
A FUNCTION-KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

Submitted January 1986

A project Report submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg in partial
fulfillment of the requirements for the degree of Master of
Science in Engineering.

Authors Angelo Paulo Bassanino

Student Number: 81-0321/3

Signed:

Project supervisor: Dr.A.J.Walker

DECLARATION

I declare that this project report is my own, unaided work. It is
being submitted for the degree of Master of Science in
Engineering in the University of the witwatersrand, Johannesburg.
It has not been submitted before for any degree or examination in
any other University.

Signed?

J.4J8 day of I9J&f

ABSTRACT

Program Description Language {PDL) is a high-level design
language used for both hardware and software systems design. Due
to the clerical effort involved in creating such a structured
program, however, the PDL design is usually bypassed, and coding
performed directly. The syntax-directed PDL generator package
presented here, written in Pascal for the IBM-PC, is aimed at
providing a tool for producing syntactically correct PDL programs
with the minimum of effort. Function keys are used extensively
for specifying system inputs, and PDL keywords are inserted via
construct templates. Syntactical correctness is always enforced
while indentation or prettypriuting is automatic. This user-
friendly PDL editor thus encourages a top-down iterative design
approach while automatically performing syntax and partial
semantic error detection. It is believed that this much needed
tool will not only promote high-level design principles, but also
serve as the basis for automatic code generation for commonly
used programming languages.

for my parents
Remo and Maria Bassani .

ACKNOWLEDGEMENTS

I would like to thank the following for tueir material and moral
support throughout the production of this thesis:

—- Dr. A.J.Walker for his dedicated help and advice both
conceptually and materially.

— The Council for Scientific and Industrial Research (Foundation
for Research Development) for its financial assistance.

— Mr K.A.Jackson and ils D.E.nosselson for their assistance and
moral encouragemet t in times of need.

CONTENTS OF THIS REPORT

A Syntax-directed PDL Generator for
Software Systems Doaicm 14 Pages

A Function-key driven Syntax-directed Editor for
Software Systems Desig.) - Literature Survey 24 Pages

A Function-key driven Syntax-directed Editor for
Software Systems Design - User's Manual 69 Pages

A Function-key driven Syntax-directed Editor for
Software Systems Design - Designer's Reference 129 Pages

^-^ij5!^!zDJB£mJ)-£to-5Bti£EAIQB-£QB_5Q£ItiM£-5X£IBB5^Dj3£J55ti

by A.P.Sassanino

Department of Electrical Bngineeringf
University of the Witwatersrand,
Johannesburg
December, 1965

ab&L&aaj;
The need for a machine-independent language for design purposes
has been recognized, and Program Description Language (FDL) has
emerged as such a tool. The clerical effort involved in putting
together and editing a PDL program, however, has proved a
disincentive to using this powerful design language. This paper
describes the features, operation and basic design principles of
a PDL syntax-directed editor package. Indentation is
automatically performed; syntactical correctness is always
enforced; and extensive use of function keys is made to
facilitate program input. The designer is thus presented with a
specialized user-friendly euitor for rapidly developing a PDL
program in a convenient top-down, iterative manner. It is also
explained how expansion of the package will lead to automated
program code generation for commonly used programming languages.

jjgxjmomQN

The design and documentation of large software systems has always
proved a major challenge. Lately, it has become apparent that a
high level design language is a useful tool for developing
machine independent software. PDL (Program Description Language)
is such a high level language. Its structured format and liberal
use of comments make PDL not only a designer's tool, but also an
effective documentation aid. Due to its descriptive nature, PDL
produces a well-defined model of the design of a project using
conventional programming concepts. PDL has already proved its
usefulness in the design of both hardware and software systems.
(Caine (1975), Walker (1985)
Program Description Language is an important concept as it helps
the user to distance himself from language-specific details. PDL
therefore becomes a framework for both hardware and software
design. A high-level PDL may be used to describe complex system
operation via only a few comments.
A top-down design would be undertaken in high-level PDL using
general descriptive comments initially, and then gradually
expanded down into a low-level PDL program. This aids the
designer to view the system as a whole initially, and to slowly
expand the view to include more detail, until the required
implementation level is reached. The design can then be
implemented in the most suitable technology. This concept of
stepwise refinement iteration is convenient as it agrees to a
large extent with the manner in which most designs are created.
(Somerville (1984), Vosbury (1984))
PDL in its lowest-level form is similar to any modern programming
language in that it makes use of assignment, decision and looping
construct 3 to carry out its function, constants and variables
(collectively known as Data Items) are defined rigorously in the
Data Description segment which precedes the program or procedure
body. The Algorithm segment contains the program body.
Indentation is maintained at all times to emphasise the program
structure. Thus PDL, when consistently used, produces a well-
documented, readable, top-down system design.
PDL does, however, have its problems. The manual entry of a PDL
program is tedious due to the rigourous indentation requirements
of the ' ie. The strict ordering of the Data Description
segmer1- . deletion or insertion of embedded constructs are
exampL ,te consuming operations when editing a PDL routine
using i_ .ntional editor. A tool is thus needed for
simplifyii .,e process of entering a PDL program. Such a tool is
known as a syntax-directed editor. (Bassanino (1985a))

The syntax-directed editor described here knows the syntax 'rules
of PDL. It combines the text manipulation facilities of a

Page 3

general-purpose editor with the syntax or error-checking
functions of a compiler. (Allison (1983))
A syntax-directed function-key driven PDL generator can be used
to aid the designer by automating indentation requirements as
well as ensuring or enforcing syntactical correctness (and
partial semantic correctness in low-level PDL). A user can thus
write a PDL program, being interactively warned if any language
structure errors are made. This leaves the designer more time to
concentrate on the true design of the system instead of being
constantly preoccupied with clerical details.
This paper presents the features required of such a syntax-
directed editor package. Some design methods adopted in its
construction are also briefly discussed. This syntax-directed PDL
editor is intended to be used for teaching undergraduate
engineering students high level system design concepts. The
editor will prove useful in teaching programming constructs;
emphasizing good programming practices? and also allowing the
user to quickly learn the rules of PDL. (Teitelbaum (1981),
Garlan (1984))
The experienced user will clearly find the editor an invaluable
tool for PDL generation. PDL programs can be entered with the
minimum of key strokes* Detailed programs produced by this system
will not only be correct syntactically but will also be in a
standard form. This, allied with the fact that indentation is
automatic, will aid both the student (in entering the program)
and the lecturer (for correcting submitted designs).
The syntax-directed editor package, due to its flexibility, will
encourage the development of structured designs using an
iterative process. Both high and low level PDL can be
interchanged in a program, with full editing facilities (ie.
copy, move, delete and insert) being available at all times. The
user will be able to separate the design thinking from
implf -ntation details by iteratively refining this PDL program.
As v-.i indentation and syntactical errors are dealt with by the
system, the user will find this PDL editor very convenient
compared to a conventional editor.
Ultimately, due to the code produced, this PDL tool is intended
to be u«ed as a translator. Thus, it will be possible to target a
PDL program into any one of a few commercially available
languages, pascal, BASIC and FORTRAN are examples of such high-
level software languages, while the assembler languages and
hardware sequential logic can also be made available as low-level
implementation target languages. Compilation and execution of the
translated PDL program can then be performed using any standard
language-specific compiler.
This PDL tool will therefore provide the missing link between
system designing and implementation. A designer will be able to
design i; PDL and then decide on the most convenient
implementation language. An automated walkthrough facility is
also envisaged to dynamically enable the user to perform simple
but effective execution-errot detection and efficiency
optimization analysis.

£ACj£AS£_E£Am£S

lijfi-basis-afcjaiSLturs
The designed system is aimed at minimizing the effort required to
produce a syntactically correct PDL program. (Bassanino (1985b))
It is based on a dynamic set of ten function keys. Each set of
function keys defines a new system state. The user will move from
state to state depending on what function is required.
Physically, the display screen is divided into four logical
screens: the Main Screen; the Window Screen; the Prompt Screen?
and the Function Key Definition Screen. (See Figure 1) This is
done so as to provide the user with a constant format. In this
way, as information is always presented in an orderly fashion,
the user will never be confused by the information displayed on
the screen.
The concept of dividing the physical screen into a number of
logical screens greatly helps the user to operate the system with
the minimum of fuss. (Good (1981)) A particular type of system
response can always »e expected in ' -ie same physical location on
the screen, A prompt, for example, will only ever appear in the
Prompt Screen, and the user's attention will be drawn to this
line, similarly, for editing any line, the focus of attention
will be on the Window Screen. Figure 1 shows a sample PDL program
being edited by the syntax-directed editor package. The logical
screen partitions are also distinguished.
Function keys save the user typing time by replacing words,
phrases or even constructs. The alphanumeric keys are used only
when strictly necessary (ie. when entering t<xt); otherwise , the
system is completely function key driven.
The Main Screen is a 20 line screen and is used to display a
portion cf the formatled contents of the file. This screen
contains a ciusor (Cursor 1) in the left margin with vertical
freedom only. Each line in the Main Screen is numbered
sequentially, and system placeholders and system-generated key
words are highlighted in various distinguishing video fonts.
The Window Screen is a one-line screen used to obtain responses
from the user* All text lines are entered and modified via this
screen; a second cursor (Cursor 2) with only horizontal freedom
being available tot this purpose. The user selects a line for
editing in the- : ;in Screen, This line then appears in the Window
Screen for mod;iication purposes. After modifying this line, the
user can then '-’ect to accept the new line, or revert to the old
line. If the line is accepted, the line in the Window screen
rep]"aces the <?16 line pointed to by Cursor 1 on the Main Screen.
The Prompt screen represents a one-line screen used for the
display of prompt or error messages to inform or warn the user.
The system also makes use of a terminal bell function to
differentiate between errors and prompts. Extensive error
checking is performed by the PDL editor as its syntax-directed
nature requires, prompts and messages are carefully worded so
that the novice user can be guided and helped along.
The fourth logical screen is used to display the definition of

Page 5

the ten function keys, and as such is known as the Function Key
Definition Screen. A single line is also needed for th's purpose,
and function keys which are undefined are not displayed. This
screen is updated every time a new state (with a new set of
function keys) is entered.

1 12 Single:
1 13 Global:
1 14 KING
1 15
1 16 ROOK 1
1 17 ROOK 2

Screen 1 18 Begin:
1 1 19 Rook 1 := 1

— > 1 20 Rook 2 := 8
1 21 Knight 1 := 2

Window

22 If (Hove 1 = ’O')
28 then:
29 *Castling*
30 else:
31 *Check for other possibilities*

-> Ilf (Move 1 = 'O')
Screen — -> I ** Editing Line 2? **

-> ji.paB 2„PaF 3.ToP 4.BoP S.ToL
Function Key
Definition

Screen
Figure.,4: a Sample Editing Situation

The four logical screens are shown in abbreviated form. The
two cursors are highlighted and underscored and can be seen
at Line 27 (Cursor 1) and at column 10 (Cursor 2). There
are ten function keys and their function abbreviations are
displayed in reverse video font in the Key Definitio-
Screen. Note also the highlighting of system-generated ke'
words in the Main Screen.

At this stage it is important to explain the various elements
available in a file. The syntax-directed PDL editor generates all
standard PDL key words automatically. This is achieved by
allowing construct blocks (or templates) to be inserted only as
single entities. Where a user-entered text condition or statement
is necessary, a placeholder is used. Thus, placeholders (enclosed
by < > brackets) must be expanded by the user for the program to
be complete.
For a syntax-directed editor to function as such, the template
approach described above is an attractive one. (Bassanino
(1985c)) The user is, however, limited to editing only the user-

editable text lines and placeholders. Key words cannot
individually be modified or deleted by the user. Only operations
on an entire construct are possible. This prevents the occurrence
ot syntactical errors during an editing session. Key words on the
Main Screen are differentiated from user-editable text by
highlighting. (See Figure 1) Placeholders should be displayed in
a third font, as they essentially constitute an error of
omission.
Two versions of an edited file are available. There is a coded
version of the file which contains data pertaining to indentation
levels, key words, errors, etc. This version is used by the
system alone, and will not be intelligible to the user or any
other editor. This is the PDL system's operating file, and it
will always be necessary to retain it if further editing of that
file may be required. This coded form of the PDL program is the
file which will also be used for translation purposes in the

The PDL prettyprinted or formated file is the intelligible
version. It contains the uaer-designei program as it is displayed
on the Main Screen. This file need not be explicitly stored, as
the system does not make use of it. The formatted file may
therefore be edited using any conventional editor. This file
would usually be stored for printing or display purposes.
The PDL editor, as mentioned before, consists of a number of
states. After choosing the file to be edited, the user is
initially placed in Base Level. Here, one has the possibility of
viewing the file by means of the scroll function key options.
More important, however, is the ability to be able to enter any
of the editing modes (or states) from Base Level. If, for
example, insertion of a construct is required, Insert mod* must
be entered, it is also from Base Level that the PDL editor can be
exit. To date, only Insert functions have been implemented.

£dlSaj:^£eatU£Sfl
As already mentioned# the editing system operates using the Main
Screen for file viewing, while the window Screen is used for
editing an individual line. If a line is to be modified, Cursor 1
is used in the Main screen bo choose the required line. This
cursor can be moved using the up and down cursor control keys.
Indicating the line to be modified is merely a matter of
depressing the pre-selected function key from Base Level.
If the chosen line is editable, it will now be duplicated in the
Window Screen. On displaying the line here, the line number
together with any associated indentation ia omitted? these
attributes only being visible on the Main Screen. The user is now
free to modify the editable text with the use of the Line Editor
features. Key words are not editable. Cursor 2 can be moved under
any editable character in the Window screen by using the left and
right cursor control keys. When the user is satisfied with the
changes made to the line, the ENTER key is depressed. This
results in the new line overwriting the old line at Cursor 1 on
the Main Screen. If, however, the old line is to be retained
without any of the changes made to it in the Window Screen, then
the ESC key will be used. (Bassanino (1965b), Bassanino (1985c))

The Line Editor is used extensively for any user-entered text
input from the Window Screen. A summary of the functions
available together with their meanings is shown below;
-> Cursor 2 moves to the right by one position
<- Cursor 2 moves to the left by one position
HOME Cursor 2 moves to the beginning of the line
END Cursor 2 moves to the end of the line
CTRL K Erases from the cursor position to the end of the line
<== Destructive backspace deleting function
DEL Another deleting function
INS Toggles Insert mode on/off
ENTER Exits the Line Editor and accepts the new text
ESC Exits the Line Editor ignoring any modifications

Inoividual line editing is performed using the above method. If,
however, an operation is required on a line or a block of lines,
then Cursor 1 is used in the Main Screen.
For the purposes of viewing any 20-line portion of the PDL file
o- the Main Screen, extensive scrolling functions are provided in
the Base Level. Cursor 1 can be moved up and down by using the up
and down cursor control keys. If the cursor is moved beyond the
Main Screen limits, a half-page scroll will occur. Pull page
forward and backward scrolling is also available. The top and
bottom of a file can be accessed via a single function key
depression. The user can also choose a line number where Cursor 1
is required. A summary of the file scroll functions is given

f — Cursor 1 up by one line
i — Cursor 1 down by one line

PgDn — Page scroll forward
PgUp — Page scroll backward

Top of Pile — Cursor 1 to the top of the file
Bot of File — Cursor 1 to the bottom of the file
Cur to Line — Cursor 1 to a specified line number

Each of the file editing features of the package provides a new
mode from Pass Level. The four macro modes are:

— Insert Mode
— Delete Mode
— Copy Mode
— Hove Mode

Each of these modes will allow for single line and block
operations. Thus each mode will in turn have its sub-modes which
will give the user the necessary functions. These editing
features will be described later.

f ia £ £ _ £ £ jj£ liE .U a f l_ S £ S in £ I ll_ l3 £ iliti£ S

Before describing the features available for the manipulation of
the Data Description segment, it is useful to understand how this
segment is comprised. In PDL, every data item (known in
programming terms as a constant or a variable) is defined
according to four characteristics. These characteristics together
with their possibilities are listed below:

EtiDfiiifiB
Constant
Variable Integer

lyps SllTBSiBXS
Single

55SBS
Global
Permanent
External

Character

The various possibilities are almost self-explanatory, but it
must be appreciated how data items are described in the Data
Description segment. Figure 2 shows an example of such a
description.

Variable:
Integer:

Single:
INPUT A

INPUT B {of size 10)
Figure 2: Example of a Data Description segment

The data item INPUT A is classified as a local, single
integer variable, while INPUT B is a local array consisting
of ten integer variables.

It is clear that there is great scope for automation in the
insertion and deletion of a data item. The PDL syntax-directed
editor makes use of the ten function keys available to allow the
user to choose the possibilities specific to a particular data
item characteristic. Thus, insertion of a data item is performed
as follows: (Bassanino (1985b))
Firstly, the user enters the data item name in the Window Screen.
Then, the Function characteristic possibilities are displayed as
function key options. When the user has chosen the desired
possibility (Constant or Variable), the Type characteristic
possibilities (boolean, integer, real, etc.) are displayed. Thus,
the user can define the data item characteristic by
characteristic until finally the data Scope is defined.
The definition of a data item is flexible in that the user can
edit any chosen key word, and even abandon the definition
entirely before it is accepted by the system. During Data Item
Definition mode, all key words are temporarily displayed in the
Window Screen. Only when a data item has been fully defined and
accepted will it be positioned in the Data Description segment of
the PDL file.
This data item positioning is automatically performed by the
syste so that only the necessary key words are added to the
file. All standard indentation requirements are also
automatically satisfied. Thus, the user need never be concerned
with the structure of the Data Description segment. Also, there
is no possibility of incorrect or incomplete data item
definition. This automated facility can be extended to store the

attributes associated with all data items in a data item table.
This table can then be used to check for type compatibility and
thus semantic errors in the Algorithm segment of the PDL program.
The user is only permitted three operations on the Data
Description segment's insertion, modification and deletion. The
Insert facility has been described above. The Modify function
enables the user to edit the data item name via the Line Editor
in the Window Screen. The Delete function restricts the user to
manipulating only data items and not their key words.
The Modify function has been described earlier. It is also used
for editing any other user-editable text line individually. As
lines containing key words are not editable, only the user
entered data item name may be altered.
In deleting a data item, the user positions Cursor 1 in the Main
Screen on the line containing the data item name which is to be
deleted and requests a line delete. Any associated key words are
then automatically deleted from the file together with the data
item name. Key words may not be tampered with: any attempt to
delete them will result in an error message.
A block of sequentially defined data items may be deleted using
the Block Delete function. This function will allow the deletion
of all data items which lie within the chosen block. The block to
be deleted must start and end on a data item name for it to be
accepted. The data item names included in the block, together
with any relevant key words are automatically removed from the
file; the remaining Data Description segment being arranged
accordingly.
Automation of Data Description segment manipulation can be seen
to be highly effective. A large amount of clerical effort is
saved due to the function key definition method as.well as the
automatic placement feature. The user is thus able to define a
data item while in the Algorithm segment without having to move
to the Data Description segment. Finally, the basis for semantic
error checking is also provided by the automated system described

Mssxitiiii-ssamejit-issiliilss
The Algorithm segment contains the statements and constructs
which constitute the program body. The key to enforcing
syntactical correctness (ie. no end-of-consfcructs missing? is to
prevent or disallow syntactical errors. (Teitelbaum (1981)) Thus,
a great deal of checking is done by the system to ascertain
whether any editing operation requested will still leave the
program syntactically correct if performed.
Besides the Modify function, four modes are defined here: Insert,
Delete, Copy and Move modes. (Bassanino (1985b)) The Modify
function has already been described in the section relating to
editor features. It gives the user the ability to modify the
user-editable section of any line. Thus, placeholders can be
expanded and lines modified in the Window Screen, making full use
of the Line Editor facilities.
Single line insertion is permitted at almost any location in the

Algorithm segment. This facility is used for inserting PDL
statements or comments► Insert Line mode will allow the user to
enter a series of lines sequentially. This mode is exit using an
appropriate function key. when in this mode, lines on the Main
Screen which appear after the line at which insertion is
occuring, will not be displayed. Cursor 1 will also not be
present on the Main Screen.
At this stage it should be pointed out that although this feature
is not yet implemented, parsing of each line entered via the Line
Editor should be performed. When parsing a line, the PDL grammar
can be checked dynamically and any semantic errors flagged. Among
the tests that can be performed are: type compatibility;
distinguishing between assignment statements and conditions; and
checking for illegal (ie. user-entered) key words. As all key
words are system generated, they may not be user-typed.
Constructs are inserted as a block or template. This ensures that
syntactical correctness is maintained, in all Insert modes,
indentation is automatic. An example of an If-then-else construct
template can be seen in figure 3. Placeholders represent portions
of the construct that must be filled in by the user, with the use
of a single construct function key, the user is able to choose
any construct template. The templates available are listed below:

— If-the; — Case-else
— If-thei • — Cobegin-Coend
— While-d — Get
— Repeat-un^.x — Put

If (CONDITION)
(STATEMENT)
(STATEMENT)

End if:
Figure 3: An If-then-else construct template

The template consists of key words (such as "else:") and
placeholders (such as (STATEMENT)). Placeholders must be
expanded by the user, while key words are not user-
editable.

Deletion is also restricted to constructs. Single line deletion
is, however, allowed on lines which have been entirely user-
entered (ie. have no key words). Construct deletion occurs when
an entire construct is removed with the user indicating the
construct start line. Block deletion is also possible, but the
chosen block must not contain any unterminated constructs.
The user is able to choose a line by one of two methods. A line
can be pointed to on the Main Screen with Cursor 1 and a function
key used to choose it or a numerical line number in the Window
Screen can be specified. Before deletion, the lines chosen are
highlighted, and the user is asked to confirm the operation.
Placeholders which are outstanding after any Delete operation

will automatically be inserted.
The user has the ability to perform either a single line or a
block copy function while in Copy. mode. Again, line choice is
carried out using one of the two methods described sbove. The
choice of copy block must comply with the persistent law of
maintaining the program syntactically correct at all times. In
this case, the destination line is also of importance and must be
checked for acceptance. Here too indentation is automatic, and
any superfluous placeholders which remain after a Copy operation
will be renoved.
Similarly, a Move function is available for single lines as well
as for blocks. With its automatic indentation and friendly user-
interface, the user will find the PDL syntax-directed editor an
invaluable tool for putting together and editing a PDL design in
as short as possible a time period.
It is envisaged that the following functions will eventually be
incorporated into the package. (Bassanino {1965b)) A function for
obtaining information regarding any particular error chosen on
the Main Screen can be provided together with an on-line help
facility for the novice. An ellipsis feature for elliding (or
temporarily removing) blocks of text so that the outer program
levels can be displayed together in the Main Screen, will prove
useful. This facility allows the user to effectively view more
than 20 lines at a time by removing program details in the form
of deeply nested constructs. An "undo" stack is also a useful
feature when dealing with peculiarities of syntax-directed
template-based editors, (eg. converting a While-do construct into
a Repeat-until construct)

The functions described above have not all been implemented (only
Base Level and Insert mode are fully functional), but in building
the package, several sound design principles have been adopted
which will aid in rapidly expanding the package 'to its full
potential. (Bassanino (1985c))
To make the system as externally programmable (or flexible) as
possible, a series of tables have been used. These tables contain
specific system operation information such as lists of key words,
prompts and next state . It is thus possible, to a large extent,
to modify system beh:vior by modifying the system tables. These
tables are file based and are loaded on initialization. Although
this is not the objective, these features also make the system
adaptable to act as a syntax-directed editor for any other PDL-
like language.
The packagi is designed with a high degree of software . design
discipline. The system tables are designed as modules, accessible
only via certain routine calls. These modules essentially consist
of a data structure (known as a resource) surrounded by
operators. (Walker (1984)) Separable package features are also
designed as modules in such a way that a sound program structure
emerges. (Myers (1975), Shankar (1984)) The modules designed can
be separately tested via specially written test programs. This
allows the designer to test or experiment with any possible

Page 12

operation on the resource before it is included in the package.
This also means that the routines are portable as they were
designed as stand-alone modules. Further, a terminal, dependant
resource with a variety of access operators ensures that the rest
o f the package is completely terminal independent.
Due to its high structural strength and modularity, the package
is easily expanded. Delete, Copy and Move modes can simply be
designed separately and integrated into the final package.
Extended features are also easily incorporated, while changes in
the PDL language are accommodated by modifying the system tables.
(Bassanino (1984c))

S£2i£.LJJSJ£Z?5

Program Description Language (PDL) is a useful, flexible high-
level language for describing a design without commitment to any
particular implementation technology. A top-down approach is
enforced as comment statements can be expanded into algorithm
detail. Standard PDL constructs and strict indentation is
strongly relied upon to produce a readable PDL program. This very
feature of PDL, however, requires the user to spend much design
time for manual indentation, and this may detract from the
purpose of the language of providing an effective design tool.
A syntax-directed PDL generator is an effective solution to the
above problem. The package designed is template based, so that
all constructs and key words are system-generated. Syntactical
correctness is thus enforced by disallowing incomplete
constructs. The system is function key based, thus ensuring
maximum efficiency. All editor operations are subject to
acceptance testing so as to ensure that no syntactical errors
occur. Limited semantic checking can be included for low-level
PDL programs. All indentation requirements are automatically
dealt with.
This syntax-directed PDL tool is seen as an indispensable tool
for the designer. The package can be put to good use in a
teaching environment: the student will quickly learn the rules of
PDL while the lecturer will be presented with consistent and
syntactically correct designs. The clerical effort of typing key
words; ensuring correct indentation; and for checking syntactical
correctness is eliminated with such a cool. This allows the user
more time for designing. The package encourages structured design
development using an iterative approach and helps separate design
thinking from implementation issues. Step by step top-down design
documentation is thv.i also enforced.
The package has buen designed '.o be as programmable as possible
by using a table-based function-key driven approach. Extensions
and modifications are easily accommodated due to the highly
modular package structure. The system may be modified to act as a
syntax-directed editor for a variety of PDL-like languages. The
coded program produced by the PDL generator, however, is to be
used for translation purposes into the commonly known software
languages. The system is also seen as a basis for automated
walkthrough facilities. (Chesi (1984), Peiler (1961)) In
conclusion, this PDL syntax-directed editor system is destined to
become the major tool on the future system designer's work-bench.

n w w s s a

1. Allison,L. (May 1983): "Syntax directed program editing",
Sa£iiM£ISj£XSSi:iSS^Sn^^3£SSXlS0£S.J.SSlf vol.13, No.5, pp.453-
465.

2. Passanino,A.P. (1985a) : aJEaDfiiifijJdSfiX-dXiJMIl-SXfliiUlzdiXSfiJifld
FM£Q£~£2l-§QiS;m££..£X£i;£IHJ3-££J3l3B, "Literature survey", a
document submitted for an MSc (Eng) degree in the department
of Electrical Engineering, University of the Vfitwatersrand,
Johannesburg, 1985-1986.

3. Bassanino,A.P. (1985b) t ft ,Func1;li9n--:Ksy..drj,yfin.rgy]3j;.ajSrdj,j:gg.tgd
Sdit:or_fOE , Software. Systems, Pepiqn. "User's Manual", Version
1.0, a document submitted for an MSc (Eng) degree in the
department of Electrical Engineering, University of the
Witwatersrand, Johannesburg, 1985-1986.

4. Bassanino,A.P. (1985c) : A_£jJnsii.QD=J5£S>iXiYSIJ_5irXl±ajf=diXfi££Sd
toaiS-SyfifiSBS-DSfiiaD i "Designer’s Reference",

Version 1.0, a document submitted for an MSc (Eng) degree in
the department of Electrical Engineering, University of the
Witwatersrand, Johannesburg, 1985-1986.

5. Caine,S.H. and Gordon,E.K. (1975): "PDL — a tool for
software design", J?£2S£Sj3iQ35_____ lb£ Hallfli)Sl__SaBBiJj;SZ
Sssisjrscsfi/ 1975, pp.271-276.

6. Chesi,M. ,Dameri,E. ,Pranceschi,K.P. ,et al (May 1984):
"ISDE: An interactive software development environment", ACM
jSiaalaa— jaollsss, Vol.19, No.5, (ACM Software Engineering
Notes, Vol.9, No.3), ACM SIGSOFT/SIGPLAN Software Engineering
Sympc"ium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23-25, 1984, pp.100-200.

7. Garlan,D.B. and Miller,P.L. (May 1984): "GNOME: An
introductory programming environment based on a family of
structure editors", A£jL-5l3J;jlasJiSltlSSSt Vol.19, No.5, (ACM
Software Engineering Notes, Vol.3/ No.3), ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments, Pittsburgh, Pennsylvania , April
23-25, 1984, pp.100-200.

8. Feller,P.H. and Medina-Mora,R. (September 1981): "An
Incremental Programming Environment", XEBH-JZflflSflSiifiJMl flu
SSiiHaXS-jtoaj.l3S£.LiZlS# Vol.SE-7, No.5, pp.472-481.

9. Good,M. (June 1981): "Etude and the folklore of user
interface design", ASti SigpJ,aD__EfiiJ.SSS r Vol.16, No.6,
SIGPLAtV SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.34-43.

10. Myers,G.J. (1975) : BfijLiablS safi-Waifi through composite
dSSian, Pertocelli/charter, New York, 1975.

11. Shankar,K.s. (1984): "Data Types: Types, structures and
abstractions", Chapter 12, i)andb.oô _,.of_5aftwajce,.,BDaicaerlDa,
edited by Vick,C.R. and Ramamoothy,C.V., Van Nosrand Reinold,

.RBI££MSJ35

Allison,L. (May 1983): “Syntax directed program editing",
S.Qftwarfi_£xag.tlgg_aj3i3-i3xpfijl.ec£g_lg.Bl/ Vol.13, No.5, pp.433-
465.
Bassanino,A.P. (1985a) i flu£tiJjfl±iflIlrJ$sy-i3xijfSlL.5irflj;Mri3ill£SlSi3
J?dj.tsj:_ifli:-5si^ax£-5ystsms_ps5isn/ "Literature survey", a
document submitted for an MSc (Eng) degree in the department
of Electrical Engineering, University of the Witwatersrand,
Johannesburg, 1985-1986.
Bassanino,A.P. (1985b): ft Punction-key_driven_5MDtaxrdlzgg±gd
JSditflJLiSl-SflftiMirS-SXSiSJBS-fifiaiflnf "User’s Manual", Version
1.0, a document submitted for an MSc (Eng) degree in the
department of Electrical Engineering, University of the
Witwatersrand, Johannesburg, 1985-1986.
Bassanino,A.P. (1985c): A_£UD£iJ,(2Dd$SX-5xiirSP*.SynJ:Sj$=dixSSt55
Edito r_for_Software^Svs,tems-aesign, "Designer' s Reference",
Version 1.0, a document submitted for an MSc (Eng) degree in
the department of Electrical Engineering,, University of the
..i^watersrand, Johannesburg, 1985-1986.
Caine,S.H. and Gordon,E.K. (1975): "PDL — a tool for
software design", £xfiSSfidlD35__ fif fcbfi_Sa.tlSOal__ Cianptitsi
£fln£SXSD5fit 1975, pp.271-276.
Chesi,M. ,Dameri,E. ,Franceschi,M.P. ,et al (May 1984):
"ISDB: An interactive software development environment", ft££}
Siqplan Notices. Vol.19, No.5, (ACM Software Engineering
Notes, Vol.9, No.3), ACM SIGSOFT/SIGPLAN software Engineering
Symposium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23-25, 1984, pp.100-200.
Garlan,D.B. and Miller,P.L. (May 1984): "GNOME: An
introductory programming environment based on a family of
structure editors", ACM..5igplan..,Notices, Vol.19, No.5, (ACM
Software Engineering Notes, Vol.9, No,3), ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments, Pittsburgh, Pennsylvania , April
23-25, 1984, pp.100-200.
Feller,P.M. and Medina-Mora,R, (September 1981): "An
Incremental Programming Environment", as
32iL£Mai£—EnsiDSfiiina, Vol.SB-7, No.5, pp. 472-481.
Good,M. (June 1981): "Etude and the folklore of user
interface design", ACM SiSBlSD BfliiSSSr Vol.16, No.6,
SIGPLAN/SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.34-43.
Myers,g .j . (1975): Eeiiahls__ sfifiwaxs_thifljjab__sampa&lla
dSSiSDf Pertocelli/charter, New York, 1975.
Shankar,K.S. (1984): "Data Types: Types, structures and
abstractions" , Chapter 12, flfll>Bhaflj&_£f_.SQiittai£_Ji!DS!D££i:!aSi
edited by Vick,C,R. and Ramamoothy,C.V., Van Nosrand Reinold,

12. Sonimerville,!. (1982): J.DS£i:ii33, Addison Wesley
International Computer Science Series, 1982.

j.3. Teitelbaum,T. ,Reps,T. and Horwitz,S. (June 1981): “The why
and wherefore of the Cornell Program Synthesizer", &C#
Sigplflfl Noticesf Vol.16, No.6, SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10 , 1981, pp.8-
16.

14. Vosbury,N.A. (1984): "Process Design", Chapter 25,
fl3D£lb.22k_Ai Ssltyars JSngiDSfiliDS/ edited by Vick,C.R. and
Ramamoothy,C.v., Van Nosrand Reinold, 1984.

15. Walker,A.J. (1984): ££i;jj5j:tiJ£j3_iDf2J:mSiiAD_PXA£SSSiDS-BysJ;SlD
dSBiflDr Internal publication of the Department of Electrical
Engineering, University of the Witwatersrand, Johannesburg,
1984.

A FUNCTION-KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

L I T E R A T U R E S U R V E Y

December 1985

Author: A.P.Bassanino

Signed:

A Project Report submitted to the Faculty of Engineering,
University of the Witwaterarand, Johannesburg in partial
fulfillment of the requirements for the degree of Master of
Science in Engineering.

A FUNCTION-KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

L I T E R A T U R E S U R V E Y

December 1985

Author; A.P.Bassanino

Signed:

A Project Report submitted to the Faculty of Engineering,
University of the Witwutersrand, Johannesburg in partial
fulfillment of the requirements for the degree of Master of
Science in Engineering.

CONTENTS

1 THE HISTORY AND DEFINITION OF EDITOP.S.............. 1 - 2

2 PACrORS INVOLVED IN SYNTAX EDITOR DESIGN 3 - 10
2.1 The general concepts 3
2.2 Editor functions 6
2.3 The user interface 7

% A REVIEW OF RELATED PROJECTS 11 - 19
3.1 The Cornell Program Synthesizer 11
3.2 The Z editor 13
3.3 Other systems 15

4 REFERENCES AND BIBLIOGRAPHY 20 - 24

Page 1

1 THE HISTORY AND DEFINITION OF EDITORS

The editor is one of the most used tools today on an interactive
computer system. Line oriented editing is an early form (late
19501s) of text editing usually associated with punch-cards of
fixed or variable length. IBM's CMS editor is such an example.
Stream editors such as TECO solved the problems of truncation and
interline edit experienced by line editors by regarding the
entire document as an infinitely long chain or string of
characters.
The 1960's saw the development of the first basic editors using a
TV monitor. Already in 1965, function keys were used in one of
the earliest time-sharing CRT based text editors known as TVEDIT.
This system, designed at Stanford University, California, offered
control functions for inserting and deleting, with facilities for
text paging. Due to the high cost of CRT terminals, practical
progress at this time was slow.
One of the first classic surveys on text editing in general can
be found in Van Dam (1971). Here, on-line editing is established
as useful and cost-effective in debugging. An example of an
ancient editor can be seen in Irons (1972). This is a line editor
which uses the in-built terminal functions and it is interesting
to note the curious names given to the most common operations.
(The file is compared to a pack of cards, and operations such as
pull, pick and put can be performed.) A more recent and very
thorough survey on text editors can be found in Meyrowitz (1982).
In 1974 the first truly useful word processors started to appear.
Before this time, editors and word processors had a fuzzy
dividing line. A simple text editor is typically used to create
or modify a computer program or text file via the use of basic
commands such as: delete; move? insert; etc., Text editors are
generally divided into two categories: line editors? and screen
editors. The line editor allows the user to edit only one line at
a time, while the screen editor will permit the editing of a file
at any cursor position on the screen. A word processor however
can be defined as a sophisticated editor for the production of
formatted documents. it includes such attributes as:
highlighting? various size lettering? paragraphing? etc..
WordStar (MicroPro 1981) is an example of a popular modern word
processor.
Display editors based on the Irons conceptual model (Irons
(1972)) essentially constitute the majority of full-screen
editors today. Among such editors, we find: PEN (Barach (1981));
Z (Wood (1981))? sds (Fraser (1981) ; EMACS (Stallman (1980),
Stallman (1981))? and IBM's XEDIT (IBM (1980)). In Irons' model,
text is conceived as a quarter-plane with the origin at the top
leftmost character and extending infinitely in length and width.
The user travels through the file using the cursor keys and
changes characters by overtyping. At all times an accurate
representation of the displayed file portion is visible. The
environment is considered 'modeless': all typing is considered as

text; commands are given via function keys, control characters,
escape sequences or by typing in a specified command area in the
screen.
Graphics-based interactive editors such as Xerox PARC's Bravo
appeared in the mid 1970's. These editors (eg. ETUDE (Hammer
(1981))) usually require a high resolution CRT.
Structure editors are character oriented to exploit the natural
ordering of a document. (Fraser (1981) and Stromfors (1981)) A
Language Based Editor (LBE) makes use of the inherent laws of a
language to structure a document and detect any language related
errors. The document need not only be a program, but could also
represent a binary or graphics file, or a letter or manuscript
with subdivisions of chapters, sections, sub-sections and
paragraphs. The most common representation used by a language is
a hierarchical one.
Syntax-directed editors are used specifically for editing
computer programs. They aim to relieve the programmer of the
time-consuming task of eliminating syntax errors. Syntax editors
are sophisticated structure editors which ensure that on input,
syntactic integrity is preserved. Often, these editors will also
parse the input into an intermediate tree form that can be used
to generate code. Most syntax editors are table driven so that
potentially, several languages can be manipulated. Among the
first syntax-directed editors are Hansen's EMILY (Hansen (1973.))
designed for PI/1? and LISPEDIT written for LISP programs. A
comprehensive summary of such edito-s is given in chapter 3.

2 FACTORS INVOLVED IN SYNTAX EDITOR DESIGN

The first section of this chapter gives an idea of the terms used
in the literature as well as explaining the pros and cons of
using and designing syntax-directed editors. The second lists
some ideas and conventions of editors in general with particular
attention paid to syntax editors, in the third section the much-
spoken-of user interface is considered; many of the important
findings in the literature are discussed.

2.1 The general concepts
Syntax-directed editors are editors which know and use the syntax
of the language while a program is being edited. A language
directed editor combines the text manipulation functions of a
general purpose editor with the syntax-checking functions of a
compiler. These editors provide an environment which increases
the productivity of both beginning and experienced programmers.
For the beginner, all the syntax of a language need not be
remembered when writing a program. All programmers benefit by the
typing time saved and the immediate detection of syntax errors.
As indentation and prettyprinting are automatic, programs written
using syntax-directed editors are well formatted, readable and
syntactically correct.
Many believe in the power of syntax-directed editors. A few such
arguments are detailed below. Teitelbaum (June 1981) states that
because the user is able to distance himself from the syntactic
details of a program, program conception at a high level of
abstraction is stimulated, and programming by stepwise refinement
is promoted. Meyrowitz (1982) claims that the specification of
target data as well connected, well defined units enhances the
user's powers of creativity and composition. Syntax-directed
editing may change the way that programming is taught and
described according to Notkin (1979). Frustrating details such as
the placement of statement delimiters (eg. semicolons in Rascal)
can be eliminated entirely by the use of templates.
Syntax editors which parse the input into a tree structure are
used both as a tool for the programmer and a tool for the
compiler. The advantage to using the tree structure is that it is
easy to add and delete branches from the tree and when changes
are made, the entire tree does not have to be reparsed.
On the other hand, there are those who have not only pointed out
the difficulties with this type of editor, but in fact disagree
with its basic concept. Wood (1981) for example claims that 95%
of editing can be done on a standard editor. He states that
syntax-directed editors constrain the user interface complicating
normally easy to understand operations. This approach promotes a
multitude of editors. He further argues that the representation
and editing of a program as a parse tree makes an editor more
difficult to implement.
Although many of his points are valid, it must not be forgotten

that syntax editors can also create parse trees, and thus
eliminate the need for parsers and compilers. Program trees are
however very space intensive requiring on average hundreds of
bytes per source line as Fischer (1984) correctly points out.
Although parsing consumes processing power and parse trees devour
storage space (Morris (1981)), these resources are rapidly
becoming more powerful and cheaper today.
The above gave a general introduction to the motivation behind
and the issues involved in syntax-directed editors. What follows
is a comprehensive list of terms used in toe related literature
together with their explanations and some associated arguments.
ffSJUPlSiS — is the name given for a formatted syntactic skeleton
that contains the keywords and punctuation marks of the given
statement form. A template includes a slasstiflldsi at each
position where additional code is required to complete the
statement. These act as prompts to the user. Zbirasss are
assignment statements, expressions and variable lists.
SyBtax-_.trfie s consist of igXJalDfll_DfidS5 (leaves) representing
variables, constants, static language elements (eg. data type
names) and unexpanded program constructs. Figure 1 shows an
example of the tree structures adopted by the Cornell Program
Synthesizer (CPS) as compared with that -sed by SED (Allison
(1983)). The tree structure of SED contains phrases so that its
hierarchy stops at simple statement level. A p&rg@,p_3nd_deparg2f
is used to transform text into a syntax tree and vice versa.

(| if then / ;
I I | I— - y 2 I I

| a>b x:=x+l

Pjgpre 1: Examples of various Tree Structures
Figure (a) shows the structure used by the CPS, while (b)
shows the system used by SED.

Nonterminal nodes --- describe subtrees of a program
corresponding to control flow constructs and data definitions in
the language (eg. If-then-else construct in Pascal). Information
available at each node includes the type of language construct,
and references to the parent node and to its offspring. A node
can have a fixed or variable number of offsprings. lislartifldSS are
best described by 'holes' in the program templates that have not

been expanded.
£hQJXdi,S.t4DSS,..gya.S&g is defined for error correction ability
by Allison (1983) as the syntax of a construct. Lads disiasss
ayntajf involves variables or declarations which can have distant
effects on the program, (ie.the program semantics) This is the
most difficult error type to check for during editing, as a small
change to a declaration can have remote effects on type
compatibility. In incremental editing systems, long range errors
are left until execution time (eg. Pathcal (Wilander (1980))). If
checking is done for long range errors during editing as with
CPS, validity needs to be relaxed in certain operations.
According to Allison (1983) changes to a program can be
implemented in three ways. SiltiStilldl-SsnmaMs as used in CPS
delete, copy, insert and move subtrees. Tree ma.Wiing .and
■gUbsfc-jtutlcjn looks like string replacements to the user and this
method is adopted in SED. Alternatively, arbitrary textual
changes can be allowed to a program as in the CAPS system. This
method is known as taxt-.editing.
.Ell-ip.gls_o_y,tlholophrasking is used to abbreviate long sections
of code so that they can be displayed on the 24-line VDU screen.
Thus a view of the entire program can be obtained and a zoom
function can be used to display the details of a particular
section. The CPS for example allows the user to label a section
of code with a comment before elliding it. (Teitelbaum (June
m i))
Prefctyprinfrsr -- is t^e name given to a software tool used to
output text in a structured format on a VDU or printer. Rubin
(1983) combines a prettyprinter and a syntax-directed editor to
form the idea for a language-independent software development
system. For more details on prettyprinting, the following
references should be consulted; Mikelsons (1981)? Oppen (1980).
Teitelbaum (June 1981) distinguishes between mpapmorpft&c__and
polymorphic^pxst&ypiiotj,pg: the former automatically prettyprints
everything which is entered with no attempt made to keep all the
text onto the screen (eg. CPS); while the latter (eg. LISPEDIT)
prettyprints only in the vicinity of the cursor in an attempt to
keep text onto the screen.
XoJ;sg.M£s,d__syS.fcems — constitute a set of tools that support
program creation, modification, execution and debugging. This
means that a user does not have to perform mental context
switching between say modifying and debugging a program. An
iDSfamaoial SYfli£lB, however, is a system where immediate
execution is interleaved with editing so that, for example, a
user can run parts of a program editing any errors which occur;
after these errors have been corrected, running of the program
can be resumed.
If there is disagreement in the literature on a certain aspect of
syntax editors, it must be the generator versus recognizer
argument. A summary of both sides of the coin is given below:
The geaarflifll aoEfaasb (sometimes known as programming by
selection) usually makes use of templates so that only valid
programs can be generated. Programs are created top-down by
inserting new templates and phrases within the skeleton of
previously entered templates. Syntax error detection is

immediate. Correctness is maintained at all tines by preventing
the entry of syntactically incorrect programs.
The generative or error prevention mode is best suited to
development environments and parsers are usually not needed.
Typographical errors are possible In user-typed phrases and not
in system-supplied templates. Examples of systems based on this
method are: the Cornell Program Synthesizer (Teitelbaum(1981)),
EMILY (Van Dam (1971)), ISDE (Chesi (1984)), POE (Fischer
(1984)), and SUPPORT (Zelkowita (1984)).
The augments normal editing facilities with
lexicalf syntactic and semantic analysis to detect any errors. In
this way, the user is not constrained to the editor's templates.
Morris (1981) for example treats everything before the cursor as
syntactically correct so that an If-then statement say can be
changed to a while construct without much inconvenience. This
editing function presents a problem in the generative approach.
Th% recognizer method is consistent and permits arbitrary editing
operations on a program while program modification is greatly
simplified. Examples of systems which use this method are; Magpie
(Delisle (1984)), MENTOR (Donzeau-Gouge(1984)), SAGA (Campbell
(1984)), Syned (Morgan (1984)), and Z (Wood (1981)).
The generative approach is perhaps more suited to program entry;
not program editing. Program by selection may appeal because of
its similarity to structured programming's stepwise refinement,
but stepwise refinement was developed for creating algorithms;
not for entering programs. It is a widely held view that it is
bad practice to compose a program at a VDU. Allison therefore
concludes that it is doubtful whether programming by selection is
c good thing. (Allison (1983))

2.2 Editor functions
Full-screen or display editors operate on the "what you see is
what you get" concept with modifications made at the cursor
position (cf. chapter 1). These environments are by their nature
very comfortable to use. An example of such a system where there
is no text mode to enter or leave is given in the MINCE editor
(Moore (2981)). A powerful editor should include many of the
following functions:
qiipsor. movements up; down; left; right; to the start or the
end of the current line; to the beginning or end of the next line
or tab stop. Cursor movement should be possible by character,
word, line, sentence, construct, and by screen. Access to the top
or bottom of the file should also be readily possible. A
horizontally and vertically scrolling screen is ideal, so that
all the text can be viewed.
gflckapaog $p6 delete keys should be provided, and their functions
clearly stated, (eg. Thompson (1981) defines the backspace as
moving the cursor to the left and deleting the character, while
the delete function will delete a character without moving the
cursor.) Settable tflfr,or_4ndent_and unindent attributes are also
desirable.
The AindP,.T.o.g restotfl function is very useful for program

protection. (It can be regarded as a stack: last-done-first-
undone). 1422Sj i n s e r t copy.__and -delete are standard editor
functions. Fischer (1983) uses a cursor to pass over the portion
of the text that must be copied. Function keys can be assigned to
these operations, so that a delete key, say, will be depressed
when the line pointed to by the cursor is to be deleted.
Stains 6&axsh and , @ t l b l U a D commands prove a time
saving feature for the expert user. When a match is found, the
cursor can appear at the first match, so that the user can return
for another match, or escape. Obviously, function keys could be
assigned to most if not all of the above functions, but this does
have its disadvantages as will be seen in the next section.
Zelkowitz (1904) states that about 80% of the time spent on an
editor is used for editing or maintaining a program as opposed to
entering it. This implies that a syntax editor is to be efficient
in performing changes to a program after it has been entered.
Desirable functions for this type of editor include: syntax error
detection or prevention; error correction (this point is
debatable); long range error detection by keeping track of data
types and checking for incorrect assignments; ellipsis
facilities; abbreviations for verbose constructs? prettyprinting;
and parsing and deparsing.

2.3 The user interface
There have been a great deal of papers published on the issue of
user-friendliness, and this can only be attributed to the low
quality of commercial software packages available today. A good
idea of the issues involved is presented below but for further
details, the following papers and their references should be
consulted: Jong (1982); Raduchel (1984) ? Good (1981); and
Heyrowitz (1982).
The user interface should present a well defined, consistent
conceptual model with the user being familiar and comfortable
with the philosophy behind the system. It should be clear and
concise, easy to learn and use, and it should provide consistency
across different targets (Meyrowitz (1982)). Current technology
does a poor job of telling the user what to do as opposed to how
to do it. An inefficient edito" with a smooth interface is better
received and more useful than an efficient editor with a badly
designed user interface, software should be designed and selected
not on the basis of what is most machine efficient, but on how
well people can use it.
A method for determining user-friendliness is described in
Raduchel (1984). A system can be said to be user-friendly if
F > F0 in the equation:

F « P„ p"
where F0 is the threshold probability value

Po is the probability that a user will find a set of steps
to solve a problem

p is the probability that a user can successfully execute
each step

n is the minimum number of steps in the solution

p0 falls as n increases, and p generally increases as each step
is made smaller. A user will eventually consider a system with
fewer but more complex steps to be the more user friendly, p has
an upper limit due to human error (of the order of 0.995). If
problems to be solved are not simple, it is unlikely that any
general mass-market can be user-friendly.
A system that is easy to learn may not be easy to use. As an
example, prompting for a series of steps in a standard operation
is easy to learn, but more time-consuming to use. Conversely, a
macro system requiring only one command for the entire operation
may be easy to use, but not easy to learn. There is thus a trade
off between the power offered by the environment and the ease of
learning the system.
The idea of "idiot proofing" found in Jong (1982) is a good one.
It is based on anticipating user errors such as: incorrect
entries; missing inputs; and inadvertent keystrokes. Deletions
larger than a single character should be stored in a stack to be
retrieved in case of error. This protects users from themselves.
To prevent inadvertent escape or abort routines, a combination of
two remote keys should be reserved (eg. CTL-X for quitting in
BMACS and MINCE).
For the commands which will have a drastic effect on the file
edited or which result in irreversible procedures (eg. block
deletes and copies), user confirmation should be requested. A
cancel or reset key is a necessity so that long operations can be
aborted if so desired. While on this subject, it is important to
notice that system speed in interactive environments must be
maximized. Good (1981) states that execution time for all
operations should be kept below two seconds for acceptability. An
absolute maximum of 15 seconds should be imposed for the longest
computations.
According to Meyrowitz (1982), an "infinite" undo and redo
capability should be provided so that the user can experiment
with the system without loss or damage to a document. There are
several ways of achieving this. Peck (1981) gives the author
access only to a copy of the original file. Alternatively, the
most recent keystrokes can be stored. When an undo operation is
requested, the latest operation is retrieved from the stack and
its inverse operation (found in tabular form perhaps) is
performed on the file so as to leave the user with the file
before the undesired operation was executed. The ETUDE editor
(Good (1981)) displays a list of previous commands for the undo
function.
The choice of prompts and messages can greatly influence the
degree to which an editor will be accepted. Jong (1982) suggests
that messages should be : "polite not imperious; straight not
funny; neutral not personal". Although computers have been in use
for about thirty years, there are still those who feel threatened
by the computer. For this reason, a system should not give the
impression of the computer being the dominating person. The user
should always feel that he is the master of the computer and not
vice versa. For example, a prompt for the next command should
rather read "Ready for next command" instead of "Enter next
command*.
Error messages should tell the user: what went wrong; what has

happened as a consequence; and how to correct the error. When the
system is busy and the user is waiting for a long process to be
completed, a message to this effect should be presented. Comments
should be brief, factual and informative without being
abbreviated, humorous or folksy (Good (1981)).
The use of various fonts such as highlighting, underlining and
reverse v leo are very useful to the usee in operations such as
moving, c >ying and deleting blocks. The Bank Street Writer
editor for example (Lewis (1984)) highlights one string match at
a time and asks the user for confirmation of a replace function.
The ETUDE editor lights up sections of a file which have been
selected for copying or erasing. Reverse video is quoted as the
best form of contrasting, while blinking should be used sparingly
as it is highly distracting, especially for long messages.
Mikelsons (1981) uses different fonts and colors to distinguish
keywords from identifiers.
Although the use of programmable function keys is an attractive
one, certain operations may be too important for only one
keystroke. Both Good (19B1) and Jong (1982) agree that major
operations or operations that are not always required but can be
inadvertently called via a single function key, should not be
assigned to function keys. The user should rather be prompted and
the whole command typed out.
Pot both the novice as well as the experienced user, a help
facility always proves useful. Documentation, both on-line (in a
system supplied help facility) and off-line (in manuals)
explaining the conceptual model, user interface and system
functions should be provided. The authors of MINCE (Moore (1981))
suggest the code-card approach: a two-sided card with a summary
of the functions available and the commands to execute them is
given to the user. The experienced user will have a detailed
card, while the novice is provided only with a basic set of
commands. Bank Street Writer uses an accompanying tutorial to the
novice with the functions available on the editor.
The designers of GNOMR (Garlan (1984)) have had extensive
feedback from students regarding their syntax-directed editor.
Difficulty was experienced with the number of hierarchical
levels: too many levels lead to confusion as the user gets 'lost'
quickly; too few levels results in overcrowding of menus and also
proves confusing. The list below accounts for 90% of the errors
made by students.

—— undeclared variables
-— variable was declared but not used
-— uninitialized variable
— - type mismatch

Good (1981) suggests that validation of data be done when the
data is entered; assuming data or attempting to correct errors
usually leads to incorrect results, so that it is best to let the
user correct his own mistakes; the editor simply being used .for
the detection of errors. The designers of EMILY (Van Dam (1971))
report from experience that a light pen is not suitable as a
pointing device at engineering workstations, as it is tiring on
the arm and obscures vision. A tablet and stylus, mouse or just
cursor movements can replace this problem.

Page 10

The state of a system should always be displayed on the screen
(eg. file name, file type, and mode). Screen subdivision (as used
in EMILY and GNOME) is a useful visual aid to the user, as it
refers him to a constant screen location for errors; prompts or
inputs. The concept of multiple overlapping screens is used
successfully in systems such as Magpie (Delisle (1984)),
Smalltalk (LRG (1976), Goldberg (1983)) , and PECAN (Reiss
(1985)), but these tricks require high resolution or graphics
VDUs (eg. the Apollo system).
It must, however, be pointed out that if the screen is subdivided
into too many segments, or if too much information is presented
on a screen, this method looses its effectiveness. Meyrowitz
(1982) also suggests that editors be able to offer users multiple
contexts on the same display surface. For example, if help is
needed, or another file is to be changed while editing a
different file, the user should be able to gain access to the
relevant routine without having to change mode and return to the
original file (ie. transparent access).

3 A REVIEW OP RELATED PROJECTS

In this chapter a detailed summary is given of the available
structure editors today. Two case studies are described to
clarify the detail of such editors. The Cornell Program
Synthesizer is the subject of section 1. This gives the concepts
involved in the design and implementation of a template-driven
syntax-directed editor in an integrated environment. The Z editor
is chosen as the other case study because of its revolutionary
ideas in regarding the language based editor as a simple full
screen text editor. The last section here gives a few brief words
on most of the structure editors and incremental environments
found in the literature# presenting a final summary ii tabular

3.1 The Cornell Program Synthesizer
BSSSISLSLSas Allison (1983); Meyrowitz (1982); Teitelbaum (June
1981); Teitelbaum (September 1981).
The Cornell Program Synthesizer running on both the Terak
personal computer and the VAX family of computers, presents a
syntax-directed editor and programming environment for PZ/CS and
more recently, Pascal. Its aims included the provision of a
unified programming environment; allowing a high level of
abstraction; supporting top-down development? and encouraging
good documentation.
The synthesizer is designed for simple terminals which use the
cursor keys as the only locator device. A set of possible
expansion commands for the current nonterminal is displayed in an
optional window for reminding the user, in contrast to EMILY, the
CPS is a hybrid between the traditional structure editor and the
character-string text editor.
The user is presented with three types of high-level entities;
templates, placeholders and phrases. If the placeholder is a
comment or a statement, the user positions the cursor at the
appropriate position and types in the relevant phrase. A
nonterminal (enclosed in parentheses) requires a template
substitution for further expansion. Square brackets indicate that
the default value will be used. On depression of the carriage
return key, the cursor is moved automatically to the next
placeholder.
Variable names are typed in as text, not as structure. These are
parsed for syntactical correctness upon pressing carriage return,
and are stored and manipulated as text. Semantic checking is also
performed as an illegal variable name will be highlighted in
reverse video ind flagged internally.
The cursor keys enable the user to move through the program
structure. Right and down both move the cursor forward through
the program, while left and up move the cursor back. Rather than
moving character by character, the cursor moves one program

9

element at a time. (ie. to the beginning of a template,
placeholder or phrase) Left and right additionally stop at each
character in a phrase. The long down and long up key sequences
move the cursor to the next or previous structural element of the
same level. Other keys move the cursor to the nearest enclosing
structure template and to the beginning of the program.
Insertion and deletion are based on the pick, put and delete
buffer concepts. A delete command will delete an entire template
with all its associated sub templates. Correcting mistakes can
only be done by preserving structural integrity. Thus, the END of
a construct for example, cannot be moved forward, instead, the
relevant portion must be moved backwards. This is certainly a
more complicated procedure than that for a simple editor. A
contributing factor to difficulty in this area is related to the
Sy. chesizer's primitive methods of selection; Heyrowitz (1982)
suggests that a pointing device would be more suitable. It must
be borne in mind, however, that the time wasted here makes up for
the time saved by ensuring that a program is syntactically
correct. The major time-wasting operation in simple editors is
the tracing and correction of compilation errors but this is not
a problem with CPS.
A method for compressing a long program is provided for in CPS.
The user can label via a comment statement a section of code, and
by using the ellipsis key, the coded statements will be replaced
by the comment. This method, besides enabling the user to view
the whole program from a high-level viewpoint, promotes good
documentation methodologies. Such information hiding still allows
single step viewing of a program in which the cursor jumps from
one visible high-level unit to the next. Uninitialized variables
are flagged, type checking is enforced interactively and
duplicate declarations are prohibited, all at edit time, rather
than at compile time.
An important contribution of the Synthesizer project is the
integration of its syntax-directed editor in a programming
environment. The CPS is not used to create text files that will
later be passed to a standard compiler, but rather to create a
representation of a program suitable for on-line interpretation.
The system interacts with an interpreter to allow the programmer
to switch between editing and execution in a truly integrated
manner.
In, CPS, both editing and execution are guided by the syntactic
structure of the program. Programs are incrementally compiled.
This means that the user can re-edit and experiment with small
parts of the program, without having to run the entire program.
Whereas templates can only be input in a structurally sound
manner, phrases typed textually are allowed to be erroneous. Such
an erroneous program can be run at any time. The program will run
normally until an error or unfinished program construct is
encountered. At this point, an error message is generated
interactively, with the offending program component highlighted.
When this error is corrected, execution may continue.
During execution, the cursor traces a path through the program.
As flow tracing can lead to an added overhead due to the
displaying of confusing details on the VDU screen, the ellipsis
function proves very useful here. The light intensity gives an
indication of the time spent in each program section. Variable

Page 13

monitoring. pacing and single stepping are also possible

The program is stored as a combination of a parse tree for the
templates, and as text for the phrases. The prettyprinted code
that is displayed is actually an interactively generated view of
the internal data structure.
The CF.* has recently been implemented as a generator, so that it
is r.vw possible to create synthesizers for different languages
using attribute grammars to describe the output and semantics for
each production of the abstract syntax. Reverse execution is also
being implemented.

3.2 The 2 editor
pefeygnces: Allison (1983); Meyrowitz (1982); Wood (1981).
With a text-oriented model of program structure, this editor is
both a program editor and a document editor. The designers of 2
it the Yale Computer Science Department believe that a text
orientation considerably simplifies the design of the editor and
presents the user with a simple but powerful modeu. of program
structure. This production editor was designed for and is used by
undergraduate and postgraduate students and staff at Yale
University. Many of the existing features of Z are a result of an
iterative procedure involving suggestions from the users.
The quarter plane model for a full-screen editor is used here so
that a file is envisaged as an infinite array of infinitely wide
lines. There are commands for positioning the display window
anywhere in the plane, and for positioning the cursor anywhere
within the display window. What the user sees at any moment is
precisely what is present in the corresponding section of the
file. As opposed to NIT JJMACG which is a stream editor, 2 allows
the user to extend the file or line by simply typing past the
last entry, (ie. no end-of-3 ine delimiters exist and the user has
complete freedom within the quarter-plane)
Cursor keys are used extensively, but function keys are avoided
as the implementers believe that this causes the user to move his
hand away from the typewriter keyboard. Control characters and
the shift key are used instead for entering predefined commands.
Commands are made up of any logical combination of certain key

Cursor arguments in 2 allow the user to quickly select areas of
text to be deleted, moved or manipulated. This selection is done
in two ways: a box argument selects a rectangle of text defined
by its two opposite corners? and a stream argument selects a
stream of text defined from a starting location to an ending
location of the cursor.
If the user executes an undesired command by mistake, be can
readily undo this command anti recover the previous state. If,
however, the unwanted command is a lengthy one to execute, the
'cancel * command '.1 cleanly abort the operation. The user is
also given the fa^iity to tailor certain -itor functions to his
particular preference. A line counter whj... . is updated every one

Page 24

hundred lines, is maintained in one corner of the screen to keep
the user informed on the state of a command which takes a long
time to execute.
The most recent seven window positions are remembered by the
system so that the user can flip back to a previous context
without losing the current one. A bookmark facility accepts a
number or a name as a label in any file. If a bookmark is in
another file, the editor will automatically switch to that file.
It is the program editing features of Z which present an
interesting change to many of the conventional syntax-directed
environments. For each line of text, the editor only knows about
quoted strings, an end of line comment, blank separated words,
tab or backtab tokens, and balance tokens. A simple table-driven
lexer divides each line of text into the categories. Each editor
command is responsible for using this information to impose any
additional structure, beyond the text representation, that is
necessary to support the program-editing features. For each
language supported by 2, there is a modifiable table that
categorizes the tokens for the language. The editor currently
supports the following languages: LISP, B£,ISS, Pascal, RATFOR,
and APL.
The 2 editor does not rigidly adhere to a set prettyprinting
format, but rather 'suggests* an indentation amount whenever the
newline command is used to enter a line. The indentation is
relative to the first non-blank character of the current line.
For block structured languages, the cursor position on the next
line is determined as follows:
— Bach language type is associated with a table of tab/backtab

tokens. When a newline command is invoked, the editor examines
the last token on the current line and using the table
performs the associated tab/backtab indentation. (This deals
with tokens that open and close blocks.)

— If this token is not in the table, the last token of the
previous line is checked to see whether it is a tab token that
implicitly opens a block. If this is the case, a backtab
command is performed. (This deals with the case of a loop with
only one statement within it.)

— if none of the above are successful, the cursor is placed in
the same column as the first non-blank character of the
current line. (This deals with lists of statements, field
names, etc..)

The advantage of such a system is that it is extremely simple to
implement and gives correct results most of the time. By
disabling the automatic indentation feature, the user can effect
his own indentation style by hand or correct any errors made in
automatic mode.
A balanced expression is one that can be regarded as a block (eg.
An expression within parentheses or a Begin-end block) The
reason for the need for balanced expressions is twofold:
-- The editor must be able to close off the most recently opened

block, and indicate the location of the matching tokens.

— The editor should allow cursor movements by blocks if
required.

The Z editor provides both these functions via the use of its
balance facility.
Provided the programmer is consistent, the indentation of a
program provides all the information necessary for defining block
levels. In Z, the indentation is interpreted in one of the
following ways:
— The display level of the line is the number of tab stops from

the beginning of the line to the first non-blank character of
the line.

— The display level roust be an integral number of tab stops and
must differ from the display level of the previous line by
plus or minus one tab stop. If this condition is not met, then
the display level is that of the preceding line.

The zoom command specifies the maximum level to display. An
infinite zoom parameter displays all lines, while a zero zoom
parameter displays only the top level declarations and procedure
definitions. Groups of lines that are not displayed are
represented collectively by a single dotted line. Selecting this
line with the cursor implies the selection of all the hidden
lines represented by that line.
Thus without the need for the user to understand a program in
terms of the complex semantics of a parse tree, the Z editor
provides extensive structured program editing facilities with the
use of indentation and the balancing function.
The designers of Z feel that the programmer is the best person to
decide whether his program is correct and ready for compilation.
Thus, no further syntactic or semantic error detection or
correction is performed. The designers tried to improve the
communication interface between the editor and the compiler so
that the user can display the error message after compilation by
moving the cursor to the location of the error in the file.
The provision of a link to Multiple User Porks (a program which
maintains multiple user contexts in parallel) allows the user to
exit from Z and enter any of the other forks (perhaps to read
another document or check the execution of a program) with
transparent return to the Z editor.

3.3 Other systems
(Peiler (1981)) is a general structure editor where semantic

correctness is not enforced. Program entry is by selection and a
tree structure is formed, but there is no parsing of text. Only
certain structures are allowed to be modified (eg.moved) as a
single block.
SSJBS (Allison (1983); Wilcox (1976)) is a teaching system w'th
integrated interpreter and debugger. It is aimed at the novice
and makes use of a full-screen editor. Changes are seen by the
user as textual and errors are rejected on entry for immediate

Page 16

correction.
Cedar (Teitelman (1985)) is a single programming environment
providing: a sophisticated editor, a document preparation
facility and a variety of tools for the programmer to use in
construction and debugging of programs. The Cedar programming
language is a strongly typed compiler-oriented Pascal-like
language. This system makes use of high quality graphics
terminals.
£QSE (Archer (1981)) is a cooperative Programming Environment
developed at Cornell University. Similar to POE, it is a text
editor with integrated execution facilities. It uses an
intelligent parser and supports undo and redo commands.
EJ3&C2 (Jong (1982); Meyrowitz (1982) ; Stallman (1981)) is a large
well-established extensible, customizable and self-documenting
text editor. It can be used for the structured editing of any
text file. It is a display editor supporting many windows. It has
a primitive undo function: the entire history of commands can be
run and the user can stop this process where he sees fit.
Efltlly (Allison (1983); Meyrowitz (1982); Van Dam (1971))
developed at Argonne National Laboratory was one of the first
useful syntax-directed editors. The screen area is divided into
three logical screens : text, menu and message. The text area
contains the text under construction# with nonterminals
highlighted by underlining? the current nonterminal being
enclosed in a rectangle. The menu screen contains possible
replacements for the current nonterminal and the message screen
is used for entering identifiers and displaying status and error
messages. Prettyprinting is settable and all nonterminals must be
replaced before the program is completed. It also features a
limited undo function and ellipsis facilities.
STPPF (Good (1981); Meyrowitz (1982)) is a document production
system. Although it uses prefix notation, it provides many useful
functions: an infinitely deep undo command; a cancel command to
abort a lengthy operation; and an again command to repeat the
command last executed. ETUDE's help facility is interesting in
that it displays the history of commands already executed. Its
adaptable interface supports inputs using any of the following
methods: menu selection; cursor movements; pointing device;
command recognition? or function keys.
Gandalf (Habermann (1982)) was one of the pioneering projects at
Carnegie-Hellon University for the design of an integrated
environment involving a syntax-directed editor. The use of
templates is encouraged in its generative approach. A series of
generators have emerged from this project, and ALOE is an example
of a syntax editor which stemmed directly from this system.
fiBQBE (G&rlan (1984)) is the Gandalf NOvice Programming
Environment developed and in use at Carnegie-Mellon University.
The system consists of a family of four structure editors among
which are the FORTRAN and Pascal syntax-directed editors. A
program is entered by selection and no parsing of text is
performed. Changing a program is done explicitly by modifying the
parse tree directly. A form of ellipsis is provided via the use
of multiple views.

Page 17

M fcerljfiP (Teitelman (1981)) is a fully integrated system with a
single command foe editing, debugging and programming.
ISPS (Chesi (1984)) is a language independent interactive
Software Development Environment. It can be used for editing of
general text files. It supports the generator approach but does
not have an ellipsis function. It makes use of function keys and
multiple editing is possible because of the multi-window screen.
A type checker does static semantic error detection.
MgBiS (Delisle (1984)) uses the same technique of overlapping
screens in an integrated environment. It uses the recognizer
approach and limits syntax error occurrence by partitioning
segments of code. It provides information regarding any
highlighted errors, and execution cannot proceed before all
static errors have been removed.
J&iafcej: (Allison (1983) ; Donzeau-Gouge (1980) and (1984)) is an
extensible editor used as a structured document manipulation
system, it uses a generative approach with a tree representation
and provides ellipsis.
W.INCB (Jong (19P2); Moore (1981)) is a self-acknowledged spin-off
of EMACS: Mince Is Not Complete Emacs. It too makes use of a
full-screen editor and has facilities for viewing two files
simultaneously. It also provides an undo facility and conditional
and unconditional string replacement.
Pathcal (Allison (1983); Wilander (1980)) was developed at
Cornell University with the same principles of CPS. It is an
integrated environment and semantic error correction is done at
execution time.
PECAN (Reiss (1984) and (1985)) is a program development system
generator for algebraic programming languages. The program
development systems it produces support multiple views of the
user's program, its semantics and its execution. The program
views include a syntax-directed editor, a declaration editor, and
a structured flow-graph editor. The semantic views include
expression trees, data type diagrams, flow graphs and the symbol
table. Execution views show the program in action and the stack
contents as the program executes. This system is currently
implemented on APOLLO workstations, and requires high-resolution
graphics for its re-targeting. The system is modelled on Cedar,
parsing is done on request and it uses a keyboard and pointing
device as input resources, it gives the user the option of using
either templates or typing the constructs manually and provides
an extensive redo/undo capability. A program is modified by
explicit tree manipulation.
ZSi? (Barach (1981)) represents a Portable Editing Nucleus. It is
terminal independent but does not support the idea of a "free"
full-screen editor as defined by the designers of Z. Instead, it
uses special characters on the end of each line to show if more
text is to follow.
P2J5 (Fischer (1984)) is a full-screen Pascal oriented Editor. It
was inspired by the Synthesizer, but is more similar to COPE, It
does not use templates, but has a set of required and optional
prompts that must and need not be expanded respectively. Although
it is not part of an integrated system, semantic checking is done

and errors are highlighted. Information on the errors can be
obtained on request by positioning the cursor at the relevant
error. Contrary to some views, this editor provides error
correction so that incorrect automatic corrections must be undone
and corrected manually by the user.
SAQA (Campbell (1984)) is an integrated software Automation
Generation and Administration system. Although it makes use of
full-screen facilities, this editor involves many modes. Changing
of a file is by text manipulation, but a tree structure is used
internally. Even though the recognizer approach is taken, on
request, the user will be supplied for a list of tokens which can
be inserted at any cursor position.
ids (Fraser (1981)? Meyrowitz (1982)) is a general structure
editor for graphics files, documents or programs. The user is
presented with a tree view of the file, and operations are done
explicitly on this tree. An ellipsis function is provided.
SED (Allison (1983) is a Syntax EDitor developed at the
University of Western Australia. It uses a higher level tree
structure than used by the like of CPS (See Figure 1). It takes a
recognizer approach and makes extensive use of error correcting
capabilities. One of its principal aims was to be able to use
files from any other editor and correct partially created
programs. Prettyprinting is not enforced, and an ellipsis
function is provided.
Smalltalk (Goldberg (1983); Goldberg (February 1983)? LRG (1976))
is an integrated software development environment. It makes use
of extensive graphics facilities and uses a mouse as the input
device. The system is menu-driven and modeless. It makes
extensive use of overlapping screens to emphasize the idea of
papers on a work-desk.
SUPPORT (Zelkowitz (1984)) is a Still Unnamed Production
Programming Oriented Research Tool environment developed at the
University of Maryland. Editing is allowed for only one line at a
time. Function keys are used to expand nonterminals, and a high
level Program Design Language (PDL) is being added to the system
so that a designer can produce fully documented programs in a
structured top-down way by interspersing PDL with the Pascal
code. The user can work on the data definition segment and in the
program itself simultaneously. A powerful string matching routine
enables the user to find all the uses of a certain variable. As
the system is integrated, execution is completely interactive. An
ellipsis function is also provided.
SXOfid (Gansner (1983); Horgan (1984)) is a language-based editor
which uses multiple entry parsing to give it its general -uxt
processing abilities. It makes use of the concept of
transactions. It takes a recognizer approach and provides an undo
function, but makes no use of menus.

Many of the results above are summarized in the following table.

Page 19

1 System
1 Name

•►Language
System?

SemanticiGenerator/
checks? |Recognizer

Ellipsis
Function? Corrected?I

ICAPS ■►Various Yes Yes [Generator -
ICPS +PI/CS Yes Yes [Generator Yes
1 Emily +PV1 No - [Generator Yes
1 GNOME •►Various NO (Generator Yes
IXSDE •►Various [Generator No
jMagpie •►Pascal Yes Yes [Recognizer No
1 Mentor •►Various No No [Recognizer Yes
1 PECAN ►Various [Generator
IPOE ►Pascal No [Generator Yes
I SAGA ►Various Yes [Recognizer No
Isds ►Various No [Generator Yes
ISED ►Pascal NO No [Recognizer Yes
ISOPPORT+Pascal Yes Yes [Generator Yes
ISyned ►Various NO NO [Recognizer -

Page 20

4 REFERENCES AND BIBLIOGRAPHY

1. Allison,L. (May 1983): "Syntax directed program editing",
Softwaxe-Pxafitlce-and-Experiencfi—{.GBl, Vol.13, No.5, pp.453-
465.

2. Archer,J. and Conway,R. (June 1981): "COPE: A cooperative
programming environment", Technical-,,, Report, Cornell
University, TR 81-459.

3. Barach,D.R. ,Taenzer,D.H. ,Wells,R.E. et al. (June 1981):
"The design of the PEN video editor display module", bSiti
Siaplan— Notices. Vol.16, No.6, SIGPLAtysiGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10 , 1981,
pp.130-136.

4. Campbell,R.H. and Kirslis,P.A. (May 1984): "The SAGA project:
A system for software development", &£M Sioslao Nfl£iSSS,
Vol.19, No.5, (ACM Software Engineering Notes, Vol.9, No.3),
ACM SIGSOFI/ SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh,
Pennsylvania , April 23-25, 1984, pp.100-200.

5. Chesi,M. ,Dameri,E. ,Franceschi,M.P. ,et al (May 1984):
"ISDB: An interactive software development environment", ££S
Slgplan , Notices. Vol.19, No.5, (ACM Software Engineering
Notes, Vol.9, No.3), ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23-25, 1984, pp.100-200.

6. Clowes,T. (July 1982): "Move and Copy commands for text
Vol.25, No.2, p.869.

7. Delisle,N.M. ,Menicosy,D.E. and Schwartz,M.D* (May 1984):
"Viewing a programming environment as a single tool", jJCfl
Slgpian Notices, Vol.19, No.5, (ACM Software Engineering
Notes, Vol.9, NO.3), ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23-25, 1984, pp.100-200.

8. Donzeau-Gouge,V. ,Huet,G. ,Kahn,G. ,et al (May 1980):
"Programming environments based on structured editors: The
Mentor experience", KoiWlDD— DD_fXDSXammlD9 SDKlXflflfflSQtS,
Ridgefield, CT, presented June 1980.

9. Donzeau-Gouge,v. ,Kahn,G. Lang,B. fet al (.yiay 1984):
"Documents structure and modularity in Mentor", ACM Sigplgn
Notices. Vol.19, No.5, (ACM Software Engineering Notes,
Vol.9, No.3), ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
Pittsburgh, Pennsylvania , April 23-25, 1984, pp.100-200.

10. Feiler,P.H. and Medina-Mora,R. (September 1981): "An
Incremental Programming Environment", IEEE,, Fran&as&ia&g op
SaltwaJLS-BDSiQeSXiDg, Vol.SS-7, No.5, pp.472-481.

Page 21

11. Fischer,C.N. ,Johnson,G. ,Pal,A. et al. (1983): "An
introduction to editor Allan POE*, SQPTFAIUft.conference— qj

dsxsiflBiBenjutsflJ.8*— .£e5i)nQlflaies_and alifiioaiiyssrProceedings, Arlington, VA, USA, 25-26 July 1983 (Silver
Spring, MD, USA: IEEE Comput. Soc. Pres 1983) pp.245-250.

12. Fischer,C.N. ,Pal,A. ,Stock,D.L. ,et al (May 1984): "The POE
language-based editor project", ACM SigplaP-NQtlfigB» Vol.19,
No.5, (ACM Software Engineering Notes, Vol.9, No.3), ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, Pittsburgh, Pennsylvania ,
April 23-25, 1984, pp.100-200.

13. Fountain,A.M. and Hydes,,A.P. (February 1981) : "Extended
function programmable keys for display systems", JflM

Vol.23, No.9, p.4327.
14. Fraser,C.W. (June 1981): "Syntax-directed editing of general

data structures", ACM Sigplan Notices. Vol.16, No.6,
SIGPLAty'SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.17-21.

15. Gansner,B.R. ,Horgan,J.R. ,Moore,D.J. et al (1983); "SYNED —
A language-based editor for an interactive programming
environment", gpxJtng~CQMCftM..831 Intellectual Leverage for
the Information Society, San Francisco, Callifornia, USA, 28
February - 3 March 1983, IEEE, New York, USA, pp.406-410.

16. Garlan,D.B. and Miller,P.L. (May 1984): "GNOME: An
introductory programming environment based on a family of
structure editors", fl£tiL5igslfla„Sfitlcear Vol.19, No.5, (ACM
Software Engineering Notes, Vol.9, No.3), ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments, Pittsburgh, Pennsylvania , April
23-25, 1984, pp.100-200.

17. Goldberg,A. (February 1983)s "The influence of an object-
oriented language on the programming environment",
fjaissfldiflas-flf-the-MlLCflfflDAitsx-jSiiiflncs-SQnfsxsnfie.

18. Goldberg, A. and Rob son, D. (1983): Sniallkalk-qOi Thelanquaae
3Dd_ifcS_ilDPlfiffieD£3fci&Dr Addison-Wesley, Reading, Mass..

19. Good,M. (June 1981): "Etude and the folklore of user
interface design", i O SiSBl&n JteUfifiS# Vol.16, No.6,
SIGPLAN/SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.34-43.

20. Grappel,R,D. and Hemenway,J. (June 1980): "The CREDIT goes to
Intel", Minl-Micro_SvstemB_iUSAl, Vol.13, No.6, pp.119-122.

21. Habermann,A.N. and Notkin,D. (January 1982): "The Gandalf
software development environment", ^ectoical .Report.
Carnegie-Mellon University, Computer Science Department.

22. Hammer,M. ,Ilson,R. ,Anderson,T. et al. (June 1981)z "The
implementation of Etude, an integrated and interactive
document preparation system", ACM_&igplan_-Notices, Vol.16,
No.6, SIGPLAN/SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 3-10 , 1981, pp.137-146.

23. Hansen,W.J. (July 1971): "Creation of hierarchic text with a
computer display", AE<3SllSS_iJa£iSBal-La6aX5±flJ:X» Rep. ANL7B18,
Argonne, Illinois.

24. Horgan,J.R. and Moore,D.J. (May 1984): "Techniques for
improving language-based editors", A£H_£iSBl3B— JlfiJiiSSS/
Vol.19, No.5, (ACM Software Engineering Notes, Vol.9, No,3),
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh,
Pennsylvania , April ?3-25, 1984, pp.100-200.

25. irons,E.T. and Djorup,F.M. (January 1972): "A CRT Editing
System", Vol.15, No.l, pp.16-20.

26. Jong,S. (April 1982): "Designing a text editor? The user
comes first" , £Y.fcS_lb£M, Vol.7, No.4, pp.50-53.

27. Learning Research Group (March 1976): "Personal dynamic
media", Xerox Palo_Alto Research Cen.txe, Tech. Rep. SSL-76-1,
Palo Alto, California.

28. Lewis,T.G. (April 1984): "Word processing for the masses: A
review of bank street writer", IEEE Software. Vol.l, No.2,
pp.69-92.

29. Meyrowitz,N. and Van Dam,A. (September 1982): "Interactive
editing systems: Parts I and II", ASfLgggpiltinq Surveys.
Vol.14, No.3, pp.321-415.

30. MicroPro (1981): "WordStar user's guide", MicroPro
lDt.erna.tion3l_CQXgoia.tioD, San Rafael, California.

31. Mikelsons,M. (June 1981): "Prettyprinting in an interactive
programming environment", A££$_5i3Blan-ti2£iSSSr Vol.16, No.6,
SIGPLAW/SIGOA Symposium on Text Manipulation, Portland,
Oregon, June 8-10 , 1981, pp.108-116.

32. Moore,J. (Spring-summer 1981): "Mince — a product review",
SISP_C_N-0-ta5_-(USAl, Vol. 4, NO.1-2, pp. 47-50.

33. Morris,J.M. and Schwartz,M.D. (June 1981): "The design of a
language-directed editor for block-structured languages",
.Sigplfln..MP-tlce9. vol.16, NO.6, SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10 , 1981, pp.28-
31.

34. Oppen,D.C. (October 1980): "Prettyprinting", ACM_.TraD5ac±ions
QP—Programming Lang.ua.ges_And__Syjs.tems, Vol.2, pp.465-483.

35. Peck,J.E.L. and Maclean,M.A. (May 1981): "The construction of
a portable editor". Software. Practice.and Experience._(GB).
Vol.11, NO.5, pp.479-489.

36. Raduchel,w.J. (May 1984): "A professional's perspective on
User-Friendliness", Byte (USAl. Vol.9, No.5, pp.101-106.

37. Reiss,S.P. (May 1984): "Graphical program development with
PECAN program development system", ACM Slcnlan Notices,
Vol.19, No.5, (ACM Software Engineering Notes, Vol.9, No.3),
ACM SIGSOFT/ SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh,

Page 23

Pennsylvania , April 23-25, 1984, pp.100-200.
33. Reiss,S.P. (March 1985): "PECAN: Program development systems

that support multiple views”, lEEILHaasastAaBS-QO-SsiiMaiS
Engineering* voi.se-ii, no,3, pp.276-285.

39. Rubin,L.P. (March 1983): "Syntax-directed pretty printing —
a first step towards a syntax-directed editor", XE£E
lranS9ctiona_on_Soflware_.Enginee.clDg, voi.SE-9, No.2, pp.119-
127.

40. Stallman,R.M. (August 1980): "EMACS manual for TWBNEX users",
Arlififiiel___ intslligsnss Lahoratflm, ai Memo .556,
Massachusetts Institute of Technology, Cambridge, Mass..

41. Stallman,R.M. (June 1961): "EMACS, the extensible,
customizable self-documenting display editor", ASLtL-SiSBiSD
notifies r Vol.16, No.6, SlGPLAtV SIGOA Symposium on Text
Manipulation, Portland, Oregon, June 8-10 , 1981, pp.147-156.

42. Stromfors,0. and Jonesjo,L (June 1981): "The implementations
and experiences of a structure-oriented text editor", ACJ3
Sigplan,,Notiges. Vol.16, No.6, SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10 , 1981, pp.22-
27.

43. Teitelbaum,T. ,Reps,T. and Horwitz,S. (June 1981): "The why
and wherefore of the Cornell Program Synthesizer", ACM
Sigpian Notices. Vol.16, No.6, SIGPLAty'SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10 , 1981, pp.8-
16.

44. Teitelbaum,T. and Reps,T. (September 1981): "The Cornell
Program Synthesizer: A syntax directed programming
environment", CflMtUDifiatiSDS Qf th£-_A£ti, Vol.24, No.9,
pp.563-573.

45. Teitelman,W. (March 1985): "A tour through Cedar", !£££
Transa<?bjQPS,.Q^ Vol.SB-11, No.3, p.285.

46. Thompson,H.B. (March 1981): "Text editing with compuview's
VEDIT", Byte (USA). Vol.7, No.3, p.262, 266, 268-270.

47. Van Dam,A, and Rice,D.E. (September 1971): "On-Line Text
Editing: A Survey", ACM Computing fiJiMis, Vol.3, No.3,
pp.93-114.

48. Wilander,J. (1980): "An interactive programming system for
Pascal", £11, Vol.20, pp.l^ - m ,

49. Wilcox,A.M. ,Davis,A.M. ar.u Tindall,M.H. (1976): "The design
and implementation of a table driven interactive diagnostic
programming system", Communiqatigns— af„_the— ACM. Vol.19,
No.11, pp.609-616.

50. Wood,S.R. (June 1981): "2 — the 95% program editor", Afifl
gigplan Notices. Vol.16, No.6, SIGPLAN/SIGOA Symposium on
Text Manipulation, Portland, Oregon, June 8-10 , 1981, pp.l-

51. 2elkowitz,M.V. (May 1984): "A small contribution to editing

with a syntax directed editor", &C&.SigplaD_Motice.s, Vol.19,
No.5, (ACM Software Engineering Notes, Vol.9, No.3), ACM
SIGS0F1/ SIGPLAN Software Engineering Symposium Practical
Software Development Environments, Pittsburgh, Pennsylvania ,
April 23-25, 1984, pp.100-200.

A FUNCTION-KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

U S E R ' S M A N U A L
(Version 1.0)

December 1985

Author: A.P.tiassanino

Signed:

A Project Report submitted to the Faculty of
University of the Witwate;:;3tdn<3, Johannesburg
fulfillment of the requirements for the degree <
Science in Engineering.

Engineering,
in partial
: Master of

CONTENTS

INTRODUCTION 1 - 4
1.1 A Brief Sunmdry of the Features of PDj. 1
1.2 h General Description of the Package 3

THE SYNTAX-EDITOR STRUCTURE 5 - 11
2.1 The Screen Divisions 5
2.2 Basic System Operation 8
2.3 The System Levels 9

THE EDITING FACILITIES 12 - 38
3.1 The Line Editor 12
3.2 The Front-end of the Package 14
3.3 The System's Base Level 16

3.3.1 The Scrolling functions 16
3.3.2 The Modify function 17
3.3.3 The Insert facility 19
3.3.4 The Delete facility 19
3.3.5 The Copy facility 20
3.3.6 The Hove facility 21

3.4 Insert Mode 21
3.4.1 Single Line Insertion 21
3.4.2 Date Description Definition 23
3.4.3 Construct Insertion 25

3.5 Delete Mode 27
3.5.1 Single Line Deletion 27
3.5.2 Construct Deletion 28
3.5.3 Block Deletion 29

3.6 Copy Mode 32
3.6.1 Single Line Copy 32
3.6.2 Block Copy 33

3.7 Move Mode 35
3.7.1 Single Line Move 35
3.7.2 Block Move 37

UNIMPLEMENTED AND EXTENDED FEATURES 39 - 41
4.1 Package Completion 39

4.2 Semantic Checking Abilities
4.3 Ellipsis Facilities
1.4 The "undo" Stack
4.1i Standard Text Editor Compatibility
4.6 Language Translator Possibilities

APPENDIX As Program Description Language (PDL)

APPENDIX B: Summary o£ System Levels

APPENDIX C: Glossary of terms used

* These system levels have not yet been implemented.

LIST OF FIGURES

1.1 An example of low and high-level POL descriptions 2
2.1 The Logical Screen Partitions 6
2.2 A Sample Editing Situation 7
2.3 An example of a predefined block construct 8
2.4 System Level Hierarchy 10
3.1 Using the Line Editor's character delete functions 13
3.2 The Line Editor's Insert mode operation 13
3.3 The Front-end tree structure 15
3.4 The Base Level tree structure 16
3.5 The scrolling functions1 tree structure 17
3.6 Using the EditLn function 18
3.7 The Insert mode tree structure 19
3.8 Ihe Delete mode tree structure 20
3.9 The Copy mode tree structure 20
3.10 The Move mode tree structure 21
3.11 The tree structure for Line Insert mode 21
3.12 An example using the Insert Line facility 22
3.13 The tree structure of the Data Description Insert mode 24
3.14 The Window Screen in Data Description Insert mode 25
3.15 Inserting a block construct 26
3.16 The tree structure for Construct Insert mode 26
3.17 The tree structure for Line Delete mode 27
3.18 Using the Line Delete function 28
3.19 The tree structure for Construct Delete mode 29
3.20 The tree structure for Block Delete mode 30
3.21 Using the Block Delete function 31
3.22 The tree structure for Line Copy mode 33
3.23 The tree structure for Block Copy mode 34
3.24 The tree structure for Line Move mode 35
3.25 Using the Line Move function 36
3.26 The tree structure for Block [love mode 37
4.1 Using the "undo" stack

1 INTRODUCTION

In this chapter some of the important terms and concepts involved
in the package are introduced. The first section is introduced
mainly to give the user a feel for the structure of the Program
Description Language (PDL) for which the package was designed.
Secondly, a broad descriptive account is given of the system,
paying particular attention to the definition of new terms. In
this second section, the advantages of using the package are also
emphasized.

1.1 A Brief Summary of the Features of PDL

PDL (Program Description Language) is a machine-independent
language written in a structured english format which is used to
express a design in a logical, high-level notation. Due to its
descriptive nature, a well-defined model of the design of a
project can be obtained using conventional programming concepts.
The use of comments in PDL is encouraged so that a design can be
developed in program form via a series of stepwise refinement
iterations.
This top-down design approach aids the designer to view the
system as a whole initially, and to slowly expand the view to
include more detail until the required implementation level is
reached. A design that is fully analyzed using a PDL approach
will result in a structured Pascal-like high-level program. This
can then be implemented using any suitable technology. Although
such an approach is useful in both hardware and software designs,
the full power of PDL can only be appreciated in the latter.
A very high-level description of a project can he written in a
few lines of PDL using a couple of descriptive comments. This is
known as high-level PDL (See Fig.1.1 (a)). PDL in its lowest
level form is similar to any modern programming language in
structural strength and integrity. As can be seen from Fig.1.1
(b), a low-level PDL description is in many ways similar to a
computer program.
A PDL program is usually divided into a single program module and
an associated set of procedures or subroutines. The procedures
will list all their relevant input and output variables as well
as any external procedures accessed by them. Extensive use of
procedures can be made for the design of large systems, so that
program complexity can be controlled. This type of fragmentation
also aids in error detection and assists in system building by
providing reusable modules.
Strong typing of the constants and variables is enforced in the
Data Description segment before the start of the program or
procedure body. The five characteristics used for this purpose
are known as: Function, Type, Structure, Scope and Name. A
detailed description of these terms can be found in Appendix A

which gives the formal specification for PDL. Rigid indentation
disciplines in the area of data description ensure ease of
readability as is evident from Pig.1.1. -User-defined types may
also be specified; the familiar and useful "record" concept in
Pascal is also available in PDL.

(a) Program ROOTS
Get the variable co-efficient B
If (Determinant is positive)

♦Determine the two roots*
Output the two roots
‘Output an error message*

End Program:

>) Program ROOTS
Constants;

Real:
Single:

Local:
A = 5

Variables:
Single:

B
XI
X2

Keyboard: B
End Get:
Determinant :=> B**2 - 4*A*C
If (Determinant >= 0)
then:
XI := (-B + SQR (Determinant)) / (2*A)
X2 t- (-B - SQR (Determinant)) / (2*A)
Console: 'The two roots are*, XI, 'and1, X2

End Put:

Console: ’The roots are imaginary.1
End Put:

End Program:
Pig.1.1: An example of low and high-level PDL descriptions
A high-level PDL description of a program for determining
the roots of a quadratic equation is shown in figure (a).
The corresponding low-level or detailed PDL for this same
program can be seen in figure (b).

The Algorithm segment which comprises the program body makes use
of assignment, selection, and iteration constructs. The control
constructs which will be familiar to the programmer include the
following:

 If - then - else

 Repeat - until
— - While - do

Get and Put routines are used for input and output purposes
respectively. Sections of code which run concurrently (or "in
parallel"}, as opposed to the conventional sequential order, can
be distinguished via the Co-begin and Co-end keywords. Comments,
enclosed by asterisks, are freely allowed at any point in the
program.
trtientation is vital 'co the understanding of an*' program, thus
>0L should always be appropriately indented Pig.1.1 (b)).
Entering such a program manually thus involves *ge amount of
effort. This is especially true in the Data -option segment
or in the ease of inserting or deleting an imbedded construct.
The clerical effort involved in producing a readable PDL program
may overshadow the use of PDL as an effective design aid. It is
mainly for this reason that this PDL generator package has been
produced.

1.2 A General Description of the Package

The package presented here is aimed at producing a tool for
simplifying the input of a program written in Program Description
Language (PEL)-. A syntax-directed editor package such as this,
knows the syntax rules for the language for which it will be
used. Such a system combines the text manipulation facilities of
a general-purpose editor with the syntax or error-checking
functions of a compiler. A user can thus write a program, being
interactively warned of any language structure errors that would
be made.
The aim of this editor package is to enable the user to put
together and edit a PDL design with the minimum of effort. The
user should not be constantly preoccupied with pettv issues such
as indentation correction and program structure, uut rather be
left with the actual task of designing the required system. This
package will thus ensure that programs written using this system
will emerge well formatted, readable, and syntactically correct.
The syntax-directed editor was built with many modern editor
improvement concepts in mind, so that the resulting system should
prove easy to learn and operate.
The entire system is function-key driven, saving the user
unnecessarily wasted time for typing (eg. The insertion of a
construct with associated indentation can be achieved by the
depression of a single function key.) The keyboard is used only

when necessary for entering text lines or for specifying
filenames or other required responses. Otherwise, the entire
system is driven with the use of a dynamic set of ten function
keys.
Indentation (or prettyprinting) is done automatically by the
editor, leaving the user more time to concentrate on the true
design rather than the program format. Also, a PDL program
produced using this editor will have a consistent format. In this
way, the documentation layout can be standardized.
The editor can also perform syntax and limited semantic error
detection. This means that compilation errors such as "missing
end of construct" or "undefined variable name" would be flagged
as errors at edit time. Thus, a completed program, if it could be
run, would be free of the most common compilation errors.
Such an editor will prove to be useful as a teaching aid as it
emphasizes good programming practices and allows the user to
learn the rules of PDL quickly. Because of its time-saving
nature, such an editor is of great use as a design tool. Programs
produced by this system will not only be correct syntactically
and semantically, but will also be in a standard prettyprinted
format and thus readable form.

2 THE SYNTAX-EDITOR STRUCTURE

This second chapter is aimed at introducing the user to the
system by elaborating on the available features of the package.
This chapter should give the user a global view of the package;
its interface to the outside world; and the basic mechanisms
involved behind it. The first section explains the existing
screen partitions and visual cues (or fonts), with a brief
description of che purpose of each window. The editor operation
is also clarified. The second section deals with a broad
description of system operation, while the last section gives the
reader a good idea of the hierarchical levels involved.

2.1 The Screen Divisions

To provide a standard interface which is simple to operate, the
physical VDU screen, which has space for 25 lines of text, is
divided into a number of logical screen partitions. A logical
screen partition is an area on the physical screen dedicated for
a specific function. Screen divisions, when used consistently,
are of great use to the user, as he will know where to expect,
say, prompts or errors, and thus never be confused with the
physical display of information.
Pour logical screens are defined in this package; the Main
Screen; the Window Screen; the Prompt Screen; and the Function
Scraen. This arrangement is depicted in Figure 2.1. Figure 2.2
gives an example of what the screen may look like during a
typical editing session.
The Main Screen (Screen 1) is the 20 line file display screen.
(An even number of lines can be selected to suit the physical VDU
screen length.) Here, a 20 line section of the formatted program
is presented for editing with its corresponding line numbers. A
cursor with vertical freedom only (Cursor 1) is available in this
screen in the form of a reverse videoed line number. Cursor
movement is effected via the use of the up and down, page forward
and page backward cursor control keys,, A half screen scroll is
used when the cursor is moved beyond the screen limits. The fonts
which are used in this screen are as follows:
— Reverse Video line number to indicate the position of Cursor

1 along the left margin.
— Errors (semantic and unexpanded placeholders) will also be

highlighted in reverse video font. These errors are editable,
— Highlighted text representing standard or system-defined key

words. These words are not directly editable.
 Non-highlighted, non-underlined text representing user

entered, editable syntactically and semantically correct
statements.

The Pile Display Screen
Main Screen

22 I SCREEN 2: The Window Screen
23

SCREEN 3: The Prompt Screen
SCREEN 4: The Key Definition Screen

Fig.2.1: The Logical Screen Partitions
Physical screen line numbers are shi<wn in the leftmost
column. The logical screen locations and names are also

The Window Screen (Screen 2) is a one-line screen used for the
editing of text lines and for obtaining other responses from the
user. When editing is required, the true VDU cursor will at all
times be resident on this screen. This cursor (Cursor 2) is given
horizontal freedom only and cursor movement is controlled by the
left and right cursor function keys. The Window Screen supplies
the user with powerful line editing functions as all entry and
editing is performed here. This concentrates the user’s attention
on Scree.i 2 for editing purposes, and on Screen 1 for viewing
purposes.
Available fonts on Screen 2 are similar to those of Screen »-
with the exception of reverse video which is reserved for more
emphatic highlighting. If a line is to be edited, it is chosen on
the Main Screen using Cursor 1. A Line Edit is then requested on
this line using a function key. If the line is individually
editable, a copy of the line is made in Screen 2. The line number
as well as any associated indentation is not shown in the Window
Screen so that the user is presented with the entire line extent.
Depending on the terminal type, the leng' i of the screen will
determine the maximum length of any line (usually 80 characters).
The usual fonts will be used to distinguish key words from
editable text? the user then being able to edit the editable text
string. This Window Screen text is now editable using the Line
Editor facilities. (See Section 3.1) After the line has been
entered, the Window Screen is cleared, and the old line
referenced by Cursor 1 is replaced by the new edited version. In

this way, parsing can be done at entry on a line by line basis.

i 12 dingles
13 Global:
14 KING
15 Local:
16 ROOK 1
17 ROOK 2
18 Begin:

I 19 Rook 1 := 1
| 20 Rook 2 := 8
I 21 Knight 1 ;= 2

I 21 If (Move 1 = 'o')
I 28 then:
I 29 *Castling*
I 30 else:
I 31 *Check for other possibilities*
Ilf (Move 1 ~ 'O')
I ** Editing Line 27**
jl.PaB 2.PaP 3.ToP 4.BoF S.ToL ...

Pig.2.2: A Sample Editing Situation
The four logical screens are shown in abbreviated form. The
ti/o cursors are highlighted and underscored and can be seen
at Line 27 (Cursor 1) and at column 10 (Cursor 2). There
are ten function keys and their function abbreviations are
displayed in reverse video font in Screen 4.

The Prompt Screen (Screen 3) is a one line screen used to warn or
inform the user via error messages or prompts. Information on any
semantic error (which is highlighted in the Main Screen) can be
obtained on this screen. The user can consistently expect to find
any form of system comment on this screen only. Highlighted and
blink fonts ate the only fonts needed for this logical screen.
The Function Screen (Screen 4) is another single line screen used
for the sole purpose of displaying the function key definitions.
As the entire system is function koy driven, each of the 10
function keys is dynamically defined here. A number, 1 to 10,
(corresponding to the function key number) together with a six
character abbreviation of the associated function is used in
Screen 4 to define each function key. This screen uses only
highlighted and reverse video fonts to present a display in
consistent format.

2,2 Basic System Operation

Prom the usee's point of view, as explained previously. Cursor 1
is used for moving through the file line by line, while Cursor 2
brings the focus of attention on a single character in the line
chosen by Cursor 1 on the Main Screen. A line on Screen 1 is
chosen for editing on Screen 2 by depressing a predefined Line
Edit function key. The system will allow only lines which contain
text that has been entered by the user, or construct placeholders
to be edited via the Window Screen. This line is released from
the editor after it is entered, it is important to note that a
line is shown in the Window Screen without indentation so that
line length restrictions can be accurately portrayed. Text
presented on the Main Screen is aone so in indented or
prettyprinted form.
Definition of data items in the data description segment is
largely automated. Besides deleting or modifying a specific data
item, the user is not permitted to tamper with this PDL segment.
A data ite;n definition can only be deleted by deleting its
corresponding data item name line. The system will essentially
take care of removing any associated definition key words. Any
error in system usage will ue displayed as a warn:ng in the
Prompt Screen.
The system is template-based. This means that a construct will be
inserted as a block, with placeholders (denoted by <> brackets)
to be expanded by the user. (See Fig.2.3) This method ensures
that syntactical correctness is maintained by preventing the
occurrence of any such error. (This eliminates the "missing end
of construct" compilation error.) Copy, delete and move
functions are thus restricted in that they can only be performed
on certain blocks of text defined by the constructs. This
choosing of a block during editing, is aided by the system's
feature of highlighting the line numbers of the defined block.
This helps the user visually to see the physical block which he
is about to modify. Block restrictions on the standard move,
copy, and delete functions have to be imposed if syntactical
correctness is to be maintained. This method may seem slightly
inconvenient to the novice, but the instantaneous compilation
facilities coupled with the automatic indentation features of
this syntax-directed editor will soon begin to show their
effectiveness.

Case <CONDITION> of:
<STATEM!3NT>
<STATEMENT>

End Case:
Fig.2.3: An example of a predefined block construct

The Case-else construct can kinserted by the depression
of a single function key. The placeholders are identified
by the <> brackets, and highlighted in reverse vidbo font.
Key words are highlighted and are thus not directly
editable.

The PDL program can be stored in formatted or coded form. A
program stored in coded form will be unintelligible to the user
when displayed, while a formatted program will represent the
prettyprinted program as generated by the syntax-directed system
on the Main Screen.
The coded version of a program !•: .:.ied by the system and will be
unintelligible to any other edit ';, "’his version is labelled with
a ".COD" extension, and it is .-.̂ ■•lys necessary to retain this
file if the program is to be re-uuited using this system. This
coded form of the program will also be used for translation
purposes in the future.
The formatted version of a program can be stored in a file if so
desired by the user. This can be done for documentation or
printing purposes. This file will be a physical copy of what the
user has generated in Screen 1. Although this file is fully
comprehensible and can be modified with the use of Lny
conventional text editor, it is of no use to the system unless a
coded version exists.

2,3 The System Levels

The PDL syncax-directed editor package is function-key driven,
and as such, operates from a hierarchical structure. At any time,
the user will be in a certain mode defined by the display of
funtion keys in Screen 4. Bach mode or level can be distinguished
from another by the significance assigned to the ten function
keyi. These levels have purposefully been kept to a minimum so as
to simplify usage of the editor.
The system consists of a principal Base Level, from which the
user would usually operate. This level is responsible for
providing:

 File scrolling functions (such as Top of file. Page
forward, etc.)

 The single line modification facility as referred to in
the previous section

 A gateway into other file manipulation levels (eg. copy,
delete, etc.)

The base level is thus mainly used for "browsing" through the
file. It should be noted that if the terminal keyboard has
explicit cursor control keys as well as page scroll keys, any
subsequent mode or level of operation in the system .11 allow
the following file scroll movements without the need for
returning to base level:

f Cursor up one line
i Cursor down one line

Pg Up Forward page scroll
Pg Dn Backward page scroll

Base mode is, however, the only level from which an editable line

Page 10

can be modified. This level is described fully in section 3.3.
The so called Pront-end of the package provides an interface into
the outside world by allowing the user to specify input and
output filenames and formats. This routine leads directly into
the system's Base Level. If the editor is exit, the Front-end
routine is again called on for external interfacing purposes.
Further detail of this level can be found in section 3.2.
The other four levels or modes which exist are: Insert, Delete,
Copy, and Move modes. (See sections 3.4 - 3.7 for details) In
these modes, the user has limited file scrolling abilities as
listed above, but can perform any of the defined functions
associated with that mode. Each of these modes may again have
their sub-levels. It can be said, in general, that a RETURN
function key will move the user to a previous level, while the
CONTINUE function key will move him into the next level.
A sketch of the system’s levels in hierarchical form is shown in
Figure 2.4 below. It should be noted that although the basic
package structure has been formulated, only the Base Level and
Insert Mode have been physically implemented as yet. (See the
highlighted blocks of Fig.2.4.) Addition of the other system
blocks is merely an expansion using principles which have already
been developed.

I Front-end: I
I I
I Input / Output files I
I Interface I

I

I £3SS_L£y£l:| 1
I |— — — > j File Scrolling and
I I I Line Editing

1 ! i ! i t y I
llD££XJk_i&d£: 1 1 Delete Mode: I 1 Copy Mode: 1 | Move Mode: I
1 Line, 1 I Line, Block,j (Line and | 1 Line and j
I Data Item | I Data Item 1 1 Block Copy I I Block Move I
land Construct I land Construct 1 1 1 1 I
1 Insertion I | Deletion I 1 1 1 1

Fig.2.4: System Level Hierarchy
A simplistic representation is given of the main system
levels together with their associated functions. The
interconnections indicate the possible movements between
levels open to the user. The highlighted ' blocks and
underlined headings indicate existing system features.

Page 11

The levels and sub-levels are described in detail in the next
chapter. For this, extensive use is made of "tree structure
diagrams" (eg. F:g.3.3). These diagrams are a representation of
the modes which exist, and the transitions which are possible
between them. Each mode corresponds to a unique set of 10
function keys, and each of the keys can potentially lead to a new
mode. In the figures, all the defined keys of a mode are shown on
the same line, with arrows indicating transitions. For a detailed
walkthrough of one of these trees, section 3.3 should be studied.
For reasons of clarity, the tree structure diagrams are presented
in fragmented form. Appendix B, however, presents all these
diagrams in a detailed summary of the system's available levels.

3 THE EDITING FACILITIES

This chapter is a detailed account of all the editor's funvcions.
With the aid of suitable examples, the reader is lead through the
various modes and methods of the syntax-directed PDL generator.
Aft^r a look at the line editing facilities, the reader is
introduced to the various system levels in top-down order. It
will be useful to refer back to Fig.2.4 every now and then, so as
not to loose track of the overall picture.

3.1 The Line Editor

The Line Editor plays an important part in the flexibility of the
system. It is responsible for the management of text entered in
the Window Screen. It is easy to note when the Line Editor is in
use: the cursor is positioned in the Window Screen. In this case,
a keyboard response is usually expected.
The user is presented with a line in the Window Screen which is
to be edited. Key words (ie. "reserved words" generated by the
package) are highlighted, and the user is not permitted to edit
these words in the Line Editor. All indentation is removed, and
the user is given a limited line length the size of the screen

There are essentially two modes of operation: the Text-enter mode
and the Insert mode. The text-enter mode is the familiar mode
where the user can overtype existing characters or add extra
characters after the end of the line. Besides the character-by-
character horizontal cursor movements,- the cursor can also be
moved to the beginning or end of the line by the depression of a
single predefined key. A function is also available to erase the
end of the line from the current cursor position.
The Delete function is available for deleting a single character
at a time. If the user is positioned say in the middle of a text
line, depression of the backspace key will cause the character to
the left of the cursor to be deleted as the cursor moves back by
one position to the left together with the entire string on its
right. Thus the name "destructive backspace" assigned to this
key.
This type of deleting is used by some editors and amounts to the
following: the text to the right of the cursor Including the
character on which the cursor is positioned is left intact but
moves to the left thus deleting the character immediately to the
left of the cursor. Although this method is difficult to become
acgue inted with initially, it supplies the experienced user with
just, as much flexibility and power as do other methods (eg. that
usee; by the IBM machines).
As a second delete key is found on IBM compatable keyboards, (the
DEL key) a second type of deleting could also be included. Here,

the cursor remains stationary, while the character that was at
the cursor position is deleted. At the same time, the string to
the right of the cursor moves one character to the left. The
operation of these two types of character deleting funtions is
shown graphically in Fig.3.1.

The cabia sits. The cafcit sits.
The cab£ sits. The cajt sits.
The ca£ sits. The ca± sits.

(a) (b)
Fig.3.1: The Line Editor's character delete funtions

The two types of delete functions are shown to correct the
phrase "The cabit sits." to "The cat sits.". Method (a)
uses the destructive backspace, while method (b) uses the
DEL key. The highlighted, underscored character indicates
the cursor position.

An insert mode is also necessary and this .'ode can be toggled
using the INS key. On entering Insert mode, the text after the
cursor (including the character under the cursor) will move to
the right by one position; a blank character being inserted at
the cursor position. The cursor therefore now lies under a blank
token and any text entered will be inserted here. The cursor will
move with the entered text, thus always remaining under the blank

This insert token is used as a visual cue to remind the user that
he is in Insert mode. Even though this cue may not always be
evident, the cursor movement keys will give a definite indication
of the mode in use: moving the cursor while in Insert mode will
result in the next character exchanging places with the blank
insert token. The Brase-end-of-line and Delete functions operate
in the same manner as in Text-entry mode. On exiting Insert mode
using the INS key again, the text after the cursor is moved back
by one position and the blank insert token vanishes. Figure 3.2
gives an example of Insert mode operation.

SPsratlPD Yijeual_££px£ssnj;siisQ
The original line The cap sits.
Enter Insert mode The ca_t sits.
Move cursor left The c_at sits,
Use destructive backspace key The _at sits.
Enter "g" The g_at sits.
Enter "o" The go_at sits.
Exit insert mode The goat sits.
Fig.3.2i The Line Editor's Insert mode operation

Here, cursor movement, deleting and typing are demonstrated
in an exercise to change "The cat sits." to "The goat
sits.".

The user is allowed to edit the entire unhighl'..ghted text string
and if an attempt is made to type beyond the line limits, a
warning will appear in the Prompt Screen. The last character on

the line will always be overtyped, with an audible warning to the
user that the end of the line has been reached. When the line has
been satisfactorily edited, the Enter key can be depressed for
the system to accept the new line. If the old version of the line
(still visible in Screen 1 at Cursor 1) is required, the ESC key
will exit the line editor, ignoring any changes made to that

A summary of the function keys which are operational in the Line
Editor, together with their associated meanings is presented
below:

-> Cursor moves right by one position
<- Cursor moves left by one position
HOME Cursor moves to the beginning of the line
END Cursor moves to the end of the line
CTRL K Erases from cursor position to the end of the line
<== Destructive backspace deleting function
DEL Another deleting function
INS Toggles Insert mode on/off
ENTER Exits the Line Editor and accepts new text
ESC Exits the Line Editor ignoring any modifications

3.2 The Front End of the Package *Note: this level is as yet
unimplemented*

As explained in Chapter 2, the Front-end of the PDL generator
package is responsible for dealing with input and output to the
external world. With reference to Fig.3.3, the operation of this
interface will be clarified.
On entering the editor package, the system tables are loaded. The
user will initially be placed on the level containing the
function key options EDIT, INFO and EXIT. This can be regarded as
the system's top state. The user may then choose a function key
to proceed further.
The EXIT key will exit the editor and return to the computer's
operating system. The INFO key can be used to obtain further
information on how to operate the system. On having obtained this
information, the user is returned to the package's top level.
The EDIT function key will lead the system into asking the user
to enter a filename which is to be edited. The cursor will be
positioned in the Window Screen, and using the Line Editor
facilities, a filename can be specified. (Note that as a ".COD'-
extension is assumed, no extension must be specified here.) Once
the ENTER key is depressed, the package will load the required
file (if it exists), and mtve on to Base Level.
The Base Level is characterized by the function keys: Pages,
PageF, TopF, BotF, ToLin, RditLn, End end More. It is thus a
simple procedure to enter the PDL generatopackage. From here,
the file can be edited until the user is satisfied. When the user
wishes to exit the editor, or edit another file, Base Level must
be returned to.
Here, the END key will cause the system to ask the user: "Do you
want to SAVE or ABANdon this file?". Simultaneously, the choices

SAVE, ABAN and RETURN will appear as function key options. The
RETURN option will (as conventionally expected) return the user
to Base Level again, ignoring the last question.

I Enter the Editor
¥

!
yPageB Page? TopF BotF

I
(Are you Sure?)

i

Exit
I

" T "

the editor

y iReturn I

(Save formatted file?)

(Keep a backup copy?)

Fig.3.3: The front-end tree structure
Bracketed questions show the display which appears ir.
Prompt Screen, and to which the user must respond.

If the ABAN option is chosen,, the '--yrtem will asks "Are you sure
you want to ABANDON all the edits of tme file?". To this, the
user answers (still using the function keys) either YES or NO. If
abandoning is not really required, the user will be returned to
Base Level. If the user, however, confirms his desire to abandon
or quit the file, he is returned to the package's top level, and
any edits or changes he may have made to the file during the
latest session, will have been lost or ignored. This abandon or
quit function is useful where unwanted or unintended edits have
been made to a file.
If, on the other hand, the SAVE function is chosen, the system
will enquire: "Do you want to save a copy of the formatted
file?". The file alluded to here is the prettyprinted version of
the file which is actually presented to the user on Screen 1. If
a copy of this is required in a file for printing or
documentation purposes, then the user would choose the YES
option; otherwise, the NO function key needs to be depressed.

Page 16

Either decision will lead to the next question: "Do you want to
keep a BACKUP copy of the old file?". For safety, it is suggested
that the novice user always keep backup copies of the old file
versions. This can prove useful if two slightly different
versions of a PDL design are to be kept. Whether a backup copy is
required or not, the user is then taken back to the system's top

The package will write the newly edited file into a file with the
name given to it initially. The formatted file will have
extension ".PDL", while the coded version will be labelled
".COD". Backup files will end in the letters BU, and will be
labelled with their appropriate extensions.
The user is now again in the package's top level, and from here,
he can either choose to edit another file (or indeed the same
file), or exit the PDL generator package. If the user chooses to
edit another file, the system tables need not be re-read from
disk? only the new file to be edited needs to be loaded. This
saves much time and user frustration in the long-run.

3.3 The System's Base Level

Base Level has effectively a set of 20 function keys due to its
many functions. This is achieved by reserving one function key
(the MORE key) for the sole purpose of displaying the remaining
10 functions. It is important to understand that, while the
function key definitions are changed on depression of the MORE
key, the Base level is still effective. Pig.3.4 below defines the
system's Base Level.

PageB pageF TopF BotF ToLin End MORE <-—

I
EditLn Insert Delete Move Copy MORE

I

Fig.3.4: The Base Level tree structure

3.3.1 The Scrolling functtnns
Approximately half •* . e Level is essentially devoted to
the scrolling fun .ie user will make use of these
facilities for vies, vdl file in Screen 1 (20 lines at a
time). It is in order to mention again that the cursor up,
cursor down, page forward and page backward keys, being separate
from the function keys, are operational in all major levels.
The cursor up and down keys will move Cursor 1 on Screen 1 up and
down respectively. If the cursor is moved beyond the limits of
the logical screen, Screen 1, a half page scroll (either forward

OK backward) is performed, thus positioning the cursor centrally
on Screen 1. If it is attempted to move the cursor beyond the
first or last line of the file, an appropriate message will be
displayed in the Prompt Screen.
The PageB and PageF function keys have the same associated
functions as the explicit PgUp and PgDn keys available on the
keyboard. They will, where possible, scroll the file backward or
forward respectively by a page. Under normal circumstances (ie.
if the file is long enough) the page will be advanced by 19 lines
{ie. in scrolling forward, the bottom line on Screen 1 before the
scroll will become the top line after the scroll); the cursor
remaining at the previous screen position. If the file is too
short, a page scroll is attempted, with the cursor being
positioned in the appropriate position.
The TopF and BotF keys will move Cursor 1 to the top or bottom
lines of the file respectively. The ToLin function key will allow
the user to move Cursor 1 to any valid line number in the file.
The line number required must be entered in the Window Screen.
Only the line numbers between the current top and bottom line
numbers of the file will be accepted. Although the user is
limited to a maximum of a 4 digit line number (a file longer
than 9999 lines is quite unlikely not to mention
counterproductive), the fuj1 line editing facilities are
available when in the Window Screen. A valid line number which
requires a screen scroll will always (if possible) position
Cursor 1 at the centre of Screen 1.
As shown in Fig.3.5, after the execution of any of the scrolling
functions, the user is returned to Base Level again. The END key
is the only key in Base Level which could move the user to
another permanent level (as explained in section 3.2).

PageB PageF MpF BotF ToLin End MORE
I 4 I 4 * i ♦ i ♦ j

To front-end
Fig.3.5: The .erolling functions' tree structure

3.3.2 The Modify or Edit Ling function
This is one of the most important function keys for editing a
file on a line by line basis. Any line displayed on Screen 1 in
unhighlighted or reverse video fonts (correctly user entered
text, placeholders and errors) can be edited using this function.
This is because highlighted, system-generated key words are not
editable. A line on Screen 1 which contains a key word only, is
thus not editable. Any other line will be at least partially
editable.
If a line is editable, it will be loaded into the Window Screen,
from which the Line Editor can be used to modify its contents.
When the user is satisfied with the edited line, it is ENTERed,
and the new line will replace the old at Cursor 1 on the Main
Screen. If the edits performed on the line in the Window Screen,

Page 18

however, are not required, the BSC key will return the user to
Base Level without making any changes to the chosen line on
Screen 1.

1
1
121 Begins
122 I s= 0
123 While <CONDITIGN> dot
24 State t- State + I
25 I s«» i + 1
26 End Whiles
27 Ends

1 ... 1
121 Begins 1
122 I := 0 1
123 While (CONDITION) dos f
124 State := State + I I
125 I *» I + 1 1
126 End Whiles 1
127 Ends 1
I While "(CONDITION^ 1

ll.EditLn 2.Insert ...
I This line is editable... 1
ll.EditLn 2.Insert ... 1

(a) (b)

I
I
121 Begins
122 I := 0
133 While <C0NDITI0N> dot
124 State := State + I
125 I := I + 1
126 End Whiles
127 End:
IWhile (I > Max State).
I This line is editable..r
ll.EditLn 2.Insert ...

(c)

I :::
121 Begins
122 I * — 0
123 While (T > Max State) do:
24 State :=> State + i
25 I s= I + 1
26 End Whiles

I.EditLn 2.Insert ...
(d)

Fig.3.6: ijsl.ng the EditLn function
The highlighted, unde -i’tiored character in the figures above
rspresarit Cursor 2 irv the Window Screen. In the Main
Screen, Cursor 1 iswn as a highlighted, underscored
2 ins number, while flighted words represent system-
generated key words. r.. figure (a), the required line to be
modified is chosen w u n Cursor 1. Figure (b) shows the
result after the EditLn key has been depressed. It can be
seen that the Windov Screen is loaded and the user is
prompted. Figure (c) dhows the Window Screen after the user
has edited it using the Line Editor, and figure (d) is the
result after the new line has been BNTERed.

This function is typically used when expanding a <CONDITION>
placeholder or when editing an error. In the Data Description
segment, only the user-entered data items can be modified. On
exiting the Line Editor, parsing of the new line is done by the

system, and any errors introduced will be displayed on Screen 1
in reverse video font. A sample editing procedure is shown in
Pig.3.6.

3.3.3 The Insert facility
From Base Level, Insert mode can be entered using the appropriate
function key. The Insert key is basically a gateway into the
insert functions provided by the sy. tern. (This also applies to
the Delete, Copy and Hove keys.) As shown in Fig.3.7, returning
from Insert mode is simply achieved by depressing the RETURN
function key.

EditLn Insert Delete Copy Move MORE <~—

Lineln Data Des Construct RETURN
I

Fig.3.7: The Insert mode tree structure

The necessary functions in Insert mode include:
 the Line Insert facility for entering text or program lines

sequentially
-— the Data item Insertion facility for automatic definition

and placement of data items used in the PDL program
 the Construct Insertion facilities used for inserting

construct blocks (with associated placeholders) in the PDL
program's algorithm segment

These functions will be sufficient for the writing of any PDL
design. Placeholder deletion is automatic when required. The
construct facility will ensure that syntactical correctness is
maintained. If each defined data item is coded, and all lines of
text are parsed, full semantic error checking facilities will
become available. Section 3.4 gives the details of the functions
available in Insert mode.

3.3.4 The Delete facility
Fig.3.8 shows the tree structure relevant to the Delete mode.
Again, the Delete key in Base Level can be regarded as a gateway
to the delete functions available in the package. The Delete
functions include:

— - Single Line Deletion

Page 20

 Construct Deletion
 Block Deletion

All the delete functions require some type of user input to
indicate the lines which should be deleted, and extensive error
checking is performed to protect the user from himself.
Placeholder insertion is automatically done when necessary. Data
items can be deleted either by using the Single Line Deletion
facility directly on the appropriate line, or by using the Block
Deleting facility.

BditLn Insert Delete Copy

RETURNT
Pig.3.8: The Delete mode tree structure

Construct Deletion is useful when in the Algorithm segment, while
Block Deletion is more general. Here, the user is allowed to
enter a delete range? the system checking whether such a range
will affect the syntax of the remaining PDL program. If not, the
entire specified block will be removed. In this mode, extensive
visual cues are used to facilitate block identification. Section
3.5 of this manual will elaborate on the details of Delete mode
functions.

3.3.5 The Copy facility
Another gateway facility is provided here for copying lines of a
PDL program elsewhere in the program. Pig.3.9 depicts the
function keys involved. Basically, only two types of copy
functions exist:

— the Line Copy facility
-— the Block Copy facility

BditLn Insert Delete Copy Move

fLine Copy Block Copy RETURN
I

Pig.3.9: The Copy mode tree structure

No copy (or move) operations are permitted in the Data
Description segment. The major criterion between distinguishing
between the two types of copy functions is convenience. A Block
Copy requites the user to define a legitimate block of PDL (which
is highl'ghted), and, if this is accepted by the system, a
destination can then be specified? this too being system-checked.
Section 3.6 gives a more detailed description of the Copy
functions.

3.3.6 The Move facility
The Move gateway is used from Base Level to access functions
which will enable the user to move lines of PDL around in the
program without disturbing the syntactical correctness of the PDL
structure. Fig.3.10 shows the tree structure adopted.
Again, similarly to the Copy functions, two functions have been
provided for user convenience. During a Move operation, the block
to be moved must be accepted (and highlighted) before a
destination (this also being checked) can be specified. Extensive
system checking is required to maintain the PDL program
syntactically correct. Further details on these functions can be
obtained in section 3.7.

EditLn Insert Delete Copy Move MORE <-—
I
I
tLine Move Block Move RETURN

I
Fig.3.10: The Move mode tree structure

3.4 Insert Mode

3.4.1 Single Line Insertion
This function is indispensable when using any editor. It enables
the user to enter a number of text lines (not constructs)
sequentially. Fig.3.11 shows the tree structure of this
construct.

— -> Data Des Construct Line Insert

,________I
I

Fig.3.11: The tree structure for Line Insert mode

1 ... 1
1 ... 1
121 I := 0 I
122 While (I > Max State) do: 1
122 <CONSTRUCT> I
124 End while: 1
125 Puts 1
126 Console: 1State=1 State 1
127 End put: I

1 ::: 1
121 i := 0 1
|22 While (I > Max State) do: 1
f 23 <CONSTRyCT> /
! I
i 1
I 1

1 1 !State := S_ 1
1 1
ll.DatD 2.Con 3.Lineln ... j

[Enter line; use END to exit,.1

(a) (b)

121 I := 0 I
122 While (I > Max State) do: 1
123 State := State + I I

! !

1
1
121 I := 0
122 While (I
123 State
124 I :* I
1
!

> Max State) do: 1
= State + I |
+ 1 1

i 1 1 I
1 Enter line; use END to exit..1
11.END |

[Enter line;
11.END

use END to exit..i

(c) (d)

1
1
121 I := 0
|22 While (I >
123 State : =
I2A I I +

(e) 125 End while:
126 Puti
j 27 Console:

1
Max State) do: 1
State + I I
1 J

•State”1,State 1
1 1

ll.DatD 2.Con 3.Lineln ... !
Fig.3.12: An example using the Insert Line facility

Two lines of code are to be inserted at line 23 of figure
(a). Figure (b) shows the result after depressing the
Lineln key and typing part of the required line. Figure (c)
shows the layout after the new line has been ENTERed.
Figure (d) shows another user-entered line of text. The
last figure (f -re (e)) portrays the final product after
the END key has ~jen depressed.

Page 23

Assume, as an example, that a placeholder is to be expanded to a
few lines of PDL code. Cursor 1 is placed on the line after which
insertion is required, and the Lineln key is depressed. This
results in Screen 1 being cleared of all lines after the line
indicated by Cursor 1. The cursor on this screen is also turned
off. (Thus, if no cursor is present on Screen 1, then the user
can safely deduce to be in Line Insert mode.)
Cursor 2 appears in the Window Screen, and full line editing
facilities are available for entering the text line. When a line
is entered, it will be inserted (with correct indentation) after
the last line currently displayed on Screen 1. Each depression of
the ENTER key will cause whatever text is displayed in Screen 2
to be added to the last line of Screen 1. Once the ENTER key has
been depressed, there is no way of editing the newly entered line
without leaving the present mode (Insert mode).
If instead of ENTER, the ESC key is used, the line present in the
Window Screen will be discarded, and no line will be added to
Screen 1. The END function key is used for exiting this mode. It
should be remembered that all lines which are to be inserted,
must be BNTERed before the END key is used. The END key will
return the user to Insert mode? restore Screen 1 to contain the
complete 20 lines; and return Cursor 1 to the last line which was
inserted.
While inserting, this mode is similar to the Construct Insert
mode in that indentation is automatic, and unnecessary
placeholders are removed. The pictorial example in Pig.3.12
should clear up any uncertainties in the above verbal
description.

3.4.2 Data Description definition
The Data Description segment is perhaps one of the areas where
automation can be of major help in alleviating the designer's
clerical effort. This segment is usually present at the beginning
of a program, and it is here that all constants and variables are
defined. Due to the strict indentation and ordering laws which
apply to this segment, manual entry in this area is usually very
frustrating and time consuming. For this reason it can be
regarded as a prime candidate for automation.
When the DataD key is depressed, Data Description Inset mode is
entered, and here, the format of the Window Screen changes
somewhat (see Fig.3.14). A data item definition field is defined
in the Window Screen. The user is asked to enter or edit the data
item name here. A tree structure is presented layer by layer via
the Function Screen. The user makes use of the function keys to
choose the data function, data type, data structure and data
scope successively. This tree structure is seen in the diagram of
Fig.3.13.
The Window Screen is also used to display these various
classifications of the data item so that only once the user is
through with defining the data item can it be accepted for
automatic indentation and positioning on the Main Screen. A
diagram of the Window Screen in Data Definition mode is shown in
Fig.3.14.

-> Data Desc Construct Lineln

I
1 Yes (Abandon this definition?) No <-

I

Constant Variable

y
Boolean

I

Single

Locll

I
I
YInteger

Jta-

Return <—
I t I 1

Real Character Others Continue
* I

I
fReturn

I
Global

I
I

»!

I
fExternal

t(Accepv

I
I

, definition?)

Fig.3.13$ The tree structure of the Data Description Insert mode
Although all prompts and conditional branches have not been
labelled for the sake of clarity, bracketed questions
indicate prompts requiring user response.

In the Data Type level, choosing of the Others key option will
result in a new set (if any exists) of user-defined data types.
Types are defined by entering a text line; except where records
are defined, in which case a more structured approach is taken.
The functions associated with these two related keys (Type and
Others) have not yet been implemented.
The Data Definition tree can be traversed in both the forward and
backward directions for key word editing purposes using the
Continue and Return keys respectively. Visual representation of
the user's position in the tree is given by highlighting one of
the fields of Fig.3.14 in reverse video font. Each of these
fields is individually editable. Simultaneously, the user is able
to edit the data item in field 5 with the full power of the Line

After the user has defined the data item, he is prompted for its
acceptance or rejection. A newly defined data item will be
positioned correctly in the Data Description segment of the
program without further user intervention, if the defined data

item is to be vajected, no action occurs.
If Cursor 1 is currently in the Data Description segment of the
program on Screen 1, then the cursor is automatically positioned
at the newly inserted data item. If the cursor is in the
Algorithm segment of the program, then the cursor remains where
it is, with only the different line numbers showing that an
insertion has occured in the Data Description segment. Thus, a
user can define any new variable while in the program body,
without having to return to the Data Description segment.

(Variables Boolean; 6f,fay: Local: This array of size (1. .100) I

I Field 1 | Field 2 j Field 3 I Field 41 Field 5 I
Field 1 — The Data Function field — 1
Field 2 — The Data Type field (10 characters wide)
Field 3 — The Data structure field f
Field 4 — The Data Scope field _J
Field 5 — The editable Data Name field (40 characters wide)

Fig.3.14: The window Screen in Data Description mode
The field written in boldface and underscored represents
the field highlighted in reverse video font. This field
will correspond to the level (See Fig.3.13) that the user
is on. The highlighted, underscored character in Field 5
indicates the position of Cursor 2.

An entered data item can only be deleted by deleting the line
containing the data item, or by redefining it. (The user is asked
whether he wishes to replace the old item definition with the
new.) This makes the Data Description segment fully automated as
the user never deals explicitly with its formatting.

3.4.3 Construct Insertion
The system is a template-driven syntax-directed editor so that
the Construct Insertion facility consists of the various
constructs available in POL. When a construct template is chosen,
the skeleton structure is displayed on Screen 1, with non
terminals or placeholders highlighted in reverse video font. The
user can then choose to fill in the placeholders using the
editor's normal functions, or return to them at a later stage. A
list of the templates available is given below:

 If - Then
— - If - Then - Else
 While - Do
— Repeat - Until
-— Case - Else
— - Co-begin-Co-end
——— put

Insertion of a construct will occur after the line on which
Cursor 1 is positioned. The user is warned if Block Insertion is
not allowed in the chosen position. Indentation of the construct
block is automatic, and any unnecessary placeholders are removed.
Fig.3.15 below shows the steps involved in inserting a nested If-
then-else construct.

121 I := 0 |
1
!
121 I := 0 |

122 While (I > Max State) do: I 122 while (I > Max state) dot 1
(23 <CONSTRVCT> | 123 If <COmiT10N> 1
124 End while: I 124
1 ... I 125 <CONSTRUCT> I

126
1 ... 1 127 (CONSTRUCT) |

128 End if: 1
!____________ :::____________ ! 129 End while: 1

L __________________________ ____________________________
lose f-keys & choose constructj 1 I
ll.If-t 2.If-t-e 3.While... I ll.DatDes 2.Con 3.Lineln... 1

(a) (b)
Fig.3.15: Inserting a block construct

Positioning Cursor 1 on line 22 or 23 will have the same
effect# as the unwanted placeholeder is removed. Figure (a)
is the screen layout before Construct Insertion, while
figure (b) shows the result after depressing the If-t-e
function key.

Data Desc Construct Lineln Return <----

T "........ !If-th If-t-e While Repeat Case Case-e Cobeg Get Put Return I

i L->-j L_>.i__L>J.— L>i__L_i
Fig.3.16: The tree structure for Construct Insert mode

It can be seen in Fig.3.15, that the indentation is automatically
maintained, while the existing <CONSTRUCT> placeholder is
removed; the If-then-else template (with its own placeholders)
being inserted. It can also be noted that the cursor is
positioned on the first line of the template which contains an
unexpanded placeholder. When the construct has been inserted, the
user is returned to Insert mode so that the Insert Line function
can then be used to expand the placeholders. This can also be

Page 27

seen from the tree structure of Pig.3.16.

3.5 Delete Mode *Note; This level is as yet unimplemented*

3.5.1 Single Line Deletion
This function forms one of the primitives of any conventional
file editor, in this PDL generator package, this function will
enable the user to delete the line on the Main Screen on which
Cursor 1 is positioned. Due to the nature of the syntax-directed
editor, however, not any line may be deleted individually. If a
line may not be deleted, an error message will appear in Screen 3
and the user will be returned to'Delete mode. Fig.3.17 shows the
relevant tree structure for this sub-mode.

Line Del Constr Del Block Del RETORN
— i —

Fig.3.17: The tree structure for Single Line Delete mode

If a line is deleted, reformating of the Main Screen and line
renumbering is automatic. The scope of this function can be
divided into two categories: the lines in the Data Desription
segment and those in the Algorithm segment.
In the Algorithm segment, after deleting a line, a placeholder
will be inserted if it is required. Also, Cursor 1 remains
physically in the same position in the Main Screen (ie. same line
number) while indicating the following line. (See Pig. 3.18) A
line containing any key word (ie. a highlighted word in the Main
Screen) may not be deleted via the Line Delete function. This
restriction is necessary so as to maintain the syntactical
correctness of the PDL program at all times,. Key words in the
Algorithm segment can only be deleted as they were inserted: via
special block manipulation functions. The Construct and Block
Delete modes serve this purpose. (See sections 3.5.2 and 3.5.3)
In the Data Description segment, two types of deletion are
possible: single and multiple data item deletion. The Line Delete
function can be used to delete a single data item at a time
(together with any relevant system-generated definition key
words). In the Data Description segment, the user has no direct
control over the data item definition structure: when an item is
to be deleted, all the relevant key words will be arranged
accordingly without further user intervention.
Similarly to the Algorithm segment, a system generated key word
cannot be directly deleted in the Data Description segment of a
PDL program. Thus, Cursor 1 must be on the line containing the
data item name when that data item is to be deleted via the Line
Delete function. After a data item is deleted. Cursor 1 is

Page 28

positioned at the line following the deleted data item name. When
deletion of mote than one adjacent data item is required, the
Block Delete function can be used (See section 3,5,3).

1 :::
121 I := 0

:::
|21 I := 0

|22 While (I > Max State) do: 122 While (I > Max State) do: 1
123 State t= State + I 123 I := I + 1 1
124 I := I + 1 124 End While:
125 End While: j25 Put:
126 Put: |26 Console: lState=1,State
|27 Console: 1State=*,State 127 End Put:
i |

|1.LineDel 2,ConstrDel ... |1.LineDel 2.ConstrDel ...
(a) (b)

21 I !- 0
22 While (I > Max State) do:
22 <CONSTRUCT)
24 End While:
25 Puti
26 Console: 'State='rState
27 End Put:

l.LineDel 2.ConstrDel ... j
(c)

Fig.3.18: Us*ng the Line Delete function
Lines 23 and 24 in figure (a) must be deleted. Delete mode
is thus entered. Depressing the LineDel function key,
figure (b) results. After performing another line delete,
figure (c) is obtained. It will be noted that the
<CONSTRUCT> placeholder was inserted for the purposes of
maintaining syntactical correctness. Further line deletes
on line 23 will produce an error.

3.5,2 Construct Deletion
This function is supplied purely for the sake of convenience. It
allows the user to remove an entire construct from a PDL program
with the use of only two function key depressions. In so doing.

the emaining program will maintain its syntactical correctness.
The ".a structure for this function is shown in Fig.3.19.

Line Del Constr Del Block Del RSTUM

Accept (Accept or reject to delete the given block?) Reject

Pig.3.19: The tree structure for Construct Delete mode

This deletion mode can only be available in the Algorithm
segment. The user will position Cursor 1 in the Main Screen at a
particular line. After depressing the ConstrDel function key, the
line numbers of the group of lines, above and below the chosen
line, with an indentation equaling or exceeding the indentation
of the chosen line, will be highlighted in reverse video font. At
this point Cursor 1 vanishes.
The user is prompted for acceptance to delete the block which is
highlighted. If he rejects, Cursor 1 re-appears, while the block
line numbers are reverted to normal font. If the user accepts to
delete the block, the highlighted line numbers will be removed
from the file, and the cursor positioned at the line after the
deleted block.
This function thus enables one to delete blocks of text rapidly.
At all times, syntactical correctness is maintained and any
placeholders which are required will be automatically inserted.

3.5.3 Block Deletion
This is the more general delete function which is available in
most simple editors. The function allows the user to delete a
specifiable block of text. In this PDL syntax-directed editor
much checking of the chosen block must be performed so that only
a deletion which will not affect the syntactical correctness of
the PDL program will be accepted. The tree structure for this
function is shown in Pig.3.20.
If a block of text is to be deleted, after the Block Delete
function key has been depressed, the user is prompted to use the
Begin Block key when Cursor 1 on Screen 1 indicates the beginning
of the block to be deleted.
The user has the choice to use either the cursor movements
coupled with the Begin Block function key to indicate the block
start line, or use the Line Editor to specify a numeric line
number. Thus, the Window screen will contain the message: "Start
line number =".... A line number is ENTERed for acceptance. Thus,
if the Begin Block key is used to enter the numerical line number

Page 30

In the Window Screen, an error will occur. This means that the
Begin Block function key chooses the line indicated by Cursor 1
on Screen 1 only when there is no line number specified in the
Window Screen.

Line Del Constr Del
. ^

Begin Block

End Block Abort

Accept (Accept or reject to delete the given block?) Reject
~’T r

Fig.3.20: The tree structure for Block Delete mode

Before a start line can be accepted, it must be checked. If any
error occurs (eg, trying to delete the first line in the program)
the user is warned and the level of operation remains unchanged.
If no error occurs, the next state is entered to allow the user
to specify the end of the block which is to be deleted. It is
worthy to note here that the RETURN function key will position
the user in the previous system state, thus implying an exit from
Block Delete mode.
In choosing a line to end the delete block, again the user can
make use of the cursor movements together with the End Block
function key, or the Line Edit features for specifying a
numerical line number. The Window Screen prompt will now be:

"Start .line number = XX; End line number ="...
where XX is the numerical value of the previously ch'ien line
A useful feature here is the dynamic highlighting of any lines
chosen for the delete block as Cursor 1 is moved.
At this level, the RETURN function key will move the user back to
the stage where an initial start line is still to be specified.
The Abort function key is useful for cleanly aborting any
unwanted operation at this stage.
Once an end line has been chosen, extensive error checking occurs
to determine whether the chosen block can be deleted without
disrupting the PDL program's syntax. As an example, the If-then
part of an If-then-else construct cannot be deleted, as it leaves
an incomplete (or syntactically incorrect) construct in the

Page 31

program.

1 ... 1
111 Variables: 1

1
11 Variables: 1

|12 Boolean: 1 12 Boolean: 1
113 Single: 1 13 Single: 1
|14 Local: | 14 Local: 1
115 ABC | 15 ABC 1
llfi Array: 1 16 Array: 1
117 Global: I 17 Global: 1
118 MODE | 13 MODE I
119 Local: I 19 Local: 1
|20 PED | 20
(21 Integer: i 21 Integer: I
122 Single: I 22 Single: 1
|23 Permanent: j 23 Permanent: 1
124 RED | 24
125 BLUE | 25
[Delete lines _ 1 Delete lines 18 to _ 1
1 Choose the start of block | Choose the end of block 1
11.BeginBLK 10.RETURN I 1.EndBLK 2.Abort 10.RETURN!

(a) (b)

1 ... 1
111 Variables: 1 11 Variables: 1
112 Boolean: 1 12 Boolean: 1
113 Single: I 13 Single: 1
114 Local: 1 14 Local: 1
|15 ABC | 15
116 Array: 1 16 Integer: I
117 Global: I 17 Single: 1
llfi MODE | 18 Permanent: I113 Local: I 15125 FED |21 Integer: 122 Single: 1 122 Permanent: I i
24 RED |
25 BLUE | __________
Delete lines 18 to 24 | | 1
Accept to delete the block? 1
1.Accept 3.Reject I l.LineDel 2.ConstrDel ... |

(c) (d)
Pig.3.21: Using the Block Delete function

An error-free example of Block Deletion in the Data
Description segment is shown above. Figure (a) shows the
screen layout after the BlockDel function key has been
depressed in Delete mode. The Line Editor features are used
to ENTER the line number "10". As shown in figure (b),
Cursor 1 moves to line 18 and the user is prompted for the
end line of the block. This time, the cursor movement keys

Page 32

nre used. As the cursor moves, the lines from line 18 to
the current cursor position are highlighted dynamically,
and when the EndBLK function key is depressed, the display
screen will be as in figure {c). Note that in the Window
Screen, the end line number was automatically filled in.
Figure (d) shows the final result after the block from line
18 to line 24 has been deleted. Note that block limits
start and end at a data item name. Note also that, although
the block specifies lines 18 to 24, only the data items
included in that block have been deleted. (Any necessary
key words included in the block have been retained, while
unnecessary key words outside the block limits have been
deleted.) Key word ordering has also been dealt with
automatically.

It is important to note that a block with a start line in the
Data Description segment and an end line in the Algorithm segment
is not acceptable. Only a pure Data Description segment delete
block, or a pure Algorithm segment delete block will be accepted.
In the Data Description segment, the start and end lines of the
delete block may only contain a data item name. A block starting
or ending on a data definition key word will not be accepted. All
the deletion of intermediate key words will automatically be
cuken care of by the system. Fig.3.21 will help to illustrate the
operation and power of the Block Delete function as applied to
the Data Description segment.
When an acceptable block has been defined, it will be
highlighted, and the user will be asked if he wishes to delete
the chosen block. Rejection will return the user to redefine the
end line. (From here, this mode can also be aborted.) Acceptance
will automatically delete the indicated block, with any necessary
placeholders inserted. In the Data Description segment, all
unnecessary key words will automatically be removed. The Main
Screen is reformatted; Cursor 1 is positioned on the line after
the deleted block; and the user is returned to Delete mode.

3.6 Copy Mode *Note: This level is as yet unimplemented*

3.6.1 Single Line Copy
The Line Copy function enables the user to copy any line of text
to any destination, if in so doing the PDL program remains
syntactically correct. As shown in the tree structure of
Fig.3.22, first the line to be copied, and then the destination
need to be specified by the user.
Again, as in Delete mode, the user is given the ability to enter
the required inputs either pictorially (by using the cursor
movements together with the This Line or After This Line function
keys) or numerically (using the Line Editor facilities in the
Window Screen).
After depressing the Line Copy function key, the Window Screen
prompt will be; "Copy line ".... The user then either moves
Cur-or 1 to the required line and uses the This Line function key

Page 33

to choose it or ENTERS a line number in the Window Screen. The
chosen line number (corresponding to the line number which will
be copied) is displayed in reverse video font, and the user is
prompted for the destination. If instead of choosing a copy line,
the RETURN key is used. Line Copy mode will be abandoned.

Line Copy Clock Copy _
This Line RETURN

I

After This Line Abort
I I

Pig.3.22: The tree structure for Line Copy mode
Note that no acknowledgement from the user is required. The
reason for this is twofold: the Line Copy function involves
the addition of only one extra line? and a copy process is
in any case easily reversed by deleting any extra lines
created.

When a copy line has been chosen, the Window Screen will display:
"Copy line XX after line "...

where XX is the line number of the copy line.
The line which i.s to be chosen is the line after which the copy
line will be copied. Use of the Abort function key at this stage
will cleanly abandon this Line Copy mode, whereas the RETURN key
will request that the user re-enter the copy line (ie. previous

Both the copy line and the destination lines are checked for
possible syntactical errors. For example, no line containing a
key word or a placeholder may be copied. Also, neither the copy
nor destination lines may occur in the Data Description segment.
Essentially, only a user-entered algorithm statement may be
copied. It is important to note that when copying is performed,
indentation of the copied line is calculated, and the new line
automatically formatted. After a copy line operation Cursor 1 is
positioned at the new copied line.

3.6.2 Block Copy
The Block Copy function is the more useful function where a block
of text can be copied to another section of the file. The user
will specify a block of text and its destination. If the required
copy operation will not affect the PDL program's syntactical

Page 34

correctness, then it will be performed,
this function is as shown in Fig,3.23.

The tree structure for

Line Copy

Begin Block
I
y

End Block

Block Copy

I

After This Line Abort

Fig.3,23: The tree structure for Block Copy mode
Again no acknowledgement from the user is required before
the operation can be executed; the reason being a
compromise between system user speed and user friendliness.

The copy block is chosen in the usual way, with the Window Screen
presenting a numerical input alternative. The format used for
this purpose is:

"Copy lines XX to YY after line ZZ"
where XX = start of the copy block line

YY = end of the copy block line
ZZ = destination line

The block is highlighted as it is chosen (ie. dynamically). At
all times the RETURN function key will essentially undo the
previous choice, thus taking the user back one level. The Abort
key is available for cleanly exiting this Block Copy mode
ignoring any choices made.
When the copy block has been chosen and highlighted on the Main
Screen, an alternative Cursor 1 font is required so that the user
can choose the destination. A blinking line number in the margin
of the Main Screen is thus used for Cursor 1. As destination, the
user must indicate the line after which the copy block is to be
placed. Once a destination line has been chosen (either by using,
the After This Line function key, or the Line Editor facilities)
the copy operation will immediately (if it is legitimate) be'
performed.
Clearly, to maintain the program's syntactical order, checking is
done at every stage of user input. No copy function can be
performed (wholly or partially) on the Data Description segment.
Only entire constructs may be copied; part of a construct cannot

be copied unless it contains no system generated key words.
On successfully copying a block of text, the new block will be
appropriately indented according to its location in the PDL
program. Any extra placeholder in the destination's vicinity will
be removed. Cursor 1 will be positioned at the beginning of the
newly inserted text block afer the copy operation is complete.

3.7 Move Mode *Note: This level is as yet unimplemented*

This mode basically involves the use of a Copy function followed
by a Delete function. (Firstly the original lines are copied to
the destination; then the original lines are deleted.) Thus the
ilove mode is not regarded as a primitive editor function, but a
derived function. Although this is the case, most modern editors
include a i'.ove facility as it greatly alleviates the user's
editing burden.
3.7.1 Single Line Move
The user makes use of this function to move a single line to
another file position. In so doing, the PDL program’s syntax must
remain intact. From the tree structure of Pig.3.24 it can be seen
that no confirmation of the action is requested from the user.
Again this is done so as to increase usage speed. The Move
function is also easily reversed (particularly for a single

RETURN

RETURN
I

RETURN

Fig.3.24: The tree structure for Line Move mode

The user is presented with an almost identical procedure as that
of Line Copy mode. Input lines are entered via the function keys
This Line and After This Line or using the Line Editor in the
Window Screen to enter the line numbers directly. The Window
Screen prompt will be as follows:

"Move line XX after line YY"
where XX = the line number to be moved

YY = the line number after which line XX must be moved

Line Hove Block Move

rT '..This Line

After This Line Abort
I I

Page 36

1
113 If (X > Max Size)
114
115
115 else:
117 X := 0
118 Repeat:
119 <CONSTRUCT>
120 Until (X = Max Size)
121
1
fll.LineMov 2.BlockHov ...

(a)

13 If (X > Max Size)
14 then:
15 X X + 1

18 Repeat:
19 <CONSTRUCT>
20 Until (X = Max Size)
21 End If:
Move line _
Choose the move line
l.ThisLine 10.RETURN

(b)

I
113 If (X > Max Size)
114 then:
115 X := X + 1
|16 else:
117 X := 0
118 Repeat:
(19 <CONSTRUCT>
120 Until (X = Max Size)
j21 End If:
I Move line 15 after line _
I Choose the destination line
ll.AfterTLn 2.Abort ...

I
113 If (X > Max Size)
114 then:
115 X := X + 1
116 else:
117 X := 0
|18 Repeat:(15 <CONSTRUCT>
120 Until (X = Max Size)
121 End If:
(Move line 15 after line _
(Choose the destination line
ll.AfterTLn 2.Abort ...

I ... I
113 If (X > Max Size} I
|14 then: I
115 < CONSTRUCT I
|16 else: I
117 X := 0 I
118 Repeat: I
113 X := X + 1 I
120 Until (X = Max Size) I
121 End If: I

| = |
ll.LineMov 2.BlockMov ... I

Fig.3.25: Using the Line Move function
The screen layout in Move mode before the LineMov function
key is depressed is shown in figure (a) while figure (b)

shows the layout after the Line Move function has been
selected. At this stage, the Main Screen display is
unchanged. The user then moves Cursor 1 (now at line 16) to
line 15 and depresses the ThisLine function key. This
results in figure (c). A destination line is now chosen by
moving Cursor 1 (now in blinking font) to line 19 as in
figure (d). After the AfterTLn function key has been
depressed, figure (e) results. Note that the destination
line number in the Window Screen is never displayed if the
user enters it pictorially via Cursor 1 movements. Also, it
can be seen that a placeholder has been inserted at line 15
while one has been removed at line 19 to maintain the
program syntactically correct. The newly moved line (line
19) can be seen to have a new indentation to blend with its
new position.

RETURN and Abort function keys have their usual meanings and
provide the user with full flexibility when in this mode. The
same restrictions for copying a line apply to the Move facility.
Thus the user may only move completely user-entered text lines in
the Algorithm segment.
When a line is moved, any necessary placeholders will be inserted
or deleted as required (see Fig.3.25). The line which is moved is
automatically indented to match its new surroundings. After a
move operation. Cursor 1 will be positioned at the newly moved
line. Figure 3.25 shows an example of using the Move function
correctly with its associated features.

3.7.2 Block Move
This function is used to move a specified PDL block to a
specified location in the file. As in Block Copy mode, much
checking for legitimate inputs is needed to maintain syntactical
correctness. The trie structure used in Block Move mode can be
seen in Fig.3.26.

Block Move

Begin Block
IIEnd Block
Ij'

After This Line
I

A

RETURN
I

Fig.3.26: The tree structure for Block Move mode

Page 38

Almost identical to the Block Copy mode operation, the user
enters the move block via the two alternative methods. The Window
Screen display is as follows:

"Move lines XX to YY after line ZZ"
where XX = the start line for the move block

YY = the end line for the move block
ZZ = the line after which the move block will be placed

The usual Abort and RETURN functions are available to enhance
flexibility. After the move block has been chosen and highlighted
on Screen 1, Cursor 1 reverts to a blinking cursor thus enabling
the user to enter the destination line. The same restrictions of
Block Copy mode apply here for maintaining syntactical order.
A successfully moved text block will be automatically indented to
suit its new location. Additional placeholders will be removed,
while necessary placeholders are inserted. After the operation.
Cursor 1 will bs placed at the beginning of the newly moved

Page 39

4 UNIMPLEMENTED AND EXTENDED FEATURES

4.1 Package Completion

Although the full package has been described in the chapters
above, many functions still have to be implemented. The present
version of the system has no Front-end. It makes use of the ESC
key from Base Level to exit the editor. A primitive facility for
specifying the input and output files is provided in the main
program, but a more flexible interface is needed.
At this stage, errors and placeholders are not displayed on
Screen 1 in reverse video font. This is partially because there
is as yet no form of parsing of an entered line or semantic
detection such as checking for undefined variable names. The
Delete function has been investigated, but not included in the
package due to unforseen problems. The Move and Copy facilities
also have not yet been implemented. Although the above
shortcomings may seem restrictive, the skeleton structure and
principal concepts have been finalized and are functional.

4.2 Semantic Checking Abilities

As PDL can be written in a very verbal manner, it is difficult to
try to incorporate a compiler facility to check for semantic
correctness into such a package. However, if the user is given a
choice of whether parsing is to be performed or not, then
designing down to any desired level is possible. A bottom level
design can thus be fully compiled on entry. This would involve a
parser to check each line for correctness after it has been
entered. In a similar manner, constants or variables which have
not been declared in the Data Description segment will be flagged
as errors.
An interesting feature of the system is that information can be
obtained on any error in the program (highlighted in reverse
video font on Screen 1) by depressing a predefined key. A counter
value can also be kept on the number of errors so that the user
will know when the program is completely error-free.

4.3 Ellipsis Facility

An ellipsis function can easily be provided from the indentation
values of each line. This function will ellide (or temporarily
remove from view) blocks of the program on Screen 1 which are
indented beyond a certain ellipsis level. This will permit the
user to view the whole program on Screen 1, and then descend into
the lower levels of interest by selecting the appropriate

Page 40

ellipsis level.

4.4 The Undo Stack

An UNDO facility will prove useful to both the novice and the
experienced user. The user will be able to recover from any
accidental editing operation that has been performed on the file.
Related to this function, a set of keys can also be made
available to store a block of program on the stack and bring it
back when required. This function would be especially useful when
performing tricky operations with the syntax-directed template-
based editor.
Pig.4.1 depicts an example where this function could be used. It
involves the changing of a Repeat-until construct into a While-do
construct. This procedure may seem more complex than the standard
text editor method, but it is the price which must be paid to
preserve syntactical correctness.

L, I :■ 0 I
114 Repeati | 114 Call POINTER MOVE (Line)
115 I := I + 1 1 1
116 Line := Line + 1 I 1 X! i
117 Call FORMATTER (I, Line)I 1
118 Until (I > Max Line) I 1 i
119 Call POINTER MOVE (Line) 1 1 i

(a) (b)

L I :=> 0 1 !„
::: !

I := 0 |
|I4 While <CONDITION> dot I 114 While (I > Max Line) do: j
115 <CONSTRUCT> 1 125 I != I + 1 |
116 End While: 1 116 Line := Line + 1 I
117 Call POINTER MOVE (Line) | 117 call FORMATTER (I, Line)|
1 118 End While: I
1 119 Call POINTER MOVE (Line) |

(c) (d)
Fig.4.1: Using the "undo" stack

In figure (a), lines 15 to 17 have been saved on the stack. As
can be seen, the display is not affected. Lines 14 through 18
are now deleted using a Block Delete function. This is shown
in figure (b). With Cursor 1 positioned at line 13, a While-do
block is inserted as shown in figure (c). The condition is now
filled in using the Line Modify function, after which, with
Cursor 1 on line 14 or 15, the stack contents is retrieved to
produce the result of figure (d)„

Pays 41

4.5 Standard Text Editor Compatibility

As is, the PDL syntax editor uses a coded version of the file
(extension ".COD") for its internal functions. It is not
currently possible to obtain a coded version of a text file. The
translating of a text file into a system-usable coded form is
regarded as an extra, as the' design effort in the construction of
such a parsing program is onsiderable. The problem that arises
here is one of compatibilit , because if a text file is presented
to the system in a faulty c cate, a great deal of computation is
needed for each line to determine all the program faults.
If such a translator can be constructed, a program written with a
standard text editor can be coded and thus prettyprinted by the
system. In this way, such an externally created program can then
be accessed with this PDL syntax-directed editor where all its
convenient features can be used for any subsequent editing.

4.6 Language Translator Possibilities

A major spin-off from this system will come in the form of a
series of translators which will convert low-level PDL into any
one of a commonly used language such as BASIC, FORTRAN, Pascal or
Ada. For this, the system would make use of the coded text output
file. The final user will thus be able to design in PDL, and then
decide on the best target language for the design. This is seen
as one of the ultimate uses of this package.

APPENDIX A Page 42

?xflSX3iEufisssj:ipiifiD_j;sD3Jjags

s f l m n s

1 Introduction 44

2 The Program Body 45

3 The Body of a Procedure 45

4 Data Description Segment 46
4.1 Data Function 46
4.2 Data Type 46
4.3 Data Structure 47
4.4 Data Scope 47
4.5 Data Name 47

5 Data Segment Construction 48

6 Algorithm Segment 48
6.1 Assignment 49
6.2 Selection 49
6.2.1 If-Tnen-Else 49
6.2.2 Case 49
6.3 Iteration 50
6.3.1 Repeat-Until 50
6.3.2 While-do 50
6.4 Procedure 50
6.5 Machine-Environment Interface 52
6.5.1 Data Input 52
6.5.2 Data Output 52
6.5.3 Abbreviated form of Get and Put 53

7 Array References 53

8 Arithmetic and Logic Operators...... 53

APPENDIX A Page 43

9 Comments................................. .

10 Sequential and Parallel Construct Execution

11 Data Plow Nomenclature
11.1 Process Description
11.2 Resource Description
11.2.1 Resource Data Aggregate Description
11.2.2 Resource Operations Description

12 An Example of a PDL Application

APPENDIX A Page 44

i iDkradssJiisD
The primary purpose of a Program Description Language (PDL)
is that of a means of communication between people
concerning an information processing task to be undertaken.
It must not be seen as equivalent to any particular high
level language whose primary function is to serve as a
means of communication between people and a computing
machine. Low nd high level software technologies (i.e.
languages) huve strict syntax and are terse in
construction. These requirements serve the needs of program
compilers but not so effectively the needs of the program
reader. Certain high level languages serve the needs of the
program writer and the reader reasonably well (i.e. Pascal,
Algol, Ada). Others serve the needs of the program writer
but leave the reader with a hard time trying to understand
the processing task (i.e. PL1, Fortran, Apl, Forth,
Assembler). It must not be thought that it is not possible
to write programs in say, Fortran, that communicate
effectively to the reader, as well as to the compiler, but
this requires a high order of self-discipline by the writer
to restrict himself to using features of the language which
emphasise design and lead to maintainable code.
The design and development of information processing tasks
requires a high level of self-discipline, simply because in
the nature of things it is a human characteristic to be
woolly, unstructured and illogical in our thinking.
A challenge which becomes readily apparent in any processing
task of note, is controlling the growth of program
complexity. It is remarkably simple to design programs which
are conceptually complex, time consuming to implement, and
almost impossible to modify and extend. No program of
usefulness to a party other than the designer should be
considered as a static entity. Rather, it should be viewed
as a dynamic object, having an initial simple existence, and
then growing in complexity and size. The point is reached
where further evolution and growth is halted because the
degree of complexity becomes unmanageable and the structure
too degenerate to redeem. There are effective methods for
managing complexity, and these will be examined in due
course.
The purpose of this document is not to introduce a formal
notation. In a sense this would detract from its primary
purpose. Nevertheless, there is a well defined framework of
concepts which will need to be adhered to. A disciplined
approach to the design and implementation of program tasks
is introduced, as also are the essential tools which are
required to achieve this.
The subjection of oneself to a discipline is sometimes
construed as an attack on creativity. Experience, however,

APPENDIX A Page 45

has shown (not only in this field of endeavour) that the
voluntary subjection to a discipline in fact leads to
greater freedom in being able to concentrate on the task on
hand, and not having to concern oneself afresh with major
infrastructural decisions each time a program is developed.

A Program is ‘■he name given to an information processing
task which ex.cutes for a limited time duration. The name
Task is used to refer to an information processing task,
which after initialisation, may execute indefinitely. It is
a particularly useful concept in the design of information
processing systems which may comprise many tasks executing
simultaneously.
The body of a program comprises well defined sections, as
set out below -
JBragirsio Ths-UaiDS-af-iMs-PiflgiaB

* data description segment *
£2isxDaj._£rsssjMi:ssj.

* the procedures are listed *

* the algorithm segment *
End Program:
The major segments of the program include the data
description, a listing of procedures (or subroutines)
external to this program module, and the body of executable
statements introduced by Begin and terminated by End.

3
In most respects this is similar to that listed for the body
of a program or task. It differs in that parameters which
are passed from the program (or another procedure) are

Sxasaduxs a-hŝ sams-si-iMs-Pxsssdurs
Inputs: Identifier A, Identifier B etc
Outputs: Identifier C, Identifier D etc

* data description segment *
S2XfiXfl3l_£XSSSdUXfi5i

* external procedures listed *

* the algorithm segment *
End Procedure:

APPENDIX A Page 46

The primary purpose of this segment is to unambiguously
communicate to the reader the characteristics of the data
structures which have been employed. The/ five
characteristics are -

- function
- type
- structure

and are individually considered.

4.1 csts-EtiDSjiiefl
The two data functions are -
a) £SCS^SD±5 A data value which is set once and does not

change is termed a Constant.
b) Variables An item of data which may be changed at will

in the course of program execution.

4.2 fiaia-Iyps
The type of an item of data describes its essential nature
and may be one of several possibilities, including a
Character, Boolean, Integer or Real. The nature of these
types are further considered.
a) Character The data word is said to be able to represent

all printable (and quite a few non-printable) characters
i.e. from (A - Z}, {a - z}, {0 - 9}, to (10 ...%) }.
The ASCII (American Standard Code for Information
Interchange) code is one of the codes widely used to
represent these characters in a data word.

b) BsfilgaiJ A data word with the type of Boolean (logical)
can only take on the values of TRUE or FALSE.

c) JniSSSJ: A data word with Integer representation implies
that the range of whole numbers which may be represented
is the range {- 2**n to + 2**n -1} where n represents
the number of bits per memory word.

d) .Real A data item with Real representation implies that a
number is stored in scientific or floating point form.

Beyond these basic data types, a new type may be defined in
* terms of these basic types or in terms of an enumerated set
of items. Aggregates of data (i.e. records and arrays) may
also be defined as basic data types. A list data structure
will, for example, require an array of records, where the
record may be defined as a basic type as

APPENDIX A

List Entry = record:
Forward Pointer : integer
Symbol : char

End record:
4.3 SatS-SiltifiiJJIS

This refers to the number of data items forming the data
item. The two possibilities with which we will concern
ourselves are those of -
a) Sinsls implies that a single data item is considered.
b) Array implies an aggregate of data items of the same

type is considered.

4.4 ssis_5ssae
The scope of data refers to its degree of accessibility. In
some instances it is desirable that a data item be
accessible only to the immediate environment of that program
or procedure. On other occasions we require that a data item
be accessible to a number of (or all) procedures. Four
degrees of accessibility are defined -
a) iflssl implies that the data item is accessible within

the present procedure only. When that procedure is not
executing then that data item does not exist.

b) External When a data item is declared as external then
the implication is that it has been defined in a higher
level procedure. In this instance the data item must
appear in the parameter list (input and/or output) of
the called procedure.

c) As its name implies, a data item which is
declared as global in scope is available to all
procedures for manipulation. This breadth of
accessiblity is necessary in many instances, but can
result in intractable problems e.g. in trying to
establish which procedure may be responsible for
corrupting a data value. To limit the breadth of this
accessibility it is useful to p]ace such data items in
partitions.

d) pefinanent The concept of a permanent identifier is
particularly useful in information processing systems
which comprise multiple tasks. It is used in the sense
that once created it exists for the duration of the
system. A permanent identifier may be local or global

4.5 Ba£5_i?aBfi
The name of a data item is most frequently referred to as an
identifier. The identifier may be as long as necessary to
clearly convey its purpose. Meaningless abbreviations do not
serve the reader and hinder comprehension.

Baia-SssBsni-SsBsimsiiati
The five characteristics referred to in the Data Description
are linked together in the following order of precedence -
{function} {type} {structure} {scope} {identifier(s}}
in a structured fashion beginning with the function. For the
sake of clarity each of the characteristics is placed on
separate lines with successive indentation. The resulting
graphical presentation of the data description enhances the
reader's comprehension. The following example will help to
clarify these concepts.
TUSSSX

List Entry = Record;
Forward Pointer : integer
Symbol : Char

End Record:

StiSStSDiSl
Char?

DoubleSpace ;= 1 ’
Integer:

Single:
External:

Maximum Items
Maximum record length

Y5j;id&l££i
Char:

External:
Text record = of size(Maximum

record length)
Boolean:

Single:
Condition

Integer:
Single:

External:
This record length

List Entry:
Array:

Local:
List * of size (Maximum Items)

S.XasxiilicLSfigiDSflJ:
The constructs required to implement any processing task
include those of sequence, selection, and iteration. While it
is true that these ate sufficient, used in isolation the
problem of complexity will rapidly become evident. The major
tool for controlling and reducing complexity is the procedure
facility.

APPENDIX A Page 49

In addition to those already mentioned, facilities are
required for the computing machine to communicate with its
enviroment.

6.1 ASS.iS.DIDS.ni
This construct will always feature the process of assignment

identifier := function of other identifiers
The expression -

is a simple example of assignment

6.2 SsISSiiSD
The simplest example of selection is the If-Then-Else
construct with its two possibilities of choice. More
generally useful is the Case construct, which allows a choice
from amongst any number of constructs.

6.2.1 IfrlilSDrSlSS
A test is made on a condition which must be a boolean
variable.

If (Condition is true)
Sequence A
Sequence B

For the true condition Sequence A is executed, after which
execution continues after the End if: termination of the
construct. For the not true condition Sequence B is executed,
whereafter execution continues after the end of the
construct.
In many instances the else condition is not required. The
following simpler form should then be used.

If (Condition is true)
Sequence A

6.2.2 Sass
In contrast to a condition which was tested, the Case
construct allows the test item to be any one of a discrete
nature i.e. character, boolean or integer. The form of this
construct is -

APPENDIX A Page 50

Case Option of:
Option 1: Sequence A
Option 2: Sequence B
Option M: Sequence M
Else: Sequence M

Bnd case:
If the variable Option does not match one of the stated
options (Options 1 to M) then control passes to the Else:
option and Sequence N is executed. In each instance, once the
appropriate Sequence has been executed, control passes to
the next statement following the End Case: statement.
If the Else condition is not required, then it should not be
included in the construct.

6.3 JjiSXSiiSD
Two forms of iteration are considered. The Repeat-Until and
the While - Do constructs.

6.3.1 £spssj;_r_IZcti2
The primary feature of this construct is that the executable
steps between Repeat and Until are executed at least once.

Condition := false
Repeat:

Step A
Step B
Step to modify test condition

Until: (Condition is true)

6.3.2
In contrast to the Repeat - Until, the executable steps
enclosed by this construct might not be executed at all,
depending on the initial value of the test condition. In the
example shown the statements will be executed at least once,
since the initial value of Condition is false.

Condition := false
While (condition is false)

do:
Step A
Step B
Step to change the state of Condition

End while:

6.4 piacsAmfi
A procedure is invoked by the statement -
Call {procedurenamej(input parameters) output parameters

APPENDIX A

The input parameters list is enclosed between () to
unambiguously indicate the direction of the passed parameter.
If there are no input parameters then the () simply appear
after the procedure name. A parameter that must be passed in
and out of a procedure will appear in both the input and
output lists.
Perhaps the most prevalent view of the use of the procedure
construct is that of simply replacing multiple instances of a
code sequence with a single statement which results in that
replaced code sequence being executed, while this concept is
certainly valid, it takes no account of the power of the
procedure concept from a coherent system building viewpoint.
The most powerful conceptual use of the procedure which has
emerged from recent research in software engineering is that
of 1 information hiding1. The concept here is that of
surrounding a data structure with all the necessary functions
(i.e. procedures) to access and modify that structure. Take,
for example, the data structure of a stack. The relevant
operators to provide all required functions on the stack are:

- Initialise stack () stack status
- push onto stack (data value) stack status
- Pop off the stack () data value, stack status
- Top of stack () data value, stack status

It is now quite irrelevant to the user of these operators
exactly how the stack is implemented, we have 'hidden' the
stack behind four operators, and at the same time provided
for the benefit of the user four 'abstractions' which
encompass all meaningful operations on the stack.
This concept of 1 information hiding1 is considered valuable
for the following reasons -
- Managing system complexity

A set of operators which embody all required functions to
be performed on a data structure enables the designer to
build large and complex systems which are understandable.
Unless determined steps are taken to control complexity,
the designer will lose appreciation of how the parts
affect the whole.

- Assists system evolution
By surrounding all data structures with a relevant set of
operators, the system may be allowed to evolve in a
systematic fashion.

- Aids in the location of errors
By restricting access of each data structure to a limited
set of operators, the location of a source of data
corruption is immediately traceable to that set of
operators responsible for manipulating that data
aggregate.
It provides reusable modules

APPENDIX Page 52

It has been suggested that the greatest enhancement in
software productivity has come from the concept of
'modularisation' of software. Well-known examples of this
are the libraries of mathematical subroutines provided in
common high level languages. The concept here is that of
accumulating, with time, modules comprising data
structures and their associated operators.

As in most instances where a course of action has substantial
benefits, there are attendant costs. The principal cost in
this case is the additional effort that must be devoted to
developing the required set of operators. A further penalty
is the possible loss in program execution efficiency and an
increase in memory requirements.

6.5 £j3£MD5_r_£DifJ,iSDCiSfli;_Ini5ifa5S
Experience shows that there is more disparity in the approach
to handling data input and output than in any other area of
language construction. In this PDL data input and output are
handled through the constructs of GET and PUT, respectively.
Unless the origin and destination of the data are specified,
it will be assumed that the Keyboard and the Console are the
input/output devices, respectively.

6.5.1 fial3_JDS3j;
The general form of this construct is -

Source device: identifier(s)
End get:

For example,
Diskfile: Text record

End get:

6 = 5.2 fiflJfcSUDUtilUj;
The general form of this construct is •

Output device: * identifier;s) and/or
text strings *

End Put:
For example -

"Text messages between quotes"
Newline
"On this line";
"The semi-colon implies stay on the same line"
Identifier 1
"And another message"
Newline

End put:

APPENDIX A Page 53

The above example shows the various elements of a Put
titatement In a language independent fashion. Printable text
is enclosed between quotes. The Newline implies skip to the
next line. The semicolon is ussed to prevent skipping to the
next line on completion of the last task, whether it be
printing a message or the value? of an indentifier.

6 . 5 . 3 A bfcxsy i3 £ £ d _ 2 £ lE iS _ fli_ 5 e£ _ 3 B iL P .u J:

Since the process of moving an item of data to or from a
device is conceptually equivalent to the process of
assignment, the following form of device/identifier statement
is useful.

Device: := identifier or
identifier := device:

A device is distinguished from an Identifier by the colon
following the device name.

7 hzxax B s i s - r s n s s s

A simple array will require a single pointer to reference a
given location.
Array Name:Pointer dati item

The colon indicates that Array Name is referenced by Pointer.
A field of a record in an array of records is referenced as
follows.
Array Name.Field Name:Pointer := data item
The name following the dot after the array name is the
referenced field.

8 AEittiJIIStiS-aDd-lifiSlS-DBSISifllS
The following symbols are used for common arithmetic and
logical operations
Cpsjraiiscplus +

minus
multiply *
divide /
Raise to power n A n
Modulo n operation MOD N
And AND
Exclusive Or XOR
Complement NOT

9
Comments may be freely interspersed in the text, and are
indicated as such by placing the comment text between

APPENDIX A Page 54

asterisks. For example -
* this is an example of a comment *

i o ^ e g t iS f l t i a l_ a B 3 - P s x a 2 1 s 2 ,_ £ iS D S ix j is J : - £ j$ s s u ± i5 a
The need frequently arises to distinguish between constructs
intended for execution in serial or parallel fashion. In some
instances the need arises to allow for both forms of
construct execution in the context of a single tack.
The PDL discipline already introduced assumes that an
information processing task can be represented by a series of
constructs, as follows.

Construct A
Construct B
Construct C
Construct N

The implicit assumption here is that executions begins with
the construct following the keyword 1 Begin:1. The execution
of Construct A then proceeds to completion before continuing
to execute Construct B, Execution will ultimately be
terminated at the keyword ‘Ends'. Serial execution of the
constructs is implied.
When it is desired that the constructs execute in parallel,
the description may be viewed as

Construct A; Construct B; r Construct N

where the semi-colon implies simultaneous construct
execution.
A significant textual problem arises in adopting such a
documentation convention in view of the obvious constraint on
page width. A useful expedient here is to retreat to the
alternative serial listing of constructs, with the condition
that alternative keywords be used to reflect the parallel
construct execution, as follows.

Cobegins
Construct A
Construct B
Construct C
Construct N

Coend:
All constructs between Cobegins and Coend; are considered to
execute in parallel or concurrently.
When the occasion arises to distinguish between those
constructs executing in parallel and those executing in

APPENDIX A

serial fashion, the successive application of the relevant
keywords surrounding the constructs of interest will serve to
indicate the correct sense.

Begins
Construct A
Construct B
Construct C
Cobegins

Construct D
Construct E
Construct F

Construct G
Construct H

Constructs A to C first execute serially. Constructs D to F
then execute in parallel. Only when execution of this block
is completed is serial execution of the remaining statements
undertaken.

11
Data Flow analysis partitions a system into processes and
resources. It is helpful to define the specific format of
program modules that use this form of system construction.

11.1 PifiSSSS-DSSSXiSliSD
A process as defined as an area of activity endlessly
consuming and processing instructions or data. This
behaviour is described as

PXSSSSS ltke_D3jDfi_Si_„£MS-EI2£SS5l
(local data description}

Repeat: forever
* fetch an instruction (or data item) *
* process the instruction (or data item) *

End Process:

11.2 £SS2]JX££_P£SGl‘iPl;.i<5D
A resource comprises a data aggregate and a series of
operations to be performed on that aggregate. The description
of the data aggregate is undertaken separately from a
description of the operations.

APPENDIX A Page 56

11.2.1 BsssjJxsfi-Bsts-Agaxsaats-DsssiipiisD
The focm of this description is as follows.

£eSSJjI55____ {DSIES^fl^PkiS-PSSStiPSSJ
£sj:iMDSDi.J3j;a_DS£5ij,pii2B
{all aspects of the common data aggregate are described }
End Resource:

11. 2 v 2 ES£SPX££_flS£Z3£j,2D5_D5£Slipj;iSD
The form of description used for each operation on the common
data elements of the resource is described as

flSSPatiOD___ i££5Syj££_ti3fli£lltiafllS_-ei_±M£_SP£J3£i£.Dl
Inputs: {list as needed}
Outputs: {list as needed}

* the algorithmic description for this
operation *

End Operation:

12 M-ExawlS-Qf-a-SBb^bsBlisatian

An example is given below of how a program using PDL notation
is presented. A vitally important aspect is the indentation
of the constructs as a graphical aid towards assisting reader
comprehension.

SiasSGiiXS___
*********** **************** *******************
* A Routine to move the cursor by an *
* externally defined number of moves and *
* in a given direction. ***

Inputs: Number of moves, Cursorfunction
Outputs: * None *
Csnsisntsi

Chars
Permanent:

Vducodes
Integer:

Single:
Permanent:

Console
Keyboard
Diskfile

yafiabla&iChar:
Single:

Cursorcode
Integer:

Single:
External:

Cursorfunction
Numberofmoves
Movecounter
Consolestatus

SzisioaJ-frsssduiss^
Putchar

If (Numberofmoves exceeds zero)
Movecounter
Cursorcode
Repeat:

Console: Cursorcode
End Puts
Movecounter := Movecounter - 1

Until: (Required number of moves are made)

End Procedure:

APPENDIX B Page 58

APPENDIX Bi SUMMARY OP SYSTEM LEVELS

From the System Level Hierarchy figure on the next page, the
system layout is presented in block format. The remainder of this
appendix details the tree structure diagams of the syntax-
directed editor package. The Front-end is regarded as a separate
system block, but Base Level is considered as the gateway into
the subsequent editing modes. It is with this in mind that the
following figures have been organized. A list of the contents of
this appendix is given below:

Eisiue-fiMdins ssss
System Level Hierarchy 59

1 The Front-end tree structure 60

2 The Base Level tree structure 61
2.1 The scrolling functions' tree structure 61
2.2 The tree structure for Edit Line mode 61
2.3 The Insert mode tree structure 62
2.3.1 The tree structure of the Data Description Insert mode 62
2.3.2 The tree structure for Construct Insert mode 63
2.3.3 The tree structure for Line Insert mode 63
2.4 The Delete mode tree structure - 64
2.4.1 The tree structure for Single Line Delete mode 64
2.4.2 The tree structure for Construct Delete mode 64
2.4.3 The tree structure for Block Delete mode 65
2.5 The Copy mode tree structure 66
2.5.1 The tree structure for Line Copy mode 66
2.5.2 The tree structure for Block Copy mode 66
2.6 The Move mode tree structure 67
2.6.1 The tree structure for Line Move mode 67
2.6.2 The tree structure for Block Move mode 67

APPENDIX B

I Front-ends I
I I
I Input / Output files I
I Interface I

I £3SS_I/2jf£l: I1------------- 1 l<-------------1

I Line Editing 1

1 1 | f I f | |
Y 1 V 1 V 1 Y 1

1 1 Delete Mode: 1 I Copy Mode $ I I Move Mode: 1
1 Line, 1
I Data Item I
land Construct!
1 Insertion j

1 Line, Block,I I
1 Data Item j I
land Construct! 1
1 Deletion I 1

Line and I
Block Copy 1

1

I Line and j
j Block Move 1! 1

System Level Hierarchy
A simplistic representation is given of the main system
levels together with their associated functions. The
interconnections indicate the possible movements between
levels open to the user. The highlighted, underscored
blocks indicate existing system features.

APPENDIX B Page 60

Enter the Editor

— — • Exit
I the editor

I
PageB PageP TopF BotF ToLin EditLn.......r

Yes (Are you Sure?) No

!
Return

Yes (Save formatted file?) No
I I

V
Yes (Keep a backup copy?)

Fig.Is The Front-end tree structure
Bracketed gues'-ions show the display which appears in the
Prompt Screen, und to which the user must respond.

APPENDIX B

End MORE <--T |
i i

Fig.2: The Base Level tree structure

PageB PageF TopF BotF ToLin

EditLn Insert Delete Move Copy

PageB PageF TopF BotF ToLin End i

i t i * i * i * i * i
To front-end

Fig.2.1: The scrolling functions' tree structure

EditLn Insert Delete Copy Move" I ♦
Fig.2.2$ The tree structure for Edit Line i

APPENDIX B Page 62

EditLn Insert Delete Copy Move MORE <---

 r - iLineln Data Des Construct RETURN 1
I I

Pig.2,3: The Insert mode tree structure

— > Data Deso Construct Lineln

Yes (Abandon this definition?) No

Type Continue
I 4 I

V
Return <—Constant Variable

....

V V V
Boolean Integer Real Character Others Continue

Local

V
Array

I I
Continue

I
Global

VReturn <-•
I

tExternal

t V
(Accept this definition?)

Continue

T
Fig.2.3.1! The tree structure of the Data Description Insert mode

Although all prompts and conditional branches have not been
labelled for the sake of clarity, bracketed questions
indicate prompts requiring user response.

APPENDIX B Page 63

Data Desc Construct Lineln Return--<----

1 .
If-th f-t-e While Repeat Case Case-e Cobeg Get Put Return

i t t __t„>—i.....?„> j__l>-.
Pig.2.3.2s The tree structure for Construct Insert mode

— > Data Des Construct Line Insert
......

T
Fig»2.3.3t The tree structure for Line Insert mode

APPENDIX B Page 64

EditLn Insert Delete Copy Move MORE •
I
I
tLine Del Conetr Del Block Del RETURN

I

Fig.2.4: The Delete mode tree structure

Pig,2.4.1: The tree structure for Single Line Delete mode

Line Del Constr Del Block Del RETURN

IAccept (Accept or reject to delete the given block?) Reject

T~________ >________ Zil.
Pig.2.4.2: The tree structure for Construct Delete mode

APPENDIX B Page 65

Line Del

yEnd Block
I

RETURN
I A

r
Accept (Accept or reject to delete the given block?) Reject

I I

Fig.2.4.3: The tree structure tor Block Delete mode

APPENDIX B Page 66

EdifcLn Insert Delete Copy Move MORE <— -

— ’. . ™ 7 ” iLine Copy Block Copy RETURN I
I I

Fig.2.5* The Copy mode tree structure

V
This Line

After This Line
I

Fig.2.5.1: The tree structure for Line Copy mode

Begin Block

Block Copy

~ r

v
End Block

After This Line

I

" T ~

RETURNI
RETURN

I

Fig.2.5.2: The tree structure for Block Copy mode

APPENDIX B Page 67

EditLn Insert Delete Copy Move

 T
Line Move Bloc' Move

Pig.2.6: The Move mode tree structure

Line Move
_ _ _

y
This Line

I
RETURN

I

After This LineI I

Fig.2,6,Is The tree structure for Line Move mode

Begin Block

V
End Block

After This Line Abort
I ""

RETURN
'{

RETURNI
RETURN

Fig,2,6.2s The tree structure for Block Move mode

APPENDIX C Paqc 68

APPENDIX Cl GLOSSARY OF TERMS USED

gflHgtxyc.t — a program block specific to the programming language
adopted (usually used to indicate decision or
looping)„

d.a£3_iLlflti_£fl.BSSPj;S — the design principles developed by
Dr.A.j.walker using processes and resources
as the key ele .ents,

— (also known as holophraating) is the replacement of a
program block by an ellipsis symbol so as to be able
to see the major top levels of a program with minimal
scrolling effort.

iQDSi — a terminal-specific video attribute (eg. blinking,
highlighting, etc.).

fraction kev — a physical key on the keyboard which is
programmed to execute a certain function.

— a system-generated, language dependent reserved word.
BSdfi — a system level in which the user can operate.
operator — a routine used bv a process to access a resource.

Each operator has a specific function on the
resource.

parage — a process which analyzes an input line to determine if
any semantic errors are present.

S2h — Program Descriotion Language: a terminal-independant high-
level structured design language used to describe both
hardware and software related designs.

Placeholder — a non-terminal in a program construct template
which must be expanded (usually into a condition
or statement) by the user.

■B-TS-t.tygf.lnfrin.g — the formatting of a program so as to emphasize
its logical structure? this is usually
performed by indenting each program line
appropriately.

SXQSSSS — an element used in design description to indicate an
activity. Processes are used for the management of
resources.

xgaefygd. , — language specific words which cannot be used in
a program other than for their predefined
purpose.

resow , — a passive element used in design description to
represent a data structure. Operators represent the

APPENDIX C

user's only access to a resource.
S.emanjliS-SirSirS — long distance, compiler detectable errors

created by the user disobeying language rules
(eg. undefined data item; type
incompatibility; vie.).

alals — a stopping point in the prog: r- rfhere some action must be
taken for a transition to another state to occur.

s.vntax errors — short-distance errors created due to incomplete
program constructs.

-template -- the skeleton structure of an entire construct block
containing key words and placeholders.

£*-6.3. Structure — a method used in this manual to illustrate
system levels and their transitions (a system
level is recognized by a specific set of ten
function keys).

— Visual Display Unit: (also known as a display terminal or
Cathode Ray Tube) is a screen used for visual output.

A FUNCTION-KEY DRIVEN SYNTAX-DIRECTED EDITOR FOR SOFTWARE
SYSTEMS DESIGN

D E S I G N E R ' S R E F E R E N C
(Version 1.0)

December 1985

Author; A.P.8assani.no

Signed:

A Project Report submitted to the Faculty of
University of the Witwatersrand, Johannesburg
fulfillment of the requirements for the degree c
Science in Engineering.

Engineering,
in partial
: Master of

CONTENTS

X INTRODUCTION 1 - 3

2 THE SYSTEM DESIGN......... 4 - 12
2.1 Top Level Design 4
2.2 System Principles 5
2.3 Process Decomposition 8

3 THE RESOURCES................ 13 - 38
3.1 Terminal Resource 13
3.1.1 Resource function 13
3.1.2 The operators 14
3.1.3 Resource structure 20

3.2 Definition Table 20
3.2.1 Resource function 20
3.2.2 The operators 21
3.2.3 Resource structure 22

3.3 Key Code Table 24
3.3.1 Resource function 24
3.3.2 The operators 24
3.3.3 Resource structure 25

3.4 Prompt Table 26
3.4.1 Resource function 26
3.4.2 The operators 27
3.4.3 Resource structure 27

3.5 Line Linked List 28
3.5.1 Resource function 28
3.5.2 The operators 29
3.5.3 Resource structure 32

3.6 Pile Linked List 34
3.6.1 Resource function 34
3.6.2 The operators 34
3.6.3 Resource structure 37

4 THE PROCESSES 39 - 74
4.1 The Line Editor 39
4.1.1 Process function 39
4.1.2 Process structure 39
4.1.3 Process routines 43

4.2 The F o n . .s f c te r 52
4.2.1 Process runction 5")
-'.2.2 '?rocess structure 5.

4.3 i’yster.! laoo Level 53
4.3.1 Process function
4.3.2 Process structure 5.
4.3.3 Process routines 57

4.4 'naert .lotie 65
4.4.1 Process function 65
4.4.2 Process utructur- 65
4.4.3 Process routines 67

Data Description seynent routine G7
Algorithm segment routine 70
Line Inserting routine 73

5 Til3 i-Ml! PP.OGRAK 75 - 78
5.1 Operation 75
5.2 Structure 76

6 IXDLBHENTATION AMD POHTARILITY CONSIDERATIONS 79 - 80

7 C^BllSIONS, !:ODIPICATIONS AND RAUDO:: THOUGHTS 81-9 3
7.1 The Front-end 81
7.2 Delete Mode 82
7.3 Copy Node 86
7.4 Hove flode 86
7.5 Semantic Error Detection 87
7.6 Ellipsis Facilities 88
7.7 The UNDO Stack 89
7.8 Possible Design IwprovoMonts 89
7.9 Future Package expansion and Integration 92

APPENDIX A: The Test Routines 94 -116
A.l Deifinitiott Table 94
A.2 Key Code Table 98
A.3 Protr.Jt Table 100
A.4 Line Linked List 102
A.5 File Linked Llot 112

A.6 Line editor 116

APPENDIX 3s Filenames anU :)ocu..-.entation Details 117-121
D.l resources 117
2 Processes 117

B.3 Documentation 120

APPENDIX C: Syster.i FaOleo............................... 122-126
C.l Definition Table 122
C.2 Key Code Table 124
C.3 Promat Table 125
C.4 Construct Table 125

APPENDIX D: Storage Piles............................... 127-127

REFERENCES 128-129

LIST OF FIGURES

1.1 A Process-cosourcc Hxamvlc 2
1.2 Example o£ a State Diagram 2

2.1 Top Level Design using processes ami resources 4
2.2 A PDL description of the Top Level Design 4
2.3 Process-resource diagram for the File editor Process S
2.4 Process-resource diagram for the Lino Dciitor Process 9
2.5 A PDL description of t.ic Line Editor Process 10
2.6 Process-resource diagram for the Formatter Process 11
2.7 A PDL description of the Formatter Process 11
4.1 Using the Lino Editor package 41
4.2 A PDL description of the Lino Editor 42
4.3 The PDL for the Line Sditor Load routine 43
4.4 The PDL for the [love Cursor Forward routine 44
4.5 The PDL for the hove Cursor Backward routine 45
4.6 The PDL for the Line Editor's Home routine 46
4.7 The PDL for the End of Line routine 46
4.3 The PDL for the Line Editor's Enter Text routine 48
4.9 The PDL for the Line Editor's Insert routine 49
4.10 The PDL for the Line Editor's Delete routine 50
4.11 The PDL for the Erase End of Line routine 51
4.12 The PDL for the Line Editor's Dump routine 51
4.13 A PDL description of the Formatter routine 52
4.14 The PDL structure for Base Level 55
4.15 The PDL for using any key or key combination 56
4.16 The PDL for fcne Cursor Up routine 57
4.17 The PDL for updating the .lain Screen 58
4.18 The PDL for the Cursor Down routine 58
4.19 The pdl for the Page Backward routine 59
4.20 The PDL for the Page Forward routine 60
4.21 The PDL for the Top of File routine 61
4.22 The PDL for the Bottom of File routine 62
4.23 The PDL for the Cursor to Line routine 63
4.24 The PDL for the Edit Line routine 64
4.25 The PDL for the Insert mode routine 66
4.26 The PDL for Data Description Insert mode 69
4.27 The PDL for the Placement routine 70
4.28 The PDL for Construct Insert mode 71
4.29 The PDL for the Get Construct routine 72
4.30 The PDL for the Indent routine 73
4.31 The PDL for the Insert Line routine 74
5.1 The structure for the PDL generator package 75
5.2 The PDL for the Main program 76
5.3 The PDL for the File Load routine 77
5.4 The PDL for the Formatted File Dump routine 77
5.5 The PDL for the Unformatted File Dump routine 78
7.1 The PDL for Line Delete mode 33
7.2 A PDL algorithm for Data Description Block Deletion 85
7.3 Indentation for Inputs, Outputs and Case construct 91
7.4 A neater algorithm for updating the Main Screen 92

INTRODUCTION

Throughout this guide, constant reference will be made to such
terms as PDL, Processes, Resources, and States. It is the
intention of this introductory chapter to familiarize the user
with the above terms in the context of complex software systt/ns
design. The concepts expressed here have been deviced by Di .
A.J.Walker of the Department of Electrical Engineering at tbits
university, and for further information on any of the topics
mentioned here, the relevant departmental documents should be
consulted. (. .'Iker (1984) , Bassanino (1985b))
As the package described here ,;.s a syntax-directed PDL editor,
the reader should be familiar with the concept of a Program
Description Language (PDL). (Caine (197 5)) This high-level
program-like language is used throughout this manual to describe
any pertinent algorithm features of the system. The reader is
referred to Appendix A of the User's Manual for the formal PDL
specification. (Bassanino (1985b))
In information processing syster analysis, the data flow concept
is a useful one. For this, two elements, processes and resources,
are necessary. A process is essentially an active element which
is responsible for the management of resources. A resource, on
the other hand, is a passive entity responsible for the
management of data.
Resources are characterized by their detail management of data.
These resources are accessed (by processes) via operations
performed on them. The operations will vary depending on the
required logical behavior of the resource. This can be compared
to an abstract data type, (Shankar (1984)) where the user knows
only of the operations and not of the internal implementation
details. Examples of physical resources are printers, VDUs, and
disk drives, while software or memory-based resources include
stacks, queues, and linked lists.
The resource concept exploits the prir-' via of "information
hiding", in which the user is unaware vt the data structure
behind the operations presented to him _?y the resource. This
concept forms the basis for a software component library. Thus,
resources can be compiled and tested separately to the system for
which they will be used. (Miller (1904)) All that is required is
to test that the operations performed on the resource will
function correctly under all circumstances. This thorough testing
procedure will ensure that the resources are 100% functional
before they are included for operation with the process. This
system of design lends itself to modular programming techniques.
Processes are machines used to transfer data between resources.
These are the entities which access the resources via their
operations in order to produce a working system. An example of a
process-resource diagram is given in Fig.1.1. IK-re, the Printer
process accesses the Buffer Queue resource, and transfers data to
the Printer resource at an acceptable rate.

Page 2

/ \
/ Buffer \ Read
\ Queue / •
\ /

Printer
Process

Write / \
 >--- 1 Printer I

____________ /

Pig.1.1: A Piocess-resource Example
The process is represented by the rectangular box, while
the resources are shown as the oval shapes. The ptocs&s
accesses the resources via operators which are written on
the connecting lines (eg. Read). The arrows indicate the
direction of data flow which is always from left to right.

Processes can be designed using a state approach. The activities
of a process can be categorized into a number of states. Each
state is a "stopping point" in an activity. From this state,
depending on the outcome of some particular test condition, a
transition will occur into another state. An example of a
graphical representation of a state diagram is shown in Fig.1.2.
The idea of a state concept to represent process behavior is a
key issue in this design.

 / ___/
i / \ / \ iI | State A I I State B I I

'\ / /'
Fig.1.2: Example of a State Diagram

States are written within the state bubble. The transitions
together with their associated conditions are drawn as
connecting lines.

The above methods, coupled
proved an effective approac'
merits of the process-resc
ease of comprehension oi
nature; its simple graphica-
power in terms of defining

process decomposition, have
. }e system design. Among the
Jology, we can recognize the
.hod because of its logical
ipfcion of system behavior; its

reusable "components"? and its
independence of technology for its implementation.
In the first level design, a single process is defined which
represents the entire system's capabilities. The resources used
by this only process, are those that represent inputs or outputs
to the environment external to the process.

The second level of design would see the single system process
decomposed into its major constituing activities. Associated with
these new, smaller processes, the necessary internally accessed
resources will emerge. New resources may be required due to the
internal coupling necessary between sub-processes. Similarly, the
process decomposition described above can continue to a stage
where further fragmentation is either impossible, illogical, or
disadvantageous.
The method described above is iterative, in that subsequent
levels of design examine each of the constituent activities of
the first level process in terms of their behavior and demand for
local resources. This clearly reduces the problem of complexity,
as design boundaries are defined for each level; only the
specific operations required of a resource being investigated for
the building of that resource.
This iterative methodology also leads to effective documentation.
At each level of design, each process's behavior may be described
in terms of its usage of resources. Each resource, in turn, may
be described in terms of its required behavior and the operations
to be performed on it. It is this approach which has been used in
the subsequent chapters.' of this manual.

THE SYSTEM DESIGN

2.1 Top Level Design

From a superficial level, the system can be seen as in Fig.2.1.
The user is aware only of the keyboard and diskfil -• as input
devices or resources, while the outputs are routed either to the
terminal display for visual inspection, or to the diskfile for
backup documentation purposes.

I Keyboard i-
\ /

I Diskfile .
\ /

Get-- >- i Syntax - I--- >—
I directed I

Read I Editor I Write
1 1

Display I

-I Diskfile I

Fig.2.1: Top Level Design using processes and resources

The resources can clearly bo subdivided. The keyboard will
contain the usual alphanumeric keys as well as the 10 function
keys which are dynamically defined by the system. Diskfile is
used both as an input and as an output resource. On loading the
editor, diskfile is accessed fcr the system tables and the coded
PDL file. After an editing session, the new file is rewritten
into diskfile for future reference. The VDU display is divided
into four logical screens whi :h will aid the user in operating
the system effectively.

Process syntax-directed PDL rV.Utor
Read the necessary system i i ■■ es to load the editor
Repeat:

*Read the required coded which corresponds to the file
which is to be edited*
Repeat:
* Allow the user to mod.tijr the file using the keyboard as
the input d.-vice, and i-he VDU screen as the output device*

Until (The user wishes tc terminate the editing of this file)
Write the edited coded file back onto disk

Until (The user wishes to exit the editor)
End Process:

Fig.2.2: A PDL description of the Top Level Design

rig.2.2 gives a very general description of the PDL syntax-
directed editor package. The system initially loads the required
files from disk. The user is then allowed to edit a PDL file
according to some complex algorithm; all logical representations
of the file being given on the VL ' screen. When the user is
through with editing this file, it will be stored back onto disk.

2.2 System Principles

The second and subsequent levels of design, as explained in
Chapter 1, involve the decomposition of the single system process
into its constituent parts. Before delving into this proble-n, it
will be constructive to take a look at the principles involved
behind the system construction. In this section some past work in
this area is briefly mentioned; the resources and basic system
structure for efficient system operation also being discussed.
Work was first started on the syntax-directed PDL editor package
in 1984 (Bassanino (1984), Master (1984)). The groundwork was
laid for future development and expansion, even though by the end
of that year only a demonstration system was available. In 1985
this project was continued to provide facilities for program
storage. Many of the resources and concepts of the previous year
were incorporated into this design, and similarly, many new
features and design changes were also necessary.
The system was designed as a template-based editor. The choice of
a generator approach as opposed to a recognizer approach was
mainly because of user convenience in program entry. Using this
method, syntactical correctness is maintained at all times by
preventing any syntactically incorrect operations. This
programming by selection allows the user to choose a construct
for insertion. A construct is inserted with a placeholder
indicating any construct section which is to be user-entered,
(eg. the <C0NDITI0N> in an If-then-else construct)
The generator approach has been used successfully as the basis
for syntax-directed editors such as the Cornell Program Synthesi
zer. The literature survey of Bassanino (1985a) gives a detailed
account of such projects. The recognizer approach is very similar
to a conventional editor, and syntax errors are allowed. It is
believed that this approach, in giving the user almost unbounded
freedom, does not satisfactorily teach or aid the user when
writing or editing a syntactically correct PDL program.
Programming by selection is suitable for program entry and gives
the designer the power to enter a PDL program in a series of
stepwise refinement iterations. This is one of the main
objectives of the package designed here, and with some
adjustment, the user will soon become accustomed to the different
method of operation of a syntax-directed editor as opposed to a
conventional text editor.
There must of necessity be a difference between the operation of
these two types of editor because of the increased power of the
former. Limitations on illegal operations are automatically
performed so that editing (as opposed to entry of) a PDL program
is also a simple task. These limitations, due to the necessity to

maintain syntactical correctness, is a price which must be paid
if the program is to emerge correct. The age-old problem of
converting an If-hhen-else construct into a While-do construct is
easily resolved by providing a temporary storage stack. (See
section 7.7)
From reading the User's Manual (Bassanino (1985b)), it will be
clear that a variety of visual cues are used on the four logical
screens to differentiate between errors, system-generated key
words, placeholders and function key definitions. The management
of the logical screens (Mail Screen, Window Screen, Prompt Screen
and Key Definition Screen) requires a considerable amount of
effort if only primitive functions are to be used.
It is advantageous to group these screen-based functions into a
single module" for convenience. This module, the Terminal
Resource, will have a set of high-level operations which will
make the system, as seen from outside the module, terminal
independent. Thus, the Terminal Resource will be responsible for
teriri .al or VDU based operations. All terminal dependence is
dealt with from within this module. The designer will have access
to this resource only via the specialized operations available
for each logical screen. This resource is thus used by processes
which require any form of screen management. The Terminal
Resource is explained further in section 3.1.
The PDL generator system has a set of standard PDL "reserved
words" (such as the "if" or "End if:" of an If-then-else
construct). Bach of these key words can be associated with an
indentation code. This code is used by the system for positioning
the key words in a formatted form on the Main Screen. The Key
Code Table is a resource containing any such key words together
with all the available placeholders. Bach of these words is
associated with a key code for easy identification, and an
indentation code. This table allows the system to combine the key
words in almost any desired order, and thus contributes to the
editor's flexibility. Further details of this resource can be
found in section 3.3.
Thu Prompt Table is an obvious resource which emerges with the
need for a prompt screen. The messages displayed on this screen
are uued to guide the user. As a full 80 character line of text
must be accounted for, any repeated prompts which are hard
programmed into the system will result in a large wastage of
memory space. The Prompt Table prevents this wastage by assigning
a unique integer code to each prompt line. Besides the obvious
memory space saving, all prompts will now be conveniently
situated in one location and can now become totally file based.
This too aids in making the system flexible and adaptive to any
possible changes in prompt message wording. Details regarding the
Prompt Table can be found in section 3.4.
Again, to make the system's operation as flexible as possible,
instead of hard coding the logic into the system routines, a
table driven approach was opted for. Using the concept of states,
the Definition Table was devised. This table corresponds closely
in operation to the tree structure diagrams adopted in the User's
Manual to describe system operation. Bach state is associated
with a specific function key definition line. The depression of
any valid key will possibly lead to a new state, with a prompt
being displayed in the Prompt Screen. The Definition Table

accounts for this by providing fields for a key code, next state
and prompt code for each key in the key definition line for that
state. This irsans that the calling program will only specify a
starting sts* e? all subsequent states being read from the
Definition Table. Thus, a great deal of system behavior can be
modified by changing the Definition Table data. This resource is
described fully in section 3.2.
The system uses a line-by-line editing concept as described
below. A line is chosen for editing from the file, and is edited
separately in the Window Screen. All line editing will be
performed using the Line Editor. When the line has been edited,
it can be inserted back into the file to replace the old line at
Cursor 1. Line operations, such as line delete or copy, are also
available. Thus, editing of the file is done using two editors:
one for horizontal, character editing; and the other for
vertical, line editing. All character editing is done on a line-
by-line basis in the Window Screen using Cursor 2, while file
editing (regarding a line of text as a single element) is
performed using Cursor 1 on the Main Screen.
The obvious choice of resource when dealing with extensive
manipulation of textual data is the linked list. This resource
allows the user insertion, deletion, and pointer moving
facilities which form the basis of any editor. Due to the
specialized nature of the POL generator system's editor, two
linked lists are needed. The Line Linked List is used in
conjunction with the horizontal Line Editor, and is responsible
for character (or microscopic) manipulation within a text string.
The File Linked List instead, is used for the implementation of
the vertical file editor which deals with the macroscopic
manipulation of lines of text. A more detailed description of
these two resources is given in sections 3.5 and 3.6.
The coded form of a file produced by this syntax-directed PDL
editor is labelled with an extension of ".COD". This file
contains the edited PDL description in coded form, and is
structured as follows: each line of PDL program corresponds to
two lines in the coded file. The file is coded line by line as it
is generated, and scored in the File Linked List. Each line can
be coded by means of three integer codes and one text field. The
text field would contain any segment of user-entered code which
is editable. Placeholders would thus also fall into this
category.
The three integer fields contain the indentation code and two key
codes of the line in question. The indentation code is an integer
which corresponds to the level of indentation of that particular
line. This indentation code, multiplied by a certain constant
(usually 2) will give the absolute indentation of the line from
the left hand margin.
There are two key codes for the mere reason that there exist
cases where more than one key word can be present on one line
(eg. While <CONDITION) do:). If two key words are present on the
same line, then it is assumed that the text line is placed
between the two key words, similarly, if there is only a single
key word and a text line associated with a PDL line of program,
then it is assumed that the line is in the form of the key code
first, followed by the text line. A line containing a key word
only will have a null text line associated with it. These

conditions hold true for PDL. In Appendix D, the coded and
formatted files are compared and explained.
It is with the above knowledge of the basic system operation that
the process decomposition can be performed meaningfully.

2.3 Process Decomposition

A second level design would essentially recognize the distinct
processes involved in the system. These can be seen to be: the
File Editor? the Line Editor? and the Formatter. At this stage
only these three main processes will be considered, it will
become evident that they can be further decomposed.

/ \ Load | I Write / \
I Diskfile |--- >----1 |---->---1 Main Screen I
\ f i I ______________/
/ ' \ Read j | Write / \
I Keyboard 1--- >----1 I---->-- f window Screen I
_______________/ I I ______________/
/ \ I I _______
/ File \ Read I FILE I Write / \
1 Linked |--->----(I--->— Prompt Screen I
\ List / I I _______________ /

\ f I I I EDITOR I ____________/ \ I I / \
/ Definition \ Read I I Write / Function-key \
I I---->--- 1 I----> I Definition |
\ Table / I PROCESS I \ Screen /

\ f I] \ ______________ /

/ Construct \ Read I I Write / \
I I---->--- 1 I--- > 1 Diskfile |
\ Table / I I ______ /
\ / 1 I
/ \ I I / \/ Prompt \ Read I I Write / File \

I I---- >— I I >— ■ I Linked |
\ Table / I I \ List /

\ / i j \ __________________ /

Fig.2,3: Process-resource diagram for the File Editor Process

The File Editor process will essentially be responsible for the
management of the Definition Table and thus a large portion of
the total system operation. This process includes all the
functions of Base Level. Thus, Main Screen scrolling; Insert
mode? and Delete mode are all controlled by this process. It will
ensure that the user is moved from state to state. It is for this
reason that the File Editor process is the only process to access
the Function Key Definition Screen. Fig.2.3 shows the process-
resource diagram of the File Editor process.
Due to the variety of functions performed by the File Editor
pro ass, it is clear that most of the resources will be employed
by it. With reference to Fig.2.3, the input and output resources
are explained as follows. On initialization, the coded file is
read from diskfile and written into the File Linked List. The
system will accept user-entered input in the form of function key
depressions or a requested input value; thus the Keyboard
Resource.
For system value input purposes, the window Screen is sometimes
used to display a permanent prompt. In Data Description Insert
mode, the Window Screen is used extensively for data item editing
purposes. The Main Screen is used to display the PDL program, and
as such will form a resource accessed by the File Editor process
whenever a screen scroll or Cursor 1 movement is required.
The Definition and Prompt Tables are a necessity in this process
so as to allow a user to be prompted as a state is changed. The
corresponding output resources are the Prompt Screen for
displaying error or prompt messages, and the Function Key
Definition Screen used to display the current system level in
terms of the ten function keys. The Construct Table is used for
Insert mode, and contains all the templates available. The File
Linked List is accessed both for reading and writing purposes
when the file needs to be modified after a block edit operation.
Diskfile is written to when the user is through with editing a
PDL file.
The Line Editor is an important part of the system design as it
stands alone as an autonomous process and is used whenever a
user-entered alphanumeric input is required. The process deals
with the manipulation of characters in a text line. A few
important functions such as delete, insert, etc. are provided.
Fig.2.5 shows a PDL high-level description of the editor's
behavior, while Fig.2.4 is a pictorial representation of the
process with its associated resources.
Inputs are taken from the keyboard. If a PDL text line is to be
modified, it is loaded into the Line Linked List from the File
Linked List. This line can then be modified using the various
Line Edit functions. For modification purposes, constant access
is made to the Line Linked List. The Window Screen is used as the
visual display screen for the Line Editor. Any errors or warnings
that occur regarding line editing will be displayed in the Prompt
Screen. On exiting the Line Editor process, the contents of the
Line Linked List is rewritten in logical order in the File Linked
List via a Dump operation.

/ \
. Keyboard i~ 1 •Jindow Screen I
\ /

1 Write {
\)

/ \Linked 1- / \
\ List t EDITOR / \

s Linked 1
List /PROCESS \ /

/ \ / \
/ File \ / File \Linked 1- Linked 1
\ List / \ List /

f \ t

Fig.2.4: Process-resource diagram for the Line Editor Process

Process Line Editor
If (Text line is to be modified)

*Load the Line Linked List with the line in the File Linked
List*

else:
♦Initialize the Line Linked List*

Repeat:
♦Get an input character from the keyboard*
♦Process the input according to whether it is a command or
If (Input implies an error)

♦Write out the error in the Prompt Screen*
♦Perform the required operation in the Window Screen*

Until (Line Editor must be exit)
If (Text line is to be written in file)

♦Dump the line in the Line Linked List into the File Linked
d f ^ *

End Process:
Fig.2.5: A PDL description of the Line Editor Process

The Formatter is a vital system component as it is responsible
for the formatting or prettyprinting of the coded file. Here, a
line is read from the Pile Linked List. This line io in coded
form. The Key Code Table is used to convert the key codes into
key words. Indentation is calculated, and the prettyprinted line
is written out to either diskfile for documentation purposes, or
{more frequently) to the Main Screen to give the user a visual
representation of the true formatted file. Pig.2.6 shows the
process-resource diagram for the Formatter process, while Fig.2.7
gives a broad outline of the process behavior.

/
Pile \ Read

1 1 ----
! \ /

\ J 1 1
1 1

/ \Key Code Read I | Write / Diskfile \
T . b l . / | | \ /

\ 1 1

Fig.2.6: Process-resource diagram for the Formatter Process

Process Formatter
Begin:

Read the coded line from the File Linked List
Look up the key codes in the Key Code Table
♦Calculate the line's indentation*
If (output is directed to diskfile)

♦Write the formatted line to diskfile*
the formatted line to the Main Screen*

End Process:
Fig.2.7: A PDL description of thj Formatter process

Clearly, the File Editor process is easily decomposed into sub
processes (ie. third level design). Each of the Base Level;
Insert mode; Delete mode; etc. are individual processes, and each
of these in turn will have its own set of sub-processes. For
purposes of compactness and convenience, the third level process-
resource diagrams are not included in this document. As lower
levels of design are reached, more detail is involved. This type
of detailed decomposition for the File Editor process can be
found in sections 4.3 and 4.4.

The Line Editor process too can be further subdivided into its
constituent functions. This detailed level can also be seen in
section 4.1. The Formatter process, however, is almost at minimal
level as depicted above. Section 4.2 elaborates more explicitly
the functions which are needed for prettyprinting via this
process.
The Terminal Resource described earlier in this section is used
whenever any form of output is required to the display terminal.
Thus, all three major processes will require access to this
resource, in the process-resource diagrams, however, it has been
omitted from the left hand side of the processes for the sake of
clarity.

Page 13

3 THE RESOURCES

In this chapter, the software resources described briefly in
sections 2.2 and 2.3 are discussed in detail. Each resource is
explained in terms of its function, operators and structure. The
Resource Function clarifies the use of the resource in the PDL
generator program, also listing its benefits. The Resource
Operators section in this chapter is a list of each routine
together with its relevant parameters which can be called to
operate on the resource. The routine calls are given in Pascal,
with all the parameters explained. The Resource Structure section
details the physical arrays necessary to maintain the resource.
The file-based resources have their tables detailed in
Appendix C.

3.1 Terminal Resource

3.1.1 Resource function
This resource is designed to deal with every kind of output which
is presented to the user by the system on the VDU terminal. Thus,
to write any output to the VDU, the system will use the operators
provided by the Terminal Resource. Typical examples of the
functions provided include the choosing of any of the terminal's
video fonts (such as reverse video, underscore, blink or
highlight) and the positioning of the cursor at any particular
point on the screen.
Screen management is also dealt with by the Terminal Resource.
The syntax-directed PDL generator makes extensive use of this
feature for its four special-purpose logical screens. To make the
Main Screen, Window Screen, Prompt Screen and Key Definition
Screen completely terminal independent, the necessary operations
have been devised in this resource.
Thus, without the need for the user to get involved with terminal
dependent ASCII or octal codes, which are specific only to a
particular system, the writing of a message to the Prompt Screen,
for example, can be simply achieved by using the operator
PS_WRITE ('Message') from the Terminal Resource. The operator
will essentially deal with any cursor positioning, font selection
or line clearing functions required. The user need only make use
of the high-level routine calls available from the Terminal
Resource as operators.
The concept of a terminal resource is also attractive from a
software portability viewpoint. All terminal specific functions
are available in one resource. Thus, if the package is to be made
available under a new operating system which adopts a different
screen management approach, the designer need only modify the
Terminal Resource, resting assured that the rest of the package
is completely terminal independent.

Page 14

3.1.2 The operators
The operators are divided into groups to differentiate between
their function. The routine names, together with their input and
output parameters are listed below in their Pascal format. A
description of the general behavior of each operator is also
given. (Walker (1985))

KBD.GBT (VAR SYMBOL: CHAR)
Function: To obtain a character symbol from the keyboard without

using the ENTER key and without echo to the screen.
Inputs: *none*
Outputs: SYMBOL — The character which has been read.

Ssissn-Mnageinfini-PiiJDitiYSS

Function; Sounds '.he ‘•pr-,mal1 s bell once.
Inputs: *none*
Outputs: *none*

BLINK_ON
Function: Turns the blink attribute on. Any character

subsequently written to the screen will appear in
blinking font.

Inputs: *none*
Outputs: *none*

BOLD.. ON
Function: Turns the bold attribute on. Any character subsequently

written to the screen will appear in highlighted font.
Inputs: *none*
Outputs: *none*

RVID_ON
Function: Turns the reverse video attribute on. Any character

subsequently written to the screen will appear in
reverse video font.

Inputs: *none*
Outputs: *none*

Function: Turns the underscore attribute on. Any character
subsequently written to the screen will appear in

■iderscored font.
Inputs: ' n- ne*
Outputs} f: r :i*

RESTORE
Function: Turns off any selected font or combination thereof. It

thus reverts to normal font. Any character subsequently
written to the screen will appear in unblinking,
unhighlighted, non reverse videoed, non underscored
font. (ie. normal font)

Inputs: *none*
Outputs: *none*

£ t iX 5 2 i_ S 2 ii t i f i l_ p jd - iD it iy s 5

SBT_CP (ROW: INTEGER;
COL: INTEGER)

Function: Will set the cursor position corresponding to the
desired row and column coordinates. Row and column
values beyond the ranges set below will cause the
cursor to wrap around the screen.

Inputs: ROW — An integer row number (1 to 25) where the
cursor is to be positioned.

COL — An integer column number (1 to 80) where the
cursor is to be positioned,

Outputs: *none*

READ_CP (VAR ROW: INTEGER;
VAR COL: INTEGER)

Function: Reads the cursor position returning its row and column
coordinates.

Inputs: *none*
Outputs: ROW — The integer row number where the cursor is

positioned. (1 to 25)
COL — The integer column number where the cursor is

positioned. (1 to 80)

Function: Positions the cursor at the HOME position (ie. topmost
left hand corner) on the screen.

Inputs: *none*
Outputs: *none*

CLR_SCR
Function: The entire screen is cleared and the cursor placed at

the HOME position.
Inputs: *none*
Outputs: *none*

Page 16

Function:
Inputs:
Outputs:

Function:

Inputs:

Outputs:

Function:

Inputs:

Outputs:

Functions

Inputs:
Outputs:

Function:

Inputs:
Outputs:

CLILLINE
The current line is cleared from the current cursor
position onward.
none
none

UP_SCR (INC: INTEGER)
Moves the cursor up the screen by the number of rows
specified by the increment, while maintaining the
current column position.
INC — An integer value which defines the number of

rows to be moved up the screen, if the increment
is too large to be accommodated, the cursor is
placed in the first row.

Dl^SCR (INC: INTEGER)
Moves the cursor down the screen by the number of rows
specified by the increment, while maintaining the
current column position.
INC — An integer value which defines the number of

rows to be moved down the screen. If the
increment is too large to be accommodated, the
cursor is placed in the last row.

none

CUR_RIGHT
Moves the cursor to the right by one position while
maintaining the current row. If this function is
performed when the cursor is in column 80? then no
action is taken.
none

CUILLEFT
Moves the cursor to the left by one position vhile
maintaining the current row. If this function is
performed when the cursor is in column 1, then no
action is taken.
none
none

Laaisal-ssissD-jfliMSiioa
SCR.FORMAT

Function: Displays on the physical VDU screen the four logical

screen partitions.
Inputs: *none*
OutpuUss *none*

MS.CLBAR
Function: Clears the logical Main Screen {ie. Screen 1)
Inputs: *none*
Outputs: *none*

HS_CUR_ON (MS_CUR_POS: INTEGER;
MS_TOP_LINE: INTEGER)

Function: Turns on the cursor (Cursor 1) in the Main Screen by
reverse videoing the line number.

Inputs: MS_CUR_POS — The Main Screen CURsor position is an
integer value from 0 to 19 which
specifies (from the top of the screen)
the row of the Main Screen on which
Cursor 1 is to lie.

MS_TOP_LINB — The Main Screen TOP LINE is an integer
value specifying the actual line number
of the line displayed on the top line of
the Main Screen. Using the two above
inputs, the actual line number of
Cursor 1 can easily be calculated as
(MS_TOP_IiINB + HS_CUR_POS) .

Outputs: *none*

MS„CUR_OFF (MS_CUR_POSi INTEGER;
MS_TOP_LINEi INTEGER)

Function: Turns off the cursor (Cursor 1) in the Main Screen by
rewriting the actual line number in normal font.

Inputs: *as above*
Outputs: *none*

MS_WRITE (LINE_NUMBER: INTEGER;
MS_LINE_POS: INTEGER?

VAR STRING_ONE: STRING (81) OF CHAR;
VAR STRING,TWO: STRING (81) OF CHAR,
VAR STRING_THREE: STRING (81) OF CHAR)

Function: Will write out a line of text (represented by the three
strings) at a specified row in Screen 1. A long text
line will be truncated to fit on a single physical
screen line, so that no overwrapping is allowed.

Inputs: LINB„NUMBER —- An integer variable giving the actual
line number to be displayed.

MS_LINE_POS — An integer variable (0 to 19)
specifying the row number where the
line is to be displayed in Screen 1,

STRING_ONE — A text string which represents the

Page 18

first part of the line to be written.
This string is displayed in highlighted
font. (It is normally reserved for the
first key word.)

STRING,TWO -- A text string which represents the
second part of the line to be written.
This string is displayed in normal
font. (It is normally reserved for the
user-entered text.)

STRING_THREB — A text string which represents the
third part of the line to be written.
This string is displayed in highlighted
font. (It is normally reserved for the
second key word.)

Outputs: *none*

Function: Clears the logical Window Screen (ie. Screen 2).
Inputs: *none*
Output:^ *none*

WS_ASET_CP (COL: INTEGER)
Function: Sets the cursor position to the absolute column

specified in the Window Screen.
Inputs: COL — An integer variable (1 to 80) used to specify

the column which the cursor is to be moved to.
If the number specified is beyond the given
range, the cursor will wrap around the screen.

Outputs: *none*

WS_RV_WRITB (START,COL: INTEGER;
VAR TBXT_STRING: STRING (80) OF CHAR)

Function: Writes the text string in reverse video font in the
Window Screen starting at the specified starting
column. This function is used mainly for highlighting
fields in the Data Definition Insert mode.

Inputs: START,COL — An integer parameter used to specify the
position in the Window Screen from which
the text must be written.

TEXT,STRING — The text string which must be written
Outputs: *none*

WS„HI_WRITE (START,COL: INTEGER;
VAR TEXT-STRING: STRING (80) OF CHAR)

Function: Writes the text string in highlighted font in the
Window Screen starting at the specified starting
column. This function is used mainly for highlighting
fields in the Data Definition Insert mode.

Page 18

Outputs:

flPSlSiSZS.

Function:
Inputs:
Outputs:

Function:
Inputs:

Outputs:

Function:

Inputs:

Outputs:

Function:

first part of the line to be written.
This string is displayed in highlighted
font. (It is normally reserved for the
first key word,)

STRim_TNO — A text string which represents the
second part of the line to be written.
This string is displayed in normal
font. (It is normally reserved for the
user-entered text.)

STRING_THREE — A text string which represents the
third part of the line to be written.
This string is displayed in highlighted
font. (It is normally reserved for the
second key word.)

WS_CLBAR
Clears the logical Window Screen (ie. Screen 2).
none

WS_ASET_CP (COL: INTEGER)
Sets the cursor position to the absolute column
specified in the Window Screen.
COL — An integer variable (1 to 80) used to specify

the column which the cursor is to be moved to.
If the number specified is beyond the given
range, the cursor will wrap around the screen.

none

_RV_WRITB (£TART_COL: INTEGER;
VAR TEXT_STRING: STRING (80) OF CHAR)

Writes the text string in reverse video font in the
Window Screen starting at the specified starting
column. This function is used mainly for highlighting
fields in the Data Definition Insert mode.
START.COL — An integer parameter used to specify the

position in the Window Screen from which
the text must be written.

TEXT.STRING — The text string which must be written
none

LHI-WRITE (START.COL: INTEGER;
VAR TEXT.STRING: STRING (80) OF CHAR)

Writes the text string in highlighted font in the
Window Screen starting at the specified starting
column. This function is used mainly for highlighting
fields in the Data Definition Insert mode.

Page 19

Inputs: *same as above*
Outputs: *none*

WS_LO_WRITE (START COL: INTEGER;
VAR TEXT^STRING: STRING (80) OP CHAR)

Function: Writes the text string in normal font in the Window
Screen starting at the specified starting column. This
function is used mainly for distinguishing fields in
the Data Definition Insert mode.

Inputs: *same as above*
Outputs: *none*

Function: Clears the logical Prompt Screen (ie. Screen 3).
Inputs: *none*
Outputs: *none*

PS_WRITE (MESSAGE: STRING (81) OF CHAR)
Function: Writes a message to the Prompt Screen in highlighted
Inputs: MESSAGE — The message which is to be written ir the

prompt Screen.
Outputs: *none*

FS_CLEAR
Function: Clears the logical Function or Key Definition Screen

(Screen 4),
Inputs: *none*
Outputs: *nnne*

FS_WRITE (KEY_STRING: STRING (61) OF CHAR;
FLAG_ARRAY: ARRAY [I..10] OF BOOLEAN)

Function: Writes out the 10 function key options in the Function
Screen. Only the function keys which correspond to a
TRUE flag value (ie. a valid function key) will be
displayed as dictated by the key string. Valid function
key options will be written in reverse video font at
the field position in Screen 4 corresponding to their
number.

Inputs: KEY_STRING — This is the text line containing the 10
function key definitions which are to be
selectively displayed in Screen 4.

FLAG_ARRAY — The boolean array indicating the valid

Page 20

function keys which will be highlighted
in reverse video in Screen 4. There are
10 flags available; one for each function
key. A true flag will indicate a valid
function key.

3.1.3 Resource structure
The Terminal Resource is not a memory-based resource as no common
data structure is needed. Each operator is built as a procedure,
and is essentially independent of external data structures. For
IBM-PC implementation, a common terminal display function
(DOSXQQ) is made generally available for use by the screen
management primitive operators. Gluba. constants include the
following;
ROWS_PER_PAGE = 25 — The number of lines in the physical screen
MS_SI%E = 20 — The number of lines in the Main Screen
WINDOW_ROW = 22 — The Window Screen row number
PROMPT-ROW - 24 — The Prompt Screen row number
FUNCTION_ROW = 25 — The Function Screen row number
MESSAGE.COLUMN = 1 — The message column number

Besides the constants above, an input and an output text file is
also specified. These two files (INP and OUP) are used
exclusively for all types of inputs and outputs which are not
directed to an external file.
It can be noted, when looking at the available operators, that a
few distinct categories exist. They are so divided for easy
reference to the designer. The screen management and cursor
control primitives are the backbone routines on which the other
operators depend. It is thus true to say that only these few
routines will need to be changed if the package is transported to
another VDU type system.

3.2 Definition Table

3.2.1 Resource function
This resource was constructed for the main purpose of making
system operation as flexible as possible. Instead of hard-coding
system features into the cyntax-directed PDL generator, a means
of making the system as programmable as possible was sought.
Working with the idea that each new function key definition
screen represents a new system state, a definition or state table
solution emerged.
The Definition Table consists of system data for each function
key of each state present in the package. The data held for each
function key includes two Prompt Codes, two Next States and a Key
Code. The Prompt Code corresponds to a prompt which will be
displayed after the depression of that key. The Next State
determines the state to which control will be passed after that

key is depressed. The Key Code is a code given to that particular
function key as defined in the present state. This code may be
used by the program for intelligent checking.
The two Prompt Codes and Next States are used, one, for normal
operation, and the other in case of the system trapping a user-
entered error. Thus, two possible branches are provided for any
function key in any state. Error detection is done external to
this resource, and the appropriate branch is then chosen. The
system will therefore access this resource to find its next
state. This makes the entire package programmable from the
Definition Table.
The Definition Table is one of the system tables which is loaded
from file on entering the syntax-directed editor. The file used
for this purpose is "DT.SYS". This facility for loading the
system files from disk makes the package easy to modify without
the need for recompilation or linking. Speed is greatly enhanced
by loading the table into memory. The detailed Definition Table
can be found in Appendix C.

3.2.2 The operators
There are three operators for this resource. The initialization
operator is used only when the table is to be loaded from
diskfile. As there exist no operators for modifying the contents
of the Definition Table, the loading operation is performed only
once: on entering the PDL editor.
There are two read operations: A and B Reads. The A Read operator
is used initially to obtain the function definition line. The
user is then presented with the appropriate state. When a
decision is made using a valid function key, then the B Read
operator is used to obtain the subsequent Prompt Code and Next

DT.INIT (VAR NO_OF_STATESt INTEGER)
Function: Initializes the Definition Table by loading the data

from diskfile. This operation is used on editor entry
to load the data into dynamic memory.

Inputs: *none*
Outputs: NO_OF_STATES — An integer value indicating the number

of states available in the table.

DT..A-READ (THIS.STATE: INTEGER;
NO_OF_STATES: INTEGER;

VAR KEY_DEF_STRINGi STRING (80) OF CHAR;
VAR KBY.FLAG ARRAY: ARRAY 11..10] OF BOOLEAN;
VAR STATUS: INTEGER)

Function: Reads the key definition line and its associated key
flag array from the Definition Table using a given
state. The status flag is set unsuccessful when the
input state does not exist.

Inputs: NO_OF_STATES — This number is usually taken directly
from the output of the DT_INIT routine

and represents the number of states
available in the Definition Table.

THIS,STATE — The integer input state which is used
to look up the key definition line. The
range is between 1 and NCLOF_STAT£S.

Outputs: KEY_DEF_STRING — A line of text containing the
definition of the 10 function keys
for the particular state chosen.

KEY_FLAG_ARRAY — A boolean array of 10 (one for each
function key) to determine which keys
are valid. A TRUE flag will indicate
a valid function key.

STATUS — An integer variable which is set
unsuccessful if the input state is
not available in the table and
successful otherwise.

DT B READ (THIS_STATE: INTEGER;
THIS.KEY: INTEGER?

VAR NEXT.Sl: INTEGER;
VAR NEXT_S2s INTEGER;
VAR KEY.CODE: INTEGER?
VAR PR0M_C1: INTEGER?
VAR PROH_C2; INTEGER)

Function: This operator is used to obtain the two Next States,
the two Prompt Codes and a Key Code associated with any
valid function key, when it is depressed.
THIS_STATE ■

Outputs: NEXT_S1 -

The state in which the user was when
function key was depressed.

— The number of the function key (1 to 20)
which was depressed

The Next State number if no error has
occurred.

NEXT_S2 — The Next State number if an error has
occurred.

KEY_CODE — A Key Code integer number assigned to each
function key for the purpose of program
segment identification. This key code may
be used in the calling program for further
calculations.

PROm_C1 — The code of the prompt to
after the function key has been
and if no error has occurred.

PR0fi.C2 — The code of the prompt to
after the function key has been
and if an error has occurred.

displayed
depressed,
displayed
depressed,

3.2.3 Resource structure
There are two global constants which are worthy of note, and
these are:
MAX_STATES = 20 — The maximum number of states for which space

has been allocated in the Terminal Resource.
MAX_KEYS = 10 — The number of function keys per state.

Page 23

The memory based data structure is given below in pdl.
Types;

FX_KEY_ RECORD == Record:
KEY FLAG : Boolean
KEY,CODE : Integer
PROMPT_Cl z Integer
PROflPT_C2 : Integer
MEXT.Sl : Integer
NBXT_S2 : Integer

End Record:
FX_KBY_.ARRAY = Array [1. .MAX.KEYS] o f FX_KEY_RBCORD
STATE.RECORD = Record:

PX_KBY : FX_KEY_ARRAY
KEY_DEF_LN : String (80) of Character

End Record:
KEY_DEPN_TABLE = Array [1..MAX^STATBS] of STATE.RECOPD

Variables:
KBY_DEFN_TABLE:

Single:
Permanent:

DEFN_ARRAY

Thus, the key definition line of, say State 5, can be pointed to
in Pascal as shown below:

DEFN ARRAY [5j. KEY_DBF_LN
while the key code of the third function key in State 5 is
referred to as:

DEFM.ARRAY [3j. FX_KEY [3]. KEY_CODE
The data structure is available to all the operators of the
resource. It can be seen that this table requires a large section
of memory space. The Definition Table is loaded from the file
"DT.SYS", and this file must be in the format shown belotv?

DD Constr Ins Ln
50 1 3 3
60 8 8 8
70 10 10 .10 10

0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0
4000 0 0 9

0 0 0
0 D 0

One state is shown above. The first line represents the key

Page 24

definition line: each of the 10 fields is 8 characters wide; the
first two of which are reserved for the function key number
(inserted by the FS„WRITE routine) thus leaving six characters to
define the function key. The next 10 lines define the data
associated with the 10 function keys. The data defined is as
follows: Key Code; Prompt Code 1; Prompt Code 2? Next State 1;
Next State 2. A key code of zero implies an invalid function key.
The Definition Table, like all resources, is built as a module
which is separately compilable. A test program is thus available
to test the three operators, in this test program, extensive
testing for erroneous inputs is performed, so that the designer
can experiment with all input combinations to determine the
resource's behavior before it is included in the program. An
extra function is also available in the test program which
displays the logical structure of the Definition Table and its
related data in a convenient form. The test program format used
by the designer can be found in Appendix A.

3.3 Key Code Table

3.3.1 Resource function
This resource represents the system's list of "reserved words".
The Key Code Table consists of a list of key words or phrases
which can be identified by a unique key code. Each key word also
has an indentation and edit flag associated with it. The
indentation number, where applicable, will be an indication of
the relative indentation which must be added to the present
indentation to obtain the final prettyprinted key word. The
boolean edit flag determines whether the line on which that
particular key word appears will be editable or not.
All words which will appear in Screen 1 in highlighted font (data
description and construct key words) can be found in this table.
All placeholders will also be found here because these words are
also system-generated. Null text key words are other types of
elements needed in this table. These key words consist of no key
words at all, but only an indentation value. They represent a
relative indentation which must be assigned to a user-entered,
editable text line. This means that even a line of text which has
been entirely user-entered contains a key word which will
determine its extra indentation which is to be added to its
associated indentation level value.
The key codes are chosen carefully in all cases to ensure that
enough room is allowed for the purposes of system expansion. The
integer value of the key code is used in the program for
intelligent decision taking. The key code determines whether the
associated key word is placed in the pre-Data Description segment
(a negative key code); the Data Description segment (0 to 40); or
in the Algorithm segment (>40).
The existence of a Key Code Table makes the syntax-directed PDL
generator package flexible, as new key words and placeholders can
easily be added, and old key words erased or modified if
required. Full relative indentation control is also offered via
this resource. This table too is loaded on initialization from

diskfile so that system key words and indentation can be modified
without the necessity for re-compilation. Details of the KCT.SYS
file are given in Appendix C.

3.3.2 The operators
This resource does not have an operator facility for modifying
table contents, as it is assumed that any text editor can be used
to access an^ modify the data file KCT.SYS, For this reason, the
initialization operator should only be used once, and this on
entering the PDL editor. Only a single operator, besides the
initialization operator, is required to read the contents of the
Key Code Table given a key code as input.

KCT_INIT (VAR KCT.SIZB: INTEGER)
Functions Used to load the file KCT.SYS into the memory-based Key

Code Table.
Inputs: *none*
Outputs: KCT_SIZE — The number of key code entries loaded into

the Key Code Table.

KCT_READ { THIS_KEY_CODE: INTEGER;
VAR THIS_KEY_WORD: STRING (30) OF CHAR;
VAR THIS INDEN: INTEGER;
VAR THIS_EDIT_FLAG; BOOLEAN;

KCT_SIZE: INTEGER;
VAR STATUS: INTEGER)

Function: Reads the key word, relative indentation, and edit flag
from the Key Code Table given an input key code. The
status flag is returned unsuccessful only if the input
key cannot be found.

Inputs: THIS_KBY_C0DE — The input..key code which will be
searched for in the table. When a
match is found, its associated
characteristics will be output.

KCT_SIZB — This' integer variable is usually taken
directly from the output of the
initialization operator.

Outputs: THIS_KEY_W0RD — The key word corresponding to the key
code. Its maximun length is 30
characters.

THIS.INDEN — The relative indentation correspon
ding to the key code.

THIS_EDIT_FLAG — The boolean flag used to determine
whether the line consisting of the
given key code is editable or not. A
TRUE flag indicates editability. It
should be noted that only the first
key code of a line will determine its
editability. The second key code's
edit flag is not used.

STATUS — This is an integer error flag which
will return unsuccessful if the input
key code is not found in the table,
and successful otherwise.

Page 26

Global constants tned in this procedure includes
KCT_CAP « 60 — The capacity of the Key Code Table. This is the

maximum number of key codes for which provision
has been made.

KW_CAP = 30 — The maximum allowable length for any key word in
the table.

A PDL description of the data structure used in dynamic memory
for the table is as follows:

i Records
KBY_CODB
KEYJWORD
INDEN
EDIT_FLAG

End Record:

Integer
String (KW_CAP) of Character
Integer
Boolean

KCT_ARRAY
Variables:

: Array [l.,.KCT_CAP3 of KCT_FL

KCT_ ARRAY:
Single:

Permanent:
KCT.FILB

The file from which the Key Code Table is initialized (KCT.SYS)
must be in the format shown below:

The first field specifies whether the key code implies an
editable line or not (Y=Yes? N=No). This is followed by a single
blank character. The key code then follows. The third field is
the relative indentation, and is followed by a single blank
character. The key word then appears, with a "*n delimiter to
demarcate the end of the key word. Thus, the key word will be
identified as the last characters up to but excluding the last

symbol.
A menu-driven test program is available to investigate the
function of the operators of this table. Full input variable
testing is performed. An extra routine is used to display the
logical contents of the Key Code Table. Appendix A shows how the
designer can investigate the operation of this resource via the
test program.

3.4 Prompt Table

3.4.1 Resource function
This is the simplest resource but yet it is of importance. It is
a store of all the system prompts or error messages which are
available. A prompt code obtained from the Definition Table is
used to access the Prompt Table. The associated message is then
passed back to be displayed in the Prompt Screen.
The purpose of this table is twofold: firstly, error messages can
easily be modified? and secondly, spans is saved when dealing
with duplicate messages. Prompts are not "hard programmed" within
the package and can thus easily be odltsd by changing the data
file contents. This saves the designer time as no re-compilation
need be performed. Flexibility is added to the package in that it
is a simple matter to add extra prompts. Also, if the same prompt
is used twice in an algorithm, only the integer prompt code
rather than the entire eighty-c.iaracter prompt line needs to be
duplicated. This accounts for a large saving in memory space at
the cost of a slightly slower response time.
The Prompt Table is loaded initially from diskflle (PT.sys) and
thenceforth may not be modified. Appendix C contains the Prompt
Table for the PDL syntax-directed editor package.

3.4.2 The operators
As in the Key Code Table, initialization is czly performed once
for loading the system file into zazory. Hereafter, only the read
operation may be requested. As tbs Prompt Tatle does not have
operators to modify its contents dynamically, operations are
restricted to the two mentioned czovs.

PT.INIT (VAR PTLSIZZs INTEGER)
Function: Initializes the Prompt Tarls by loading the system file

PT.SYS into memory.
Inputs: *none*
Outputs: PT_SIZB -- The number of prompts which have £ieen loaded

intc the Prompt Table.

PT_READ (THIS,CODE: INTEGER;
VAR THIS_PROMPT: STRING (80) OF CHAR;

PT_SIZB: INTEGER;
VAR STATUS: INTEGER)

Function: Reads the prompt associated with the input prompt code.
Inputs: THIS_CODE -- The input prompt code which corresponds in

line number to the required prompt.
PT_SIZE — The size of the prompt Table which is

usually taken directly from the output of
the PT.INIT operation.

Outputs: THIS_PROMPT — The prompt or message which corresponds
to the input prompt code. It has a
maximum length of 80 characters.

STATUS — An integer variable which will return

successful if the prompt code exists,
and unsuccessful otherwise. As the
prompt code corresponds to the entry
line number of the prompt, if the prompt
code is greater than the PT_SIZB, then
the prompt code is beyond the allowable

3.4.3 Resource structure
The global constants available in this resource are as follows:
PROI'L TABLE, CAP = 20 — The space allowed for prompts in the

Prompt Table, (ie. a maximum of 20 prompts
are allowed)

PROMPT_CAP = 80 — The capacity of the prompt message to be
displayed in the Prompt Screen in terms of
characters.

The data structure adopted is as follows:
Types:

PROMPT_LINE = String (PROMPT.CAP) of Character
PROMPT.LN_ARRAY = Array [1..PROM.TABLE.CAP] of PROMPT.LINE

Variables:
PROMPT.LN.ARRAY:

Single:
Permanent:

PROHPT.ARRAY

The file PT.SYS which is to be loaded into memory initially
consists simply of a number of lines; each containing a prompt.
The prompt code associated with each prompt will correspond to
its line number, (eg. The third prompt in the file will be on
line 3 and will thus have a prompt code of 3.) A prompt must be
no longer than 80 characters and must be entered in the table as
it is to be displayed on Screen 3 on a single line.
A test program for the Prompt Table resource is also available
for the user to experiment with its functions. A logical display
routine is needed for the purpose of displaying the Prompt Table
on the screen. Appendix A shows the layout of this test program.

3.5 Line Linked List

3.5.1 Resource function
The Line Linked List is used solely by the Line Editor process.
It enables a user to manipulate characters within a text line.
The linked list offers the basic editing primitives. With the use
of a list, at is possible to perform an endless amount of edits

Page 29

on a line with a fixed allocated memory space. The linked list
ensures that a memory element which is deleted will remain on a
space list to be used whenever another memory location is needed.
The designer will access the linked list only by means of its
operators.
Operators are provided for: initializing the list to zero (ie.
emptying the Line Linked List) getting and returning a record for
the purposes of writing or deleting a character; reading and
writing a record; and moving the list pointer. Operators are also
available for returning the list pointer value and for returning
the edited line in order. With these primitive operators, any
text editing function can be constructed.
In the following paragraphs it will be explained how the basic
line editing functions cr be constructed by combining one or
more of the above operators. Linked list operation is explained
in section 3.5.3, but for further clarification, the notes of Dr.
A.J.Walker (1984) should be consulted. By following the
application examples below, however, a good idea of this
resource's behavior should be obtained.
To start editing a new line, the list is initialized. This sets
the record pointers in consecutive order and effecitvely clears
all data records. Writing a character into the list firstly
requires the retrieval of a record. Hereafter, the list pointer
will indicate the new record, and thus a character can be writen
into it. It is imperative to note that if a new character is to
be added, a new record must be fetched before a Write operation
is performed.
The list pointer is initially at the zero position, and a Write
operation here will be unsuccessful. If, however, the pointer is
at an existing record in which a character is already written, a
Write operation here will cause overtyping (ie. replacing of the
old character by the new). After a Write operation, the pointer
remains at the newly edited character (ie. all pointer movements
must be performed explicitly).
An insert operation is also a Get-record operation followed by a
Write-record operation. It should, however, be noted that a
record is always inserted after the current pointer position, and
the pointer is then positioned at the newly inserted record.
Thus, the first record is inserted at character position 1 by
performing a Get-record operation when the list pointer is on the
zero position. If a series of characters is to be inserted
sequentially, the convention is favourable, as new records are
always inserted after the previously entered character.
The delete function of the Line Editor is implemented by making
use of the Return-record operator in the Line Linked List. With
the list pointer on the character which is to be deleted, a
Return-record operation is performed. That record will then
effectively be deleted, and the pointer moved back by one
position. Thus, if a series of characters is deleted
sequentially, it will become obvious that this function is
associated with the destructive backspace key.
By moving the list pointer, the lire editor cursor can
effectively be moved under any character. Pointer movement is,
however, incremental and not absolute, so that a function to

Page 30

determine the list pointer location is useful. The Read-record
operator will return the character at the current pointer
position. After a series of edits on a line, it is useful to have
an operator which will return the entire new line in logical
order. This is the Log-string operator.
The functions described above will be used in the Line Editor
process of section 4.1. This section should be consulted for
detailed PDL descriptions ̂the above line editing routines. The
linked list is thus a powerful resource for any form of editor.
The Line Editor, as well as the File Editor of this PDL syntax-
directed editor package are based on the Line Linked List cz-.d
File Linked List respectively.

3.5.2 The operators
LIST_INITIALISE

Function: Initializes the Line Linked List, setting all records
to the null character.

Inputs: *none*
Outputs: *none*

IiIST_GBT_.RECORD (VAR STATUS: INTEGER)
Function: Fetches a record from the space list and inserts it

into the linked list.
Inputs: *none*
Outputs: STATUS — An integer error flag having one of the

following possible outcomes:
Successful — record was successfully fetched
Bmpty_space_list — the list is full and no more

records can be inserted.

LIST_RETURN_RECORD (VAR STATUS: INTEGER)
Function: Returns a record to the space list, effectively

deleting it from the linked list. The record returned
is the one pointed to by the list pointer. After the
operation, the pointer is moved back by one position.

Inputs: *none*
Outputs: STATUS — The integer error flag. It has one of the

following outcomes for this operation:
Successful — record was sucessfully returned
Empty_link_list — the list is empty and thus no

record can be returned
LLP_outside_list — with the Logical List Pointer

in the zero position, no record
can be returned.

LIST_READ_RECORD (VAR DATA_ITEM: CHAR;
VAR STATUS: INTEGER)

Function: Reads and returns the charac (or value of the da>'»
item) present in the recoru pointed to by the li
pointer.

Page 31

Inputs: *i:one*
Outputs! DA'."A_ITBfi — The character which is read from the

linked list
STATUS — The integer error flag having one of the

following possible outcomes:
Successful -- the operation was performed success

fully
Empty_link_list — no read operation can be

performed on an empty list
LLP_outside_list — no read operation can be

performed with the list pointer
at the zero position.

LIST_WRITE_RECORD (DATA_ITBH: CHAR;
VAR STATUS: INTEGER)

Function: Writes the input character in the record which is
pointed to by the list pointer.

Inputs: DATA_ITEM — The input character which is to be written
at the current list pointer position.

Outputs: STATUS — The integer error flag having the following
possible outcomes:

Successful — the operation was performed success
fully

Empty_link_list — no records are available for
writing into

LLP_outside_list — no writing can be performed
with the list pointer in the
zero position.

LIST_MOVE_POINTER (INCREMENT: INTEGER;
VAR STATUS: INTEGER)

Function: Moves the list pointer forward or backward by a
positive or negative increment.

Inputs: INCREMENT — A positive, negative, or zero integer
value which will move the list pointer
forward, backward, or not at all by the
specified amount from the current pointer
position. If too large an increment is
specified, the pointer is moved as far as
possible.

Outputs: STATUS — The integer error flag having the following
possible outcomes:

Successful — the operation was performed success
fully

Bmpty_link_list — the pointer cannot be moved if
the list is empty

LLP„outside_list — the increment is too large or
too negative, so that the list
pointer would have to be moved
beyond the end of the list or
before the beginning of the
list. In this case, the pointer
is still moved to the relevant
list limit, but the STATUS flag
tells of the overshoot problem.

LIST_LOG_INFO (VAR LIST.POINTER: INTEGER)
Function: Returns the value of the logical link list pointer.
Inputs: *none*
Outputs: LIST POINTER — The list pointer value.

LIST_LOG_STRING (VAR T STRING: STRING (80) OF CHAR;
VAR RETURN_LOOP_COUNT: INTEGER;

LIST.POINTER: INTEGER)
Function: Returns the linked list elements in logical order in a

single string variable from the specified input logical
list pointer value.

Inputs: LIST.POINTER — The logical list pointer position from
which the rest of the linked list is to
be returned.

Outputs: T_STRING — The linked list elements in logical
order listed from the specified list
pointer position.

RETURN.COUNT — The number of characters contained in
the returned text string.

3.5.3 Resource structure
The Line Linked List data structure is as follows:

Integer:

MR = 81 *Maximum Records
resource*

SUCCESSFUL = 0
EMPTY.SPACE.LIST = 1
EMPTY_LINK_LIST = 2
LLP_OUTSIDE_LIST = 3

the capacity of the

*possible outcomes of
status flag*

LIST.RBCORD = Record:
FP: Integer
DP: Integer
DI: Character

End Record:
MY.LIST = Array [1..MR] of LIST.RECORD

Forward Pointer
‘Backward Pointer*
Data Item

Integer;
Single:

Local:
L.LLR
L.SLR
L.PLP
L.LLP
L.LLS

Line Link List Rock
Line Space List Rock
Line Physical List Pointer
Line Logical List Pointer
Line Link List Size

HY.LIST:
Single:

Permanent:
L_LIST

A brief explanation of linked list operation is given below:
The linked list is used for manipulating large blocks of text
efficiently without wasting memory space. To do so, each element
of text is regarded as a record or data item. (For the Line
Linked List, a character is the data item, while for the File
Linked List a text line is regarded as a data item.) The linked
list will use the forward and backward pointers to link all the
data items in such a way as to form the text block. Data items
which are not used are stored in the space list, while records in
use are stored in the link list.
As all records are linked via their forward and backward
pointers, only a starting point is needed in the space and link
lists for reference. These two reference variables are called the
space and link list rocks respectively. They indicate the first
free or used record in the relevant list. There are two major
list pointers: the logical list pointer and the physical list
pointer. The logical list pointer relates to the user's
viewpoint, whereas the physical list pointer corresponds to the
actual location of the data item in the linked list.
The following example should help to clarify the linked list
structure and operation. Assume that a linked list of 10
characters exists, with the word "MESSGE" written sequentially in
it *s shown below:

Location: 0 1 2 3 4 5 6 7 8 9 10
DX |Eol | M |E |S |S |G IE I I I I I
FP | |2 |3 14 |5 16 10 |8 |9 | 10 |0 |
BP | | 0 I 1 I 2 | 3 | 4 I 5 I 0 | 7 | 8 | 9 |

+— --- +— --- +---- + -+- 4------h +-— -4----- 4-
_________ link list_________ /\ space list /

Looking at the forward pointer (FP) for the letter "M", a value
of 2 indicates that the next data item (DI) linked after "M" is
found in location 2. In location 2, the first "E" of "MESSGE" is
found, and its forward pointer points to the letter "S. This is
continued until all the letters of the word are linked. Note that
the last letter of the listed word has a forward pointer which
indicates the end of the list (Eol).
In this way it can be seen that the word "MESSGE" is linked
character by character both in the forward direction (by the
forward pointer) and in the backward direction (by the backward
pointer (BP)). These characters which exist in the list comprise
the link list, while the remaining records constitute the space
list. The space list elements are also linked via forward and
backward pointers.

Page 34

Let us now, for the sake of clarity, consider the list to have a
forward pointer only. The following can be said:
LLR = 1 — Link list rock indicates the location of the first

record of the list
SLR = 7 — Space list rock indicates the location of the first

free record
LLS = 6 — Link list size is of six characters: M,E,SfS,G,E.

Now, the word "MESSGEn is to be corrected to read "MESSAGE". This
requires an "A" to be inserted after the second "S". Thus, the
logical pointer is moved to position 4. (Note that this also
corresponds to the physical pointer position.) The Get-record
operation is now performed. This results in a blank record being
inserted after the second "s" of "MESSGS". Physically, this
involves the increasing of the link list size by one, and a
corresponding decrease in size of the space list. After the "A"
has been written into the new record, the schematic
representation of the word in the list is as follows:

-Location: 0 1 2 3 4 5 6 7 8 9 10
01 lEol I M IE |S |S I G |B L A - I I I I
FP I 12 |3 |4 |7 16 10 |5 [9 | 10 10 I

It can be seen that at position 4, the forward pointer indicates
the character "A" at position 7. The letter "A" in turn indicates
position 5 so that the word "MESSAGE" results. The list
parameters are now as follows:
LLR = 1 — The start of the link list is still unchanged.
SLR « 8 — The first free record has been used so that the space

list size has decreased by one.
LLS = 7 — The size of the link list has increased by one.

The pointer is now located at the letter "A" (as seen from the
underscoring in the previous figure). This position corresponds

PLP = 7 — Physical list pointer is the actual pointer location
in the data structure.

LLP = 5 — Logical list pointer is the logical location of the
pointer in the word "MESSAGE" (ie. M=l? E=2; 8=3; 8=4;
A=5; G=6; E=7).

The above example illustrates both the power and the complexity
of the linked list. An interactive menu-driven test program with
full input condition testing is available for the designer to
become acquainted with Line Linked List operation. Appendix A
explains further the facilities of this resource using both a
logical and a physical model.

3.6 File Linked List

3.<5.1 Resource function
The File Linked List is similar in operation to the Line Linked
List described above, however, it deals with the manipulation of
text lines. This resource treats an entire PDL text line as a
record. This enables the designer to use this resource in the
File Editor process for line manipulation purposes. Section 4.4
details how insertion is performed with the help of this
resource. It should also be noted that the coded version of the
PDL file is stored in this resource, and not the formatted
version. This means that a record in the File Linked List will
contain the key codes, indentation and text line fields as well
as the necessary forward and backward pointers.

3.6.2 The operators
The operations which can be performed on the File Linked List are
identical to those for the Line Linked List, with one exception.
The LIS?_LOG_STRING operator in the Line Linked List is not used
for this resource. The PDL file stored in the File Linked List
need only be arranged when an editing session is ended. Separate
routines for outputing formatted and unformatted files are
provided in the front-end level of the package. (See FILE_UF_DUMP
in Chapter 5)

FLL-INITIALISE
Function: Initializes the File Linked List by resetting its

records to the null data item.
Inputs: *none*
Outputs: *none*

FLL.GET_RECORD (VAR STATUS: INTEGER)
Function: A record corresponding to a PDL line is obtained from

the space list and inserted in the link list after the
File Linked List pointer.

Inputs: *none*
Outputs: STATUS — An integer error flag having one of the

following possible outcomes:
Successful — record was successfully fetched
Empty.space,list — the list is full and no more

records can be inserted.

Inputs:
Outputs:

FLL_RETURN.RECORD (VAR STATUS: INTEGER)
A text line (or record) is returned to the space list,
thus deleting it from the link list. The record pointed
to by the pointer is returned? after the operation the
pointer is moved to the previous record.
none
STATUS — The integer error flag. It has one of the

following outcomes for this operation:

Page 36

Successful — record was suceasfully returned
Empty_link_list — the list is empty and thus no

record can be returned
LLP_outgide_list — with the Logical List Pointer

in the zero position, no record
can be returned.

FLL READ RECORD (VAR INDEN_CODE: INTEGER;
VAR KEY CODE_l: INTEGER;
VAR KEY CODE.2: INTEGER;
VAR TEXT LINE: STRING (81) OF CHAR;
VAR STATUS: INTEGER)

Function: Reads the record fields associated with the record
pointed to by the list pointer (ie. the attributes
associated with that text line).

Inputs: *none*
Outputs: INDEN.CODE — The indentation code of the PDL line

which determines its absolute placement
from the left-hand margin when pretty-
printed.

KEY_CODE_l — The first key code associated with a
system-generated key word which precedes
any user-entered text.

KEY_CODB_2 — The second key code associated with a
system-generated key word which follows
any user-entered text.

TEXT_LINB — The variable string containing the user-
entered text.

STATUS — The integer error flag having one of the
following possible outcomes:

Successful — the operation was performed success
fully

Empty,link.list — no Read operation can be
performed on an empty list

LLP_outside_list — no Read operation can be
performed with the list pointer
at the zero position.

FLL WRITE..RECORD (INDEN_CODE: INTEGER;
KEY_C0DE_1: INTEGER;
KEY_C0DB_2: INTEGER;
TEXT.LINE: STRING (81) OF CHAR;

VAR STATUS: INTEGER)
Functions Writes the information associated with the File Linked

List record into the record pointed to by the list
pointer.

Inputs: * same as the field outputs for the PLL_READ_RECORD
operator above *

Outputs: STATUS — The integer error flag having the following
possible outcomes:

Successful — the operation was performed success
fully

Empty_link_list — no records are available for
writing into

LLP_outside_list — no writing can be performed
with the list pointer in the
zero position.

Page 37

E'IiIi_MOVE_POIWTER (IMCREIlENTs INTEGER;
VAR STATUS: INTEGER)

Function: Moves the list pointer forward or backward by a
positive or negative increment.

Inputs: INCREMENT — A positive, negative, or zero integer
value which will move the list pointer
forward, backward, or not at all by the
specified amount from the current pointer
position. If too large an increment is
specified, the pointer is moved as far as
possible.

Outputs: STATUS — The integer error flag having the following
possible outcomes;

Successful — the operation was performed success
fully

Empty_link_list — the pointer cannot be moved if
the list is empty

LLP_outside_list — the increment is too large or
too negative, so that the list
pointer would have to be moved
beyond the end of the list or
before the beginning of the
list. In this case, the pointer
is still moved to the relevant
list limit, but the STATUS flag
tells of the overshoot problem.

FLL_LOG_INFO (VAR LIST.POINTER: INTEGER)
Function: Returns the value of the logical link list pointer.
Inputs: *none*
Outputs: LIST_POINTKR — The list pointer value.

3.6.3 Resource structure
The data structure for the File Linked List is as follows:
Constants:

Integer:
Single:

MR = 81 *Maximum Records — the capacity of the
resource*

SUCCESSFUL = 0
BMPTY_SPACB_LIST = 1 ‘possible outcomes of the
BMPTY„LINK_LIST = 2 status flag*
LLP_OUTSIDE_LIST = 3

Types:
LIST_RECORD = Record:

FP : integer
BP : integer
Dll: Integer
DI2: Integer
DI3: Integer

♦Forward Pointer*
♦Backward Pointer*
^Indentation code*
Key code 1
Key code 2

Page 38

FT : String (81) of Character *user-
entered File Text line*

End Record:
MY.LIST = Array [1..MR] of LIST.RECORD

Variables:
Integer:

Single:
LLR *Pile Link List Rock*
SLR *File Space List Rock*
PLP *File Physical List Pointer*
LLP *File Logical List Pointer*
LLS *File Link List Size*

MY.LIST:
Single:

Permanent:
MY.LIST

The structure of the linked list is as described in section
3.5.3. The only point of interest here is the multiple fields
involved in describing a record. To define any PDL line in the
system, the codes and text line mentioned above are required.
With the edited file being list-based, extensive line
manipulation is thus possible via this resource.
A test program for this resource is provided (see Appendix A).
The designer can thus become familiar with this resource due to
the extensive input error checking facilities available. A
physical and logical display of the state of the resource is also
available via this test routine.

Page 39

4 THE PROCESSES

4.1 The Line Editor

4.1.1 Process function
The Line Editor is designed to be a self-contained procedure for
use as a package when any user-entered response is expected in
the Window Screen. The Line Editor functions are needed when the
user is entering or modifying any line or entering a filename as
requested by the system. This process contains the usual editing
functions required of a line editor. The user can overtype,
insert, delete and move the cursor (Cursor 2) under any character
in the editable string.
The Line Editor is exit by one of three methods:
1. Using-the ENTER key -- The new edited text string is accepted

and the editor abandoned.
2. Using a valid Function Key The valid set of function keys

is determined by the boolean
array. On depression of one of
these keys, the new line is
accepted, while a change of
states also occurs.

3. Using the ESCAPE key --- This key will exit the editor without
accepting the new edited line.

Complete error checking is performed within the Line Editor
package *-o trap errors such as line overflow and other illegal
operations. All errors display messages in the Prompt Screen,
simultaneously sounding the terminal bell.
The editor functions are explained in section 4.1.3 with the use
of the subroutines which have been used to create the Line
Editor. Each subroutine corresponds to a certain Line Editor
function. Section 4.1.2 gives the Line Editor program's structure
which is used in this package.

4.1.2 Process structure
The routine call which invokes the Line Editor is shown below,
together with its external input and output parameters.

LINE.EDITOR (WS.WIDTH: INTEGER?
START.COL s INTEGER?

VAR KEY TEXT: STRING (80) OF CHAR?
VAR IN.STRING: STRING (80) OF CHAR?
VAR MSP: INTEGER?

KEY_FLAG_ARRAY: ARRAY [1..10] OF BOOLEAN?
VAR OUT.STRING: STRING (80) OF CHAR?
VAR OUT.KEY: INTEGER)

Page 40

where the inputs <
(Window Screen WIDTH) Defines the upper bound of
the editable line in the Window Screen.
(START COLumn) defines the lower bound of the
editable line in the Window Screen. The Line
Editor will only be concerned with text between
the two above limits.
The first key word in the Window Screen line.
Note that this key word will be displayed in
highlighted font and is not user-editable.
The user-editable input text string. This string
is written in normal font immediately after the
key word in the Window Screen and is completely
user-editable.

WSP — (Window Screen Position) The required starting
position of Cursor 2 in the Line Editor. If this
variable is input out of range, a best attempt
is made at placing the cursor as close as
possible to the required position. WSP can only
be set to a character in the IN_STRING (ie. the
key word is not editable and thus the cursor
cannot be placed here).

KBY_PLAG_ARRAY - An array of flags for determining the function
keys which will exit the Line Editor. A TRUE
flag indicates that the corresponding function
key will successfully exit the Line Editor. This
array is usually obtained directly from the
A Read operation on the Definition Table.

OUT_STRING - The user-editable text string which is output when
the Line Editor is exit.

ODT_KBY — An integer code which is passed back to the calling
program to indicate what key combination terminated
the line editing session. The possible outcomes of
this variable are:
1 - 1 0 — depending on which function key was used

(any changes made in the Line Editor
will be accepted)

-1 ■— if the ENTER key was used for exiting
(all changes made in the Lin. Editor are
accepted)

-100 — if the ESC key was used (any changes
made while in the Line Editor are
ignored and OUT_STRING is set to the
IN_STRING value).

This Line Editor package can thus be used as a module where
required, with the designer only being concerned with its
interfacing to the calling program. This makes such a process
usable in many other applications where a line editor is needed.

Page 41

An example of initializing the Line Sditor is given in Pig.4.1.

WS_WIDTH = 20
START COL = 2
KBY.TEXT = "Until "
IN_ STRING = n<COtlDITION>"
USP = 1
KEY FLAG ARRAY = *all elements set to FALSE*

II | 31 | 51 I 71 I 9| |11| |13! 1151 117 1 |19| |21|
12! | 4| | 61 I 8| |10| |12l 1141 |16| |18| |20| 1

Fig.4.1: Using the Line Editor package
The figure shows a line in the Window Screen for a certain
set of Line Editor input parameters. The numbers represent
the column position from the left-hand margin of the Window
Screen. The editable portion of the Window Screen is
restricted to between characters 8 and 20 due to the
WS_WIDTH, START.COL and KEY.TEXT input values. The cursor
is not allowed outside these limits. The KEY_TBXT input is
highlighted and written starting at the specified START,COL
position, in this example, the (CONDITION) placeholder is
to be expanded via the Line Editor. MSP was input as 1
which is clearly out of range. (Acceptable MSP inputs lie
from 8 to 20.) The cursor (shown as an underscored
character) is thus positioned under the fiist editable
character (the "<"). for exiting, only the ENTER and ESC
keys will be effective.

The resources used in the Line Editor are:
Line Linked List — for character by character manipulation
Terminal Resource — for output purposes in the Window Screen
Section 3.5.3 has already elaborated on how the Line Linked List
can be used to form the basic features of a Line Editor. The
Terminal Resource is used for the positioning of Cursor 2 in the
Window Screen; the highlighting of the key word; and the
displaying of the user-editable text line.

* The Line Editor’s routines are listed below:
LOAD — initializes the Line Editor
MOVE_CUR.F — moves the cursor (Cursor 2) forward by one

position
MOVE.„CUR_B — moves Cursor 2 backward by one position
WS_HOHE — positions the cursor at the start of the editable
END_OF_LINE — positions the cursor at the end of the existing

text line
ENTER_TEXT — allows the user to enter text one character at a

time both in Type and Insert modes
INSERT — toggles the Character Insert mode
DELETE ■— deletes a single character immediately to the left

Page 42

of the cursor
ERASE_EOL — deletes all characters from the current cursor

position to the end of the line
DUMP — dumps the resultant text lino into the OUT_STRIMG

variable.

A general description of the Line Editor process is given in
Pig.4.2. The principal global variables used for this process are
listed below:
INSERT_STATUS — detects Insert mode (can be either ON or OFF)
LIHE_LENGTH — keeps track of the current length of the user-

editable text line
HAX_LENGTH — determines the maximum length of the user-

editable text line
LLP — (Logical List Pointer) is the current pointer

position in the user-editable text in the Line
Linked List

WSP — (Window Screen Position) is the logical cursor
position (measured in columns from the left-hand
margin) in Screen 2.

The STATUS variable indicates the status of many of the
operations performed on the Line Linked List, but is used
sparingly.

Process Line Editor
Repeat:
Call LOAD
If (Status <> Successful)

Status := Successful

Keyboard: Key
End Get:
Case (Key) Of:

Cur Forward : Call MOVE_CUR_F
Cur Backward: Call HOVB_CUR_B
Home : Call WS_HOWE
End : Call BHD_OF_LINE
Ins : Call INSERT
Del : Call DELETE
Cntrl K : Call ERASE..EOL
Call ENTER_TEXT

End Case:
Until (Key implies termination)
Call DUMP
Set OUT_KEY to appropriate value

End Process:
Fig.4.2: A PDL description of the Line Editor

Page 43

With reference to Pig.4.2, the Line Editor operation is describe 3
as follows. Initially, the LOAD routine is used to initialize the
editor to its initial state as set by the inputs (see Pig.4.1). A
Repeat-until block is entered until the key obtained from the
keyboard (a single character) implies termination. The Line
Editor can be exit by using a valid function key; the ENTER; or
the ESC key. An unsuccessful status is set to successful before a
key is obtained from the keyboard.
A somewhat more complex Case construct than that shown in Fig.4.2
is used to perform key capture and identification. A simplified
version is given here, but the next section will elaborate on the
subtleties involved when describing a similar procedure in Base
Level, when the editor is exit, the DUMP routine is called and
the OUT_REY output variable is set. The DUI1P routine is
responsible for producing an output text string corresponding to
the edited line.
The Line Editor is built as a stand-alone module so that it can
be used in any line editing situation. A test program has been
constructed allowing the designer to experiment with input
parameters and editor operation. If any modifications are made to
the Line Editor, the test program can be used to check if it
performs as expected before it is integrated into the PDL
generator package. The format of the test program can be seen in
Appendix A,

4.1.3 Process routines

The LOAD routine and its parameters <s as shown below, while the
PDL description of its behavior can be found in Fig.4.3.

LOAD (START_COL: INTEGER?
VAR Z1AX_LENGTH: INTEGER;
VAR LINE_LBNGTH: INTEGER;
VAR WSPi INTEGER;

KEY.TEXT: STRING (80) OF CHAR;
IN_STRING: STRING (80) OF CHAR)

Procedure Loa-3
Write KEY.TEXT in highlighed font in Screen 2
Write IN_STRING in normal font in Screen 2
Set the MAX_LENGTH of the line
Set the LINE_LENGTH to the length of the IN_STRING
Ini ialize the Line Linked List
Writo the IN_STRING in the Line Linked List
♦Check for any errors in the MSP input*
If (There are any errors in MSP)

♦Correct MSP to beginning or end of line*
Set Cursor 2 to the MSP value
Move list pointer to the position corresponding to WSP

End Procedure:
Fig.4.3: The PDL for the Line Editor Load routine

Pa«c 4'<
This routine i.; used initially, each tii,;e the Line Editor is
called. It is responsible for setting up the Line Editor as
specified by the inyut parameters. The ?IAX_LEnGT,'I, LII-7E„LENGTH
and MSP variables ar set in this routine. The Line Linked List
will also be initialize^ and loaded with the IN_STRING; the list
pointer being positioned .,■/ the MSP input value.

This routine moves Cursor 2 forward by one position on depression
of the Cursor Right key. It is possible to move the cursor beyond
the last character of the text line as long as the Window Screen
bounds are not exceeded. If it is attempted to move the cursor
beyond the right Window Screen bound, an error will occur. The
calling routine is given below, while Pig.4.4 elaborates on the
procedure construction.

Procedure Move Cursor Forward
If (Cursor is moved beyond right bound in Window Screen)

Put out an error — cursor at end of line
Check if last character is a blank
If (Cursor is moved beyond end of text line)

Get a record
Write a blank character in the new record
Call CUR_RIGHT
WSP := MSP + 1
LINfLLBHGTH := LINE.LENGTH + 1
If (Insert Status is ON)

Hove pointer forward by one position
Read the character at the pointer position
Write the character followed by a blank
Call CUR_LEFT
WSP ;= WSP + 1
Move pointer forward by one position
Call COIL RIGHT
WSP ;= WOP + 1

MOVE_CUR_P (INSERT,STATUS: BOOLEAN;
VAR LINE_LENGTH: INTEGER;

HAX_LENGTH: INTEGER;
LLP; INTEGER;

VAR WSP: INTEGER;
VAR STATUS; INTEGER)

End Procedure:
Fig.4.4; The PEL for the Move Cursor Forward routine

Page 45

This routine is used to move the cursor in the Window Screen to
the left by one character. The Cursor Left key is assigned to
this function. If the cursor is moved beyond the beginning of the
editable text line, an error will occur and the terminal bell
will sound. As in the Cursor Forward routine, when in Insert
mode, the cursor will always be under a blank token. Moving the
cursor either to the left or to the right will result in the
previous or following character being interchanged with the blank
token, again leaving the cursor under the blank insert token. The
procedure is called as shown below; Fig.4.5 giving its internal
structure.

MOVE_CUR_B (INSERT..STATUSs BOOLEAN?
LLP: INTEGER;

VAR WSP: INTEGER;
VAR STATUS: INTEGER)

Procedure Move Cursor Backward
If (Insert status is ON)

If (List pointer is at the zero position)
*Put out an error message — cursor is at beginning of

Read the character pointed to by the list pointer
Call CUR_LEFT
Write a blank to the screen
•Write out the character obtained above*
Call CUR_LEFT
Call CUH.LEFT
WSP := WSP - 1
♦Move the pointer back by one position*

(ie. Insert Mode is OFF)
If {List pointer is at the start of the line)

*Put out an error message — cursor is at beginning of
else:
Call CUR_LEPT
WSP := WSP - 1
♦Move list pointer back by one position*

End If:
End If:

End:
End Procedure:

Pig.4.5: The PDL for the Move Cursor Backward routine

£jj£S2I_ti<2EiS

This routine will move Cursor 2 to the beginning of the user-
editable text line in the Window Screen. If in Insert mode, the
cursor is placed at the first editable character position, but

Page 46

the entire text string is shifted to the right by one character
to make space for the blank insert token under which the cursor
will lie. Fig.4.6 describes this simple procedure in PDL while
the routine call is shown below:

WS_HOME (INSERT..STATUSi BOOLEAN;
MAi:_LENGTH: INTEGER;
LLP: INTEGER;

VAR W8P: INTEGER;
VAR STATUSs INTEGER)

Procedure Home
Set WSP to first editable character
Hove list pointer accordingly
Set Cursor 2 to the WSP value
If (Insert Status is ON)

Move list pointer back by one oosition
Call LIST_LOG_STRING
If (LINB_LBNGTH = MAX_LENGTH)

Trim the above output string to its length minus one
‘Write out above output string*

End Procedure:
Fig.4.6: The PDL for the Line Editor's Home routine

Procedure End of File
If (LINE_LENGTH = MAX_LENGTH) and (Ins«rtv Status is ON)

Put out an error
Move list pointer to end of text string
If (LINE_LENGTH = 0)

Set WSP to first editable character
Set WSP to end of text string

If (Insert Status is ON)
Call LIST_LOG_STRING
Write out the characters obtained above
WSP ;= WSP + 1
Call CLR_LINE
Set Cursor 2 to WSt value

End Procedure:
Pig.4.7: The PDL for the End of Line routine

Page 47

This routine (described in Pig.4.7} will move the cursor to the
last character of the user-editable text string in the Window
Screen. For the purposes of logical convenience, this operation
is not performed when the line is full and Insert mode is ON. The
routine call and parameters are given below.

END OF LINE (INSERT STATUS: BOOLEAN?
LINE LENGTH: INTEGER?
LLP: INTEGER?

VAR MSP: INTEGER)

J3nJ;sj:_i,sjs±
As this routine will be used most frequently in both typing and
Character Insert mode, it involves many tests as can be seen from
Fig.4.8. This function will concatenate any continuously user-
entered characters into the text string. If overtyping is
performed, the old character is replaced by the new, while typing
beyond the last character of the line will add characters to the
text string. In Insert mode, characters entered will be inserted
sequentially at the blank insert token.
An error will result in normal Typing mode if it is attempted to
type beyond the right bound of the Window Screen. In this case,
the last character of the line is overtyped, and the user warned.
When in Character Insert mode, however, an error will occur once
the line length exceeds the MAX_LENGTH value. In checking for
line length, if the last character is a blank, it will be
discarded. The calling routine is presented below, while Fig.4.8
gives a more detailed PDL description of the Enter Text function.

ENTER_TEXT (KEY: CHAR?
INSERT.STATUS: BOOLEAN?

VAR LINE.LENGTH: INTEGER?
MAX LENGTH: INTEGER;
LLP: INTEGER?

VAR WSP: INTEGER?
VAR STATUS: INTEGER)

Procedure Enter Text
Variables:

Boolean:
Single:

POSSIBLE
Begin:
If (Insert Status is ON)

POSSIBLE := TRUE
If (LINE_LENGTH = MAX.LENGTH)
then:
Check if last character is a blank
If (Last character is not a blank)

Put out an error — line is full
POSSIBLE := FALSE

Return the last blank character
LINE_LENGTH := LIIIE_LBMGTH - 1

End Ifs
If (POSSIBLE = TRUE)

Write the input key to the screen
WSP := wsp + 1
Get a record from t e space list
♦Write the input key in the new record*
LINE,.LENGTH := LINE.LENGTH + 1
If (Line length is a maximum and pointer is at end)

Call CUR_LEFT
NSP := WSP - 1
Call LIST_LOG_STRING
Put out a blank character to the screen
If (LINE.LENGTH = MAX_LENGTH)

•''’Trim output string to its length minus one*
Pufc owl the output string
Set Cursor 2 to the WSP value

(ie. Insert Mode is OFF)
Write the input key to the screen
WSP := WSP + 1
If (LINE.LENGTH = 0)

Get a record from the space list
LINE.LENGTH := LINB.LEHGTE! + 1

♦Write the input key in the list*
Move list pointer forward by one position
If (Status implies a Pointer-Outside-List error)
then:
If (LINE.LENGTH >= MAX_LBUGTH)
then:

Put out an error — overtyping last character
Get a record from the spaco list
Write a blank character in the list
LINE.LENGTH := LINE.LENGTH + 1

End Procedure:
Fig.4.8: The PDL for the Line Editor's Enter Text routine

Jnssii
This routine is used to toggle Character Insert mode ON or OFF.
Character Insert mode is used for inserting a character before
the character pointed to by Cursor 2, Under normal circumstances.

Page 49

this insert mode will produce a blank insert token under the
cursor as a visual reminder. This mode cannot, however, be
entered if the line is full. The routine call is described below,
while Fig.4.9 shows its PDL description.

INSERT (VAR INSERT STATUS: BOOLEAN;
VAR L:NE_LENGTHs INTEGER;

ilAX.LBNGTH: INTEGER;
LLP: INTEGER;

VAR MSP: INTEGER)

Procedure Insert
Variables:

Boolean:
Single;

POSSIBLE
Begin:
If (Insert Status is ON)
then:
Call LIST_LOG_STRING
♦Write output string from above operation*
If (LINE.LBNGTH <> MAX_LENGTH)
then:
Call CLR.LINE

End If2
If (WSP is at the end of the file)

MSP s= WSP - 1
Set Cursor 2 to the WSP value
Move list pointer forward by one position
Set insert Status OFF
POSSIBLE := TRUE
If (LINE_LENGTH = HAX_LENGTH)

Check if last character is a blank
If (Last character is a blank)

Put out an error — line is full
POSSIBLE := FALSE
Return the last character to the space list
LINELLGNGTH :<= LINE.LENGTH - 1

End If:
End If;If (POSSIBLE = TRUE)
then;
Call LIS5LLOG_STRING
Put out output string from above operation
Move list pointer back by one position
Set Insert Status ON

End if:
End Procedure;

Fig.4.9; The PDL for the Lin-j Editor's Insert routine

Page 50

Deists
This routine will delete the character immediately to the left of
the cursor whether in Insert mode or otherwise? the remaining
text string to the right of the cursor moving to the left by a
single character position. Deleting beyond the beginning of the
user-editable text line is not permitted. Below, the routine call
is shown, while the PDL for the Delete routine is described in
Pig.4.10.

DELETE (INSERT STATUS: BOOLEAN?
VAR LINE LENGTH: INTEGER?

LLP: INTisGER?
VAR MSP: INTEGER?
VAR STATUS: INTEGER)

Procedure Delete
If (Insert Status is ON)

If (List Pointer is at zero position)
♦Put out an error — deleting beyond start of line not
allowed*
Call LIST.LOG.STRING
Call CUR_LBFT
♦Write a blank character to the screen*
♦Write out the string obtained above*
If (LINE_LENGTH <> MAX.LENGTH)

Call CLR_LINB
WSP := WSP + 1
♦Set Cursor 2 to the WSP value*
♦Return the record to the space list*
*LINE_LENGTH i= LINE.LENGTH - 1

(ie. insert Status is OFF)
If (List pointer is at the start of the line)

♦Put out an error — deleting beyond start of line not
allowed*
Call LIST_LOG_STRING
Call CUR_LBFT
♦Write out the string obtained above*
Call CLR_LINE
WSP := WSP - 1
♦Set Cursor 2 to WSP value*
♦Move list pointer backward by one position*
♦Return the record to the space list*
♦Move list pointer forward by one position*
LINE_LENGTK := LINE_LBNGTH - 1

End Procedure:
Fig.4.10: The PDL for Line Editor's Delete routine

Ssass-BDd-si-Xdne
This routine is responsible for erasing all characters from the
current cursor position to the end of the line. Pig.4.11 gives
the PDL for this routine while the calling procedure is shown

ERASE_EOL (INSERT STATUS: BOOLEAN;
VAR LINE LENGTH: INTEGER;

LLP: INTEGER)

Procedure Erase End of Line
While {List pointer is less than LINE_LENGTH) Do:

Move list pointer forward by one position
Return the character at the list pointer to the space list
LINE.LENGTM := LINE.LENGTH - 1

End While:
If (Insert Status is OFF)

Write a blank character at the end of the line
End If:
Call CLR_LINE

End Procedure:
Fig,4.11: The PDL for the Erase End of Line routine

DtiBB
This routine deals with the outputting of the OUT.STRING
variable. This string is obtained by reading the Line Linked List
in order of ascending forward pointer values. The LIST_LOG_STRING
routine is useful for this purpose (see section 3.5 2). Any blank
characters at the end of the text line are ignored. The routine
call is shown below, while Pig.4.12 gives the PDL description of
the Dump routine.

DUMP (.-lAX.LENGTH: INTEGER;
VAR OUT_STRING: STRING (00) OF CHAR)

Procedure Dump
Begin:
Call LIST_LOG_STRIHG
*Trim the output string of any blank characters at the end of
the line*

End Procedure:
Fig.4.12: The PDL for the Line Editor's Dump routine

4.2 Formatter

4.2.1 Process function
The Formatter process is a short routir.j which is used to format
a PDL program, line by line. This routine provides a methvd for
converting the coded version of a PDL file into its logical
equivalent. Dy accessing a line in the coded file (which is
resident in the Pile Linked List resource), the Formatter process
is able to convert the various codes into a text line comprising
three distinct text strings. These three strings form the output
of the Formatter routine. The output strings, when strung
together sequentially, will form the required text line.
The three output strings thus represent the first, second and
last parts of the prettyprinted line. The output was chosen in
this form to make the formatter a more generally usable routine.
On the Main Screen for example, the three strings represent the
first highlighted system-generated key word? the unhighlighted
user-entered text? and the second system-generated highlighted
key word.
The output routine which writes the file to disk in formatted
form (see section 5.2) also uses the Formatter process, but does
not make any distinction between the three strings (highlighted
or not). Here instead, the strings are combined into a single
line without distinguishing between key words. It will be
apparent that not all lines will contain all three of these
output strings, but three strings are supplied for completeness.

4.2.2 ProcesB structure
A high-level PDL description of the Formatter process operation
is given in Fig.4.13. Its operation is described below.

Process Formatter
Begin:

Read the File Linked List at the current pointer position
*Assign the user-editable text string to the second output
string*
♦Read the Key Code Table for the first key code*
♦Calculate the line's absolute indentation*
♦String the absolute indentation space snci the key word
together and assign to the first output string*
Read the Key Code Table for the second key code
♦Assign the second key word to the third output string*

End Process:
Fig.4.13? The Formatter routine

Firstly, the File Linked Line, js read corresponding to the
current pointer position. Thus, the line which is to be formatted
will be the line referenced by the File Linked List pointer on

entering the Formatter routine. From the File Linked List, the
indentation level? the first and second key codes? and the user-
editable text string are obtained.
Next, the Key Code Table is read, using the first key code to
determine its associated key word and relative indentation. The
indentation level, together with the relative indentation
obtained from the first key code, is then used to calculate the
line's absolute indentation measured from the left hand margin.
It should be noted here, that only the first key code is used to
determine indentation. The relative indentation provided by the
second key code is meaningless, and thus not used.
The absolute indentation space is strung before the first key
word to form the first output string. The second output string
merely consists of the user-editable text string read from the
File Linked List. The Key Code Table is then again accessed to
determine the second key word from the second key code. This key
word forms the third output string.
The Formatter routine has been structured in such a way that it
is easily usable. This routine is used wherever a formatted
version of tiie coded file is required. This includes
prettyprinting for the Main Screen, as well as for the formatted
output file. The three strings are used so as to be able to
display the formatted line on Screen 1 in its appropriate mixed
font style.

4.3 System Base Level

4.3.1 Process function
The Base Level is the system's foundation level from where all
its functions are accessible. In this level, the user is given
the ability to move around in the file via the scrolling
functions such as cursor up and down? page forward and backward?
top and bottom of file? etc.. It should be noted, however, that
the cursor movements and page scroll functions are also available
in most other modes. Also, the system is designed to scroll
correctly for a Main Screen with an even number of lines only.
Another important function of the Base Level is that of providing
a gateway into the system's sub-levels. Insert, Delete, Copy and
Move modes will all be accessible from Base Level. The
construction of this process is such that any number of functions
can be added by making use of the available function keys. A
gateway into a sub-level is easily achieved by performing a call
to the new level's procedure wnenever the relevant function key
is depressed.
As this process is somewhat specialized to suit the PDr, generator
package, further details of the program structure can ue found in
section 4.3.2, while section 4.3.3 describes the scrolling
routines and the gateway into Insert Level in more detail.

4.3.2 Process structure
The Base Level process is bu’1t in modular form and can be
addressed using the following coi :ion:

FILE_SCROLL (TOP. "IK.',": INTEGER;
NO_GF._CIaTES: INTEGER;
KCT_SI2E: INTEGER?
PT_SIZE: INTEGER;

VAR MS_CDR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER;
VAR FILB_BOT_LINBi INTEGER)

Where the inputs are:
TOP„STATE — The state from which Base Level operates.
NO_OF_STATES — The number of states in the Definition Table.
KCT_SIZE — The number of key words in the Key Code Table.
PT_SIZE The number of prompt lines in the Prompt Table.

and the outputs:
MS_CUR_POS — (Main Screen CURsor Position) the line number of

the Main Screen (0 = top line; 19 = 20th line)
on which the cursor is positioned.

MS_TOP_LINE — (Main Screen TOP LINE) the actual number of the
line displayed at the top of the Main Screen.

FILE_BOT_LINE — (FILE BOTtom LINE) the actual number of the last
line in the file.

These last three variables can be used exclusively to keep track
of any cursor movements or screen manipulation. The position of
Cursor 1 is at all times determined by MS_CUR^POS, while the line
number which it is on can be found by (MS_TOP_LINti + MS_COR_POS).
The FILE_BOT_LINE is used to monitor the length of the file.
The primary scrolling functions in Base Level will require the
use of the following resources:
Terminal Resource — for screen management reasons
File Linked List — for reading and pointer manipulation
Key Code Table — for displaying the key codes on Screen 1
Formatter Process — for formatting prior to displaying on Screen 1
Due to the presence of the Line Edit facility as well as the
various gateways in Base Level, it is necessary that this level
involve the use of every resource and process available.
Besides the resources, the following procedures are employed in
the Base Level:

CUR_UP — moves Cursor 1 up the screen
CUR_DOWN — moves Cursor 1 down the screen
PAGE_BWD — scrolls backward by a page
PAGE_FWD — scrolls forward by a page
TOP_OF_FlLE — displays the top of the file
B0T_0F_FILB — displays the bottom of the file
CUR_TO_LINE — displays the requested file line
EDIT_LINE — used for modifying a single line
INSERT — the Insert gateway

These procedures are described in greater detail in section
4.3.3. It will be noted that the gateway into the Insert facility
is provided by the INSERT procedure. This procedure will then in
turn act as an entry point into the Insert sub-routines.
The PDL structure of the Base Level's main program is shown in
Pig.4.14. Referring to this figure, it can be seen that an A Read
operation is initially performed on the Definition Table, with
the TOP_STATE as input. This is done so that the Base Level's
function key set can be displayed in the Key Definition Screen. A
repeat-unt.il loop is used, so that only if the user depresses the
ESC key will he exit the Base Level (and indeed the PDL editor).

Procedure Base Level
Begins
Call DT_A_READ
Call FS.WRITE
Repeats
Call KBD.GET
Case (ASCII key code) Of:

Special keys: KBD_GET
If (ASCII key implies a valid function key)

Case (Function key) Of:
1: Call PAGELBWD
2: Call PAGE_FWD
3: Call TOP_OF_FILE
4: Call BOT_OP_FILE
5: Call CUR_TO_LINE
6: Call EDIT_LINB
7 s Call DT_B_READ

Call INSERT
End Cases
If (ASCII key implies any used key)

Case (Used key) Of:
Cursor up : Call CUR^UP
Cursor down: Call CUR_DOWN
Page up : Call PAGE_BWD
Page down : Call PAGE_FWD

End Cases

End Case:
Until (ASCII code implies ESCAPE)

End Procedures
Fig.4.14$ The PDL structure for Base Lev^l

The Case construct which is embedded within the loop forms a
standard structure for multiple function-key driven operations.
This method, although not completely externally programmable,
does have large scope for expandability. Extra functions can
merely be inserted as a separate Case option in the form of a
procedure call. Thus, the program will remain simple in basic
structure.

Page 56

The gateway facility can easily be identified by the multiple
statements used for the function key 7 option. Here, the
Definition Table is again accessed using the B Read operator so
that the next state can be obtained. It is this next state which
is used as the top state for the INSERT procedure. Details of
this procedure will be given in section 4.4.
The structure of Fig.4.14 also brings out the possibility of
using special keys on the keyboard (eg. the cursor control keys
or the Pg Dn and Pg Up keys) to execute an associated routine.
Thus, special-purpose function keys can easily be added. A
constant is assigned to the ASCII codes generated when a key is
depressed so as to make the system as portable as possible. The
system designer need only change the constant values at the
beginning of the program to suit the new keyboard, resting
assured that the program will run as expected without further
intervention.
A more general structure for being able to trap any key or key
combination of the keyboard is given in Fig.4.15. It is assumed
that function keys and special keys (including Cntrl keys) put
out two ASCII codes when depressed.

Call KBD_GET
Case SCII code) of:
Groupl special keys: Call KBD_GET

Case (ASCII code) of:
Groupl fx keys: Case (fx key) of:

do nothing
**ie. fx key
invalid**

End Case:
Case (ASCII key) of:
Cursor up : ...
Cursor down: ...

do nothing
**ie.no other keys
are valid**

End Case:
End Case:

Groups special keys:

Groupn special keys:

text is entered
End Case:
Fig.4.15: The PDL structure for using any key or key combination

4.3.3 Process routines
5UXSSJL..EIP
This routine is responsible for moving the cursor in Screet. up
by one line. This function is assigned to the Cursor Up key. The
procedure call can be seen below.

CUR_UP (VAR MS_CUR_POS: INTEGER?
VAR MS TOP LINE: INTEGER;

KCT_SIZE: INTEGER)
The variables MS_CUR_POS and ms_T0P_LI1IE are used entirely for
the management of the Main Screen. As explained previously, given
the top line of the Main Screen and an absolute cursor position,
all other unknowns are easily calculated. The tasks which need to
be performed in this routine include the moving (or effective
switching off and on) of the cursor (Cursor 1) on the Main
Screen? the checking for scrolling conditions; and the checking
for an error.

Procedure Cursor Up
If (Cursor 1 is not at the top of Screen 1)

♦Move Pile Linked List Pointer Back by one line*
♦Turn the old cursor OFF*
MS_CUR_POS := MS_CUR_POS - 1
♦Turn the new cursor ON*
**(ie. Cursor 1 is at the top of the screen)♦♦
If (MS_TOP_LINE = 1)

♦Put out an error message — top of file*
If (An exact half screen scroll is possible)

♦Decrease MS_TOP_LINE by a half screen*
♦Set MS_CUR_POS to the centre of Screen 1*

else:
{ie. An exact half screen scroll is not possible)
♦Set MS_CUR_POS to its appropriate value*
♦Set MS_TOP_LINE to 1*

♦Rewrite the entire Main Screen*
♦Turn the new cursor ON*

End Procedure:
Fig.4.16: The PDL for the Cursor Up routine

An error will occur if the user tries to move the cursor above
the file's top line. Page scrolling is needed when the cursor
reaches the top of the logical Main Screen, but not the top of
the file. A half page backward scroll is performed when scrolling

Page 58

is required so that the cursor is positioned in the centre line
of Screen 1. This centre line is taken as the (MS.SIZE / 2)th
line. A skeleton PDL structure of this routine is given in
Pig.4.16. The various condition checks are clearly depicted.
The comment "*Rewrite the entire Main Screen*" involves moving
the pointer in the File Linked List to access the required 20
lines. Each line is formatted and written to the Main Screen
individually. This routine is used often when either part of or
the entire Main Screen is to be updated. Thus, Fig.4.17 is
included to demonstrate the steps involved.

Move File Linked List pointer to the first line to be displayed
♦Initialize the loop counter*
Repeat:
Call FORMATTER
Call MS„»miTE
♦Move the File Linked List pointer forward by 1*
♦Increment the loop counter*

Until (The correct number of lines have been updated on Screen 1)
♦Move File Linked List pointer back to the new cursor position*

Fig.4.17: PDL for updating the Main Screen

Procedure Cursor Down
If ((The cursor is currently not on the last line) and

(Scrolling is not required))
♦Move File Linked List pointer forward by 1*
♦Turn the old cursor OFF*
MS_CUR_POS := MS_CUR_POS + 1
♦Turn the new cursor ON*
If (The cursor is on the last line)

♦Put out an error message — bottom of file*
(ie. Scrolling must be performed)
If (An exact half screen scroll is possible)

♦Increase M3_TOP_,LINE by a half screen*
♦Set MS_CUR_POS to the centre of Screen 1*
♦Set MS_CUR_POS to its appropriate value*
♦Set MS_TOP_LINE to one screen lees than the
FILE_BOT_LINE*

End If:
♦Rewrite the entire Main Screen*
♦Turn the new cursor ON*

End Procedure:
Fig.4.18: The PDL for the Cursor Down routine

Page 59

This routine moves Cursor 1 on the Main Screen down by one line.
This function is assigned to the Cursor Down key. The procedure
call can be described in Pascal as follows:

CUR_DOWN (VAR HS_CUR_POS: INTEGER;
VAR MS_TOP_LINEr INTEGER;

FILE_BOT_LINE: INTEGER;
KCT_SIZEs INTEGER)

The usual variables are used, however, the PILE_BOT_LINE is
the variable (globally accessible) used to denote the last line
of the file.
/gain, checking must be performed fo- scrolling and error
conditions. An error is detected when the user attempts to move
the cursor beyond the file's last line. A half page forward
scroll is performed when the cursor is moved beyond the last line
of the logical Main Screen. A scroll will position the cursor
(from the top of the physical screen) at the ((MS_SI2E / 2) +
1)th line. The skeleton structure for this routine is shown in
Pig.4.18.

Iflgs-BaskMsid
Procedure Page Backward

If (MS_'?OP_LINE = 1)
If‘(MS_CUR_POS = 0)

Put out an error — Top of file
♦Move file pointer to top of file*
♦Turn old cursor OFF*
MS_CUR_POS = 0
♦Turn new cursor ON*

End Ifi
(ie. scrolling is required)
If (exact page scroll is possible)

♦Move file pointer back by one page minus one*
♦Decrement MS_TOP_LINE by above amount*
If (Cursor 1 can be moved without overshooting)

♦Set MS_CUR_POS to its appropriate value*
else:
MS_CUR_POS := 1

End If:
♦Rewrite entire Main Screen*
♦Turn new cursor ON*

End If:
End Procedure:

Fig.4.19: The PDL for the Page Backward routine

Page 60

This routine will make every attempt to perform a full page
scroll backward. If possible, MS_TOP_LINE is decreased by a full
screen size minus one while MS_GUBt_POS remains unchanged. This
means that the first line of the page displayed on Screen 1
before scrolling will become the last line of the page displayed
after scrolling. If the screen's top line cannot be decremented
by the complete ideal amount, then the cursor is moved the
equivalent of one screen backward. If no decrement of MS_TOP_LlNE
is possible, then the cursor is moved to the top line of the file
and screen.
This procedure, which is also assigned to the Pg Up key, cai. be
invoked using the following:

PAGELBWD (VAR MS_CUR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER;

?ILE_BOT_LINEj INTEGER;
):CT_SIZE: INTEGER)

The usual global parameters are passed for the sake of being
explicit. Besides the tests needed as mentioned above, an error
will occur if the user attempts a backward scroll when Cursor 1
is positioned at the top of the file. The skeleton pdl structure
is given in Fig.4.19.

J?33S_£2Xtf3.rd
Procedure Page Forward
If (No scrolling is required)

If (Cursor 1 is already at the bottom of the file)
Put out an error — Bottom of file
Turn old cursor OFF
Set MS_CUR_POS to appropriate bottom line
Turn new cursor ON
Move File pointer to end of file

End If:
If (Exact page scroll is possible)

♦Move file pointer forward by ; page minus one*
♦Increment MS_TOP_LINE by the same amount*
If (Cursor 1 can be moved without overshoot)

♦Set MS_CUR_POS to its correct value*
♦Set MS_T0P_LINE such that file bottom line is at
end of Main Screen*

♦Rewrite entire Main Screen*
♦Turn new cursor ON*

End If:
End Procedure:

Fig.4.20: The PDL for the Page Forward routine

Page 60

This routine will make every attempt to perform a full page
scroll backward. If possible, MS_TOP_LINE is decreased by a full
screen size minus one while MS_CUR_P0S remains unchanged. This
means that the first line of the page displayed on Screen 1
before scrolling will become the last line of the page .displayed
after scrolling. If the screen's top line cannot be decremented
by the complete ideal amount, then the cursor is moved the
equivalent of one screen backward. If no decrement of MS_TOP_LINE
is possible, then the cursor is moved to the top line of the file
and screen.
This procedure, which is also assigned to the Pg Up key, can be
invoked using the following:

PAGE_BWD (VAR MS_CUR_POS: INTEGER?
VAR MS_TOP_LINE: INTEGER;

FILE_BOT_LINE: INTEGER;
KCT_SIZE: INTEGER)

The usual global parameters are passed for the sake of being
explicit. Besides the tests needed as mentioned above, an error
will occur if the user attempts a backward scroll when Cursor 1
is positioned at the top of the file. The skeleton PDL structure
is given in Fig.4.19.

53S£_E2j;ifS.C5
Procedure Page Forward
If (No scrolling is required)

If (Cursor 1 is already at the bottom of the file)
Put out an error — Bottom of file
Turn old cursor OFF
Set MS_CUR_POS to appropriate bottom line
Turn new cursor ON
Move File pointer to end of file

If (Exact page scroll is possible)
Move file pointer forward by a page minus one
♦Increment MS_TOP_LINE by the same amount*
If (Cursor 1 can be moved without overshoot)

Set MS_CUELPOS to its correct value
*Set MS r such that file bottom line is at
end of n*

‘Rewrite entire Main tureen*
Turn new cursor ON

End If:
End Procedure:

Fig.4.20: The PDL for the Page Forward routine

Page 61

Similarly to the Page Backward routine, this routine attempts to
scroll the file on Screen 1 forward by a page minus one. This
means that the bottom line before scrolling becomes the top line
after scrolling. All the possibilities described in the PAGE_BWD
routine above are accounted for, with an error occuring if a
forward scroll is attempted with Cursor 1 on the last line.
This procedure is assigned to a function key in Base Level, and
also to the permanently available Pg Dn key on the keyboard. This
routine has the following parameters:

PAGE_FWD (VAR MS CUR_POS: INTEGER?
VAR MS TOP LINE: INTEGER

PILE_BOT_LZNE: INTEGER?
KCT_SIZE: INTEGER)

The parameters are again the usual global parameters and Fig.4.20
shows the structure of the routine in PDL form.

22£-fif-Eil£
This routine moves the cursor to the top line of the file.
Cnecking is performed to determine if scrolling is needed and an
error will be detected if this function is attempted with the
cursor already on the top line. A better idea of the nature of
the procedure can be obtained by studying the PDL description of
Fig.4.21. The routine name and parameters are as follows,.

TOP_OF_FILB (VAR MS_CUR_POS: INTEGER?
VAR MS_TOP_LINE: INTEGER?

FILE_BOT_LINE: INTEGER?
KCT.SIZB: INTEGER)

Procedure Top of F-H
Begin:
If (MS„TOP„LINE = 1)
then:
If (MS_CUR_POS = i)
then:
Put out an error — Top of file
Move File Linked List pointer to top of file
Turn old cursor OFF
MS_CUR_POS := 0
Turn new cursor ON

End If:
(ie. scrolling is required)
♦Rewrite the entire Main Screen*
MS_CUR_POS := 0
MS_TOP„LINE := 1
♦Turn new cursor ON*

End Procedure:
Fig.4.21: The PDL for the Top of File routine

B5iias3_si_£iis
Similar to the Top of File routine, this procedure will move the
cursor to the last line of the file. Again, checking is done to
determine whether scrolling is required or not. An error will
occur if this function is attempted when Cursor 1 is on the last
line of the file. The routine's parameters are shown below; the
PDL structure of this procedure is given in Fig.4.22.

BOT_OF_FILE (VAR HS_CUR_POS$ INTEGER;
VAR MS_TOP_LINE: INTEGER;

FILE_ BOT_ LINE: INTEGER;
KCT.SIZE: INTEGER)

Procedure Bottom of File
If (Scrolling is not required)

If (Cursor 1 is already at the bottom of file)
Put out error message -- Bottom of file
Turn old cursor OFF
Set MS_CUR_POS to new value
Turn new cursor ON
Move File Linked List pointer to end of list

else:
(ie. scrolling is required)
♦Rewrite the entire Main Screen*
♦Turn new cursor ON*

End Procedure:
Fig.4,22: The PDL for the Bottom of File routine

This function allows the u: cr to choose a line number to which
Cursor 1 is to be moved. Thv line number is entered in the Window
Screen via the Line Edit"r, An illegal line number is not
accepted and an error messegc. is displayed in the Prompt Screen.
Only an integer number of it: u.- digits or less which is between 1
and FILB_BOT_LINE will be acr.-ô ad.
If the line number requeue: appears in the present Screen 1
display, the cursor is iu ;< •/ moved to this line. If the line
number is not on Screen 1, icrolling occurs, with all attempts
being made to place the cursor with the required line in the
centre of the screen. In this routine, the centre of the screen
is taken as the (MS_SIZE / 2)th line. The procedure is defined as
shown below, with Fig.4.23 giving the structure of the Cursor-to-
line routine in PDL.

CUILTO.LINB (VAR MS_CUIL.POS: INTEGER;
.» VAR MS_TOP_LINE: INTEGER;

FILE_BOT_LINE: INTEGER;
KCT_SIZE: INTEGER)

Procedure Cursor to Line
Begin:
Prompt user for input line
*Set inputs for Line Bdito. *
Set WSP to start of line
Set all function key flags to FALSE
Set length of editor to allow only a 4 digit number
Call LINE EDITOR
Call WS_CLEAR
Call PS_CLEAR
If (Input line number is not valid)

Put out an error
(ie. line number is valid)
If (Scrolling is not required)

Move pointer to correct value on Main Screen
Turn old cursor OFF
Set MS_CUILPOS to new value
(ie. scrolling is required)
If (Requested line too near top of file to be placed in

centre of screen)
Move file pointer to requested line number
MS_TOP_LINE := 1
Set HS_CUILPOS to value indicated by line number
If (Requested line too near bottom of file to be

placed in centre of screen*
Move pointer to line number
*Set MS„TOP_LINE so that file bottom line is at
end of Main Screen*
*Set MS_CUR_POS to value indicated by line
number*
**(ie. Requested line can be located at centre

of Main Screen)**
Move file pointer to line number
*Set MS_TOP_LINE such that line number is in
centre of Main Screen*
*Sat MS_CUR_POS to half of the Main Screen

♦Rewrite entire llain Screen*
Turn new cursor ON

End Procedure:
Fig.4.23: The PDL for the Cursor To Line routine

It will be noted that the Line Editor package is used initially.
The length of the line is set so as to restrict the user to a
maximum of four digits. The highlighted prompt which is displayed

Page 64

in the Window Screen ("Line number =") is not editable.
Also worth noting is the task involved in displaying the error
message "Line Number it, out of range. Acceptable range = 1
to FILE_BOT_LING." with the FILB_BOT_LINE and the being
replaced by their appropriate values. Clearly, integer to string
conversions and string concatenation facilities are needed to
assemble this type of message in the form of a single string.

This function allows the user to pick any line from the file with
Cursor 1 and edit it, if possible, with the Line Editor in the
Window Screen. Any line containing a key word only will not be
editable and an error message will be output in the Prompt
Screen. The user is able to edit the user-entered text or a
placeholder in the Window Screen, without affecting the system
generated highlighted keywords. The accepted modified line is
ENTERed and will replace the old line in Screen 1. If the ESC key
is used, the line will remain as before and the Line Editor exit.
As no modification to the Screen 1 cursor position is performed
in this routine, the editor routine is invoked by the statement:-

EDIT_LINE

Procedure Edit Line
♦Read File Linked List at current pointer position*
♦Read the Key Code Table using the first key code obtained from
above*
If (Editing is allowed)
then:
♦Initialize settings for the Line Editor*
Call LINE.BDITOR
If (The new line differs from the old line)

♦Write the new text line in place of the old text line
in the File Linked List*

Call FORMATTER
Call MS.WRITE
♦Turn the cursor back ON*

♦Put out an error message — line not editable*

End Procedure:
Fig.4.24: The PDL for the Edit Line routine

Fig.4.24 shows a PDL structure of the procedure. This routine is
virtually self explanatory, but the Line Editor inputs can
perhaps be elaborated on. The user is given 40 columns of line to
edit (Inclusive of the key word). Only the first key word will be

Page 65

displayed. The key word is obtained by reading the Key Code
Table, while the editable text line is taken directly from the
Pile Lin1' List. All function key flags are set to FALSE so that
only the ENTER and ESC keys will exit the Line Editor.

Itissxt-fiatsifaY
See the main program in the next section (Section 4.4.2).

4.4 Insert Mode

4.4.1 Process function
Insert mode is used for the insertion of one or more lines of PDL
into the PDL file. This process deals with data insertion?
construct or block insertion and line insertion. Data items are
inserted by entering a specialized Data Description mode where,
via the use of function keys, a data item can be quick.y defined,
and automatically positioned in the program's Data Description
segment. Using this method the system provides a friendly user
interface, while constantly defining each entered data item for
future semantic error checking. The automatic placement of the
data item in the program with its required key words and
indentation is also of great help to the user.
The Construct or Block Insert function makes use of templates. A
template with associated placeholders will be inserted in the PDL
program below the current cursor position, with all indentation
considerations accounted for. This method of program generation
ensures syntactical correctness as all constructs are terminated
in the correct manner due to the templates used.
The Line Insert routine will allow multiple lines to be inserted
at certain permissible points in the PDL program. Again,
indentation is automatic, and insertion occurs after Cursor 1.
This function can be used to expand a placeholder or add
statement or comment lines. The Data Description segment of the
PDL program may not be accessed via this function and the user
will be warned if line insertion is not permitted.
The structure of Insert mode is such that a number of insert
routines (besides the ones listed above) can be added modularly
to the package by simply expanding the number of valid function
keys in this mode. Cursor 1 can be moved up and down in Insert
mode with the use of the cursor control keys. The Pg up and Pg Dn
keys for viewing the file by pages, are also operational.

4.4.2 Process Structure
The Insert process can be called usings

INSERT (TOP_STATE: INTEGER)
The TOP_STATE variable represents the state or mode from which

Page 66

any type of insertion can be chosen. This input is passed from
the calling program as the S8XT_STAT'? which is obtained from the
Definition Table when the Insert function key is depressed in
Base Level. A PDL description of the oasic Insert program is
given in Pig.4.25. The familiar Case structure (also found in
Base Level) is again apparent here. This gives the designer
greater flexibility in the adding to or modifying system
operation.

Procedure Insert
Repeat:
Case (Input Key) Of-
special keys: Call KBD_GET

If (Key implies a function key)
If (Function key is valid)

Call DT_B_READ
Call PT.READ
Write prompt to the Prompt Screen
Case (Function key) Of:

1: Call DATA_DESCRIPTION
2s Call ALGORITHM 10: Call DT_A_RBAD

Call FS_WRITE
End Case:

Case (Key) Of:
Cur Up; Call CUR_UP
Cur Dn: Call CUR_D0WN
Pg Up : Call PAGE.BWD
Pg Dn : Call PAGE_FWD

Do nothing
End Case:

Do nothing
End Case:

Until (Key Code implies RETURN)
End Procedure:

Fig.4.25: The PDL for the Insert mode routine

The procedure is similar to Base Level: an A Read operation is
performed on the Definition Table with the TOP_STATE as reference
so as to obtain the function key definitions. Once a valid
function key has been depressed, a B Read operation is performed
on the Definition Table. From the codes obtained, a prompt is
displayed and the next state is obtained for use by the
subsequent routines.
The Case option • '"I then call the routine corresponding to the
function key numbt- {1 to 10) which is depressed. It can be seen

Page 67

that only one routine call is needed each for data item
insertion, construct insertion and line insertion. The variables
passed to these routines include the globals: HO_OF_STATES,
KCT SIZE and PT_SIZE? the Main Screen management variables:
HS_CUR_POS, MS.TOP.LINE and PILE_BOT-LINB; and the NBXT.STATE
obtained above.
Only the RETURN function key (which is always assigned to
function key 10) does not make use of a separate routine.
Instead, an A Read operation is performed on the NEXT_STATE, thus
returning to the previous state and displaying a set of function
keys in Screen 4. This is also the only key (having a key code of
4000) which will terminate the program’s Repeat-until loop.
The next section (section 4.4.3) describes more clearly the
implementation details involved in the design of the individual
insert routines.

4.4.3 Process routines

The defining routine name, together with its parameters is shown
below:

DATA_DESCRIPTIQN (TOP_STATE: INTEGER?
N_STATE$ INTEGER;
NO_OF_STATES: INTEGER;
KCT.SIZB: INTEGER;
PT_SIZE: INTEGER?

VAK MS_CUR_POS: INTEGER;
VAR MS_TOP_LINE: INTEGER?
VAR FILB_ UOT_ LINE: INTEGER)

For editing of the data item definition which is being entered, a
temporary data structure is necessary. The data structure adopted
is as follows:

DD_RECORD = Record:
KC: Integer *Key Code*
KW: String (10) of Character *Key Word*

End Record:
D_ARRAY = Array 11..4] of DD_.RECOR7;

Variables;
ARRAY:

Single:
DD_ARRAY

Character;

DI.STRING (string of 80)

Page 68

The DI_STRING contains the usee-entered data item. The DD_ARRAY
represents the key codes (KC) and key words (KN) of each of the
four data description fields (function, type, structure and
scope) used to define the data item. Both key codes and key words
are stored because of the convenience of not having to access the
key code table continuously to translate the key codes.
The resources used by this process involve:
Terminal Resource — for the specialized formatting of the Window

Screen as well as for displaying inserted
data items on the ftain Screen

— for placement and positioning of the defined
data item in the PDL file

— for determining the next state, key code and
prompt codes associated with any function
key depression

— used to find the key word and indentation
corresponding to the defining key code for
visual display in Screens 1 and 2.

— used to translate the prompt code into a
prompt which can be written to the Prompt
Screen when required

— used for the visual formatting of the newly
inserted data structure in Screen 1

— for edi*-'"i of the user-entered data item
name ir -Undow Screen

Pile Linked List
Definition Table

Key Code Table

prompt Table

Formatter
Line Editor

Fig.4.26 gives a high-lev .'OL description of the Data
Description Insert algorithm. This routine makes extensive use of
the Definition table for determining the key codes, next states,
and prompt codes associated with any function key. In Fig.4.26 a
little detail is shown for the mechanism which moves the user
through all the Data Description levels. The function of some of
the variables used is given below:
TOP.STATE — the Insert mode state
THIS.STATE — the present state
NEXT_STATE — the next state (obtained from the Definition Table)
PREV_.LSVEI, — the previous level of data item definition (ie.

functional, type=2, structured, scope=4)

The outermost While-do loop will enable the user to remain in
this routine until the NGXT_STATS equals the TOP.STATB. Within
the loop, if the NEXT_STATE is identical to the present state,
then no system action is required. Otherwise, if a new field is
defined, the previous field is written in highlighted font, while
the next field is highlighted in reverse video font. Also, if the
next and present states differ, then a new function key
definition line must be written to Screen 4.
The "*Test foe an error*" procedure almost exclusively refers to
the error which occurs when the user tries to CONTINUE without
having defined the present field. In this error case, the second
next state and prompt code values obtained in the Definition
Table are used instead of the first.
After the top state has been returned to, the key code is tested.
If abandonment of the defined data item is implied, no system

Page 69

action occurs (the user is returned to Insert mode as if Data
Definition Insert mode had never been entered). If, on the other
hand, the defined data item is to be accepted, then the Placement
routine is called. This routine will insert the user-entered data
item together with any relevant key words into the PDL file
automatically.

Procedure Data Description Insertion
♦Initialize data structure*
THIS.STATB Z = TOP.STATE
PREV_LEVEL i= 1
♦Initialize the key code to a non-exisfcant value*
While (NEXT_STATE <> TOP.STATE) Do:

If (NEXT_STATB <> THIS.STATE)
Call KCT_READ
If (Key code was found)

Ensure that key word is exactly 10 characters long
DD ARRAY [THIS_STATE-2]. KC := Key Code
DQ_ARRAY {rHIS_STATE-2). KW := Key Word

N,S_HI_WRITE ((PREV_LEVEL-1) *10, DD_ARRAY [PREV_LEVEL] . KW)
If (Next state implies one of the 4 definition modes)

PREV.LBVBL := *the definition mode in question*
{fS_RV_WRZTE({PREV_LBVEL-1) *10,DD_ARRAY[PREV_LEVEL] .KW)

THIS STATE i= NEXT_STATB
Call DT_A_READ
Call PS.t^RITB

Repeat:
Call LINE.EDITOR

Until (There is no error in the user-entered Data Item)
Call DT_B_READ
Test for an error
Call PT.READ
Call PS_WRITB

End Whiles
If (Key code implies abandonment of the present data item

definition)
Call PLACEMENT

End If:
call DT_A_READ
call FS.WRITE

End;
Ena Procedure:

Fig.4.26: The Insert mode structure in PDL

A PDL skeleton of the complex PLACEMENT routine is described in
Fig,4.27. The key codes are used for determining not only where
the user is situated in the PDL program, but also where the newly
defined data item is to be inserted. An integer search as opposed

Page 70

to a string search makes key codes a very good solution to
automating the placement process.
Only the relevant key words (in the set of four) are inserted
where necessary, together with the data item name. If the user is
in the Algorithm segment, inserting a data item will be
transparent. The user is left at the same point in the Algorithm
segment while only the line numbers in the Main Screen tell of a
data item insertion elsewhere. If in the Data Description segment
instead, Cursor 1 will be positioned at the new data item name;
any necessary scrolling being dealt with by this placement
routine.

Procedure Placement
♦Search the Data Description segment by key codes to determine
where new data item should be placed*
♦Determine which key words (if any) are to be added to the
file*
♦Insert the data item and any necessary key word in the Data
Description segment*
If (User is in the Algorithm segment)

♦Change only the line numbers on the Main Screen*
♦Attempt to place Cursor 1 and the data item in the centre
of the Main Screen*

End Procedure:
Pig.4.27; The PDL structure for the Placement routine

Ŝ£XitiurLti£3El£fl£_XSti£llljS
This routine is responsible for Construct Insert mode. Here the
user can insert an entire construct template in the Algorithm
segment by depressing a single function key. This template-based
system ensures that no syntactical errors occur. The routine is
called as shown below:

ALGORITHM (TOP STATE: INTEGER;
NO_OF_STATES: INTEGER;
KCT_Si:3B: INTEGER;
PT.SIZE; INTEGER;

VAR MS..CUR_POS: INTEGER;
VAR MP.TOP.LIMB; INTEGET.;
VAR F? v E_BOT_LINS; IN^'GER)

The Algorithm routine is built as a module and its structure can
be seen in Fig.4.28. Construct insertion is not permitted in the
Data Description segment? between an "If and a "then:" of an If-
then or If-then-else construct? or after the end of the file. The
chosen construct is inserted after the line indicated by
Cursor 1.

Procedure Construct Insert
Variables:

Boolean:
Single:

BXIT.FLAG
Degin:

Read the File Linked List at the current Cursor 1 position
If (Key code obtained above implies error)

Put out an error — insertion is not permitted here
♦Perform an A READ operation on the Definition Table*
Write the key definition obtained above in Screen 4
EXITLPLAG := FALSE
Repeat?
Call KBD„GET
Case (Key) Of:
special keys: Call KBD_GET

If (Key implies a valid function key)
EXIT FLAG :» TRUE
Call DT_B_READ
if (Key code does not imply RETURN)

Call GET,CONSTRUCT

Case (Key) Of:
Cur Up: Call CUR_UP
cur Dn: Call CUfLDOTfN
pg Up : Call PAGBiro
Pg Dn : Call PAGE^FWD

Do nothing
End Case:

Do nothing
End Case:

Until (EXIT„FLAG == TRUE)
Call DT_A_READ
Call FS_WRITE

End If:
End Procedure:

Pig.4.28: The PDL structure for the Algorithm routine

The resources and routines used by this procedure ace as follows:
Terminal Resource — for displaying in Screens 1, 3 and 4
File Linked List — for insertion of the block construct into

the PDL file
Definition Table — ■ for determining the next states, prompt

codes and key codes corresponding to the
chosen template

Page 72

Key Code Table — for determining the relative indentation
associated with each key word in the chosen
template

Prompt Table — for finding the prompt to display in the
Prompt Screen from the prompt code obtained
from the Definition Table

Construct Table — for determining the structure of the
template chosen by the user

Formatter -- for reformatting the display of the Main
Screen whenever any part of it is to be
updated

The GET_CONSTRUCT routine is called upon when a construct is to
be inserted. Pig.4.29 shows the PDL structure for this routine.
The key code obtained from the Definition Table on depression of
a function key corresponds to a specific predefined template. The
GBT_CONSTRUCT routine will search the system table CONSTR.SYS to
find the required template. The single line of data thus obtained
(see Appendix C) is decoded and inserted in the File Linked List
as a number of lines constituting the required template. The Main
Screen is arranged so as to attempt to place the newly inserted
constti.'ct at the top of the page, with Cursor 1 being positioned
at tho first line ‘■f che construct which contains a placeholder.

Procedure Get Construct
Begin:
♦Search CONSTR.SYS table for tne requested template*
♦Decode the data obtained above*
Write the template into the File Linked List
*Arrange the Main Screen display so that Cursor 1 is on the
first template placeholder*

End Procedure;
Fig.4.29: The PDL for the Get Construct routine

Indentation is automatically calculated, and any superfluous
placeholders removed by the INDENT routine of Pig.4.30. This
procedure compares the indentation of the line before and the
line after which insertion is to occur. The line with the
greatest indentation determines the indentation of the inserted
construct.
To determine the indentation of the two lines mentioned above,
the absolute indentation stored in the File Linked List needs to
be added to the relative indentation obtained from the Key Code
Table (see also Appendix D). A placeholder which is superfluous
is detected when the lins whose indentation was followed consists
entirely of a "<CONSTRUCT>" placeholder. In this case, this line
is removed. This important routine is also used in the Linn
Insert mode.

Pro .-Jure Indent
Rt-, rho Fi.'n. Linked List at the current pointer position
Reavf the File Linked List at the next pointer position
Read the Key Code Table for the key code of the first line
Read the Key Code Table for the key code of the second line
*Calculate the total absolute indentations for the lines by
using the indentation level and absolute indentations obtained
above*
If (Indentation of first line > indentation of second line)

Indentation := Indentation of first line
If (The first line is a (CONSTRUCT) placeholder)

Return this line to the space list
FILE_BOT_LINE FlLE_BOT_LINE - 1
MS_CUR_POS := MS_CUR_POS - 1

End If:
Indentation := Indentation of second line*
If (The second line is a (CONSTRUCT) placeholder)

Return this line to the space list
FILB_BOT_LINE := FILE_BOT„LINB - 1

End Procedure:
Fig.4.30: The PDL for the Indent routine

This routine is responsible for dealing with Line Insert mode.
Once entered, this mode allows the user to insert lines
sequentially using the Line Editor. The routine call and the
resources used are listed below:

INSERT_LINE (TOP_STATE: INTEGER;
NO_OF_STATES: INTEGER;
KCT.SIZE: INTEGER;
PT_SIZB: INTEGER;

VAR MS_CUR_POS: INTEGER;
VAR MS_TOP_LINB: INTEGER;
VAR FIL£L.BOT_LINGi INTEGER)

Terminal Resource — for displaying purposes
File Linked List — for insertion into the PDL file
Definition Table — for determining the next state
Key Code Table — for use in the INDENT routine
Prompt Table — for displaying prompts in the Prompt Screen

Again insertion is not permitted in the Data Description segment;
between an "If" and "then:" key word line; or after the end of
the program. On entering the Line Insert mode, all the lines on
the Main Screen from the current cursor position are cleared, and
Cursor 1 vanishes. The user is then placed in the Window Screen

Page 74

and uses the Line Editor facilities to ENTER a line of text. Am
the line is inserted, the INDENT routine mentioned previously is
called, so that indentation and superfluous placeholder
elimination are automatically dealt with, tihen the user exits
this mode, the Main Screen is "closed up" and Cursor 1 reappears.
Pig.4.31 shows the PDL structure adopted.

Procedure Insert Line
Read the File Linked List at the current cursor position
If (The key code obtained above implies an error)

Put out an error — insertion not permitted here
Clear the Main Screen of lines after Cursor 1
Turn Cursor 1 OFF
Repeats
Call LINE_EDITOR
♦Insert the new line into the Pile Linked List*
Put out the new line to the Main Screen

Until (Insert Line mode is exit)
Close-up the Main Screen
Turn Cursor 1 back ON

End Procedure:
Fig.4.32; The PDL for the Insert Line routine

5 THE MAIN PROGRAM

5,1 Operation

The Main program deals with the loading of tho system tables? the
inputting and outputting of editor files? and the calling of the
Base Level. On entering the PDL-edifcor, the system tables are
loaded into dynamic memory. The user is then prompted for the
input file. This is the file which is to be edited. This file is
loaded into the editor and displayed on the Main Screen. At this
stage, the user is in Base Level and all the editing functions
described earlier can be accessed.

Main Program |

Base Level
)"

1 I I
I Scrolling Functions I lEdit Line| I Insert Model [Delete Model

I Data Item Ins i I Line Ins I I

I I I
| Constr Del | | Block Del | I Line Del I

Fig.5.1: The structure of the PDL generator package
Delete mode is shown, but has not yet been implemented.
Similarly, Copy and Move modes are easily added from Base

When the file has been satisfactorily edited, the ESC key will
move che user back to the Main program. Here, the output filename

Page 76

is prompted for. This is the file in which both the formatted and
unformatted versions of the PDL program will be stored.
(Extensions of ".PDL" and ".COD" will distinguish between the
formatted and unformatted files.) The user is then able to edit
another file via the same procedure or axit the package entirely.

5.2 Structure

It should be clear nov that a modular hierarchical approach has
been used for designing this PDL syntax-directed editor package.
It is for this reason that the Main program will call upon the
Base Level routine only, which in turn will call on the various
modes available on request. The structure of the system is shown
in Fig.5.1.
The Main program uses the following variables as global
parameters:
— HS_CUR_Pns : INTEGER — PT SIZE : INTEGER
— TOP,.STATE : INTEGER — NO_OF_STATES: INTEGER

MS_TOP_LINB : INTEGER — STATUS : INTEGER
— FILE BOT.LINB: INTEGER — FILENAME : STRING (6) OP CHAR
— KCTLSIZE : INTEGER

All these variables have been described previously, with the
exception of FILENAME. This variable is provided to enable the
user to specify input and output filenames from or to which data
is to be obtained or stored. Fig,5.2 shows the PDL structure of
the main program.

Program Main
♦Initialize the TOP_.STATE variable*
Call SCR.FORMAT
Call KCT_INIT
Call DT.INIT
Call PT.INIT
Repeat:
Get the input filename from the user
Call FILB.LOAD
Call FILE.SCROLL
Get the output filemame from the user
Call FILE_F_DUMP
Call FILE_UF_DUfIP
♦Determine whether the user wishes to exit the package*

Until (User wishes to exit the package)
Call CLR_SCR

End Program:
Fig.5.2$ The PDL for the Main program

It can be seen from Fig.5.2 that the screen is formatted into the
four logical screens and all the system tables are loaded before
the Eepeat-until loop is entered. This looping construct enables
the user to edit a number of files without having to re-load the
system tables continuously. Input and output filenames can be
user-specified, thus providing flexibility in this area.
The PILE.SCROLL routine constitutes Base Level. The user will
remain in this routine until the ESC key is depressed from Base
Level. On exiting the package, the physical display screen is
cleared.
The PILE_LOAD, FILB_F_DUMP and FILE_UF_DUMP are routines used for
initialization and termination of any editing session. Figures
5.3, 5.4 and 5.5 give virtually self-explanatory PDL descriptions
of these routines.

Procedure File Load
HS_TOP_LINE := 1
j:s_cu.r_k >s := 0
Call FLL_INITIALISE
Read the input file and transfer it to the File Linked List
Set the FILE_BOT_LINE variable
^Display the first 20 lines of the input file in formatted form
on the Main Screen*
♦Turn Cursor 1 in the Main Screen ON*

End Procedures
Fig.5.3: The PDL for the File Load procedure

Procedure Formatted File Dump
*Open an output file with the name specified and with a “.PDL"
extension*
Move the file list pointer to the beginning of the list
Repeats
Call FORMATTER
*Write the strings obtained above on a single line of the
text file*

Move the list pointer forward by one position
Until (All items in the File Linked List have been stored on

E d filG)
End Procedures

Fig.5.4: The PDL for the Formatted File Dump routine

Page 7 3

Procedure Unformatted File Dump
*Open an output file with the name specified and with a ".COD"
extension*
Move the list pointer to the beginning of the list
Repeat:
Read a record
*V7rite the data into two lines in the text file: one for the
key codes; the othor for the text line*
Move the list pointer forward by one position

Until (All items in the File Linked List have been written in
the file)

End:
End Procedure:

Fig.5.5: The PDL for the Unformatted File Dump routine

Page 79

6 IMPLEMENTATION AND PORTABILITY CONSIDERATIONS•

Due to limited facilities at the time, the package was initially
implemented on the Eclipse S140 multiprocessing computer system
in MP/Pascal (Version 2.3) (DGC (1979a, 1979b, 1980)). The Dasher
Data General display terminals were used (DGC (1979c)) where
blinking, reverse video, underscoring and highlighting are all
possible.
The package had, however, severe limitations when implemented in
this environment. Cursor pvt>.''’ioning on the screen is not
consistent, and this causes major problems when accurate cursor
positioning is constantly required. Being a multitasking system
supporting five terminals, compilation and linking is very slow.
The major disadvantage , however, was the limited memory space
available for executable program (64 KBytes). With such a large
package, these limits were soon exceeded.
Due to new facilities, the PDL generator package was moved to an
IBM Personal Computer. Here, all the problems mentioned above
vanished: cursor positioning is accurately and consistently
defined; compilation and linking are fast while 256 KBytes of
dynamic memory are available for program storage.
The Pascal routines were easily transported; the only variations
occuring in the areas of string manipulation and input and
output. The screen management differences, however, proved to be
vast. The compiler used is IBM Pascal Version 1.0 (also
compatible with Microsoft Pascal version 3.2) under MS-DOS
version 2.0 (IBM (1981, 1983)).
The Terminal Resource is the resource which deals with screen
management, thus leaving the rest of the package terminal
independent. On the IBM machines, the MS-DOS operating system
(IBM (1983)) is used for this purpose so that it is necessary for
the CONFIG.SYS file to contain the statement DEVICE = ANSI.SYS
when the computer system is started up. Although it may be
initially difficult to adapt the Terminal Resource to a
particular system, once the primitives have been defined, the
rest of the package will be functional in this respect. (Walker
(1985))
As mentioned above, string manipulation and input and output
facilities are the only features of the package affected by
transporting it.
As the IBM-PC has set a new standard among personal computers,
the package implemented hereon is likely to be fully developed on
the IBM before being transported to another system. Microsoft
Pascal also makes use of modules to differentiate between system
blocks. A modular design approach is encouraged in many texts
(Myers (1975), Parnas (1972)) as it makes a program separately
compilable and thus portable. All these features are supported by
Microsoft Pascal.

The resources are built as single data structures (eg. ;.CT_RES?
PT_RESj etc. (see Appendix B)) surrounded by the operators. These
operators are written as routines, and represent the only method
whereby the user may access any resource. The resource is
compiled as a separate module. Linking of this module to a
process is performed by including the OPS file (eg. KCT_OPS?
PT„OPS) in the process. This file contains all the operators
available for the specific resource together as external
procedures with any relevant input and output parameters. This
enables the system designer to use the operators from any
resource by including the OPS file.
Portability is further aided by the test programs which have been
written for all the resources as well as the Line Editor. Using
the test programs, the designer can ensure that resource
operation is as expected. The Pascal used is also kept as
standard as possible (Jensen (1974)), and this is another
advantage if the package is to be transported.

7 EXTENSIONS, MODIFICATIONS AND RANDOM THOUGHTS

7.1 The Front-end

At this stage, the front-end of the package is regarded as the
Main program. Here, on first entering the package, the system
tables are loaded. This loading from diskfile is only done once,
and this on entering the PDL editor package. Once the tables have
been stored in dynamic memory, the user is free to edit a number
of files.
From the Main program, before the FILELSCROLL routine is called,
the user is prompted for an input filename. This means that any
coded file can be called on for further editing at this stage. It
is assumed that the filename here has an extension of ".COD", as
these are the only file types which can be understood by the
package. If a new file is to be created, a set of function key
options should be provided giving the user a choice of the type
of program templates available. This choice should include:

— Program
— Procedure
— operation
— Process
— Pesourc „•

The user should thus either type the name of an existing file
(with the use of the Line Editor in the Window Screen) which is
to be re-edited, or use a function key to define a new file. Any
new file must always be started with a template su as to give the
system a reference point from which to work. Clearly, using a
function-key template option for choosing a new file when a
filename has been specified in the Window Screen constitutes an

Once an input filename has been chosen the user is nlaced in Base
Level via the PILE.SCROLL routine. The User’s Manual (Bassanino
(1985b)) describes a level above Base Level (ie. a pre-Base
level) where general package functions could be made available
(eg. Information on package operation? or facilities for setting
system parameters such as indentation settings or line length;
etc.). This idea is used successfully in many editors (eg. IBM-
Wordstar and IBM-Professional Editor) and greatly enhances the
flexibility and power of the package.
When a file has been satisfactorily edited, a "Save" or "Abandon"
function key is used from Base Level. This should lead the system
through a series of questions so as to interactively determine
the exact needs of the user. Confirmation should always be
requested before an Abandon operation is performed. If, however,
a file is to be saved, the user should be asked for an output
filename? if a formatted copy of the file is to be stored; and if
a backup copy of the file is to be created.

Pace 82

An alternative solution to output file naming is that of
requesting a filename initially. This filename is then used as
the new filename, without having to specify an output filename.
Thus, if the file entered in the window Screen exists, it will be
loaded in the editor, while if it does not exist, a new file of
this name is created.
This method has the disadvantage that if a file is to be used as
a skeleton for the production of a few routines, the first file
produced will take the name of the skeleton file. This means that
the remaining programs which were to be based on the skeleton
file cannot use it again. This problem can be resolved by
maintaining a backup copy of the old file (the skeleton file)
after having edited the first new file. This backup file can then
be used again for the production of the outstanding routines.
It can be seen that the first method of naming input as well as
output files is not popular because of the added effort involved
in typing the various filenames; while the second method of
specifying a single filename suffers from flexibility
limitations. A good compromise seems to be that of adopting the
first method, with automatic typing of the output and backup
filenames. Thus, under normal circumstances, the user is only
required to ENTER the filename displayed in the Window Screen. If
so desired, however, a new filename can be specified by
overtyping the existing filename in the window Screen using the
Line Editor facilities.
The user is now returned to the pre-Base system level where
another file can be edited, or the package exited entirely. This
pre-Base level is thus useful as a point where system settings
can be adjusted before the next file is edited. In this level,
the Main Screen may even acquire a new format. The present
package version includes only limited facilities for file naming
and storage, but this front-end interface needs to be perfected
for the system to maintain its power and user-friendliness.

7.2 Delete Mode

In the User's Manual, three types of delete functions are
described; Line Delete; Construct Delete; and Block Delete.
The Line Delete function has been implemented already (its PDL
structure is shown in Pig.7.1), but in so doing has raised a new
problem. In Line Delete mode, the line pointed to by Cursor 1 is
deleted, while Cursor 1 remains at the same physical screen
position. This means that the bottom of the file will effectively
move up as deletion occurs. Thus, continuous deletion will delete
consecutive lines with Cursor 1 remaining in the same screen
position.
A screen scroll is thus never required in Line Delete mode. This
does, however, imply that the bottom line of the file will not
necessarily always lie in the last line of the Main Screen when a
file is longer than MS_SIZE and consecutive lines are deleted
near the end of the file. As the package scrolling routines were
designed to operate maintaining the Main Screen full at all
times, the delete function causes a problem. It is thus necessary

Page 83

to devise a system whereby the file bottom line can appear at any
position on the Main Screen before this delete function can be
implemented successfully.
Returning to Fig.7.1, it can be seen that, initially, tests are
performed to ensure that the line in question is not a line
containing a keyword or a placeholder. If this test is passed,
then the line may be deleted. Deletion is simply performed by
returning the record pointed to by the File Linked List pointer,
and decreasing the file length by one. Logically, only the
portion of the Main Screen below Cursor 1 is rewritten; the
cursor remaining in the same position.

Procedure Delete Line
If (Line is a placeholder) or (Line contains a keyword)

Put out an error — deleting is not allowed
♦Return the record pointed to by the list pointer*
PILB_BOT_LINB i= FILB_BOT_LIMB - 1
♦Rewrite the relevant portion of the Main Screen*
♦Turn new cursor Of? at old position*

End Procedure:
Fig.7.1: The PDL for Line Delete mode

The Construct Delete function operates only in the Algorithm
segment and is simply implemented by identifying the construct
immediately surrounding the chosen line. The construct block is
identified by its indentation level. Any consecutive lines above
or below the chosen line which have an indentation level greater
than or equal to that of the chosen line, will be included in the
delete block. This block construct is to be highlighted so as to
give the user a chance to confirm the deletion. This thus
involves the accessing of the Definition Table for changing the
function key definitions. The only challenge here (besides the
usual screen scrolling necessities) lies in the insertion of any
outstanding placeholder.
Determining whether a placeholder is to be inserted is a function
of the template surrounding the delete block. If the lines before
and after the delete block are both part of a system template,
then the placeholder which appears between these two lines in the
template is to be inserted. This requires that the CONST.SYS
table be searched for a key code match. This method may seem time
consuming, but due to the search being for an integer value and
not a string, the Construct Table search is fast. The method is
powerful in its generality and is also used in the Block Delete
routine for insertion of outstanding placeholders.
The Block Delete function is divided into two parts: block
deletion in the Data Description segment and block deletion in
the Algorithm segment. Before discussing the implementation of

Page (34

any of these, it is necessary to understand that this function
requires the user to choose the block limits, and in so doing
offers unbounded freedom. This freedom must be checked so as to
protect the user from disrupting the syntactical correctness of
the POL program.
An upper and lower line limit is to be chosen by the user, and at
every stage checking is performed. The upper line limit cannot be
chosen as a data definition keyword. If a line in the Data
Description segment is chosen as one block limit, the other limit
cannot be placed in the Algorithm segment. Block deletion car.
thus not be performed across the Data Description - Algorithm
segment dividing line.
A delete block is chosen in one of two ways: using the function
keys or using line numbers. As explained in the User's Manual
(Bassanino {1385b)), this dual method of choosing a block makes
the system flexible and convenient to the user. The function keys
are available to choose the line on which Cursor 1 is positioned.
Simultaneously, the user is allowed to ENTER a line number in the
Window Screen via the Line Editor facilities.
This dual mode of entry is possible due to the Line Editor's
ability to be exit using a function key. The chosen block is
dynamically highlighted. This means that if only one limit has
been chosen, moving Cursor 1 will cause the line numbers from the
chosen limit to the cursor to be highlighted. Once the delete
block has been chosen, it is highlighted and the user prompted
for its acceptance. This highlighting is easily accomplished
using the MS_CUR_OR and HS_CURwOFF routines of the Terminal
Resource.
The deletion of a block in the Algorithm segment is a simple
matter as every line between the two limits must be deleted. The
only problem is to determine if the block may be deleted or not.
The only law necessary here is the following: a delete block
cannot contain any incomplete constructs. This requirement
implies that any construct keyword present in the delete block is
to have every other keyword associated with that construct
present within the block.
Thus, the Construct table is again to be referred to so as to
determine the keywords associated in a template with any other
construct keyword found in the delete block. Again this seems a
lengthy operation, but if a keyword search is performed from the
top line of the delete block, an error is easily detected, while
searching is greatly simplified. The indentation level of the
constructs coupled with the top down order of checking for
correctness ensures that this method functions correctly. It is,
however, possible that a stack will need to be kept if deeply
nested constructs exist.
In the Data Description segment, deletion is a more complex
affair. A block is specified here by defining a begin and an end
data item. All the data items lying within these two limits
(including the two at the end points) will be deleted. The
difficulty lies in deleting all the corresponding keywords. An
algorithm has been devised for this purpose, but not yet
implemented. It seems to cater for all cases using a simple
procedure. The PDL algorithm is given in Pig,7.2. It is
responsible for deciding which keyword lines should remain after

Page 85

deleting the required block.

Procedure Block Delete
Begin;
Function Field := 0
Type Field :» 0
Structure Field := 0
Scope Field := 0
*With the pointer at t .e start of the delete block
Iiove pointer back one position
Repeat:

If (Line contains a key code implying a keyword)
Set the delete block's top limit to this line
tlove pointer back one position
Status $= Continue
Status z= Terminate

Until (Status = Terminate)
Repeat:
Move pointer forward by one position
Case (key code) implying:
Function : Function Field z= Line Number
Type : Type Field := Line Number
Structure: Structure Field := Line Number
Scope : Scope Field := Line Number
Name z *Do Nothing*

End Case:
Until (Last line of delete block has been reached)
Move pointer forward by one position
Case (key code) implying:
Function : Function Field := 0

Type Field := 0
Structure Field := 0
Scope Field := 0

Type .• Type Field) s- 0
Structure Field := 0
Scope Field := 0

Structure: Structure Field := 0
Scope Field :» 0

Scope : Scope Field := 0
Name : *Do Nothing*

End Case:
♦Delete all the lines in the delete block excepting the line
numbers stored in the four data definition field variables*

End Procedure:
Fig.7.2; A PDL algorithm for Data Description Block Deletion

The algorithm of Fig.7.2 uses the four data definition fields as
running variables. It fills the variables with the line numbers
of any possible key codes which could be retained. Working top-
down, any new key code lines found will be used as new line
numbers, replacing the old in the relevant field variable. The
top and bottom limits must also be taken into account if the line

Pac;e 86

before or the line after the delete block io not a data item. On
termination of the routine, the four variables will contain
either a zero or a line number. These line numbers will represent
the lines which are to remain after the delete block is deleted.
Clearly, Main Screen formatting and Cursor 1 positioning are also
issues, but the intelligent mechanise behind this type of Block
delete mode has been described aJove.

7.3 Copy Mode

In Copy node, Block and Line Cupy functions should be provided.
Again the user should bo presented with the dual method for
choosing a block as well as destination line. Here too, the copy
block is highlighted. After the copy block has been chosen,
however, Cursor 1 must be displayed in a different font so as to
allow the user to choose a destination line. A blinking cursor in
reverse video should ba conspicuous enough for this purpose. This
requires an additional function to the Terminal Resource, but
then this cursor display font can also be used for other purposes
such as Move mode.
The physical copy operation is a relatively simple task using the
linked list, but again, extensive checking of the syntactical
correctness of the operation is necessary. No copying is
permitted in the Data ^ascription segnient a- this section of the
PDL program is strictly controlled by the PDL editor. Indentation
of the new copied line is performed aczomatically by the system,
and this is simply acczz^lished usiht the INDENT routine adopted
in Insert mode. This zcatine will =2so determine whether to
delete any superfluous Placeholder iz the vicinity of the copied
line.
When in Line Copy mode,- aal'j entirely user-entered lines may be
copied. Thus, when attempting to copy a single line, no line
containing a system-rsnarated keyword will be accepted. The
destination line is sub^act only to the limitations of Line
Insert mode. Thus, a lire cannot be copied after the "If
<CONDITIONS' line, or aftar the end of the file, or in the Data
Description segment. Thezo same limitations on destination line
apply to the Block Cony mcZe.
In Block Copy mode, the copy block may not contain any incomplete
construct. This is the same requirement used for Block Delete
mode. Thus, only entire construct blocks may be copied? part of a
construct may not be copied unless it contains no system
generated keywords. Automatic indentation is accomplished by
using the INDENT routine on the top line of the copied block.
The indentation level thus obtained becomes the new base
indentation which is to be added to all the other lines in the
copied block.
It can thus be seen that Copy mode merely uses routines which
have already been developed above for a different purpose.
Besides the screen management, this mode is thus easily
implemented.

Page 87

7.4 Move Mode

In Move mode too, there are two possible functions: the single
line move operation; and the block move operation. The move
function is a combination of a Copy operation followed by a
Delete operation. Again the user is given the dual mode of
stipulating lines, with a blinking cursor in reverse video for
choosing the destination line where the move block is to be
placed.
As a Move operation is a combination of two of the functions
developed above, only some kind of integration is necessary.
Clearly, a line or block which may be copied, may also be
deleted. Thus, checking of the chosen copy and destination
line/(s) is performed using the Copy mode algorithm described
above. The move block is then copied to the destination position.
The usual requirements of deleting any superfluous placeholders
and automatic indentation are automatically dealt with by the
Copy operation. Now, without refreshing the Main Screen display
or prompting for the delete block, a Delete operation is
performed on the original move block. This delete function will
also deal with the insertion of any necessary placeholder as
discussed in section 7.2. After updating the Main Screen, an
effective Move operation will have been performed.
It can thus be seen that Move mode is a derivation of the other
modes discussed above. An initial interface almost identical to
the Copy mode must be used to enable the user to choose the
relevant move and destination lines. The Copy mode checking
requirements are then applied to the inputs to determine their
validity. A valid Move operation is performed by firstly copying
the move block after the destination line, and then deleting the
original move block. The screen scrolling algorithm used is that
of the Copy mode, so that Cursor 1 is positioned at the beginning
of the moved block after the operation has been completed.

7.5 Semantic Error Detection

As the package is built, syntactical errors are prevented due to
the generative approach adopted. The template based system and
all the functions described above, ensure syntactical correctness
at all times. Semantic errors, however, are more complex to
determine due to their long-range or far-reaching nature.
It must be realized when dealing with a PDL generator that it is
difficult to draw the line between a semantically correct and an
incorrect high-level program. Due to its high-level nature, a PDL
program can be written in terms of comments only and still be
correct. It is for this reason that the user should be able to
choose a level of error checking before entering a program. A low
level of orror checking would be chosen if a high-level PDL
program is being generated, while a high degree of error checking
is desirable for a low-level PDL design. It is probably wise to
allow only two levels of error checking: syntactical error
checking only for high-level PDL? and semantic and syntactical
error checking for low-level PDL programs.

7.4 Move Mode

In Hove mode too, there are two possible functions: the single
line move operation; and the block move operation. The move
function is a combination of a Copy operation followed by a
Delete operation. Again the user is given the dual mode of
stipulating lines, with a blinking cursor in reverse video for
choosing the destination line where the move block is to be
placed.
As a Move operation is a combination of two of the functions
developed above, only some kind of integration is necessary.
Clearly, a line or block which may be copied, may also be
deleted. Thus, checking of the chosen copy and destination
line/(s) is perfc-med using the Copy mode algorithm described
above. The move b1 ck is then copied to tne destination position.
The usual requirements of deleting any superfluous placeholders
and automatic indentation are automatically dealt wit'- by the
Copy operation. Now, without refreshing the Main Screen display
or prompting for the delete block, a Delete operation is
performed on the original move block. This delete function will
also deal with the insertion of any necessary placeholder as
discussed in section 7.2. After updating the Main Screen, an
effective Move operation will have been performed.
It can thus be seen that Move mode is a derivation of the other
modes discussed above. An initial interface almost identical to
the Copy mode must be used to enable the user to choose the
relevant move and destination lines. The Copy mode checking
requirements are then applied to the inputs to determine their
validity. A valid Move operation is performed by firstly copying
the move block after the destination line, and then deleting the
original move block. The screen scrolling algorithm used is that
of the Copy mode, so that Cursor 1 is positioned at the beginning
of the moved block after the operation has been completed.

7.5 Semantic Error Detection

As the package is built, syntactical errors are prevented due to
the generative approach adopted. The template based system and
all the functions described above, ensure syntactical correctness
at all times. Semantic errors, however, are more complex to
determine due to their long-range or far-reaching nature.
It must be realized when dealing with a PDL generator that it is
difficult to draw the line between a semantically correct and an
incorrect high-level program. Due to its high-level nature, a PDL
program can be written in terms of comments only and still be
correct. It is for this reason that the user should be able to
choose a level of error checking before entering a program. A low
level of error checking would be chosen if a high-level PDL
program is being generated, while a high degree of error checking
is desirable for a low-level PDL design. It is probably wise to
allow only two levels of error checking: syntactical error
checking only for high-level PDI? and semantic and syntactical
error checking for low-level PDL programs.

Semantic error checking involves much computation as many
possible errors exist. It is interesting to note, however, that
the designers of GNOME (see 3assanino (1985a)) list the following
four errors as comprising 90% of all semantic errors made by
students.
— undeclared variable — uninitialized variable
— unused but declared variable — type mismatch

It is clear that all the above errors deal with the relationship
between the Data Description and Algorithm segments. Thus, a
record must be kept of each variable which is either defined in
the Data Description segment or used in the Algorithm segment.
The concept of a Variable Table therefore emerges. Bach data item
appearing in the PDL program is stored in this table by name and
by code number. The code number is a unique number used to
identify the type of the data item for easy reference purposes.
The Variable Table also needs to maintain a record of the
position of every occurrence of the data item in the PDL file.
The best way for checking errors is at input time. When any line
is edited (either by using the Line Edit function or Line Insert
mode) parsing cf that line should be performed after it has been
ENTERed. Thus, a line would have any errors highlighted on the
Main Screen in reverse video. These errors can then be re-edited
(the line being reparsed) for correction. Unexpanded placeholders
should also be regarded as errors (errors of omission) as a
program cannot be compiled if any placeholder is left unexpanded.
An Error file is necessary to keep track of the position and
nature of all the errors present in a PDL file. This Error File
would also be used for reference when highlighting the errors on
the Main Screen. A field in this table can be set aside for
determining the type of error (eg. mismatched parentheses?
undeclared variable; etc.). According to the error type, the
corresponding error message would be displayed (perhaps via use
of the Prompt Table) on request.
In this way, a user can at any time request information regarding
a particular error as the editor maintains a record of all
current errors. This system will also enable the user to obtain a
breakdown of all the errors and their types which have been
identified in the PDL file. When the system lists no errors, then
the user can with confidence deduce that the PDL file generated
is virtually 100% error-free.
In the Data Description Insert r^de, a newly defined data item
should also be checked for acceptance against all existent data
items. The user will therefore be warned if the defined data item
already exists, and will be asked if replacement is desired. The
Data Description segment also causes other problems, because if a
data item name is changed here, the rest of the file must be
checked (or reparsed) for any occurrence of this data item. This
will be by far the most time consuming operation available
(especially if the file is a long one), and thus time will be
well spent in the designing of an efficient batch parser.

7.6 Ellipsis Facilities

The elliding or temporary removal of a program section is a
useful feature if the entire PDL program is to be viewed on the
Main Screen without its internal details. This feature also helps
to identify constructs. The ellipsis feature will replace a
section of PDL code with an ellipsis token {usually The
section of code to be ellided can be chosen in one of two ways.
An ellision level can be specified so that a zero ellision level
will display the program in full detail, while an infinite
ellision level will show only the outermost program level.
Another method for choosing ellision is to point to a line on the
level below and including which ellision must occur. By
depressing an Ellide key, this program block will temporarily be
removed from view on the Main Screen.
Besides the user-interface described above for choosing an
ellision block, the physical implementation of the function is
elementary. The "level" used for ellision purposes corresponds
exactly to the indentation level adopted for coding each PDL
line. Thus, identification of an ellision block is simply
performed by searching for all lines in the file which have an
.indentation level greater than or equal to the ellision level.

7.7 The UNDO Stack

A stack needs to be maintained if multiple "undo" operations are
to be allowed. The undo operation is a very convenient facility
for both the experienced and the novice user. With the help of
this function, a user can essentially return to a stage where the
last edits to the file have not been performed. This helps
recover from accidental errors of deletion, also giving the user
a chance to experiment with system features. The user can thus
edit a PDL file with the knowledge that any operation which is
performed can be undone at any stage. This gives a system almost
unlimited power making it truly foolproof.
The undo function can be implemented by maintaining a stack of
previous commands. When an Undo operation is requested, the last
command is popped from the stack and an opposite command
performed so as to reverse the previous operation. This will
effectively produce the file as it was before the last command
was performed. The depth of the stack will determine the depth of
the Undo function. A table is also necessary here so that the
inverse of any command can be found.
The undo stack can also be used for inconvenient block editing
operations. Converting a While-do into a Repeat-until construct,
for example, is possible by merely pushing the relevant block
onto the stack; inserting the new construct; and popping back the
contents of the stack. In this way, the flexibility removed from
a syntax-directed template-driven editor is regained. The
conversion of, say a Program, into a Procedure, poses a problem,
however, as the function keys must again offer the user the
choices given when a new PDL file is created.

Page 90

7.8 Possible Design Improvements

The Data Description segment Insert mode is as yet incomplete,
due to the missing feature of allowing a user to define his own
data types. User-defined data types are a feature of many modern
programming languages, including PDL. when wanting to define a
data type, the user should be given a "Record" function key
option. This function key will enable a record type to be
defined. Associated with this function key there will, therefore,
also be a possible further set of function keys which will aid
the user in defining a record in an orderly manner.
The record fields must be stored by the system if extensive
semantic error checking is to be performed. A parser is
indispensable if data types are to be user-defined. The user has
the possibility of defining a type incorrectly due to the
flexible manner in which it may be defined. Thus, a parsing
algorithm would be responsible for checking the grammar of the
type definition.
An alternative solution to the problem of inaccuracy associated
with defining a new type, is the use of templates for type
definition. The possible type definition frameworks must first be
decided upon so that the Data Description segment will be
completely standardized. Templates introduce the added problem
that functions such as Delete, Copy and Move allowed in the
Algorithm segment now need to be allowed in the Data Description
segment. Also, unexpanded placeholders in the Data Description
segment will become a reality.
Thus, the problem of data type definition is to be considered
very carefully not only in terms of an elegant solution, but also
in terms of a solution which will not require major system design
changes. When the "type" field of a data item is to be chosen,
the "Others" function key should lead into a state where all the
user-defined types are displayed as function key options. This
facility is clearly challenging to implement.
In the Data Description Insert mode, scrolling facilities may
also prove useful (especially when wanting to know the definition
of a new type while defining a data item). A fast abort function
key for exiting this mode is also a necessity for speeding-up
system operation.
As the package was designed, there are still some prompts which
are hard-programmed into the system routines. It should be
attempted to make the Prompt Table the sole dispenser of all
prompts, so that system flexibility is enhanced. The designer is
then able to change any prompt to suit the particular client.
Presently there is no facility for entering multiple lines for,
say, a CONDITION placeholder. This necessary feature is limited
by the 80 character line length of the Line Editor. If the line
length is not to be made more flexible, then a method has to be
devised whereby a line can be extended on the following line;
indentation automatically being taken care of.
The unusual indentation required when listing multiple external
procedure names, inputs or outputs, requires that the items are
listed one under the other, relative to the first item. Pig.7.3

shows the indentation required when defining input and output
parameters of a procedure. If a method is devised for extending a
line onto the next line while maintaining the same indentation of
the user-entered text portion of the line above, then this
problem, together with the problem mentioned above is solved.
The Case construct also presents a problem, due to the single
placeholder present under the Case line, indentation of user-
entered lines must be alligned under the desired option's colon
and not, as the package dictates, directly under the optio.i. This
problem may be solved by parsing the input lines so as to
determine if a line entered is an option or merely an algorithm
statement. The indentation can then be determined accordingly for
the lines following a Case option. (See Pig.7.3)

Procedure Test
Inputs: Inden Level

Cursor Position
Outputs: First String

Second String
Third string

Case (Cursor Position) of:
Home; First String := 'Y*

Second String := '2'
End of Line: First String := 'A'

Second String := 'B*
Third String := 'C

End Case:

End Procedure:
Fig.7.3: Indentation for Inputs, Outputs and Case construct

Another problem associated with constructs involves the Get and
Put templates. In PDL, these two constructs are used exclusively
for input and output purposes only. Thus, it is not logical to
insert another construct within a Get or Put block. This problem
is solved by the system checking if the cursor lies within one of
the above constructs before any system-defined template is
inserted.
A parser is also required to check for allowable user-entered
text lines within any construct. The text within a Get construct,
for example, will differ from an algorithm line, and this in turn
will be different from a condition. The parser would thus
distinguish if a line is correct or not according to the key code
of the placeholder or surrounding text line. This parser routine
is thus seen to be a very critical item in the construccion of a
successful synax-directed editor package.
As already mentioned in section 7.2 in this chapter, the
requirement that the Main Screen always be full when the bottom

of a more than 20 line long file is reached is a severe
restriction. Both Line Delete and Line Insert modes suffer the
consequences of this law. The bottom of the file should be
demarcated by an end of file line, and scrolling beyond this line
should not be permitted. This line should be allowed to be
positioned at any point in the Main Screen, as dictated by any
needy operation. This will solve a few problems as well as make
the system more general.
In Base Level, the Edit Line facility retains the function key
definitions. These definitions should either be removed, or
allowed as exit options while in the Line Editor. It is doubtful
whether the scrolling functions should be allowed while editing a
line, as this will only serve to confuse the user. It is thus
probably wiser to erase the Function Key Definition Screen when
dealing with the Edit Line function.
To avoid repetition of function key screens in the Definition
Table, a pointer could be used to the Prompt Table. This would
mean that the Prompt Table could become a more flexible Text Line
Table having fields for a line code and a text line of 80
characters long. The Definition Table takes up much space and
this method could serve as a system to decrease this large memory
requirement. Function keys in the Definition Table which are not
used could also be eliminated so as to maintain only the absolute
minimum information required for system operation.
The conversion of a Program into a Procedure using the Undo stack
requires that the function key screen displayed on initializing a
new file be re-displayed for the user to choose the required
procedure type. This operation is by no means trivial and
more detailed thought must be give to this problem.
A neater method for re-displaying the whole of the Main Screen is
also necessary, so that the list pointer will never be pushed
beyond its limits. As the File Linked List resource used has a
zero position, the list pointer should be started from a higher
position and then incremented to the bottom of the Main Screen.
Thus, after displaying an entire screen, the list pointer will
always be on the last line of the Main Screen, whether the bottom
of the file has been reached or not. Fig.7.4 shows this algorithm
which can be compared to the old system used in Fig.4.17.

♦Move list pointer to one line before the first line to be
displayed*
i := 0
While (i < MS.SIZE)

Move pointer forward by one position
Call FORMATTER
MS_WRITE (KS.TOP.LINE + i - 1, i - 1 , )

End While:
Fig.7.4: A neater algorithm for updating the Main Screen

It may also be an idea to create routines for the scrolling of
the Main Screen to give a particular line number at a particular

Page 93

screen position, so that the Insert, Delete, Copy and Move
functions will not be involved with explicit screen management
details.

7.9 Future Package Expansion and Integration

Most of the expansion features have been discussed above in this
chapter, however, there are greater plans for the syntax-directed
PDL generator. As may have been mentioned in this document, the
editor developed here is to become the basis for a language-
independent translator. Hith a powerful tool for PDL
construction, the user will be able to write an algorithm in
high-level description language and then request a compilable
version of the program in any of a variety of modern programming
languages.
This will thus enable the user to design on a high level, using
all the facilities of the syntax-directed editor which encourage
top-down design. When the algorithm has been refined down to low-
level PDL, the coded program can be used as input to one of a few
language translators. Thus, the user will finally become
independent of implementation language. This is seen as a major
breakthrough in design methodology.
If this PDL generator package proves a success, it may be a
worthy exercise to implement a coding algorithm to convert a
standard text file into a form usable by the package. This will
require, not only coding of the keywords and variables, but also
extensive parsing to trap and record any errors which may be
present in the PDL file.

APPENDIX A Page 04

APPENDIX As THE TEST ROUTINES

This appendix shows the menus produced by the resource test
programs. All the major functions are performed? logical and
physical views of the resource structure also being given. The
Line Editor test format in also shown. The following figures are
true copies of the scroling display presented to the user on the
VDU when the test programs arc run. They have been chosen to
convey the nature, flexibility and power of the individual test
routines. The menu will end with a "? to which the user must
reply. Each time a menu is displayed, a menu choice user response
is required. All user responses are highlighted and underscored
for easy identification.

A.l Definition Table

Definition Table Structure And Access Operators

Table Initialise

Structure Display
Quit this program (Q) ? :l

TABLE INITIALISED i

Table Initialise
A_Read
B_Read
Structure Display

Quit this program (Q) ?

APPENDIX A

This State (Range: 1.. 9) = 5

Page 95

The operation was SUCCESSFUL
This Key Definition Line is :
Globl: Perma: Exter: Local:
1 2 3 4

Table Initialise (I)
A_Rea<3 (A)
B_Read (B)
Structure Display (S)

Quit this program (Q)

This State (Range: 1.. 9) = £

This Key (Range: 1..1Q) = 2

This operation was Successful
Next State (if no error) = 7
Next State (if error) = 7
Key Code = 32
Prompt Code (if no error) = 6
Prompt Code (if error) = 6

APPENDIX A

Table Initialise (I)
2LReac (A)
D_Read (n>
Structure Display (s)

Quit this program (Q)

STATE » 1
DD Seg Algo

KEY KEY CODE NEXT 1 1 STATE2 PROMPT C0DE1 PROMPT
1 50 3 1
2 60 8
3 0
4 0
5 0
6 0
7 0
8 0

0 0
4000 9 9 0 o

Key Flags are asi follows:
T T P F P P F F P T
PRESS ANY KEY TO CONTINUE

STATE = 2
No

KEY KEY CODE NEXT STATEl NEX% STATE2 PROMPT CODE1 PROMPT
1 1001 1 1 5
2 0 0 0 0
3 3 1 1
4 0 0 0 0 0

0 0 0 0 0
6 0 0 0
7 0 0

0 0 0 0
0 0 0 0 0

10 0 0 0 0
The
T

Key Flags a follows:
F

PRESS ANY KEY TO CONTINUE

APPENDIX A Page 97

Const: Vac: Type D
C0I7T RET

KEY CODE NEXT STATE1 NEXT STATI22 PROMPT CODE1 PROMPT
4 1
3
0

0 0
0

7
8 0
9 3

2 2 2
Key Flags are as follows:

F F F F T
PRESS ANY KEY TO CONTINUE

PRESS ANY KEY TO CONTINUE

Table Initialise (I)
A_Read (A)
B_Read (D)
Structure Display (S)

APPSNDIX A Page 98

A. 2 Key Code Table

Key Code Tab]e Structure And Access Operators

Table Initialise (I)
Read <R)
Structure Display (S)

Quit this program (Q) ? :J

TABLE INITIALISED!

Table Initialise (I)
Read (R)
Structure Display (S)

Quit this program (Q) ? ;£

Key Code = 12

The operation was SUCCESSFUL

Key Word * integer:
Key Word Length = 8
Indentation = 5
Edit Flag » FALSE

APPENDIX A Page 99

Table Initialise (I)
Read (R)
Structure ris;)lay (S)

Quit this program (O) ? IS

Maximum Table
Key Code

Size = 52
Indentation Edit Flag :<ey Word

o FALSE Constants:
FALSE Variables:

5 Boolean:
5 Integer:
5

14 Character:
21 Single:
22
31 Global:
32 Permanent:
33 External:
34 Local;
0

End While:
Repeat:

402 End Case:
900 <CONSTRUCT>
901 <CONSTRUCT>
902 <CONSTRUCT>
910 (CONDITION)

<VARIABLE>

Press any key to continue

Table Initialise (I)
Read (R)
Structure Display (S)

Quit this program (Q) ? :Q

APPENDIX A Page 100

A.3 Prompt Table

Prompt Table Structure And Access Operators

Table Initialise (I)
Read (R)
Structure Display (S)

Quit this program (Q) ? :J

TABLE INITIALISED!

Table Initialise (I)
Read (R)
Structure Display (S)

Quit this program (Q) ? :£

This Code ••• 3

The operation was SUCCESSFUL
This Prompt = This function key is as yet undefined...

Table Initialise (I)
Read (R)
Structure Display (S)

Quit this program (Q) ?

Maximum Table Size = 20
Prompt

1 Define the Data Item using the Line Editor and Function Keys.
2 Do you want to abandon this definition ?
3 This function key is as yet undefined...
4 Use the function keys to define this field.
5 Definition ABANDONED 1
6 Do you want to accept this definition ?
7 Definition Accepted.
8 Choose one of the following Templates using the Function Keys.
9 Remember to replace any outstanding Placeholders

10
11
12
13
14
16
17
18
19
20

Press any key to continue

Table Initialise
Structure Display (S)

Quit this program (Q) 7 sfi

APPENDIX A Page 102

A.4 Line Linked List
Due to the complexity of this resource, a comment is given when
each test operation is performed. These comments (displayed as
PDL comments) should lead the reader through a useful exercise in
linked list manipulation. For the sake of clarity the linked list
has a capacity of only 10 data items.

Line Linked List Data Structure and Access Operators
(Forward and Backward Pointers)
List Initialise
Get a Record
Return a Record
Write a Record
Read a Recoil
Move Pointer
Display List
List Structure
Quit this Program

"List is Initialized*
(Q) ? I

LIST INITIALISED!

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure
Quit this Program (Q) ? 2

A blank record is inserted into the link list

STATUS = 0 RECORD INSERTED INTO LINK LIST!

APPENDIX A Page 103

List Initialise (I)Get a Record (>)Return a Record (<)Write a Record (W)Read a Record (R)Move Pointer (I!)Display List (D)
List Structure (S)
Quit this Program (0) ? H
written in the new record*

STATUS = 0 DATA ITEM WRITTEN INTO LIST!

List initialise (I)Get a Record (»
Return a Record (<)
Write a Record (W)Read a Record (R)Move Pointer (M)
Display List (D)
List structure (S)
Quit this Program (Q)?)

** A further two characers (a "T" and an "S") are written into
the list **

STATUS = 0 RECORD INSERTED INTO LINK LIST:

List Initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (W)
Read a Record (R)
Move Pointer (n)
Display List (D)
List Structure (S)
Quit this Program (Q)

APPENDIX A

DATA I !TKH = 2

STATUS = 0 DATA ITEM WRITTEN INTO LIST I

Page 104

List Initialise (I)
Get a Record (»
Return a Record {<)
Write a Record (W)
Read a Record (R)
Move Pointer (H)
Display List (D)
List Structure (S)
Quit this Program (Q) ? i

STATUS = 0 RECORD INSERTED INTO LINK LIST!

List Initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (W)
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure (S)
Quit this Program (Q)

DATA ITEM = 3

STATUS = 0 DATA ITEM WRITTEN INTO LIST:

positions*
MOVE INCREMENT = ri

List Initialise (I) '' i
Get a Record (>)Return a Record (<)
Write a Record (W)
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure (S) ! <
Quit this Program (Q) ? W
pointer (now at position 3) is moved back by 8

List Bounds were OVERSHOT
STATUS * 3 LLP IS OUTSIDE OP LIST I

List Initialise (I)
Get a Record <»Return a Record (<)
Write a Record (W)
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure <S)
Quit this Program (Q) ? S

A logical display of the list is requested

Logical List Pointer * 0
Maximum Records * 10

LOCATION : 1 2
DATA ITEM J I T

APPENDIX A Page 106

List Initialise (I)Get a Record (»Return a Record (<)
Write a Record (W)
Read a Record (R)Move Pointer (M)Display List (D)
List Structure (S)
Quit this Program (Q) ? 5

A physical display of the list is requested

MAXIMUM ITEMS
LINK LIST ROCK
LOGICAL LIST POINTER

LOCATION : 1 2
FORWARD POINTER e 2 3
BACKWARD POINTER: : 1
DATA ITEM $ I T

10
1

LINK LIST SIZE
SPACE LIST ROCK
PHYSICAL LIST POINTER «
5 6 7 8 9 10
6 7 8 9 10 11

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure

!>!
(W)1:1

Quit this Program (Q) ? £
A record ie read (but the pointer is still at position zerol)

STATUS = 3 LLP IS OUTSIDE OP LXSTl

APPENDIX A

List Initialise (I)
Get a Record {>)
Return a Record (<)
Write a Record (V)
Read a Record (R)
Hove Pointer (n)
Display List (D)
List Structure (S)
Quit this Program (Q) ? jj

The list pointer is moved forward by two positions
HOVE INCREMENT = 2

STATUS « 0 LIST POINTER HOW AT = 2

List Initialise (I)Get a Record <MReturn a Record (<)Write a Record (W)
Read a Record (R)Move Pointer m
Display List (D)
List Structure (S)
Quit this Program (Q) ? £

*A read operation is performed and it can be seen that the
pointer is now at position 2*

list

STATUS ■ D READ DATA ITEM = T

APPENDIX A Page 208

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List structure
Quit this Program (Q) ? B

^Confirmation of the above operation is seen via the logical
display*

Logical List Pointer = 2
Maximum Records = 10

LOCATION : 1 2 3
DATA ITEM i I T S

** With the pointer at position 2, a character is inserted **

STATUS = 0 RECORD INSERTED INTO LINK LISTl

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure
Quit this Program (Q) ? i

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Hove Pointer
Display List
Li-t structure
Qt. Lt this Program (Q) ? $Z

APPENDIX A

DATA ITEM = 1

STATUS « 0 DATA ITEM WRITTEN INTO LIST I

Page 109

List initialise (I)
Get a Record (»
Return a Record (0Write a Record (W)
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure (S)
Quit this Program (Q) ? D

♦Again the logical display is requested to observe the insert
operation (Note the position of the inserted character and
the list pointer)*

Logical List Pointer «= 3
Maximum Records *» 10

LOCATION : 1 2 3 4
DATA ITEM : I T 1 S

List Initialise (I)
Get a Record (»
Return a Record (<>
Write a Record (W)
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure (S)
Quit this Program (Q) ? S

Now, returning the record should delete the character
(Note again the resulting list pointer position) **

STATUS = 0 RECORD RETURNED TO SPACE LIST!

APPENDIX A Page 110

List Initialise (I)
Get a Record (»
Return a Record (0
Write a Record m
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure (S,
Quit this Program (Q)

Logical List Pointer = 2
Maximum Records == 10

LOCATION ! 1 2 3
DATA ITEM J £ T S

List Initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (W)
Read a Record (R)
Hove Pointer (M)
Display List (D)
List Structure (S)
Quit this Program (Q) ? J

** initializing the list will empty the list logically, but
physically, as the records are returned to the space list 1

LIST INITIALISED!

List Initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (W)
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure (S)
Quit this Program (0)

APPENDIX A

LINK LIST IS EMPTY I

List Initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (W)
Read a Record (R)
Hove Pointer (M)
Display List (D)
List Structure (S)
Quit this Program (Q)

MAXIMUM ITEMS 10 LINK LIST SIZE » 0
LINK LIST ROCK 11 SPACE LIST ROCK 1
LOGICAL LIST POINTER “ 0 PHYSICAL LIST POINTER «* 1

LOCATION : 1 2 3 4 5 6 7 8 9 10
FORWARD POINTER : 2 3 4 5 6 7 8 9 in 11
BACKWARD POINTER: 0 1 2 3 4 5 6 7 6 9
DATA ITEM t I T S

List Initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (w)
Read a Record (R)
Move Pointer (M)
Display List (D)
List structure (S)
Quit this Program \Q)

Exit the test program

6

APPENDIX A Page 112

A.5 File Linked List
A similar exercise to the one of section A.4 can be performed
with this resource. The only difference is in the definition of
the multiple fields to ido'.ICy a PDL line.

File Linked List Data Sti m'e and Access Operators
(Forward and Backward Pointers)
List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure
Quit this Program (Q) ? 1

LIST INITIALISED!

List Initialise
Gdt a Record
Return a Record
Write a Record
Read a Record
Hove Pointer
Display List
List Structure
Quit this Program (Q) ? 2

STATUS = 0 RECORD INSERTED INTO LINK LIST!

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure
Quit this Program (0) ?

APPENDIX A Page 113

INDENTATION CODE = 2
KEY CODE 1 = SSfl
KEY CODE 2 = 1Q1
TEXT LINE = 2-l=_2L±-l

STATUS = 0 DATA ITEM WRITTEN INTO LIST!

STATUS = 0 THE CODES AND TEXT LINE ARE :
2 900 90.

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List structure
Quit this Program (Q> ? £

List initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure
Quit this Program (Q) ? i

STATUS » 0 RECORD INSERTED INTO LINK LIST!

APPENDIX A Page 114

List Initialise
Get a Record
Return a Record
Write a Record
Read a Record
Move Pointer
Display List
List Structure
Quit this Program

INDENTATION CODE = £
KEY CODE 1 = Iflj}
KEY CODE 2 = 115
text line =

STATUS = 0 DATA ITEM WRITTEN INTO LIST!

List Initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (w)
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure (S)
Quit this Program (Q) ? j?

Logical List Pointer = 2
Maximum Records = 10

LOCATION: 1 2
INDEN CODE: 2 6
KEY CODE 1: 900 100
KEY CODE 2: 901 110
The Text Lines below are in order of location

Line Length := 0

I
I

Hit any Key to Continue.

APPENDIX A Page 115

List initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (w)
Read a Record (R)
Hove Pointer {M)
Display List (D)
List Structure (S)
Quit this Program (O)

MAXIMUM ITEMS
LINK LIST ROCK
LOGICAL LIST POINTER =

LOCATION : 1 2
FORWARD POINTER: 2 11
BACKWARD POINTER: 0 1
INDEN CODE: 2 6
KEY CODE 1: 900 100
KEY.CODB 2: 901 11V

Line Length := 0

LINK LIST SIZE
SPACE LIST ROCK
PHYSICAL LIST POINTER =

Hit any key to Continue...

List Initialise (I)
Get a Record (>)
Return a Record (<)
Write a Record (W)
Read a Record (R)
Move Pointer (M)
Display List (D)
List Structure (S)
Quit this Program (Q)

APPENDIX A Page 116

A, 6 Line Editor
The display of the Line Editor test program is shown here. Only
the Window Screen (enclosed in a box) is editable. The prompts
preceding this point are required user responses needed for
initializing the Line Editor. User responses are underscored and
highlighted, in the Window Screen, the key word is highlighted
and underscored here.
When the Line Editor is entered, the cursor is positioned under
the "T" of "CONDITION", In its place, a "v" is typed, and the
ENTER key is then depressed. (The cursor, Cursor 2, is shown as a
highlighted underscored character) The editor is then exit. The
lines following the Window Screen are outputs generated by the
test program to give the user an indication of the final value of
certain variables.

****TNE LINE EDITOR****

KEY.TEXT = Until.
IN-STRING = jCPNDJTIQlfe
WSP = 15
START.COL = 2

j Until <CONDIVION>

OUT STRING = <CONDlvION>
LENGTH OUT.STRING = 11
OUT KEY « -1
WINDOW SCREEN CURSOR POSITION = 16

APPENDIX B Page 117

APPENDIX B: FILENAMES AND DOCUMENTATION DETAILS

The package routines are stored on a number of diskettes. The
disk number, together with its directory (if relevant) is
specified below. Each routine on the disk is listed, giving the
filename used? the routine name and the routine function. A list
of filename extensions and their associated meanings followsi
.DIR — A directory for the PDL generator routines
.PAS — A Pascal routine for the PDL generator
.SYS — A system table for the PDL generator
.COD — A coded file used by the PDL generator
.PDL — A formatted file created by the PDL generator
.BAT — A batch file used by the Disk Operating System
.OBJ — An object file created after compilation of a Pascal

module
.EXE — An executable file created after linking of a Pascal

module
.DOC — A document file containing the documentation of the PDL

generator and created with IBW-Wordstar
.BAK — A backup file for the documentation also created by IBM-

Wordstar.

B.1 Resources

Isxmiiisl-Sfissjiicss Dials: Rif DiiSSiDJfy: TERMINAL.DIR
£ilS_B3BlS Bayiine-DSBS
TERM.RES.PAS TERMINAL.RESOURCE Th>'. resource module
TERM_OPS.PAS The resource operators
KEYBOARD.PAS KBD.GET Gets a character without echo
BELL .PAS BELL Sounds terminal bell
BLINK.ON.PAS BLINK.ON Turns blinking on
BOLD.ON .PAS BOLD.ON Turns highlighting on
RVID.ON .PAS RVID.ON Turns reverse video on
UDSC.ON .PAS UDSC.ON Turns underscoring on
RESTORE .PAS RESTORE Reverts attributes to normal
SET.CP .PAS SET.CP Sets cursor position
READ.CP .PAS READ.CP Reads cursor position
HOME .PAS HOME Sends cursor HOME
CLR.SCR .PAS CLR.SCR Clears screen
CLR.LINE.PAS CLR.LINE Clears line
UP.SCR .PAS UP.SCR Cursor up screen
DN.SCR .PAS DM.SCR Cursor down screen
CUR.HIGH.PAS CUR.RIGHT Cu'fsor right
CUR.LEiFT.PAS CUR_LEFT Curaor left
SCR,FORM.PAS scr_for;iat Formats the screen
MS CLEAR.PAS MS.CLEAR Clears Main Screen
MS.C.ON .PAS flS_CUR_ON Main Screen cursor on
fJS.C_OFF.PAS MS.CUR. OFF Main Screen cursor off
MS WRITE.PAS MS.WRITE Main Screen write
WS_CLEAR.PAS OS.CLEAR Clears Window Screen

APPENDIX H Page 118

D is k : R1; O itS f ik f l iy t TERMIIIAL.DIR

£ils_S3Bs BfltiilDS_ti3D5 SunsiisnWS CPSET.PAS S'?S_ASET_CP Window Screen set cursor
WS RV_WR. PAS WS_RV_:reirE : ; . s . reverse video write
WS HI_WR.PAS WS_HI_WRITE U.S. highlighted v/rite
WS_LO_WR.PAS WS_L0_WRIT3 U.S. normal write
PS_CLEAR.FAS PS_CLEAR Clears Prompt Screen
PS WRITE.PAS PS.WRITE Prompt Screen write
PS_CLEAR.PAS PS_CLEAR Clears Function Screen
FS_NRITE.FAS FS_URITE Function Screen write

E.U.V.. ysmsDT_RLt’ .PAS
DT OPS .PAS
DT_INIT .PAS
DT.Au.RB .PAS
DT_B_RE .PAS
DT_TBST ,PAS
DT_STRUC.PAS
DT .SYS

SSjjkinS_Jj3BS DT_R£SOURCE
DT.IKIT
DT_A_I.3AD
DILE.RCAD
DT.TBST
DT_STRUCTURE

R is D ix s s k s iY : d e f„ t . d i r

£3DsJ;ifiD The resource module
The resource operators
Initializes Definition Table
A Reads the Definition Table
B Reads the Definition Table
Definition Table test program
D.T. test structure routine
Definition Table file

BisJi: Rll SiXSSiSXY: KBY_C_T.DIR
£ils-BsmeKCT„RES .PAS
KCT..OPS .PAS
KCT_INIT.PAS
KCT_READ.PAS
KCT-TEST.PAS
KCT_STRU.PAS
KCT '.SYS

£Sti£iDS-B3jDS
KCT_RESOURCE
RCT_INIT
KCT_READ
KCT.TSST
KCT_STRUCTURE

ZtiDStiflD The resource module
The resource operators
Initialises Key Code Table
Reads the Key Code Table
Key Code Table test program
K.C.T. test structure routine
Key Code Table file

Prompt-Table BiSk: Rl; BitSStSty: PROMPT_T.DIR
£ile_Esffis BfiBtinêflams fitoStisDPT_RES .PAS PT_RESOURCE The resource module
PT OPS .PAS — The resource operators
PT INIT .PAS PT_INIT Initialiseo Prompt Table
PT READ .PAS PT_READ Reads the Prompt Table
PT.TEST .PAS PT_TEST Prompt Table test program
PT STRUC.PAS PTLSTRUCTURE P.T. test structure routine
PT .SYS — Prompt Table file

Bins-iinkssLlist
filS-JZflffiS LIST. RES. PAS
LIST.OPS.PAS
LSBAA .PAS
LSBAB
LSBAD
LSRAE

.PAS

.PAS

.PAS

.PAS

.PAS

Mtitins-Hams LINE.LL.RESOURCE
LIST.INITIALISE
LIST.GET.RECORD
LIST.RETURN.RECORD
LIST.WRITE.RECORD
LIST.READ.RECORD
LIST.MOVE.POINTER

'■! BitSStflty: LINE.LL.DIR
EtiflStiSD

The resource module
The resource operators
Initializes Line Linked List
Fetches record
Returns record
N» ites record
Reads record
Moves list pointer

APPENDIX 3 Page 119

Lins-laclsss-Lisj; DisJi: R2; Bj-ISSiflZY: LINB_LL.DIR

LSBTHT

£2u£ins_IJaB)s
ti I ST_ LOG_ INFO
lIST.LOG.STItim
LSRTST
LISILDATA^. DISPLAY

LI ST_ SITRUCTtJr!E_ DI SP^AY

£unsii<2DReturns Logical List Pointer
Returns the ordered list
List test program
Logical display test routine
Physical diapl. test routine

Z -U s -ld a J ie jL ld s t DisJj: R2| FILE_LL.DIR
fiJS-BSffiFLL_RBS
PLL_OPS

LSBAE

LSBTST

PLL_INITIALISE
PLL_GBT_RECORD
PLL.RETCIRiLRSCORri
iTLL_WRITE_RECORD
FLL_.READ_ RECORD
FIiIi_f30VS_ POINTER
PLL_LOG_ItJFO
LSBl’CT
LIST_DATA-DISPLAY

LIST STRUCTURE,.DISPLAY

Zynstisfl The resource module
The resource operators
Initializes Pile Linked List
Fetches a record
Returns a record
Hritas a record
Reads a record
Moves list pointer
Returns Logical List Pointer
List test program
Logical display test routine
Physical displ. test routine

IdltS-MitflJ:
LINB_ED .PAS
LOAD .PAS
CDILPWD .PAS
CUILBWD .PAS
cuilhome.pas
BND_0_L .PAS
ENT_TBXT.PAS
INSERT .PAS
DELETE .PAS
DEL.EOL .PAS
DUMP .PAS
TEST .PAS

Bautins-MmeLINE_EDITOR
I'IOVE_CUILP
!10VE_CDR_B
WS_.I!OME
L.;D_OP_LINE
BNTEIL.TEXT
INSERT
DELETE
ERASE.EOL

■ ; B-ixesisiy: line,bd.dir

Line Editor Process module
Initializes the Line Editor
Moves Cursor 2 forward
Moves Cursor 2 backward
Moves Cursor 2 HOME
Moves Cursor 2 to end of In
Text enter mode
Character insert routine
Character delete routine
Erases to end of line
Dumps Line Editor contents
Line Editor test program

Bagft .Lgyel fiisjs: PI? BijTSSiflX̂ : FILE.ED.DIR
E ile .tia ff is F m s S u o s lis nPLl.SCROL.PAS)LL Base Level Process module
CU1LDP .PAS Moves Cursor 1 up
CUILDOWN.PAS N Moves Cursor 1 down
PAGE-BWD.PAS P,. _uWD Scrolls back one page
PAGE FWD.PAS PAGE_PWD Scrolls forward one page
TOP O.FL.PAS TOP_OF_FILE Moves to top of file
BOT O.FL.PAS BOT_OF_FILE Moves to bottom of file
CUR_T_LN.PAS CUR_TO_LINE Moves cursor to given line
EDIT.LN .PAS EDIT.LINS Editing via Line Editor
INSERT .PAS INSERT Insert mode gateway

APPENDIX B Page 120

Disk: Pi; Dixssiajrys pile.ed.dir
Siljs-Baffis
PORMATJ3R.PAS

Ssutins-HamsFORMATTER IUCS£iflti Formatter process

DisJi: Pi? SilSSiSXYi DATA_DI2S.DIR
eils-flarosDATA_DES.PAS
ARR_LOAD.PAS
'“ONDIT .PAS
. ••ACEtlNT.PAS
B'ORMATSR.PAS

Baajtiss-ljaos
DAT^. DESCRIPTION
ARRAY^LOAD
CONDITIONS
PLACEMENT
FORMATTER

fynsiisB Data Description Insert module
Initializes definition array
Conditions of Defn. T. choice
Places new data item in file
Formatter process

£SDS£XiW£_JUSSXi-i
Bils-tiauxsALGORITH.PAS
GET.CON .PAS
INDENT .PAS
PORMATBR.PAS
CUR. UP .PAS
CUR.DOWN.PAS
PAGE_BWD.PA5
PAGB.FWD.PAS

EetiSins-SaiDSALGORITHM
G!5T_CONSTRDCT
INDENT
FORMATTER
cun_ UP
CUR_D0WH
PAGE.BWD
PAGE_FWD

PI; DllSC-tm: ALGO.DIR
EtiBSiiSD Construct Insert module

Fetches construct from table
Calculates indentation
Formatter process
Moves Cursor 1 up
Moves Cursor 1 down
Scrolls back one page
Scrolls forward one page

luine-Iossxiuasds Dials: pi? Bixssisiy: ins.ln.dir
Slls-Sams Bfljjiins-jjacs £uBS£iaB
INS_LN .PAS INSERT_LINE Line Insert module
INDENT .PAS INDENT Calculates indentation
FORMATES.PAS FORMATTER Formatter process

Min-Piflgiaa
SAls-Mm
MAIN .PAS
FORMATER.PAS
FILuLOAD.PAS
FOR_DUt.!P.PAS
UNF_DUMP.PAS

jtoDi-me-MmsMAIN
FORMATTER
/ILE.LOAD
FILELP-DUMP
FILc:_UF_DUtlP

EUSStiSB Main Program
Formatter process
File load routine
Formatted file dump
Unformatted file dump

B.3 Documentation

EtiBstisn The front pages of the document
A 14 page summary document

APPENDIX B Page 121

IdkSX3itiXS_5U12ZSy 2isk: D1
ZiJS-MSBS EtiSStiSD
LIT .DOC A 26 page document surveying editors

i?£5£-5-BaSUSl 315%: D2
fils-ifeme EUMiiSBCHAP.l Chhjjter 1
CHAP_2 Chapter 2
CHAP,3 Chapter 3
CHAP_ 4 Chapter 4
APP_A .DOC Appendix A
APP_B .DOC Appendix D
APP.C .DOC Appendix C

DSSiSDSXlS BSfSXSDSS DiS&:
rils-Sams EtiBStiSU

Chapter 1
CHAP 2 .DOC Chapter 2
CHAP3 .DOC Chapter 3
CHAP4 .DOC Chapter 4

.DOC Chapter 5
CHAP6 .DOC Chapter 6
CHAP7 .DOC Chapter 7
APP.A Appendix A
APP.B Appendix B
APP.C Appendix c
APP„D Appendix D

References

APPENDIX C Page 122

APPENDIX C: SYSTEM TABLES

C.l Definition Table
The 80-character key definition line has been split
equal halves for the sake of convenience. Section 3.2.:
the method of coding used below.

DD Const:
50 1
60 8 8
70 10 10
0 0
0
0 0

0
0 0
0
9

Yes NO
1001 5 1
0 0 0

1
0
0
0 0
0 0
0 0

0 0
0

Const: Var: Type
1 4
2 1 1 4

3 3 3
0 0 0
0 0 0

0
0

0
4
2

Boole:
11 1 5
12 1 5
13 1 5 5
14 1 1 5 5
15 3 3 4 4

0 0

into two
I explains

APPENDIX

3000 4 5
1 3

Singi r
23. 1

Array:
1 6 6

22 1 6
0 0 0

0 0
0
0
0 0
0 0
4 6 5
Z 4 4

Globl; Extec
32 6 6 7
32 6 6 7 7
33 6 7 7
34 6 7 7

0 0 0
0 0
0
0

6 4 7
1 1 5 5

Yes
1000 7 7 1 1
0 0 0 0 0

2 2 2
0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 0
0 0 0
If If-t-e While

Cobegn
51 9 9 1
52 9 9 1
53 9 9 1
54 9 9 155 9 9 1
56 9 9 1
57 9 9 1
58 9 9 1
59 9 9 1

3 1
Page B Page F Top F
Edit 1

61 0 0 9 g
0 0 9

63 0 0
64 0 0
65 0 0
70 0 0
SO 0
0 0 0
0 0

Bot P TO lin

APPENDIX C Page 124

C*2 Key Code Table
See Section 3.3.3 for the coding method used below.

Constants:*
Variables;*
Boolean:*
Integer:*

5 Character:*
8 Single:*
8 Array?*

11 Global:*
32 11 Permanent:*
33 11 External:*
34 11 Local:*
40 14
100 0 If *
101 2
102 2
103 0 End If:*

0 While *
201 0

0 End while:*
0 Repeat:*
0 Until *
0 Case *

401 0 Oi:*
402 0 End Cases*
900 0 <CONSTRUCT>*
901 2 <CONSTRUCT>*
902 4 <CONSTRUCT>*
910 <CONDITION>*
920 <VARIABLB>*
950 0
951 2

4
0 Cobegin:*
0 Coend:*

600 0
601 End Get:*
700
701 End put;*

APPENDIX C Page 125

Program *
<PROGRAM NAME>*
Procedure *

-12 <PROCEDURE NAME>*
-21 Inputs: *
-22 Outputs: *

External Procedures:
-31 (PARAMETER/(S)>*
814 Begin:*
815
816
817 End Program:*

End Procedure:*

C.3 Prompt Table
See Section. 3.4.5 foe the coding of the Prompt Table.

Define the Data Item using the Line Editor and Function Keys.
Do you want to abandon this definition ?
This function key is as yet undefined...
Use the function keys to define this field.
Definition ABANDONED 2
Do you want to accept this definition ?
Definition Accepted.
Choose one of the following Templates using the Function Keys.
Remember to replace any outstanding Placeholders at a later stage
Insert required lines of text by successive Carriage Returns.
One line was deleted.

C.4 Construct Table
Two lines are used to represent a construct. The first line
contains a single key code which distinguishes a construct from
another. This is the code which is generated when the function
key corresponding to this template is depressed in Construct
Insert mode. The second line, used to describe the construct,
contains a series of key words which make up the template. An
asterisk between key words indicates a new line in the template.
A maximum of three codes are permitted on a single line {an
initial key word followed by a placeholder followed by a second
key word). To distinguish the end of a construct, a 9999 code is
used. In this way, any combination of key words can be put
together and new templates thus constructed. In the table shown
below, for example, the first template represents an If-then
construct.

100 910*101*902*103*9999
100 910*101*902*102*902*103*9999
53
200 910 201*901*202*9999
54
300*901*., . 910*9999

APPEtTDIX C Page 126

55
400 920 401*902*402*9999
400 920 401*902*102*902*402*9999
500*901*501*9999
600*901*601*9999
700*901*701*9999
-1 -2*-30 -31*814*901*815*817*9999
-11 -12*-21 -31*-22 -31*-30 -31*814*901*815*818*9999
In the Definition Table, State 8 is the Construct insert mode.
Prom here, it can be seen that each construct has a key code
which corresponds to one of the key codes listed in the Construct
Table above. The last two templates, however, are used on startup
for a program and a procedure block respectively.

APPENDIX D Page 127

APPENDIX D: STORAGE FILES

Figure 2 shows a coded file (ie. with extension ".COD") output by
the PDL generator package, while figure 1 is the same file, but
in prettyprinted or formatted style. The coded file is always
twice as long as the formated file due to its use of two lines of
data to represent a single formatted text line.
The third line of the PDL program in figure 1 (also pointed to in
figure 2) is taken as an illustrative example. The coded file
contains firstly an indentation level. This integer value, when
multiplied by the current tab setting (set in the program as two
places) yields a number of spaces, (ie. 1 x 2 = 2) The first key
code is searched for in the Key Code Table (see Appendix C). From
the Key Code Table, it can be found that this line is editable
(due to the <CONDITION> placeholder)? that a relative indentation
of zero is associated with it; and that the key word is
"While:
Now, the indentatj be calculated by adding the value
obtained from the i. ' • H ion level to the absolute indentation
found above. Thus, th- e must be indented by two spaces (ie. 2
+ 0=2). The key wora "while: " then follows. The <CONDITION)
placeholder is found in the second line of the coded file as a
text string. This string is user-editable and is written
alongside the "While: " key word. The final key word is found by
searching the Key Code Table for the second key code. Editability
and indentation values obtained here are ignored. Only the key
word "do:" is used to complete the line in the formatted file.

Procedure Test
— > While <CONDZTION> Do:

<CONSTRUCT>
End While:

End Procedure:
glgjure..,!: A formatted PDL program

0 814
1 200

<CONDITION>
(CONSTRUCT)

1 202

0 815
0 818

2: The coded PDL program

B££££J5ti£BS

1. Bassanino,A.P. (1984): "Software System Design Aid", A
Ei31Jfi£iaB=i5Si_BxlSfiH_£Dii_fi£BSXa£5X» a fourth year BSc (Eng)
design project (Project 3B/84) submitted for Course 19419 in
the Department of Electrical Engineering/ University of the
Witwatersrai'd, Johannesburg, November 1984.

2. Bassanino,A.P. (1985a) t A_Fijnstlon-key_d.riyen_gyntaxrdirected
Editor for Software Systems.Design, "Literature survey", a
document submitted for an MSc {Eng) degree in the department
of Electrical Engineering, University of the Witwatersrand,
Johannesburg, 1985-1986.

3. Bassanino,A.P. f 1985b) t ft_gun<?frion-key_i3jly-en_5yflĵ ĉli,j.egi£d
1.0, a document submitted for an MSc (Eng) degree in the
department of Electrical Engineering, University of the
Witwatersrand, Johannesburg, 1985-1986.

4. Caine,S.H. and Gordon,E.K. (1975): nPDL — a tool for
software design", Elfififisdinas__
fiStieiSflSSf 1975, pp.271-276.

5. Capers,J.T. (1984)s "Reusability in Programming: A Survey of
the state of the Art", IEEE,, . Transactions— on.. Software
■EnglpegC-lng, Vol. SB-10, No.5, September 1984.

6. Data General Corporation (1979a) : "Command Line Interpreter
User's Maunal", Adyaneed Operating ByfitSlD— 1A0S1, Third
Revision, June 1979.

7. Data General Corporation (1979b): HP/Pascal PjoarammeTJs
Bsfexsnssf First Edition, July 1979.

8. Data General Corporation (1979c) : "Dasher Display Terminals,
Models D100/D200", User Reference.. Series. First Edition,
October 1979.

9. Data General Corporation (1980): "SED Taxt Editor User's
Manual", MK3D£Sd-— flBSXSliDS SXStSBl_Z-^3iix£jjai fitflXflSS
(AOS/VS), Revision 1.0, November 1980.

10. IBM (1981): "Pascal Com;, iler" for the IBM Personal Computer,
CoffiPHter-Language.Sprier, by Microsoft Inc., First Edition,
August 1981.

11. IBM (1983) : Pi-.gKOperating.,gystenL.iPOSl for the IBM Personal
Computer, by Microsoft Inc., Version 2.0, May 1983.

12. Jensen,K. and tfirth,N. (1974): PftSCfiL DperManual^andEepoxt,
Springer-verlag. Second Edition, November 1974.

13. Master,B.A. (1984): "Software System Design Aid", Sgjppjitaj
flsslsfced. Sgftiffgce . System Pea jgn_Aid, a fourth year BSc (Eng)
design project (Project 3V84) submitted for Course 19419 in
the Department of Electrical Engineering, University of the
Witwatersrand, Johannesburg, November 1984.

Page 129

14. Miller,E.P. (1984): "Software Testing Technology: An
overview", chapter 16, fiaflj3BsaJ$_fif-Sa£ttiajs_iingine£jina/
edited by Vick,C.R. and Ramamoothy,C.V., van Nosrand Reinold,
1984.

i s . Myers,g.j. (1975): BsJisbls— safiitdis— .tlitaaali— sajiiBasijifl
jSssiac, Pertocelli/charter, New York, 1975.

16. Parnas,D.L. (1972): "On the Criteria to be used for in
Decomposing Systems into Modules", gf_.ther-ACM.
Vol.15, No.12, December 1972.

17. Shankar,K.S. (1984)s "Data Types: Types, structures and
abstractions", Chapter 12, l30dil0flS-J2£-5a£±M3IS_Bns£DesxiBS,
edited by Vick,C.R. and Ramamoothy,C.V., van Nosrand Reinold,
1984.

18. Sommerville,!. (1982): jSfltilfSXS—BcaiDSSliDS/ Addison Wesley
International Computer Science series, 1982.

19. Vosbury,N.A. (1984): "Process Design", Chapter 25,
B3n3b££k_fl£ Software Engineering, edited by Vick,C.R, and
Ramamoothy,C.V., Van Nosrand Reinold, 1984.

Design. Internal publication of the Department of Electrical
Engineering, University of the Witwatersrand, Johannesburg,

21. Walker,A.J. (1985): 6 5££sen_il3naged_EQYlrsDtoSD£ £sr_—lbs
E3P£s3 EX5l2lypiD3-3DiLIlSysl5£®SSl-C£-lDiSr3£liYS_SPS2i<"9±i£D
Prpcramq. internal publication of the Department of
Electrical Engineering, University of the Witwatersrand,
Johannesburg, 1985.

Author Bassanino Angelo Paulo
Name of thesis A Function-key Driven Syntax-directed Editor For Software Systems Design. 1986

PUBLISHER:
University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the Un i ve r s i t y of t he W i t w a t e r s r an d , Johannesbu r g L i b r a r y website
are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise
published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you
may download material (one machine readable copy and one print copy per page) for your personal and/or
educational non-commercial use only.

The University o f the W itwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any
and all liability for any errors in or omissions from the information on the Library website.

