.052 
0.044 
0.052 
0.048 
0.04 
0.048 
0.068 
0.04 

Arginine Arylamidase 
Proline Arylamidase 
Leucyl Glycine Arylamidase 
Phenyalanine  Arylamidase 
Leucine  Arylamidase 
Pyroglutamic acid Arylamidase 
Tyrosine  Arylamidase 
Alanine  Arylamidase 
Glycine  Arylamidase 
Histidine  Arylamidase 
Glutamyl Glutamic acid  Arylamidase 
Serine  Arylamidase 

colorless 
pale orange orange 
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2.5 Antimicrobial susceptibility  

2.5.1 Disk Diffusion test 
 

Bacterial colonies that grew on Amoxicillin blood agar plates but did not grow on 

Amoxicillin-clavulanic acid blood agar plates were presumed to be β-lactamase 

producing and subjected to antimicrobial susceptibility testing using the disk diffusion 

test. A loopful of the β-lactamase producing isolates was inoculated into 2 ml of 

saline (Diagnostic Media Products, South Africa) and adjusted to the density of a 0.5 

Macfarland standard. The inoculum was then vortexed with a Vortex Genie 2 

(Lasec│SA, South Africa) and a sterile cotton swab was dipped into the suspension, 

rotated several times and pressed firmly on the inside wall of the tube above the fluid 

level to remove excess inoculum from the swab. Blood agar plates were inoculated by 

streaking the swab over the entire sterile agar surface to ensure an even distribution of 

inoculum.  

 

Antimicrobial disks (Oxoid, United Kingdom) (Table 2.2) were placed onto the 

surface of the inoculated blood agar plate with a dispensing apparatus. The plates 

were inverted and incubated at 37 ºC for one week under anaerobic conditions in 

anaerobic jars. A vernier caliper was used to measure the diameters of the zones of 

inhibition, including the diameter of the disk. The zones were measured to the nearest 

whole millimeter. The results were interpreted according to the Clinical and 

Laboratory Standards Institute (CLSI, 2006) performance standards for antimicrobial 

disk susceptibility tests (Table 2.2).  
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Table 2.2: Antimicrobial agents and zone diameter measurements for disk diffusion 

test 

Antimicrobial Agent 

Disk 

Content 

µg 

Zone Diameter 

Nearest whole mm 

R I S 

≤  ≥ 

Penicillin G 10 28 - 29 

Ampicillin 10 28 - 29 

Clindamycin 2 14 15-20 21 

Trimethoprim-sulfamethoxazole 1.25/23.75 10 11-15 16 

Chloramphenicol  30 12 13-17 18 

Rifampicin  5 16 17-19 20 

Linezolid  30 20 - 21 

Quinupristin-dalfopristin  15 15 16-18 19 

Fusidic acid 10 20 - 21 

Vanomycin  30 10 11-13 14 

Teicoplanin 30 10 11-13 14 

Gentamicin 10 12 13-14 15 

Erythromycin 15 13 14-22 23 

Ciprofloxacin 5 15 16-20 21 

 

 

2.5.2 Minimum Inhibitory Concentration test (MIC)  
 

Minimum inhibitory concentrations (MICs) were performed using the microbroth 

dilution method according to CLSI Methods for Antimicrobial Susceptibility Testing 

of Anaerobic Bacteria (CLSI, 2004).  Seventeen β-lactamase producing bacterial 

cultures were revived and based on morphological identification they were subjected 

to antimicrobial susceptibility using the MIC test.  
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2.5.2.1 Preparation of stock solutions and microtitre plates 
 

Refer to Appendix 3 (Page 110) for stock solution preparation of Amoxycillin, 

Penicillin and Amoxicillin-clavulanic acid. Wells of microtiter plate were inoculated 

with two fold concentrations of antibiotics prepared in a growth medium. For 

amoxicillin and penicillin the starting concentration was 128µg/ml, and for 

Amoxicillin-Clavulanic acid (Augmentin) it was 64/32 µg/ml. A 100 µl of Tryptone 

broth was added to each well of the microtitre plate followed by the addition of the 

appropriately diluted antibiotic stock solution to the first well of each row in the 

microtitre plate. This resulted in a 1:2 dilution of the antibiotic to be tested. Using a 

multi-channel pipette (8 channels for 96 well microtitre plate) set to deliver a 100µl 

volume, the antibiotic broth mixture in the first row of wells was mixed. One hundred 

microlitres of the mixture in row one was transferred to row 2 of wells.  

 

The pipette tips were discarded and new ones used to mix the solution in the second 

row of wells. The procedure was repeated until row 10 of well, once this row was 

mixed the remaining 100 µl in the pipette tips was discarded. Therefore each well 

(rows 1-10) contained a 100 µl mixture of antibiotic and tryptone broth with 

progressive doubling dilutions. Wells of row 11 and 12 contained a 100 µl of tryptone 

broth only as they were control wells. Table 2.3 illustrates an example of the 

amoxicillin-clavulanic acid microtitre plate. Plates were stacked and the topmost plate 

covered, they were then sealed in a plastic bag and stored in a freezer at -70 ºC.         
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Table 2.3 Amoxicillin-Clavulanic acid two-fold dilutions in microtitre plate 

*Amoxicillin concentration is 2:1 to that of clavulanic acid 
 
 
 

 1 2 3 4 5 6 7 8 9 10 11 (Negative 

control column) 

12 (Positive 

control column) 

A 64/32 

µg/ml 

32/16 

µg/ml 

16/8  

µg/ml 

8/4  

µg/ml 

4/2  

µg/ml 

2/1  

µg/ml 

1/0.5  

µg/ml 

0.5/0.25 

µg/ml 

0.25/0.12

5 µg/ml 

0.125/0.063

µg/ml 

Tryptone Broth 

only 

Tryptone Broth 

only 

B 64/32 

µg/ml 
32/16 

µg/ml 
16/8  

µg/ml 
8/4  

µg/ml 
4/2  

µg/ml 
2/1  

µg/ml 
1/0.5  

µg/ml 
0.5/0.25 

µg/ml 
0.25/0.12

5 µg/ml 
0.125/0.063

µg/ml 
Tryptone Broth 

only 
Tryptone Broth 

only 
C 64/32µg/

ml 
32/16 

µg/ml 
16/8  

µg/ml 
8/4  

µg/ml 
4/2  

µg/ml 
2/1  

µg/ml 
1/0.5  

µg/ml 
0.5/0.25 

µg/ml 
0.25/0.12

5 µg/ml 
0.125/0.063

µg/ml 
Tryptone Broth 

only 
Tryptone Broth 

only 
D 64/32 

µg/ml 
32/16 

µg/ml 
16/8  

µg/ml 
8/4  

µg/ml 
4/2  

µg/ml 
2/1  

µg/ml 
1/0.5  

µg/ml 
0.5/0.25 

µg/ml 
0.25/0.12

5 µg/ml 
0.125/0.063

µg/ml 
Tryptone Broth 

only 
Tryptone Broth 

only 
E 64/32 

µg/ml 
32/16 

µg/ml 
16/8  

µg/ml 
8/4  

µg/ml 
4/2  

µg/ml 
2/1  

µg/ml 
1/0.5  

µg/ml 
0.5/0.25 

µg/ml 
0.25/0.12

5 µg/ml 
0.125/0.063

µg/ml 
Tryptone Broth 

only 
Tryptone Broth 

only 
F 64/32 

µg/ml 
32/16 

µg/ml 
16/8  

µg/ml 
8/4  

µg/ml 
4/2  

µg/ml 
2/1  

µg/ml 
1/0.5  

µg/ml 
0.5/0.25 

µg/ml 
0.25/0.12

5 µg/ml 
0.125/0.063

µg/ml 
Tryptone Broth 

only 
Tryptone Broth 

only 
G 64/32 

µg/ml 
32/16 

µg/ml 
16/8  

µg/ml 
8/4  

µg/ml 
4/2  

µg/ml 
2/1  

µg/ml 
1/0.5  

µg/ml 
0.5/0.25 

µg/ml 
0.25/0.12

5 µg/ml 
0.125/0.063

µg/ml 
Tryptone Broth 

only 
Tryptone Broth 

only 
H 64/32 

µg/ml 
32/16 

µg/ml 
16/8  

µg/ml 
8/4  

µg/ml 
4/2  

µg/ml 
2/1  

µg/ml 
1/0.5  

µg/ml 
0.5/0.25 

µg/ml 
0.25/0.12

5 µg/ml 
0.125/0.063

µg/ml 
Tryptone Broth 

only 
Tryptone Broth 

only 
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2.5.2.2 Broth microdilution technique 
 

Inoculation of microtitre plates requires a standardized inoculum to be delivered to 

each well. For each experiment fresh cultures were used. Cultures previously stored in 

storage media (2 % skim milk or Microbank™ ) were thawed and a loopful of culture 

was inoculated into two bottles of 10 ml tryptone broth. These bottles were incubated 

for 7 days under anaerobic conditions at 37 ºC. The β-lactamase-producing bacteria 

were then plated out onto non-selective blood agar and further incubated for 7 days 

anaerobically at 37 ºC. Whichever stock culture grew was used for the broth 

microdilution technique. Purification of cultures was verified based on morphology of 

the stock culture. 

 

A microbiological loop was used to select isolated colonies from the blood agar plates 

and inoculated into 2 ml of saline and adjusted to a 0.5 Mcfarland turbidity standard 

using a turbidity reader. Within 15 minutes after the inoculum was standardized 0.5 

ml of suspension was added to 4.5 ml of saline, this resulted in a 1:10 dilution 

yielding 107 CFU/ml. Five microlitres of this suspension was inoculated into the 100 

µl antibiotic-broth mixture in each well from rows 1-10, and row 12, this resulted in 

the final test concentration of anaerobic bacteria being approximately 5×105 CFU/ml 

or 5×104 CFU/ml. Wells in row 12 served as positive controls, whereas wells in row 

11 contained broth only and were thus the negative controls. Microtitre plates were 

stacked and incubated anaerobically in anaerobic jars containing an anaerobic gaspak 

(Davies diagnostic, South Africa) and an anaerobic indicator strip (Becton, Dickson 

and Company, USA) for 5 days at 37 ºC.  
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 Bacteroides fragilis ATCC ® 25285 was used as a control strain for the MICs. 

Colony counts of inoculum suspension were performed to ensure that the final 

inoculum concentration obtained approximately 1×105 CFU/ml for Bacteroides 

fragilis ATCC ® 25285. This was obtained by removing 10 µl from the inoculated 

growth control well and diluting it into 10 ml saline. After mixing well a 100 µl 

aliquot was spread onto blood agar. The plates were incubated and the presence of 

approximately 100 colonies indicated an inoculum of 1×105 CFU/ml in the well. A 

purity check of the inoculum suspensions of the β-lactamase-producing bacteria was 

performed by subculturing an aliquot of the suspension in each well onto blood agar 

plates for simultaneous inoculation both anaerobically and aerobically. Interpretation 

of control strain results was performed using Table 2.5.  

 

The MIC value of each antibiotic was determined by viewing the microtitre plates 

from the bottom using a viewing apparatus. The MIC breakpoints were read as the 

concentration where no growth or the most significant reduction of growth was 

observed. Interpretation of results was performed using Table 2.4 

 

Table 2.4: Interpretative categories and Minimal Inhibitory Concentration (MIC) 

correlates (µg/ml) 

Antimicrobial 

Agent 

MIC (µg/ml) 

Susceptible Intermediate Resistant 

Amoxicillin-

Clavulanic acid 

≤ 4/2 8/4 ≥ 16/8 

Amoxicillin ≤ 0.5 1 ≥ 2 

Penicillin ≤ 0.5 1 ≥ 2 
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Table 2.5: Acceptable ranges of MIC for Bacteroides Fragilis ATCC ® 25285for 

broth microdilution testing 

Antimicrobial Agent MIC range (µg/ml) 

Amoxicillin-Clavulanic acid (2:1) 0.25/0.125 - 1/0.5 

Penicillin 8-32 

Amoxicillin 16-64 

 

2.6 Molecular analysis 

β-lactamase-producing isolates were screened for the presence of β-lactamase genes 

blaTEM and blacfxA using PCR. 

2.6.1 DNA extraction  
 

For molecular analyses of the isolates, DNA was extracted using a technique 

described by Handal et al (2005) and stored. A loopful of culture was inoculated into 

a sterile Eppendorf tube containing 10 µl of 10× PCR buffer, 15 mM MgCl2 (Qiagen, 

Maryland USA) and 90 µl of sterile distilled water. The inoculated buffer was boiled 

at 95 º C for 10 minutes, cooled on ice, and centrifuged using a micro centrifuge 5424 

(Merck Chemicals Pty. Ltd, SA) at 5 000 rpm for 10 minutes. The supernatant was 

harvested and transferred into a sterile Eppendorf tube and stored at – 70 º C until 

required.  

2.6.2 Polymerase Chain Reaction (PCR) 
 

β-lactamase-producing bactera were screened for the presence of the main resistance 

β-lactamase genes blaTEM and blaCfxA which are generally  found in periodontal 

pathogens (Fosse et al., 2002, Handal et al., 2005). These genes were amplified using 
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the PCR conditions and primers (Table 2.6 and 2.7) described by Handal et al. 

(Handal et al., 2005).  

 

Table 2.6: Genes and Primers used in PCR reaction 
Gene ΄ - 3 ΄)                                            Expected amplified 

product size 

blaTEM GTATGGATCCTCAACATTTCCGTGTCG 

ACCAAAGCTTAATCAGTGAGGCA 

1048 bp 

blaCfxA GCAAGTGCAGTTTAAGATT 

GCTTTAGTTTGCATTTTCATC 

831 bp 

 

 

The supernatant (containing extracted DNA) was thawed and used as a template for 

PCR. DNA was amplified in a 25 µl reaction mixture containing 12.5 µl of 2 × PCR 

Master Mix (Fermentas Life Sciences), 2.5µl of sterile nuclease-free water 

(Fermentas Life Sciences), 5µl of 5µM primer (Inqaba biotec, South Africa), to which 

5µl of template DNA was added. Samples were amplified in an iCycler thermal cycler 

(BIO-RAD, USA), the PCR conditions are summarized in Table 2.7. 

 

Table 2.7: PCR programs used for the detection of β-lactamase genes 
Gene PCR program Cycles 

blaTEM Initial step              95 º C      5 min 
Denaturation          95 º C      1 min 
Annealing              55 º C      1 min 
Extension               72 º C      1 min 
Final step               72 º C       5 min  

1 

30 

1 

blaCfxA Initial step              94 º C      5 min 
Denaturation          94 º C      1 min 
Annealing              54 º C      1 min 
Extension               72 º C      1 min 30 s 
Final step               72 º C      10 min 

1 

25 

1 
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During PCR, strictly regulated sterile conditions were followed to prevent 

contamination. Negative and positive controls were included with each batch of 

samples being analyzed. The positive control for the amplification of blaTEM was 

Escherichia Coli 25746 (University of Copenhagen). A positive control for blaCfxA 

could not be obtained. To generate a control, a few isolates that had tested positive for 

β-lactamase using the Nitrocefin Paper Disc Spot test were selected and amplified 

using PCR. The PCR products were viewed under UV light and the product which 

had the most intense DNA band at the expected size of 831 bp was sent for 

sequencing to Inqaba biotec (Pty) Ltd. The sequencing result was characterized using 

GenBank│EMBL- databases and confirmed that the blacfxA gene was present in the 

isolate. The Prevotella intermedia isolate containing blacfxA gene was then used as the 

positive control for the amplification of the blacfxA gene. For both PCR reactions the 

negative control consisted of sterile water instead of sample DNA. 

 

The PCR products were separated alongside a mass DNA ladder(Fermentas Life 

Sciences, USA) through 1% agarose gels (Whitehead Scientific, South Africa) 

containing ethidium bromide by horizontal electrophoresis. The gels were visualized 

and the images analyzed and captured using the Universal Hood II system (BIO-

RAD, USA).  

2.6.3 Additional analysis of the BlacfxA gene 
 

Amplified PCR products that had a positive result upon being visualized under 

ultraviolet light were sent for sequencing using the Sanger method, to Inqaba Biotec 

(Pty) Ltd.  Once the sequences were retrieved from Inqaba Biotec, a cross-platform 

graphical DNA trace viewer and editor called Ridom TraceEdit was utilized to further 
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anaylze the sequences by editing incorrect base calls. Once edited the sequences were 

further characterized using GenBank│EMBL- databases.     

 

2.7 Statistical Analysis 
 

Descriptive statistics such as the means, standard deviations and medians were 

calculated to describe the data using the STATA statistical package (College Station, 

Texas, USA). 
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Chapter 3 Results 
3.1 Demography 
 

Forty eight patients participated in this study, over a period of 7 months. The mean 

age of the patients was 52 and the range 22 to 83 years of age. Fifty eight percent of 

the patients were female and 42% were male. The average pocket depth upon probing 

was 7 mm, with the range between 5 mm to 13 mm (Table 3.1). 

 

Table 3.1: Demographical results of the study population 

Patient 
number Age Gender 

Tooth no. 1 
Pocket depth  

(mm) 

Tooth no. 2  
Pocket depth  

(mm) 
1 78 F 8 5 
2 67 F 8 6 
3 37 F 5 6 
4 55 F 7 6 
5 58 M 6 6 
6 56 F 7 9 
7 83 F 7 5 
8 64 F 10 7 
9 47 M 8 8 

10 35 M 5 6 
11 37 F 5 6 
12 67 F 7 6 
13 65 M 5 6 
14 64 F 8 7 
15 39 F 7 6 
16 61 F 8 6 
17 33 M 10 7 
18 41 M 5 6 
19 44 M 8 6 
20 65 F 5 6 
21 37 F 6 6 
22 42 M 10 9 
23 40 F 5 6 
24 60 F 5 5 
25 76 M 6 6 
26 45 M 9 7 
27 57 F 6 6 
28 52 M 7 5 
29 51 M 8 9 
30 22 M 8 8 
31 58 M 7 6 
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32 29 F 5 7 
33 48 F 10 10 
34 72 F 6 7 
35 70 F 12 10 
36 34 F 6 6 
37 32 M 6 8 
38 65 F 5 5 
39 57 F 7 5 
40 60 F 6 6 
41 67 M 6 6 
42 54 F 7 8 
43 63 M 9 7 
44 26 M 6 6 
45 54 M 7 5 
46 33 M 6 8 
47 29 F 6 8 
48 63 F 13 7 

MEAN ± SD 52±15.1 F: 58% 7±1.87 6.60±1.31 

  
M: 42% 6.84±1.61 

 

 

3.2 Prevalence of β-lactamase-producing bacteria   
 

Seventy five percent of patients attending Periodontology clinic at the Oral and Dental 

Hospital in Johannesburg carried on average two strains of β-lactamase-producing 

oral anaerobic bacteria, which constituted 10% of the total cultivable oral flora (Table 

3.2). Of the 48 patients that participated in the study 36 patients carried β-lactamase-

producing oral anaerobes. Eighty five strains of β-lactamase-producing bacteria were 

isolated from patients with chronic periodontitis. Complete results are shown in 

Appendix 2. The blood agar plate without any antimicrobial had the highest number 

of bacterial colonies, whereas the blood agar plate with augmentin had the least 

number of bacterial colonies. The mean total count of the control (blood agar only) 

plates amounted to 1.8 ×106 cfu/ml of sample. The counts of β-lactamase-producing 

species that grew on Amoxicillin-clavulanic acid plates were the lowest at 5.9 ×104 

cfu/ml. Figures 3.1-3.3 illustrate growth of oral anaerobic microorganisms on blood 
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agar plates with and without antimicrobials. Growth of black pigmented Prevotella 

intermedia colonies were noted on the amoxicillin plate but not on the augmentin 

plate. 

 

 

 

 

 

 

 

 

Table 3.2: The prevalence of β-lactamase-producing anaerobic oral bacteria in patients 

with chronic periodontitis (n=48)  

Bacteria  Mean± Standard deviation 

total-cfu/ml - control plates  1.8×106 ± 2.3×106 

total-cfu/ml - amoxicillin plates  1.9×105 ± 5.3×105 

total-cfu/ml – amoxicillin-clavulanic acid plates  5.9×104 ± 1.5×105 

Total no. of patients included                                             

Total no. of patients with β-lactamase-producing 

species  

Prevalence of β-lactamase-producing species  

48 

36 

75 % 

Number of β-lactamase strains isolated  

Mean number of β-lactamase strains/patient 

Mean β-lactamase spp. proportion of oral 

bacteria/patient 

85 

2 

9.4% 
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Figure 3.1 Growth of oral anaerobic bacteria on blood agar plate without β-lactam 

antibiotics 
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Figure 3.2  Growth of oral anaerobic bacteria on blood agar plate containing 

amoxicillin 
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Figure 3.3  Growth of oral anaerobic bacteria on blood agar plate containing 

Amoxicillin-clavulanic acid   
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3.3 Identification and characterization of β-lactamase-producing 
oral anaerobic bacteria 

 
 
The gram reaction of β-lactamase-producing oral anaerobic bacteria showed that the 

proportion of gram positive bacilli was higher than that of gram positive cocci, as 

seen in Table 3.3 and Figure 3.4. Of the 85 β-lactamase-producing species isolated 

from patients with chronic periodontitis 78 species (91.7%) were gram negative 

bacteria and 7 isolates (8.2%) were gram positive. Of the 91.7 % gram negative 

anaerobes, 89.4% were rod-shaped anaerobes whereas 2.35% were cocci shaped. 

Figures 3.5 to 3.7 illustrate gram stain reaction and morphology of Porphyromonas 

gingivalis, Propionibacterium granulosum and Veillonella spp isolated from patients.  

 
 
Table 3.3: Gram reactions and morphology of β-lactamase-producing oral anaerobic 
bacteria  

 

 

 

 

 
 
 
 

Gram reaction 
and morphology 

No. of Oral anaerobic  β-
lactamase-producing 
bacteria 

% of Oral  anaerobic  
β-lactamase-producing 
bacteria 

 

Negative bacilli 76 89.4  
Negative cocci 2 2.35  
Positive bacilli 6 7.07  
Positive cocci 1 1.18  
Total 85 100  
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Figure 3.4  Gram reaction and morphology of β-lactamase-producing oral 

anaerobic bacteria  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Gram reaction and morphology 
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Figure 3.5 Gram negative rods of Fusobacterium nucleatum (Scale bar is 10 µm) 
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Figure 3.6 Gram negative cocci of Veillonella spp. (Scale bar is 10 µm) 
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Figure 3.7 Rod-shaped gram positive Propionibacterim granulosum (Scale bar is 

10 µm) 
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Table 3.4 indicates all the identified β-lactamase-producing bacteria from patients 

with chronic periodontitis that participated in this study. Forty nine of the 85 (58%) 

oral anaerobes were identified as Prevotella spp. Prevotella oralis was the most 

prevalent β-lactamase-producing microbe with 21 strains identified. Sixteen strains of 

Prevotella intermedia were also identified making the black pigmented the second 

most prevalent bacteria belonging to the Prevotella species. Sixteen strains of the 85 

(18%) belonged to the Bacteroides group of bacteria with Bacteroides capillosus as 

the most predominant strain of the group. The least prevalent anaerobic 

microorganisms were identified as Veillonella spp, Mobiluncus spp, and Actinomyces 

Meyeri. 
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Table 3.4: Identification of β-lactamase-producing bacteria isolated from patients with 
chronic periodontitis 

Genus    Species Number of 
strains  

Percentage of strains 
(%) 

Prevotella   49  58 

 P. oralis  21   

 P. intermedia  16   

 P. bivia  3   

 P. melaninogenica  5   

 P. buccae  2   

 P. denticola 1  

 P. buccalis  1   

Porphyromonas   6  7  

 P. ginigivalis  2   

 P. endodontalis  4   

Bacteroides   16  18.8 

 B. capillosus  7   

 B. ureolyticus  3   

 B. eggerthii  4   

 B. uniformis  1   

 B.merdae  1   

Fusobacteruim   4  4.7  

 F. nucleatum  1   

 F. necrophorum  3   

Clostridium   3  3.5  

 C. sordelli  1   

 C. perfringens  1   

 C. botulinum 2  1   

Propionobacterium   3  3.5  

 P. granulosum  2   

 P. acnes  1   

Veillonella spp  2  2  

Mobiluncus spp 
Actinomyces Meyeri 

 1  
1 

1  
1 

Total   85 100 
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3.4 Antimicrobial susceptibility 

3.4.1 Disk diffusion test 
 

Selected colonies of all the β-lactamase producing cultures were subjected to 

antimicrobial susceptibility using a disk diffusion test (Figure 3.8 and 3.9). Zones of 

inhibition were measured to the nearest whole millimeter and the results were 

interpreted according to the Clinical and Laboratory Standards Institute (CLSI) 

performance standards for antimicrobial disk susceptibility tests (CLSI, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Disk diffusion test of Prevotella intermedia demonstrating clear zones 

of inhibition around ciprofloxalin, fusidic acid, rifampicin and 

quinupristin-dalfopristin. 
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Figure 3.9 Disk diffusion test of Prevotella intermedia demonstrating clear zones 

of inhibition around antimicrobial agents clindamycin, 

chloramphenicol, ampicillin, and erythromycin. 

 

 

A significant proportion of β-lactamase-producing oral anaerobes were susceptible to 

all the antimicrobial agents tested except for gentamicin and trimethoprim- 

sulfamethoxazole with only 3.5% and 14.1% of the bacteria susceptible respectively. 

None of the oral microbes demonstrated resistance to chloramphenicol and very few 

of them showed resistance to linezolid, rifampicin, and quinupristin-dalfopristin. 

Thirty one of the 85 strains (36.5%) demonstrated resistance to β-lactam 

antimicrobials. Table 3.5 and Figure 3.10 summarize the antimicrobial susceptibility 

disk diffusion results of the β-lactamase-producing oral anaerobic bacteria. 
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Table 3.5:  Antimicrobial susceptibility (Disk Diffusion) of β-lactamase-producing 

oral anaerobic bacteria (n=85) 

 
Antimicrobial agents 

Proportion of anaerobes resistant and susceptible 
to antimicrobial agents (%) 
Resistant Susceptible Intermediate 

Penicillin 36.5 57.6 - 
Ampicillin 36.5 51.8 - 
Clindamycin 10.6 88.2 1.2 
Trimethoprim-sulfamethoxazole 80.0 14.1 5.9 
Chloramphenicol 0.0 100.0 0.0 
Rifampicin 2.4 92.9 4.7 
Quinupristin-dalfopristin 5.9 91.8 2.4 
Linezolid 1.2 97.6 - 
Fusidic acid 8.2 88.2 - 
Erythromicin 12.9 84.7 2.4 
Gentamicin 92.9 3.5 3.5 
Vancomycin 61.2 24.7 14.1 
Ciprofloxacin 22.4 58.8 18.8 
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A: Penicillin, B: Ampicillin, C: Clindamycin, D: Trimethoprim-sulfamethoxazole, E: Chloramphenicol, F: Rifampicin, G: Quinupristin-
dalfopristin, H: Linezolid, I: Fusidic acid, J: Erythromicin, K: Gentamicin, L: Vancomycin, M: Ciprofloxacin 
Figure 3.10 Antimicrobial susceptibility of β-lactamase-producing oral anaerobic bacteria 
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Of the 31 strains of β-lactamase-producing oral anaerobes that were resistant to both β-lactam 

antibiotics Penicillin and Ampicillin Prevotella species were predominantly resistant to the β-

lactam antibiotics. Five of 16 Bacteroides spp and 3 of 6 Porphyromonas spp expressed 

resistance to penicillin whereas 6 of 16 Bacteroides spp and 2 of 6 Porphyromonas species 

demonstrated resistance to Ampicillin. All Fusobacterium strains were susceptible to 

penicillin and a single strain (Fusobacterium necrophorum) was resistant to ampicillin. Other 

oral anaerobes tested such as Veillonella spp, Mobiluncus spp and Actinomyces spp were 

susceptible to both ampicillin and penicillin (Table 3.6 and Figure 3.11). 

 
 
Table 3.6: Proportion of β-lactamase-producing oral anaerobic bacteria resistant to β-

lactam antibiotics (n = 31) 
 

 

 

 

 

 

 

 

Species Resistant to 
Penicillin 

No. strains (%) 

Resistant to 
Ampicillin  

No. strains (%) 
Prevotella spp (49) 21 (25) 20 (24) 
Porphyromonas spp (6) 3 (4) 2 (2) 
Bacteroides spp (16) 5 (6) 6 (7) 
Fusobacterium spp (4) 0 1 (1) 
Clostridium spp (3) 1 (1) 1 (1) 
Propionobacterium spp (3) 1 (1) 1 (1) 
Other (4) 0 0 
Total  85 31 (37) 31 (37) 
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Figure 3.11 Proportion of β-lactamase-producing bacteria resistant to β-lactam 

antimicrobial agents  

 

 

3.4.2 Minimum Inhibitory concentration 
 

Out of 48 β-lactamase-producing oral anaerobes that carried the β-lactamase cfxA gene and 

had been stored in storage media, seventeen strains grew upon revival. These seventeen 

strains were tested for antimicrobial susceptibility using the MIC test. The MIC values (range 

and MIC50 and MIC90) of amoxicillin, amoxicillin-clavulanic acid, and Penicillin are given in 

Table 3.7.  
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All the β-lactamase-producing microorganisms tested for amoxicillin-clavulanic acid 

sensitivity were sensitive to the antimicrobial with the exception of two strains; 

Propionibacterium acnes and Bacteroides eggerthii. Eleven of seventeen (65%) strains tested 

showed resistance to penicillin, of the eleven, five (29%) were Bacteroides species, four 

(24%) were Prevotella species and two (12%) Propionibacterium species. Of the nine (53%) 

strains of β-lactamase-producing anaerobes that presented resistance to amoxicillin 29% (five 

of seventeen) belonged to the Prevotella group of species, 18% (three of seventeen) belonged 

to the Bacteroides group of species and a single strain of Propionibacterium acnes. The 

antimicrobial susceptibility (MIC) of the 17 blacfxA-producing bacteria is summarized in 

Table 3.11 
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Table 3.7: Minimum Inhibitory concentrations of β-lactam antibiotics against β-

lactamase-producing oral anaerobic bacteria which carried blacfxA gene 

(n=17). 

β-lactamase-producing oral 
anaerobes 

MIC (μg/ml) 

  n Range MIC50 MIC90 
Prevotella melaninogenica 3    
Amoxicillin  0.25 - 2 0.25 2 
*Amoxicillin-clavulanic 
acid  ≤0.125/0.0625 - 0.5/0.25 0.25/0.125 0.5/0.25 
Penicillin  0.125 - 1 0.25 1 
     
Prevotella oralis 3    
Amoxicillin  4 - 16 4 16 
Augmentin  0.25/0.125 - 4/2 2/4 4/2 
Penicillin  8 - 64 8 64 
     
Prevotella intermedia 1    
Amoxicillin  2 - 2 
Augmentin  4/2 - 4 
Penicillin  8 - 8 
     
Bacteroides spp 8    
Amoxicillin  ≤0.125 - 8 0.125 2 
Augmentin  ≤0.25/0.125 - 32/16 0.25/0.125 8/4 
Penicillin  ≤0.125 - >64 2 8 
     
Propionibacterium spp 2    
Amoxicillin  0.125 - 64 0.125 64 
Augmentin  ≤0.125/0.0625 - 32/16 0.125/0.0625 32/16 
Penicillin   4-64 4 64 

* Amoxicillin-clavulanic acid concentration at a ratio 2:1 
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3.5. Molecular Analysis 

3.5.1 Detection of β-lactamase genes 
 

The eighty five strains of β-lactamase-producing oral anaerobes isolated from patients with 

chronic periodontitis were tested for the presence of common β-lactamase genes; β-lactamase 

CfxA gene (blacfxA) and β-lactamase TEM gene (blaTEM). An amplicon of 831 bp was 

produced in 43 of the 85 strains, indicating that 51% of the β-lactamase-producing strains 

were positive for blaCfxA (Figure 3.12). The cfxA gene was most frequently detected in 

Prevotella species with 21 of the 43 strains (49%) testing positive for the cfxA gene. Of the 

43 strains, 12 strains (28%) belonged to Bacteroides species and 4 (9%) to Porphyromonas 

species as seen in Table 3.9. No non-specific products were observed in any of the reactions 

(Figure 3.12). No PCR product bands were observed at 1048 bp therefore none of the β-

lactamase-producing oral anaerobes contained the blaTEM gene. 
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Figure 3.12 Representative results of electrophoresis of PCR products from β-lactamase-

producing oral anaerobes in the detection of blacfxA gene. Lane M indicates 

the O’GeneRuler™ 50 bp DNA ladder molecular marker. Lanes 1 to 26, 

indicate β-lactamase-producing oral anaerobes, Lane 27 is the negative control 

and Lane 28 the Positive control. Images of other gel electrophoresis results 

are shown in Appendix 2.5. 

 

 

 

 

 

 

 

 

 

M  

831 bp→ 

1    2    3   4    5   6   7   8    9   10  11  12 13 14 15 16 17 18  19 20 21  22 23 24  25 26 27 28  



66 

Table 3.8 Detection of β-lactamase genes in 85 strains of β-lactamase-producing oral 

anaerobes isolated from patients with chronic periodontitis 

Genus (n) Species No. of isolates 
tested 

No. of strains with β-
lactamase genes (%) 

     blaCfxA blaTEM 

Prevotella (49) 
 
P. intermedia 15 4 (26.7) 0 

 P.  oralis 21 11 (52.4) 0 
 P.  melaninogenica 6 4 (66.7) 0 
 P.  denticola 1 0 0 
 P. bivia 3 0 0 
 P. buccae 2 2 (100) 0 
 P. buccalis 1 0 0 

Bacteroides (16) 
 
B. eggerthii 4 3 (75) 0 

 B.  ureolyticus 3 1 (66.7) 0 
 B. capillosus 7 6 (85.7) 0 
 B. uniformis 1 1 0 
 B. merdae 1 1 0 

Porphyromonas (6) 
 
P. gingivalis 2 1 (50) 0 

 P. endodontalis 4 3 (75) 0 

Fusobacterium (4) 
 
F.  nucleatum 1 0 0 

 F.  necrophorum 3 2 (66.7) 0 

Veillonella (2) 
 

Veillonella spp. 2 0 0 
Propionibacterium 
(3) 

 
P. granulosum 2 1 (50) 0 

 P. acnes 1 1 (100) 0 

Clostridium (3) 
 
C. sordelli 1 1 (100) 0 

 C. botulinum 2 1 0 0 
 C. perfringens 1 1 (100) 0 

Actinomyces (1) 
 
A. meyeri 1 0 0 

Mobiluncus (1) Mobiluncus spp 1 0 0 
Total  85  85 43 0 
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3.5.2 Additional analysis of cfxA gene  

The PCR products of the 43 different cfxA positive β-lactamase isolates were sequenced. The 

results are shown in table 3.9. Thirty three sequences were 100 % identical to cfxA2 GenBank 

Accession number AM940016 of Bacteroides ovatus. Of the 33 strains, 14 were Prevotella 

spp, 10 Bacteroides spp, 3 Porphyromonas spp and 2 Clostridium spp, Fusobacterium spp, 

and Propionibacterium spp. Three strains of Prevotella oralis and 1 strain of Prevotella 

melaninogenica, Bacteroides capillosus, Bacteroides ureolyticus contained the cfxA3 gene 

which was 100% identical to cfxA3 GenBank Accession number Ay860640 of 

Capnocytophaga ochracea plasmid Pcap MobA. The cfxA6 gene was identified in 4 strains of 

β-lactamase-producing microorganisms, namely, Prevotella melaninogenica, Prevotella 

intermedia, Prevotella oralis and Porphyromonas endodontalis.  

The above-mentioned oral anaerobes possessed the cfxA6 gene showing 100% similarity with 

Prevotella intermedia partial cfxA6 gene, GenBank Accession number FN3764261.  

 

In Table 3.10 the antimicrobial sensitivity (disc diffusion) of 43 bacterial strains producing 

the blacfxA gene is illustrated. The antimicrobial susceptibility (MIC) of the 17 blacfxA-

carrying bacteria is summarized in Table 3.11. Complete antimicrobial susceptibility results 

of the periodontal pathogens are shown in Appendix 2.4. Fifty nine percent of oral anaerobic 

bacteria that carried blacfxA genes were resistant to β-lactam antibiotics penicillin and 

amoxicillin which was reduced to 82% due to β-lactamase inhibitor e.g the combination 

augmentin. Forty-two out of eighty-five β-lactamase producing anaerobes did not carry the 

blacfxA gene, the antimicrobial sensitivity to β-lactam antibiotics of these bacteria was tested 

using the disc diffusion technique and the results are shown in Table 3.12. Table 3.13 shows 

summary of disc diffusion, MIC tests and the presence or absence of cfxA gene. When the 

cfxA gene was present 53% of the organisms were resistant to β-lactam antibiotics. When the 
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genes were absent, the disc diffusion test showed that 33% of the isolates were still resistant. 

A complete summary of all the results obtained is found in Appendix 2.1.  

 

 

Table 3.9   The prevalence of BlaCfxA genes harboured by oral anaerobes isolated from   

periodontal pockets of patients with chronic periodontitis (n=43) 

 

 

 

 

 

 

 

 

β-lactamase  
gene 

(43/85 strains) 

Genus 
(n=43)  

No. of  
positive 
strains 

BlaCfxA genes  

BlaCfxA2  BlaCfxA3  BlaCfxA6  

BlaCfxA 
 
CfxA2:  76.7 % 
CfxA3:  14 % 
CfxA6 :  9.3 

Prevotella spp 21 14 4 3 
Porphyromonas spp 4 3 - 1 
Bacteroides spp 12 10 2 - 
Fusobacterium spp 2 2 - - 
Clostridium spp 2 2 - - 
Propionobacterium spp 2 2 - - 
Veillonella spp 0 - - - 
Actinomyces spp 0 - - - 
Mobiluncus spp 0 - - - 

BlaTEM As above 0 - - - 
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Table 3.10  Anaerobic bacteria carrying the BlaCfxA gene and their Antimicrobial 
susceptibility the using Disc diffusion technique 

Bacterial species (43) Gene Ampicillin Penicillin 
P. melaniniogenica (4) CfxA3 R R 

CfxA2 R R 
CfxA6 S S 
CfxA2 S S 

P. oralis (11) CfxA2 R R 
CfxA2 S R 
CfxA2 S R 
CfxA2 S I 
CfxA3 R R 
CfxA6 S S 
CfxA3 R R 
CfxA2 I R 
CfxA2 R R 
CfxA3 R R 
CfxA2 S S 

P. intermedia (4) CfxA2 S R 
CfxA2 S S 
CfxA2 S S 
CfxA6 R R 

P. buccae (2) CfxA2 R R 
CfxA2 S R 

B. capillosus (6) CfxA2 S S 
CfxA2 S S 
CfxA2 S S 
CfxA2 R R 
CfxA3 S S 
CfxA2 S S 

B. ureolyticus CfxA3 R R 
B. uniformis CfxA2 S S 
B. eggerthii (4) CfxA2 S S 

CfxA2 R R 
CfxA2 R R 
CfxA2 R S 

P. gingivalis CfxA2 R R 
P. endodontalis (3) CfxA2 S R 

CfxA6 S R 
CfxA2 S S 

P. acnes CfxA2 S S 
P. granulosum CfxA2 R R 
F. necrophorum (2) CfxA2 R S 

CfxA2 S S 
C. perfringens CfxA2 S S 
C. Sordelli CfxA2 S R 
Total  R:39.53%, I:2.33%, 

S:58.14% 
R:53.49%, I:2.32%, 
S:44.19% 
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Table 3.11  Anaerobic bacteria harbouring the BlaCfxA gene and their Antimicrobial 
susceptibility using MIC technique 

R:  Resistant, S: Sensitive, I: Intermediate Sensitivity 

Strain (n=17) BlaCfxA gene Amoxicillin Augmentin Penicillin 

P. melaninogenica 1 CfxA3 0.125 (S) 0.25/0.0625 (S) 0.5 (I) 

P. melaninogenica 2 CfxA2 0.125 (S) 0.0625/0.0312 (S) <0.125 (S) 

P. melaninogenica 3 CfxA6 1 (R) 0.25/0.125 (S) 0.125 (S) 

P. oralis 1 CfxA3 8 (R) 0.125/0.0625 (S) 32 (R) 

P. oralis 2 CfxA3 0.25 (R) 1/0.5 (S) 4 (R) 

P. oralis 3 CfxA2 2 (R) 2/1 (S) 8 (R) 

P. intermedia CfxA6 2 (R) 4/2 (S) 8 (R) 

B. capillosus 1 CfxA2 0.125 (S) 0.25/0.125 (S) 0.125 (S) 

B. capillosus 2 CfxA2 1 (R) 1/0.5 (S) 1 (R) 

B. capillosus 3 CfxA2 0.5 (S) 0.25/0.125 (S) R 

B. capillosus 4 CfxA2 1 (R) 0.125/0.0625 (S) 1 (R) 

B. eggerthii 1 CfxA2 4 (R) 0.125/0.0625 S <0.125 (S) 

B. eggerthii 2 CfxA2 <0.125 (S) 16/8 (R) <0.125 (S) 

B. uniformis CfxA2 0.125 (S) 4/2 (S) 4 (R) 

B. ureolyticus CfxA3 <0.125 (S) 0.5/0.25 (S) <0.125 (S) 

Prop. acnes CfxA2 >64 (R) 16/8 (R) >64 (R) 

Prop. granulosum CfxA2 <0.125 (S) 0.0625/0.0312 (S) 2 (R) 

Total  S: 41.18% 

R: 58.82% 

S: 82.24% 

R: 11.76% 

S: 41.18% 

R: 58.82% 
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Table 3.12 Antimicrobial susceptibility (disc diffusion technique) of β-lactamase 
producing anaerobes that did not carry the BlaCfxA gene 
Bacterial species (n = 42) Ampicillin Penicillin 
P. bivia (3) I I 

R S 
R S 

P. intermedia (13) S I 
I S 
R R 
S S 
S S 
S S 
S S 
R I 
R R 
R R 
S R 
S S 
S S 

P. oralis (10) I S 
I R 
R R 
S R 
S S 
R S 
R I 
R S 
S S 
S S 

P. denticola (1) I S 
P. melaninogenica (1) R S 
P. buccalis (1) R S 
B. ureolyticus (2) S S 

S S 
B. merdae (1) R R 
B. capillosus (1) I S 
Veillonella spp (2) I I 

S S 
P. gingivalis (1) R S 
P. endodontalis (1) I S 
F. nucleatum (1) S S 
F. necrophorum (1) S S 
P. granulosum (1) I S 
A. meyeri (1) S S 
Mobiluncus (1) S S 
Total R: 33.33%, I:21.43%, 

S: 45.24% 
R:19.05%, I: 11.90%, 
S: 69.05% 
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Table 3.13 Antimicrobial susceptibility of β-lactamase-producing anaerobic bacteria against β-lactam antibiotics 
 
CfxA 
gene 

No. of isolates resistant to β-lactam antibiotics (%) 
Disc diffusion test (n=85) Broth dilution test (n=17) 
Ampicillin Penicillin Amoxicillin Penicillin 

 R I S R I S R I S R I S 
Present 
(n=43) 

17 
(39.53) 

1  
(2.33) 

25 
(58.14) 

23 
(53.49) 

1 (2.32) 19 (44.19) 9 (52.94) 0 8 (47.06) 10  
(58.82) 

1  
(5.89) 

6  
(35.29) 

Absent 
(n=42) 

14 
(33.33) 

9 (21.43) 19 (45.24) 8 (19.05) 5 (11.90) 29 (69.05) - - - - - - 

R:  Resistant, S: Sensitive, I: Intermediate Sensitivity
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Chapter 4 Discussion 

Chronic periodontal disease is a chronic inflammatory disease that affects 70% - 80% 

of adults worldwide and is more prevalent in developing countries. It has been found 

that prevalence and severity increase with age (Pihlstrom et al., 2005). The mean age 

of patients in our study group was 52 years which is higher than has been found in 

similar investigations in European and Colombian populations (Herrera et al., 2000, 

Van Winkelhoff et al., 2002, Ardila et al., 2010). The male-female ratio was also 

similar to findings in the Dutch and Spanish populations in which the percentage of 

females suffering from chronic periodontitis was found to be more than 55% (Herrera 

et al., 2000). In our study 58% of patients were females. Although a study by Van 

Winkelhoff et al (2002)  showed a mean pocket depth of 6.3, in our study the mean 

pocket depth was 6.8 mm which is generally found in studies conducted in patients 

with chronic periodontitis (Herrera et al., 2000). 

 

4.1 Prevalence of β-lactamase-producing oral anaerobes 

Over the years many oral anaerobic bacteria associated with chronic periodontal 

diseases have developed resistance to β-lactam antibiotics by virtue of their 

production of β-lactamase enzymes (Handal and Olsen, 2002). Not much is known 

about production of β-lactamase enzymes and drug resistance in oral anaerobic 

bacteria in South Africa. Results collected over a 7 month period in this study showed 

that 75% of patients carried β-lactamase-producing oral anaerobic bacteria, which has 

increased compared to the study conducted by Patel (2011) who reported prevalence 

of 69%. However it is lower than the prevalence reported in the Spanish population 



74 

(87%) but higher than the French and Dutch populations, which was 73% and 53% 

respectively (van Winkelhoff et al., 1997, Fosse et al., 1999, Herrera et al., 2000). The 

difference in this prevalence in different populations can be attributed to extensive 

drug use. Generally in developing countries the use of antibiotics is low and thus 

antibiotic resistance levels are generally lower, however in South Africa there are 

high levels of antibiotic resistance in pathogens other than oral in public sector 

hospitals (Essack, 2006). Antimicrobial surveillance stewardships are being 

implemented in major South African public and private hospitals to monitor 

antimicrobial sensitivity and development of drug resistance in major pathogens 

(Ramsey et al, 2013).  

 

On average patients had two strains of β-lactamase-producing oral anaerobic bacteria, 

which constituted 10% of the total cultivable oral flora. β-lactamase is an extracellular 

enzyme released by these bacteria which renders penicillin inactive (Brook., 2009, 

Herrera et al., 2000). These 10% of β-lactamase producing bacteria can therefore 

protect coexisting non-β-lactamase-producing, penicillin sensitive bacteria in the 

periodontal pocket.  

 

4.2 Types of β-lactamase-producing oral anaerobes 

Eighty five isolates of β-lactamase-producing bacteria were derived from 48 patients 

with chronic periodontitis, which is different to the numbers obtained in The dutch 

population, in which 33 β-lactamase-producing strains were isolated from 30 patients 

(Van Winkelhoff et al., 2000).  The majority of these bacteria were gram negative 

rods, which was expected because gram negative anaerobic bacteria are generally 

implicated in the periodontal diseases (Philstrom., 2005, Legg and Wilson., 1990).  
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Most of these bacteria produce proteinases and toxins which causes tissue damage 

(Legg and Wilson, 1990, Kim et al., 2011).  

 

Prevotella spp. was the predominant genus isolated in our study, which coincides with 

other studies (Legg and Wilson, 1990, van Winkelhoff et al., 2000, Patel, 2011, 

Herrera et al., 2000). Socransky et al (1998) suggested an association between deep 

periodontal pockets, attachment loss and the presence of P. intermedia and P. 

gingivalis. A deep periodontal pocket harbors more plaque, large amounts of orange 

and red microbial species and is likely to produce more gingival crevicular fluid than 

a shallow pocket (Haffajee et al., 2008). The mean pocket depth in our study group 

was 6.84 mm which is considered a deep pocket and therefore the presence of an 

orange complex species Prevotella species can be explained. 

 

In a study by Ali et al (1994) P. intermedia was always detected in the presence of 

fellow orange complex species F. nucleatum from deep periodontal pockets from 

patients with chronic periodontitis. However that was not the case in this study, only a 

single strain of F. nucleatum was isolated and it was not in the presence of P. 

intermedia in the periodontal pocket.  Only 19 % of the isolated strains were P. 

intermedia, this proportion is lower than has been isolated in the Dutch and American 

populations, in which 26% and 52% of the isolated bacteria were P. intermedia (van 

Winkelhoff et al., 1997, Appelbaum et al., 1990). P. intermedia is well known as the 

greatest producer of β-lactamase enzymes (Kuriyama et al., 2007, Handal et al., 

2005).  
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The genus Prevotella comprises of a wide and diverse group of anaerobic bacteria 

that cause oral infections (Nadkarni et al., 2012). Prevotella melaninogenica has been 

isolated from patients with chronic periodontitis in a study in Australia (Nadkarni et 

al., 2012). These species of Prevotella including Prevotella oralis clones and 

Prevotella oris were consistently isolated from the subgingival pockets of patients 

(Nadkarni et al., 2012).  Forty-nine isolates of Prevotella species were isolated in this 

study, these species included P. melaninogenica (5), P. buccae (1), P. oralis (21), P. 

denticola (1) and P. buccalis (1). These results show the diversity of the genus 

Prevotella that produces β-lactamase, in patients with periodontal diseases (Table 

3.4). P. buccae and P. buccalis are considered not to be periodontal pathogens, as 

very low numbers of these bacteria have been isolated from studies (van Winkelhoff 

et al., 1997). However these bacteria might be able to protect β-lactam susceptible 

bacteria when they release the enzyme into the periodontal pocket environment and 

transfer responsible genes to other sensitive bacteria. 

 

Porphyromonasgingavalis is a member of the microbial red complex and has been 

found to dominate in deep periodontal pockets (Socransky et al., 1998, Haffajee et al., 

2008). In a study by Benrachadi et al (2012) in Morocco on patients with chronic 

periodontitis, P. gingivalis was found to be more prevalent than P. intermedia, which 

is usually highly associated with periodontal diseases. In contrast in our investigation, 

a very low percentage (2%) of Porphyromonas species were isolated (Table 3.4). This 

is an increase from the study by Patel (2011) who did not isolate any Porphyromonas 

spp. from patients with chronic periodontitis.  Porphyromonas spp. is an aggressive 

organisms and causes extensive tissue damage causing very deep periodontal pockets. 

Five patients carried these organisms, out of which only one patient had a pocket 
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depth of 5 mm, the others had depths ranging from 8 to 10 mm and this explains the 

presence of these organisms in these patients.   

 

Fusobacterium species is a member of the orange complex of bacteria that are 

detected early in disease development of periodontitis (Nadkarni et al., 2012).  

These bacteria are associated with deep periodontal pockets and often with members 

of the red complex such as Porphyromonas species. A single strain of F. nucleatum 

was isolated from a patient with a mean pocket depth of 8 mm. β-lactamase-

producing Fusobacterium species are not common in South African patients, as they 

were not isolated in a preliminary study by Patel (2011) and only a single strain was 

isolated in this study. 

 

Gram negative Bacteroides spp. have been associated with periodontal lesions 

(Nonnenmacher et al., 2001). B. ureolyticus and B. forsythus are implicated in 

periodontal, root canal and other oropharyngeal infections (Falagas and Siakavellas, 

2000). As seen in Table 3.4, 18.8% of oral bacteria isolated from patients were 

Bacteroides spp., this makes this species the second most prevalent species of β-

lactamase-producing periodontal pathogens. There has also been an increase in the 

number of Bacteroides spp. isolated in comparison to results obtained by Patel (2011). 

In our study we found B. eggerthii (4), B. ureolyticus (3), B. capillosus (7), Patel 

(2011) isolated (3) B. eggerthii, (2) B. ureolyticus and a single B. buccae strain. 

 

Veillonella are gram negative cocci that are part of the normal flora of the mouth, 

vagina and small intestines of certain people. Veillonella species are part of the 

predominant anaerobes in patients with poor oral hygiene. Kumar et al (2005) found 
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that Veillonella spp were associated with periodontal health, as higher numbers of this 

bacterium were isolated from healthy patients compare to those with periodontal 

disease. In addition, they are generally not associated with tissue destruction.  

In this study only two strains of Veillonella species were isolated that produced the β-

lactamase enzyme (Table 3.4).  

 

Propionibacterium species are members of the normal microbial flora of the skin and 

mouth. P. granulosum has been isolated from the subgingival plaque from shallow 

periodontal pockets of patients after head and neck irradiation for the treatment of 

nasopharyngeal carcinoma (Leung et al., 1998) and a single strain was isolated in this 

study. A single strain of Mobiluncus spp was isolated from the periodontal pockets of 

a patient with pocket depths of 6 mm. Mobiluncus spp are gram positive cocci which 

are highly associated with bacterial vaginosis (Spiegel, 1987, Nyirjesy et al., 2007, 

Schwebke et al., 1996). These bacteria have also been isolated from patients with oral 

lichen planus (Bornstein et al., 2008). Mobiluncus spp produced β-lactamase, 

although these bacteria are usually susceptible to β-lactam antibiotics (Spiegel, 1987).  

 

Periodontal pathogens such as Bacteroides forsythus and Campylobacter rectus were 

not identified in our investigation. This could be due to the difficulty of cultivating 

these bacteria in vitro. The oral cavity is the most colonized site in the human body 

containing between 500 and 600 different species of bacteria (Kazor et al, 2003, 

Paster et al, 2001). However, only half of them are culturable (Pater et al, 2001). A 

fraction of bacteria will be isolated from a single plaque sample at a particular time. 

Therefore, a fraction of β-lactamase-producing bacteria were isolated. Although this 

study did not isolate gram positive commensals such as streptococci and lactobacilli, 
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gram positive bacteria are known to produce relatively large amounts of  β-lactamase 

and secrete it into the environment thus protecting other bacteria from β-lactam 

antibiotics even though the number of gram positive bacteria are low (Soars et al, 

2010). 

4.3 Antimicrobial susceptibility of β-lactamase producing oral 

anaerobes  

Levels of antibiotic resistance are high in South Africa. Although the statistics are not 

known, the country is recognized as one of the world leaders in the prevalence of 

gram negative organisms with resistance to β-lactam antibiotics (Johnston, 2012). 

We investigated the antimicrobial resistance of the periodontal pathogens isolated 

from patients with chronic periodontitis. There is little information available in 

scientific literature regarding the level of resistance of these oral anaerobes in 

Southern Africa.  

 

4.3.1 Porphyromonas species 
 

P. gingivalis was susceptible to the tested antibiotics amoxicillin-clavulanic acid, 

clindamycin and chloramphenicol. This result is in accordance with other studies that 

show that this bacterium is susceptible to these antibiotics (Kulik et al., 2008, van 

Winkelhoff et al., 2005, Kuriyama et al., 2007). However the  P. gingivalis isolates 

also expressed resistance to β-lactam antibiotics ampicillin and penicillin, and other 

antibiotics such as erythromycin. This resistance can spread because P. gingivalis is 

capable of conjugal transfer of chromosomal and plasmid DNA which would provide 

an effectual way to transfer resistance determinants to other anaerobic bacteria in the 
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periodontal pocket (Tribble et al., 2007). P. endodontalis isolates were found to be 

highly susceptible to ampicillin, chloramphenicol, clindamycin, and erythromycin 

antibiotics, as was also found by a previous study by (van Winkelhoff et al (1992). 

This result indicates an apparent difference in the susceptibility pattern between P. 

gingivalis and P. endodontalis.  

 

4.3.2 Fusobacterium species 
 

All but a single strain of Fusobacterium spp. were susceptible to amino-penicillin 

antibiotics in this study. This sensitivity to penicillin is not uncommon amongst 

Fusobacteria with β-lactamase production being the main resistance mechanism when 

it is found (Hecht, 2006). In The Netherlands Fusobacterium nucleatum isolates were 

found to be 100% susceptible to penicillin (van Winkelhoff et al., 2005) , as has been 

found in the South African population of patients with chronic periodontitis.  

The single strain of Fusobacteria that produced resistance to ampicillin may have 

been carrying an ampicillin resistance gene that conveys resistance to ampicillin. A 

study by Lakhssassi et al (2005) found Fusobacterium nucleatum to be susceptible to 

ampicillin, amoxicillin and augmentin. Studies in European and South American 

populations have also found that Fusobacterium species exhibited good susceptibility 

to a wide range of antibiotics such as clindamycin, augmentin, and erythromycin (van 

Winkelhoff et al., 2005, Jacinto et al., 2008). 

 

BlaCfxA-type β-lactamases have been found in β-lactamase-producing strains and 

could be carried on transposons in association with tetracycline and erythromycin 

resistance genes (Giraud-Morin and Fosse, 2003). Carriage of different resistance 
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genes on transposons could result in multi-drug resistant bacteria, however we did not 

test oral anaerobes for the presence of tetracycline and erythromycin genes. 

 

4.3.3 Prevotella species 
 

All the β-lactamase positive strains of Prevotella spp. were susceptible to amoxicillin-

clavulanic acid as has been reported by other investigators (Behra-Miellet et al., 2003, 

van Winkelhoff et al., 2000, Mosca et al., 2007, Kuriyama et al., 2007). Antibiotics 

such as amoxicillin-clavulanic acid (a β-lactamase inhibitor) and clindamycin are 

generally regarded as highly effective antibiotics against Prevotella species (van 

Winkelhoff et al., 2000, Lakhssassi et al., 2005). Various studies including this study 

have shown very low levels of resistance of β-lactamase-producing oral anaerobes to 

clindamycin (Aldridge et al., 2001, van Winkelhoff et al., 2000, Ardila et al., 2010). 

 

In a study by Kuriyama et al (2007), β-lactamase production was found in all 

amoxicillin resistant strains and β-lactamase production was detected in 48 % of the 

amoxicillin susceptible strains. These amoxicillin-susceptible strains exhibited 

relatively high MIC’s for amoxicillin. These findings suggest that the production of β-

lactamases is the principle mechanism of amoxicillin resistance amongst Prevotella 

spp. In our study 28% of the Prevotella spp. isolated from patients with chronic 

periodontitis were resistant to amoxicillin, these findings are lower than those found 

in Colombia, Spain and The Netherlands (van Winkelhoff et al., 2000, Ardila et al., 

2010). Van Winkelhoff et al (2000) showed that 82.6% and 37% of β-lactamase-

producing oral anaerobes in the Spanish and Dutch population were resistant to 

penicillin.  
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In Bulgaria resistance to penicillin has been found to be 60.6%, these findings are 

comparable to findings from Greece (69.0%) and The United States of America 

(57.0%), however in contrast, our findings of penicillin resistance of Prevotella spp 

are below 25% which are similar to elsewhere (Papaparaskevas et al., 2008, Ednie and 

Appelbaum, 2009, Boyanova et al., 2010). 

 

Isolates of P. intermedia were found to be highly susceptible to amoxicillin-clavulanic 

acid, clindamycin and erythromycin, these results are in agreement with previous 

investigations that studied the sensitivity of this bacterium to amoxicillin-clavulanic 

acid (van Winkelhoff et al., 2000, Kulik et al., 2008).  P. intermedia is well known to 

produce β-lactamase enzymes (Kuriyama et al., 2007, Handal et al., 2005).  

Lakhssassi et al (2005) showed that P. intermedia is the greatest producer of β-

lactamases amongst oral anaerobes tested in their study. The enzyme production 

ability of these bacteria may partly explain the resistance of this bacterium and other 

Prevotella spp. to penicillin and amoxicillin and high levels of susceptibility to 

amoxicillin-clavulanic acid, due to the presence of β-lactamase inhibitor.  

 

In this study none of the P. melaninogenica strains were resistant to clindamycin, 

however Behra-Miellet et al (2003) found a single strain resistant to clindamycin. In 

recent years, a steady increase in penicillin resistance in P. melaninogenica has been 

noted, a study in the Spanish population found that 18.2% and 9.1% of P. 

melaninogenica were resistant to amoxicillin and clindamycin respectively (Maestre 

et al., 2007). However in the South African population P. melaninogenica species 

were susceptible to β-lactam antibiotics penicillin and amoxicillin, with only two 

strains showing resistance to penicillin and a single strain resistant to amoxicillin.  
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Prevotella oralis isolates presented resistance to β-lactam antibiotics amoxicillin and 

penicillin, whereas 52% of the strains presented resistance to penicillin when tested 

using the disk diffusion method. A previous study found that 70 % of the P. oralis 

strains were resistant to penicillin and 33% resistant to clindamycin, in our study only 

9.5% (2 of 21) of the P.oralis bacteria were resistant to  clindamycin, thus resistance 

is still low in this population (Papaparaskevas et al., 2008). 

 

4.3.4 Bacteroides species 
 

In this investigation some isolates of the genus Bacteroides were resistant to 

amoxicillin, penicillin, and ampicillin. A single strain of Bacteroides eggerthii 

expressed resistance to amoxicillin-claulanic acid. B. eggerthii and Bacteroides 

uniformis are members of the Bacteroides fragilis group of bacteria and were isolated 

from patients with chronic periodontitis. These Bacteroides species are known to play 

a role in human infectious diseases as they exhibit multiple mechanisms of resistance 

to antimicrobial agents, especially many β-lactam antibiotics (Aldridge, 1993).  

All members of the Bacteroides fragilis group produce β-lacatmase enzymes 

(Rasmussen et al., 1997, Falagas and Siakavellas, 2000).  

 

Alridge et al (2001) reported 86% resistance of B. uniformis to penicillin and 76% to 

clindamycin. In 1993 a study by Alridge et al. reported 16% resistance of B. uniformis 

to clindamycin, and suggested that imipenem to be the most active penicillin amongst 

other penicillins against B. uniformis strains. In Greece 98% of the B. uniformis 

bacteria isolated from oral cavities of patients with odontogenic infections were 

resistant to penicillin (Papaparaskevas et al., 2008). In our study the single B. 
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uniformis isolate was found to be susceptible to β-lactam antibiotics and clindamycin 

but showed resistance to erythromycin.  

 

Resistance of the B. fragilis group of bacteria to amoxicillin-clavulanic acid has been 

found in a study conducted in Spain (Betriu et al., 2005). The species of the B. fragilis 

group that were found to be resistant to amoxicillin-clavulanic acid were B. uniformis, 

B. erggerthii, B. merdae. The proportion of bacteria that was reported to be resistant 

to amoxicillin clavulanic acid was less than 19% of the Bacteroides species isolated 

from patients (Betriu et al., 2005).  

 
This data indicates that anaerobic bacteria that are clinically important can vary 

widely in their antimicrobial sensitivity (Aldridge et al., 2001). The level of resistance 

of the bacteria to the antimicrobial agents varies from country to country because of 

the different use of antibiotics. Less than 50% of β-lactamase producing periodontal 

pathogens in the South African population were found to be resistant to β-lactam 

antibiotics, therefore if patients do not respond to β-lactam antibiotics alternative 

antimicrobial agents should be administered to them as β-lactamase-producing 

anaerobes may be present in their periodontal pockets.  

 

4.4 Detection of β-lactamase-genes 
 

The habitation of β-lactamase genes within mobile genetic elements such as plasmids 

or transposons allows for transfer of these resistance genes between distantly related 

bacteria within the periodontal pocket (Williams, 1999, Wilke et al., 2005, Handal et 

al., 2005). The β-lactamase-producing oral anaerobes isolated from patients with 



85 

chronic periodontitis were tested for the presence of common β-lactamase genes; β-

lactamase CfxA gene (BlaCfxA)  and β-lactamase TEM gene (BlaTEM). Plasmid mediated 

β-lactamases genes are present in many species of gram negative bacteria, and the 

most common of these is the TEM-type enzyme (Lacroix and Walker, 1992).  

However similarly to a results obtained by Handal et al (2005) the BlaTEM resistance 

gene was not isolated from any of the β-lactamase-producing oral anaerobes. In a 

study by Rosenau et al (2000) the BlaTEM-17 gene was found in Capnocytophaga 

species isolated from blood, they proposed that the all capnocytophaga strains carry 

BlaTEM genes. The present study did not isolate any capnocytophaga strains nor 

identify the BlaTEM gene. 

 

BlaCfxA genes are known to be present in oral anaerobes that produce β-lactamase. 

A high prevalence of the BlaCfxA gene was found in Prevotella species from the 

subgingival plaque of South African patients. These findings are similar to the results 

obtained in the American, French and Norwegian population (Handal et al., 2005, 

Giraud-Morin and Fosse, 2003).  

 

There are various chromosome-encoding and plasmid mediated genes that result in 

the production of β-lactamase. These genes include TEM, OHA, CF, cepA and cblA. 

Prevotella spp. rarely harbor TEM, AmpC, CF genes. But a few strains have been 

found to contain cepA and cblA genes which encode for the production of the β-

lactamase enzyme (Iwahara et al., 2006). Therefore β-lactamase producing bacteria 

that did not have the CfxA gene present, but were resistant to β-lactam antibiotics by 

virtue of their enzyme production could have been utilizing other genes for enzyme 

production.   
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4.5 Analysis of BlacfxA gene  

BlaCfxA genes are highly prevalent in Prevotella species and Capnocytophaga species 

isolated from periodontal pockets (Fosse et al., 2002, Handal et al., 2005).  

Of the 85 β-lactamase producing strains, BlaCfxA was identified in 43. Prevotella spp 

had the highest prevalence of these genes followed by Bacteroides spp, in which 12 

strains produced the BlaCfxA gene. BlaCfxA has been identified in Bacteroides spp., 

isolated from periodontal pockets of patients infected with chronic periodontitis, these 

bacteria have been shown to transfer the gene amongst the species (Fosse et al., 

2002). This transference amongst the species has been found to be associated with the 

conjugative transposon Tn 4555 (García et al., 2008). Tn 4555 is a non-autonomous 

conjugative transposon which is associated with BlaCfxA and is involved in the 

horizontal transfer  of the β-lactamase gene amongst periodontal pathogens (García et 

al., 2008).  

 

Other genetic elements can also contribute to the transposition of β-lactamase genes, 

as a sequence tag from Tn4351 (which is normally associated with erythromycin 

resistance) was detected in the genomic context upstream of CfxA (García et al., 

2008). Garcia et al (2008) also suggested that the β-lactamase genes that have been 

described in Bacteroides spp. have different degrees of sequence diversity therefore it 

could be related to their transference pathways. Studies of these transposons suggest 

that they play a significant role in the spread  of drug resistance (Arzese et al., 2000).   
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4.5.1 CfxA genes 

The CfxA2 gene was present in 33 strains of β-lactamase producing oral anaerobes, 

this finding makes this gene the most prevalent β-lactamase gene in periodontal 

pockets of the South African population attending the Wits oral health sciences dental 

clinic affected with chronic periodontal disease. Our results of a high prevalence of 

CfxA2 are similar to those found in America and Norway (Handal et al., 2003, Handal 

et al., 2005). A study by Giraud-Morin et al (2003) suggested that the CfxA/CfxA2 

type partition of the β-lactamase-producing strains could be related to the 

geographical origin as the CfxA2 type predominates in North America and CfxA 

predominates in France. The CfxA2 gene shares >98% identity with the CfxA gene. A 

previous study revealed a high prevalence of CfxA/CfxA2 in Prevotella spp. isolated 

from patients diagnosed with periodontitis, however they did not identify the type of 

CfxA gene that was isolated from the Prevotella spp (Fosse et al., 2002, Giraud-Morin 

and Fosse, 2003).  

 

The CfxA3 gene differs from CfxA2 by possessing an aspartic acid instead of a 

tyrosine at the position 239 of the nucleotide and differs from CfxA by possessing 

glutamic acid instead of lysine at position 272 of the nucleotide. Jolivet-Gougeon 

(2004) isolated the CfxA3 gene from a beta-lactam resistant clinical strain of 

Capnocytophaga ochracea (E201) and found that the CfxA3 gene was located on a 

plasmid which carried a mobilizable trasnposon (Jolivet-Gougeon, 2004). In our study 

the CfxA3 gene was isolated from 6 strains of which 4 belonged to Prevotella spp., 

and 2 to Bacteroides spp.  
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Periodontal pathogens in which CfxA3 was isolated from including Capnocytophaga 

spp by Jolivet-Gougeon (2004), belong to the Bacteroidetes phylum of bacteria, and 

thus this finding suggests that the CfxA3 gene could be prevalent amongst groups of 

bacteria which are resistant to β-lactams and belong to this phylum (Wolfgang et al., 

2010).  

 

CfxA6 was isolated from species belonging to the families Prevotellaceae and 

Porphyromonadoceae, these families belong to the Bacteriodales order of bacteria 

(Wolfgang et al., 2012). Therefore CfxA6 may be specific to the Bacteroidales order 

of bacteria which are classified as periodontal pathogens.  However, the CfxA2 gene 

was isolated in bacteria belonging to various phylums including Fusobacteria, 

Firmicutes and Actinobacteria, this indicates the spread of the CfxA2 gene, and thus 

the spread of resistance to β-lactam anitibiotics between distantly related bacteria 

(Wolfgang et al., 2012, Goodfellow et al., 2012) 

 

Β-lacatamse genes play an important role in the progression of periodontal disease 

(Kinane, 2003). As these resistance genes are recurrently found on plasmids they 

could give rise to multi-drug resistant strains of periodontal pathogens (Jolivet-

Gougeon, 2003). 

 

4.6 Periodontal pathogens, their transmission and role in other 

infections 

In addition to their primary site of isolation (periodontal pocket), periodontal 

pathogens have been isolated in other oral sites such as the tonsils, root canals, saliva, 
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peritonsillar abscesses, deep neck infections and extraoral sites such as the brain and 

lungs (Mättö et al,. 1997, Paquette, 2002, Bidault et al., 2007, Veloo et al., 2012). 

Predominant anaerobes that have been isolated in peritonsillar, retropharyngeal, and 

lateral pharyngeal abscesses include Prevotella, Fusobacterium and Porphyromonas 

species (Brook., 2004).  Some of these bacteria were isolated from our patients 

harbouring resistance genes and producing β-lactamase enzymes. Untreated abscesses 

can rupture into the pharynx resulting in aspiration and they can become potentially 

life-threatening (Brook., 2004).  Antimicrobial therapy can reduce abscess formation 

if treatment is administered at an early stage and if strains that are causing the 

infection are not resistant to the antibiotic (Brook., 2004).    

 

Anaerobes are frequently isolated from blood in bacteremia cases resulting from 

endodontic therapy. Dissemination of periodontal pathogens into the bloodstream is 

also common during dental procedures, and microorganisms from the infected sites 

may reach the heart, lungs and peripheral blood capillary system (Li et al, 2000).  

Distribution of oral anaerobes to distant sites of the body occurs especially in 

immuno-compromised patients such as those that are suffering from diabetes, HIV 

malignancies or rheumatoid arthritis (Li et al, 2000).   

 

Due to the high numbers of gram negative bacteria in the periodontal disease state, 

individuals could be predisposed to cardiovascular disease (Li et al, 2000). Numerous 

proposed mechanisms exist in which oral anaerobic bacteria may trigger pathways 

leading to cardiovascular disease. For example P. gingivalis can induce platelet 

aggregation which leads to thrombus formation (Li et al, 2000). Atherosclerotic 

plaques are commonly infected with the oral anaerobe P. gingivalis (Li et al, 2000). 
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Horizontal transmission of periodontal pathogens such as P. gingivalis has been found 

between spouses and the transmission range for P. gingivalis is 30% to 75% (Van 

Winkelhoff and Boutaga, 2005).Therefore it seems as if periodontal pathogens are 

transmitted between spouses and this transmission results in the recipient spouse 

having periodontitis (Asikainen et al., 1997, Van Winkelhoff and Boutaga, 2005). 

Mother to child as well as care-givers to child transmission has also been established 

(Asikainen et al, 1997). Dental units also have a potential to transmit oral pathogens 

from patient to patient if infection control measures are not applied (Montebugnoli et 

al, 2004). These studies suggest that resistant oral bacteria can be transmitted from 

person to person and become a problem in serious illnesses.  

 

Horizontal and vertical transmission of periodontal pathogens may be controlled by 

periodontal treatment involving the elimination of the pathogen (Van Winkelhoff and 

Boutaga, 2005). However if resistant pathogens are present it is necessary for the 

dentist to re-call the patient and check if the treatment given is effective in eliminating 

the periodontal pathogens and if it is not, then they should prescribe an alternative 

antibiotic. Failing to do so will result in the spread of resistance pathogens between 

family members and spouses of patients with chronic peridontitis. 

 

4.7 Gene transfer and oral bacteria 

The oral cavity is the most colonized site in the human body containing between 500 

and 600 different species of bacteria (Kazor et al, 2003, Paster et al, 2001). These 

bacteria live in a biofilm which protects them against antimicrobial compounds. 

However, this environment is highly stressful and competitive for some bacteria, 

therefore many oral bacteria adapt to genetic transfer. Recent metagenomic and 
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bioinformatic studies have confirmed that oral bacteria play a major role in horizontal 

gene transfer (Liu et al, 2012, Smillie et al, 2011). For example, extensive genetic 

variation has been seen in P. gingivalis (Tribble et al, 2007).  It improves their chance 

of survival, increases virulence, changes metabolism and alters drug resistance. 

Generally genetic transfer can occur through transformation, transduction and 

conjugation.  

 

Studies have shown environmental DNA (eDNA) released from dead lysed oral 

bacteria as well as extraoral bacteria in the dental plaque which facilitates 

transformation (Hannan et al, 2010). This eDNA survive even after 24 hours in the 

presence of saliva (Mercer et al, 1999). It has been shown that transformation 

frequencies increases in the biofilms grown cells compared to the planktonic cells (Li 

et al, 2001).  

 

In addition, a highly mobile Tn916 like genetic element transposon has also been 

found in many oral bacteria such as Streptococci, F. nucleatum, Eubacterium, 

Veillonella and Actinobacillus. These transposons facilitate conjugation. Sex 

pheromones that induce mating have been detected in oral streptococci (Vickerman et 

al, 2010).  Both plasmid and chromosomal-borne transfer of antibiotic resistance have 

been shown in oral bacteria (Roe et al, 1995, Guiney et al, 1990, Lancaster et al, 

2004). 

 

Another mechanism of gene transfer is through membrane vesicles (MV) that are 

released by many gram negative bacteria including bacteria in the dental plaque. 

These membrane vesicles package periplasmic components including genetic 
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elements and store them extracellularly which allows them to fuse into surfaces of 

other species transferring information. MVs are very small and therefore they have 

easy access to unreachable areas (Olsen et al, 2013). Although some laboratory 

studies have shown phage facilitated genetic transfer, transduction in oral bacteria 

(Willi et al, 1997), there is not sufficient evidence to show transduction in oral 

bacteria. Exposure of oral biofilms to antibiotics can alter the bacterial composition 

and changes the antibiotic resistance profile of the biofilm (Ready et al, 2002). In 

addition, sub-lethal concentrations of antibiotics promote the transfer of resistance 

genes (Showsh and Andrews, 1992).  

 

The literature in this section highlights the importance of the presence of resistance 

genes in the oral bacterial community even if two species of organisms per patient 

carry them as shown in our study. The transfer of these genes to other bacteria is 

possible. 

 

The dental community in the UK accounts for 7% of all community prescription of 

antibiotics. Figures for South Africa are not available but there is a need for better 

education in the dental community with regards to antibiotic resistance, the usage, 

surveillance programs and the use of diagnostic services including susceptibility 

testing to prevent the ever rising of antimicrobial resistance worldwide (Sweeney et 

al, 2004).  
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Chapter 5  Conclusions, future research and 
limitations  

5.1 Conclusions 

A high prevalence of β-lactamase-producing anaerobic bacteria (75%) was found in 

South African patients diagnosed with chronic periodontitis. These patients carried on 

average two strains of β-lactamase-producing oral anaerobic bacteria, which 

constituted 10% of the total cultivable oral flora. Thirty one of the 85 strains (36.5%) 

demonstrated resistance to β-lactam antimicrobials. Prevotella species were found to 

be the most prevalent oral bacteria in this population. Fifty one percent of these β-

lactamase-producing oral anaerobic bacteria carried the BlaCfxA (CfxA2, CfxA3, CfxA6) gene. 

However, none of them carried BlaTEM. The BlaCfxA gene may have been responsible 

for the resistance to β-lactam antibiotics because the resistance to β-lactam antibiotics 

was 58% in these bacteria.  

 

Although this finding of β-lactamase-producing anaerobic bacteria was relatively low 

(10% of oral flora), these bacteria are able to cause antibiotic failure or disease 

recurrence as they release the β-lactamase enzyme into the surrounding environment. 

In addition, horizontal gene transfer may occur from β-lactamase-producing anaerobic 

bacteria to other non-producers. β-lactam antibiotics should still remain the first 

choice of treatment for patients with periodontal disease, however alternate 

antimicrobial agents should be considered in patients who do not respond to β-lactam 

antibiotics. High prevalence of β-lactamase-producing bacteria suggests that 

education among dental community, and surveillance programs with routine 

diagnostic susceptibility testing are required. 
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5.2 Future research 

• Surveillence studies are important for monitoring levels of antibiotic 

resistance within the oral pathogens and commensals. These bacteria do cause 

some serious extraoral infections. 

• CfxA genes are transported on transposons in combination with other 

resistance genes such as cep A, cblA, tetQ and ermF giving rise to multi-drug 

resistance strains therefore further investigations are required into this 

simultaneous transportation and occurrence of other drug resistance. 

• Further studies are also required to characterize the CfxA3 and CfxA6 genes 

associated with periodontal pathogens carrying the genes and their spread to 

other oral bacteria.  

• Molecular techniques could be developed to detect presence of β-lactamase 

genes from pathological samples. Iwahara et al (2006) reported a high 

performance of real-time PCR in detecting CfxA and CfxA2 in clinical samples 

of dentoalveolar infections, this molecular method could thus provide a rapid 

clinical test for the detection of these resistance genes in patients and aid in the 

selection of antibiotic therapy.   

• Quorum sensing or cell-to-cell signaling also influences diverse gene 

expression including virulence and antibiotic resistance. Research can focus 

on a unique approach targeting virulence rather than the actual organisms 

which will suppress the development of drug resistance. 
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5.3 Limitations 

• Collection of subgingival plaque and pocket debri is not a routine procedure. 

Samples were collected by the student and processed purely for the research 

purpose. Since the culture media required for the study are not commercially 

available. All the media used in this study were prepared by the student. In 

addition, due to the long incubation time period (one week at a time) not many 

samples could be included in the study.  

• Bacterial samples were stored in skim milk and microbank tubes with beads, 

however the number of samples that were recovered upon attempts to revive 

the samples were only 17. Anaerobes are hard to revive once they have been 

frozen, thus resulting in the low numbers that were recovered for the MIC 

study.  

• Patients attending the Dental school at the University of the Witwatersrand 

were asked to participate in this study. A larger sample size would have been 

more of a representation of the country’s population, but as funds were 

limited, patients could not be sampled across dental schools in South Africa. 

 

• In vitro susceptibility testing has considerable variation in laboratory media 

and conditions of testing as well as interpretative criteria used by different 

laboratories although CLSI guidelines have been implemented. 

 

• The CLSI guidelines that have been implemented for the disk diffusion 

antimicrobial susceptibility test are normally used for aerobic bacteria. 

Oxygen toxicity plays a role in the ability of anaerobic bacteria to move from 

lag-phase to exponential-phase of growth, this may lead to lack of 
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reproducible results.however in this study we applied these guidelines to 

interpret antimicrobial susceptibility results of anaerobic bacteria. The results 

of anaerobic disk diffusion tests performed either in the presence of some 

oxygen or in a complete anaerobic condition have been found similar (Johnson 

et al., 1995) 

 

• Previous exposure to antibiotics are important in the development of drug 

resistance but this data was not available because patients could not tell me, 

some records were either missing or they were incomplete.  
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Chapter  7  Appendices 
Appendix 1 

1.1 Consent form 
 

SUBJECT INFORMATION SHEET Revised 
For verbal consent 
 

Good Day, 

How are you? 

I am Dr M Patel from Oral Microbiology.  My colleague and I are doing a study on 

germs that occur in our mouth and cause sicknesses. 

 

These germs cause sores in our mouth and sometimes we have to take antibiotics to 

cure it. Penicillin and tetracycline are often used for our mouth. In many parts of the 

world these oral germs have become resistant to penicillin. Which means patients 

with resistant germs will not get better with penicillin. We would like to know if there 

are resistant germs in patients attending our clinics (South Africa). 

 

In order to study, we would like to collect a sample from the gap between your gums 

and teeth.  This may cause slight pain or the gum may bleed slightly for a day.  

However this will not cause any harm.  The sample will be processed into a 

laboratory.  I may not be present at the time of collection of sample, but my 

colleagues will read this consent and explain the procedure to you. 

 

You may or may not participate it is entirely up to you.  What you decide will not 

affect your treatment.  If you agree to participate you may withdraw from the study at 

any time without affecting your treatment.  The sample will be collected once only 

during your normal visit.  There is no direct advantage of this procedure to you 

however once all the results from many patients are put together, we will know if we 

have developed penicillin resistance in South Africa or not and everybody will benefit 

from the knowledge. 
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Your sample will be given a number and will be processed under a number.  Your 

name will not appear anywhere on the results or on any publications. This study has 

been through University ethics committee. Should you have any problems please 

contact Prof P. Cleaton-Jones at 011 717-1234  

 

Patient’s name:      Investigator’s name: 

Date:        Date: 

Signature:         Signature: 
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1.2 Ethics certificate 
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1.3 Flow diagram of laboratory procedure used
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Appendix 2 

2.1 Summary of results 
Prevalence of β-lactamase-producing  
anaerobic oral bacteria (n=48 patients) 
 

 

β-lactamase-producing bacteria   
(n=85 isolates) 
 

 
 
 
Resistance to β-lactam antibiotics  
  
 
(disc diffusion test) 
 
 
 
 
 
 
 
Prevalence of β-lactamase genes
  
 
(n=85)  
 
 
 
 
 
 
 
 
 
Antimicrobial sensitivity and cfxA gene  
 
CfxA 
gene 

No. of isolates resistant to β-lactam antibiotics (%) 
Disc diffusion test (n=85) Broth dilution test (n=17) 
Ampicillin Penicillin Amoxicillin Penicillin 

 R I S R I S R I S R I S 
Present 
(n=43) 

17 
(39.53) 

1  
(2.33) 

25 
(58.14) 

23 
(53.49) 

1 (2.32) 19 
(44.19) 

9 
(52.94) 

0 8 
(47.06) 

10  
(58.82) 

1  
(5.89) 

6  
(35.29) 

Absent 
(n=42) 

14 
(33.33) 

9 
(21.43) 

19 
(45.24) 

8 
(19.05) 

5 
(11.90) 

29 
(69.05) 

- - - - - - 

R:  Resistant, S: Sensitive, I: Intermediate Sensitivity 

 
 
 

 
 

Resistant to Penicillin 
No. strains (%) 

Resistant to Ampicillin  
No. strains (%) 

Prevotella spp 21 (25) 20 (24) 
Porphyromonas spp 3 (4) 2 (2) 
Bacteroides spp 5 (6) 6 (7) 
Fusobacterium spp 0 1 (1) 
Clostridium spp 1 (1) 1 (1) 
Propionobacterium  1 (1) 1 (1) 
Other  0 0 
Total  31 (37) 31 (37) 

β-lactamase  
gene 

(43/85 strains) 

Genus 
(n=43)  

No. of  
positive 
strains 

BlaCfxA genes  

BlaCfxA2  BlaCfxA3  BlaCfxA6  
BlaCfxA 
 
CfxA2: 76.7% 
CfxA3:  14 % 
CfxA6 :  9.3 

Prevotella spp 21 14 4 3 
Porphyromonas spp 4 3 - 1 
Bacteroides spp 12 10 2 - 
Fusobacterium spp 2 2 - - 
Clostridium spp 2 2 - - 
Propionobacterium spp 2 2 - - 
Veillonella spp 0 - - - 
Actinomyces spp 0 - - - 
Mobiluncus spp 0 - - - 

BlaTEM As above 0 - - - 

Prevalence of β-lactamase species: 75 % 
No. of β-lactamase strains: 85 (GNB:76,GNC:2,GPB:6,GPC:1) 
No. of β-lactamase strains/patient: 2 
Mean β-lactamase spp.  
proportion of oral bacteria/patient: 9.4% 
 
 
 Prevotella (49), Porphyromonas (6) 

Bacteroides (16), Fusobacteruim (4) 
Clostridium (3), Propionobacterium (3) 
Veillonella (1), Mobiluncus (1), Actinomyces Meyeri (1) 
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2.2 Demography and total bacterial counts per sample 

Patient 
number Age Gender 

Pocket 
depth 1 
(mm) 

Pocket 
depth 2 
(mm) 

Blood agar only plate 
(cfu/sample) 

Blood agar and 
amoxicillin plate 

(cfu/sample) 

Blood agar and 
augmentin plate 

(cfu/sample) 
1 78 F 8 5 2496000 16900 1300 
2 67 F 8 6 33300 500 700 
3 37 F 5 6 19300 1700 5800 
4 55 F 7 6 16200 0 0 
5 58 M 6 6 43600 100 0 
6 56 F 7 9 72800 40000 0 
7 83 F 7 5 760000 2600 17200 
8 64 F 10 7 368000 95000 13000 
9 47 M 8 8 404000 143000 776000 

10 35 M 5 6 1560000 2000 0 
11 37 F 5 6 132000 6100 1000 
12 67 F 7 6 186400 56800 18400 
13 65 M 5 6 34400 1100 800 
14 64 F 8 7 74400 13100 2200 
15 39 F 7 6 96000 92800 63200 
16 61 F 8 6 560000 220000 0 
17 33 M 10 7 159000 5400 0 
18 41 M 5 6 124800 3300 0 
19 44 M 8 6 1480000 99000 93000 
20 65 F 5 6 680000 560000 470000 
21 37 F 6 5 2610000 230000 140000 
22 42 M 10 9 728000 10000 4000 
23 40 F 5 6 1104000 40000 13000 
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24 60 F 5 5 2370000 430000 120000 
25 76 M 6 6 1880000 720000 90000 
26 45 M 9 7 2320000 220000 60000 
27 57 F 6 6 5840000 930000 630000 
28 52 M 7 5 530000 20000 10000 
29 51 M 8 9 9380000 3520000 90000 
30 22 M 8 8 1200000 380000 40000 
31 58 M 7 6 6640000 120000 0 
32 29 F 5 7 620000 40000 0 
33 48 F 10 10 686000 5000 0 
34 72 F 6 7 5120000 250000 30000 
35 70 F 12 10 728000 12000 1000 
36 34 F 6 6 912000 39000 3000 
37 32 M 6 8 1120000 24000 10000 
38 65 F 5 5 4160000 320000 20000 
39 57 F 7 5 1760000 9000 0 
40 60 F 6 6 39000 1200 4000 
41 67 M 6 6 141000 15000 4000 
42 54 F 7 8 896000 73000 31000 
43 63 M 9 7 2960000 140000 40000 
44 26 M 6 6 1034000 15000 2000 
45 54 M 7 5 704000 78000 12000 
46 33 M 6 8 7350000 30000 10000 
47 29 F 6 8 7350000 30000 1000 
48 63 F 13 7 5440000 36000 5000 
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2.3 Species isolated per patient 

Patient 
number Bacterial Species 1 Bacterial species 2 Bacterial species  3 Bacterial species 4 Bacterial species 5 Bacterial species 6 

1 Prevotella bivia Prevotella oralis  Bacteriodes capillosus Prevotella melaninogenica     
2 Yeast 

     3 Grew on both amx and aug 
     

4 
No growth on antibiotic 
plates 

     5 Facultative 
     6 Aerobic 
     7 Grew on both amx and aug 
     

8 
Porphyromonas 
endodontalis 

     9 Prevotella intermedia  Fusobacterium nucleatum Bacteriodes ureolyticus 
   10 Prevotella oralis Prevotella oralis  

    
11 

Fusobacterium 
necrophorum  

Propionibacterium 
granulosum Prevotella oralis Prevotella denticola 

  12 Prevotella Melaninogenica 
     13 Prevotella oralis 
     

14 Bacteriodes Ureolyticus Prevotella oralis 
Fusobacterium 
necrophorum Clostridium botulinum 2 

  15 Grew on both amx and aug 
     16 Bacteroides eggerthii  Prevotella buccae Clostridium sordelli 

   17 Prevotella intermedia  Porphyromonas endodontalis 
    18 Bacteroides eggerthii  Prevotella intermedia 
    19 Grew on both amx and aug 

     20 Prevotella oralis 
     21 Facultative 
     22 Veillonella spp  
     

23 
Fusobacterium 
necrophorum  

     
24 

Porphyromonas 
endodontalis  Prevotella oralis Propionibacterium acnes  Prevotella oralis Prevotella intermedia 

 
25 Prevotella Intermedia  

Propionibacterium 
granulosum  
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26 Porphyromonas gingivalis  Bacteriodes eggerthii Actinomyces meyeri 
   27 Prevotella Intermedia  Bacteriodes capillosus  

    28 Bacteriodes capillosus  
     29 Prevotella Intermedia  Prevotella intermedia Prevotella oralis 

   30 Prevotella oralis Veillonella spp  Bacteriodes uniformis  
   31 Prevotella oralis Clostridium perfringens  

    32 Prevotella Melaninogenica  Prevotella oralis 
    33 Prevotella bivia  Porphyromonas gingivalis  Prevotella bivia  Prevotella oralis 

  34 Prevotella buccae  Prevotella Melaninogenica  Prevotella intermedia  Prevotella intermedia  Bacteriodes capillosus  Prevotella intermedia 
35 Bacteriodes capillosus  Prevotella oralis 

    36 Prevotella oralis Prevotella oralis Prevotella oralis Prevotella intermedia  Mobiluncus spp 
 

37 
Porphyromonas 
endodontalis  Bacteriodes capillosus  

    38 Prevotella intermedia  Prevotella oralis Prevotella intermedia 
   39 Bacteriodes ureolyticus 

     40 Grew on both amx and aug 
     41 Facultative 
     42 Bacteroides Merdae Prevotella oralis 

    43 Prevotella intermedia Prevotella intermedia 
    44 Prevotella buccalis 

     45 Facultative 
     46 Prevotella melaninogenica Prevotella oralis 

    47 Prevotella intermedia Prevotella oralis 
    48 Bacteroides capillosus Prevotella buccae         
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2.4 Antimicrobial susceptibility of bacterial samples 

Patient 
number 

Sample 
number API ID Antimicrobial susceptibility 

    CD TS C RP SYN LZD FC AP P VA GM E 
1 1.2 Prevotella bivia S R S S S S S I I S R S 

 
1.3 Prevotella oralis S S S S I S S R R R R S 

 
1.4 Bacteriodes capillosus S I S S S S S S S R R S 

 
1.5 Prevotella melaninogenica S S S S S S S R R R R S 

2 2 Yeast 
            3 3 Grew on both amx and aug 
            4 4 No growth on antibiotic plates 
            5 5 Facultative 
            6 6 Aerobic 
            7 7 Grew on both amx and aug 
            8 8 Porphyromonas endodontalis  S R S S S S S S R I R S 

9 9.1 Prevotella intermedia S R S S S S S S I R R S 

 
9.2 Fusobacterium nucleatum R R S I R S R S S R R R 

 
9.4 Bacteriodes Ureolyticus R R S S S S S R R I R S 

10 10.1 Prevotella oralis S R S S S I S S R I R S 

 
10.3 Prevotella oralis  I R S S S S R S R S R S 

11 11.1 Fusobacterium necrophorum  S R S S S S S R S R R S 

 
11.2 Propionibacterium granulosum S S S S S S S I S S R S 

 
11.3 Prevotella Oralis R R S S S S I I S R R S 

 
11.4 Prevotella denticola R R S S S S S I S R R S 

12 12 Prevotella melaninogenica S R S S S S S R R R R S 
13 13 Prevotella oralis S R S S S S S S I R R S 
14 14.1 Bacteriodes Ureolyticus S S S S S S S S S R R S 

 
14.2 Prevotella oralis S I S S S S S I R R I S 

 
14.3 Fusobacterium necrophorum S R S S S S R S S I R S 
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14.4 Clostridium botulinum 2  S S S S S S S R S I S S 

15 15 Grew on both amx and aug 
            16 16.1 Bacteroides eggerthii R S S S S S S S S I I S 

 
16.2 Bacteroides eggerthii  S R S S S S S R R R R S 

 
16.4 Clostridium sordelli S R S S S S S S R R R S 

17 17.1 Prevotella intermedia S R S S S S S S R R R S 

 
17.2 Porphyromonas endodontalis  S S S S S S S S R R R S 

18 18.1 Bacteroides eggerthii  S R S S S S S R R R R S 

 
18.2 Prevotella intermedia S R S S S S S S S R R S 

19 19 Grew on both amx and aug 
            20 20 Prevotella oralis S R S S S S I R R I R I 

21 21 Facultative 
            22 22 Veillonella spp S R S I R S R I I R R R 

23 23 Fusobacterium necrophorum  S R S S S S S S S R R S 
24 24.1 Porphyromonas endodontalis S R S S S S S S S R R S 

 
24.2 Prevotella oralis S R S S S S S S S R R S 

 
24.3 Propionibacterium acnes  S R S S S S S S S R R S 

 
24.5 Prevotella Oralis  S R S S S S S R R R R S 

25 25.1 Prevotella Intermedia  S R S S S S S I S R R S 

 
25.2 Propionibacterium granulosum  S S S S S S S R R R R S 

26 26.1 Porphyromonas gingivalis R S S S S S S R R R R R 

 
26.2 Bacteriodes eggerthii S S S S S S S R S S R S 

 
26.3 Actinomyces meyeri S S S S S S S S S S R S 

27 27.1 Prevotella Intermedia S R S S I S S S S R S S 

 
27.2 Bacteriodes capillosus S R S I S S S S S R R R 

28 28 Bacteriodes capillosus S R S S S S S S S R R R 
29 29.1 Prevotella intermedia R R S S S S S R R R R S 

 
29.2 Prevotella intermedia S R S S S S S R R R R S 

 
29.3 Prevotella oralis  S R S S S S S R R I R S 

30 30.1 Prevotella oralis S R S S S S S I R S S S 

 
30.2 Veillonella spp S R S S R S R S S R R R 

 
30.3 Bacteriodes uniformis  S R S S S S S S S R R R 
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31 31.1 Prevotella oralis S R S S R S R S R R R R 

 
31.3 Clostridium perfringens S S S S S S S S S S R S 

32 32.1 Prevotella Melaninogenica S R S R S S S S S S R S 

 
32.2 Prevotella oralis S R S S S S S S S R R S 

33 33.1 Prevotella bivia  S R S S S S S R S R R S 

 
33.2 Porphyromonas gingivalis S R S S S S S R S R R S 

 
33.3 Prevotella bivia S R S S S S S R S R R S 

 
33.4 Prevotella oralis S R S S S S S R S R R S 

34 34.1 Prevotella buccae S R S S S S S R R R R R 

 
34.2 Prevotella melaninogenica S R S S S S S S S I R I 

 
34.3 Prevotella intermedia S I S S S S S S S S I S 

 
34.4 Prevotella intermedia S R S S S S S S S S R S 

 
34.5 Bacteriodes capillosus S R S S S S S S S S R S 

 
34.6 Prevotella Intermedia  S R S S S S S S S I R S 

35 35.1 Bacteriodes capillosus  S I S R S S S R R R R S 

 
35.2 Prevotella oralis  S I S S S S S R R S R S 

36 36.1 Prevotella oralis  S R S S R S S R R R R S 

 
36.2 Prevotella oralis  S R S S S S S R I R R S 

 
36.3 Prevotella Intermedia  S R S S S S S S S R R S 

 
36.4 Mobiluncus spp  S R S S S S S S S S R S 

37 37.1 Porphyromonas endodontalis S R S S S S S I S I R S 

 
37.2 Bacteriodes capillosus  S R S S S S I I S I R S 

38 38.1 Prevotella intermedia  S R S S S S S R R R R S 

 
38.2 Prevotella oralis S R S S S S S R S R R S 

 
38.3 Prevotella intermedia  S R S S S R S R R R R S 

39 39 Bacteriodes ureolyticus S R S S S S S S S R R S 
40 40 Grew on both amx and aug 

            41 41 Facultative 
            42 42.1 Bacteroides Merdae R R S S S S R R R S R R 

 
42.2 Prevotella oralis R R S S S S S S S S R R 

43 43.1 Prevotella intermedia S R S S S S S S R S R S 

 
43.2 Prevotella intermedia S R S S S S S S S S R S 
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44 44 Prevotella buccalis S R S I S S S R S R R S 
45 45 Facultative 

            46 46.1 Prevotella melaninogenica S R S S S S S R S R R S 

 
46.2 Prevotella oralis S R S S S S S S S S R S 

47 47.1 Prevotella intermedia S R S S S S S S S S R S 

 
47.2 Prevotella oralis S R S S S S S S S S R S 

48 48.1 Bacteroides capillosus S R S S S S S S S R R S 

 
48.2 Prevotella buccae S R S S S S S S R S R S 
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2.5 Gel electrophoresis results of PCR products from β-lactamase-
producing oral anaerobes 

 

 

 

 

 

 

 

 

 

 

 

Lane M indicates the O’GeneRuler™ 50 bp DNA ladder molecular marker. Lanes 1 
to 26, indicate β-lactamase-producing oral anaerobes, Lane 27 is the Positive control 
and Lane 28 the negative control. 
 
 

 
 

Lane M indicates the O’GeneRuler™ 50 bp DNA ladder molecular marker. Lanes 1 
to 16, indicate β-lactamase-producing oral anaerobes, Lane 17 is the Positive control 
and Lane 18 the negative control. 
 

M     1  2   3   4  5   6   7   8   9 10  11  12  13  14  15 16 17 18  19 20 21 22 23 24 25 26 27 28  

  M     1      2     3     4     5     6    7    8     9    10  11    12  13    14  15   16   17   18   
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Appendix 3 

3.1 Composition and preparation of media 
 
1% Agarose gel 
0.1 g  Seakom® LE Agarose (Lonza, USA) 
100ml  1× Tris-borate-EDTA (TBE) Buffer 
5µl  Ethidium Bromide 
 
Ethidium bromide was added to a 1% agarose gel made up Agarose and TBE buffer. 

The gel was left to cool down for 2 minutes, poured into a moulding apparatus, a 

comb placed into the notch to create sample wells, and the gel left to solidify for 15 

minutes forming a gel ‘slab’. 

 
Amoxicillin (Stock solution for MIC test) 
129 g  Amoxicillin (Smithkline Beecham) 
100 ml  Phosphate buffer, pH6.0 
 
Amoxicillin powder was added to Phosphate buffer, vortexed and dispensed into 

appropriate sterile vials, sealed and frozen at ≥ 60˚C. 

 
Blood agar 
 
39 g  Columbia agar (Oxoid Ltd, UK) 
5 g  Sterile defibrinated blood 
5mg  Haemin 
1mg  Menadione 
1000 ml Distilled water 
 
Columbia agar base was dissolved in a 1000 ml of distilled water. It was sterilized by 

autoclaving at 151b and 121 °C for 10 minutes. It was allowed to cool to 50 °C and 5 

% sterile defibrinated blood was added. It was poured into petri dishes, allowed to set 

and refrigerated until use.  

 

Blood agar with Amoxicillin 

39 g  Columbia agar (Oxoid Ltd) 
5 g  Sterile defibrinated blood 
5mg  Haemin 
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1mg  Menadione 
3mg  Amoxicillin (Smithkline Beecham) 
1000 ml Distilled water 
 
Columbia agar base was dissolved in a 1000 ml of distilled water. It was sterilized by 

autoclaving at 151b and 121 °C for 10 minutes. The agar base was allowed to cool to 

50 °C and 3mg of Amoxicillin and 5 % sterile defibrinated blood was added. It was 

poured into petri dishes and they were refrigerated until use.  

 

Blood agar with amoxicillin and clavulanic acid 
 
39 g  Columbia agar (Oxoid Ltd) 
5 g  Sterile defibrinated blood 
5mg  Haemin 
1mg  Menadione 
3 mg  Amoxicillin (Smithkline Beecham) 
0.75 mg Clavulanic acid (Smithkline Beecham)    
1000 ml Distilled water 
 
Columbia agar base was dissolved in a 1000 ml of distilled water. It was sterilized by 

autoclaving at 151b and 121 °C for 10 minutes. The agar base was allowed to cool to 

50 °C and 3mg of Amoxicillin, 0.75 mg of Clavulanic acid and 5 % sterile 

defibrinated blood was added. It was poured into petri dishes and they were 

refrigerated until use.  

 
Clavulanic acid (Stock solution for MIC test)  
76 g  Clavulanic acid (Smithkline Beecham) 
50 ml  Phosphate buffer, pH6.0 
 
Clavulanic acid powder was added to Phosphate buffer to create a stock solution with 

a concentration of 1280 µg/ml and dispensed into appropriate sterile vials, sealed and 

frozen at ≥ 60˚C. 
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Fusi Form Medium 
 
37 g   Brain heart infusion (Biolab Diagnostics Pty. Ltd, SA) 
3 g   Yeast extract 
2 g   Soluble starch 
1000 ml  Distilled water 
pH 7.6 
 
Medium was dissolved in water and autoclaved at 151b and 121 °C for 15 minutes. 
 
Haemin  
 
0.5 g  Haemin 
10 ml  1N NaOH 
90 ml  Distilled water 
 
Haemin and Sodium hydroxide were dissolved in distilled water and autoclaved at 

151b and 121 °C for 15 minutes. 

 
 
Penicillin (Stock solution for MIC test) 
125 g  Penicillin 
100 ml  Distilled water 
 

Penicillin powder was suspended in water, vortexed and dispensed into appropriate 

vials. These were stored in a freezer at ≥ 60 ˚C. 

 

Phosphate buffered saline 
 
4.2 g   Sodium Chloride 
0.078 g  Sodium dihydrogen phosphate (NaH2PO4.2H2O) 
0.64 g   Sodium hydrogen phosphate (NaHPO4) 
500 ml  Distilled water 
 
These were suspended in water and autoclaved at 151b and 121 °C for 15 minutes. 
 
Reduced Transport fluid 
 
 
7.5 ml  K2HPO4 
1 ml  0.1 M EDTA 
0.5 ml  Na2CO3 
0.12 g  Sodium chloride 
0.12 g  (NH4)2SO4 
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0.06 g  KH2PO4 
0.025 g MgSO4 
2 ml  Fresh dithiothreitol 
81.4 ml Distilled water 
 
Reagents were mixed with distilled water, filter sterilized with a 0.22µm filter and 

pre-reduced by being placed in an anaerobic environment for 24 hours. The fluid was 

then dispensed into vials and refrigerated until use. 

 
 
Tryptone Broth 
 
12.5 g   Tryptone powder (Biolab Diagnostics Pty. Ltd, SA) 
7.5 g   Yeast extract 
5 g   Sucrose 
0.5 ml   Haemin 
0.5 ml   Menadione  
500 ml  Distilled water 
pH 7.0 
 
Medium was dissolved in water and autoclaved at 151b and 121 °C for 15 minutes. 

The Broth was was dispensed into microtitre plates and refrigerated until use. 
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