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Abstract

Materials are modeled by the ab-initio plane wave pseudopotential methods using density

functional theory. In this work, we are seeking new ultrahard with enhanced elastic and

mechanical properties, thermal stability as well as hardness which might be of advantage

over known traditional materials (diamond and cubic boron nitride). Structural, elastic and

electronic properties of the advanced metal nitrides M2N3 and their ternary phases were

investigated using both the local density approximation (LDA) and the generalized gradi-

ent approximation (GGA). The relative stability of the ternary phases with respect to their

constituent mixtures is computed. Results obtained are compared with the available exper-

imental and theoretical data. To gain more information concerning the elastic properties of

these hypothetical materials, we also computed the charge densities of the binary and ternary

phases. From these calculations suggestions are made as to how the elastic properties vary

from those of known hard materials.
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1. Introduction

Quantum mechanical theories are reliable methods which can be used to predict new ma-

terials and explain their properties [1]. Quantum theory applications have progressed more

slowly for solids than in molecules. Atomic theories have been spectroscopically validated,

but in the case of solids there are many structural possibilities since solids are complex

many-body ensembles of the order of 1023 strongly interacting particles. Aside from chal-

lenges experienced when using these methods, new physical descriptions and the availability

of more high computing power have resulted in a successful theoretical description of existing

hard materials as well as in the prediction of the new hard materials. To understand and

describe accurately the physical properties of a material governed by the behaviour of a tiny

almost massless electron, it is important to develop a valid quantum mechanical description.

In this quantum mechanical model, it is necessary to solve the Schrödinger equation,

Hψ = Eψ(r1, ..., rN) (1.1)

where H is the Hamiltonian acting on the N -particle wavefunction ψ. It is easy to extract

information from the exact solution of the equation for a single electron atom but for a

complex solid of the order of 1023 strongly interacting particles, is usually very difficult.

Thus, it is unavoidable to introduce methods that approximate and reduce the size of the

computational problem.

These modern theoretical quantum approaches are often referred to as the standard models

for solids [1, 2]. Out of these standard models, one of the most popular forms involves pseu-

dopotentials and assumes that the core electron of an atom remain unchanged when a solid

structure is formed [2]. This has helped to reduce ambiguity in describing the properties of

a model solid to one of using valence electrons interacting with a periodic array of positive

ionic cores. These valence electrons get attracted to the positive cores through Coulombic

attraction because these cores are made up of atomic core electrons that screen the nu-

cleus. The potential that is obtained as a result of this, is called the pseudopotential [3].

1
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Pseudopotentials are generated in various schemes starting from atomic wavefunction calcu-

lations. The Schrödinger equation is solved in density functional theory (DFT) to determine

the pseudo-wavefunction. Different type of pseudopotential exit but the one utilized in this

work is the projected augmented-wave (PAW) method implemented by Blöchl [4]. The PAW

total energy functional is derived in a consistent way by applying the linear transformation

(between soft nodeless pseudo (PS) wave function and the all-electron (AE) wave function)

to the Kohn-Sham functional [5]. The PAW method has been proven to be effective in high

performance computing for studying solids, surfaces and molecules. Further details will be

provided in the course of this work.

Experimental synthesis and theoretical analyses carried out on the orthorhombic U2S3 tan-

talum nitride structure, Ta2N3 (space group pbnm, 62) by Zerr et al. [6] and Jiang et al.

[7] predicted Ta2N3 to be potential superhard material. The properties of advanced metal

nitrides M2N3 (where M = Ta, V,Nb) are explored in this work because of their novel fu-

ture industrial application. Emphasis is also placed on the ternary phases of these advanced

materials. Their relative stabilities are discussed as well as their densities of states. Despite

the fact that these metal nitrides may often be seen as only the combination of the transition

metals and nitrogen, some of them show interesting chemical and physical properties which

are not notable in the metals and nitrogen alone. The binary nitrides of tantalum, Ta, have

been known for their mechanical stability, chemical inertness and their possible application

in microelectronics as a copper diffusion barrier [6].

Among these binary nitrides of tantalum is the high pressure TaN having NaCl structure

and the orthorhombic Ta3N5 [8]. Recently, the study of the ground state properties and

phase stability of vanadium nitrides (V N, V2N) [9] was carried out via a density functional

electronic structure calculation. These compounds are important because of the potential

applications of vanadium nitrides in hard coating, catalysis and optoelectronics [9]. The

calculated phase stability of V N was revealed to be isoelectronic to niobium nitride, NbN ,

and these results are comparable with the ones observed by the recent phonon spectrum
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study of the transition metal mononitrides by Isaev et al [10].

Following the fact that the structural, the relative stability and the elastic properties of

material are being predicted, electronic structure studies have since become prominent in

this field of research. It provides valuable information about the formation of alloys, their

relative stability and various physical and chemical properties, quantitatively. The availabil-

ity of high performance computing has given researchers an edge to elucidate the following

unclear questions relating to; what atomic structure a material is composed of, its electronic

properties and how the bond between atoms that constitute the material can be modified

in order to create a novel hard material. Attempts are still in progress in applying first

principles calculations employing density functional theory (DFT) to the problem of under-

standing the structural behaviour, phase diagram and mechanical properties of a material

[11].

In this work, we employed the use of ab-initio quantum mechanical dynamic simulation using

the projected augmented wave (PAW) method embedded in the Vienna Ab-initio Simulation

Package (VASP) algorithm [12]. In the PAW method the pseudo-wave functions played the

role of variational parameter and this is more simpler to treat than the all-electron function.

The PAW method has proven its capability for studying surfaces, molecules and solids using

high performance computing platforms. The projected augmented wave method is described

in chapter 3. The ab-initio calculations used are based on the formalism of the density

functional theory with the local density approximation (LDA) and the generalized gradient

approximation (GGA). These functional were used in the treatment of the electron-electron

interactions.

We present the format of this dissertation as follows: the subsequent chapter gives the

overview of ultrahard materials and the concept of hardness. Chapter 3 covers reviews of

the literature review of the theoretical background governing the computational models used.

Chapter 4 describes the transition metal nitrides. In Chapter 5 we look at the techniques

used in the computation of equilibrium properties and then present and discuss the computa-
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tional results of the elastic, structural, electronic and relative properties of the orthorhombic

metal nitrides of tantalum, vanadium and niobium. These results are compared with the

experimental data available and finally, we conclude in Chapter 6.



2. Overview of Ultrahard Materials

The possibility of designing new low compressible materials with hardness similar or even

larger than that of diamond has become a fundamental and technological challenge to

chemists, physicists and many in material scientist community. This has intensified ex-

perimental and theoretical efforts in these fields [13, 14, 15, 16]. Ultrahard materials are

of considerable practical importance as a result of their mechanical and thermal proper-

ties. They have a wide range of applications such as cutting tools, scratch resistant coating

tools, in oil drilling, as gemstones, surgical knives, potential novel semiconductors, speaker

components and one of the major industrial application of an ultrahard material is as

superabrasives[13, 14, 15, 16].

There are three conditions that should be met before a material is certified ultrahard (or

superhard) and these include: shorter bond length, higher bond density or electronic density

and a greater degree of covalent bonding [16]. Ultrahard materials are distinguished into

three classes, including the already synthesized and hypothetical phases [14]

� The ionic-covalent (such as oxides like corundum, Al2O3) and covalent compounds

formed by the addition of the light elements from period 2 and 3 of the periodic

table. The first group includes beryllium, boron, carbon, nitrogen, oxygen, aluminum,

phosphorus and silicon.

� The second class are the specific covalent compounds which includes various crystalline

and disordered carbon modifications. These carbon materials are regarded as special

because of the existence of different types of chemical bond between the carbon atoms.

For example, the cubic sp3 carbon modification, diamond; and the trivalent sp2 atoms

of carbon, fullerites (C60).

� The third class of ultrahard material includes the transition metals with light ele-

ments such as carbon C, boron B, oxygen O and nitrogen N - the partially covalent

5
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compounds.

Although Beryllium Be falls in the same periodic row as B, C, N and O it has too few

electrons to form strong bonding between atoms. A close look at the ultrahard materials that

have already been synthesized and hypothetically predicted, and those having the possibility

of becoming a potential candidate, reveals the fact that they consist of elements positioned

in the middle group of the periodic table. These elements are known to have the smallest

ionic, metallic or covalent radii and the largest cohesive forces between atoms. Typically,

for the first group of the superhard materials, we have corundum (Al2O3) and the high

pressure phase of SiO2, stishovite. These are oxides that have the capability of forming a

three dimensional rigid lattice with shortened covalent bonds [14]. The second group of the

ultrahard materials are regarded as a special group and, because of the existence of different

types of chemical bond between carbon atoms there is a great variety of carbon allotropes

(diamond and graphite) and disordered phases [14]. Graphite crystallizes in a hexagonal

crystal structure in trigonal coordinates as a result of the sp2 hybridization of carbon atoms.

Although the carbon bonds are shorter and stronger, only a weak van der Waals interactions

hold them together allowing layers of graphite to cleave readily [17]

Diamond (strong covalent bond of tetrahedral sp3 hybrid states) is still the hardest material

to date. It occurs naturally as a gemstone and has been synthesized under extreme pressure-

temperature conditions. It is number one on the Mohs scale, with scale value of 10 and has

the lowest molar volume (3.4 cubic centimeters). Diamond is the most prized stone in jewelry

because of it optical properties. It displays high thermal conductivity (2000W/mK) at room

temperature, which is about four times as high as that of silver Ag and copper Cu. It is also

known to be a good insulator under high temperature conditions and thus, is considered as

an important candidate in electronics applications. All these unique properties of diamond

make it indispensable in industry. It is used as a grinding tool, in cutting concrete, a

polishing stone and in large scale for drilling rocks for oil wells. In addition, diamond has a

low coefficient of friction and low thermal expansivity, high chemical and corrosive resistance
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to acid and oxidizing substances. Diamond is considered to be transparent under visible and

infrared light and can withstand ionization radiation [13, 17].

The strong chemical bond between each of the carbon atoms in a diamond structure results

in its hardness by forming a regular cubic network linked to four other carbon atoms in its

crystal lattice. Owing to the carbon’s bond strength and its small atomic size, diamond

has been able to form a denser mesh of atomic bonds than any other material. The best

carbon source for diamond synthesis is graphite and as such, the characteristics of graphite

are important [18]. The Vickers hardness for diamond varies from 70 − 140GPa depending

on the crystal type and the chosen crystal face [14]. High elastic constants and a very low

Poisson’s ratio have been recorded for diamond. From a theoretical approach, the study of

hardness has been linked to high bulk modulus, B, and with recent research, it has also

been correlated to the shear modulus, G, of the material. Among all the ultrahard materials

ever synthesized or hypothetically predicted, diamond is still the leading system with high

B = 443GPa and G = 535GPa values respectively [19]. Although diamond has been used

traditionally to fulfill many industrial purposes, its application as a ferrous alloy cutting tool

is limited. This is due to its chemical reaction with iron to produce iron carbide at high

temperatures. This has prompted an increased efforts in the search for new bulk superhard

materials that are not just harder than diamond but also more useful than diamond in certain

circumstances [15].

Cubic boron nitride (c − BN) is the second hardest ultrahard material known. It has a

structure that is similar in some respects to that of diamond and can be used to cut ferrous

metals. However, cubic boron nitride does not occur in nature but has been synthesized under

similar pressure range (5.5− 6.0GPa) as that of diamond and at higher temperature (above

1950K). Cubic boron nitrides can withstand oxidation at extreme temperatures whereas

diamond cannot. It has a low chemical reactivity, low density, high temperature, and high

resistance to electricity and hardness that is only surpassed by that of diamond. Because of

the improved resistance to oxidation, c−BN allows high-speed cutting or grinding of steel-
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based materials which cannot be done by diamond. It has a bulk modulus B = 367GPa and

a shear modulus G = 405GPa [13, 16, 17]. However cubic boron nitride is not produced on

a large scale basis due to difficult synthesis processes. This has called for more research to

find new ultrahard materials.

With increasing pressure and temperature, most minerals are found to exhibit quite a number

of structural phase transitions. From the well-known compound of SiO2 (quartz at low

temperature), a hard phase is the rutile-type SiO2-stishovite, which was reported to be

the third hardest material (33GPa) after diamond and c − BN , but it has not yet been

stabilized for technological use [13]. The high bulk moduli and hardness of stishovite are

due to silicon atoms in this compound that are octahedrally (sixfold) coordinated, which is

different from the fourfold coordination of the low pressure phase of SiO2, (quartz). The

oxide B6O possesses a high hardness (Vickers hardness of 32− 38GPa) [14]. B6O is as hard

as the cubic boron nitride and has a fracture toughness similar to that of diamond. It can

be synthesized at much lower pressure (even at ambient pressure) as compared to that for

diamond and c−BN . It combines hardness with low density, high thermal conductivity and

high chemical inertness [20]. The wurtzite and the hexagonal boron nitrides (w − BN and

h−BN , respectively) are well known as having high hardness and high elastic moduli.

Other covalent materials such as the compounds of boron with carbon, silicon and phosphorus

(examples B4C, BP and B4Si) as well as silicon nitride (Si3N4) are of great interest. In

particular Si3N4, is an important new synthetic hard material among new ceramics. It

has outstanding high oxidation and temperature resistant properties and therefore many

industrial applications [21]. The recently synthesized cubic spinel structure phase of Si3N4

with high calculated shear and bulk elastic moduli [22] has proven that the preparation of

new dense and hard materials can be achieved under high pressure. The hardness value of

the cubic phase γ−Si3N4 is closer to that of the SiO2-stishovite but significantly below that

of the diamond and cubic boron nitride.

Another material that has been suggested as an ultrahard material with bulk modulus
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(427GPa) comparable to that of diamond is C3N4. However, with the exciting research

activities to search for and synthesize C3N4, no conclusive evidence have been provided yet

[21]. The hexagonal β − C3N4 phase has been computed theoretically using semi-empirical

methods and the bulk modulus value estimated as 483GPa, which is higher than that di-

amond [19]. The hexagonal β − C3N4 was considered to have the same structure as the

hexagonal β − Si3N4 and this led to the speculation that C3N4 may also exist in the spinel

nitride phase [21]. Transition metal compounds show very high bulk modulus and cohesive

energy, which is directly linked to their valence electron between the bonding and antibond-

ing region within the partially filled electron states. This makes them a potential candidate

for ultrahard materials. It is still fascinating that with all the materials (either synthesized

or reported), having bulk modulus close to or even greater than that of diamond, diamond

remains the hardest material ever known. This brings us to the conclusion that the search

for new materials will still be ongoing even in centuries to come.

2.1 Concept of Hardness

In designing a new ultrahard material, it is useful to consider the type of structural changes

a material can undergo when subjected to a load. These changes can be in the form of

reversible or irreversible deformation which are classified as elastic or plastic deformations

[15]. An ultrahard material is usually defined as a material with hardness value of above

40GPa and among all known phase compounds only diamond (90GPa) and c−BN (50GPa)

exceeds this value. Hardness is a complex concept and from a mechanical point of view, it is

seen as one of the quantitative parameters that describe the resistance of a material towards

elastic (reversible) or plastic (irreversible) deformations. Deformation occurs when the shear

stress exceeds the yield stress of the said material. Hardness is influenced strongly by var-

ious parameters: porosity, pressure, temperature, dislocations, impurities, microstructural

texture and grain size. It was first defined experimentally, as the ability of one material
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to scratch another with the use of certain substance from talc = 1 to diamond = 10, this

correspond to the Mohs scale. Regrettably, a single step on the Mohs scale became highly

nonlinear in terms of hardness measurement. In addition, from the experimental viewpoint,

the Moh scale is less reliable since materials with comparable but not equal hardness are

able to scratch each other.

The methods for measuring the hardness value of a material involve subjecting the material to

an indentation by a hard indenter, usually diamond loaded perpendicular to a planar surface

of the material being tested. The hardness value depends on the geometry of the indenter

and the parameter associated with the test, as well as the environmental condition. There are

various methods that utilize this concept: these include the Rockwell, the Brinell, the Knoop

and Vickers indenter [13, 14, 17, 23, 24]. Hardness determined from these procedures depends

on the ratio of the load in the framework of the method, to the indentation area. The hardness

value of metal forging and castings having large grain structures are usually determined by

the Brinell hardness testing. A Rockwell testing measures the penetration produced by

a major load. This test was originally designed for use on thin metallic components and

coatings but in addition to that, it can also test for data on bulk ceramics [25].

A Vickers hardness test uses the diamond square-based pyramid indenter in determining the

hardness of a material. The Vickers hardness is defined as the ratio of the applied load P to

the surface area of the impression whereas the Knoop hardness is the ratio of the load P to

the projectal area of the impression. These are expressed mathematically as

HV =
1.8544P

d2
, (2.1)

HK =
14.229P

l2
. (2.2)

l is the long diagonal of the rhombus-based diamond pyramid of the Knoop indenter and

d, the diagonal of the square-based diamond pyramid for the Vickers indenter. In order to

compare hardness values from different testing methods, it is important to reference the exact

test method and conditions [17]. Hard materials are of tremendous importance to industrial
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application and thus, are still undergoing intensive investigation; both experimentally and

in theoretical calculations. The combination of hardness with other vital properties such as

chemical inertness and low-cost of synthesis is of great interest too.

The concept of hardness is visualized in terms of two different contributions: intrinsic and

extrinsic contributions. The latter includes the grain boundary, residual stress and solution

precipitation whereas, the former are based on the nature of the bonding structure of the

material (that is, the strength of the chemical bond between atoms) which is reflected by the

high elastic moduli. These bonds are mostly covalent in nature and at times it is possible for

the bonds to be ionic-covalent or metallic bond. The ionic-covalent bonds are less deformable

than those of the metal. The covalent materials are much better candidates for high hardness

because of the localized electronic interaction between the atoms. In addition, the dislocation

mobility in the material needs to be as small as possible [26].

Although, the definition of hardness and the process of its measurement seem ambiguous, it

has been, and is still described theoretically in terms of elastic bulk and shear moduli. This

is not uncommon as hardness is related to physical properties like cohesive energy, ionicity,

melting point, band gaps and thus, can be studied indirectly [24]. There have been a series

of theoretical computations aimed at finding materials with high values of bulk modulus B

and shear modulus G in the last two decades [16]. In fact, the aim of designing hardness

is to use the knowledge of plastic resistance and elastic stiffness to propose new ultrahard

materials [15]. Bulk modulus B is the most simple measure of elastic stiffness. It measures

the resistance to volume change and this resistance to elastic strain depends on the valence

electron density, VED (electrons/unit volume). This implies that high bulk modulus equals

high VED [26]. A recent investigation carried out, revealed a correlation between VED

and hardness and this led to a speculation that hardness can be understood in terms of

the electronic band structure of a material [16]. Bulk modulus B is the reciprocal value of

compressibility K, how a material responds to hydrostatic pressure [24]. For an ultrahard

material, compressibility K is a very important property because it gives information on
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the strength of the material, the electronic structure and the chemical bonding [18]. From

Hooke’s law, the bulk modulus, B is related to the applied stress σ and elastic strain ε by

B =
dσ

dε
, (2.3)

where σ is the derivative of the binding energy Eb and the bond length l given as

σ =
dEb
dl

. (2.4)

By implication, there is a clear relation between the bulk modulus, the binding energy and

the interatomic bond length given as

B =
d2Eb
dl2

. (2.5)

Thus, a material with short interatomic forces leads to a high bulk modulus as well as high

bond energy and valence electron density. This was proposed by Marvin Cohen in early 1990s

[17, 19]. In the last two decades, bulk moduli have been used as a rough scale to measure

the hardness of a material because it was cheaper to compute in terms of the efficient use of

computer time. On this scale, materials with the value of bulk modulus exceeding 250GPa

were considered as being ultrahard materials [13]. However the correlation that existed

between the bulk modulus and hardness, were still limited. For instance, the bulk modulus

of hypothetical hexagonal phase of β − C3N4 is higher than that diamond but does not

necessarily mean it is in any way near the hardness of diamond[14].

However, there is this general intuition that hardness of a material depends strongly on

the creation and movement of dislocations in response to the shear stress produced by an

indentation. As the shear strain needed for the dislocation motion is related directly to the

elastic shear modulus of the deformed material. The elastic shear modulus measures the

material’s resistance to shape change. It is not accidental, that there is a strong correlation

between the elastic shear modulus and hardness because, the mechanical tests are linked with

deformations that consist of shear component, and the fact that atomic forces are correlated

to elastic and plastic deformation [13, 14, 15, 16]. The compilation of experimental data for
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different materials shows that elastic shear modulus is a better predictor of hardness than

the elastic bulk modulus [24].



3. Theoretical Background

In describing and predicting properties of materials, atomistic simulations, electronic struc-

ture theory (quantum mechanical method) has become increasingly vital over the years,

especially with the present-day high performance computers. Among these properties are

the total energy, the valence electron density, the force between atoms and so on. The origin

of the theory of electronic structure of solids is the nonrelativistic Schrödinger equation for

many-body wave function ψ, expressed as[
−~2

2m

∑
j

∇2
j −

∑
j,l

Zle
2

|rj −Rl|
+

e2

2

∑
j 6=j′

1

|rj − r′j|

]
ψ = Eψ, (3.1)

where rj are the electron positions and Rl,Zl the positions and atomic numbers of the nuclei;

E is the energy and e, ~, and m are fundamental constants [27]. The Hamiltonian for the

entire system is made up of the kinetic energy of the electrons in the system, electrons and

nuclei including their interaction energy. The theory of electronic structure is divided into

two classes: the ab-initio methods and the semi-empirical methods. However, there is an

economy of scale to ab-initio total energy calculation because many physical properties are

related to the total energies and this makes this method very important in computational

material science and solid state physics. The cornerstone of this development was laid by

density functional theory (DFT).

The objective of this chapter is to explicate the mathematical and physical background be-

hind the computation of the properties of the advanced metal nitrides M2N3. We discuss the

density functional theory, which is an alternative approach to the theory of electronic struc-

ture. The Hohenberg-Kohn (HK) and the Kohn-Sham (KS) approach are discussed as well as

the treatment of the exchange-correlation energy with local density approximations (LDA)

and the generalized gradient approximations (GGA). We also discuss the pseudopotential

wave methods.

14
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3.1 Density Functional Theory (DFT)

Density functional theory is a relatively recent theory that scientists have developed to re-

place the crude theory of electronic structure in terms of the electron density distribution

n(r), the Thomas-Fermi theory [28]. However useful the Thomas-Fermi theory is, in describ-

ing some qualitative trends for total energies of atoms, it fails to answer questions relating to

the essential physics and chemistry, such as shell structures of atoms, binding of molecules

and thus, fall short of the goal of a useful description of electrons in matter [29].

The fundamental principle of density functional theory (DFT) is that any properties of the

many-body system can be expressed not in terms of a wavefunction but as a functional

of the ground state electron density itself, which is a simpler object to deal with than the

wavefunction. The electron density n(r) is a function of three coordinates (r, θ, ψ) and

it determines the electronic structure of the system of interacting electrons in an external

potential Vext(r) generated by the core atoms. It is expressed as,

n(r) =

∫
ψ∗(r1, r2, ..., rN)ψ(r1, r2, ...rN)dr1,dr2, ...drN. (3.2)

Density functional theory has some strengths and weaknesses. It has high computational

efficiency and good accuracy, hence it is fast. This is so because DFT with basis sets ψi and

the number of electron in a solid scales like the Hartree-Fock of self consistent field theory

[30]. In density functional theory, we have a set of working equations called the Kohn-Sham

total energy functional for a set of occupied electronic states ψi which we shall discuss later.[
−~2

2m
∇2 −

∑
i

Zie
2

|r−Rl|
+ e2

∫
n(r′)

1

|r− r′|
dr′ + Uxc(n(r))

]
ψi = εiψi. (3.3)

The Kohn-Sham total energy is decomposed into four contributions: a kinetic energy, a

nuclear attraction potential, a Coulombic attraction of the electrons in the electronic state

ψi with the other electrons in that system and finally, the exchange-correlation potential

Uxc(n(r)) that covers all the many-body interactions. The exchange-correlation energy is
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considered the heart of DFT. In contrast to what we see in Hartree-Fock (HF) theory[
−~2

2m
∇2 −

∑
i

Zie
2

|r−Rl|
+
∑

j=occ

(Jj −Kj)

]
ψi = εiψi. (3.4)

The third term on the left hand side represents the coulomb exchange integral expressed

in terms of the occupied states ψi [30]. HF theory only describes the interaction of the

individual electrons with the nuclei and all other electrons in the system while DFT starts

with the consideration of the entire electronic system. DFT has successes which are notable

to the local density approximation (LDA) and the generalized gradient approximation (GGA)

with the Kohn-Sham method [29]. This has left a tremendous interest in DFT as the most

promising method for accurate, practical method of studying the theory of material. Density

functional theory was first proposed by Hohenberg and Kohn [31] and later improved by Kohn

and Sham [32].

3.2 Hohenberg-Kohn Theorems

The crux of this work is the proof that an exact formal variational principle for the ground

state energy is developed, in which the charge density n(r) is the variable function of the

system. The Hohenberg-Kohn theorem states that for a given nondegenerate ground state

wavefunction ψi, all the physical properties of a system of interacting electrons are deter-

mined by its unique ground state charge density distribution n(r) [31]. This property holds

irrespective of the precise form of the electron-electron interaction.

The proposal is that the ground state electron density describing any N-electron system is

in unique correspondence with the external potential V(r), including any problem of the

electrons and the fixed nuclei, where the Hamiltonian H can be written as

H = − ~2

2m

∑
i

∇2
i +

∑
V(ri) +

e2

2

∑
i6=j

1

|ri − rj|
. (3.5)
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Since H determines the energy E and the wavefunction of the system, it implies that the

ground state density therefore determines all the properties of the system. The fact that

n(r) specifies where the nuclei are located in that system and the steepness of the potential

specify the nuclear charges that gives n(r). To prove this theorem:

Let suppose we know n(r) at all points r, then n(r) determines the number of electrons N

in that system since N =

∫
n(r)d3r. By implication, if we know N, then we can write

the kinetic and the electron-electron repulsion parts of the Hamiltonian as in equation (3.5).

Let also assume that there are two distinct potentials V1(r) and V2(r) which forms two

Hamiltonian H1 and H2 and when potentials are used in these Hamiltonians to solve the

Schrödinger equation for their ground state, produces E1, ψ1(r) and E2, ψ2(r). Finally,

assume that ψ1 and ψ2 have the same one-electron density∫
|ψ1|2dr2,dr3, ...drN = n(r) =

∫
|ψ2|2dr2,dr3, ...drN. (3.6)

Taking ψ1 as a trial variational wavefunction for the Hamiltonian H2, we find that

E2 = 〈ψ2|H2|ψ2〉 < 〈ψ1|H2|ψ1〉 = (ψ1, (H1 + V2 −V1)ψ1) (3.7)

so that,

E2 < E1 +

∫
[V2 −V1]n(r)d3r. (3.8)

Also, taking ψ2 as a trial variational wavefunction for H1, we obtain

E1 = 〈ψ1|H1|ψ1〉 < 〈ψ2|H1|ψ2〉 = (ψ2, (H2 + V1 −V2)ψ2) (3.9)

so that,

E1 < E2 +

∫
[V1 −V2]n(r)d3r (3.10)

summing up equations (5.1) and (5.2), we obtain

E1 + E2 < E2 + E1 (3.11)



Section 3.2. Hohenberg-Kohn Theorems Page 18

This is clearly a contradiction unless the energies are degenerate and thus, no two wave-

functions having different Hamiltonians can give the same electron density n(r). This also

suggest that, there cannot be two different external potentials that give the same electron

density, n(r) for their ground state [32]. The proof also indicates that the total informa-

tion about the stationary system; eigenvalues, Hamiltonian and wavefunctions are contained

within the electron density since it completely specifies the external potential.

It is evident from the proof that n(r) determines N and Vext(r) and hence all properties of

the ground state. The big question is, how is the kinetic energy T[n(r)] and the electron-

electron interaction energy expressed in terms of n(r)?. It is easy to see that

Vext[n(r)] =

∫
Vext(r)n(r)dr. (3.12)

The second Hohenberg-Kohn theorem provides the energy variational principle. The energy

functional in terms of the density n(r) can be defined as

E[n(r)] =

∫
Vext(r)n(r)dr + F[n(r)], (3.13)

where F[n(r)] is the universal functional of the density n(r). It includes all the internal

energies, kinetic energy of the interacting electron system and is valid for any number of

electrons and any external potential. Applying the variational principle when the electron

density corresponds exactly to that induced by the external potential, the total energy func-

tional E[n(r)] becomes the ground state energy (at minimum energy) and the density n(r)

that minimizes the functional energy is the exact ground state density [29]. The universal

functional F[n(r)] can then be broken down into

F[n(r)] =
1

2

∫
n(r1)n(r2)

|r1 − r2|
dr1dr2 + T[n(r)] + Uxc[n(r)] (3.14)

where the first term is the Hartree energy followed by the kinetic energy and then Uxc is

the exchange-correlation energy. These two parameters are more difficult to express in terms

of the electron density. T[n(r)] is determined by the Kohn-Sham theory whereas the Uxc

uses the local density approximation. However, Hohenberg-Kohn theorem has proved the
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possibility of computing the properties of a system using the ground state density but fail

to proffer solution on how to compute the ground state density. This deficiency is remedied

by the Kohn-Sham self-consistent equations.

3.3 Kohn-Sham Approach to Density Functional The-

orem

Today, density functional theory has become the most widely used theory for electronic

structure calculations because of the approach proposed by Kohn-Sham [32]. The main

concern of the Kohn-Sham approach is to provide a framework for finding the exact density

n(r) and energy of the ground state of a many-body electron problem, by solving a set of

self-consistent single particle Schrödinger equations. To achieve this, Kohn-Sham utilized

the variational functional that includes the total energy functional at minimum energy in

the Hohenberg-Kohn (HK) approach. Since there was no unambiguous guidance as to the

exactness of E[n(r)] from the HK formalism, Kohn-Sham made some assumptions in order

to calculate the properties of a physical system. The KS method assumes that the ground

state density of non-interacting electron moving in an effective potential due to all the other

electrons, is the same as the density of the original system where the electrons do interact [11].

Since the electron density determines the position and atomic number of the nuclei, these

quantities are identical in both systems (the interacting and non-interacting system). From

the HK formalism, it has been shown that the total ground state energy of an interacting

inhomogeneous electron can be written as

E[n(r)] = T[n(r)] +

∫
Vext(r)n(r)dr +

1

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Uxc[n(r)], (3.15)

where T[n(r)] is the kinetic energy of the non-interacting electron gas with the density n(r).

This is followed by the external potential energy due to the nuclei (the Hartree energy) and

lastly, the exchange-correlation energy Uxc which contains all the many-body effects. It is
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instructive to mention that Uxc contains the effects of the electron-electron interaction and

the positive correlation contribution to the kinetic energy (an effect of the uncertainty and

Pauli principles). It also contains part of the ion-electron interaction which is not considered

by the external and Hartree potentials.

Assuming the solution of the Kohn-Sham equations for the ground state is viewed as a

problem of minimization with respect to the density n(r); varying equation (3.15) with n(r),

we obtain

µ =
δT[n]

δn(r)
+
δUxc[n]

δn(r)
+

1

2

∫
n(r′)

|r− r′|
dr′ + Vext(r). (3.16)

Where, µ =
δE[n]

δn(r)
is the chemical potential connected with the limitation of the density

to yield the correct number of electrons N. From equation (3.16), we define the effective

potential term as:

Veff (r) = Vext(r) + VH(r) + Vxc. (3.17)

Where,

Vxc(r) =
δUxc

δn(r)
, (3.18)

VH(r) =
1

2

∫
n(r′)

|r− r′|
dr′. (3.19)

The effective potential energy contains the external potential energy Vext due to the nuclear

interaction, the Hartree potential VH and the exchange-correlation potential VXC. But we

know that, the minimization of the total ground state energy with respect to n(r) leads to

the effective single particle Schrödinger equation[
− ~2

2m
∇2 + Veff (r)

]
ψi = εiψi, (3.20)

and this is solved self-consistently on the condition that

n(r) =
∑
i=1

|ψi|2, (3.21)
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where the wavefunction ψi is normalized so that the sum goes over the lowest N normalized

solutions of equation (3.20) for N number of particles [33]. We can then write equation

(3.15) as

N∑
i=1

εi = T[n(r)] +

∫
Veff (r)n(r)dr. (3.22)

Substituting equations (3.17) and (3.22) into (3.15), the total ground state energy is given

by

E[n] =
N∑

i=1

εi −
1

2

∫
n(r)n(r′)

|r− r′|
drdr′ −

∫
Vxcn(r)dr + Uxc[n(r)]. (3.23)

In practical application, the Kohn-Sham method leads to the self-consistent solution of the

N lowest eigenvalues εi and the corresponding single particle wavefunctions ψi(r) of the

coupled set of Kohn-Sham equations given by equations (3.17) - (3.21). In principle, the

Kohn-Sham eigenvalues are not really the energies of the single particle electron states but

rather the artifact of mapping of the interacting system onto the KS system [11]. The exact

ground state density is obtained by iterating the self-consistent equations. Assuming that

Vxc is the exact exchange-correlation potential, taking the derivative of the functional with

respect to the density gives a result that includes the exact effect of exchange-correlation

[27]. The practical problem of solving the many-body problem involves the choice of a

good approximation of the exchange-correlation energy. The approximations that are of

interest in this work are the local density approximation (LDA) and the generalized gradient

approximation (GGA).

3.4 Local Density Approximation (LDA)

The exchange-correlation potential Vxc proposed by Kohn and Sham [32] is vital for the

success of density functional theory approach. It is a functional derivative of the exchange-
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correction energy with respect to the local density, n(r) at a region r. It is expressed as

Vxc =
δUxc[n(r)]

δn(r)
(3.24)

In a homogeneous system, the exchange-correlation potential depends on the value of the

electron density whereas in the nonhomogeneous system, the value of the exchange correla-

tion potential at the points r depends not only on the value of density at r, but also on its

variation close to r and therefore, we write the exchange-correlation potential as

Vxc[n(r)] = Vxc [n(r),∇n(r),∇(∇n(r)), ...] (3.25)

The inclusion of the gradient of the density makes the solution of DFT to be difficult.

Assuming that the exchange-correlation energy leads to an exchange-correlation potential

on the value of the density n(r) in r and not on its gradient, then the simplest method by

which we can obtain this contribution is through the use of the local density approximation

(LDA) [32]. The local density approximation (LDA) states that, for a given region (r) of a

material where the charge density is slowly varying, the exchange correlation energy at that

point can be considered the same as that for a locally homogeneous electron gas that has

the same charge density, n(r) at that region [11]. In this case, we can now write ULDA
xc [n(r)]

as

ULDA
xc [n(r)] =

∫
uxc(r)n(r)d3r

with

uxc(r) = uhom
xc [n(r)]

where ULDA
xc [n(r)] is the exchange-correlation functional and uxc(r) is the exchange cor-

relation energy per electron at the region, r in the electron gas with density n(r). The

exchange-correlation potential for the functional (LDA) will the correspond to

VLDA
xc =

δULDA
xc [n(r)]

δn(r)
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The exchange effect are usually added in terms based on the homogeneous electron gas

calculation and this gives rise to a new form of the exchange-correlation energy

uxc[n(r)] = −3

4

(
3

π
n(r)

)1
3

For a spin-polarized DFT, the LDA becomes the local spin density approximation (LSDA)

with the expression

ULSD
xc [n↑,n↓] =

∫
d3r n(n↑,n↓)u

hom
xc [n↑,n↓]

where n↑ and n↓ are the densities for spin up and spin down. In principle, the local density

approximation tend to ignore correction to the exchange-correlation energy at a region due to

inhomogeneities in the electron density [29]. The local density approximation assumes that

the exchange-correlation energy is purely local. There have been several parameterizations

of uxc reported in literature, some of which includes Kohn-Sham [32] and Perdew et al. [34].

For this work, the LDA functional uses the parameterizations of the exchange-correlation

functional by Perdew and Zunger [35] based on Quantum Monte-Carlo simulation for the

homogeneous electron gas by Ceperley and Alder [36]. Apparently, LDA works well even

in a system where the charge density is rapidly varying by adding an empirical energy - a

strong inter-electron correlation [18].

Although LDA is relatively simple, it is surprisingly accurate and forms the core of most

modern density functional theory approaches. However, LDA tends to under predict atomic

ground state energies while over estimating the binding energies (the cohesive energies).

For this reason, an improvement has been made upon LDA by including the dependence

of the charge density gradient. This is an approximation called the generalized gradient

approximation which will be discussed below.
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3.5 Generalized Gradient Approximation (GGA)

According to Perdew et al. [37], the density functional theory by Kohn-Sham is widely

used for self-consistent field electronic structure calculations of the ground state properties

of solids. The approximations which account for the spatial variation of density are called

the generalized gradient approximations (GGA’s). The GGA’s for the exchange-correlation

energy improves upon the local spin density (LSD) approximations. It is expressed as

UGGA
xc [n↑(r),n↓(r)] =

∫
d3r f (n↑(r),n↓(r),∇n↑(r),∇n↓(r)) ,

where n↑ and n↓ are the densities of spin up and spin down respectively. In the pa-

per presented by Perdew, Burke and Ernzerhof [37], only the exchange-correlation energy

Uxc = Ux + Uc which is expressed as a functional of the electron spin densities n↑ and

n↓ are approximated. GGAs do not provide a steady improvement over the local density

approximation in all types of system but in analogy to the local spin density approximation,

it tends to improve upon the total energy, atomization energies, energy barriers and the

structural energy differences. Generalized gradient approximations also expand the bond

length, an effect which sometimes corrects the local spin density approximation [37].

In this work, we utilized the PBE-generalized gradient approximation as parameterized by

Perdew et al.[37] to do calculations of ground state properties of the advanced metal nitrides

M2N3. To facilitate practical calculation in GGA, the homogeneous exchange-correlation

energy, uhom
xc and f must be parameterized analytic functions. The GGA for correlation is

first written in the form

UGGA
c [n↑(r),n↓(r)] =

∫
d3r n(r)

[
uhom

c (rs, ζ) + H(rs, ζ, t)
]

with

H =

(
e2

a0

)
γφ3 ln

(
1 +

β

γ
t2

[
1 + At2

1 + At2 + A2t4

])
where rs is the local Seitz radius, ζ is the relative spin polarization and t = |∇n|

/2φksn
is a

dimensionless density gradient, φ is the spin-scaling factor, ks is the Thomas-Fermi screening
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wave number and the quantity β is the same as for the exchange term β = 0.066725 and

γ = 0.031091. To show non-locality of the GGA, we define the enhancement factor Fxc

over local exchange [29]

UGGA
c [n↑(r),n↓(r)] =

∫
d3r n(r)Fxc(rs, ζ,S)

where n(r) is the local density at the region r and S = |∇n(r)| /2kFn is the dimension-

less density gradient as was proposed by Perdew-Wang 1986. The enhancement factor was

chosen because, it satisfies the uniform scaling condition and recovers the local spin density

approximation (LSDA) linear limit for S → 0. The exchange nonlocality is dominated by

valence-electron densities and this has made the GGA to favour density inhomogeneity more

than LSD approximation does [29].

3.6 Plane Wave Approach of Density Functional The-

ory

According to the choice of the basis set for the expansion of the charge densities, valence

electrons and potentials, modern electronic structure computation falls into two main broad

classes: the plane wave methods or the Gaussian-type orbital methods (i.e, using some kind

of localized basis function). The use of plane-waves are considered essential (for studying

solids) on account of their immediate advantages which follows from Jürgen Hafer, [38]:

� The simplicity of changing from a real-space representation, where the potential energy

is diagonal; through a fast Fourier transformation to a momentum-space representation

(a diagonal representation of the kinetic energy).

� Monitoring the eigenvalues and total energy as a function of the cutoff energy (high

kinetic energy of the plane wave with the chosen basis set), is adequate. By implication,

the control of the basis set convergence is almost considered superficial.
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� The stresses acting on the unit cell and the Hellmann and Feynman stress [39] acting

on the atoms are calculated in terms of the Hamiltonian with respect to the ionic

coordinates. This process is applicable to any particular atom.

� In the plane-wave method, errors due to the superposition of the basis sets are avoided.

In computing the ground state properties of an extended system within the theoretical de-

scription of density functional theory, a plane wave approach has become the most widely

used. Plane wave approaches are simple and as a result of this, are used as a scheme for

solving the Kohn-Sham equations. This is achieved by expanding the single particle eigen-

states of the Kohn-Sham into a basis set functions, which leads to the transformation of the

Schrödinger equation into a simple matrix eigenvalue problem for the expansion coefficient

which may be solved numerically by other well established methods [40]. By definition, plane

waves are the exact eigenstates of the homogeneous electron gas. Hence they are a natural

basis expansion of the electron wave functions for a simple metals where the ion cores are

viewed as small change to the homogeneous electron [41]. Plane waves are orthonormal and

energy dependent. It is expedient at this point to ask, why so much emphasis on the plane

wave method?

Bloch Theorem

In an infinite crystal the effective potential as well as the electron density, is a periodic

function with the periodicity of the lattice, under translational symmetry. The potential

being invariant under translation makes the solution of the Kohn-Sham equation repeat

itself on the lattice of the crystal. By implication, the solution of the equations in some

reduced zone of a system gives the solution of the entire system. We can express the effective

potential as

V(r + T) = V(r), (3.26)



Section 3.6. Plane Wave Approach of Density Functional Theory Page 27

where T is the translational vector given by

T = n1a1 + n2a2 + ...+ ndad. (3.27)

ai = 1, ...,d are the primitive translation vectors, d is the dimension in space and ni = 1, ...d

are the integer numbers. In addition, to the translational symmetry of a crystal, are the

reflection, inversion and the rotation symmetry that transforms one wave vector into another.

Bloch theorem thus states that, in a periodic solid each electronic wave function can be

expressed as the product of a cell-periodic part and a wavelike part [11]

ψk(r + T) = eikTψk(r). (3.28)

k is the Bloch’s wave vector. This theorem affirms that the eigenstates of the translation

operators vary from one cell to another in the crystal with the phase factor in equation (3.28).

Since the potential V(r) is periodic in the lattice, the expansion of its plane wave will only

contain plane waves with the periodicity of the lattice and wave vectors corresponding exactly

to the reciprocal lattice defined by

g = 2π(m1b1 + m2b2 + ...+ mdbd), (3.29)

where the mi are integers and bi the basis vector of the reciprocal lattice given as ai.bi = δij

for k = g. The wave vector k appearing in Bloch’s theorem can always be confined to

the first Brillouin zone. It is clearly seen from the above equations, that the periodicity in

real space introduces that in the reciprocal space. This means that when considering the

electronic structure of solids, it is sufficient to consider the wave vectors contained inside

the region of the reciprocal lattice (the Brillouin zone), instead of considering all the vectors

[42].

Brillouin Zone Sampling (K-Point sampling)

K-points are wave vectors whose values restrict them to one unit cell of the reciprocal lattice

which by convention is referred as the first Brillouin zone (BZ). For a given boundary condi-
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tions applicable to a periodic solid, an infinite number of electrons in the solid are accounted

for by an infinite number of K-points and only a finite number of electronic states are allowed

at each set of K-points. The density of the allowed K-points is dependent on the volume

of the solid [40]. This was problematic since such calculation is often long and complicated

and thus, in principle requires knowledge of the value of the function at each K-point in the

Brillouin zone. The Bloch wavefunction that solves the Kohn-Sham equations have the form

ψi(r) = exp(ik.r)fi(r), (3.30)

where fi(r) is the periodic part of the wavefunction, i represent the band index. Thus, fi(r)

can be expanded using the basis set consisting of the plane waves whose wave vectors are

the reciprocal lattice vectors of the crystal [42]. It is expressed as: fi(r) =
∑
G

ci,Ge(iG.r),

where G denote the reciprocal lattice vector. Therefore the plane wave expansion of the

wavefunction can be written as

ψi(r) =
∑
G

ci,K+Gei(K+G).r (3.31)

There are infinite number of k-point in the first Brillouin zone for which the Kohn-Sham

Hamiltonian must be solved [43]. The use of Bloch theorem alters the problem of calculat-

ing an infinite number of electronic wavefunctions to one of calculating a finite number of

eigenstates at an infinite number of K-points. Initially this seems only a minor improvement

since an infinite number of calculations are still needed to compute the potential energy

contributed by the occupied states at each set of K-points. However, it was possible to

represent the wavefunction of a k-space region with the wavefunction at a single k-point.

This is because wavefunctions at K-points very close together are almost alike. Hence it

was possible to possible to calculate the electronic potential as well as the total energy of a

system at the electronic wavefunction of finite K-points. Thus we can replace the integral

over the Brillouin zone by a discrete sum:∫
BZ

H(K)dK =
1

Ω

∑
j

αjH(kj), (3.32)
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where Ω is the volume of the unit cell at equilibrium, H(K) is the Fourier transform of

h(r) and αj (the ratio of the order of the entire point group to the order of the group of

wave vector at kj ), is the weight factor associated with kj [42]. There are several schemes

used in the construction of K-points sampling and these have been proposed in the literature

[44, 45, 46]. In this work, we made use of the Monkhorst-Pack mesh [45]. In this scheme,

the K-points are evenly distributed throughout the irreducible Brillouin zone (IBZ).

In a practical calculation, K-points are carefully selected to ensure good convergence for the

crystal structures to a value better than 1meV per atom. The use of dense k-point sampling

helps in the calculation of the electronic potential and the total energy in metals, since it

defines the Fermi surface precisely.

3.7 Pseudopotentials

The physical and chemical properties of a material are determined by the behaviour of

the outer valence electrons of the constituent atoms that make up the bulk solid. The

pseudopotential approximation exploits this fact to describe the electron-ion interaction of

these bulk materials. The theory is well developed and is interwoven with plane wave method

because they allow calculation to be done with a practicable number of plane waves [11].

In practice, plane waves up to a certain cutoff wave vector are only included in the basis

set and the convergence calculation with respect to the basis set size controlled by increas-

ing the length of the cutoff wave vector. Nevertheless, a large number of plane waves are

needed for good representation of the oscillation due to the nodal structure of the valence

wave function in the core region of the atom. In order to make the plane wave method,

there is a need to replace the Coulomb potential of the electron-nucleus interaction with

a pseudopotential. The introduction of pseudopotential eliminates the need for an explicit

description of the strongly bound and chemically inert electron core. Thus, the removal of

the core electrons from the calculations implies that total energy differences between ionic
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configurations are taken within smaller numbers so that a required accuracy for the total

energy calculations can be reached in a short time than it would have when performing

the all-electron calculations. Furthermore, by introducing pseudopotentials we are able to

replace the true valence wavefunction by a pseudo wavefunction which is expanded using a

smaller number of plane wave basis sets. These pseudo wavefunctions are required to be the

true valence wavefunction outside the ionic core region but should be nodeless inside the core

[40]. Lastly, for a pseudopotential to be useful it has to reproduce the logarithmic derivative

of the all-electron potential over a whole range of energy and this makes it transferable to

other chemical environments [40].

The use of pseudopotentials have dated back to the work of Fermi [3], in the early 1930s.

Although the concept of pseudopotentials had previously existed but they were first under-

stood in terms of the Phillips-Klienman cancellation theorem found in the literature [47].

They argued that the valence wavefunction and the high-energy electron states from the

atomic sites should be smooth and oscillate with atomic character in the core region [19].

In general, modern construction of pseudopotential involve solving the all-electron problem

for a given atom in a specific configuration (that is, solving the single particle Schrödinger

equation within the density function theory in the LDA and GGA approximation). Meth-

ods of generating pseudopotential include the norm-conserving pseudopotential [48, 49], the

ultrasoft pseudopotentials and the projector augmented plane wave (PAW) method which

shall be discussed in this work.

Norm Conserving Pseudopotential

The present day pseudopotentials are not fitted to experiment but are generated from the

ab-initio calculation on atomic-like states. The norm conserving pseudopotential concept has

contributed greatly to the development of the ab-initio pseudopotential because it simplifies

the application of pseudopotential and makes them more transferable and accurate [29]. A

good norm conserving potential has to meet a number of requirements given by Hamann et
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al. [48]. Their potentials are non-local (not simply a function of position) and the potential

for each of angular momentum is different. For a norm conserving pseudopotential, the

logarithmic derivatives are not only correct at the given energy ε but also correct to linear

order for energies ε+ ∆ε. This makes the potentials more transferable from the atom to the

molecule or solid where the energies change. Thirdly, the all-electron as well as the pseudo

valence wavefunction must agree for a representative atomic configuration and finally, the

all-electron and the pseudo valence wavefunction must agree beyond a chosen core radius

Rc.

From the properties above, to construct a convenient norm conserving pseudopotential, we

first do a DFT calculation for the all-electron atomic system to obtain the valence eigenvalues

and eigenfunctions for each angular momentum l. We then construct a pseudofunction that

is the same outside the core radius Rc and this is continued smoothly inside the core. To

obtain accurate exchange-correlation energy, it is necessary that the pseudo wavefunction

and the all-electron wavefunction be identical outside the core region. This means their

wavefunctions must be normalized so that both wavefunctions generate identical charge

densities ∫ Rc

0

ψAE
l ψ∗AE

l dR =

∫ Rc

0

ψPS
l ψ∗PS

l dR, (3.33)

where ψPS
l is the pseudo wavefunction with momentum l and ψAE

l is the all-electron wave-

function with momentum l. Equation (3.33) satisfies the norm conserving property. The

final step is to find the pseudopotential by inverting the Schrödinger equation

V(r)ψ(r) = εψ(r) +

(
~2

2m

)[
2

r

dψ

dr
+

d2ψ

dr2

]
. (3.34)

This must be done separately for each angular momentum l [48]. The Figure 3.1 represent the

schematic illustration of pseudoelectron, the all-electron potentials and their wavefunction

[11] and it gives the pictorial explanation of the equations above.
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Figure 3.1: The schematic illustration of the pseudoelectron (dashed lines) and the all-

electron (solid lines) potentials and their corresponding wavefunctions. Rc is the radius at

which the all-electron and pseudoelectron value match.

Projected Augmented Wave Method (PAW)

The pseudopotential (based on norm-conserving ab-initio pseudopotentials) approach work

well for all elements except for the first-row and 3d transition metals. It is not able to

correctly describe the non-linear core correction required for such systems, where the overlap

between valence and core electron densities is not completely negligible. This deficiency is

a result of introducing exchange interactions between the valence and core electrons [38].

This led to the introduction of the projected augmented wave (PAW) method by Blöchl [50],

followed by the work done in the literature [5].

Projected augmented wave (PAW) method performs electronic structure calculation within

the scope of density functional theory. It is known to enhance computational efficiency and
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accuracy and also provides the correct wavefunctions, rather than the fictitious wavefunc-

tion provided by the pseudopotential approach. The PAW method is more general because

it describes the ground state properties (such as the total energy, forces and stress) with

an accuracy that compares to its main rival, the full potential linearized augmented plane

wave (FLAPW) method and combines it with the pseudopotential method [51]. Unlike the

pseudopotential method, the PAW approach encompasses the effects of the nodal features

of the valence electronic state which are correctly orthogonalized to the core wavefunctions.

Thus, it is referred to as an all-electron (AE) method. Since the method is based on the

frozen core (FC), it is however not an all-electron method because all the electronic eigen-

states are treated self consistently. This is different from the FLAPW method where the

core wavefunctions and charge densities within a spherical approximation to the one-center

effective potential, are computed self consistently. The frozen core methods are also used to

study the properties of molecules and surfaces.

In detail the PAW method starts from a simple linear transformation that connects the

all-electron (AE) valence wave functions ψAE to a pseudo (PS) wavefunction ψPS which is

expanded into a plane wave.∣∣ψAE
〉

=
∣∣ψPS

〉
+
∑

i

(∣∣φAE
i

〉
−
∣∣φPS

i

〉) 〈
PPS

i |ψPS
〉
, (3.35)

where φAE are the all-electron partial waves which are solutions of the spherical scalar-

relativistic Schrödinger equation for an atomic reference energy εi in the valence state is

orthogonal to the core states. The φPS are the pseudo partial waves which are nodeless and

identical to the AE partial wave outside the core radius. PPS
i is the projector function for

each pseudo partial wave localized within the augmentation region and satisfies the relation〈
PPS

i |φPS
j

〉
= δij. From equation (3.35), the decomposition of the ψAE into three terms

holds for wavefunction, kinetic energy, charge densities, Hartree energy and the exchange-

correlation energy [50]. In principle, the PAW method is able to recover rigorously the total

energy obtained from density functional, if the plane wave and atomic states expansion are

complete [38].
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3.8 Vienna Ab-initio Simulation Package

The Vienna ab-initio Simulation Package (VASP) [12] code was used in performing almost

all the first principle calculations reported in this work. VASP is a plane wave basis set

code for ab-initio density functional calculations based on a finite temperature local density

approximation or the generalized gradient approximation. The Kohn-Sham ground state

equations are solved in a self-consistent cycle with a Pulay optimized charge-mixing routines

and the iterative matrix diagonalization scheme [38]. In order to describe the ion-electron

interaction, VASP uses the ultra-soft Vanderbilt pseudopotentials (US-PP) or the projected

augmented wave (PAW) method. The VASP algorithm calculates the ground state total

energy, forces and stress of a given geometry; and from the results obtained elastic and

structural properties, relative stability, electronic and magnetic properties can be predicted

[12].



4. The Transition Metal Nitrides

The early binary nitrides of transition metals possess an attractive mixture of physical and

chemical properties. They constitute a diverse class of materials with interesting technolog-

ical and fundamental importance because of their strength and durability as well as their

optical, electronic and magnetic properties. Often, they are metallic and are used as a barrier

layers and contacts [52]. By incorporating any of the light elements, boron (B), carbon (C),

nitrogen (N), or oxygen (O) with these transition metals (e.g titanium, vanadium, chromium,

zirconium, niobium, hafnium, tantalum and tungsten) compounds with high hardness and

compressibility can be synthesized by means of high pressure and high temperature (high

P-T) [53, 54].

Recent research has also shown a strong pressure dependence of the oxidation state of metals

in these binary compounds, which promises excellent possibilities of discovering novel mem-

bers of the transition metal nitride group. For the binary nitrides of transition metals, the

oxidation states of the cations are limited by a value of +3 even when the available valence

electrons is higher [6]. As a result this, most transition metal nitrides: hafnium nitrides

(Hf3N4), as well as the isomorphic Zr3N4 and Ti3P4 [55]; Ta3N5 [56, 57] and the three no-

ble metal dinitrides PtN2 [58], IrN2 and OsN2 [59] have been synthesized successfully under

extreme conditions of pressure and temperature. The large bulk moduli observed experi-

mentally for this class of materials have suggested potential superhard and incompressible

solids which could be indispensable for industrial applications and can be used in cutting

tools and wear-resistance coatings.

Besides these materials, the most prominent nitrides of group 14 elements having cubic spinel

structure (γ-M3N4, where M = Si,Ge) have also been synthesized [6]. Many theoretical

calculations have been performed to explore their structures since the crystal structure is

an important prerequisite of understanding the physical properties of a material. The main

interest in these high-pressure binary nitrides is to find materials with enhanced elastic
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moduli and hardness. It is likely that these materials will exhibit combinations of fascinating

properties which makes them relevant over the existing traditional materials. For example,

γ − Si3N4 possesses a high Vickers microhardness, Hv, between 30 − 43GPa and a high

thermal stability in air up to 1673K [60, 61], which surpasses that of diamond and cubic

boron nitride (c−BN).

In the past decades, the search for nitrides with very high mechanical and chemical properties

has been on the increase and this has led to research being extended into the nitrides of

tantalum, a group 5 element and their isostructural materials vanadium and niobium.

Recently, binary nitrides of tantalum have become a rapidly growing field of interest with the

binary Ta − N system displaying rich compounds with well defined variable stoichiometry

[56]. This rich crystal chemistry ranges from solid solutions of nitrogen in tantalum to

compounds with 1 : 1 composition, several other nitrogen-rich phases (Ta5N6 and Ta4N5) up

to Ta3N5, three polymorphs of the mononitride TaN and two phases of Ta2N [8]. The high

pressure δ − TaN having NaCl structure and the orthorhombic Ta3N5 have outstanding

properties among the Ta−N phases [56, 6].

From the group of the mononitrides of transition metals, the δ − TaN has the highest hard-

ness of 30 − 52GPa and is said to be superconducting [6]. The compound Ta3N5 has been

shown to be an active photocatalyst material in the visible region of the electromagnetic

spectrum and can be used as a red pigment [57]. Henderson et al. [57] synthesized nanocrys-

talline Ta3N5 using the ammonolysis of amorphous Ta2O5 power. Their result show an

aggregate product with oxygen persistent in it even after the reaction time was extended.

The ab-initio band structure calculation performed by Fang et al.[62] was found to be 2.08eV,

which makes Ta3N5 a potential substitute for the toxic chalcogenides in various optoelec-

tronic applications.
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4.1 Tantalum Nitrides

Ta3N5 is composed of irregular TaN6 octahedra with both three and four coordinate of ni-

trogen atoms and has the pseudobrookite (Fe2TiO5) structure which was confirmed by Brese

and O’Keeffe [63] using powder neutron diffraction. Kroll et al.[56] predicted the existence

of the high pressure Ta3N5 having a high bulk modulus of 378GPa at pressure greater than

9GPa through the first principle calculation and the results are in good agreement with the

experimental work carried out by Henderson and Hector [57].

Cubic TaNx having fluorite, CaF2 structure was also reported [8]. According to X-ray and

electron diffraction data, the compound crystallizes in the cubic c− Ln2O3 structure type

(space group no. 206 (Ia3̄), f.u = 16), an ordered defect 2 × 2 × 2 superstructure of the

fluorite type. As a result of the analogy to the well-known bixbyite (c − Ln2O3- type), the

authors postulated the stoichiometry to be Ta2N3 adopting the bixbyite phase.

However, the details of the real structure regarding the precise position of the nitrogen

atom was not wholly determined. Due to the relatively uncertainty in the nitrogen position,

a model structure was introduced which allows a nitrogen position equidistant from the

tantalum neighbour to be calculated for each value of Ta(2). The resulting bond length of

the Ta−N was found to be 2.109Å. All of these extension of research of nitride of group

5 elements, led to the discovery of the novel tantalum nitride, Ta2N3 with an orthorhombic

U2S3 structure [6].

Very recently, Zerr et al.[6] synthesized the novel tantalum nitride having an orthorhombic

U2S3 structure (space group Pbnm (62), a = 8.19Å, b = 8.18Å, c = 2.98Å, f.u = 4) using the

Kawai- type multi-anvil apparatus at high pressure and temperature conditions. With the

aim of obtaining the high pressure phase predicted by Kroll et al.[56], orthorhombic Ta3N5

was used as starting material. The composition of this sample was observed to have changed

during the high pressure and temperature synthesis according to this equation,

2Ta3N5 −→ 3Ta2N3 + 0.5N2.
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This novel tantalum nitride is considered the first thermodynamic stable transition binary

nitride having an anion-cation ratio that exceeds 4 : 3. The tantalum (cations) and the

nitrogen (anions) in the unit cell of the nitride were both subjected to a mirror plane trans-

formation, in wyckoff position of 4c(x, y, 1/4). This is to prevent the mirror plane from

generating short interatomic spacing as a result of the small lattice parameter c. From

the experimental findings of Zerr et al.[6], orthorhombic Ta2N3 display high hardness and

a unique texture and this makes it a potential candidate of a hard and fracture resistant

material for industry.

As part of this dissertation, we perform a detailed investigation of the elastic and mechanical

properties of the novel tantalum nitride and then we extend our work to the nitrides of

Vanadium (V ) and Niobium (Nb). We also calculate the electronic band structure, the

density of state (DOS) and the relative stability of the ternary phases of the nitrides at

zero-pressure and temperature.



5. Elastic, Structural, Electronic and

Relative Stability Properties of the

Orthorhombic Metal Nitrides of

Tantalum, Vanadium and Niobium

The ability to accurately predict the ground state properties (equilibrium volume, elastic

properties, electronic band structure, density of states and relative stability) of a material,

is the purpose of electronic structure methods. Elastic properties are the properties of a

material that undergoes stress, deforms and then recovers and returns to its original state

after the removal of stress [64]. These properties are obtained from the ground state total

energy calculations and are very important because they have a correlation with the basic

solid state properties such as equation of state and phonon spectra. They are said to be

linked thermodynamically to the specific heat, thermal expansion, Debye temperature and

melting point [65].

In order to treat the elastic properties of the orthorhombic metal nitrides, we computed the

total energy of the systems from first principle rather than rely upon any assumptions on the

nature of the interatomic forces. We present the underlying theory behind the calculation

of the equilibrium properties of the orthorhombic metal nitrides.

5.1 Elasticity of the Orthorhombic Metal nitride

The response of a crystal to an external force (stiffness), is determined by the elastic con-

stants. The values of the elastic constants obtained from the ground state total energy

calculation, contain vital information about the bonding characteristic between adjacent

39



Section 5.1. Elasticity of the Orthorhombic Metal nitride Page 40

atomic planes, structural stability and the anisotropic character of the bonding. The elas-

tic constants are characterized by the bulk modulus, Young’s modulus, shear modulus and

Poisson’s ratio, and so play a vital role in determining the strength of a material [66]. A

typical hard material requires a high bulk modulus (for the material to support the volume

decrease created by the applied force), and a low Poisson’s ratio or high shear modulus such

that the material will not deform in a direction different from that of the external force.

The estimation of the elastic constants of a material from first principles is very demand-

ing. It not only requires accurate methods for calculating the total energy but also involves

intensive computation. For example, if the symmetry of the system is reduced, the number

of independent moduli increases and hence a large number of distortions are required to

calculate the full set of elastic constants. For a completely asymmetric material, the elastic

behaviour is specified by 21 independent elastic constants whereas, for an isotropic material,

the number is 2. In between these limits, the number necessary is determined by the sym-

metry of the material [64]. In an orthorhombic crystal, there are nine independent elastic

constants and theses are usually referred to as C11, C12, C13, C23, C22, C33, C44, C55, and C66

[65]. These can be deduced by applying small strain to the equilibrium lattice position and

determining the change in the total energy. Another important factor beside the calcula-

tion of the elastic constants, is the investigation of the lattice stability. This was originally

carried out by Born et al.[67], who showed that by expanding the internal crystal energy as

a power series in the strain and by imposing the convexity of the energy, it is possible to

obtain a stability requirement in terms of a set of conditions involving the elastic constants

[68]. There are stability criteria for other crystal symmetries but our focus are those of

the orthorhombic crystal. The requirement of mechanical stability for orthorhombic crystals

with nine elastic constants are as follows [68]:

(C11 + C22 − 2C12) > 0, (C11 + C33 − 2C13) > 0, (C22 + C33 − 2C23) > 0,

C11 > 0, C22 > 0, C33 > 0, C44 >,C55 > 0, C66 > 0,
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and

(C11 + C22 + C33 + 2C12 + 2C13 + 2C23) > 0. (5.1)

5.2 Calculation of the Isotropic Moduli

A first principle method that employs periodic boundary conditions assumes the existence of

a single crystal, which means that we can directly compare the calculated elastic constants

obtained to any available experimental data for single crystals. However, in the absence of

such data, the polycrystalline bulk B, and shear G moduli can be determined [66]. The

Voigt and the Ruess methods are the two approximations used in determining the values

of the bulk and the shear moduli [65]. A detailed review of the Voigt-Ruess methods can

be found in the literature[69]. In the calculation of the average isotropic elastic crystals

from the anisotropic single crystal elastic constants, it is observed that the Voigt and Ruess

assumption results in the theoretical maximum and minimum values of the isotropic elastic

moduli respectively. In this work, we utilized the Voigt method in the calculation of the

elastic moduli. For orthorhombic lattices, the Voigt bulk and shear are given as:

B =
1

9
(C11 + C22 + C33) +

2

9
(C12 + C13 + C23)

and

G =
1

15
(C11 + C22 + C33 − C12 − C13 − C23) +

1

5
(C44 + C55 + C66)

The Young’s modulus E and Poisson’s ratio ν are the other two elastic constants that

describes the hardness of an isotropic material. They are expressed as

E =
9BG

3B +G
and ν =

3B − 2G

2(3B +G)

Another vital parameter that enhances the understanding of the behaviour (such as the

ductility or the brittleness) of an isotropic material, is the quotient of bulk to shear modulus
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(B/G) of polycrystalline phase. This was introduced by Pugh [70]. Considering that the

bulk modulus B to represent the resistance to fracture and the shear modulus G to represent

resistance to plastic deformation, he suggested the critical value that separates the ductile

and brittle character of a material to be about 1.75. The values for which B/G is greater

than 1.75 indicates the ductile character of the material while for values of B/G less than

1.75, the material display brittle features.

In all, the most important physical property is the material’s hardness. This is related to

compressibility as measured by the bulk modulus and the shear modulus [71].

5.3 The Equation of State

The equation of state (EOS) is fundamentally relevant in the understanding of a solid. It is

dependent on the nature of their interatomic interactions and as such is used in predicting

the thermodynamic properties such as the pressure-volume and temperature relation. For

theoretical analysis of the equation of state, the total energy E which is expressed as a

function of volume (V ) at zero-temperature, is most convenient because it is easier to carry

out electronic structure calculations at fixed volume. In essence, volume is considered a vital

parameter that can be used to study a system theoretically [29].

To describe the equation of state effectively, several approaches have been put in place

which include the stress-strain and the energetics relation of the solid. This approach has

been relatively successful in finding fitting forms such as the Murnaghan equation [72], the

Birch-Murnaghan equation [73], the Vinet universal equation [74] and the Birch equation of

state [75]. In this work, we employed the first order Birch equation of state, since it depends

on the finite elastic strain of the solid. This equation of state is also in a good agreement

with the equations of Murnaghan [74]. The Birch EOS can be expressed as

EB(V ) =
9

16
B0V0

(
B′0 − 4

X2
−B′0 + 6

)(
1

X2
− 1

)2

+ E(V0). (5.2)
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where

X =

(
V

V0

) 1
3

.

and V0 represents the isothermal volume, B0 the isothermal bulk modulus, B′0 the pressure

derivative of the bulk and the equilibrium energy of the material is denoted as E(V0). We

define the bulk modulus of the material as;

B0 = −V0
dP

dV
.

Thus, pressure is defined as the negative gradient of the total equilibrium energy and the

volume i.e.,

P = −dE
dV

.

Therefore, the isothermal bulk modulus can then be rewritten as;

B0 = V0
d2E

dV 2
.

This shows the bulk modulus as effectively measuring the curvature or the second derivative

of the energy versus volume relation at the relaxed volume V0. In calculating the equation of

state, the first step is to determine theoretically the equilibrium volume V0, where energy E

is minimum (i.e P = 0), and the bulk modulus B0 of the crystal structure at zero-pressure.

Since V0 and B0 requires to be extrapolated at zero-temperature, it becomes a rigorous

test for the theory. Therefore we followed a procedure that requires us to calculate the

equilibrium energy E for several values of the volume. These was achieved by varying the

scaling factor in the lattice structure and the data generated was fitted into the analytic

equation (5.2). This gave the predicted values for the equilibrium volume per atom, V0, the

equilibrium energy per atom E0, the bulk modulus B0 and the pressure derivative of the

bulk modulus, B′0. The results are presented in the latter part of this work.
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5.4 Results Analysis

In this section, we report detailed first principle calculations of the structural and electronic

properties of the advanced metal nitrides, M2N3 (where M = Ta, V and Nb) and their

ternary phases in the orthorhombic U2S3 structure. Furthermore, we access the relative

stability of the alloys of the metals nitrides with respect to their constituent mixtures. Before,

we present our results, the details of the computational method used in this work are shown

below.

5.4.1 Computational Analysis

The electronic structures describing the pseudopotential of the atoms that are of interest are

as follows: Ta : 5p66s25d3; V : 3p63d44s1; Nb : 4p65s24d5 and N : 2s22p3. In this work, we

performed the zero-pressure and temperature ab-initio calculations of the optimized geome-

tries and the elastic properties of the metal nitrides, as well as the relative stability of their

alloys. Calculations were performed within the framework of the density functional theory

as implemented in the Vienna ab-initio Simulation package (VASP) [12]. The plane wave

formalism using the local density approximation (LDA) by Ceperley-Alder [36], parameter-

ized by Perdew and Zunger [35]; and the generalized gradient approximation (GGA-PBE),

parameterized by Perdew el at.[76] treats the exchange-correlation potentials. The geome-

try relaxation, total energy calculation and all derived quantities were obtained using first

principle projector augmented wave method [5, 4]. The Kohn-Sham orbitals were expanded

using a plane wave cutoff energy of 400eV or 500eV in order to calculate the optimized

geometries, elastic constants, electronic properties and the relative stability of the advanced

metal nitrides. For accurate Brillouin zone integration, we use the special K-point sampling

with a 8 × 8 × 8 Monkhorst-pack meshes, resulting in 64 K-points in the irreducible part

centered at Γ [45].

Before a full first principle computation can be done on any material, it is important to
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ensure that the total energy converges in terms of the expansion of the wave function, charge

density and potentials. For good convergence, it is necessary and sufficient to choose K-point

sampling in the Brillouin zone in order to ensure that all structures are well converged to

better than 1meV per atom. For the advanced metal nitrides and their ternary phases, we

carried out calculation involving relaxation of their structural parameters (atomic position

and lattice parameters) using the 12×12×12 and the 8×8×8 Monkhorst-Pack meshes. The

convergence with respect to the energy cutoff for 8× 8× 8 mesh was between 0.4meV/atom

and 0.9meV/atom for the different structures. For the 12 × 12 × 12 mesh calculations, the

convergence was worse. The total energy calculation allows one to decide the stability of a

system. Therefore the system with low equilibrium energy is said to be stable. The 8×8×8

mesh calculations gave a much lower equilibrium energy than those of the 12×12×12 mesh.

This test showed that the K-point sampling (8× 8× 8) we used is adequate.

A full geometry optimization was performed on each of the metal nitrides system with all

atoms relaxing as their cell structure changes. For the calculation of the elastic constants,

we applied an external strain to the crystal (within the elastic limit) and by calculating the

curvature of the total energy as a function of strain, the nine elastic constants for each of the

orthorhombic metal nitrides and their ternary phases were obtained. With the constraint of

constant volume, we repeated optimization of the materials several times in order to obtain

a set of total energies as a function of cell volume. From this, the equilibrium volume and

bulk modulus were obtained by a fit to a first order Birch equation of state given in equation

(5.2). These results were compared with the ones obtained from the elastics constants.

5.4.2 Cell Parameters of the Metal Nitrides

The search for the most stable structure of the newly synthesized Ta2N3 [6], has prompted

the consideration of the orthorhombic U2S3 structure of the advanced metal nitrides M2N3

with a M : N stoichiometry of 3 : 4 having a space group of pbnm (number 62). To start

with, we considered the 20-atom (formula unit, Z = 4) unit cell which is common to all
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the metal nitrides and their ternary phases. We used the cell parameters and fractional

coordinates of Ta2N3 for every other metal nitride (the V2N3 and Nb2N3) considered in this

work. Table 5.1 and 5.2 explicitly shows the LDA and the GGA values (in parenthesis),

of the optimized calculated structural parameters for the binary metal nitrides as well as

their ternary phases at a plane wave energy cutoff of 400eV and the 500eV, respectively.

The experimental and the theoretical values of Ta2N3 are also presented for comparison.

The calculated lattice parameters at an energy cutoff of 400eV exhibit similar trends with

those obtained from energy cutoff of 500eV indicating that the choice of plane wave cutoff

is acceptable. It is evident that the values of the lattice parameters of each material was

underestimated and slightly overestimated by the LDA and the GGA respectively. This is

consistent with what one expect from LDA and GGA [77].

For the orthorhombic Ta2N3, our results (the lattice parameters) are in agreement with

experiment [6] and a recent theoretical calculation [7] which employed the all-electron pro-

jector augmented wave method within the generalized gradient approximation of Perdew et

al.[76]. The lattice parameters (a, b, and c) of the orthorhombic Ta2N3 are bigger than the

experimental values by about 1% respectively. We also calculated the total energy of Ta2N3

as a function of volume and our theoretical equilibrium volume, 193.43Å3 is within 3.0% of

the experimental volume [6].
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Table 5.1: The calculated LDA and the GGA values of the equilibrium cell structures (Å)of

the metal nitrides and their ternary phases at plane wave energy cutoff of 400eV.

Samples a b c Reference

Ta2N3 8.129 (8.206) 8.036 (8.129) 2.961 (2.990) This work

V2N3 7.633 (7.744) 7.540 (7.677) 2.749 (2.791) This work

Nb2N3 8.191 (8.271) 8.007 (8.135) 2.980 (3.005) This work

TaV N3 7.948 (8.080) 7.588 (7.716) 2.888 (2.930) This work

TaV3N6 7.797 (7.923) 7.542 (7.691) 2.828 (2.872) This work

Ta3V N6 8.021 (8.135) 7.843 (7.982) 2.917 (2.959) This work

NbTaN3 8.152 (8.246) 7.967 (8.110) 2.983 (3.014) This work

NbTa3N6 8.132 (8.220) 7.978 (8.162) 2.968 (2.999) This work

Nb3TaN6 8.175 (8.260) 7.984 (8.150) 2.982 (3.008) This work

Figures 5.1 and 5.2 show the schematic representation of the three binary metal nitrides

and their ternary phases. From the Figures, each metal atom is bonded by five closely

packed nitrogen atoms , so it is concluded that the size of the lattice parameters of the

metal nitrides are determined mainly by the size of the metal atoms. There is an evident

of structural difference between Ta2N3 and V2N3. Although the reason for this difference is

not yet clear, it is likely related to the extent at which electron correlates at high volume in

the two different structures. The equilibrium volume of V2N3 is about 18.0% smaller than

that of Ta2N3 whereas, that of Nb2N3 is about 2.0% larger than that of Ta2N3.
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Table 5.2: Calculated LDA and the GGA values of the equilibrium cell structures (Å)of the

metal nitrides with space group Pbnm and their ternary phases at plane wave energy cutoff

of 500eV.

Samples a b c Reference

Ta2N3 8.129 (8.236) 8.036 (8.185) 2.961 (3.002) This work

8.19 8.18 2.98 [6]

(8.19) (8.24) (3.00) [7]

V2N3 7.633 (7.758) 7.540 (7.706) 2.749 (2.795) This work

Nb2N3 8.224 (8.310) 8.042 (8.189) 2.992 (3.020) This work

TaV N3 7.976 (8.116) 7.597 (7.726) 2.895 (2.939) This work

TaV3N6 7.816 (7.944) 7.552 (7.701) 2.834 (2.878) This work

Ta3V N6 8.045 (8.164) 7.870 (8.015) 2.925 (2.969) This work

NbTaN3 8.176 (8.274) 8.000 (8.149) 2.995 (3.027) This work

NbTa3N6 8.154 (8.242) 8.014 (8.214) 2.978 (3.009) This work

Nb3TaN6 8.201 (8.286) 8.021 (8.205) 2.994 (3.018) This work
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(a) Ta2N3

(b)V2N3

(c)Nb2N3

Figure 5.1: Crystal structures of the binary metal nitrides with U2S3 structure.
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(a) TaV N3 (b)NbTaN3

(c)Ta3V N6 (d)Nb3TaN6

Figure 5.2: Crystal structures of the ternary metal nitrides with U2S3 structure.
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5.4.3 Structural Properties Calculation

Structural properties of the metal nitrides and their ternary phases are examined by first

principle calculations at zero pressure-temperature. The total energy as a function of volume

was then fitted to the first order Birch equation of state (EOS) described in section 5.3. The

assumption employed for this equation of state is that near equilibrium relaxed state the

bulk modulus varies linearly with the pressure and no phase transition occurs during the

compression of the material. Our calculated LDA and GGA values of zero-pressure energy,

equilibrium volume V0, bulk moduli B0 and the pressure derivatives of the bulk B′0 at plane

wave energy cutoffs of 400eV and 500eV are summarize in Tables 5.3 and 5.4, with GGA

values in parenthesis. The previous theoretical result of the bulk modulus and the pressure

derivative are also presented in Table 5.4 for comparison. From the results shown in these

Tables, the bulk modulus B′0 obtained from the LDA calculations are much higher than those

of the GGA calculations because, GGA typically under-estimates bulk modulus with respect

to LDA [77]. The calculated pressure derivatives B′0, of each of the samples are within the

range of 4 − 5 which is common for most solids. The bulk modulus B′0 and the pressure

derivative of the bulk B′0 of the Ta2N3 are in agreement with the recent theoretical result [7].

The bulk modulus results also shows that the binary and the ternary metal nitrides could

be potential hard materials when compared to that of diamond, except for the GGA value

obtained for TaV3N6.
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Table 5.3: Calculated LDA and GGA values of the equilibrium structural properties and

relative stability energies at plane wave energy cutoff of 400eV.

Samples Etot B′0 B′ V0 ∆Estab

(eV/atom) (GPa) (Å3/atom) (eV/atom)

Ta2N3 −11.864 (−10.775) 372 (326) 4.404 (4.607) 9.676 (10.132)

V2N3 −10.276 (−9.230) 354 (300) 4.503 (4.455) 7.912 (8.366)

Nb2N3 −10.971 (−9.868) 334 (302) 4.563 (4.706) 9.900 (10.292)

TaV N3 −11.113 (−10.046) 365 (316) 4.421 (4.531) 8.773 (9.225) −0.229 (−0.263)

TaV3N6 −10.671 (−9.618) 351 (295) 4.686 (4.873) 8.365 (8.830) −0.00005 (−0.078)

Ta3V N6 −11.488 (−10.414) 363 (318) 4.434 (4.563) 9.265 (9.722) −0.227 (−0.347)

NbTaN3 −11.430 (−10.326) 352 (314) 4.504 (4.606) 9.797 (10.214) −0.073 (−0.093)

NbTa3N6 −11.647 (−10.553) 362 (312) 4.498 (4.738) 9.733 (10.194) −0.085 (−0.177)

Nb3TaN6 −11.201 (−10.099) 343 (300) 4.522 (4.923) 9.849 (10.268) −0.091 (−0.179)
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Table 5.4: Calculated LDA and GGA values of the equilibrium structural properties and

relative stability energies at plane wave energy cutoff of 500eV.

Samples Etot B′0 B′ V0 ∆Estab

(eV/atom) (GPa) (Å3/atom) (eV/atom)

Ta2N3 −11.862 (−10.774) 370 (326) 4.435 (4.522) 9.676 (10.130)

(323) (4.45) [7]

V2N3 −10.275 (−9.231) 355 (302) 4.468 (4.630) 7.913 (8.358)

Nb2N3 −10.970 (−9.867) 335 (303) 4.479 (4.634) 9.903 (10.290)

TaV N3 −11.112 (−10.045) 364 (315) 4.482 (4.645) 8.772 (9.216) −0.215 (−0.220)

TaV3N6 −10.670 (−9.617) 352 (295) 4.672 (5.104) 8.363 (8.819) 0.020 (−0.017)

Ta3V N6 −11.487 (−10.413) 362 (317) 4.432 (4.545) 9.264 (9.716) −0.212 (−0.260)

NbTaN3 −11.429 (−10.325) 352 (315) 4.435 (4.576) 9.798 (10.210) −0.065 (−0.030)

NbTa3N6 −11.646 (−10.552) 362 (313) 4.427 (4.643) 9.735 (10.191) −0.068 (−0.057)

Nb3TaN6 −11.200 (−10.098) 343 (300) 4.457 (4.838) 9.851 (10.267) −0.073 (−0.055)

5.4.4 Calculated Elastic Properties

Using the ab-initio approach at plane wave energy cutoff of 400eV and 500eV we obtained all

the elastic constants and thereafter, we estimated the effective Voigt isotropic moduli (bulk

modulus B, shear modulus G and the Young modulus Y ), the Poisson’s ratio and the ratio of

B/G for each of the metal nitrides M2N3 and their ternary phases. These results are listed in

Tables 5.5- 5.8. The elastic constants obtained satisfy the mechanical stability criteria stated

in equation (5.1) indicating the orthorhombic pbnm structures are mechanically stable.

Plane wave energy cutoffs need to be sufficiently large to ensure accurate computation of

stress tensor related quantities like elastic properties and also for good convergence. From the

results, we observed a progressive decrease in the values of the elastic constants, bulk, shear

and Young modulus of the metal nitrides of tantalum, vanadium and niobium as the energy
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cutoff increases from 400 to 500eV, and this was especially notable for the GGA values.

Bulk modulus is the resistance to volume change (that is, the inverse of compressibility),

and from Tables 5.5 and 5.6 we can see that the order of compressibility from high to low

is Nb2N3 > V2N3 > Ta2N3 for the binary metal nitrides. This means that Ta2N3 is the

lowest compressible material among the binary metal nitrides. The comparison from the

ternary phases shows that low concentrations of vanadium and niobium are most significant

and promising improvement of the Ta2N3. The requirement for a material with high bulk

moduli is that C11 must be high with C12 low [13]. Of all the materials considered, as can

be seen from Figure 5.3, the LDA and GGA trends shows Ta2N3 as having the highest bulk

modulus because of it high value of C11 but this does not imply that in all the planes that

its elastic constants are higher than the rest of the binary and ternary metal nitrides. The

higher the shear strength (C44 value), the higher the stiffening of the lattice plane of the

material. This means that the elastic constants Cij are relatively high in all the planes of

that material and this explains why the shear modulus value of Ta2N3 is small as compared

to that of V2N3. For the ternary phases, our calculations show an increasing trend in bulk

modulus, shear modulus and the Young’s modulus when using both the LDA and GGA. One

exception is for TaV3N6 where the GGA values of the shear and Young’s moduli; 118 GPa

and 314 GPa as can be seen clearly from Figure 5.3. These low values can be attributed to

incomplete convergence of the total energy and thus, we suggest future work to be conducted.

All the binary and ternary metal nitrides exhibit a ductile character since their B/G values

are all greater than the 1.75. In comparison to diamond and cubic boron nitride, the binary

and ternary metal nitrides could be regarded as potential hard materials because of their

increasing trends in bulk modulus.
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Table 5.5: The LDA calculated values of the elastic constants and the Voigt isotropic moduli

(the bulk modulus B, shear modulus G, Young modulus Y ) in GPa, Poisson’s ratio ν and

the quotient of B/G. The experimental data for diamond are G = 544GPa, B = 442GPa,

Y = 1142GPa and ν = 0.1. Calculation were performed at a plane wave energy cutoff of

400eV.

Samples C11 C12 C13 C23 C22 C33 C44 C55 C66 B G Y ν B/G

Ta2N3 771 312 225 262 572 779 125 249 222 413 207 533 0.29 2.00

V2N3 719 313 204 249 545 764 228 232 210 395 218 553 0.27 1.81

Nb2N3 683 288 104 92 516 455 161 213 200 291 193 474 0.23 1.51

TaV N3 672 292 229 229 664 812 188 246 233 405 227 573 0.26 1.78

TaV3N6 681 296 218 232 599 776 146 234 221 394 208 530 0.28 1.89

Ta3V N6 710 315 219 242 577 803 164 242 215 405 212 541 0.28 1.91

NbTaN3 713 307 212 248 581 724 191 229 213 395 210 535 0.27 1.88

NbTa3N6 738 308 213 256 574 742 169 240 218 401 210 537 0.28 1.91

Nb3TaN6 703 300 207 241 560 703 181 220 206 384 203 517 0.28 1.89
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Table 5.6: The LDA calculated values of the elastic constants and the Voigt isotropic moduli

(the bulk modulus B, shear modulus G, Young modulus Y ) in GPa, Poisson’s ratio ν and

the quotient of B/G. The experimental data for diamond are G = 544GPa, B = 442GPa,

Y = 1142GPa and ν = 0.1. Calculation were performed at a plane wave energy cutoff of

500eV.

Samples C11 C12 C13 C23 C22 C33 C44 C55 C66 B G Y ν B/G

Ta2N3 700 288 204 239 507 710 85 225 197 375 181 467 0.29 2.07

V2N3 655 295 186 231 484 703 205 209 186 363 195 497 0.27 1.86

Nb2N3 606 265 185 221 445 631 135 187 177 336 167 430 0.29 2.01

TaV N3 605 273 209 209 603 746 163 220 210 371 203 515 0.27 1.83

TaV3N6 616 277 198 214 538 712 120 210 197 360 184 472 0.28 1.96

Ta3V N6 642 291 198 219 517 737 141 217 192 368 189 485 0.28 1.95

NbTaN3 647 282 192 221 508 658 166 204 190 356 187 477 0.28 1.90

NbTa3N6 666 283 194 238 510 686 140 215 195 366 187 478 0.28 1.96

Nb3TaN6 633 275 187 216 491 641 155 195 184 347 179 459 0.28 1.94
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Table 5.7: The GGA calculated values of the elastic constants and the Voigt isotropic moduli

(the bulk modulus B, shear modulus G, Young modulus Y ) in GPa, Poisson’s ratio ν and

the quotient of B/G. The experimental data for diamond are G = 544GPa, B = 442GPa,

Y = 1144GPa and ν = 0.1. Calculation were performed at a plane wave energy cutoff 400eV.

Samples C11 C12 C13 C23 C22 C33 C44 C55 C66 B G Y ν B/G

Ta2N3 690 280 201 233 513 710 45 220 194 371 172 446 0.30 2.15

V2N3 612 275 176 214 479 683 202 197 179 345 190 481 0.27 1.82

Nb2N3 630 270 194 222 486 652 116 199 180 349 171 441 0.29 2.04

TaV N3 590 258 199 199 577 733 154 209 200 357 196 496 0.27 1.82

TaV3N6 585 258 187 203 495 693 −19 198 189 341 149 489 0.31 2.29

Ta3V N6 627 276 191 207 530 730 141 209 185 359 188 480 0.28 1.91

NbTaN3 645 277 190 224 513 662 126 206 187 356 179 460 0.28 1.99

NbTa3N6 657 266 190 227 483 692 209 209 178 355 196 496 0.27 1.81

Nb3TaN6 628 261 189 230 438 659 197 198 176 343 184 468 0.27 1.86
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Table 5.8: The GGA calculated values of the elastic constants and the Voigt isotropic moduli

(the bulk modulus B, shear modulus G, Young modulus Y ) in GPa, Poisson’s ratio ν and

the quotient of B/G. The experimental data for diamond are G = 544GPa, B = 442GPa,

Y = 1144GPa and ν = 0.1. Calculation were performed at a plane wave energy cutoff of

500eV.

Samples C11 C12 C13 C23 C22 C33 C44 C55 C66 B G Y ν B/G

Ta2N3 613 253 179 208 443 639 −43 193 166 331 133 353 0.32 2.49

Ta2N3* 456 248 203 176 610 639 165 193 −54 327 132 350 0.32 2.47

V2N3 543 251 157 194 409 619 177 172 154 308 165 420 0.27 1.87

Nb2N3 551 243 171 197 416 582 78 171 154 308 143 372 0.30 2.15

TaV N3 519 237 181 183 513 667 128 183 179 322 171 437 0.27 1.88

TaV3N6 522 241 169 185 432 632 −80 174 165 308 118 314 0.33 2.61

Ta3V N6 557 252 171 184 468 663 119 184 162 323 165 423 0.28 1.96

NbTaN3 573 254 170 202 447 596 90 181 164 319 153 396 0.29 2.08

NbTa3N6 586 242 168 198 429 629 186 183 153 318 173 440 0.27 1.84

Nb3TaN6 554 237 165 196 406 600 174 172 150 306 163 416 0.27 1.88



Section 5.4. Results Analysis Page 59

Figure 5.3: The isotropic bulk properties (LDA and the GGA values) of the binary metal

nitrides and their ternary phases at plane wave energy cutoff of 500eV.
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5.4.5 Relative Stability

The relative stability of an alloy is the measure of the difference between the total energy

of the bulk material at equilibrium and the total energy of the constituent phases at zero-

pressure and temperature. Each of these energies are the total energy of the optimized

structure considered. For this work, we considered the relative stability of the advanced

metal nitrides, M2N3 with respect to the mixture of each of the starting materials (namely

Ta2N3, V2N3 and Nb2N3). Scaling factors (the reaction concentrations) of the reaction were

emphasized due to their importance when computing relative stability. In the absence of

application of extreme conditions of temperature and pressure, the reaction energy utilized

in this work is expressed as:

∆Estab = Etot(MXMYNZ)−
[
tEtot(M2N3) + pEtot(M2N3)

2

]
.

Depending on the reacting constituents, M can either represent Nb and Ta or Ta and V .

X and Y can alternatively take the value 1 or 3, while Z can take the value 3 or 6. Etot

denotes the total energy of the optimized geometry and corresponds to the free energy at zero

temperature and pressure, p and t represents the reaction concentration (or ratio) and ∆Estab

indicates the relative stability of the ternary phase. We carried out this computation using

both the local density approximation (LDA) and the generalized gradient approximation

(GGA). The implication of this definition is that if ∆Estab is positive the two constituent

phases are not miscible (i.e, it is meta stable) and if ∆Estab is negative the phases are miscible

(i.e, it is stable) [71]. It is not just enough to be strongly miscible, but for an alloy to be

more stable than another, it must have a certain range of bond strength [78].

Our calculated relative stability both, the LDA and the GGA for the different ternary phases

are listed in Tables 5.3 and 5.4. These data are represented more clearly in Figures 5.4 and

5.5 below. These figures show a stable bahaviour for most of the Nb − Ta − N systems at

both energy cutoffs. The Ta − V − N trends shows a stable characteristic at both cutoffs

except TaV3N6 which displays a meta-stable character. Figures 5.4 and 5.5 also suggest
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more bond strength in Ta3V N6 and Nb3TaN6 than all the other ternary phases.

Figure 5.4: The relative stability (LDA and GGA values) of the ternary phases of the metal

nitrides in Ta− V −N and Nb− Ta−N trends at energy cutoff 400eV.
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Figure 5.5: The relative stability (LDA and GGA values) of the ternary phases of the metal

nitrides in Ta− V −N and Nb− Ta−N trends at energy cutoff 500eV.
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5.5 Electronic Structure Calculation

Electronic properties (like the band structure, density of states and the charge density dis-

tribution) of a material provides valuable information on the distribution of the states in

k-space. A good interpretation of the electronic states has helped in the understanding of

the structural stability and various other physical properties quantitatively [79].

In order to understand the electronic nature of the advanced metal nitrides, M2N3 and

their ternary phases, we have computed their band structures, the density of states (DOS),

and the electron density. In the reduced Brillouin zone, the Hamiltonian was solved self-

consistently at 8×8×8 special K-points of the orthorhombic unit cell. To evaluate the band

structure and density of states, we used the Monkhorst-pack interpolation scheme along

some high symmetry lines in the Brillouin zone of the orthorhombic system as shown in the

figure 5.6 [80] below. We also used the FP-LAPW method as employed in the WIEN2k

code [81] to determine the band structures of Ta2N3, V2N3, Nb3TaN6 and Ta3V N3. The

recent non-empirical GGA approach of Wu and Cohen [82] has been considered. To ensure

sufficient accuracy in convergence, the total energy of the crystal was converged to 0.01

mRy. Energy-eigenvalue convergence was achieved by expanding the wave functions in the

interstitial region into plane waves with a cut-off wave vector Kmax = 9/RMT , where

RMT denotes the smallest atomic sphere radius and the Kmax is maximal reciprocal lattice

vector. The valence wave functions inside the spheres are expanded up to lmax = 10, while

the charge density was Fourier-expanded up to Gmax = 12. The Brillouin zone integration

was performed for 250 points.

The energy band structures, total density of states and the charge densities of the advanced

metal nitrides M2N3 and their ternary phases are shown in Figure 5.7 - 5.16, respectively.

The energy band structure yields the whole picture of electron spectrum of these metal

nitrides and the plots depicts the formation of a hole-like structure near the Fermi surface

and the overlap of these bands confirm metallic behaviour of the metal nitrides. Their lower
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Figure 5.6: The Brillouin zone of the orthorhombic unit cell with points of high symmetry

indicated.

valence bands are mainly occupied by the 2s-states of the N atoms whereas the top valence

band and the bottom of the conduction band are composed of N 2p states and the d-states

from the transition metal. The results from VASP and WIEN2K basically depict the same

interpretation.

From Figure 5.12, with the Fermi level (Ef ) set as 0eV, we observed that all the advanced

metal nitrides are metallic because of the finite DOS at the Fermi level (Ef ). The plots for

the total DOS also show the presence of a deep valley-pseudogap, very close to the Fermi

level. In the metal nitrides M2N3, the presence of narrow d-states near the Ef pulled towards

lower energy range from Fermi level due to resonance effect and therefore causing deep valley

near the Ef to appear. This pseudogap causes a separation between the bonding and the

antibonding states [83] which results in the strong hybridization between d-states in the

metals and the N −2p states. A material has high stability if the conduction band is narrow

or if conduction electron states accumulate in the relatively lower energy region. From the

Figures 5.12- 5.14, the advanced metal nitrides are expected to be structurally stable. All the

DOS of the metal nitrides have very similar topography in that, the peak found in the lower

energy region between −13eV and −17eV is dominated by the 2s states of N . In addition,
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the total DOS below (Ef ) for all the transition metal nitrides is mainly dominated by the N

2p states in the region 0eV to −8.0eV, which is consistent with the higher electronegativity

of N atoms relative to the transition metals. This is justified by the fact that the localization

of electrons in N atoms are stronger than that of the transition metals, despite the presence

of strong hybridization between N and the other transition metals. The DOS values at the

Fermi level [N(Ef )] for the binary metal nitrides are 11.0, 8.80 and 9.0 states/eV for V2N3,

Ta2N3 and Nb2N3, respectively.

The charge density distribution gives information about the changes in the bond type and

the charge transfer in a material. To further understand the changes of the DOS at the

Fermi energy level, we calculated the charge density of the advanced metal nitrides. The

plots are shown in Figure 5.15 and 5.16. The plots of the charge density shows an evident of

directional bonds between the metals and the nitrogen. These bonds are not so strong since

the localization of electrons in N atoms are stronger than that of the transition metals and

hence, seems to improve the ductility of the metal nitrides.
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Figure 5.7: Electronic band structure for Ta2N3 using both VASP and WIEN2K (at the

bottom). The Fermi energy level is set at 0 eV.
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Figure 5.8: Electronic band structure for V2N3 using both VASP and WIEN2K (at the

bottom). The Fermi energy level is set at 0 eV.
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Figure 5.9: Calculated electronic band structure for Nb2N3 using VASP. The Fermi energy

level is set at 0 eV.
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Figure 5.10: Electronic band structure for the ternary metal nitrides. The Fermi energy

level is set at 0 eV.
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Ta3V N6 Nb3TaN6

Figure 5.11: Electronic band structure for the ternary metal nitrides. The Fermi energy

level is set at 0 eV. (The WIEN2K results at the bottom).
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Figure 5.12: The plots of the total density of states (DOS) of the binary metal nitrides.

The Fermi level is set at 0 eV and is indicated as a dashline.
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Figure 5.13: The plots of the total density of states of the ternary phases of the metal

nitrides. The Fermi level is set at 0 eV and is indicated as a dashline.
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Figure 5.14: The plots of the total density of states of the ternary phases of the metal

nitrides. The Fermi level is set at 0 eV and is indicated as a dashline.
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(a) V2N3

(b)Ta2N3

(c)Nb2N3

Figure 5.15: The plots of the charge density distributions of the binary metal nitrides in

the 001 plane.
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(a) TaV N3 (b)NbTaN3

(c)TaV3N6 (d)NbTa3N6

(e)Ta3V N6 (f)Nb3TaN6

Figure 5.16: The plots of the charge density distributions of the ternary metal nitrides in

the 001 plane.



6. Conclusion

In this work, we have applied ab-initio calculations to investigate physical and electronic

properties of the orthorhombic metal nitrides of tantalum, vanadium and niobium. The pri-

mary goal of this theoretical work is to discover new ultrahard materials. We have presented

explicitly the calculated cell geometries, the elastic constants, the effective Voigt isotropic

moduli, the equilibrium of state properties of the bulk modulus, the relative stability and the

electronic properties at zero pressure and temperature for the advanced metal nitrides M2N3

(where M=Ta, V, Nb) and their ternary phases, using LDA and GGA within the plane-wave

pseudopotential density functional theory. The results we obtained from the calculation of

the optimized cell geometry of Ta2N3 were in good agreement with the experimental results

of Zerr et al.[6] and the recent theoretical work of Jiang et al.[7]. We found the calculated

lattice parameters were 1% larger than the experimental values.

From the GGA calculations, a negative value of one of the elastic constants (the C44 value)

of Ta2N3 was found. The negative elastic constant implies that it can easily deform in

that direction on the application of a high external force. This is contrary to the Born

criteria [67] and suggests that the material is not stable. However, the corresponding LDA

is positive and therefore not in agreement with this, so we suggest that no conclusion can

be drawn regarding the stability of Ta2N3. One point however is that the elastic moduli of

Ta2N3, V2N3 and Nb2N3, obtained using both the LDA and GGA functionals, are high. The

calculated bulk moduli range between 291 and 413 GPa, a shear moduli between 133 and

218 GPa, and the Young’s moduli between 353 and 553 GPa. These moduli are indicative of

potentially good candidates for ultrahard materials. On the whole, the LDA calculations of

Ta2N3, V2N3 and Nb2N3 predict higher elastic moduli as well as a smaller cell volumes than

those obtained using the GGA. This is typical of the GGA calculation which are expected

to underestimate the elastic moduli [77]

The effect of addition of vanadium (V ) or niobium (Nb) to Ta2N3 was studied using both
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in the LDA and the GGA calculations. These calculations yielded positive values of C44 and

indicates enhance the stability of the ternary phases. This was observed almost in all the

ternary phases using both the LDA and GGA functional. The one exception was TaV3N6

where the GGA predicted negative value of C44 while LDA yielded a positive value. It is,

however, not possible to say conclusively whether TaV3N6 is unstable or not. The predicted

bulk moduli for the ternary phases range between 306 and 405 GPa. A large shear modulus

which represent a large resistance to plastic deformation is an absolute requisite for any new

ultrahard material we are seeking. From our calculations of the shear modulus (using both

the LDA and the GGA functionals) are fairly high because of the relatively high Poisson’s

ratio, which represents the stability of a crystal against shear. Our predicted values of

the shear modulus for the ternary phases range between 118 and 227 GPa, with a Young’s

modulus between 314 and 573. The elastic properties of the ternary phases have shown

that addition of a low concentration of vanadium or niobium to Ta2N3 can result in very

promising improvements in hardness. Therefore, in the absence of experimental data, we

suggest that the ternary phases have increased hardness compared to Ta2N3.

The experimental values of the isotropic properties of diamond are: B = 442 GPa, G = 544

GPa, Y = 1142 GPa and ν = 0.1 [71]. Our prediction for the bulk and the shear moduli are

in the range of 30-60% lower than the corresponding values for diamond. It is worth noting

that there is a considerably good agreement between the isotropic bulk modulus obtained

from the elastic constants with that obtained via the fit to the first order Birch equation of

state B0. The electronic structure calculation shows that the advanced metal nitrides and

their ternary phases are all metallic because of their finite density of states at the Fermi

energy level Ef .
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6.1 Direction for Future Work

The advanced metal nitrides systems, during the course of this work have shown that they

can be considered as important materials. Therefore, they are open for future research work.

It would be quite interesting to carry out optimization calculation for the ternary phase -

TaV3N6 under different other plane wave energy cutoffs. This is to establish good convergence

of the system and to compare with findings of this study. It may also be possible to perform

calculations on the advanced metal nitrides system at finite temperature and pressure using

the Car - Parrinello molecular dynamics with variable unit cell parameters.
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