
THE LANGUAGE OF SETS

“ gETS” is a word that is spreading all over the 
world and the question always arises “to what 

end ? ”So let me make it clear that the language of 
sets is purely a language; it is a way of presenting 
mathematics in which we can see a common 
language in the explanations that we give. It does 
not mean that you are going to change any of 
the ways in- which you teach your concepts, but 
that you will use the language of sets in order to 
clarify and simplify your work in arithmetic, 
algebra and geometry. You will still teach calculus 
the same way; you will teach the other things the 
same way, but you will probably discuss it and 
present it in the manner of sets if you feel that it 
is appiopriate for what you want to do.

Also, it not only simplifies, but brings certain 
of the concepts into sharper focus than perhaps 
the old system did. But do not run away with the 
idea that here is something new, that the end 
product is going to be something entirely different.

What is a set? A set is a collection of things, 
ideas, movements that you can define; it is made 
up of a selection of members, and each member 
of the set is easily definable. All through your 
teaching career, you have been teaching this; 
you have been teaching the set of prime numbers, 
the set of even numbers, the set of odd numbers, 
the set of square numbers; whenever you have 
been looking at a collection of these things, you 
have actually been dealing with sets. It was 
Georg Cantor of course who brought this to light 
when he was thinking about sets of points in the 
circumference of a circle. Everything is made up 
of different sets. Some of these have a particular 
description and a particular name. Even in 
English you have heard of a gaggle of geese— 
gaggle is a name for a set. What we called collective 
nouns were actually sets. Anything that we can 
well define, where we can define each member, 
can be called a set. The jive is a collection of 
movements in a dance—that too is a set. We have 
also the idea of triangles as a set of figures with 
certain characteristic properties; this is a set. 
Some of them have special names and some of 
the sets have no special name; the last four 
houses in the street is a collection, but has no 
particular name. The objects that are in your 
pockets at the moment, figures half of whose 
perimeter is curved—these are things to which no 
name is given, but they are still sets. There are
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two ways of describing a set—we can either list 
the members or we can give a description of them.

Here are some examples of sets and we always 
denote our sets by these braces:— { }

A {John, honesty, 5, cabbage}
B {46, 48, 50}
C {Red, Blue, Yellow}
D {All whole numbers >  17}
A is a set; the members are John, honesty, 5 

and cabbage, but we cannot find any description 
for it.

Set B is the set of even numbers between 45 
and 51.

When we come to set G, it is the set—red, blue, 
yellow. There we have listed them; if we want 
to describe them, they will be the primary colours.

Set D is the set of all whole numbers greater 
than 17; there we have given a description. Can 
we list them? You can try but it is going to take 
a long time because the whole numbers that are 
greater than 17 are an infinite series. Therefore, 
the description will be far better than the listing.

So here we have the idea of how, when we are 
looking at sets, we either list them or we define 
them.

I would like to give you a few definitions before 
I put them into practice.

Equal sets are sets that have the same elements 
though not necessarily in the same order. For 
example, Set A could be {10, — 7, 4} and set B 
can be {4, 10, — 7}. They have the same members, 
the same number of members and therefore they 
are equal. Another example is set A which is 
{l2, 22, 32, 42} and set B which is {yd, y/256, 
r/16, -v/81}. It is interesting that those two sets 
are equal; in set B \/256 is 16, and I have got 42 
in set A. When we have sets which have the same 
elements, though not necessarily in the same order, 
we say they are equal.

The biggest set is the universal set. For example, 
all the ladies in this room is one particular set 
and all the gentlemen in this room is another set; 
this implies we have got two sets. There must be 
another set in which they are all involved and that 
is what we call the universal set. In mathematics 
it is always the universal set that is of piime
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importance, because when we are doing graphical 
work we have to consider whether we are using 
the universal set of natural numbers, the universal 
set of rational numbers or the universal set of 
real numbers. This universal set must always be 
given if you are going to do any particular work 
in the graphical line.

The universal set is represented by Q  or the 
letter U. May I give you an example? Take, for 
instance, all the children in your school—that 
would be a universal set. Divide them into two 
categories—the ones who wear spectacles and the 
ones who do not. Those who wear glasses would 
be set A; all the others (those who do not wear 
glasses) are known as the complement and are 
classed as A'. Therefore, A +  A' make up the 
whole of the universal set. We can represent it thus:

We can, of course, have sets that have nothing 
to do with each other; there is nothing actually 
in common between them. Here is set A (1, 2, 3} 
and here is set B {4, 5, 6}. These are two sets which 
have nothing in common and nothing to do with 
each other and they are known as disjoint sets.

An empty set is a set that does not satisfy the 
conditions at all. An example is the set of two- 
digit even primes. The answer is that there are 
none—the set is empty. “All in front of me now 
who have played for England in the Cup Final” 
is an empty set.

So we have equal sets, universal sets, empty 
sets and disjoint sets.

Suppose I name {1, 2, 3, 4} as set A; each 
element or member is a member of the set and we 
say that 2 is a member of set A or 4 is a member 
of set A. We write this as follows:—

2 e A :4  6 A
But it is interesting that in this set are also 

contained other sets or “subsets”; if I said that 
set B is 2 and 3, you can see that set B is part

of that set or is a sub-set of that set. All the ladies 
in this room now are a sub-set of all the people 
who are present. All the men are a sub-set. If I 
ask you how many different hands of five you can 
select from a pack of 52 cards, you are looking 
for the sub-sets of five members out of the set 
of 52. You will be amazed at how many different 
hands you can get. We can of course list the sub­
sets. For example I can take the set {1, 2, 3} 
as the universal set and I want to know how many 
sub-sets I can get out of that. The set itself is its 
own sub-set; that is the first one. The rest but one 
that I am going to do at the end are called “proper 
sub-sets”. This is not called a proper sub-set 
but it is a sub-set; you can be a sub-set of yourself. 
Next I have got {1} as a sub-set {2} as a sub-set 
{3} as a sub-set. The next sub-set is (1, 2} then 
(1, 3} then {2, 3}. Lastly we have got satisfying 
this condition the set with no members, the 
empty set { }.

Now how many sub-sets have we got out of 
there? 8 sub-sets. We have 3 members in our 
universal set and we have 23 sub-sets. If we had 
had 4 members in the universal set, we should 
have had 24 and so the answer is that in all our 
sets, we can get 2” sub-sets out of them. If you 
ever ask your children to write down the sub-sets 
of some particular thing, you have not got to 
work out the answer; you have only to say 2 to 
the power of however many elements are contained 
and that is the answer; so if they have not found 
that number, you tell them to go on working and 
looking for the others.

So we have the idea of universal sets, of disjoint 
or empty sets, we have the idea of sub-sets and 
now we have probably the greatest idea of all, 
the idea of equivalent sets. Two sets are equivalent 
when we have a one-to-one correspondence of one 
set to the other. In other words, any set is 
equivalent to a multitude of other sets. This is 
an important point that I am sure that all those 
who deal with infants will have appreciated. 
Here is a set, I will call it +> -f-}. Now that is 
equivalent to a multitude of sets. I could have 
put in the equivalent set of three traffic light 
signals, or I could have put the primary colours, 
or I could have put solid, liquid and gas or I 
could have put P, Q,, R. I could have put a 
multitude of things there and if they are all 
matched in one-to-one correspondence, then they 
are equivalent.

Here then is the basis of cardinal number, that 
if we have got this set (and of course, this is done 
with children, only they use concrete objects)—
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which we have said by a one-to-one corres- 
dence has a shorthand sign of “6”, then any other 
set that can be matched in a one-to-one corres­
pondence with this will take this sign—6. When 
we talk about bringing up children with the idea 
of fiveness and fourness and threeness, all we are 
doing is matching sets in a one-to-one corres­
pondence and where they completely match and 
none remain extra, they are identical or 
equivalent. If this is so, then we have the definition 
of cardinal number—the cardinal number is a 
class of equivalent sets, such that all sets that are 
equivalent will be given the same cardinal number.

Let us now proceed to the operation of sets. 
The first operation and probably the most 
important is the intersection of sets.

We have one set A here and we have intersected 
it with set B. We write this: A f| B, and it is very 
evident that the intersection of A and B is the 
shaded part in the diagram. It is easy to see 
that A intersected with B is the same as B inter­
sected with A and we write this A f| B =  B f] A.

Here we have the commutative law coming out 
in the matter of sets. This kind of work is regularly 
done in schools. Take for example all the boys 
in the football team and all those in the cricket 
team. We have 11 in the football team and we 
have 11 in the cricket team, but it does not follow 
that there are 22 altogether because there may be 
some who are in both the football team and the 
cricket team. This is the kind of thing that is done 
in the infant school.

The most important point about this set 
language is that number through set language can 
have its greatest force in the infant school.

Taking this a step further, let us look at the 
numbers 6, 9 and 15. We are going to split them 
up into their prime factors. The prime factors 
of 6 will be the set A, which will be 2 and 3. 
Similarly, the prime factors of 9 will be the set B, 
which will be 3 and 3 and the prime factors of 
15 will be the set C, which will be 3 and 5. 
Diagramatically, we can present this as follows:—

From this diagram, I am sure you will see that A 
intersected with B and then intersected with C 
is the same as A intersected with B with C. In 
other words, we have got the associative law 
coming out in this. What do you think is going 
to go in the very centre of the diagram? In that 
section there is the intersection of set A, set B 
and set G. What have we there? We have got 
a 3 in sets A, B and G. What then have I got 
left? In set B I have a 3 left. In set C I have a 5, 
and in set A a 2. If we multiply those together, 
we shall have the LCM, 90.

Now let us look for the HCF of 6, 9 and 15. 
Have we anything now that we can put into the 
middle. We have the 3. Now in set A, we have 
the 2 and 3; in set B, the 3 and another 3 and in
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set C we have the 3 and a 5. Thus here we have 
the HCF of 3. From that intersection, which is 
the same thing, we can work out HGF’s and 
things like that.

We can do exactly the same with algebra if 
we wish. Here is an illustration

x2y  =  K , x2, y i}
xy2 =  K, j>u y 2}
xy =  {Xl, y i \

Here we put our three given algebraic expres­
sions into the form of sets. Let us now try, as 
before, to put these three sets into one of our 
diagrams, which are called “Venn Diagrams” :—

By doing an analysis similar to the previous one, 
we find that the HCF is xy, and the LGM x2y 2. 
So this kind of intersection is a very powerful 
way to bring out such things as LCM and HCF.

These diagrams also bring out other kinds of 
information. Remember a Venn diagram is not 
anything mathematical, but is something that 
tries to make the development and the ensuing 
mathematical thought clearer.

Let us take another example. 114 people were 
interviewed. They were asked whether they drank 
Coca Cola or orangeade. 64 drank Coca Cola out 
of the 114 that were interviewed. 71 drank 
orangeade and 26 drank both. Now let us see 
what information we can get out of this. First of 
all we have the people who drank Coca Cola, 
then we have the people who drank orangeade. 
26 drank both. It is evident that the 26 who drank 
both are in effect the intersection of those two

sets of people. Now let us have a look at the Coca 
Cola people. 26 are already in, 64 drank it 
altogether and so we can say 38 drank Coca Cola 
only. Now when we come to the orangeade, we 
have got 26 already in and 71 drank orangeade, 
so according to that, there were 45 people who 
drank orangeade only. Let us now arrange these 
facts on a Venn diagram:—

COCA-COLA ORANGEADE

Now if you add them all up together, how many 
have we got? 109. Then there are 109 in all 
those, but how many people were interviewed? 
114. So 5 of them did not drink either. Thus we 
have analysed the information given to us and 
we have come to the conclusion that 5 of them 
did not drink either.

I have said previously that it is no good thinking 
about equals unless we are going to think about 
“greater than” and “less than”. Perhaps one of 
the most recent innovations is that children are 
dealing with inequalities. This equation for 
example:

( a +  1)(« - 3 )  > 0

can be solved by the intersection of sets. “The 
product of (a +  1) and (a — 3) is greater than 
nought.” The mathematical point about this is 
that “is greater than nought”, because if die 
product of two things is greater than nought, 
then they must either both be positive or they 
must both be negative because the product of two 
positives is a positive and the product of two 
negatives is a positive, (a +  1) is greater than 
nought and (a — 3) is greater than nought, so we 
have got our two positives; or (a +  1) is less 
than nought and (a — 3) is less than nought, 
so we have got our two negatives. Now let us 
solve these. To make them positive, a must be 
greater than — 1 in the first bracket and a must 
be greater than 3 in the second bracket. To make 
the two brackets negative, a must be less than 
— 1 and less than +3. Nowifi put these facts on 
our number line, this is how we shall represent 
the facts we have just deduced:—-
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From the number line above, we see that the 
solution to this problem which we have based on 
intersection is that a is greater than 3 or a is less 
than — 1. We are therefore using for this exactly 
the same idea of intersection that we used with 
our LCM and our HCF. Here again I suggest 
that on the language that we are using we can 
get quite a lot of what we would call common 
concepts, coming over in exactly the same way.

The next point is the union of sets. We have seen 
above that sets are intersected when there are 
common elements to both. The definition of union 
of sets is that the union between A and B occurs 
when we have in the set the elements which are 
common to A or common to B or both.

For example, the shaded part in the above 
sketch is the union of sets A and B. You can see 
again that it is the same as B united with A.

Here is the intersection sign, n , which in some 
books is called “cap” and here is the union sign, 
U, which in some books is known as “cup”. 
If I wanted to illustrate the union of sets, I would 
probably do it in this way.

Set A {1, 2, 3} and set B {3, 4, 5}. The union 
of set A with set B is the elements that are common 
to A or common to B or both, which are 
1, 2, 3, 4, 5, so that would be the union of A and B. 
We write this: A U B  =  {1, 2, 3, 4, 5}. The 
intersection of A and B is the elements which are

in both A and in B. There is only one, 3, and so 
the intersection of them is the set {3}. We write 
this again, A f| B =  {3}.

It is considered that it is the language that is the 
vital thing in sets. May I stress again that, as I 
see it, it is not that you have got to go and teach 
things any differently, it is that you may use 
this kind of language to join and bind them up, 
although there may be some people who will 
now teach LCM and HCF on Venn diagrams. 
I also said that it was useful for making definitions 
clearer. For example, I think the definition of 
cardinal number is clearer on this particular 
thing and we might have a look at this—-

(* +  2)* =  x (* +  10) -  6(* -  f)
There is an open sentence for which we are 
looking for the truth set. If I develop this, it 
becomes—

x2 +  4x +  4 =  x2 +  10* — 6x +  4 
or

0 =  0

We shall agree that the left-hand side above and 
the right-hand side above seem to us to be alike. 
In other words, we could say that, for any value 
I like to place on x, the left-hand side and the 
right-hand side above will agree. When this 
happens, this is called an identity. So what is an 
identity ? An identity is a statement that can 
select the whole of the universal set of numbers. 
It defines it carefully, skilfully and accurately and 
if you have got an identity, it does not matter 
which particular kind of any number you select 
out of any universe at all, you will make the 
statement true.

As another example, let us take—
(* +  5)2 =  x(x +  10) +  26 

This becomes:
x2 +  10* +  25 =  x2 +  10* +  26

i.e. 0 = 1

This, of course, is absurd. You cannot take any 
number that will make this second statement true 
and therefore that is the nul set.

In an identity, we use the universal set and in 
the second example, we are using the nul set. 
In between comes what you know as the equation. 
An equation is a statement where we imply that 
the solution set that we are after is neither the 
universal set nor empty. It is possible that if you 
use this language as we have used it here then the
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child will be able to see quite clearly the difference 
between an identity and an equation. There may 
be many who say “Well we shall not be teaching 
this kind of stuff up to this standard.” My answer 
is that the people in the secondary schools should 
know what is going on in the infant schools and 
that the infant teachers also should know what 
is going on in other parts of the school. I do not 
know where primary mathematics ends and 
secondary starts. This particular language of sets 
is offered in order that we may be able to clarify 
things throughout.

When we come to consider ordered pairs, here 
I think sets give us rather a good description. 
Why are they called ordered? If I were to take 
the numbers 1 and 3, then the pair (1, 3) is not 
the same as the pair (3, 1). The order is the 
important thing, you see. In our Cartesian work, 
we put the value of x first and the value of y  
second and so we write our ordered pairs like this: 
(2, 3) or (8, 1), the first number corresponding 
to the x value and the next one corresponding 
to the y  value. What ordered pairs can we get 
out of numbers? Take for example, the numbers 
1, 2, 3. Each number is going to be matched 
with every one and so we have 1, 2, 3 numbers 
which we are going to match with 1, 2, 3; and if 
we match them we shall have 1, 1; 1, 2; 1, 3. 
We shall also have 2, 1; 2, 2; 2, 3; and finally we 
have 3, 1; 3, 2; 3, 3.

Another interesting comment on ordered pairs— 
we have used three numbers, 1, 2, 3 in our universal 
set. This is the universal set we are going to make 
all these from and we have how many ordered 
pairs? 9 or 32. And if we had four members to 
work with, we should find we could get 16 ordered 
pairs or 42, rather different from the sub-sets.

If I put these 9 pairs on to a graph, then I 
would have 9 points, because this was my universal 
set. Had I made the universal set of the set of

3

2

I

real numbers, then I would have had as my graph 
the entire plane. This is the difference between 
making a universal set a set of those nine numbers, 
as against making the universal set the set of all 
real numbers. The important point in all this 
work is “What is your universal set?” When we 
only have a few points, we set up a lattice; when 
it is a question of all real numbers, it is then that 
we have a plane.

If I were to take the equation y  — x, then this 
has selected all the ordered pairs that satisfy that 
relationship. But it has done something that I 
think is even more interesting, for if we graph 
it, we see that it has divided the plane into three 
parts. It has firstly a part which satisfies the

condition y = x, i.e. a straight line, then we have 
the part “A” in which y  >  x and finally, we have 
the part “B” where y  <  x.

I am going to ask you, whatever you do, to try 
to work in these three different kinds of things; 
not only should you have a graph where y  =  x, 
but you should also have a graph where y  is 
greater than x, and where y  is less than x. We do 
not work this trichotomy law nearly as much as 
we should.

Finally, we come to the question of locus. 
A locus is a set of points, and only those points 
that satisfy a given condition—which may be an 
equation. The given condition may be an 
inequality with two variables. For example, the 
locus that satisfies this equation: x2 -j-y2 =  16. 
I do not think we should ever leave it at that 
with our pupils and I suppose you have gathered 
what I would have done in my school if we were 
working on this kind of thing. We should do 
x2 y 2 >  16; x2 +  y 2 <  16 and for an extra
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bit of fun: x2 -j-j2 = 16. What are we going to 
do about this? x2 + y 2 — 16—you will have to 
accept that it is a circle with the radius of 4 units. 
Now let us take a line that cuts the circumference 
(which is a set of points). Our first relationship 
is that x2 -\-y2 should be equal to 16. The locus 
of such a point is a circle whose radius is 4 units. 
Our second relationship is “ it is greater than 16”, 
so if it is greater than, it is a point outside the 
circumference of the circle. The next one is 
“it is less than 16”, so it is a point inside the circle. 
Why not do them all at once? And when we 
come to the special one, “it is less than or equal to”, 
then I hope you can see that the solution to that 
is the universal set of all real numbers that is 
inside and all the points that are round the 
circle, so we have got all the points inside and all 
the points that are on the circumference.

In conclusion, I would like to stress that the way 
we work in our language of sets will bring out 
functions and relationships clearer than anything 
else I know. The language is the essential thing, 
because that is all that is in it. It is a very good 
exercise for teachers to have to do something 
where new symbols are involved. They will 
appreciate how difficult it is for the child sometimes 
to understand just the one lot they are giving him.

The language of sets offers a language that you 
can use throughout your mathematics teaching, 
where you will use the idea of sets, not only in 
number, but in all the numbers in your algebra, 
in your geometry, in your trigonometry. All those 
things which have properties somewhat similar 
and can be defined are included in the language 
of sets.

PRIMARY
MATHEMATICS
AN INTRODUCTION TO THE 
LANGUAGE OF NUMBER

J. S. FLAVELL 
and B. B. WAKELAM

This series embodies a new approach to 
the teaching of mathematics, intended to 
bring about a genuine understanding of 
numbers rather than mere ability in computa­
tion. The teacher's books contain answers 
and an explanation of the theory and teaching 

method.

BASIC BOOK I 5s

TEACHER'S BOOK I ....................................... 6s

ANSWER BOOK I ...............................................2s 6d

BASIC BOOK II ............................................  5s

TEACHER’S BOOK I I ....................................... 6s

ANSWER BOOK I I .............................................. 2s 6d

BASIC BOOK I I I ............................................  5s

TEACHER'S BOOK III .................................  6s

ANSWER BOOK III .........................................2s 6d

WAY IN — An introductory book 2s 6d

HOW MANY — A supplementary book 2s 6d

LINES AND S H A P E S .........................................2s 6d

BEST WAY I — Supplementary books • ■ • 2s 6d

M E T H U E No
11 New Fetter Lane, London EC4

72 SYMPOSIUM 1965


