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B.3 Anomalous Cases

The results from Hsu’s[1963] analysis confirm that if the parametric coupling
matrix is diagonal, which results in a set of uncoupled Mathieu equations, then

m occur. In the general case of a nonsym-

only main parametric resonances will occur.
—— metric coupling matrix, main as well as sum and difference type parametric ——————————

resonances occur. In the mine hoist system, the parametric coupling matrix

is always symmetric, and consequently parametric resonances of the difference

type do not arise. Hsu[1963] notes that in the case where repeated natural fre-

quencies of the system occur, or when different combinations of 2, 7, s overlay

each other, then an anomalous situation arises, where more than one resonance

is excited simultaneously, and a more detailed analysis is required. The former

case of repeated natural frequencies has been analysed by Nayfeh[1983b] and

Tezak et al[1982]. The later case of multi-frequency excitation of a two degree

of freedom system is considered by Nayfeh[1983a].

The stability analysis presented considers the stability of the motion in the

neighbourhood of the first order expansion. Consequently principal® regions
of main and combination parametric resonance are considered. This follows
Hsu’s[1963) argument that although higher order regions may co:exist within
the principal parametric regions, and therefore secular terms arise in the higher
order expansion, for small parametric excitation the boundary of stability
would be dictated by the principal region, and hence the stability of the first

order expansion. In the case of the mine hoist system, anomalous conditions

almost always arise since the natural frequencies of the catenary are related
by integer multiples, or are commensurable. Thus if one harmonic of the ex-
itati es to a region of parametric resonance, then other harmonics will
These may be main or combination

parametric resonances of the summed type. Thus it is possible to develop a
number of anomalous cases, depending on the number of harmonics accounted

. . 1 .1 1 L1 1 _
for in the longitudinal excitation, and the number ol lateral c
for in the eigenfunction expansion®. Three conditions are examined for the

mine hoist system, as presented in table B.1.

3

1T
A |
d

nodes accounted

It is shown that the first two cases are in fact not anomalous, and Hsu’s[1963]
formulae can be applied directly. However in the last case, a stability criterion
is derived which requires explicit solution to determine the span of the region

5For a multi-degree-of-freedom parametrically excited system, with a single excitation

frequency 2, regions of instability arise at 2 = w;i  w; /n, the principal reg_ion refers to
' sidering the first order expansion. Secondary regions occur at

n = 1, and is obtained by consigering the 1=

n=93.. as defined by the second order and higher expansions.
6A,lthough the model is truncated to account for a finite number of lateral modes, the
forced longitudinal response represents the complete solution, without modal truncation.
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Table B.1: Anomalous regions of parametric resonance

Case DOF Harmonics | Resonance Condition

Case 1 |2 DOF (s =1,2 w A 2wy, 2w X 2ws

Case 2 |3 DOF [ s =1 W R 2wy Wi F w3

Case 3| 2DOF | s=1,2,3 |w = w,2w = 2w;,3w R w +w;

of instability. Nayfeh[1983a] presented results of an analysis of a two degree
of freedom system to multi-frequency excitation. The third case considered

here is identical to the fifth case presented by Nayfeh[1983a], where simulta-

neous main resonance and a summed combination resonance arises due to two

different harmonics.
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B.3.1 Casel: 2 DOF-s5=1,2 w A 2wy

This case represents a two degree of freedom system excited by a periodic

function with two harmonic components at a frequency w and 2w. It is assumed
that w is close to 2w;, and w, since the natural frequencies of the system are

related by integer numbers. Employing a detuning parameter Ae, the excitation

irequency w may be written as:

w=2‘01+A6

w = wy + A€

Q
[ ]
o
w

w—w1=w1+A€

2w — wp = wp + 2 (B.15)

Transferring small divisor terms in the perturbation part of the solution to the
variational part, and expanding the variational part of equation(B.13) for the

twrn dosrana ~f fpmr‘nm M
LWwWO ucsl CTUD Vi 1iVvUNaVaii.

Ald(’l)(cos(wl + sw)t + cos(wy — sw)t)+
B1d{}(sin(wr + sw)t + sin(wy — sw)t)+

dA dB
dt t d(z
Bad'y (sin(w; + sw)t + sin(wz — sw)t)

B.16)

Aldg'l)(cos(wl + sw)t + cos(w; — sw)t)+
B, d;’g(sin(wl + sw)t + sin(w; — sw)t)+
Azdyy (cos(wz + sw)t + cos(wa — sw)t)+
Bgdg;)(sin(wg + sw)t + sin(wp — sw)t)

2
-2sinw i+——~—32605w73 =~ Z
dt Tt w3

Sﬁbstituting equations (B.15) into the above equations and retaining terms
which would cause secular behaviour of the perturbation solution: ie any terms
which result in frequencies close to w; or w; in equations (B.16),(B.17) respec-

< € <« PR,
____l_,iwlt.f.—d——costh = T2uw; 2 1 Agd$3)(cos(wz + sw)t + cos(wa — sw)t)+ j '

17)

tively, results in:

dB
-%lsinult + —coswt = ~

(1)
a1 {Alcos((‘)l + GI\)t - BISin(ul + C/\).t}
dt L
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dA dB
22 coswyt + ——sinwit = 0
at at

dA2 de . _
—d—t'w’wzt + 7 sinwst =0

These equations may be solved to determine’ %l,‘%‘tl, %L, éaBtz_ Applying

the Kryoloff-Bogoliuboff-Van der Pohl averaging technique®, and applying the
transformation:

Xl = Al +ZBl

X2 = A1 - ZBl
},2 = A2 - le

Results in four first order equations:

rer . J
(19,81 _ 1€Q11 28_“,\‘
dt 4w1
ng _ iﬁdn Xl éiU\t
dt 4wy
Y, _ udzzYz 126N
dt 4w;
dY; 'I:Cdzg ;
dt2 — ™ Y16|2cz\t (B]_S)
2
} § 2nd o asstbAANnA 9
These equations can be converted into autonomous form’, and consequently
be examined by considering the roots of the

the stability of the equations can
characteristic equation.

"Where it is implied henceforth that d-and-dz2-are the parametric components of the

first harmonic and second harmonic resgectively. ‘ ‘
8This is accomplished by substituting ®;, = wst, and averaging the equations as
irea as constants.

L 27 dAL 4@, where Ai, Bi are treated as const

o m—_w1wwmmmmﬂ4——
9The autonomous form is obtain = X.e X, =

- . O et
X9t Y, =Vie M, Y2 = Y e
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Assuming a solution of the form:

X1 = Ylept_'?t
Nz = Xf,-e""'i%t
Yl = Yleqz 1eA
Y, = Ypett¥ (B.19)

Substituting equations (B.19) into the equations (B.18), results in:

I'p—ze_;- d : 0 ]J Xl l J : 1

4,011 2 R ch 7 == 0 (B-20
| 0 0 g-zed 35 [ LIt ] | .| 220
[ 0 0 —"—;%21 g+ier | L Y2 ) )

— Thecharacteristic equation is obtained by setting the determinant of equation

(B.20) to zero:

2)\2 e2d? € Qg9
2, € 11y/ 2 2y\2 _ - =2

Thus :

€ d 1
p=t;3 4‘:‘, —\?)s

d§2 _ A2)%
16w?

g = £¢(

In order for the system to be neutrally stable, the roots p,q of the above

equations must be imaginary.

Thus the stability region is given by:

iiz‘——,\’<0
4w?
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—d—gz——A2<0
1602

Substituting e\ from equation (B.15) into the above equations and simplifying
results in the stability intervals:

L aza -

eld
- e!d11| <w <2y lu|
) 2wy aw
eldsl = €|daq|
- Wy + ——
Wz 4wy < 2 4wq

Yt isevident that these are the same as Hsu’s[1963] regions, for s = 1,2, and

thus this case is not an anomalous case, although this would not be evident

beforehand.
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B.3.2 Case 2: 3 DOF -s=1 w R 2ws

This case represents a three degree of freedo

a frequency w close to 2w,. In this case a main and combination parametric

~o

resonance is excited simultaneously ie. w &~ 2w; = wi + ws. Employing a

_ detuning parameter )¢, the excitation frequency w may be written as:

w=w +ws+ A€

Q
]
&

W—wy = wyt A€
w—w = WS‘*"AC
W= = wy + A€

..
Proceeding in

terms of the perturbation solution in t

the same manner as the preceding section, and retaining secular
he variational part of the solution results

in three equations.

dA

1 dBl
———sinwt + ———608011

di

t = ——-— {A cos(wy + €M)t — Basin(wi + €At}

dAg dB,
—— —=coswat = —
T sinwat + a co8W2 Qe

dB
—%tiamust + -d-icosam

edza {Ascos(wi + 2€A)t — Basin(wy + 2eA At}

t = _e_d_a_1_ {Ax cos(ws + €M)t — Bysin(ws + €At}

and:

dA;

—dt—coﬂw|

t+ %3inw,~t=0 i=1,2,3
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The above six equations may be solved to determine %‘, dz’. Applying the

~ Kryoloff-Bogoliuboff-Van der Pohl averaging technique, and applying the trans-

fotmation:

X, = A +1iB

X, = A —iB
Yi = A +iB;
Y, = Ay —:B;
Z, = As+1iBs
Z, = A3—1iB;

Results in six first order equations:

Xm _ _i€d13 26_'-0\,

dt 4w

dX2 _ 6d13Z 1!)‘

dt 4w

4y, _ ieda et
dt 4w,

dY'g _ iédzzy feMt
dt 4wn

le — _i£d31X28 sed
dt 4ws

dZ; _ +Ed31 X e (B.21)
dt 4ws

Equations (B.21) can be conveniently transformed into two second order au-

tonomous equations:

) . diad
Xy +ideXy = oK =0 (B.22)
€ dzzdnY -0 (B.23)

Y, + ileY; — T60]

The solutions to equations (B.22),(B.23) are:



—
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ot

a — Lf 2
Ty 16w w3
; + 52 )2 62#2)5
= %( 4 16w3?
Wﬂeﬁhr,bﬂeéﬂﬁgm&w—m%%%@bﬂﬁy—
region is defined by:
2
€?dyada
)2 > ——
4w1w3

¢) from equation (B.21) into the above equations and simplifying,

1

—resuhsﬁ'lrthfsﬁab'tﬁtyﬂﬁ%e“alq

¢ [diada 4 &[Gl
(ot o) 1 <w < (w+ws +,.\
(w1 Fws)— 2V W3 2V wiws

¢|daa] ¢ldan|
2w2—-z-w-2—<w<2w1+ 4ors

ns are the same as Hsu’s[1963] regions,

It is evident that once again these regio .
and thus this case is not anomalous. The largest reglo’\ri 4w1.o Clig:lf;titi t,}f

_ stability of the system, and thus the relative magnitudes oi the coefiicients are

important.
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B.3.3 Case 3: 2 DOF -s5s=1,2,3 W R W

This case represents a two DOF system excited by a periodic function with
three harmonic components at frequencies w, 2w, 3w. In this case a

main and combination parametric resonance is excited simultaneously by the

second and third harmonic respectively, ie 2w ~ 2wy ,3w & w; +w,. Employing
the excitation frequency w may be written as:

- ‘l
€T A&, c1tatl Ire

or as:

W —wy = w1+2Ae

3w —w wp + e
Sw—w; = w;+3Ae

e manner as the preceding section, and retaining secular

ing in the sam :
| roceecing In lution in the variational part of the solution results

terms of the perturbation so
in the equations.

dA; € [ d(ﬁ)(Alcos(wl + 2eA)t — Bysin(w; + 2eA)t

dB; _ € .
'—jt_’i"wlt + -Et—cowlt T 2w 1 +d(132)(A2cos(w1 + 3eA)t — Basin(w) + 3eA)t J

43 '
-%sinwzt + %coswzt = _52_:-:— {Arcos(wz + 3eA)t — Bysin(wz + 3eA)t}

dA, .d_B_l. inwit=0
-E-coswlt+ 7t s1Mw1

Tcoswgt + -—,_E-smwz

we

. dA) dA; dBy dB .
These equations may be solved to determine 5%, €%, S5t 5t Applying the

oot e Benlinhoff.Van der Pohl averaging technique, and applying the trans-
i = UgUiiaysss T )

a1 JUlUll-u

P

¢

formation:
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X, = A+1iB
X, = A —iB
Yi = Ay +1B;
Y2 = Az—-iBg

Results in four first order equations:

c_l_X_l, — {d(2)X -—126/\t + d(S)Y e—zSc/\t}
dt

%2. — +__ {dg";)xl el + dg)ylctiie)\t}

d‘I,]_ = bc {d(a)Xze—i;_jc;\t‘}
dt 4w ’

fi_]é — {d(S)Xl eiSCAt} (B.24)
dt 4o J2

By applying successive differentiation and substitution, equations (B.24) are
andar ant f ion

converted into two second oraer equ

Ih

Y, + zlel —-cbY; = —iaezp 'Y,
aezp™"i (B.25)

La
Tvwo

oy
I
-~
=
|
(w)
o~
et
~
|

+(3)
€aqy

£

(B.26)




198

Assuming a solution of the form:

}/I — }_/'lept—i'yt

)/2 — 72ept+i-yt'
(B.27)
Substitution into the equations (B.25) results in:
(p—iv)*+ i (p—1iy) —¢b ta(p +1v) Zl _ :
~ia(p — 7) (p+i7)?—iZp+in)—cb |\ Fo [T ° [(B28)
i L)

The characteristic equation is obtained by setting the determinant of equation
(B.28) to zero:

(¥4

!

N2 4 (T 2 2.2 _ ¢
P+ (5 —2cb—af)p + (g —cb) —ay =0

thus the roots of p? are:

For neutral stability, the roots of p must be imaginary. Thus two situations

may arise:

.
41
LWy 8

N A 0N
Iy A =0an >0

ii) [ £vA <0 and real.
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Thus this case is anomalous and does not reduce to Hsu’s[1963] form. Equation
(B.29) must be solved for various values of Ae and the boundary of the stability

region constructed, such that the roots for p are always imaginary.

m™ . e _eae ot~ __ N and b
1ne two hmiuing c€ases 1c a4 = v allu v

—_— o —
==

foys . . 1
the stability condition contorms 1o known u:?u;ta.

Case 1: b=c=10

This case is equivalent to removing the third harmonic from the excitation,
thus Hsu’s[1963] result should be obtained for main parametric resonance with

s =2

In this case:

2 1
gl L 4 aan)
Z 4 x
Thus:
2 2 72 2

Thus for p to be imaginary:

42 > 4a?
(2)
2 2 edll 2
— N > (-——--4“)1 )

Substituting for Ae confirms Hsu’s[1963] result for s = 2.
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Case 2: a =0

This case is equivalent to removing the second harmonic from the excitation,
thus Hsu’s[1963] result should be obtained for combination parametric reso-

.Y T BN > I
nance wiiil &8 =— 9.

In this case:

A = 7*(97* — 16cb)

and

2_ 1 _572 T
P =53 +2¢cb) + VA

It can be shown that the discriminant bec ex-befc
becomes complex, thus the stability is governed by the discriminant:

), ¢ |divdy

€

tuwn) e |ddR _(wites) |
3
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- 1

loof Mine Observations

-

B.4

Jsematiansgafo:mﬁdﬁt Kloof mine were well documented by Dimitriou and

Whillier[1973] in the section Dynamic behaviour of winding ropes at Kloof, and
will be discussed in light of the present analysis. Figure B.1 is reproduced from

v - .
P 3 tir
~ Aﬁ‘su|

their paper, and represents the dynamic character
terms of the uncoupled linear transverse catenary natural frequencies (FT'C,),
the transverse natural frequencies of the vertical rope (FVT,), and the lon-
gitudinal natural frequencies of the vertical rope (FVL,). Figure B.2 rep-
resents the lateral and longitudinal natural frequencies calculated according
to appendix C. Note that the longitudinal natural frequencies calculated. by
Dimitriou and Whillier[1973], and presented in ﬁ‘gure' B-}_a tr‘eated t}:efvertlcal
rope as if it were fixed end at the sheave. lhe longitudinal nat:ura; frequen-
cies presented in figure B.2 include the catenary length and the inertia of the

of the Kloof mine, in

Q
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Figure B.2: Ascending Kloof Mine shaft dynamic characteristics
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(1) Large catenary motion occurs, starti

7
a
<
@
B

proximately 900m below the he dur
large motion is not observed when the skip is lowered.

(ii) During phase 1, the amplitude increases and the catenaries settle into a
L ]

clearly defined second mode.

During phase 1, the vertical ropes start vibrating transversely at a similar

;;veleng-t-l:t—o that of the catenary. This is not observed when the skip

is lowered.

(iv) On occasions, at the beginning of phase 2, the vibrations develop a large
o ’ f 2m. One of the authors believes a first

vertical component in excess O
mode pattern was observed in the vertical component of the motion.

This motion was termed whip.

(v) By reducing the speed of winding abruptly at the 'beginning.of ‘pha,se 1
from 15m/s to 14m/s, the amplitude of the vibrations was significantly

— reduced.
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These observations contain much detail, confirming
behaviour of the mine rope system. Considering figure B.1, the authors at-
tributed the resonance and whip behaviour of the catenary to a combination
of parametric response due to the longitudinal excitation at the drum, and
autoparametric excitation due to parametric response of the lateral modes
of the vertical rope, and consequently amplified parametric excitation of the

catenary. Dimitriou and Whillier[1973] comment:

he po

=%

"At Kloof, at the beginning of phase I, the catenaries are approaching the
resonant condition FTC2 = 2N, due to the z-ezcitation (out-of-plane lateral
ezcitation) and their amplitude is growing ...”. ”Therefore, the tension in the
catenaries fluctuate with increasing magnitude, €, at a frequency p close to
4N, thus approaching the condition for subharmonic ezcitation of the vertical

ropes.”

” Another factor, which promotes subharmonic resonance in both the catenaries

; g ic component at p = 4N of the w-ezcitation
(longitudinal ezcitation). The magnitude, €, of this component is only of the
order 10~4. However at the beginning of phase 1, € is amplified by resonance
of the longitudinal mode of the ropes at FLV3 =4N..”. ...”The growth of the
transverse vibrations of the vertical ropes provides increased parametric exci-

tation of the catenaries...” » Eventually, the two ropes (catenary and vertical)
. . '”=

Although this argument was constructed in an ad hoc manner, it succinctly de-
scribes the potential interactions which may arise. Dimitriou and Whillier[1973]
note that for an appreciable rope length, at least one or more of the higher

lateral frequencies of the vertical rope will tune closely to one or more of the

natural frequencies of the catenary. In this sense, the system may maintain a

state ol autopara.

At the time of executing this phase of the study, it was realised that the as-
pect of autoparametric excitation via the forced lateral motion of the catenary
would be important. However, it was decided that an appreciation of the linear
stability of the system in the presence of longitudinal excitation only would

represent a beneficial first step.

In the context of the Kloof system, the first and second harmonic of the
_ longitudinal excitation frequency induces main parametric resonance of the
first and second catenary modes simultaneously. As noted by Dimitriou and

Whillier[1973], the effective amplitude of the parametric excitation depends on

the proximity of the harmonic excitations to a condition of longitudinal reso-

nance. It was determined i
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anomalous, and the size of the region of parametric resonance can be deter-
mined directly from Hsu’s[1963] results. The resulting regions of instability!®
for main resonance of the first and second catenary modes are illustrated in
figure B.3( a),( b) resnectivelv. This figure represents a composite of three lev-

critical in the ﬁrst longltudmal mode The lower part of the figure represents
the absolute value of the difference between the longitudinal response at the
sheave and winder drum, and is consequently related to the tension fluctu-
ations occurring in the catenary. The parameter epsilon in the upper figure

represents a scaling factor applied to the longitudinal excitation at the winder
drum Thue the actual excitation level for the Kloof winder is achieved when

NALARAE, A LAWY VIV GV vlaier Veaawavvatsas A VT2 SRS

epsilon is unity.

It is clear from this figure that the regions of parametric instability are strongly

influenced by the degree of longitudinal damping. The peak response in figure
(d) relates to resonance of the second and fourth longitudinal modes
Qince relative viscous nrnnm‘honal damping has been applied

H
ively o NIMLU Luideva 'y SRS
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7
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o ith

is related to tha.t in the ﬁrst mode by the ratlo wi /w1 Consequently 1f the first
mode is set to have a modal damping factor of 1.5%, the damping factors for
the second third and forth modes would be of the order of 4%, 9% 14% respec-
tively. The assumption of relative proportional damping by industry has led to
the conclusion that the longitudinal behaviour of the system can be modelled

e a nlv ag resnonse in the hicher madea

by considering the fundamental mode only, as response in the higher modes
is strongly attenuated. This is clearly evident in figure B.3(c),(d), where the
resonant peak is quickly eroded with the inclusion of longitudinal damping.
As a result the region of parametric resonance becomes dependent on the base
level of excitation apphed at the drum, rather than on the longitudinal tuning

of the system. Figure B.4 presents a stability plot of the system, where the

SRR | MTalahachil1081al hae hean annliad ¢~
narmonlc balance metnoa proposca U.y "'awuw“‘l“'v‘uj s L “'t’k’ ieq 1o

etermine the regions ot system sia -

ure B.3 have been used, and the sta.blhty plot represents a composite of three
levels of damping. The predicted regions of instability via the perturbation

result, and the harmonic balance method are identical. The harmonic balance
method is however more general, since it does not require special considera-

10The longitudinal excitation amplitudes were calculated for the first and second har-

monic of the Lebus excitation frequency in accordance with Appendix A.These are :
Ui =0.2mm,U; = 0.1mm - C . .

UDimitriou and Whillier neglected the sheave inertia 1n their calculation of the longi-
tudinal natural frequencies; consequent.ly in their calculation the natural frequency of the
third longitudinal mode was higher and resonant at approximately 900m. Once the sheave
inertia is accounted for, resonance of the third longitudinal mode is delayed and occurs at
approximately 500m below the sheave, whilst the fourth longitudinal mode is resonant at

approximately 900m.




Do
(]
Ut

tion when dealing with anomalous cases, and depending on the order of the
Fourier expansion assumed, can identify the higher order or secondary regions
of-instability for both main and combination resonance. It is also not limited
by the notion of a small parameter.

Although regions of parametric instability do occur, they do not occur over
extended lengths of the shaft when epsilon is unity. The effect of these regions
will be reduced due to the winding speed of the system, and consequently
these regions are not viewed as sufficient to warrant the definition of a design

criterion. Nevertheless, this exercise was useful in developing an understand-

ing of the system stability and partlv rnnﬁrmmo‘ the intuitive 1[11‘Prnrpfahnn of
16 Vi uviico JD\I‘(I‘I UVWUII“'J SAALNA “"- VaAJ T ASsfss fsssss sraV A ANV VAVAL A

Dimitriou and Whillier[1973] in a formal manner. It is likely that significant
longitudinal response would occur due to the coupled lateral motion of the
rope. This is a form of autoparametric excitation, where lateral response due

to the lateral excitation at the winder drum, promotes longitudinal paramet-

ric excitation. This concept provided the basic incentive for developing the

is of the coupled system where hoth ]nn 1tudinal and lateral
_YDJ.D Vi Ull \4 Uprans

uaii, WIIKIE aLerat

Finally, it is noted that this analysis provides evidence of main as well as com-
bination parametric resonances, due to longitudinal excitation. Combination
parametric resonance regions do not arise in a string with pinned end condi-
tions, since the lateral eigenfunctions are orthogonal to the longitudinal eigen-
c it xre I tln infiiancra Af rans r“v-‘raf'nrn Talahachil10011]
runctuions. VVlEIl regaru to tnoe luuuc ICC UL IUpT Lul vuic, iaraiiasiiijiovi)
considered the regions of parametric resonance of a pinned cable with curva-
ture, under axial excitation at one boundary. Takahashi[1991] reported the ex-

istence of regions of additive combination resonance, however, Perkins[1992b]

corrected these findings, and demonstrated that only main parametric reso-
nance regions existed, where in addition to being parametrically excited, the

PO nlan watiira nn-tn]unn T Q QiIimem o

system was alrecuy excited due to urym.uc furvaiure Coupiing. It is surmised
i | ¢

that in the present system, since the lateral eigenfunctions are not orthogonal
to the longltudma.l eigenfunctions, additive combination parametric resonance
regions will arise in the presence of external excitation due to the catenary
curvature. In practice the catenary curvature is small, and further analysis
accounting for catenary curvature was not undertaken.




206

6 6
a) b) %
B ] A | ]
§ g |
3 :
Q 2 B O 2k | i
Y 0
500 1000 500 1000
Depth (m) Depth (m)
0.015 0.015
o) I d)
~ 0.01fF 4 0.01f i
8 L]
=]
> 0.005 1 0.005} R
500 1000 500 1000
Depth (m) Depth (m)

Figure B.3: Main parametric resonance regions - Case 1

(a.) Q= 2w
(b) 2Q = 20)2

V = 16m/s, B = 0.2rad.,d = 48mm, R4 = 2.14m.

— G=0,— — (=075%, -

¢ =15%
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Linear Longitudinal System
Response

The purpose of this appendix is to present the eigenfunctions associated with
the longitudinal linear system, in the absence of lateral catenary motion, for

use in a normal mode analysis of the non-linear equations of motion. The
solution of longitudinal steady state motion of the system, in the presence of
relative and general proportional viscous damping, due to an harmonic axial
excitation at the winder drum is subsequently presented.

Figure C.1 illustrates the system under consideration, which consists of a rope
of material density p, cross sectional area A, and modulus of elasticity E. The
system is split into two sub-systems denoted by displacement co-ordinates
u1(s1,t) and uz(s2,1). The sub-systems are coupled by a sheave of mass mo-
ment of inertia I. The conveyance is represented by a mass M, which is

22a1Av A aaSva Vs

resent the position along the rope from the catenary end and the sheave end

respectively.

The equations of motion and boundary conditions of the two systems are
presented as:

System 1

Ouy _ OFw | 200 C.1
5z~ Fas201 T € Bs? (C.1)
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Figure C.1: The longitudinal system

where ¢ represents the longitudinal wave speed ¢ = \/E/p, and u represents
the damping coefficient related to the intrinsic dissipation property of the wire
rope. This particular form of damping mechanism represents a relative propor-
tional damping model, where the damping action is orthogonal to the normal

pimm = nmANATr tinanal +tn tha ctiffnace nranartia

modes of the undamped system, and proportional to the stifiness properties.

The boundary conditions for the rope are given as:

ur{0. 8 N Rel f_e]wt\ (C.2)
l\u,p} £ v v n ] 1 ]

[ 9\
ui(h,t) = u20,7) (€.3)

Where U, is complex and contains the amplitude and phase of the n** harmonic
of the excitation applied at the drum due to the Lebus cross over excitation.

System 2

6211.2 0uq . 20°U2

gtz 9s20t ' 8s}

__ The boundary conditions for the rope are given as:
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up(0,t) = w(ly,t) (C.5)
@J 0%u, 0%u,
(AEZ -+ pphg— Sl = ~Mgglwy (C.6)

System Coupling

The coupling of the catenary system to the vertical section is achieved by
ensuring continuity of the longitudinal displacement, as well as a momentum
balance across the sheave wheel. These conditions are satisfied by:

ug(O’ t) = ul(ll, t)

I 9%y, _ dua (')ull
R? 912 B = 53 O s

2
2
+ pAu{mho,t) - ml(h,t)} (C.7)




211

C.1 Undamped Natural Frequencies

Setting the damping factor 4 = 0, and the harmonics of the boundary exci-
tation U, = 0, the undamped natural frequencies of the system can be deter-

1. -_-.._.......-

uuucu DYy dS>5ulllllly.

u1(s1,t) = [Alcos731+Blsin751]e’:‘”t (C.8)
ug(se,t) = [Agcos'yS2+stz'n'ysg]e""'

where 7 = £ :

From equation (C.2):

fn 2\ __ N
UIKU,L)—U

Substituting the expressions (C.8) into equation (C.6) gives:

AE'd——ln.. Hn = Muw u2|(12 t)
2

du2 (t2.t) = A‘zhzh‘z t) (Cg)
d82 #
A2 __ w?
wnere AT = “AE ’

Use of relations (C.8) and equation (C.9) gives:

As[A%cosyly +ysinyl] + Bz [A%sinyl; — ycosyly] = 0 (C.10)
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From equation (C.3):

31 l(ll,t) = u2|(0.t)

—~
@
—
—

~——

Blsin'yil = Ag

Equation (C.7) requires:

. Lauy . A
—w?—uy| ) + AE Tl = AL
In* a &

S1

Gl . . . e N e At
Substituting relations (C.8) into this equa

r2 .

ul[Tsm'yil — €087y

S
o
~~
(@]
o
13}
~—

1 ™ ldzl
where I'? = %=

Equations (C.10),(C.11),(C.12) can be written in matrix form as:

|' sinyly -1 0 *| ! B, l ! 0

(%’ainyl; —~cosyh) O 1 L A, Y={ 0
0 (A2cosl2 + ysinyly) (A%sinyly — ycosyly) ]\ B2 ) Lo

In order for the coefficients By, Az, By to be non-trivial, the determinant must

be equal to zero. This defines the frequency equation as:

rz 2 .
Aw) = sinyl[A%cosvly + vsinyly] + [cosyl — 73“1‘)’11][1\28111‘712 — ycosyly] = 0

The roots of the frequency equation determine 7, and hence the :** natural fre-
quency of the system is w; = ¢V The :* eigenfunction coefficients By, A;,, B,



N
b
wW

are determined by scaling the coefficients such that By, = 1, and solving for
As,, By, from equations (C.11), (C.12).

A24 = SiTl‘)’,’il

2
7 F 4 7 TP Y
Dy, = (——sinyilh + €057 )
1
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The damped steady state longitudinal response due to the boundary excitation

at the winder drum is determined in the absence of lateral catenary motion.
ince relati !
tion, the eigenfunctions presented in relations (C.8) are complex. The complex
eigenfunctions can be determined by considering the proportionally damped

wave equation:

un

oo
~

and consequently:

¢ ++%¢=0

§+7pg+7c’q=0

Assuming the response is harmonic:
q(t) = e**

and solving for 7.

0 |€

_—ta/2

T

J719%)

o= tan"“——z—
c
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Thus ¢(s) may be presented in the form:

#(s) = Aicosys + Bysinys

where A;, B;,~ are complex.

Thus conveniently #(s) is of the same form as that determined for the un-
damped response in relations (C.8), however it is now a complex function.

Applying the boundary conditions stated in equations (C.2),(C.3),(C.6),(C.7),
and assuming that the excitation is represented by a single harmonic at fre-
quency w, then the forced response of the rope is given by:

uy(s1,t) = d1(s1)e*

uy(82,t) = ¢2(32)6M
where:
$1(s1) = Arcosysy + Bysinysy

$2(82) = Azcos7s; + Bzsinyss

where
[A] =
1 0 0 0
[ cosyly sinyly -1 0
(S cosyly + sinylh) (Ksinyly — cosyh) 0 1
!_ 0 0 (A%cosyly + Asinyly) (A’sinyl, — Acosyl,) _l
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[um—
(=)

u1]
{z} =< Azi

| N 1
0 J

where

2 _ MdJ? _ _Iw? - © -t
A® = A% F2 = ———“E“;’R v = (1+(%¥)2)1 <€ /2
a:fn.'n,'l“:. g:“’Toﬂ- A=v+1i(
6 = pAp c? =,g

Due to the influence of damping, the-
e phase shifted from the excitatiomn, —Thi

by considering the catenary motion ui(s1,1).

uy(81,t) = é1(s1, t)e

If the applied excitation is of the form u1(0,t) = Re(Ue™*) = |U|cos(wt + @),
where w is the excitation frequency, then the response is given by:

uy(s1,t) = Re(¢1(sl)ei”’)

u1(81,1%) = e( ¢y Jeoswt — Im(¢1)st = i

A(s1,t) = \/Re($1)? + Im(1)*

The longitudinal response due to-a periodic axial excitation at the winderdrum

can be determined for each harmonic of the excitation, and consequently the
overall response can be determined via superposition of the forced harmonic

— responses




