
Neural Network-Based

Controller Designs for Active

Vehicle Suspension Systems

Olurotimi Akintunde Dahunsi (318224)

A thesis submitted to the Faculty of Engineering and the Built Environment, Uni-

versity of the Witwatersrand, Johannesburg, in fulfilment of the requirements for

the degree of Doctor of Philosophy.

Johannesburg, July 2013



Declaration

I declare that this thesis is my own, unaided work, except where otherwise acknowl-

edged. It is being submitted for the degree of Doctor of Philosophy in the University

of the Witwatersrand, Johannesburg. It has not been submitted before for any de-

gree or examination at any other university.

Signed this day of 20

Olurotimi Akintunde Dahunsi (318224).

i



Acknowledgements

I am greatly indebted to all individuals who assisted and encouraged me throughout

the course of my research. Firstly, I would like to thank my supervisor, Professor

Jimoh Pedro, for the discussions, critique and advice throughout this research.

I also want to thank Prof. Laurent Dala , Dr. A. A. Ilemobade, Prof. Montaz

Ali, Dr. Otis Nyandoro, Prof. J. A. Afolayan, Prof. John Ade-Ajayi and Prof.

Taigbenu though not my supervisors they assisted in various ways through inspiring

ideas, discussions and encouragement.

Friends and colleagues at the University of Witwatersrand; Jianchang Huang, Ho-

racio Ernesto, Milan Beharie and Nyiko Baloyi. Akindahunsi Akindehinde, James

Adewumi, Julius and Isaac Popoola, for the after hours encouragement along the

way. Special thanks to Awopetu Olayinka, Abadariki Samson, Shola Oni-Buraimoh

and Saka Abdulkareem.

A special thanks to my wife, Folasade Mojisola, our daughters Ayomikuoluwa Titil-

ianifeoluwa, Oluwafeyikemi Ibukunoluwa and Temitopeoluwa Abisolaoluwa. They

are a constant encouragement and a reason to be focussed. To My parents, father

and mother in-law, also my siblings on both sides, thanks for been outstanding, I

deeply appreciate your prayers, encouragement and love.

Friends are important wherever a man is and my friends in South Africa have indeed

made my stay memorable. Some of these outstanding persons and families include;

the Ilemobades, Olanrewajus, Abes, Olubambis, Akindahunsis, Popoolas, Adelekes,

Adewumis, Adams, Ikotuns, Olasehindes, Ronos, and so many more.

Finally, I want to thank my home University, Federal University of Technology,

Akure (FUTA) for granting me the opportunity and also my colleagues at the Me-

chanical Engineering Department, FUTA.

ii



Abstract

Vehicle suspension design necessitates achieving complex compromise between vari-

ous performance objectives. Active vehicle suspension systems (AVSS) outperforms

all the other suspension types in this regard but at the cost of higher bandwidth

and power consumption as well as, physical space constraint. This limitations have

however not hindered research on AVSS as some of the automobile manufacturers

have started introducing AVSS in their products thereby prompting improvement

of its current level of performance.

The challenges of AVSS design centres around the inherent nonlinearities and uncer-

tainties. This explains the recent interests in the introduction of intelligent control

techniques to AVSS design. Neuro-adaptive controllers designed in this work are

able to leverage on the combination of the strengths in chosen nonlinear techniques

(that is, feedback linearisation and model predictive control) and model-based neural

networks, thus avoiding the traditional need for linearisation.

The design of an indirect adaptive, neural network-based model predictive control

(NNMPC) for a 7DOF nonlinear full-vehicle suspension design has been presented

in this thesis. Its performance was benchmarked against that of PID controller in

the presence of both random and deterministic road disturbance inputs. Improved

system control was achieved by stabilising the actuator dynamics using PID control

sub-loops. The performance of the NNMPC was superior, though the control process

was slower because of the internal optimisation routine of the NNMPC.

Control voltage, actuator force and actuator spool-valve displacement are bounded

within the specified limits. They are also well regulated (except at the instance of

disturbance, however steady state was restored within about 0.5s) without chatter-

ing. The result presented improved ride comfort, handling and road holding without

violating the suspension travel limits. The weighted RMS body acceleration values

for the vehicle sprung mass were evaluated based on international standards. Fre-

quency domain analysis also showed that the AVSS was relatively insensitive to

changes in the physical parameters between 7− 80Hz.
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Scope and Contribution

The contributions resulting from this research work are as follows:

1. A neural network-based adaptive controller for real-time control (based on

model predictive control) of an active suspension system have been developed

for a nonlinear full-car AVSS.

2. The superior disturbance rejection-based performance and suitability of the

developed controller for time-varying operating conditions and uncertainties

have been demonstrated.

3. Four controllers have been studied in this work: a linear controller (PID), a

direct adaptive neuro-controller (DANN), and two indirect adaptive neuro-

controllers (NNFBL and NNMPC). Each controller is employed with an in-

ternal PID feedback loop to stabilize the actuator dynamics. These contribu-

tions are in widely circulated international journals and conference proceedings

[Dahunsi et al. (2009, 2010); Ekoru et al. (2011); Pedro and Dahunsi (2011);

Pedro et al. (2011)].
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1 Introduction

1.1 General Background

Apart from the aesthetic values that buyers seek for in vehicle products today, the

other factors determining their choice include ride comfort, safety and stability [Cao

et al. (2010); Kaddissi et al. (2009); Kim et al. (2012)]. The role of vehicle suspension

system in meeting these demands is shown by the volume of research in the area in

the past five decades [Cao et al. (2011); Chantranuwathana and Peng (2004); Fialho

and Balas (2002); Guglielmino and Edge (2004); Kim et al. (2012); Lin and Lian

(2011); Shi et al. (2010)].

Vehicle suspension units consist of springs, dampers (shock absorbers), link mem-

bers and actuators (in active suspension systems). They are located between the

wheels and the body of the vehicle in such a way that they carry the weight of the

vehicle directly. Figure 1.1 shows the location of the suspension systems (shown as

the MacPherson Struts) in a car.

Figure 1.1: Location of suspension systems in a car

Source:http://www.webmaxmachine.com/schemamecanique/Direction%20-

%20Suspension/slides/CE064600FG0010.html
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Quality of the suspension system influences the driving safety of the vehicle, and

this is related to effective braking and steering of the vehicle [Fischer and Isermann

(2004); Kaddissi et al. (2009); Montazeri-GH and Soleymani (2008); Turkay and

Akcay (2008)]. Good vehicle suspension ensures ride comfort, which is associated

with the ability to isolate the vehicle from road induced vibrations [Du and Zhang

(2008b); Fischer and Isermann (2004); Hrovat (1997); Turnip et al. (2010)].

It is also responsible for ensuring adequate contact between the wheel and the road

surface (this is associated with the term, road holding) [Du and Zhang (2008b);

ElMadany and Qarmoush (2011)]. Poor road holding indicates that the engine

torque generated is not effectively translated into traction force on the road [Gille-

spie (1992); Turnip et al. (2010)]. It is desirable that the vehicle suspension should

be able to enhance the stability and directional control of the vehicle during steer-

ing, maneuvering or cornering (this is associated with the term, vehicle handling)

[Biglarbegian et al. (2008); Chen and Guo (2005); Yagiz and Sakman (2005)].

A good suspension helps to control the vehicle body motion (that is, pitch, bounce

and roll) which are caused by acceleration, deceleration or steering of the vehicle

[Biglarbegian et al. (2008); Cao et al. (2007); ElMadany and Qarmoush (2011);

Smith et al. (2011)]. It also helps to maintain the vehicle suspension travel (that is,

keeping vertical displacement of the vehicle within the allowable suspension pack-

aging space) [Akbari et al. (2010); Du and Zhang (2008b); Huang and Lin (2002);

Okumura et al. (2010)]; and minimizing road damage, improvement of braking and

ensuring good static deflection [Cole (2001)].

Vehicle suspension systems are available with configuration and classification shown

in Figure 1.2:
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Figure 1.2: Types of Vehicle Suspension Systems
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1. Passive suspension (PVSS), which consists of spring and damper, and are

connected in parallel to each other,

2. Semi-active suspension (SASS), which has adjustable damper in place of the

usual damper in the PVSS, and

3. Active suspension system (AVSS), which has an actuator in addition to the

spring and damper (i.e., passive elements).

Figure 1.3 shows the major components of each class of vehicle suspension system.

Active and semi-active suspension systems require controllers for their actuators or

variable damper. The fixed design parameters or settings of passive suspensions re-

sult in their poorer performance in terms of robustness and ability to handle system

non-linearities in contrast with the semi-active and active suspension systems.

Semi-active and active suspension systems are controlled suspension systems, this

makes them flexible, thus becoming adaptive to varying operational conditions. Ac-

tive suspension dynamically alters the energy flow to and from the system, thereby

widening the scope of the trade-off between the various conflicting design objectives

[ElMadany and Qarmoush (2011)].

Figure 1.3: Schematic Classification of Vehicle Suspension Systems [ Xue et al.

(2011)]

Table 1.1 presents a qualitative comparison between the various classes of vehicle

suspension systems showing their relative strengths in terms of some performance

parameters.
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Table 1.1: Qualitative Comparison Between Vehicle Suspension Categories [ Xue

et al. (2011)]

Parameters Passive Semi-active Hydraulic/Pneumatic Electromagnetic

suspensions suspensions active suspensions active suspensions

Structure Simplest Complex Most complex Simple

Weight or Lowest Low High Highest

Volume

Cost Lowest Low Highest High

Ride comfort Fair Medium Good Best

Handling Fair Medium Good Best

performance

Reliability Highest High Medium High

Dynamic Passive Passive Medium Good

performance

Energy No No No Yes

regeneration

Commercial Yes Yes Yes No

maturity

1.2 Active Vehicle Suspension System (AVSS)

Active suspension system is a closed-loop control system consisting of a controller

linked to the controlled actuator and feedback signals through sensors to determine

the control input signal to the system. AVSS responds dynamically to road distur-

bance inputs by inducing relative motion between the body and the wheel through

the actuator supplied energy [Hrovat (1997); Joo et al. (2000); Lin and Lian (2011);

Pedro (2007)].

Figure 1.4 presents the generic active vehicle suspension system (AVSS) feedback

control loop. The system consists of a controller issuing the command input to the

actuator to generate a manipulating signal. Optimal trade-off between the design

objectives is achieved in the process, thereby making the suspension system adaptive

to the road and other operating conditions.

AVSS holds great prospect as controlled suspension. Detail classification and char-

acteristics of active suspension systems are available in the literature [Fijalkowski
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Figure 1.4: AVSS Feedback Control Loop

(2011); Fischer and Isermann (2004); Hrovat (1997); Koch et al. (2008); Leighton

and Pullen (1994); Williams (1997b)]. Figure 1.5 shows the broad classification of

active suspension systems on the basis of system bandwidth level.
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Figure 1.5: Types of Active Vehicle Suspension Systems

1. Fully Active Suspension System (FASS), is made up of hydraulic or electro-

magnetic actuators alone. These actuators are individually controlled by servo

valves and an engine-driven pump. They have a frequency bandwidth ranging

from 20 to 40Hz, therefore this class of AVSS belongs to the high bandwidth

active suspension system (HBAS) range. This class of AVSS is characterised

by very high power consumption (5 − 10kW ) [Fischer and Isermann (2004);
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Leighton and Pullen (1994); Xue et al. (2011)].

2. Parallel Active Suspension System (PASS), in this case, the actuator is posi-

tioned in parallel with the normal conventional passive suspension elements.

This class of AVSS also belong to the high bandwidth active suspension system

(HBAS) range and is the more popular form of AVSS in the literature be-

cause of its broad bandwidth range (that is, 0.1 to about 40Hz with a cut-off

frequency of 25Hz). It is thus positioned for both low and high frequency ap-

plications. It is also used as benchmark when designing for the low bandwidth

active suspensions [Koch et al. (2008); Leighton and Pullen (1994)].

3. Low Bandwidth Active Suspension (LBAS), in this case, the actuator is posi-

tioned in series with the spring and damper, thus making its power requirement

relatively lower. It is therefore a cheaper alternative though with small band-

width range (3− 5Hz) [ElMadany and Qarmoush (2011); Koch et al. (2008);

Leighton and Pullen (1994)].

The HBAS frequency response must at least cover the following frequency

ranges which are regarded as resonant frequencies) [Fijalkowski (2011); Fis-

cher and Isermann (2004); Gillespie (1992); Hrovat (1997); Williams (1997a)]:

(a) rattle-space frequency (10− 12Hz),

(b) wheel-hop frequency (10− 15Hz),

(c) roll frequency (0.5− 1Hz),

(d) pitch frequency (2.5− 3Hz),

(e) Low frequency sprung mass motion,(body heave) frequency (1− 3Hz),

AVSS is an example of a complex control application with multiple variable and

nonlinear coupling. The basic sources of its nonlinearities and uncertainties are:

1. System nonlinearities

(a) Dampers and springs of the suspension systems: these elements normally

have nonlinear properties that are time varying;

(b) Hydraulic / pneumatic actuator dynamics;

(c) Topping and bottoming when the rattle space limits are reached.

2. Uncertainties

(a) Unstable operating conditions: these are irregularities due to excitation

inputs caused by road surface roughness and varying vehicle speed;
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(b) Varying vehicle mass and payload ;

(c) Component wear and deterioration.

AVSS requires that sensors be positioned at different locations in order to provide

signals which the controller can act on in order to drive the actuator. The necessity

for sensors, actuators and controllers has been partly responsible for the high cost of

active suspension implementation, but the current growth in electronics engineering

is gradually making active suspension implementation in commercial vehicles feasi-

ble [Cao et al. (2007); ElMadany and Qarmoush (2011); Hyvarinen (2004)].

Moreover in the last decade, active suspension has begun to find implementation,

on commercial scale, in passenger cars, as well as construction and military vehicles

[Eski and Yildrim (2009); Fischer and Isermann (2004); Gysen et al. (2010); Koch

(2011); Priyandoko et al. (2009); Shi et al. (2010); Smoker et al. (2009)]. This devel-

opment is facilitated by the rapid advances in electronic technology and intelligent

control system [Hada et al. (2007); Hyvarinen (2004)].

Evidence from the literature, some of which include Fischer and Isermann (2004);

Hrovat (1997); Pedro (2007); Yagiz and Sakman (2005), confirms the benefits of the

active suspension to include:

1. Ability to adapt to different road conditions and flexibility in the choice of

desired dynamic characteristics.

2. Capability to engage the full suspension working space in ensuring a good

compromise between performance requirements like ride comfort, road holding

and vehicle handling, and

3. Better system static ability and performance at low frequencies. For example,

it is able to remove the resonance frequencies due to chassis dynamics, which

is around 1Hz.

4. With an improvement in ride quality due to the active suspension, comes

reduction in driver fatigue. This results in better safety and vehicle control.

The listed benefits of AVSS must however be achieved in spite of the following

challenges:

1. External power requirement,
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2. Hardware complications in terms of the actuator fitting the available packaging

space,

3. Sensors and measurement complications,

4. System nonlinearities and uncertainties,

5. Actuator dynamics complications,

6. Degradation in performance due to chattering in hydraulic actuators,

7. High bandwidth requirement, and

8. High manufacturing cost.

1.3 Current Trend in AVSS Controller Design

Controller design is central to active suspension design. Several control methods

ranging from optimal to adaptive, robust and nonlinear control methods have been

proposed. Detail and chronological review of this applications are available in the

literature [Chen and Guo (2005); ElMadany and Qarmoush (2011); Hrovat (1997);

Pedro (2007); Shi et al. (2010)].

Research interest in AVSS took the form of an exponential growth in the last three

decades but has risen to an unprecedented level in the contemporary time. This is

evident from Figure 1.6, which is based on a random internet search through the

COMPENDEX database.

Figure 1.6: Number of hits resulting from a random search for AVSS related terms

in the COMPENDEX database
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In the figure, graph A - represents the plot for the number of hits returned us-

ing the search term ”active vehicle suspension system”, graph B - represents the

plot when the search term ”active vehicle suspension system with adaptive control”

was used, graph C - represents the plot when the search term ”active vehicle sus-

pension system with fuzzy logic” was used, and graph D - represents the plot when

the search term ”active vehicle suspension system with neural networks” was used.

In the decade that ended in 2010, about 150 research publications were based on

AVSS control using adaptive control methods. About 90 of this publications were

based on application of fuzzy control and about 50 were based on the application of

neural networks. The total number of publications on AVSS within the same period

was almost 1600. Increase in the application of intelligent control method like neural

networks was low but growing fast.

It also be inferred from Figure 1.6 that AVSS controllers whose design was based

on linear control methods were ten times more available in the literature than those

based on adaptive or intelligent control methods. The figure also showed increase in

AVSS controller design documented works in a geometric pattern. AVSS controller

design works based on nonlinear and intelligence control techniques followed this

pattern too.

The complexity of the AVSS makes it necessary to broadly classify its controller

design into linear and nonlinear control groups. Figure 1.7 demonstrates this classi-

fication using some of the control methods as illustration.

Figure 1.7: Properties of Control Methodologies
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The figure positions the various methods in various quadrants based on their suit-

ability for different control problems. The quadrants are partitioned using axes with

scales graduated for the richness of the plant information available, and nature of

the plant’s performance objectives.

Several documented works like, [Ge and Lee (1997); Kim and Ro (1998); Lin and

Lian (2011); Wang and Shih (2011)] have demonstrated the weakness of the conven-

tional linear feedback control methods at handling the complex nonlinear dynamical

systems and uncertainties associated with AVSS operation.

Nonlinear control methods hold good prospect in terms of AVSS design because

they are more readily applicable to the AVSS time varying and nonlinear nature.

They also combine with the computational intelligence (CI) - based control methods

for performance enhancement.

Computational intelligence techniques includes several adaptive mechanisms which

are mostly inspired by biological systems or nature. They are employed in modelling

or controlling systems for which mathematically-based modelling have been ineffec-

tive. Examples of computational intelligence techniques includes: neural networks,

fuzzy systems, evolutionary computing, swarm intelligence, probabilistic methods

and learning theory [Chen and Chiang (2003); Juuso (2004)]. Inter-disciplinary

application of CI techniques with control systems yields intelligent control, whose

application in AVSS design holds great prospect. The combination is also becoming

more commercially available for smaller luxury cars and off-road vehicles [Becker

et al. (1996); Cao et al. (2011, 2008)].

Other documented works in the literature like, [Chen and Guo (2005); Fialho and

Balas (2002); Kim and Ro (1998)] have also made strong cases for adaptive suspen-

sion. These are vehicle suspensions that are able to adjust the controller performance

in response to the time-varying interaction between the road and the vehicle. In spite

of the enormous prospect of the classical adaptive control methods employed, there

have been severe limitations due to AVSS nonlinearity [Cao et al. (2008)]. This defi-

ciency is responsible for the increase in the application of intelligent control methods

in AVSS.

Table 1.2 presents some examples of works in the literature which are classified

according to the general categories of the control methods. The first three categories,

classical, optimal and robust control methods, make up the conventional control
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method group. These methods are well developed in terms of application to AVSS

design. Current research efforts are now being directed towards the application of

intelligent control and its combination with other control methods to yield robust

and adaptive controller.
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Table 1.2: Classes and Examples of Control Methods Applied to AVSS Design in the Literature in the Past Two Decades
General Control Some references Combined with

classification method in literature Intelligent Control

Ekoru et al. (2011); Kumar (2008); Aldair and Wang (2010); Dahunsi et al. (2010);

Classical PID Chen and Xiao (2011); Guclu (2004); Kuo and Li (1999); Shen et al. (2010);

control Nusantoro and Priyandoko (2011) Chiou et al. (2012); Xinjie and Shengjin (2009)

Koch et al. (2008); Pedro and Mgwenya (2004);

Gopala Rao and Narayanan (2009); Smoker et al. (2009);

LQR ElMadany et al. (2011); Kumar and Vijayarangan (2006);

ElMadany and Al-Majed (2001); Gavriloski et al. (2007);

Palkovics et al. (1993)
Optimal control

Hrovat (1997); Turkay and Akcay (2008); Fateh and Alavi (2005)

LQG Chai and Sun (2010); ElMadany and Abduljabbar (1999) Younesian and Nankali (2009)

He and McPhee (2005); Li et al. (2008); Zhong et al. (2010)

Chen et al. (2011); Crivellaro and Donha (2011a)

Akbari et al. (2010); Du and Zhang (2007)

Ryu et al. (2008); Yamashita et al. (1994)

Robust control H∞ Chen and Guo (2005); Fallah et al. (2009)

Hayakawa et al. (1999); Wang et al. (2001)

Orvnaas et al. (2011); Zuscikova and Belavy (2011)

H2 Miaomiao and Chen (2006); Zuo and Nayfeh (2003b);
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General Control Some references Combined with

classification method in literature Intelligent Control

H2/H∞ Aghaie and Amirifar (2007) Du and Zhang (2008a)

Robust control LPV Fialho and Balas (2002); Gaspar et al. (2003);

Gaspar et al. (2011); Onat et al. (2007);

Multiobjective Du and Zhang (2008b)

Control Methods Loyer et al. (2008); Poussot-Vassal et al. (2006)

Feedback Chien et al. (2009); Shi et al. (2010) Buckner et al. (2000); Huang et al. (2009);

linearisation Pedro and Dahunsi (2011)

Sam et al. (2004); Sam and S.Osman (2005) Al-Holou et al. (2002); Huang and Lin (2002)

Nonlinear Sliding Mode Chamseddine and Noura (2008); Chen and Guo (2005)

control Koshkouei and Burnham (2008)

Backstepping Huang et al. (2010); Kaddissi et al. (2009)

Hu and Lin (2008); Lin and Huang (2004)

Neural Network Renn and Wu (2007); Zhao et al. (2011) Crivellaro and Donha (2011a)

Based Dahunsi et al. (2009); Eski and Yildrim (2009) Huang and Lin (2002)

Fuzzy Logic Cao et al. (2010); Lin and Lian (2011) Montazeri-GH and Soleymani (2008)

Intelligent Based Sharkawy (2005); Yoshimura and Teramura (2005) Chiou and Liu (2009)

control Du and Zhang (2009); Huang and Chao (2000) Chen et al. (2010)

Evolution Baumal et al. (1998); Hada et al. (2007) Wang and Shih (2011)

Algorithm Based He and McPhee (2005); Shirahatt et al. (2008)

Alfi and Fateh (2011); Fateh and Zirkohi (2011)
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1.3.1 Linear control schemes

Linear controllers range from PID to optimal control schemes and the multivariable-

multiobjective controllers. In the linear control schemes, approximations of AVSS

are obtained by ignoring the second- and higher-order terms of the Taylor series

expansion of the AVSS mathematical model around an equilibrium point. Thus,

the behaviour of the linear models are different from those of the nonlinear models

because some of the system’s dynamics have been ignored. Moreover, it is desirable

in the course of AVSS controller design to consider the system model as completely

as possible [Gaspar et al. (2003); Hrovat (1997); Joo et al. (2000); Nagai et al. (1997)].

Larger proportion of the control schemes that has been employed in AVSS design

in the literature are the linear control schemes. Examples of these schemes include;

LQR, LQG, H2 and H∞. The theoretical basis for these control methods are rela-

tively well developed [Baumal et al. (1998); Wang et al. (2006)]. These methods are

based on obtaining an optimal feedback gain to minimise the chosen performance

objectives like; ride comfort, suspension deflection, road holding and vehicle han-

dling [Cao et al. (2007); Dahunsi et al. (2010)].

Linear optimal control schemes are attractive because they are stable and robust.

Moreover, the robustness becomes quite limited in the face of typical AVSS system

uncertainties due to inaccessibility and variation in parameters, and inaccurate mea-

surements. The parametric uncertainties in AVSS have more impact on the vehicle

mass and payload, as well as, spring stiffness and damping coefficient of the suspen-

sion system. Meanwhile, most AVSS applications of linear optimal control schemes

presume time-invariant situation. The controllers are well suited for random distur-

bance inputs and frequency response related analysis.

In practice, linear optimal control schemes require the availability and accessibil-

ity of all the states for implementation. This is a source of major challenge because

of the cost and difficulty involved in measuring some of the states. Designing ob-

servers for estimating the unavailable states is the typical solution to this problem,

however, a state like tyre deflection could be challenging to estimate. Solving AVSS

control problem by the use of linear control schemes is based on the assumption of

a broad bandwidth actuator, whose response is fast enough and its parameters can

be linearised (the Jacobian way) within some operating regions [Cao et al. (2008)].

Although these optimal control schemes are able to guarantee system stability and

robustness within a reasonable operation region about the equilibrium position, they
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yield complex higher-order systems. Multiobjective combinations of various optimal

control methods have been proposed with improved performance results and robust-

ness. Moreover, the multiobjective control problem yields a non-convex optimisation

problem that could be difficult to solve. Also, the fixed optimal gains cannot be ad-

justed in the face of varying operating condition like changing road disturbance input

[Du and Zhang (2008b); Lu and DePoyster (2002)].

PID control method is the most widely used control method, it accounts for over

90% of all the industrial control loops [Ang et al. (2005); Gao (2002); Goncalves

et al. (2008)]. It is simple and easy to apply, but it lacks robustness to parame-

ter variation and could be challenging to implement physically because of its high

loop gains. For these reasons, PID applications with AVSS is limited except for

the purpose of performance benchmarking during controller designs for other con-

trol methods. It however, holds great prospect when combined with an appropriate

intelligent control technique [James et al. (1999); Kaddissi et al. (2009)].

Model predictive control (MPC) is regarded as the most successful advanced control

technique in terms of academic and industrial application. It controls the plant’s fu-

ture behaviour by online computation of control inputs in an iterative optimisation

process. MPC readily handles states and input constraints, multivariable interac-

tions and time-delays [Bequette (2007); Jazayeri et al. (2008); Qin and Badgwell

(2000)].

Moreover, successful application of MPC depends on the availability of an explicit

dynamic model of the plant and its operation is based on linear model with a

quadratic objective thatoften leads to non-convex multi-modal optimisation prob-

lem, that is not readily solved. A likely problem could also arise in the absence of

a universal optimisation procedure to resolve this problem [Jazayeri et al. (2008);

Lawrynczuk (2007); Yan and Wang (2011)].

These challenges are being handled by the introduction of nonlinear model predictive

control methods, especially by the neural network-based model predictive methods.

These methods utilise the universal approximator capacity of neural networks in

developing nonlinear dynamic models of the systems to be controlled. Its setbacks

could however include its unsuitability for systems with unstable inverses [Akesson

and Toivonen (2006); Chen and Yea (2002); Dahunsi et al. (2009); Lawrynczuk

(2007)].

Linear parameter varying (LPV) design is a fixed gain strategy that is designed
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to be optimal for a nominal parameter set and specific operating conditions. It has

been demonstrated to be useful in tackling measurable and bounded nonlinearities.

It employs parameterized linear systems to describe the nonlinear system dynamics

over the operating range, the controller is constructed from the solutions of LMI

generated over the parameter set [Bars et al. (2008); Fialho and Balas (2002); Gas-

par et al. (2003); Poussot-Vassal et al. (2006)].

There has however been indications that in the last decade more attention is being

paid to intelligent control-based applications to vehicle suspension control. This is

because of the system nonlinearities and uncertainties that characterise the system

(for example, precise parameters may not be readily obtained for the mathematical

model). Another common source of uncertainty is continual variation in inertial

properties [Cao et al. (2010); Du et al. (2011); Lin and Lian (2011)].

1.3.2 Nonlinear control schemes

Vehicle systems have complex dynamics characterised by nonlinearities, varying pa-

rameters, unknown friction and high amplitude disturbances. These nonlinearities

are also manifested in operating conditions like, the varying vehicle speed and the

irregular road excitations due to the road surface roughness [Feng et al. (2003); Gao

et al. (2006); Ikenaga et al. (1999)].The complexities make linear approximations

in the analysis of the AVSS impractical. This situation calls for good performance

of the AVSS controller in terms of the design objectives, good level of robustness

to uncertainties as well as, disturbance rejection [Feng et al. (2003); Spentzas and

Kanarachos (2002)].

An active suspension system is naturally a nonlinear system, which is characterised

by uncertainties that can not be fully addressed by most design methods. Real plants

are usually time-varying system, therefore linear control method fails when applied

to such case. For example, total vehicle mass varies as the passenger load changes

in the vehicle. This is why AVSS controller must not only be designed based on

optimal control laws alone, it must be designed with robust characteristics suitable

for the uncertainties and nonlinearities peculiar to active suspension operation [Du

and Zhang (2008b); Pedro (2007)].

Nonlinear control schemes should be more suitable for AVSS since it is a nonlin-

ear system. An additional reason is the complex nonlinear behaviour of the AVSS

actuator dynamics, especially when it is hydraulic or pneumatic [Chantranuwathana
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and Peng (2004); Du and Zhang (2009); Feng et al. (2003); Nusantoro and Priyan-

doko (2011)]. Examples of nonlinear control schemes that have been applied in

AVSS are; sliding mode, backstepping and feedback linearisation.

The sliding mode control method is attractive because it has good level of robust-

ness. Sliding mode control has been proposed for actuator force control in the inner

loop control of AVSS. Moreover, while it holds good prospect, being adaptive, the

presence of chattering is a setback that could degrade the system performance, espe-

cially by exciting unmodelled high frequency dynamics due to the switching control

signal [Du and Zhang (2009); Kaynak et al. (2001)].

Successful application of sliding mode control is dependent on the availability of

good system dynamic model since it uses the function approximation technique

[Huang and Lin (2002); Koshkouei and Burnham (2008)]. Sliding mode control is

also susceptible to measurement noise and require large control signals [Kaynak et al.

(2001)].

Backstepping control method is well known as an adaptive nonlinear control scheme

because of its flexibility. This advantage was utilized by Lin and Huang (2004) in

resolving the compromise between ride quality and suspension travel. It is usually

desirable to achieve the best ride comfort possible within the constraint of the avail-

able rattle space. In backstepping control, there is additional nonlinearity because

of the inclusion of a filter. The bandwidth of the filter is determined based on the

magnitude of the available rattle space. With backstepping control, the AVSS can

be dynamically adjusted during operation to be soft when the suspension travel is

small, or stiff when the suspension travel is large.

An additional advantage is that backstepping control method is based on success-

ful application of the Lyapunov’s stability theory (that is, it involves the finding of

the control Lyapunov function (CLF) and the control law simultaneously) therefore,

it readily guarantees asymptotic tracking and global stability when an appropriate

candidate Lyapunov function is obtained [Seo et al. (2007); Yu et al. (2004)]. In spite

of the adaptive control potential of this method, it has a setback in form of repeated

differentiation of the system nonlinear function, and this may lead to increase in

complexity of the nonlinear functions [Chien et al. (2009); Huang et al. (2009)].

In feedback linearisation (FBL), the nonlinear problem is transformed into an equiv-

alent linear one. This is achieved by algebraically transforming the nonlinear system
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dynamics into linear ones by using state feedback and nonlinear coordinate trans-

formation. Thus, system nonlinearities are cancelled so that a conventional linear

control method could be applied to solve the control problem. FBL is also at-

tractive for multivariable nonlinear problems because of its decoupling advantage

[Garces et al. (2003); Seo et al. (2007)].

FBL is a nonlinear control technique that has been used effectively for regulation

and tracking control problems. Although its setback includes requirement of full-

state measurement and robustness (due to cancellation of model nonlinearities whose

dynamics may be vital to system performance), its application does not lead to a

computationally demanding controller (due to the high order) like some other non-

linear control methods and it is more readily combined with CI techniques like neural

networks and fuzzy logic to enhance the controller performance. Accurate knowl-

edge of the system model and zero dynamics stability are also essential for effective

application of FBL [Goodwin et al. (2001); Shi et al. (2010)].

Input-output FBL is often preferable to exact FBL because it is less restrictive.

Exact FBL is not always possible because full knowledge of the nonlinear system

model is always required. Input-output FBL however, requires an elaborate inter-

nal stability analysis. This is because input-output FBL creates hidden states as

consequence of its linearisation process. Therefore, a successful implementation of

input-output FBL requires a guarantee of stable zero dynamics in the system [Be-

hera and Kar (2009); Yesildirek and Lewis (2001)].

Intelligent control methods are nonlinear control methods with good prospect for

AVSS application. This is because they do not require detail information of the

plant and can tolerate both qualitative and quantitative design objectives as shown

in Figure 1.7.

1.3.3 Intelligent Control Schemes

Intelligent control techniques are control schemes which employ the CI techniques in

tackling control problems. They are readily applicable to nonlinear control problems

with the need for Jacobian linearisation, through which some vital nonlinear system

dynamics is lost. The suitability of any intelligent control method depends on the

characteristics of the CI technique it uses. CI techniques can also be combined with

other control methods to enhance the system control. The major categories under

intelligent control are:
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1. Neural network-based control schemes,

2. Fuzzy logic-based control schemes, and

3. Evolutionary algorithm-based control schemes.

Neural network (NN) and fuzzy logic are the two most applied computational in-

telligence techniques to control problems. Whereas, fuzzy logic has been employed

in many nonlinear control problems successfully, its challenges lie in the selection

of the appropriate if-then rules and membership functions, as well as the process of

tuning to achieve desired performance. As shown in Figure 1.7, fuzzy logic is most

suited for control problems whose performance objectives are relatively qualitative

and available plant information is poor [Lufty et al. (2009)].

Neural networks can be readily implemented as components in feedback systems,

where its universal approximation capability can be employed in the design of iden-

tifiers and controllers. Some conditions must be met for FBL-based adaptive control

techniques to be applied. Introduction of NN helps in relaxing these conditions. Effi-

cient neural network-based system identification algorithms are now available, these

ensure successful implementation of neural network-based model predictive control

algorithms. Moreover, it has been widely accepted that control problems where

information about the plant is little but the objectives are well laid out, are best

treated with neural networks and genetic algorithm-based strategies [Goodwin et al.

(2001); Kawaji et al. (1999); Lawrynczuk (2007)].

Neural network-based controller is more suitable for vehicle suspension control be-

cause it can be readily applied in the adaptive control mode (that is, through on-line

learning ability and adjustment of weights). Moreover, it is very suitable for nonlin-

ear and multivariable application and can be combined with other control methods

for better performance [Al-Duwaish and Rizvi (2011); Hunt et al. (1992); Kar and

Behera (2009); Pedro and Dahunsi (2011); Wang et al. (2009)]. The required con-

troller must be adaptive to the various uncertainties and yet be robust enough to

cater for the system nonlinearities. Although robust control techniques are well

developed for linear control problems they have suffered setbacks when used for

nonlinear problems.
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1.3.4 Adaptive Neural Network-Based Control Schemes

Robust controllers are required to be able to cope with little differences between the

nominal model used for its design and the true system. To achieve this, some sys-

tem variables are unknown but assumed to be bounded. Adaptive control schemes

achieve or maintain a set of performance goals by adjusting the control weights in

response to measured variations [Jha and He (2004)]. This is done based on its abil-

ity for online estimation of uncertain parameters. Therefore, adaptive controllers

are useful for time varying control problems. Neural network-based control schemes

are able to work within the framework of adaptive control to guarantee the required

robustness to uncertainties [Cao et al. (2008); Chen and Guo (2005); Guglielmino

et al. (2008); Slotine and Li (1991); Spooner et al. (2002)].

Artificial neural network presents alternative adaptive (otherwise known as, indi-

rect adaptive) control schemes based on their ability to approximate arbitrary linear

and nonlinear mapping through learning. Once, a proper past input and output data

are obtained, and suitable NN structures and training methods are chosen, the NN

can be trained to learn the system forward dynamics, such that it can predict and

model control [Al-Duwaish and Rizvi (2011); Ge and Lee (1997); Hunt et al. (1992)].

Adjustments are done in indirect adaptive control method on the basis of the iden-

tified model of the plant. System identification is a function approximation stage

where the dynamic model of the system is established based on observed input-

output data. The objective of the identification process is to adjust the NN param-

eters until the training data satisfies the mean-squared-error (MSE) performance

criteria [Dahunsi et al. (2010); Hunt et al. (1992); Norgaard et al. (1996)].

In the FBL-based direct adaptive neuro-controller design, the nonlinear model of

the system is approximated by two separate functions using the NN. The resulting

controller could be trained off-line to make it less computationally challenging. Al-

though the direct adaptive neural control method is less popular, it is more effective

in some cases, for example when one or both of the approximated functions are

unknown [Kar and Behera (2009); Pedro and Dahunsi (2011); Spooner et al. (2002);

Yesildirek and Lewis (1995)].

Other distinguishing features and benefits of the NN-based direct adaptive con-

trollers over the indirect adaptive control schemes are:

1. In direct adaptive neuro-controllers, the adjusted weights belong to the NN
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that serves as the controller. The indirect adaptive neuro-controller requires a

NN approximator that generates a dynamic model of the plant. Weights of the

NN approximator is adjusted till the predicted model is a good representation

of the plant model [Norgaard et al. (1996); Spooner et al. (2002)].

2. Direct adaptive neuro-controllers present less design and computational chal-

lenges compared to the indirect adaptive neuro-controllers, since it does not

require system identification.

3. With direct adaptive neuro-controllers, closed-loop stability, where the track-

ing error converges to zero, is more readily achieved and maintained than the

indirect adaptive neuro-controllers where ensuring stability is more challenging

[Kar and Behera (2009); Pedro et al. (2011)].

4. Direct adaptive neuro-control is tuned online with NN weights that are up-

dated dynamically thereby ensuring closed-loop robustness to bounded un-

known disturbances [Yesildirek and Lewis (1995)].

Figure 1.8 presents the general classification of neural network models and archi-

tectures employed in adaptive neuro-control schemes. NN is classified broadly into,

static and dynamic NN. Static NN model is represented by algebraic relationship

while dynamic NN model is represented by difference or differential equations. Dy-

namic NN models are also characterised by feedback between neurons of different or

the same layers, thus it is described as being recursive. The feedforward pattern in

the static NN model makes it to respond instantaneously to inputs and to be con-

ditionally stable [Haykin (2009); Hunt et al. (1992); Yesildirek and Lewis (2001)].

Adaptive Neural Network-based 
Control Schemes

Dynamic Neural Network Static Neural Network

Multilayer Perceptron (MLP) Radial Basis Function (RBF)

Figure 1.8: General Classification of Adaptive Neuro-Control Schemes

MLP and RBF are the most popular of the NN architectures. Both of them are sim-

ilar in the sense that, they both use feedforward network architectures to generate

nonlinear mappings and they are both proven universal approximators. Therefore,

21



both are good candidates for adaptive neuro-control applications.

RBF networks use a single hidden layer with several nodes, thereby constructing

local approximations based on the different activation functions at each node. In

the RBF feedforward structure, the neurons in the hidden layer all receives data si-

multaneously from the input layer and transforms them on the basis of the Gaussian

function, before combining the function responses to construct data for the output

layer [Haykin (2009); Lin and Lian (2011)].

MLP networks on the contrary, can use multiple hidden layers, but it constructs

global approximations because the nodes in each hidden layer use the same activation

function. RBF networks are also trained faster than MLP networks of comparable

size. [Hunt et al. (1992); Norgaard et al. (2000); Spooner et al. (2002)].

1.4 Identified Gaps in the Literature

The volume of documented research works in the last five decades on AVSS does not

correspond to its level of commercial application in the society. This, with regard

to controller design, is because the class of control method applied in most cases is

not the most suitable considering the inherent characteristics of the system. Other

challenges are hardware related. The present level of technological development

indicates that the known setbacks to commercial application of AVSS is giving way,

however observed gaps in the documented AVSS research works include:

1. A large proportion of AVSS controller designs are based on linear models or

Jacobian linearisation of nonlinear models [Gao et al. (2006); Hrovat (1997);

Joo et al. (2000); Kim and Ro (1998); Nagai et al. (1997); Sharp and Peng

(2011)]. Linear optimal control based solutions are well developed in the lit-

erature for linearised models of AVSS but nonlinear control methods are more

suitable[Al-Holou et al. (2002); Cao et al. (2010); Sharp and Peng (2011); Shi

et al. (2010)].

2. Most AVSS control designs were limited because they were based on linear

optimal control theories in which a defined quadratic function is minimised.

In most cases, these quadratic functions are limited to ride comfort alone or

sometimes in addition to road holding.

3. The complexity of AVSS modelling makes the usual assumption of stable zero

dynamics in the implementation of FBL and backstepping control methods
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insufficient for AVSS control design [Isidori (1995); Kristic et al. (1995); Park

et al. (2009); Shi et al. (2010)].

4. The contemporary nonlinear control techniques; feedback linearisation, back-

stepping and sliding mode control are relatively robust but plagued with im-

plementation related challenges like chattering, requirement of full-state mea-

surements and inadequate support in handling actuator redundancy [Du and

Zhang (2009); Huang et al. (2009)].

5. Development of adaptive suspensions based on uncertain operating conditions.

6. Application of intelligent-based control to AVSS control design is limited in

spite of its system complexity and coupled dynamics. Moreover, intelligent

based control methods are able to yield improved performance in spite of

modelling inadequacies and uncertainties [Guo and Zhang (2012)].

7. Actuator dynamics is often erroneously assumed negligible in many works

[Chantranuwathana and Peng (2004); Nusantoro and Priyandoko (2011)].

8. Both the spring and the damper are known to have nonlinear characteristics

which are often ignored to allow for easy linearisation of the model.

1.5 Rationale and Motivation

Until recently, vehicle suspension designs (that is, PVSS) had been based on fixed-

gain strategies. They are designed to be optimal around some pre-set nominal

parameters and operating conditions, and used extensively for the purpose of vibra-

tion isolation because of their lower cost and simplicity.

Gradually, introduction of the controlled suspension systems became inevitable be-

cause of the challenge of achieving trade-off between the suspension design require-

ments. With the advent of controlled suspensions, focus shifted to optimal design for

disturbance rejection (that is, optimal ride comfort in spite of uneven road profile)

[Hrovat (1997); Pedro (2007); Shirahatt et al. (2008)]. Vehicle suspension control

problem in this work is approached as an adaptive-nonlinear control problem.

Adaptive control methods are suitable for controlled suspension systems because

of the varying operating conditions and model uncertainties faced in the operation

of vehicle suspension systems. More so, these uncertainties are related to the com-

plexity of the system, so they are often difficult to determine from first principles.
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Adaptive control methods achieve robustness by adjusting the controller online to

reduce the effects of parametric variations in the system [Astrom and Wittenmark

(1989); Spooner et al. (2002)]. Neural network-based control methods fit into adap-

tive control classification based on the weights update process during its training.

1.6 Research Objectives

The overall goal in AVSS controller design is the achievement of optimal performance

through good robustness to parameter variations and disturbance rejection. The

main objective of this research work is to develop a neuro-adaptive controller to

improve the performance of active vehicle suspension system. This can be further

broken down into the following:

1. To design and evaluate the performance of direct and indirect (that is, neural

network-based feedback linearisation and model predictive control) adaptive

neuro-controllers for the quarter-car model.

2. To select and develop a neuro-adaptive controller to achieve multiple perfor-

mance objectives for the nonlinear AVSS full-car model.

3. To evaluate the dynamic performance of the neuro-adaptive controller against

selected benchmark control methods and PVSS under varying operating con-

ditions.

4. To evaluate the sensitivity of the PVSS and AVSS designs to variation in

physical parameters and properties.

1.7 Research Scope, Strategy and Methodology

The entire scope of work and the methodology for the research is illustrated with

Figure 1.9. This entails the design of an AVSS controller with good capacity for

random and deterministic road disturbance inputs for nonlinear SISO and MIMO

vehicle systems.

The focus of this study is the design of a neuro-adaptive controller using the feed-

back linearisation and model predictive control techniques. Figure 1.10 is a layout

of the outlined activities involved in the design process.
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Control Problems

 Disturbance Rejection

Road Disturbance Inputs
        1. Deterministic
        2. Random

SISO AVSS Model
      Quarter-Car

MIMO AVSS Model 
            Full-Car

 Controller 
    Design

Figure 1.9: Summary of Research Scope and Methodology

1. Adaptive neuro-control methods
2. System performance evaluation
3. Selection of the best neuro-control 
    method for full-car implementation

SISO

SISO

MIMO

Benchmark PID Control

SISO MIMO

Nonlinear AVSS Models 
with Actuator Dynamics

1. Neuro-controller design
2.System Performance Evaluation

1. Evaluation of PVSS for optimal 
    parameter selection
2. Evaluation parameter variation 
    sensitivity

MIMO

MIMO

Figure 1.10: Layout of Research Methodology

The performance of the controller designed will be analyzed in the following di-

mensions:

1. Analysis will be carried out using the SISO, 2DOF quarter-car model, and

later extended to the MIMO, 7DOF full-car model.

2. Deterministic and random road disturbance inputs will be used to excite the

system for low and high frequency vibrations.
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3. Designs will be based on nonlinear mathematical models.

4. Performance of the designed controllers will be benchmarked against PID con-

trol.

5. Design of direct and indirect adaptive neuro-controllers for the SISO and

MIMO models of the AVSS.

1.8 Research Contributions

The contributions resulting from this research work are as follows:

1. A neural network-based adaptive controller for real-time control (based on

model predictive control) of an active suspension system have been developed

for a nonlinear full-car AVSS, .

2. The superior disturbance rejection-based performance and suitability of the

developed controller for time-varying operating conditions and uncertainties

have been demonstrated.

3. Four controllers have been studied in this work: a linear controller (PID), a

direct adaptive neuro-controller (DANN), and two indirect adaptive neuro-

controllers (NNFBL and NNMPC). Each controller is employed with internal

PID feedback loops to stabilize the actuator dynamics and enhance perfor-

mance. These contributions are in widely circulated in international journals

and conference proceedings [Dahunsi et al. (2009, 2010); Ekoru et al. (2011);

Pedro and Dahunsi (2011); Pedro et al. (2011)]

1.9 Organization of Thesis

The thesis is divided into six chapters. The structure is illustrated with Figure 1.11.

The first chapter, tagged introduction provides a background description of active

vehicle suspension system (AVSS) and an exhaustive review of control schemes ap-

plied to vehicle suspension control design. It also identified gaps in literature based

on controller design method applied and highlights the objectives of the study.

Chapter two presents a detailed analysis that resulted in the nonlinear quarter

and full-car mathematical models, taking into consideration the actuator dynam-

ics, wheel damping and wheel dynamic load. The chapter also presents the models
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Figure 1.11: Structure of the Thesis

of multiple hump and random road disturbance inputs used in the design analy-

sis. Parameter sensitivity analysis to assess the optimal selection of the passive

suspension parameters is also covered. Lastly the chapter also outlines the various

performance specifications for evaluating all the designed controllers.

Chapter three presents PID controller design for quarter and full-car AVSS models.

Chapter four presents the design and evaluation of the performances of the three

neuro-controllers. Their performances were benchmarked against that of the PID

and the performance specifications in chapter two. The focus of this chapter is to

evaluate and select the best controller for the full-car AVSS controller design.

In Chapter five, the design and evaluation of the neural network-based model pre-

dictive controller (NNMPC) for the full-car AVSS is presented. Its performance is

compared with the performance of the PID controlled AVSS in the time and fre-

quency domain analysis. The sensitivity of the designed AVSS to changes in physical

parameters related to the suspension is also analysed.

Chapter six presents a general overview and discussion of the results obtained, as

well as the concluding comments for future outlook of the research.
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2 Active Vehicle Suspension System (AVSS)

Modelling

2.1 Introduction

The AVSS is modelled as a dynamic system of lumped masses interconnected by

nonlinear springs, dampers, electrohydraulic actuators and tyre (which is modelled

as spring constant due to its compressibility). In this Chapter, physical and math-

ematical models are presented for: the two degree-of-freedom (2DOF), quarter-car

model and the seven degree-of-freedom (7DOF), full-car model. Also covered are,

the system dynamics of the AVSS electrohydraulic actuator as well as the road dis-

turbance input models.

Tyre damping is often ignored in vehicle suspension modelling because it is difficult

to estimate and it introduces couplings that adds to model complexity. Its impact,

especially as regards wheel-hop vibration, is little since this mode is damped by the

shock absorber, it is however added in this work for completeness [Akcay and Turkay

(2009); Maher and Young (2011)].

Actuator dynamics modelling is an important component of AVSS models in this

study. AVSS controller designs will be inadequate without consideration for the

actuator dynamics since its presence distinguishes AVSS from the other suspension

types. [Chantranuwathana and Peng (2004); Du and Zhang (2009); Feng et al.

(2003)].

2.2 Actuator Dynamics

The types of actuators used in AVSS include hydraulic, pneumatic, and electro-

magnetic actuators. The use of electromagnetic actuators has good prospect for
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FASS applications but the technology is relatively new and still evolving. Rota-

tional electromagnetic actuators require gears or ball-screw designs to convert the

rotary motion and this adds to the complication of the system.

The biggest set-backs for electromagnetic actuators include its cost, the increase

in moving parts as well as, additional masses. The system also requires between

12− 14V to provide continuous excitation force, whereas electrohydraulic actuators

require about 10V . The benefits of the electromagnetic actuator include increased

efficiency, mechanically stiffer, improved stability and dynamic behaviour, and more

accurate force control [Fijalkowski (2011); Gysen et al. (2010); Lee and Kim (2010)].

Pneumatic actuators’ wide usage in the industry is because of its advantages like

their lower specific weight to higher power rate, clean and dry environment and

operation. Moreover, their application in AVSS is limited because the bandwidth

requirement for AVSS is higher. They are also characterised by nonlinearities due to

compressibility of air and gas flow related complications in pneumatic components

[Junyi and Binggang (2011); Richer and Hurmuzlu (2000)].

The few commercially available AVSS in the society employs the hydraulic or pneu-

matic actuators. This popularity is because of their superior power-to-weight ratio,

good stiffness characteristics, high load capability, fast and relatively smooth re-

sponse to change in speed and direction, relative ease of control, availability of

parts, lower cost, low wear rate and lower possibility of overheating after working

for long time [Guan and Pan (2008); Seo et al. (2007)].

The operation of electrohydraulic actuators is characterised by highly nonlinear dy-

namics that has been neglected in many AVSS publications for the sake of simplicity.

For example, parameter variations due to load, valve and hydraulic oil used are time

varying and difficult to estimate. Moreover, handling uncertainties is required in all

AVSS types because of their actuators, but this problem is more significant with

hydraulic systems. Control of the actuator dynamics is important for good perfor-

mance, stability and effective force control in the actuator [Chantranuwathana and

Peng (2004); Du and Zhang (2009); Gysen et al. (2010)].

The inadequacy of linear control methods for electrohydraulic control design, the

problems associated with its model linearisation about an operating point and the

successes of the nonlinear control methods are well documented in the literature [Al-

leyne and Lui (2000); Guan and Pan (2008); Karpenko and Sepehri (2012); Rahmat

et al. (2011); Seo et al. (2007)].
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2.2.1 Mathematical Modelling of Electrohydraulic Systems

Figure 2.1 describes the physical representation of the three land four-way hydraulic

actuator mounted in between the sprung and unsprung masses. The actuator is

made up of the primary spool-valve and the double-acting piston. The dynamics of

the actuator is based on the change in force being proportional to the spool position

with respect to the center, velocity of the piston and leakage through the piston

seals.

xv

Figure 2.1: Schematic of the Double Acting Hydraulic Strut

A is the area of the piston, Ps is the supply pressure into the hydraulic cylinder, Pr
is the return pressure from the hydraulic cylinder, Pu and Pl are the oil pressure in

the upper and lower portion of the cylinder.

The actuator is controlled by means of electrohydraulic servo-valves in a three land

four-way spool-valve system. The maximum control input (voltage) of 10V was

applied to the servo-valves to achieve a maximum suspension travel of 10cm. The

servo valve displacement is caused by the actuation of the solenoid by the control

voltage. The following assumptions are necessary for the mathematical modelling of

the electrohydraulic systems [Mailah and Priyandoko (2007); Rahmat et al. (2011);

Renn and Wu (2007); Seo et al. (2007)]:

Assumption 2.1: The servo-valves are matched and symmetric.

Assumption 2.2: Internal leakage in the servo-valve is negligible.

Assumption 2.3: The valve dynamics is sufficiently fast.

Assumption 2.4: The sign convention describing the spool position determines
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the direction of oil flow.

Assumption 2.5: The supply pressure is high enough to prevent reverse flow.

The actuator spool-valve displacement is controlled based on its upstream oil pres-

sure Pu being controlled via the changse in the downstream oil pressure Pl. To

achieve this dynamics of the servo-valve can be approximated as a gain, K, such

that the spool-valve position is given by xv = Ku, where u is the input control volt-

age. The dynamics of the servo-valve can be approximated as a first order system

based on Taylor series linearisation [Fialho and Balas (2002); Gaspar et al. (2003);

Seo et al. (2007)]:

ẋv =
1
τ

(−xv +Ku) (2.1)

which corresponds to a first order system representation, and

Vt
4βe

ẋp = Q− Ctpxp −A(ẋ1 − ẋ2) (2.2)

The spool-valve displacement xv and total flow Q are related by the equation for

hydraulic fluid flow through an orifice that is given by

Q = sgn[Ps − sgn(xv)xp]CdSxv

√
1
ρ
|Ps − sgn(xv)xp| (2.3)

xp is the pressure drop across the piston, Vt is the total actuator volume, βe is the

effective bulk modulus of the system, Φ is the hydraulic load flow, Ctp is the total

leakage coefficient of the piston, Cd is the discharge coefficient, S is the spool-valve

area gradient and ρ is the hydraulic fluid density.

2.3 General Design Assumptions

The following assumptions, related to active suspension design, are adopted to sim-

plify the analysis in the work:

Assumption 2.6: Road irregularities (roughness) are the only source of distur-

bance input (vibrations); engine vibrations and elastic deformation of the ve-

hicle are ignored.

Assumption 2.7: The payload is kept constant for the sake of simplicity.

Assumption 2.8: The link members, tie-rod and control arm provide static sup-

port only.

Assumption 2.9: All member components are connected by ideal joints.
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Assumption 2.10: Any unbalance effect of the wheel and non-uniformity due to

the tyre are also ignored.

Assumption 2.11: Primary motions of the vehicle are: vertical, pitching and

rolling modes. Rocking and yawing motions of the centre of mass about nom-

inal travel path are neglected.

Assumption 2.12: The unsprung masses are uniform.

Assumption 2.13: The centre of mass of the sprung mass always lies along the

longitudinal axis of the vehicle body.

Assumption 2.14: Given that the vehicle is assumed to be travelling at constant

velocity on a straight path, effects of cornering and other horizontal forces are

regarded negligible [Cole (2001)].

2.4 AVSS Mathematical Model for Quarter-Car

Quarter-car analysis remains the most popular model for vehicle suspension analy-

sis. It is simpler and has fewer design parameters. Although it is unable to provide

information related to the vehicle excitations in the roll and pitch motion modes;

it provides effective model that is suitable for wheel load variation, body heave and

suspension travel control [Maher and Young (2011)].

Figure 2.2 represents a physical model of a 2DOF quarter-car active suspension.

The hydraulic actuator force, F is applied between the sprung and unsprung masses

thereby causing a relative displacement between the vehicle body and the wheel.

This displacement is also known as the suspension travel, (x2 − x1). There is also a

relative displacement between the wheel and the road, (x2 − w), this characterises

the road holding quality.

ms

mu

FF

FF F

t

ks bs

x1

x2

w

ms

mu

ks bs F

kt bt

Figure 2.2: AVSS Quarter-Car Model
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The governing equations of motion of the quarter car model are obtained using

Newton’s laws [Fialho and Balas (2002); Gaspar et al. (2003)].

Fms =msẍ1

Fmu =muẍ2

Fks =kls(x2 − x1) + knls (x2 − x1)3

Fkt =kt(x2 − w)

Fbt =bt(ẋ2 − ẇ)

Ft =Fkt + Fbt

Fbs =bls(ẋ2 − ẋ1)− bsyms |ẋ2 − ẋ1|+ bnls
√
|ẋ2 − ẋ1|sgn(ẋ2 − ẋ1)

F =Axp

therefore

Fms = Fks + Fbs − F

msẍ1 = kls(x2 − x1) + knls (x2 − x1)3 + bls(ẋ2 − ẋ1)− bsyms |ẋ2 − ẋ1|

+bnls
√
|ẋ2 − ẋ1|sgn(ẋ2 − ẋ1)−Axp (2.4)

and

Fmu = −Fks − Fbs + Fkt + Fbt + F

muẍ2 = −kls(x2 − x1)− knls (x2 − x1)3 − bls(ẋ2 − ẋ1) + bsyms |ẋ2 − ẋ1|

−bnls
√
|ẋ2 − ẋ1|sgn(ẋ2 − ẋ1) + kt(x2 − w) + bt(ẋ2 − ẇ) +Axp (2.5)

also

Vt
4βe

ẋp = Q− Ctpxp −A(ẋ1 − ẋ2)

ẋp = αQ− βxp − αA(ẋ1 − ẋ2) (2.6)

where α =
4βe
Vt

, β = αCtp and

Q = sgn[Ps − sgn(xv)xp]CdSxv

√
1
ρ
|Ps − sgn(xv)xp|

and

ẋv =
1
τ

(−xv +Ku) (2.7)

Using the state-space representation, the system governing equations can be pre-

sented as

ẋ = f(x) + g(x)u+ p(w) (2.8)

y = h(x) = x2 − x1 (2.9)
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where the state vector x = [x1 x2 x3 x4 x5 x6]T , the output variable y = x2 − x1,

and the control input u. The system matrices f and g are:

f (x) =
[
f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

]T
, (2.10)

g (x) =
[

0 0 0 0 0 1
τ

]T
(2.11)

p (w) =
[

0 0 0 −( kt
mu
w + bt

mu
ẇ) 0 0

]T
(2.12)

f1(x) = x3 (2.13)

f2(x) = x4 (2.14)

f3(x) =
1
ms

[
kls(x2 − x1) + knls (x2 − x1)3 + bls(x4 − x3)

−bsyms |x4 − x3|+ bnls
√
|x4 − x3|sgn(x4 − x3)−Ax5

]
(2.15)

f4(x) =
1
mu

[
−kls(x2 − x1)− knls (x2 − x1)3 − bls(x4 − x3) + bsyms |x4 − x3|

−bnls
√
|x4 − x3|sgn(x4 − x3) + ktx2 + btẋ2 +Ax5

]
(2.16)

f5(x) = γΦx6 − βx5 − αA(x3 − x4) (2.17)

f6(x) =
−x6

τ
(2.18)

where x3 and x4 are vertical velocities of the sprung and unsprung masses respec-

tively, x5 is the pressure drop across the piston and x6 is the servo-valve displace-

ment.

2.5 AVSS Mathematical Model for Full-Car

The full-car AVSS model is illustrated by Figure 2.3. It comprises of a rigid lumped

mass ms, representing the entire vehicle body (that is, the sprung mass). This has

four lumped masses connected to its four corners representing the unsprung masses

of the suspension.

Each suspension system consists of a spring, damper and the actuator. The tyre is

represented by a spring and a damper. The sprung mass has vertical displacement,

x1 at the center of gravity, pitch motion mode through an angular displacement,

θ and roll motion angular displacement, φ. Each unsprung mass has a degree-of-

freedom of motion at the respective corners of the model as shown in the cross-

sectional view in Figure 2.4. The vertical displacements of these unsprung masses
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are given by x2fl, x2fr, x2rl and x2rr respectively.

The suspension spring forces, damping forces and tyre forces are given in general

form as follows [Dong et al. (2009); Gaspar et al. (2009)]:

Fkij = kls(x2ij − x1ij) + knls (x2ij − x1ij)3 (2.19)

Fbij = bls(ẋ2ij − ẋ1ij)− bsyms |ẋ2ij − ẋ1ij |

+bnls
√
|ẋ2ij − ẋ1ij |sgn(ẋ2ij − ẋ1ij) (2.20)

Ftij = kt(x2ij − wij) + bt(ẋ2ij − ẇij) (2.21)
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Therefore the governing equations in terms of the heave, pitch and roll of the vehicle

body, as well as the motion at the four wheels are given by:

msẍ1 = Fkfl + Fkfr + Fkrl + Fkrr + Fbfl + Fbfr + Fbrl + Fbrr

−Ffl − Ffr − Frl − Frr (2.22)

Iθθ̈ = lfFkfl + lfFkfr − lrFkrl − lrFkrr + lfFbfl + lfFbfr

−lrFbrl − lrFbrr − lfFfl − lfFfr + lrFrl + lrFrr (2.23)

Iφφ̈ = tfFkfl − tfFkfr + trFkrl − trFkrr + tfFbfl − tfFbfr

+trFbrl − trFbrr − tfFfl + tfFfr − trFrl + lrFrr (2.24)

muflẍ2fl = −Fkfl − Fbfl − Ftfl + Ffl (2.25)

mufrẍ2fr = −Fkfr − Fbfr − Ftfr + Ffr (2.26)

murlẍ2rl = −Fkrl − Fbrl − Ftrl + Frl (2.27)

murrẍ2rr = −Fkrr − Fbrr − Ftrr + Frr (2.28)

Figure 2.5 presents the pitch and roll angular displacements used to estimate the

sprung mass displacements at the corners of the rigid mass, ms representing the

vehicle body.
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Figure 2.5: Schematics of the Pitch and Roll Angular Displacements

x1fl = x1 + lf sin θ + tf sinφ x1fr = x1 + lf sin θ − tf sinφ

x1rl = x1 − lr sin θ + tr sinφ x1rr = x1 − lr sin θ − tr sinφ

moreover, tr = tf , Fij are the actuator forces, Fkij are the spring forces, Fbij are the

damping forces and Ftij are the tyre spring forces, where ij ∈ {fl, fr, rl, rr}.

Using the state-space representation, the system governing equations for the full-car

model can be written as

ẋ = f(x) + g(x)u + p(w) (2.29)

y = h(x) (2.30)

where the state vector x = [x1 x2 x3 . . . x22]T , the output vector

y = [sfl sfr srl srr]T , the road disturbance vector w = [wfl wfr wrl wrr]T ,

the control input vector u = [ufl ufr url urr]T , and output variables, which are
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the suspension travels at the corners of the vehicle, sij = x2ij − x1ij . The system

matrices f and g are:

f (x) =
[
f1(x) f2(x) . . . . . . f21(x) f22(x)

]T
, (2.31)

g (x) =
[
g1(x) . . . g15(x) 1

τfl
g17(x) 1

τfr
g19(x) 1

τrl
g21(x) 1

τrr

]T
(2.32)

p (w) =
[
p1(w) . . . p10(w)

ktfl
m1fl

wfl
ktfr
m1fr

wfr
ktrl
m1rl

wrl
ktrr
m1rr

wrr

p15(w) . . . p22(w)
]T

(2.33)

f1(x) = ṅ1 = ẋ1 = n8 (2.34)

f2(x) = ṅ2 = φ̇ = n9 (2.35)

f3(x) = ṅ3 = ϕ̇ = n10 (2.36)

f4(x) = ṅ4 = ẋ2fl = n11 (2.37)

f5(x) = ṅ5 = ẋ2fr = n12 (2.38)

f6(x) = ṅ6 = ẋ2rl = n13 (2.39)

f7(x) = ṅ7 = ẋ2rr = n14 (2.40)

f8(x) = ṅ8 = ẍ1 (2.41)

f9(x) = ṅ9 = φ̈ (2.42)

f10(x) = ṅ10 = ϕ̈ (2.43)

f11(x) = ṅ11 = ẍ2fl (2.44)

f12(x) = ṅ12 = ẍ2fr (2.45)

f13(x) = ṅ13 = ẍ2rl (2.46)

f14(x) = ṅ14 = ẍ2rr (2.47)

f15(x) = ṅ15 = γΦxvfl − βxpfl − αA(ẋ1fl − ẋ2fl) (2.48)

f16(x) = ṅ16 =
−xvfl
τfl

(2.49)

f17(x) = ṅ17 = γΦxvfr − βxpfr − αA(ẋ1fr − ẋ2fr) (2.50)

f18(x) = ṅ18 =
−xvfr
τfr

(2.51)

f19(x) = ṅ19 = γΦxvrl − βxprl − αA(ẋ1rl − ẋ2rl) (2.52)

f20(x) = ṅ20 =
−xvrl
τrl

(2.53)

f21(x) = ṅ21 = γΦxvrr − βxprr − αA(ẋ1rr − ẋ2rr) (2.54)

f22(x) = ṅ22 =
−xvrr
τrr

(2.55)

All the other elements of function g (x) are equal to zero except for the following

elements

g16(x) =
1
τfl

g18(x) =
1
τfr

g20(x) =
1
τrl

g22(x) =
1
τrr

,
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similarly, all the other elements of function p (w) are equal to zero except for the

following elements

p11(w) =
ktfl
m1fl

wfl p12(w) =
ktfr
m1fr

wfr p13(w) =
ktrl
m1rl

wrl p14(w) =
ktrr
m1rr

wrr

The position of the elements of g (x) and g (x) are shown in Equation 2.56 and 2.57.

The models for the road disturbance are presented in Section 2.6.
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g (x) =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
τfl

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
τfr

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
τrl

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
τrr



T

(2.56)

p (w) =


0 0 0 0 0 0 0 0 0 0

(
ktfl

m1fl
wfl +

btfl

m1fl
ẇfl

)
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

(
ktfr

m1fr
wfr +

btfr

m1fr
ẇfr

)
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

(
ktrl

m1rl
wrl +

btrl

m1rl
ẇrl

)
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

(
ktrr

m1rr
wrr +

btrr

m1rr
ẇrr

)
0 0 0 0 0 0 0 0



T

(2.57)
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2.6 Road Disturbance Input Models

Road surface irregularities are a major factor influencing vehicle dynamic perfor-

mance and durability. It is associated with the deterioration of ride comfort due

to the inducement of mechanical vibrations within a frequency range of 0 to 80Hz.

Moreover, the resonance peaks of the vehicle body and the wheels occur at about

1Hz and 10Hz respectively.

It is required of the AVSS to have a bandwidth that will accommodate this fre-

quencies and yet separate or distinguish them for effective control [Du and Zhang

(2009); Fischer and Isermann (2004)]. Road surface irregularities can contribute

significantly to system noise, and are of greater concern in the design of passive

suspensions since they are the only input to the system.

The vibration induced is also associated with damage to the road because of the in-

creased dynamic load applied at the wheels [Kropac and Mucka (2008); Verros et al.

(2005); Zhang et al. (2002)]. Road irregularities are modelled in vehicle dynamics as

large isolated irregularities such as potholes or humps, or as continuously distributed

profile irregularities. Although the forward vehicle velocity is time-varying in real

life, for the scope of this study, it can be safely assumed to be constant because of

the limited length of the irregularity.

2.6.1 Deterministic Road Disturbance Model

Deterministic road disturbances are made up of discrete events of elevation or depres-

sion on an otherwise smooth road. Examples include; humps, bumps and pot-holes.

While pot-holes are usually defects on the road, humps and bumps are employed as

speed calming devices but their dimensions and configurations vary from country to

country.

Detail studies about the design of hump profile for optimal speed control have been

reported [Baslamisli and Unlusoy (2009); Khorshid et al. (2007); Kropac and Mucka

(2008)]. A list of some types of humps used in experimental analysis is presented in

Table 2.1. Critical comfort, CC is the maximum magnitude of the shock transmitted

to the driver seat when the vehicle crosses the hump. Critical speed, CS is defined

as the set speed limit for the hump. Hump Type 5 will be used in this study. It has

been reported to be in use in many European countries.
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Table 2.1: Typical Speed Control Humps [ Khorshid et al. (2007)]
Name Description Height Width Comfort Critical Speed,

of Geometry (cm) (cm) Criteria, CC (g) CS (km/h)

1 Short bump, 10 90 0.6 ≤ 35

circular

2 Long hump- 10 4 0.6 45 ≤ CS ≤ 60

circular

3 Long hump- 15 4 1.3 35 ≤ CS ≤ 60

circular and

large height

4 Sinusoidal 6.7 4 0.6 35 ≤ CS ≤ 60

hump

5 Optimal 7.3 3.9 0.6 35

sinusoidal,

cycloidal hump

6 Optimal 8.9 8 0.6 60

polynomial hump

of degree-7

Humps are also called pavement undulations. They are expected to cause a gentle

rocking motion and/or minimal driver discomfort that ensures that the vehicle slows

down. The expected speed range is usually 25km/h−40km/h. Humps however acts

like bumps, jolting both vehicle suspension and occupants, when vehicles goes over

it at high speed. Table 2.1 shows that the configuration for a hump varies between

6.7cm and 15cm height, and 3.9m and 8m width. Humps should also be visible and

far from the nearest intersection by about 60m and are mostly used in urban areas

[ITE Technical Council Task Force on Speed Humps (1993); Khorshid et al. (2007);

Zaidel et al. (1992)].

Bumps are designed to induce stronger discomfort to the driver because it is meant

to slow the vehicle to 8km/h− 16km/h. The discomfort experienced by the drivers

causes them to completely or almost completely stop before going over a bump.

They are suitable for private roadways and parking lots [ITE Technical Council

Task Force on Speed Humps (1993); Khorshid et al. (2007)].

The profile of the deterministic road disturbance inputs used in this study for

quarter-car model are given by Equation 2.58 and Figures 2.6 and 2.7 . The profile
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is made up of two humps of heights 6.7cm and 5cm respectively. The amplitudes of

the humps are given by a1 and a2, while V , vehicle forward velocity is, 40km/h and

λ is the half-wavelength of the sinusoidal road undulation which is 4m.

w(t) =



a1
2 (1− cos2πV t

λ ) 1 ≤ t ≤ 1.25

a2
2 (1− cos2πV t

λ ) 3 ≤ t ≤ 3.25

0 otherwise

(2.58)
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The profile for the deterministic road disturbance inputs for the full-car model are

given by Equations 2.59 and 2.60 and Figure 2.8.

wfl(t) = wfr(t) =



a1
2 (1− cos2πV tf

λ ) 1 ≤ tf ≤
(

1 +
λ

V

)

a2
2 (1− cos2πV t

λ ) 3 ≤ tf ≤
(

3 +
λ

V

)

0 otherwise

(2.59)

wrl(t) = wrr(t) =



a1
2 (1− cos2πV tr

λ ) (1 + td) ≤ tr ≤
(

1 + td +
λ

V

)

a2
2 (1− cos2πV tr

λ ) (3 + td) ≤ tr ≤
(

3 + td +
λ

V

)

0 otherwise

(2.60)
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note that the heights of the humps are the same, thus rolling motion is not induced.

tf and tr are simulation times for the front and rear wheels, lf and lr are the distances

from the wheel bases to the center of the car and V is the forward velocity of the

vehicle and the time delay between the motion of the front and rear wheels is given

by

td =
lf + lr
V

(2.61)
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Figure 2.8: Deterministic Road Disturbance Input Profile for Full-Car Model

2.6.2 Stochastic Road Disturbance Model

The stochastic road disturbance input is expected to typify the uncertainty nature of

the terrain in terms of roughness. These are road surfaces with continuously occur-

ring random excitations. It is normally modelled using pseudo-random road profile,

power spectral density (PSD). The characteristics of a typical non-deformable ter-

rain is defined by the frequency and amplitude or the degree of roughness of the road.

This random road disturbance inputs excites high frequency vibrations in the ve-

hicle [Bogsjo et al. (2012); Cao et al. (2008); Gillespie (1992); Wang and Shih (2011)].

The road condition classification according to ISO 8608 (1995) used in this work

is listed in Table 2.2 (where, G(n0)× (10−6m2/(cycle/m)) at n0 = 0.1cycle/m). It

uses Fourier analysis to estimate the PSD function of the surface. The PSD function,
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G(n) can be expressed as

G(n) =



G(n) = G(n0)
(
n

n0

)−ε1 n

n0
≤ 1

G(n) = G(n0)
(
n

n0

)−ε2 n

n0
> 1

0 otherwise

(2.62)

where n0 is the reference spatial frequency, n is the spatial frequency, G(n0) is the

Table 2.2: ISO Classification of Road Surface Roughness [ Dixon (2007); ISO 8608

(1995)]
Spectral Density

Road class Range l Geometric mean

×(10−6m2/(cycle/m)) ×(10−6m2/(cycle/m))

A (very good) < 8 4

B (good) 8− 32 16

C (Average) 32− 128 64

D (Poor) 128− 512 256

E (very poor) 512− 2048 1024

F 2048− 8192 4096

G 8192− 32768 16384

H 32768 <

road surface roughness coefficient or displacement PSD. It is the PSD at the speci-

fied reference spatial frequency. ε is the linear fitting coefficient, which indicates the

waviness of the road.

It is customary and convenient to set the value of ε to 2, being the mean value

of the range 1.75 ≤ ε ≤ 2.25. This setting is for the grade C roads with road surface

roughness PSD G(n) geometric mean value 256× 10−6m2/(cycle/m) and a vehicle

forward velocity, V range 20 ≤ V ≤ 80km/h [Ngwangwa et al. (2010); Verros et al.

(2005); Zhang et al. (2002)].

The road surface input model can then be built using the Gaussian white noise:

ẇi = −2πn0wi +
√
G0VW0(t) (2.63)

where W0 is a zero variance Gaussian white noise, wi represents the wheel vertical

displacement, ẇi represents the vertical velocity of the wheel and G0 is the road
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roughness coefficient. Figure 2.9 shows the road surface model for the quarter-

car model. The random intensity of the disturbance vary between approximately

−3.6cm and 4.4cm.

0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

2

3

4

5

R
oa

d 
di

st
ur

ba
nc

e 
in

pu
t (

cm
)

Time (s)

Figure 2.9: Random Road Disturbance Input Profile for Quarter-Car Model

Figures 2.10 and 2.11 represent the road surface model for the full-car model. The

front and rear wheels are expected to be excited by the same stochastic excitation,

w(t) which is characterised by a time delay, td.
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2.7 Actuator Feedback Sub-Loops

It is customary in control design to use feedback loop in stabilising unstable sys-

tems and cut down the influence of the disturbance inputs, model inaccuracies and

nonlinear actuator dynamics [Chantranuwathana and Peng (2004); Fateh and Alavi

(2005); Nusantoro and Priyandoko (2011)]. In this work, multi-loop feedback control

loops are used. Inner loops are used for force and spool-valve displacement feed-

back control while the outer loops are used for the suspension travel feedback control.

The outer loop is used for disturbance rejection control; it attenuates the unwanted

disturbances from the uneven road surface. This loop arrangement is illustrated in

Figure 2.12. Suspension travel is the controlled output of the system because it is

readily measurable [Du and Zhang (2009)].

PlantElectro-hydraulic
 Actuator

Inner Loop
 Controller 2

Outer Loop
 Controller

yd

y

y
-

F
FInner Loop

 Controller 1
-

-

Actuator Force Sub-Loop

Spool Valve Displacement Sub-Loop

w

xv

Sensor

Sensor

Sensor

Main Loop

xv

u

Figure 2.12: Schematic of the AVSS Multi-Loop Configuration

2.7.1 Actuator Force Control Inner-Loop

Electrohydraulic systems have numerous industrial applications because of their ef-

fective position control, appropriate force control design is however essential in ap-

plications like robotics and active suspension systems. To ascertain the suitability

of the actuator for use in these systems, it must first demonstrate a good level of

robustness to the parametric uncertainties associated with the electrohydraulic sys-

tems [He (2009); Karpenko and Sepehri (2012); Nusantoro and Priyandoko (2011)].

This test was carried out on the AVSS model using sinusoidal, saw-tooth and square

wave set-point trajectories. Figure 2.13 shows good trajectory following for the

different trajectories used.

46



0 1 2 3 4 5 6
-4
-2
0
2
4

0 1 2 3 4 5 6
-4
-2
0
2
4

A
ct

ua
to

r 
fo

rc
e 

(k
N

)

 

 

0 1 2 3 4 5 6
-4
-2
0
2
4

Time (s)
Actual Desired

Figure 2.13: Actuator Force Set-Point Tracking

2.7.2 Position Control Inner-Loop

High performance position and force control of electrohydraulic systems requires the

use of spool-valve displacement feedback. The effectiveness of an electrohydraulic

actuator is related to accurate positioning of its spool-valve and piston. spool-valve

displacement control is often ignored and classified as an unmeasurable state in

AVSS and electrohydraulic design analysis. This is because its order of magnitude

is commonly millimetres, thereby posing instrumentation challenges.

This challenge has been solved through the advent of the servo-valves assemblies

with embedded or mounted miniaturised Linear Variable Differential Transformer

(LVDT). An instantaneous relative position of the spool-valve is sensed in the LVDT

feedback path and converted to a calibrated voltage signal [Ayalew and Kulakowski

(2005); Chamseddine and Noura (2008); Fialho and Balas (2002); Li and Yuan

(2005); Nakata and Zhao (2011)].

Introduction of the spool-valve feedback loop enhances the frequency response of

the system and can be implemented with a PID controller for better performance.

The controller performance at the high frequencies (that is, above 15Hz), however

tends to be inaccurate especially for the higher order derivatives of the displace-

ment [Nakata and Zhao (2011)]. Although spool-valve displacement measurement

increases the general cost because of the sensitivity requirement for the LVDT in-

strument, the overall improvement and system stability is enhanced [Ayalew and

Kulakowski (2005); Li and Yuan (2005)].
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2.8 Passive Suspension System Sensitivity to Parame-

ter Variations

The main design focus of vehicle suspension system is the achievement of an ap-

propriate trade-off between the various performance objectives. For the PVSS, this

trade-off is limited and associated with the fixed properties of the passive suspension

elements [Williams (1997a); Zhong et al. (2010)]. It is however desirable that the

optimal performance of the PVSS should not be localized about a fixed point defined

by the PVSS elements.

Meanwhile, if the road excitation is uniform and the vehicle mass is constant, then

an appropriate optimal combination of spring stiffness and damping rate can be ob-

tained [Slaski (2011)]. Therefore, the process of AVSS design starts with an optimal

design analysis of the PVSS. This provides a nominal suspension action on which

the actuator could improve upon [Breytenbach and Els (2011); Raj and Padmanab-

han (2009)].

In the course of service, the suspension properties (that is, suspension spring constant

and damper coefficient) tend to vary due to deterioration in the physical properties

of the elements [Zhong et al. (2010)]. Also, there could be variation in the operating

conditions. For example, the sprung mass could vary due to changes in number of

passengers in a vehicle [Gao et al. (2006); Herrnberger et al. (2008)]. The suspen-

sion design is expected to be insensitive to these changes in spite of varying road

conditions and vehicle speed [Dong et al. (2011); Sekulic and Dedovic (2011); Slaski

(2011)].

Sensitivity analysis on the passive suspension system helps to assess if the system

parameters are well chosen. This is visible in the nominal performance of the passive

suspension system. It is also useful in assessing which component of the suspension

system is more readily affected by the type of road disturbance under consideration

as well as, assess how this impact progresses.

In this section, the performance of the passive suspension system, on which the

active suspension system to be considered is built, will be examined. This is to

ascertain that the parametric properties of the suspension elements were optimally

chosen and to check the level of robustness achievable from the PVSS [Mirza et al.

(2005); Sekulic and Dedovic (2011)]. The performance is to be evaluated in terms

of ride comfort, suspension travel and normalized wheel dynamic load.
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2.8.1 Passive Vehicle Suspension System (PVSS) Nonlinear Quarter-

Car Model

Figure 2.14 represents the physical model of 2DOF quarter-car passive suspension,

and the nonlinear mathematical model can be extracted from Equations 2.4 and 2.5.

This mathematical model is also derived based on the assumptions in Section 2.3.
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Figure 2.14: PVSS Quarter-Car Model

Fms = Fks + Fbs

msẍ1 = kls(x2 − x1) + knls (x2 − x1)3 + bls(ẋ2 − ẋ1)− bsyms |ẋ2 − ẋ1|

+bnls
√
|ẋ2 − ẋ1|sgn(ẋ2 − ẋ1) (2.64)

and

Fmu = −Fks − Fbs + Fkt + Fbt

muẍ2 = −kls(x2 − x1)− knls (x2 − x1)3 − bls(ẋ2 − ẋ1) + bsyms |ẋ2 − ẋ1|

−bnls
√
|ẋ2 − ẋ1|sgn(ẋ2 − ẋ1) + kt(x2 − w) + bt(ẋ2 − ẇ) (2.65)

where Ft = Fkt + Fbt

Sensitivity of Quarter-Car PVSS to Parameters’ Variations and Deter-

ministic Road Excitations

Sensitivity of the PVSS to variation in suspension properties and sprung mass within

the allowable limits (that is, ±∆30%), can be assessed using Equations 2.64 and 2.65.

This is done in the presence of the twin hump road deterministic input and vehicle

forward velocity of 40km/h.

Numerical experiments and documented results in some literature however, showed
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that suspension characteristics tend to differ with little margin outside this range

(especially between ±30% and ±50% range of parameter variation) [Dong et al.

(2011); Sun and Cui (2011); Thoresson et al. (2009)].

Figures 2.15 and 2.16 shows the responses of the PVSS in terms of the vehicle

body acceleration, suspension travel and the normalized wheel dynamic load as the

sprung mass and suspension properties were varied. The trend in all the cases was

similar. Both figures show that the PVSS is sensitive to the parametric variations

and increase in settling time is also prominent in all the cases. Table 2.3 presents

the full meanings of acronyms used in the figures.

Table 2.3: Parameters Plotted in the Figures 2.15 to 2.20
Abbreviation Full meaning Abbreviation Full meaning

ST Suspension travel BA Body acceleration

NWDL Normalized wheel RDI Road disturbance

displacement input
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Figure 2.15: Sensitivity of the PVSS to 30% Increase in the PVSS Parameters

The sensitivity to PVSS parameter variation in Figures 2.15 and 2.16 can also be

presented in the form of bar chart distributions for the PVSS parameters as shown in

Figures 2.17, 2.18 and 2.19. Each bar in the plot represents a percentage deviation
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Figure 2.16: Sensitivity of the PVSS to 30% Decrease in the PVSS Parameters

of the respective suspension performance objective from the corresponding nominal

values.
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Figure 2.17: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Body Acceleration
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Figure 2.18: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Suspension Travel

It could be inferred from Figures 2.17, 2.18 and 2.19 that the percentage deviation

of the peak values were more prominent for the spring rate and damping coefficient

but the damping coefficient was more consistent. Therefore, the PVSS was more
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Figure 2.19: Evaluation of the PVSS Sensitivity to Parameter Variation using Rel-

ative Peak Wheel Dynamic Load

sensitive to damping coefficient reduction. This observation underscores the signif-

icance of damping in relation to road vibrations transmitted to the vehicle [Dixon

(2007)].

The magnitude of the damping coefficient of a suspension system is influential to

the vehicle stability and ride comfort. High damping characteristics enhance road

holding but minimises suspension travel; force transmissibility is however increased

making the road excitations to be transmitted to the vehicle occupants [Nguyen

et al. (2012); Slaski (2011)].

The variation in the sprung mass and the spring rate both result in the variation

of the system natural frequency. At nominal (that is, optimal) damping rate, the

PVSS can be expected to exhibit two distinct modes of vibration (that is, body

heave and wheel hop modes). These modes are still available when the damping

rates is reduced but their peak magnitudes are higher. Moreover, the modes tend

to merge as the damping rate is increased [Dong et al. (2011); Williams (1997a)].

Therefore, the objective of PVSS design is the attainment of the optimal damping

coefficient and natural frequency of the system. Natural frequency cannot however

be expected to remain constant within each span of operation of the vehicle because

of sprung mass variation. Achieving this objective is part of the motivation for the

AVSS design [Cole (2001); Dong et al. (2011)].
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Sensitivity of Quarter-Car PVSS to Parameters’ Variations and Random

Road Excitations

When the PVSS was subjected to random road disturbance, as shown in Figure 2.20,

the sensitivity to change in damping coefficient was found to be marginal. This

confirms that the suspension properties have been optimally selected for random

road excitation situations.
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Figure 2.20: Sensitivity of the PVSS to Variation in Damping Coefficient

2.8.2 Passive Vehicle Suspension System (PVSS) Nonlinear Full-

Car Model

The 7DOF nonlinear full-car passive vehicle suspension system model shown in

Figure 2.21 is extracted from the AVSS model in Figure 2.3. The nonlinear math-

ematical model for the PVSS can also be extracted from Equations 2.19 to 2.28,

based on the assumptions in Section 2.3.

The suspension spring forces, damping forces and tyre forces are given in general
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form as follows[Gaspar et al. (2009); Marzbanrad et al. (2002); Pedro (2007)]:

Fkij = kls(x2ij − x1ij) + knls (x2ij − x1ij)3 (2.66)

Fbij = bls(ẋ2ij − ẋ1ij)− bsyms |ẋ2ij − ẋ1ij |

+bnls
√
|ẋ2ij − ẋ1ij |sgn(ẋ2ij − ẋ1ij) (2.67)

Ftij = kt(x2ij − wij) + bt(ẋ2ij − ẇij) (2.68)

Therefore the governing equations in terms of the heave, pitch and roll of the vehicle

body, as well as the motion at the four wheels are given by:

msẍ1 = Fkfl + Fkfr + Fkrl + Fkrr + Fbfl + Fbfr + Fbrl + Fbrr (2.69)

Iθθ̈ = lfFkfl + lfFkfr − lrFkrl − lrFkrr + lfFbfl + lfFbfr

−lrFbrl − lrFbrr (2.70)

Iφφ̈ = tfFkfl − tfFkfr + trFkrl − trFkrr + tfFbfl − tfFbfr

+trFbrl − trFbrr (2.71)

muflẍ2fl = −Fkfl − Fbfl − Ftfl (2.72)

mufrẍ2fr = −Fkfr − Fbfr − Ftfr (2.73)

murlẍ2rl = −Fkrl − Fbrl − Ftrl (2.74)

murrẍ2rr = −Fkrr − Fbrr − Ftrr (2.75)
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Sensitivity of Full-Car PVSS to Parameters’ Variations and Deterministic

Road Excitations

Figures 2.22 through 2.34 presents the PVSS response to 30% reduction and increase

in the suspension parameters. This is evaluated using the system models given by

Equations 2.66 to 2.68 and subjected to a twin hump road disturbance input when

the vehicle is travelling with a forward velocity of 40km/h. Table 2.4 presents the

key to the acronyms used the plots.

Table 2.4: Parameters Plotted in the Figures 2.22 to 2.41
Abbreviation Full meaning Abbreviation Full meaning

ST Suspension travel BA Body acceleration

PAA Pitch angular RAA Roll angular

acceleration acceleration

NWDL Normalized wheel RDI Road disturbance

displacement input

The plot showed some similarities in trend for the different cases though distortions

due to couplings in the different motions of the wheels is evident tended to disturb

quick return to steady-state situations after humps. Figures 2.22 and 2.23 presents

the PVSS response to 30% reduction and increase in the suspension parameters.
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Figure 2.22: Sensitivity to 30% Reduction in the PVSS Parameters Using Body

Heave and Vehicle Handling Plots
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Figure 2.23: Sensitivity to 30% Increase in the PVSS Parameters Using Body Heave

and Vehicle Handling Plots

The variation in the parameters resulted in increasing instability of the PVSS. This

is evident in the suspension travel and normalized wheel dynamic load plots in Fig-

ures 2.27 to 2.34. The response signals were progressively veering away from the

steady-state value after the second hump indicating depreciation in stability.

Figures 2.24 to 2.26 present the peak percentage deviations for the body accel-

eration, pitch and roll angular accelerations for the PVSS. It shows the sensitivity

of the suspension parameters to these performance criteria.

Body, pitch and roll angular accelerations are most affected by variation in sprung

mass of the suspension, especially when the variation is in the positive sense. This

implies that the vehicle suspension’s performance is affected easily by payload vari-

ation in terms of these performance criteria.

Figures 2.27 and 2.28 show the suspension travel response for the four wheels of

the car in response to variation in the physical parameters of the suspension system

and the vehicle speed.

The suspension travel response measured at the different wheels are each affected in

unique patterns, although the impact of the coupling of their motion modes visible.

The signals are also diverging from the steady state as the variation values for the

parameters increase signalling the onset and increase in instablility.
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Figure 2.24: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Body Acceleration
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Figure 2.25: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak pitch Angular Ac-

celeration
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Figure 2.26: Evaluation of the PVSS Sensitivity to Parameter Variation using Rel-

ative Peak Wheel Dynamic Load

Suspension travel sensitivity to variation in suspension parameters for the four

wheels are shown in Figures 2.29 to 2.32. The suspension travel values plotted

in these graphs have been plotted relative to the nominal suspension travel values.

Suspension travel sensitivity to the variation in the parameters is less pronounced

when the magnitudes is reduced in the ”Front right” and ”Rear left” wheels. On

the whole, sensitivity due to variation in sprung mass (especially increase in sprung

mass) is more prominent.

Figures 2.33 and 2.34 present the sensitivity of the wheel dynamic loads (WDL)
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Figure 2.27: Sensitivity of the PVSS to 30% reduction in the PVSS Parameters

Using the Suspension Travel Plots
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Figure 2.28: Sensitivity to 30% increase in the PVSS Parameters Using the Suspen-

sion Travel Plots

at the four wheels to variation in the suspension parameters and the vehicle forward

velocity. The WDL signals are also found to be diverging from the steady-state

value after the second hump.

Sensitivity to variation in vehicle speed and suspension parameters in terms of peak
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Figure 2.29: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Body Acceleration
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Figure 2.30: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Pitch Angular Ac-

celeration
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Figure 2.31: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Body Acceleration
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Figure 2.32: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Pitch Angular Ac-

celeration

percentage deviation of the wheel dynamic loads to nominal values are presented in

Figures 2.35 and 2.38.

Wheel dynamic load sensitivity to vehicle forward velocity is the most prominent

when considering decrease in the values of the parameters in the front wheels. On

the whole, the sensitivity based on sprung mass property variation consistently and

could be said to have the most impact on the performance of the vehicle suspension.

The parameter whose variation affects the suspension performance most (in the

most consistent manner) is therefore the sprung mass or the vehicle payload. The

sensitivity based on the other parameters does not follow a pattern that could be

identified.
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Figure 2.33: Sensitivity to 30% increase in the PVSS wheel dynamic load
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Figure 2.34: Sensitivity to 30% increase in the PVSS wheel dynamic load

The prominence of payload variation (in the full-car analysis) is a contrast to the

situation for full-car in Section 2.8.1, where damping is the most influential param-

eter. This different situation is expected because of the higher level of complexity

of full-car compared to the quarter-car model.
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Figure 2.35: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Body Acceleration
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Figure 2.36: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Pitch Angular Ac-

celeration

0

5

10

15

20

25

30

35

Velocity Sprung
mass

Spring Damper All

Pe
ak

 W
he

el
 D

yn
am

ic
 L

oa
d 

(F
ro

nt
 

R
ig

ht
 W

he
el

) 
Pe

rc
en

ta
ge

 D
ev

ia
tio

n 
 

fr
om

  N
om

in
al

 L
ev

el

Parameters

Decrease by 30%

Increase by 30%

Figure 2.37: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Body Acceleration
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Figure 2.38: Evaluation of the PVSS

Sensitivity to Parameter Variation us-

ing Relative Peak Pitch Angular Ac-

celeration

Sensitivity of Full-Car PVSS to Parameters’ Variations and Random

Road Excitations

Figures 2.39 to 2.41 show the sensitivity of the PVSS to sprung mass variation

with respect to body acceleration, pitch and roll angular acceleration, suspension

travel and wheel dynamic load when travelling over random input disturbance road.

In Figure 2.39, there is only a marginal difference between the graph for nomi-

nal body acceleration, pitch and roll angular acceleration, and the ones for ±∆30%

increase in the sprung mass magnitude. A similar pattern could be found in Figure

2.41 for the normalized wheel dynamic load plots for each wheel.

Figure 2.40 presents a different trend in the suspension travel plots. Here, there is a
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clear difference between the graph for the nominal response and those for ±∆30%.

This further demonstrates that the PVSS parameters that yielded the ”nominal”

graphs have been optimally selected and sensitivity to variation in payload will only
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affect the suspension travel performance of the PVSS within ±∆30% sprung mass

variation range.
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2.9 AVSS Performance Specifications

Evaluation of the dynamic characteristics of vehicle suspension systems is carried

out using criteria like ride comfort, suspension working space (that is, suspension

travel), vehicle handling, energy consumption, infrastructure damage, roll-over sta-

bility, yaw stability, and braking and traction [Cole (2001); Evers et al. (2011);

Gillespie (1992)]. In this work, only the first four criteria will be used due to the

scope of the work.

The performance assessment of the designed AVSS controller was carried out for

straight-line and constant velocity travel. The road conditions considered were,

one with occasional shocks (that is, humps) and another with randomly distributed

intensity of roughness. Also, the controller performances were evaluated for distur-

bance rejection.

Time domain analysis makes it possible to visualize the impact of the nonlinearity

in the model and its effect on the vehicle’s kinematics as well as, other suspension
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parameters. A performance index that combines the RMS evaluation for all these

parameters in the time domain will be computed to allow for a comparative evalu-

ation of the controller performances quantitatively. The frequency domain analysis

makes it possible to visualize the different vibration modes thus revealing transmis-

sibilities and resonances [Cossalter et al. (2006)].

Vehicle ride comfort is related to the heaving, pitching and rolling motion of the

vehicle. It is usually the most prominent of the suspension performance parameters

because the primary role of suspension is isolation of passengers from the excitations

due to road disturbances [Dixon (2007)]. The other performance characteristics will

be evaluated in the time domain.

2.9.1 Basic Performance Criteria

The following basic characteristics are required of the AVSS controller in a bid to

meet the set performance objectives:

1. Nominal stability: The closed-loops should be nominally stable. Stability

in the inner loop is enhanced through a force feedback loop. The enhanced

stability of the actuator dynamics should improve the overall system stability.

2. Disturbance rejection: The controller should demonstrate good low fre-

quency disturbance attenuation.

3. Good command following: The suspension travel response of the AVSS is

examined in the presence of the stochastic and deterministic road inputs shown

in Figures 2.6 and 2.9. The controller should be able to keep the steady-state

error as close to zero as possible.

4. Sensor noise rejection: For the controller to be able to attenuate high

frequency noise and handle unmodelled dynamics; and have less than −20dB

gain above 32Hz [Pedro (2007)].

5. Bandwidth: The bandwidth should enable the actuator to cater for both high

and low frequency disturbances and system resonance frequencies, therefore

0 ≤ Bandwidth ≤ 20rad/s 0 ≤ ζ ≤ 1

It is desired that the controller be conformable with a second order control

system whose damping ratio is 0.7071 and the −3dB bandwidth equals the

system (that is, sprung mass frequency) natural frequency [Fijalkowski (2011);

Pedro (2007); Shahian and Hassul (1993)].

64



2.9.2 Time-Domain Performance Criteria

Quantitative assessment of the controller performance is achieved by the compu-

tation of aggregated mean-integrated-squared performance index that is based on

selected normalized parameters. This formulated criteria is similar to the perfor-

mance index used in optimal control design [Duarte-Mermoud and Prieto (2004);

Tavazoei (2010)].

The selected parameters include, the body motion modes (that is, body heave,

as well as roll and pitch angular accelerations), suspension travels, wheel dynamic

loads and control inputs [Cao et al. (2007); Fallah et al. (2009); Turkay and Akcay

(2011)]. Therefore, the objective of the controller is to minimise the performance

index given by:

J =
1
T

∫
T

0

[(
ẍ1(t)

ẍ1 max(t)

)2

+

(
θ̈(t)

θ̈ max(t)

)2

+

(
φ̈(t)

φ̈ max(t)

)2

(
yi,j(t)

yi,j max(t)

)2

+

(
σi,j(t)

σi,j max(t)

)2

+

(
Fi,j(t)

Fi,j max(t)

)2

(2.76)(
ui,j(t)

ui,j max(t)

)2]
dt

where ij ∈ (fl, fr, rl, rr), u represents the control voltage, y represents controlled

output (suspension travel), σ represents the wheel dynamic load, F represents the

actuator force, ẍ1 represents the vertical acceleration of the vehicle body, θ̈ repre-

sents the pitch angular acceleration and φ̈ represents the roll angular acceleration.

Each of the performance criteria is also to satisfy the following requirements:

1. Suspension travel: is constrained to physical limits to avoid damages due

to topping and bottoming [Cole (2001); Li et al. (2012)]. Maximum allowable

suspension travel is given by [Du and Zhang (2008a); Fateh and Zirkohi (2011)]

ymax(t) ≤ ±0.1m

where ij ∈ (fl, fr, rl, rr) [Gaspar et al. (2003); Turkay and Akcay (2011)].

Moreover, the controller gain must be limited to 0 to 3dB in the frequencies

lower than 0.5Hz to ensure that the rattle space is not exceeded [Crivellaro

and Donha (2011b)].

2. Ride comfort: This is quantified using the vehicle body acceleration in the

vertical direction. The vertical acceleration of the vehicle body needs to be
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minimal for good ride comfort, especially within the low frequency band of

0.1 to 10Hz. Its general frequency range of evaluation is however 0 to 20Hz

[European Commission (2002); Gysen et al. (2010); Savaresi et al. (2010)],

−ẍ1 max ≤ ẍ1(t) ≤ ẍ1 max

This vertical body acceleration represents the response to the road disturbance

and the vertical acceleration percieved by the driver body acceleration eval-

uated in this work is normalized with acceleration due to gravity constant, g

[Fischer and Isermann (2004); Griffin (2007); Koch et al. (2008)].

Although it is generally recommended that the response gain must be on the

decrease within the low frequency band, maximum gain in the frequency do-

main must not exceed 1.8m/s2 within the frequency range of 0 and 5Hz [Do

et al. (2006); Poussot-Vassal et al. (2008)].

3. Handling Quality: It is desirable to keep the vehicle wheel in good contact

and perpendicular position to the road surface even while braking, accelerating

or cornering. Handling capability of the vehicle influences its stopping distance

during braking and its tractive force while moving. Pitch, θ(t) and roll, φ(t)

refer to the angular displacement of the vehicle body about its transverse and

longitudinal axes respectively [Cao et al. (2011); Cole (2001)].

While estimation of qualitative handling characteristics of a vehicle remains

subjective, it is necessary to minimise the pitch and roll acceleration to obtain

good handling. This is expressed mathematically as

− θ̈max ≤ θ̈(t) ≤ θ̈max ; −φ̈max ≤ φ̈(t) ≤ φ̈max

4. Control input: to the actuator is in the form of voltage to the solenoid of

the spool-valve. This determines the hydraulic flow in and out of the actuator

cylinder [Li et al. (2012)]. The control limits are given by:

−umax) ≤ uij(t) ≤ umax)

Maximum allowable control voltage

umax = 10V

5. Actuator force: is limited by the available control voltage to actuator and

the maximum allowable controlled force is given by [Fateh and Zirkohi (2011)]

− Fmax) ≤ Fij(t) ≤ Fmax) ; Fmax) = msg

where, Fmax = 3.24kN (for quarter-car model), and Fmax = 11.6kN (for

full-car model).

66



6. Wheel dynamic load Variation is the criterion used to evaluate the road

holding performance. It is normalized with static load at the wheels for good

road holding. It is also a way of ascertaining the vehicle stability through the

maintenance of good contact force between the wheel and the road [Cao et al.

(2011); Fallah et al. (2009); Fischer and Isermann (2004); Li et al. (2012); Raj

and Padmanabhan (2009)]. The wheel dynamic load variation is also influ-

ential in the generation of longitudinal forces related to braking and traction

[Cole (2001)].

The wheel dynamic load variation criterion can be expressed as,

σij = k(t ij)(x(2 ij) − wij) + b(t ij)(ẋ2 ij − ẇij)

≤ 9.81
(
ms +

4∑
ij

m(u ij)

)
⇒ 0 ≤ σij ≤ 3237.3N

the normalized wheel dynamic load NWDL must therefore be greater than 1

and must be maximised for good road holding.

7. spool-valve displacement is limited to ±1cm due to physical constraint

[Fateh and Zirkohi (2011); Fialho and Balas (2002)], therefore

−xv max ≤ xv ≤ xv max

2.9.3 Frequency-Domain Performance Criteria - Vehicle Ride Per-

formance Evaluation Based on Human Sensitivity

Epidemiological studies related the various health risks associated with whole-body

vibration associated with road-induced vehicle vibration is well documented. The

low-frequency vibration induced also leads to fatigue, motion sickness and loss of

concentration [Griffin (2007); Milosavljevic et al. (2011)].

The spectrum of the vehicle vibrations excited by the road roughness covers the

three frequency ranges enumerated in Table 2.5. Whole-body vibration (WBV) in-

cludes all the macroscopic movements which arise when a person is subjected to

vibration by virtue of his standing, sitting or lying on a vibrating surface. The basic

assumptions for biodynamics of seated human subjects exposed to vertical vibra-

tions enumerated in Liang and Chiang (2006).

Although WBV in vehicles, on platform and in buildings is within the range 0.5
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Table 2.5: Classification of Vehicle Vibration Induced by Road Roughness
Class Range Description

Quasi-static ν < 0.5Hz Corresponds to passage

through slopes and hills.

Ride 0.5Hz < ν < 20Hz Corresponds to traverse across

typical road undulations.

Acoustic 20Hz < ν < 20kHz Generate audible noise

to 80Hz and the critical frequency range for human occupants of the vehicle in the

vertical and horizontal directions are 4 to 8Hz and 1 to 2Hz respectively [Crivellaro

and Donha (2011b); ISO 2631 (2003); Milosavljevic et al. (2011)].

Whole-body vibration perception in moving vehicle is a well studied area of re-

search, especially for seated vehicle occupants. Moreover, most vibration isolation

achievements in the AVSS design has been for frequency ranges near the natural

frequency of the vehicle sprung mass (that is, approximately 1Hz). Only marginal

improvement has been achieved for the human sensitive frequency range [Cossalter

et al. (2006); Lee and Salman (1989)].

While evaluation of human sensitivity to whole-body vibration in road vehicles is

not within the scope of this work, ride comfort assessment in terms vehicle body

accelerations (that is, vertical acceleration, pitch angular acceleration and roll an-

gular acceleration) must be evaluated on the basis of the international standards.

Moreover, evaluation of ride comfort in this standards are linked with human vibra-

tion perception, therefore one of the focus of AVSS design is to minimise vibration

transmitted to the vehicle seats and occupants. [Ahlin and Granlund (2002); Bonin

et al. (2007); Guglielmino et al. (2008); Wang et al. (2005)].

The ride frequency range is of more concern in vehicles because it accommodates

the resonance frequencies of several human body parts [Griffin (2007); Shivakumara

(2010)] as shown in Figure 2.42 as well as, some vehicle body parts [Cole (2001);

Cossalter et al. (2006); Karen et al. (2012)].

Frequency-Weighted Vertical RMS Acceleration

Vehicle ride comfort is commonly associated with the level of vibrations perceived

by the occupants of the vehicle, therefore its evaluation remains subjective. In spite
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Figure 2.42: Mechanical Model of the Human Body Showing the Resonance Fre-

quency Ranges for Various Part

Source: http://www.powerstandards.com/HumanResonance.php

Credit: Sven-Olof Emanuelsson, SKF, Goteborg, Sweden, 1998

of the various whole-body vibration investigations being carried out, a common ride

comfort criterion that links the subjective and the objective assessment variables is

not available for road vehicles the way Sperling index is for railway vehicles.

The available techniques are Statistical and RMS methods. These are used to esti-

mate frequency-weighted RMS acceleration values that is compared with standard

stipulated comfort levels [Kim et al. (2003); Zhou et al. (2009)]. ISO 2631 (2003)

and BS 6841 (1987) specifications for human comfort evaluation based on frequency-

weighted vertical accelerations are presented in Table 2.6. Figure 2.43 shows the

basicentric axes used for the WBV evaluations.

Using the ISO 2631 (2003), the vehicle ride comfort in terms of RMS frequency

weighted vibration acceleration emanating from the vehicle floor is estimated using

av =
√(

k2
Ψa

2
Ψ + k2

θa
2
θ + k2

φa
2
φ

)
(2.77)

where ai represent the individual RMS frequency weighted accelerations given by

ai =

√
1
T

∫ T

0
a2
i (t)dt

and i ∈ [Ψ, φ, θ] for the vertical acceleration, roll angular acceleration and pitch angu-

lar accelerations respectively. ai(t) represents the instantaneous frequency-weighted
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Table 2.6: International Standards’ Scale of Discomfort [ BS 6841 (1987); ISO 2631

(2003)]
Intervals of the frequency-weighted Comfort level

vertical acceleration (m/s2)

< 0.315 not uncomfortable

0.315 to 0.63 a little uncomfortable

0.5 to 1 fairly uncomfortable

0.8 to 1.6 uncomfortable

1.25 to 2.5 very uncomfortable

> 2 extremely uncomfortable

Figure 2.43: Basicentric Axes for Human Body Vibration Evaluation

acceleration measured at the floor of the vehicle, T is total time period and k repre-

sents the respective multiplying factor for weighting. These weightings are essential

in capturing the spectral sensitivity of human body to vibration frequency ranges.

To compare the frequency-weighted accelerations obtained with the ISO comfort

levels, the multiplying factors used are the ones corresponding to weighted-frequency

values at the feet of seated passengers in ISO 2631 (2003). These values are given as,

kΨ = 0.4 in the vertical direction, and kθ = kφ = 0.25 for the pitch and roll modes.

This way, the vibration transmitted directly to the passengers (that is, excluding

the seat) is estimated for direct comparison with standard comfort levels listed in

Table 2.6 [Evers et al. (2011); Karen et al. (2012); Kim et al. (2011)].

To use the ISO 2631 (2003) ride comfort evaluation method, perception filters corre-

sponding to the multiplying factors must be designed. They are necessary to make

good approximation of the vibration sensitivity curves. A fifth and fourth-order
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transfer function approximation for the filter design in the magnitude plot is shown

in Figure 2.44, as given by Equations 2.78 and 2.78. [Evers et al. (2011); Karen

et al. (2012); Kim et al. (2011); Zuo and Nayfeh (2003a)]. Wk is only applicable to

the vehicle heave motion mode, while Wd is applicable to the pitch and roll angular

acceleration modes.

Wk(s) =
87.72s4 + 1138s3 + 11336s2 + 5453s+ 5509

s5 + 92.6854s4 + 2549.83s3 + 25969s2 + 81057s+ 79783
(2.78)

Wd(s) =
12.66s3 + 163.7s2 + 60.64s+ 12.79

s4 + 23.77s3 + 236.1s2 + 692.8s+ 983.4
(2.79)
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Figure 2.44: ISO 2631 Frequency-Weighting (Wk) and (Wd) Curve for Vertical and

Horizontal Accelerations at the Feet

The directive of the Parliament and of the Council of the European Union stipulates

that in preventing occupational health risk due to WBV, the limit values given in

Table 2.7 must not be exceeded: The legislation stipulates the maximum allowable

Table 2.7: European Communities’ Whole-Body Vibration Limit Values [ European

Commission (2002)]
Exposure Action Value, Exposure Limit Value,

EAV (m/s2) ELV (m/s2)

WBV Acceleration 0.5 1.15

daily vibration exposure levels in terms of exposure action value (EAV) and exposure
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limit value (ELV) in terms of frequency weighted root mean square acceleration

values over an eight hour period.

2.9.4 Actuator Power Consumption

This is useful in evaluating the economic viability of the actuator since power re-

quirement of the actuator will influence the fuel consumption rate of the vehicle

[Cole (2001); Crolla and Nour (1992); Marzbanrad et al. (2002); Williams (1997b)].

Therefore actuator power consumption criterion can be expressed as

min Hij = Fij(v1ij − v2ij)

where ij ∈ (fl, fr, rl, rr). Also Fij and vij are the actuator forces and relative

velocities between the sprung and unsprung masses respectively.

2.10 Summary of Chapter Two

This chapter presents the physical description and mathematical models of the

AVSS, elctrohydraulic actuators and the road disturbance inputs.

1. AVSS models: The SISO (quarter-car) and MIMO (full-car) models are pre-

sented. The mathematical model highlights nonlinear properties of the springs,

dampers and electrohydraulic actuators that make up the system. The con-

trol inputs to the system, u is made up of the voltage to the actuator while

the system controlled signals consist of the suspension travel variable at each

suspension units.

2. Electrohydraulic actuator model: The dynamics of the actuator is presented

mathematically. Force and position feedback sub-loops that help in stabilising

the actuator dynamics are also presented.

3. Road disturbance input models: Models of the random and deterministic road

excitations used are also presented in this chapter. The deterministic road

disturbance input consists of two humps with 6.5cm and 5cm elevation, and

separated by about 19m. The twin hump situation enhances better analysis

transient response of the system. The random road disturbance is modelled

after the grade C whose surface roughness is ranked average.

4. Sensitivity to parameter variation by passive suspension system was evaluated

to ascertain that they are optimally chosen.
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5. The process of assessing the controller performances, which has been presented

in this chapter is summarized and illustrated in Figure 2.45. The performance

quality of the designed controllers are evaluated based on the four categories

controller performance objectives shown.

Controller Performance
           Evaluation 

Frequency Domain Parameter
(Ride Comfort-Frequency 

Weighted Acceleration Values)

Power Consumption

Performance Index Computation
(Based on Time Domain Parameters)

Basic Controller 
Performance Criteria

Figure 2.45: Schematic for Controller Performance Evaluation Process
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3 PID Controller Design (Benchmark

Controller Design )

3.1 Introduction

The PID control is the most popular and versatile feedback control loop applied

in the industry, it exists in many variants that are inspired by the simplicity of the

generic PID. It is widely accepted to benchmark the performance of other controllers

against PID when designing controllers, this is because of its simple structure and

relative ease of tuning either intuitively or with several tuning methods available

[Astrom and Hagglund (2001); Giovanni (2009); O’Dwyer (2006)].

It is also popular because it is effective in the adjustment of system parameters

of controllers like overshoot, rise and settling time. It however lacks robustness to

parameter variation and requires high loop gains. Alternative control methods often

have to sacrifice their better performance in this areas for simplicity and computa-

tional ease [Cetin and Akkaya (2010); Giovanni (2009)].

3.2 PID Control and Tuning

The control signal of a generic classical PID controller is the sum of three terms:

KP term, which is proportional to the error signal, KI term, which is proportional

to the integral of the error signal, and the KD term, which is proportional to the

derivative of the error signal [Gao (2002)].

u(ij) = KP e(ij)(t) +KI

∫
e(ij)dt+KD

de(ij)

dt
(3.1)

e(ij) = yd (ij) − y(ij) (3.2)

where ij ∈ (fl, fr, rl, rr) and eij is the error signal. For the system to be set up as a

regulatory control problem, the reference signals yd (ij) was set to zero. It is therefore
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desired that a control law u(ij) be designed such that e(ij)(t)→ 0, as t→∞.

The optimal gains of the PID controllers were determined through the use of the

Ziegler-Nichols tuning criterion Astrom and Hagglund (2001); O’Dwyer (2006). Based

on the understanding of the system characteristics, the first step in fine tuning the

PID controller is to adjust the proportional gain in such a way that the rise time

is minimised. Then the integral gain is adjusted to reduce overshoot and settling

time. Lastly, the derivative gain is adjusted to avoid steady-state error.

The optimal gains of the PID controllers were determined through the use of the

Ziegler-Nichols tuning criterion. The tuning rule is used with a decay ratio of 0.25

to obtain the PID controller gains. This method often requires careful fine tuning

manually because PID controllers can easily generate too high control inputs which

can lead to saturation [Astrom and Hagglund (2001); O’Dwyer (2006)].

While the rigorous tuning rules applied could assist in achieving the required per-

formance, like disturbance rejection. It does not guarantee robustness to model

uncertainties. Ziegler-Nichols’ tuning method has become the first choice tuning

technique because it is relatively easy to apply [Ang et al. (2005); Gao (2002)].

3.3 SISO : Quarter-Car Analysis

The control problem in this chapter is set-up as disturbance rejection problem. The

model was subjected to both deterministic (described in Section 2.6.1) and random

road excitations (described in 2.6.2). The vehicle velocity used for the analysis in-

volving the deterministic road excitation was 40km/h, while those for the random

road excitations was 72km/h. The deterministic road disturbance elements (that is,

hump) in this study, serves the purpose of regulating the vehicle speed in designated

areas.

Spool-valve displacement and actuator force outputs of the actuator are both fed

back in the inner sub-loops shown in Figure 3.1. The system responses based on

both formats are influenced by the presence of the inner feedback loops. The regu-

latory control problem is set-up to assess the degree of deviation of the controlled

output of a system from a fixed desired value as a result of the presence of a dis-

turbance input. The numerical simulations for the PID controlled system with a

sampling frequency of 1kHz were carried out in the MATLABr/SIMULINKr.
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Figure 3.1: Schematic of the AVSS Multi-Loop Configuration

The desired controlled output value in this case is zero suspension travel.

Responses for Deterministic Road Excitation

Table 3.1 presents the various PID tuning parameters for the main feedback loop

controller and the two sub-loop controllers for deterministic and random road exci-

tation situations and zero reference input (that is, for regulatory control problem).

Table 3.1: Quarter-Car AVSS PID Tuning Parameters - Deterministic Road Distur-

bance Input
PID Gains

Kp Ki Kd

Outer loop 100 1× 10−6 1× 10−6

spool-valve 7× 10−3 1× 10−6 1× 10−6

displacement sub-loop

Actuator force 3.87× 10−4 1× 10−6 1× 10−8

sub-loop

Figure 3.2 presents the time history trend of the system responses to the zero ref-

erence input in the presence of the twin deterministic road disturbance inputs. The

range of values for the spool-valve displacement, control voltage and the suspension

travel are well below the maximum allowable limits of ±1cm, ±10V and ±10cm

respectively.

The peak body acceleration values range between −1.41ms−2 and 1.11ms−2, the

normalized wheel dynamic load ranged between −1.16 and 1.45, and the actuator
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Figure 3.2: Time History of the AVSS Responses to Deterministic Road Excitations

force ranged between −3.34kN (which is marginally above the maximum allowable

value) and 3.23kN (which is marginally below the maximum allowable value).

Responses for Random Road Excitation

Table 3.2 presents the PID tuning parameters for the control loops when the system

is exposed to random road excitations. The reference input to the system is zero.

Similarly, the values for the PID gains in the inner loop indicates the level of influ-

ence of the inner feedback loops as regard the performance of the AVSS.

Table 3.2: Quarter-Car AVSS PID Tuning Parameters - Random Road Disturbance

Input
PID Gains

Kp Ki Kd

Outer loop 3.80× 10−6 2.80× 10−6 1× 10−9

spool-valve 1× 103 1× 107 2.50× 104

displacement sub-loop

Actuator force 1× 10−15 0.75 1× 10−6

sub-loop

A set of time histories for the responses of the PID controlled AVSS in the presence

of random road excitation is shown in Figure 3.3. The plots presents a situation that
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is similar to that of the AVSS encountering series of deterministic road excitations

in quick succession. The amplitudes in the plots also show that the random road

excitation presented a more challenging situation.
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Figure 3.3: Time History of the AVSS Responses to Random Road Excitations

Other features noticeable in the figure are, relatively lower peak values for the control

voltage while the peak values for all the other parameters increased. The maximum

allowable limits for the actuator force was reached several times and the body ac-

celeration value oscillated between ±1.6ms−2.

3.4 MIMO: Full-Car AVSS Analysis

This section presents the PID controller design for the full-car AVSS model. The

model incorporates single PID inner loops for actuator forces at each wheel. This

is to facilitate easier tuning of the controllers and also, because of the challenge

associated with measuring the spool-valve displacement.

Figure 3.4 presents the schematic of the full-car control architecture. The con-

trol input is the electrical voltages supplied to each of the electrohydraulic actuators

and the controlled outputs remain the various suspension travel measurements at

each wheel.
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The control problem here is also considered in terms of the random and deter-

ministic road disturbances at vehicle speed of 72km/h and 40km/h respectively.

Coupling of the dynamics of the wheels is expected to manifest clearly in the con-

troller implementation results. The process of PID controllers were tuned manually

using Ziegler-Nichols criterion, as explained in subsection 3.2.
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Figure 3.4: Full-Car AVSS Architecture Schematic

The control architecture in Figure 3.4 differs from the one in Figure 3.1 because it has

only one inner loop (which is for the actuating force). This is necessary in order to

reduce the complexity of the full-car model and enhance its tuning process, moreover

the installation of a LVDT to monitor the spool-valve displacement introduces a

challenge in the physical sense. Also, Ekoru et al. (2011) has shown that the use of

only one inner control loop (for actuator force feedback) is sufficient in stabilising

the actuator dynamics.

Responses for Deterministic Road Excitation

Table 3.3 presents the PID tuning parameters for the AVSS controllers when sub-

jected to the twin humps, deterministic road disturbance excitations.
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Table 3.3: Full-Car AVSS PID Tuning Parameters - Deterministic Road Disturbance

Input
Wheel PID Gains

Location Loop Kp Ki Kd

Front Outer loop 5 1× 1−3 1

left Inner loop 1× 10−3 5× 10−6 1× 10−10

Rear Outer loop 1.5× 103 1× 102 1× 10−3

left Inner loop 1× 10−3 1× 10−6 1× 10−9

Front Outer loop 1× 103 1× 102 1× 10−3

right Inner loop 5× 10−3 1× 10−6 1× 10−10

Rear Outer loop 600 75 10

right Inner loop 7.513× 10−3 1× 10−4 1× 10−10

Table 3.4 defines the acronyms used in Figures 3.5 to 3.16. These figures presents

the performance of the full-car AVSS in the presence of the deterministic and ran-

dom road excitations. These performances were compared with those of the PVSS.

Attainment of the optimal trade-off based on the PID tuning becomes the chal-

lenge here. This is because originally, the response showed that suspension travel

and dynamic wheel load were seriously minimised, but at the same time body ac-

celeration had deteriorated badly, showing worse vibration attenuation to PVSS.

Table 3.4: Parameters Plotted in the Time Histories
Abbreviation Full meaning Abbreviation Full meaning

ST Suspension travel BA Body acceleration

PAA Pitch angular RAA Roll angular

acceleration acceleration

NWDL Normalized wheel SVD spool-valve

displacement displacement

RDI Road disturbance AF Actuator force

input CV Control voltage

Generally there was marginal improvement in the body acceleration and pitch an-

gular acceleration, while the roll angular acceleration followed similar trend though

its plots were set out of phase at the onset of the bump.

The trend in the suspension travel and wheel dynamic load plots are similar (Please
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Figure 3.7: Time History of AVSS Normalized Wheel Dynamic Load Responses to

Deterministic Road Excitations

see Figures 3.6 and 3.7). Both performance criteria were better minimised, as com-

pared with PVSS for the front left and rear right suspension, but the opposite was

the case for the other two suspensions.

This observation shows the impact of the coupling between the dynamics of the

wheels in complicating the process of attaining optimal tuning of the controllers.

While the control voltages, actuator forces and spool-valve displacement values were

all within the desired range as shown in Figures 3.8 to 3.9, the trend in their plot

buttress the observations made concerning the suspension travel and wheel dynamic

load responses. This is expected because these three parameters are linked to the

actuators and their plots indicates the demand made of each actuator within the

control process.

Responses for Random Road Excitation

The tuning parameters for the AVSS PID controllers under the influence of random

road disturbance input is presented in Table 3.5.
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Table 3.5: Full-Car AVSS PID Tuning Parameters - Random Road Disturbance

Input
Wheel PID Gains

Location Loop Kp Ki Kd

Front Outer loop 4.5× 10−2 1× 10−3 1× 10−10

left Inner loop 5× 10−2 1.25× 10−3 1× 10−9

Rear Outer loop 2× 10−2 4× 10−4 1× 10−9

left Inner loop 3× 10−2 1.25× 10−3 1× 10−12

Front Outer loop 5× 10−2 6× 10−3 1× 10−10

right Inner loop 1× 10−2 1.25× 10−3 1× 10−10

Rear Outer loop 5× 10−2 3× 10−3 1× 10−9

right Inner loop 3× 10−2 1.25× 10−3 1× 10−9
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The system responses are presented in Figures 3.11 to 3.16. Generally, the per-

formance of the PID controlled AVSS is at par with that of the PVSS for most of

the parameters considered in this case. Moreover, the peak body acceleration value

over the considered road excitation spectrum was about 0.5g.
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Figure 3.11: Time History of AVSS Body Heave Acceleration and Handling Re-

sponses to Random Road Excitations
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The suspension travel plots show that the peak values did not exceed ±6cm for all
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the wheels. This is less than the maximum allowable value of ±10cm. Similarly,

the peak values for the normalized wheel dynamic load exceed the nominal value by

about ±0.5.
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Random Road Excitations
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Figures 3.14, 3.15 and 3.16 present the control voltage, spool-valve displacement
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Figure 3.15: Time History of AVSS Spool-Valve Displacement Responses to Random

Road Excitations

and actuator force. These are all within the maximum allowable values. The actu-

ator force plots are however characterised by the presence of outliers. Without the

outliers, the peak actuator forces are below 1kN .
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3.5 Summary of Chapter Three

Design and implementation of AVSS PID control has been presented in this chapter

for the quarter- and full-car models. The inner PID loop has been demonstrated

to assist in stabilising the actuator dynamics thereby enabling better control by the

controller in the outer loop. The performance of the PID controlled AVSS is however

marginally better than the PVSS. The PID based performances will in subsequent

chapter be used to benchmark the performances from the neuro-controllers designed.
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4 Neural Network-Based Controller Designs

for Quarter-Car AVSS

4.1 Introduction

The performance of the PID controlled AVSS exposed to random and determinis-

tic road excitations has been evaluated in the previous chapter in terms of distur-

bance rejection control problem. Although the PID controllers were sensitive to

disturbance input changes, they were useful in stabilising the actuator dynamics.

PID controllers were therefore retained in the inner feedback loops for the neural

network-based controller designs and tuned manually.

This chapter presents the design and performance analysis of two indirect adap-

tive neuro-controllers, namely; neural network-based feedback linearisation (also

known as, NARMA-L2 or NNFBL) and neural network-based model predictive con-

trol (NNMPC). These are the most popular neural network-based indirect adaptive

control schemes. In both cases, successful implementation depends on the availabil-

ity of accurate dynamic models of the plant. Dynamic models to be used for the

control of this plant is obtained through the system identification of the plant. Both

controller employed the multilayer feedforward NN [He (2009); Jha and He (2004)].

The accuracy of the system identification process in the neural network-based in-

direct adaptive control methods determines its level of suitability for plant control.

Direct adaptive neural network (DANN) control method avoids this requirement,

and is often preferred for this reason. The indirect adaptive control method could

however be a better choice where an accurate dynamic model is predictable.

Radial basis function (RBF) and multi-layered perceptron (MLP) neural network

structures are employed in the neuro-controller designs. Although they are both
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universal approximators with feedforward architectures, RBF is the preferred neu-

ral network structure for the direct adaptive neural network control for the following

reasons:

1. Proof of stability is readily achieved using RBF NN [Behera and Kar (2009);

Ge et al. (1998)].

2. Weight adjustment by backpropagation algorithm in MLP NN may not be

guaranteed to converge, or could take a long while to converge thereby affecting

its choice for online application [Haykin (2009); Spooner et al. (2002)].

3. RBF NN also guarantees faster learning because it constructs local mappings

unlike the construction of global approximations to input-output mapping in

MLP NN [Haykin (2009)].

4. RBF learning is at two levels: the centres and the weights. Only synaptic

weights are involved in the MLP learning [Haykin (2009)].

5. MLP architectures are more prone to the forgetting factor thus, little adjust-

ment in the weights could distort the data obtained from an initial training of

the network [Azimi-Sadjadi and Liou (1992); Ge et al. (1998)].

4.2 Indirect Adaptive Neural Network-Based Controller

Design

Therefore the execution of the indirect adaptive neuro-control schemes is in two

stages, namely: system identification and control design. In system identification,

an approximate model of the dynamic system is inferred from a set of input-output

data obtained based on experiment carried out on the plant. This data is also used

to train the neural network (NN). Training the NN involves adjusting NN parame-

ters systematically until the training data satisfies a prescribed performance criteria

(which is usually the minimization of mean squared error (MSE)). The level of accu-

racy of the identified model guarantees the accuracy of control operation [Dahunsi

et al. (2010); Norgaard et al. (2000)].

A generalized structure describing the implementation of system identification and

control is shown in Figure 4.1. Here, y(k) is the controlled output, u(k) is the control

input, d(k) makes up the disturbance signal, ŷ(k) is the identified model’s output,

ε(k) = y(k)− ŷ(k) is the model residual, θ is a vector of adjustable NN weights and
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e(k) = yd(k)− y(k) is the tracking error where yd(k) is the reference trajectory.
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Figure 4.1: Generalized Structure for Neural Network-Based Indirect Adaptive Con-

trol

The performances of the controllers designed in this chapter were evaluated for

cases under the influences of deterministic and random road disturbance inputs.

They were also evaluated under constant input signal situation (that is, regulatory

problem). The plant model was built in the MATLAB / SIMULINKr, all numerical

experimentation were conducted using the ordinary differential equation fixed step

solver (ode45) at a sampling frequency of 1kHz.

4.2.1 System Identification

System identification consists of four processes highlighted in Figure 4.2. A positive

validation of the NN plant model guarantees its suitability for use in the controller

design. This is achieved when the performance criteria is met through the mini-

mization of the MSE. This is the prediction error criterion (PEM). It is an iterative

process to determine the model parameters and minimise the PEM.

Experimentation

A set of input-output data pairs was collected from a numerical experiment con-

ducted on the AVSS plant. The system was excited using a non-saturating band-

limited white noise but persistently exciting (that is, random input spanning the

entire operating range of the system). The use of 0.001s sampling interval was
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Figure 4.2: System Modelling Flowchart

based on the fastest dynamics of the system. Scaling of the collected data to zero

mean and variance 1 was performed as a pre-training procedure to enable faster con-

vergence and improve numerical stability [Jelali and Kroll (2003); Norgaard et al.

(2000); Rouss et al. (2009); Yu et al. (2005)].

The generated experimental data is collected in the form:

ZN = f [u(k), y(k)]; k = 1, . . . , N (4.1)

where ZN is the input-output data set, u(k) ∈ [±10V ] is the input signal, y(k) is the

output signal k is the sampling instant and N is the total number of samples. The

objective of system identification is to obtain a mapping based on the input-output

training data to a set of possible weights ZN → θ̂ thereby yielding ŷ(k) predictions

that are as close as possible to the true outputs, y(k). This way, the training data is

fitted as accurately as possible with the plant model. Figure 4.3 gives a schematic

arrangement used for the numerical experimentation in Simulink R©.

Band-Limited 
White Noise AVSS Plant Input-Output

   Data Set
Z Ny(k)u(k)

Figure 4.3: Input-Output Data Collection Arrangement

A total of 156103 input-output data samples were collected from the numerical

experiment. Two 50, 000 samples sets were taken from this pool for the training
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and validation data sets. At intervals in the training process, the network model

is validated using the testing data set until the prediction error starts to increase

indicating overfitting. The suitability of the training for online application is then

checked by analysing the performance of the NN using the validation data set, this

data set was not involved in the training procedure prior to this point [Demuth and

Beale (2006); Haykin (2009); Lennox et al. (2001); Ljung (2006)].
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Figure 4.5: Input-Output Data Set for

Neural Network Validation

Model Structure Selection

The first step in the model structure selection is to ascertain that linear models can

not sufficiently represent the plant. The result of this analysis is presented in Table

4.1. The table shows the percentage fitness of the predicted output data to the

measured output data.

Table 4.1: Percentage Fitness of Predicted Models
Model Type Description Percentage Fitness

Neuralnet A class of NN estimators for 99.33%

nonlinear ARX models

moe3 Based on output error model 38.62%

armax4 Based on autoregressive moving 43.18%

exogenous inputs model

m2arx Based on autoregressive exogenous 43.35%

inputs model

m1pem Based on prediction error estimate 55.93%

model

bj5 Based on Box Jenkins polynomial 55.68%

model
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The superior fitness value for neuralnet is the justification for its adoption in mod-

elling the system for control. Neuralnet is a class of neural network-based nonlin-

earity estimator. Therefore, a neural network-based model will be adequate and a

single hidden layer multilayer feedforward structure is the first choice because it can

readily approximate any arbitrary nonlinear function [He (2009)].

This implies that the plant can be represented by the Neural Network AutoRe-

gressive eXogenous inputs (NNARX) or Nonlinear Autoregressive Moving Average

(NARMA) model. NNARX has proven to be capable of representing any nonlinear,

discrete, time-invariant system. NNARX is simpler and more stable since it is non

recursive like the NARMA model [Ni et al. (1996); Rouss et al. (2009)]. NNARX is

used in modelling for neural network-based model predictive control (NNMPC) while

NARMA is applied in the neural network-based feedback linearisation (NNFBL)

control.

The implementation of NNARX model is in two stages as illustrated in Figure 4.6.

The stages involved include computation of the regressors, then linear and nonlinear

mapping of the regressors in the nonlinearity estimator block.

    Nonlinear
Function Block

       Linear
Function Block

Regressors
Input, u

Output, y

f Predicted
  Output

Figure 4.6: NNARX Model Structure

Therefore, the NNARX model structure representing the AVSS nonlinear system for

a finite number of past inputs u(k) and outputs y(k) is given by [Bomberger and

Seborg (1998); Jelali and Kroll (2003); Lazar and Pastravanu (2002); Norgaard et al.

(2000)]:

y(k) = f [φ(k), θ] + ε(k) (4.2)

where f is the nonlinear function that is realized by the neural network model, φ(k)

represents the regressors, vector θ contains the adjustable weights and ε represents

the model residual. As a result of the numerical experiment and training, the net-

work implements an estimation of the non-linear transformation, f̂(∗) which leads

to the predicted output given by:

ŷ(k) = f [φ(k), θ] (4.3)
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and the regression vector is

φ(k) = [y(k − 1), y(k − 2), . . . , y(k − n), u(k − d), u(k − d− 1),

. . . , u(k − d−m+ 1)] (4.4)

where d is the delay from input to the output in terms of number of samples, while

n and m are the number of past outputs and inputs respectively.

The NARMA model which has been shown to be useful as exact input-output rep-

resentation of nonlinear, finite-dimensional and discrete time dynamic systems in a

neighbourhood of their equilibrium state. Although it has been relatively difficult

to implement in control systems real time because of their nonlinearities, NN based

versions, NARMA-L1 and NARMA-L2 were proposed to solve this computational

challenges. NARMA-L2 remains more popular because it is relatively easier to im-

plement practically using the MLP neural networks [Awwad et al. (2008); Demuth

and Beale (2006)]. The NARMA model can be written in the following form:

y(k + d) = F [y(k), y(k − 1), . . . , y(k − n+ 1), u(k), u(k − 1), . . . ,

u(k −m+ 1)] +G[y(k), y(k − 1), . . . , y(k − n+ 1),

u(k), u(k − 1), . . . , u(k −m+ 1)] · u(k) (4.5)

where F and G are nonlinear functions, n is the number of past outputs, m is the

number of past inputs, and d is the system delay. The network is trained offline and

in batch form during identification to approximate the nonlinear functions F and G.

NARMA is different from NNARX in that, while both are realised in a feedforward

network, the predictor in NARMA model has feedback making it recurrent [Ni et al.

(1996); Rouss et al. (2009)]. Therefore Equation 4.3 can be rewritten for NARMA

as

φ(k) = [y(k − 1), y(k − 2), . . . , y(k − n), u(k − d), u(k − d− 1),

. . . , u(k − d−m+ 1), %(k), . . . , %(k − n% + 1)] (4.6)

The next step is the determination of the size of the hidden layer. This is achieved

through the use of the lag space-order index plot. The theoretical basis for the

determination of system order using Lipshitz algorithm is documented in the litera-

ture [Bomberger and Seborg (1998); He and Asada (1993); Jelali and Kroll (2003);

Norgaard et al. (2000); Rouss et al. (2009)]. This approach is useful in estimating

the number of neurons in the hidden layer of a multilayer feedforward neural network.

This method involves the plotting of the order indices based on evaluated Lipshitz

quotients for the input-output data pairs against the lag space (that is, number of
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past inputs and outputs), the occurrence of a prominent knee-point on the graph sug-

gests the required lag space size (that is, number of past inputs and outputs) and the

sum of the past inputs and output equals the number of neurons in the hidden layer.

Figures 4.7 and 4.8 presents the plots of the order of index against the number

of past inputs and outputs for the data set. The number of past inputs and outputs

is 3 since the knee-point occurred at 3. The adopted multilayer feedforward neural

network structure is shown in Figure 4.9.
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Figure 4.9: Multilayer Feedforward Neural Network Structure

Model Estimation

Feedforward multilayer perceptron neural network (MLP NN) is the selected NN

structure for training the model, it is simpler when compared with other structures.
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The hidden layer activation function is the tangent hyperbolic function:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(4.7)

while the output layer contains one neuron with a linear activation function.

Levenberg-Marquardt minimization algorithm is usually the preferred training al-

gorithm. It converges relatively faster and it is a robust algorithm. Moreover,

Levenberg-Marquardt algorithm has been known to improve over training time in

comparison with other algorithms. It is a compromise between the gradient descent

and the Newton optimisation methods [Dahunsi et al. (2010); Demuth and Beale

(2006); Haykin (2009); Lin and Lian (2011); Norgaard et al. (2000)].

The parameters used for the system identification process are listed in Table 4.2.

Table 4.2: Parameters for the Neural Network System Identification
Parameters Value

Total number of samples 156103

Maximum number of epochs 1000

Sampling frequency 1KHz

Time delay, nk 1

Training algorithm Levenberg-Marquandt algorithm

Number of hidden layer neurons 6

Number of past outputs, n 3

Number past inputs, m 3

Model Validation

Validation of the model is achieved based on the order of magnitude of the MSE

and prediction error. After training, the validation data set is compared with the

training set to ascertain a good level of fitness.

Figures 4.10 and 4.11 show the comparison of the predicted outputs against the

measured outputs for the training and validation data. The level of fitness shown in

both plots are acceptable while the prediction error in both cases are of the order

of 10−8.

Figure 4.12 also shows the performance of the NN as it was trained. Convergence

was achieved with 511 epochs at a final prediction error (FPE) of 2.47× 10−6.
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4.2.2 Neuro-Controller Designs

Two different 50, 000 sets of input-output data pairs shown in Figures 4.13 and

4.14 were used for the NNFBL and NNMPC controller designs. The data sets were

divided into three for: training, testing and validation with the ratio 2 : 1 : 1 respec-

tively.

Both controllers are associated with well known drawbacks, for example, NNFBL is

less demanding than NNMPC computationally but has a tendency to generate chat-

tering in the control input signal. NNMPC control involves a significant amount of

online computation, it performs computation of the optimisation algorithm at each

sample time for optimal control input. A successful implementation of the system
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for NNFBL (NARMA-L2) System
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for NNMPC

identification process is however required for the availability of an accurate dynamic

model for the controller designs. The parameters used for both neuro-controller

design methods are listed in Table 4.3.

Table 4.3: Parameters for the Neural Network-Based Controller Design
Parameters Value

Total number of samples 5× 104

Maximum number of epochs 1000

Sampling frequency 1KHz

Time delay, nk 1

Training algorithm Levenberg-Marquandt algorithm

Number of hidden layer neurons 6

Number of past outputs, n 3

Number past inputs, m 3

4.2.3 Bounded Input - Bounded Output (BIBO) Stability

Consider the affine state-space representation of the AVSS

ẋ = f(x) + g(x)u+ p(w) (4.8)

y = h(x) = x2 − x1 (4.9)

where the state vector x = [x1 x2 x3 x4 x5 x6]T , the output variable y = x2 − x1,

and the control input u. The system matrices f and g are:

f (x) =
[
f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

]T
, (4.10)
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g (x) =
[

0 0 0 0 0 1
τ

]T
(4.11)

p (w) =
[

0 0 0 −( kt
mu
w + bt

mu
ẇ) 0 0

]T
(4.12)

f1(x) = x3 (4.13)

f2(x) = x4 (4.14)

f3(x) =
1
ms

[
kls(x2 − x1) + knls (x2 − x1)3 + bls(x4 − x3)

−bsyms |x4 − x3|+ bnls
√
|x4 − x3|sgn(x4 − x3)−Ax5

]
(4.15)

f4(x) =
1
mu

[
−kls(x2 − x1)− knls (x2 − x1)3 − bls(x4 − x3) + bsyms |x4 − x3|

−bnls
√
|x4 − x3|sgn(x4 − x3) + ktx2 + btẋ2 +Ax5

]
(4.16)

f5(x) = γΦx6 − βx5 − αA(x3 − x4) (4.17)

f6(x) =
−x6

τ
(4.18)

Meanwhile, the control objective is to design an adaptive neural network based

controller for the AVSS such that its closed loop system signals are ultimately and

uniformly bounded. Given that, system input u ∈ Rn, state variable vector x ∈ Rn,

unknown nonlinearity functions f(·) ∈ Rn and g(·) ∈ Rm and external disturbance

p(w). The following assumptions however, need to be made:

Assumption 4.1: At least one of the elements of g(x) is not zero.

Assumption 4.2: g(x) is Lipschitz, that is, ‖g(x)‖ ≤ ‖ḡ(x)‖.

Assumption 4.3: The external disturbance is also bounded, that is, ‖p(w)‖ ≤
‖p̄(w)‖

where ḡ(x) and p̄(w) are the upper bounds of the nonlinear function g(x) and the

external disturbance p(w).

Moreover, it has been established that linear difference equation models are inade-

quate in modelling the AVSS plant, and appropriate neural network-based models,

in NNARX and NARMA-L2 have been adopted. It is necessary to use the input-

output behaviour of the plant to establish the model’s bounded-input, bounded-

output (BIBO) stability.
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This is a fundamental requirement as a feedforward multilayer perceptron is in-

troduced as an online approximator. It does not however guarantee asymptotic

stability or that tracking error goes to zero. By design, NARMA-L2 can only sup-

press the nonlinear functions f and g, it is incapable of manipulating the internal

stability of the system.

Internal stability requirement involves a well defined relative degree and a mini-

mum phase system. These issues will be treated in the next chapter. Thus BIBO

stability can be defined as follow:

Definition 1. The solution of a nonlinear function given by ẋ = f(t, x) is uniformly

and ultimately bounded within B if there exists a B > 0 and if corresponding to

any ς and to ∈ R+, there exists a T = T (ς) > 0, which is independent of to, such

that ‖xo‖ < ς. Thus ‖x(t; to, xo)‖ < B for all t ≥ To + T . [Ioannou and Sun (1995);

Nardi (2000)]

Theorem 2. If there exists a Lyapunov function V (t, x) that is defined on 0 ≤ t ≤
∞, ‖x‖ ≥ R, which satisfies the following conditions:

1. a(‖x‖) ≤ V (t, x) ≤ b(‖x‖) and a(r) → ∞ as r → ∞, where a(·) ∈ C and

b(·) ∈ C are monotone increasing functions.

2. V̇ (t, x) ≤ −c(‖x‖), where c(r) is a positive and continuous function.

these implies that the solutions of the nonlinear function, ẋ = f(t, x) are uniformly

bounded [Bacciotti and Rosier (2005); Yoshizawa (1996)].

Theorem 3. If V (t, x) is a scalar function so that all x have continuous first partial

derivatives in such a way that V (t, x) → ∞ as ‖x‖ → ∞, and V̇ (t, x) < 0 for all x

outside some closed and bounded set M , then the solutions of the nonlinear function

ẋ = f(t, x) are bounded [Bacciotti and Rosier (2005); La Salle and Lefschetz (1991)]

Definition 4. A NNARX or NARMA system is bounded-input, bounded-output

stable if, and only if, any bounded input results in a bounded output.

Consider a discrete-time system given by

z(k + 1) = g(z(k), . . . , z(k − n+ 1), u(k), . . . , u(k −m+ 1)),

z(k0 + i) = zi, i = 0, 1, . . . , n− 1. (4.19)

and

y(k + 1) = f(y(k), . . . , y(k − n+ 1), u(k), . . . , u(k −m+ 1)),

y(k0 + i) = yi, i = 0, 1, . . . , n− 1. (4.20)
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where g in Equation 4.19 is unknown, but its approximate model is obtainable. f

is known and z represents the measured output, while y represents the predicted

output. An a priori knowledge of m and n is available, the disturbance inputs states

are bounded and not divergent. The availability of model (Equation 4.20) is a re-

quirement for indirect adaptive neuro-control design where NNARX and NARMA

are applied [Castro et al. (2010); Dzielinski (2002); Ng and Kim (2004)].

Given that boundedness connotes uniform boundedness and can be defined as fol-

lows:

Definition 5. A function x : Ix0 → R bounded if, and only if, there exists M ∈ R,

such that ‖x‖ ≤M .

It follows therefore that, a function constituting a bound on the modelling error,

which is the difference between f and g, bounds the norm uniformly in u. Therefore,

if a modelling error yields bounded error between y and z for admissible inputs, all

boundedness for y in Equation 4.19 applies for z in Equation 4.20. That is, for small

modelling error, the application of any control signal to the approximate model will

yield a similar behaviour in the real plant.

4.3 Neural Network-Based Feedback linearisation Con-

trol (NNFBL)

In principle, neural network-based feedback linearisation controller, which is also

known as NARMA-L2 controller, transforms nonlinear system dynamics into linear

dynamics, by cancelling the nonlinearities. The choice of feedback linearisation for

the neuro-controller imposes the following model structure [Hagan et al. (2002);

Jelali and Kroll (2003); Lazar and Pastravanu (2002); Norgaard et al. (2000)]:

ŷ(k + d) = f [y(k), y(k − 1), . . . , y(k − n+ 1), u(k), u(k − 1), . . . ,

u(k −m+ 1)] + g[y(k), y(k − 1), . . . , y(k − n+ 1), (4.21)

u(k), u(k − 1), . . . , u(k −m+ 1)] · u(k)

where f and g are two nonlinear functions, the next controller input u(k) is not

contained in the nonlinearity and d ≥ 1. Two separate MLP neural networks are

trained to approximate the nonlinear functions f(∗) and g(∗) in the NARMA-L2

controller. The controller model can now be expressed in terms of the two neural

networks F and G as follows [Hagan et al. (2002); Norgaard et al. (2000)]:

u(k) =
ŷd(k + d)− F [y, u]

G[y, u]
(4.22)
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where y = [y(k), . . . , y(k − n + 1)] and u = [u(k), u(k − 1), . . . , u(k − n + 1)], also

ŷ(k+d) is the estimate of y(k+d) but the system is constrained to follow a reference

trajectory ŷd(k + d).

The block diagram of the NARMA-L2 controller is shown in Figure 4.15, where

yd is generated by the reference model and the TDL (Tapped Delay Lines) blocks

are lines of fast delays that stress preceeding values of the input signals. The con-

troller is simply a rearrangement of the neural network plant model, which is trained

in the batch form.
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Figure 4.15: Feedback linearisation (NARMAL2) Controller

NNFBL Responses to Deterministic Road Excitations

This section presents the time response analysis for the AVSS plant to a constant

reference input signal in the presence of deterministic and random road excitations

whose profiles have been discussed in detail in Sections 2.6.1 and 2.6.2. Table 4.4

presents the PID tuning parameters for the actuator feedback loops.

Table 4.4: PID Tuning Parameters Used for the Inner Loops with NNFBL - Deter-

ministic Road Disturbance Input
PID Gains

Sub-loop Kp Ki Kd

spool-valve displacement 1× 10−3 1× 10−3 1× 10−9

Actuator force 1× 10−3 1× 10−3 1× 10−9

Figure 4.16 presents the time response for the NNFBL controller to deterministic

road excitations when the reference input was constant (that is, zero). The control
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input demand was maximum throughout, less than half of the rattle space was used,

the spool-valve displacement and actuator force used were much lower than their

maximum allowable limits.
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Figure 4.16: Time History of Selected System Outputs of the NNFBL-Based AVSS

Responses to Deterministic Road Excitations

The peak body acceleration values oscillated between ±1ms−2 and the peak nor-

malized wheel dynamic load also varied between ≈ ±1, signifying an almost nominal

road holding situation at the peak of the highest hump. The full meaning of the

abbreviated parameters in the time history plots is provided in Table 4.5.

Table 4.5: Parameters Plotted in the NNFBL Graphs
Abbreviation Full meaning Abbreviation Full meaning

ST Suspension travel BA Body acceleration

NWDL Normalized wheel SVD spool-valve

displacement displacement

RDI Road disturbance AF Actuator force

input CV Control voltage

NNFBL Responses to Random Road Excitations

The PID tuning parameters for the actuator feedback loops in the NNFBL control

design with constant reference input and random road excitation are presented in
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Table 4.6. Figure 4.17 presents the time response for the NNFBL controller to

random road excitations when the reference input was constant (that is, zero).

Table 4.6: PID Tuning Parameters Used for the Inner Loops with NNFBL - Random

Road Disturbance Input
PID Gains

Sub-loop Kp Ki Kd

spool-valve displacement 1 1× 10−3 1× 10−9

Actuator force 1.485× 10−5 1× 10−13 1× 10−9
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Figure 4.17: Time History of Selected System Outputs of the NNFBL-Based AVSS

Responses to Random Road Excitations

In this case, the control voltage demand was also at the allowable peak value all

through. While the actuator force has been cut down to about half and the spool-

valve displacement, to about a quarter of the peak value for the case in which

the road disturbance input was deterministic, the peak body acceleration and the

normalized wheel dynamic load has been doubled. The peak suspension travel was

about 2cm.
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4.4 Neural Network-Based Model Predictive Control

(NNMPC)

Model predictive control is executed by solving numerical optimisation problem on-

line. With the availability of an accurate dynamic model and measurements, it

predicts future behaviour of the plant and calculates the control input required to

optimise the plant performance over a specified future time horizon in the face of

changing plant characteristics and constraints [Akesson and Toivonen (2006); Parlos

et al. (2001)].

Its benefits lie in its suitability for online and multivariable control problems. It

is also able to take into account imposed constraints on plant inputs, outputs and

states. It is however prone to computational difficulties because of its iterative and

dynamic optimisation approach to control problems [Akesson and Toivonen (2006);

Lawrynczuk (2009)]. NARMA-L2 is relatively simpler, requires less memory, faster

and less demanding computationally. However, NARMA-L2 often develops chatter-

ing in the control signal [Mokri et al. (2008); Norgaard et al. (2000)]

Tatjewski and Lawrynczuk (2006) have shown that apart from the roles NN play

in system identification and predictors in NNMPC, they are also useful in reducing

the computational demands by making the optimisation problem simpler (that is,

convex). The typical structure for NN based model predictive control is presented

in Figure 4.18.
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Figure 4.18: Neural Network-Based Model Predictive Control Structure
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A continuous time, state-space model is given by

ẋ(t) = f(x(t),u(t))

y(t) = h(t)
(4.23)

which is subjected to state and input constraints in the form

u(t) ∈ U,∀t ≥ 0, (4.24)

x(t) ∈ X,∀t ≥ 0, (4.25)

where, x(t) ∈ Rn and u(t) ∈ Rm represent the vector of the states and inputs

respectively. Moreover, the input constraint set U is compact, while X is connected,

such that

U := [u ∈ Rm | umin ≤ u ≤ umax] (4.26)

X := [u ∈ Rn | xmin ≤ x ≤ xmax (4.27)

and umin, umax, xmin and xmax are constant vectors. In discrete time format,

each consecutive sampling instant k has a set of future controls (and corresponding

increments) given by:

u(k) =


u(k|k)

...

u(k +Nu − 1|k)

 , ∆u(k) =


∆u(k|k)

...

∆u(k +Nu − 1|k)

 (4.28)

where Nu is the control horizon and u(k + p|k) = u(k +Nu − 1|k) for p ≥ Nu. The

MPC control variables u(k) are estimated at each instance to minimise differences

between predicted outputs or states and the reference trajectory over the prediction

horizon. Thus the control law is given by

u(k) = ∆u(k) + u(k − 1) = u(k|k) (4.29)

and the measurement of the output variable is updated at the next instant k so

that the prediction is moved one step forward and the whole cycle is repeated again

[Akesson and Toivonen (2006); Lawrynczuk (2007)].

The optimisation process is realised through the minimization of the quadratic cost

function [Lazar and Pastravanu (2002); Norgaard et al. (2000)]:

J(t, U(t)) =
N2∑
i=N1

[r(t+ i)− ŷ(t+ i)]2 + ρ

Nu∑
i=1

[∆u(t+ i− 1)]2 (4.30)

the future controls are given by

U(t) = [u(t) . . . u(t+Nu − 1)]T

107



and subjected to the constraint given by

∆u(t+ i) = 0, Nu ≤ i ≤ N2 − d

the tuning parameters are: N1 - the minimum prediction horizon or minimum cost

it is equal to the time delay of the system in this case; N2 - the maximum control

horizon; Nu - the control horizon; i - the order of the predictor; ∆ - the differentia-

tion operator; ρ - the weighting factor penalizing changes in the control input; and

Ts - the sampling time.

The following assumptions need to be adhered to for successful implementation of

the NNMPC technique and its asymptotical stability:

Assumption 4.4: The state-space model given by Equation 4.23 is sufficiently

differentiable with respect to time to any order. This implies that it can

readily be approximated by the use of Taylor-series expansion to required

level of accuracy.

Assumption 4.5: f(0, 0) = 0; implying that the origin is an equilibrium of the

AVSS when there is no control.

Assumption 4.6: DuDkfx
h(x) = 0, for k = 1, . . . , % − 1, and DuDkfx

h(x) 6= 0, for

all x and u. Given that

Dfxh(x) =
∂h(x)
∂(x)

f(x, u) (4.31)

Dkfx
h(x) =

∂Dk−1
fx

h(x)

∂(x)
f(x, u), k > 1 (4.32)

DuDkfx
h(x) =

∂Dkfx
h(x)

∂(u)
(4.33)

Thus, the condition for optimality is given by

∂J

∂u
= 0 (4.34)

Table 4.7: Parameters for the Neural Network Model Predictive Control
Parameters Value Parameters Value

Control horizon, Nu 2 Cost horizon, N2 7

Control weighting factor, ρ 0.01 Search parameter, α 0.001
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NNMPC-Controlled AVSS Responses to Deterministic Road Excitations

This section presents the performances of the NNMPC controller using time-domain

response plots. The assessment of the controller performance based on its responses

to constant reference input in the presence of either deterministic or random road

excitations. Table 4.8 presents the PID tuning parameters for the actuator feedback

loops.

Table 4.8: PID Tuning Parameters - Deterministic Road Disturbance Input
PID Gains

Sub-loop Kp Ki Kd

spool-valve displacement 10 1× 10−3 1× 10−9

Actuator force 8.5× 10−4 1× 10−6 1× 10−9

Figure 4.19 presents the time history plot for the responses of the NNMPC controller

to the constant reference input in the presence of deterministic road excitations.

Table 4.5 presents the key to the abbreviations in Figure 4.19.
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Figure 4.19: Time History of the AVSS Responses to Deterministic Road Excitations

The spool-valve displacement and actuator force were within the imposed limits

based physical constraint of the system. The control voltage started to drop from

10V olts to 0V olts in response to constant reference input whose magnitude was

zero. The trend was however marginally distorted after the first and third seconds

in response to the humps.
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Similarly, the suspension travel and the body acceleration are within reasonable

ranges of −4 < ST < 3cm and ±1ms−2. The Normalized wheel dynamic load has

peak values that are within the range 1.

NNMPC-Controlled AVSS Responses to Random Road Excitations

The PID tuning parameters for NNMPC controller design in the presence of random

road excitations and constant reference input is presented in Table 4.9, while the

time history plots for responses under the same condition are presented in Figure

4.20.

Table 4.9: PID Tuning Parameters - Random Road Disturbance Input
PID Gains

Sub-loop Kp Ki Kd

spool-valve displacement 1 1× 10−3 1× 10−9

Actuator force 1.485× 10−7 1× 10−13 1× 10−9
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Figure 4.20: Time History of the NNMPC-Controlled AVSS Responses to Random

Road Excitations

The trend in the control voltage plot is similar to the control voltage plot for the case

with deterministic road excitation. The spool vale displacement values oscillated

between ±5mm but the limit values for actuator force was reached and sustained

intermittently. The body acceleration and the normalized wheel dynamic load values
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ranged between ±2g and ±2 respectively. The suspension travel was largely between

±5cm the maximum value was approximately 10cm.

4.5 Direct Adaptive Neural Network-Based (DANN)

Controller Design

In direct adaptive neural network (DANN) control, the control law is obtained based

on FBL techniques. It is expressed as a function of the nonlinearities of the system

model. Approximations of the nonlinear functions can then be obtained online using

a randomly initialised neural networks that is tuned based on appropriate weight

update rule and a radial basis function (RBF) neural network.

The function f(x) is regarded as an unknown function in this work in order to

take advantage of the universal approximation property of neural network to cater

for the system uncertainties and meet the linear-in-the parameter condition for the

implementation of FBL.

Direct adaptive NN-based controller implementation consists of two steps: affine

system nonlinear functions approximations (f(x) ≈ f̂(x)) and (g(x) ≈ ĝ(x)) and

controller design. The nonlinear system could be expressed in the state space form:

ẋ = f (x) + g (x) u + p (w) (4.35)

y = h(x) (4.36)

The control law u will be required to perform an output tracking in such a way

that the plant follows the desired output yd with an acceptable level of accu-

racy [Chemachema and Belarbi (2011); Kar and Behera (2009); Park et al. (2009);

Yesildirek and Lewis (1995)].

Given that x ∈ Rn is the state vector, u ∈ Rm is the vector of inputs, y ∈ Rm

is the vector of the outputs and h : Rn → Rm f ,g : Rn → Rn are smooth functions

on the state space Rn. The goal of the input-output linearisation is to develop a

control input of the form:

u = a (x) + b (x) ν (4.37)

where

a(x) = − f̂ [x(t)]
ĝ[x(t)]

; b(x) =
1

ĝ[x(t)]
(4.38)

such that there is a linear input-output mapping between the new input ν (also

known as virtual control input) and the output y, while the states remain bounded.
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Then the function approximation is based on the application of the universal function

approximation feature of the artificial neural network. This is illustrated by Figure

4.21.

Plant

Neural Network-based
Function Approximation

kv Feedback Linearization 
Law

r

Figure 4.21: Schematic Illustration of NN-Based Feedback Linearisation

Since the nonlinear function g(x) is known, f(x) is approximated by f̂(x) using an

RBF NN structure expressed as

φj =
n∑
i−1

exp

[
−‖xi − cj‖2

2σ2

]
(4.39)

where φj is the output of the jth RBF neuron and cj is its centre. The spread of

the RBF centres σ is taken as the standard deviation. Each unit has n inputs; xi is

the ith input. Figure 4.22 shows a schematic diagram of a RBF network with four

inputs and two output layer nodes.

x1

x2

x3

x4

f1

f2

Figure 4.22: The Radial Basis Function Neural Network Structure

The hidden layer contained 30 neurons making the weight matrix W a 30×2 matrix.

The neuron centres are chosen randomly between values ranging from 0 to 1. The

remaining parameters are vectors whose elements are chosen to meet the required

performance, that is: F · I30×30, Kv · I2×2 and Λ1 · I2×2, where I stands for identity

matrix, F is 1× 10−5, Kv is 510 and Λ1 is 1× 10−3.
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4.5.1 Stability Analysis

The system governing equations for the AVSS quarter-car dynamics has been pre-

sented in Equations 2.4 - 2.7, and in Equations 4.40- 4.45, in state-space represen-

tation. The state-space representation shows that the system belongs to the control

affine class.

Using the state-space representation, the system governing equations can be pre-

sented as

ẋ = f(x) + g(x)u+ p(w) (4.40)

y = h(x) = x2 − x1 (4.41)

where the state vector x = [x1 x2 x3 x4 x5 x6]T , the output variable y = x2 − x1,

and the control input u. The system matrices f and g are:

f (x) =
[
f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

]T
, (4.42)

g =
[

0 0 0 0 0 1
τ

]T
(4.43)

p (w) =
[

0 0 0 −( kt
mu
w + bt

mu
ẇ) 0 0

]T
(4.44)

f1(x) = x3 (4.45)

f2(x) = x4 (4.46)

f3(x) =
1
ms

[
kls(x2 − x1) + knls (x2 − x1)3 + bls(x4 − x3)

−bsyms |x4 − x3|+ bnls
√
|x4 − x3|sgn(x4 − x3)−Ax5

]
(4.47)

f4(x) =
1
mu

[
−kls(x2 − x1)− knls (x2 − x1)3 − bls(x4 − x3) + bsyms |x4 − x3|

−bnls
√
|x4 − x3|sgn(x4 − x3) + ktx2 + btẋ2 +Ax5

]
(4.48)

f5(x) = γΦx6 − βx5 − αA(x3 − x4) (4.49)

f6(x) =
−x6

τ
(4.50)

4.5.2 Zero-Dynamics Analysis

Zero dynamics analysis is a necessary step in establishing that hidden states in the

feedback linearisation control method is stable and will therefore not influence the

stability of the linearised system negatively. The first step is by establishing the
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relative order of the system, this is achieved by differentiating the output y until the

control input term u appears.

The first derivative of the output is

ẏ =
∂h(x)
∂x

=
∂h
∂x

[f(x) + g(x)u]

= Lfh(x) + Lgh(x)u = x4 − x3 (4.51)

where Lfh(x) = ∂h
∂x f(x), known as the Lie derivative of h along f . Lgh(x) =

∂h
∂xg(x) = 0, implying that

ẏ = Lfh(x)

similarly:

ÿ =
∂(Lfh)
∂x

[f(x) + g(x)u] = L2
fh(x) + LgLfh(x)u

= L2
fh(x) = ẋ4 − ẋ3 (4.52)

and ÿ is independent of u since LgLfh(x)u = 0. Also

y(3) =
∂(L2

fh)
∂x

[f(x) + g(x)u] = L3
fh(x) + LgL2

fh(x)u

= L3
fh(x) = ẍ4 − ẍ3 (4.53)

and y(3) is also independent of u since LgL2
fh(x)u = 0, but

y(4) =
∂(L3

fh)
∂x

[f(x) + g(x)u]

= L4
fh(x) + LgL3

fh(x)u (4.54)

and y(4) is dependent on u since LgL3
fh(x)u 6= 0. Therefore, the system’s relative

degree is 4 which is less than the system dimension of 6. Thus, it is input-output

linearizable via a state feedback given by (4.37) and differential homeomorphic co-

ordinate transformation:

z = Ψ(x) = [ξ η]T (4.55)

where z1 = y, z2 = ẏ, z3 = ÿ, z4 = y(3)

and z4 = ψ2(x) z5 = ψ3(x), z6 = ψ4(x)

so that ξ = [z1 z2 z3 z4]T η = [ψ1(x) ψ2(x)]T

the linearised system in state space form is therefore given by:

η̇ = f0(η ξ) (4.56)

ξ̇ = Acξ +Bcν + p̃(w)

= Acξ +Bc

[
u(t)− a(x)

b(x)

]
+ p̃(w) (4.57)

y = Ccξ (4.58)
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Ac =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 (4.59)

Bc =
[

0 0 0 1
]T

(4.60)

Cc =
[

1 0 0 0
]T

(4.61)

p̃ (w) =
[

0 0 0 1
]T

(4.62)

ψ(x) is carefully chosen to satisfy the diffeomorphism conditions, and this requires

that Ψ be invertible and its derivatives be continuously differentiable. Thus satisfy-

ing [Isidori (1995); Shi et al. (2010); Slotine and Li (1991)]:

Lgψi =
dψi
dx

g(x) = 0 r + 1 ≤ i ≤ n (4.63)

The unobservable states based on the controller design are the ones termed η, the

zero dynamics of the system is given by η̇ = f0(η 0) when the origin (η = 0 ξ = 0)

is an equilibrium point, thus making the system asymptotically stable.

Equation (4.52) reduces to:

y(4) = ν (4.64)

implying that:

u =
1
LgL3

f

[
−L4

fh(x) + ν
]

(4.65)

when the unobservable states are set aside, the following state variables can be

defined

x1 = xs x3 = ẋ1 (4.66)

x2 = xu x4 = ẋ2 (4.67)

such that if

q1 = [x1 x2]T q2 = [x3 x4]T (4.68)

then

q̇1 = q2 (4.69)

and

q̇2 = f(q) + g(q)u+ p(w) (4.70)
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where

f(q) = [f1 f2]T = [f3(x) f4(x)]T

g(q) = [g1 g2]T = [g3(x) g4(x)]T

p(w) = [p3(w) p4(w)]T =

[
0 −

(
kt
mu

w +
bt
mu

ẇ

)]T
y = h(x) = x2 − x1

q̇2d = [ẍ1d ẍ2d]T = [0 0]T (4.71)

and the error matrix is given by

e = [yd − (x1 − x2) yd]T (4.72)

Neural network-based direct adaptive control solution to the problem can now be

pursued based on Theorem 6 for continuous time SISO affine systems. In this case,

the nonlinear function f(x) is unknown while g(x) is known. This enables the NN

approximations to cover all the possible sources of uncertainties.

Theorem 6. If the nonlinear function f(x) of the system given by Equation 2.8-

2.13 is unknown and the function g(x) is known. The unknown function f(x) can

be approximated as f̂(x) = Ŵ Tφ(x) using a radial basis function neural network

(RBFNN), given that there exists an ideal weight vector, Ŵ such that function f(x)

can be written as f(x) = Ŵ Tφ(x). The control law

u =
1

g(x)
∗
[
− f̂(x) +Kv + λ1e

(n−1) + . . .+ λ(n−1)e+ ẋnd

]
stabilizes the system in the sense of Lyapunov stability criterion if Ŵ T is updated

based on the update law ˙̂
W = −Fφ(x)rT where F is a positive definite matrix [Behera

and Kar (2009)].

Proof. AVSS control problem can be formulated as a tracking problem based on

filtered-error approximation-based control. The primary goal is to track the desired

trajectory yd while keeping the states and control bounded. If the error dynamics

of the system is given by:

e = yd − y (4.73)

where y is the controlled output and the filtered tracking error is defined as:

r = ΛT e

r = e(n−1) + λ1e
(n−2) + . . .+ λ(n−1)e (4.74)
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where, Λ = [Λ̃ 1] = [λ1, λ2, · · · , λ(n−1), 1]T . e(n−1) is the (n− 1)th derivative

of e, and so on, while λ1, . . . , λ(n−1) are appropriately chosen coefficients that enable

e(t)→ 0 exponentially as r(t)→ 0, (that is, en−1 +λn−1e
n−2 + · · ·+λ1 is a Hurwitz

polynomial). To this end, the following assumptions must made:

Assumption 4.7: The system is feedback linearizable and all the states are bounded.

Assumption 4.8: The zero dynamics of the system is stable.

Assumption 4.9: The desired trajectory yd is assumed to be continuous and avail-

able for measurement. Also ‖ yd ‖≤ G where G is a known bound.

Assumption 4.10:The feedback linearizable system given by Eqs (4.35) and (4.36)

has well-defined relative degree p. For example,

u =
1

LgLp−1
f

[
−Lpfh(x) + ν

]
(4.75)

Assumption 4.11: For controllability of the system given by Eqs (4.35) and (4.36),

the sign of g(x) is known to be strictly positive or negative. It is assumed throughout

that g(x) ≥ g̃, given that g̃ is a positive constant.

The unknown function f(x) is approximated as f̂(x) = Ŵ Tφ(x) using a radial basis

function neural network (RBFNN), given that there exists an ideal weight vector,

Ŵ such that function f(x) can be written as f(x) = Ŵ Tφ(x). The control law

u =
1

g(x)
∗
[
− f̂(x) +Kv + λ1e

(n−1) + . . .+ λ(n−1)e+ ẋnd

]
(4.76)

therefore

ẋn = f(x) + g(x) ∗ 1
g(x)

∗[
−f̂(x) +Kv + λ1e

(n−1) + . . .+ λ(n−1)e+ ẋnd

]
= W Tφ(x)− Ŵ Tφ(x) +Kv + λ1e

(n−1) + . . .

+λ(n−1)e+ ẋnd

= W̃ Tφ(x) +Kv + λ1e
(n−1) + . . .+ λ(n−1)e+ ẋnd (4.77)

⇒ en = ẋnd − ẋn

= −W̃ Tφ(x)−Kv − λ1e
(n−1) − . . .− λ(n−1)e (4.78)

meanwhile the time derivative of the filtered error yields

ṙ = en + λ1e
(n−1) + . . .+ λ(n−1)e+ ẋnd

= −Kvr − W̃ Tφ(x) (4.79)

The expected tracking performance will be achieved when Equation. (4.74) is a

stable system and e(t) is bounded, as long as the closed-loop error dynamics

ṙ = −Kvr (4.80)
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is linear and stable, and Kv and λ’s are positive design parameters.

Based on the affine form of the quarter-car AVSS mathematical model, Eqs. (9

and 15), Eq.(4.76) can be rewritten as Eq. (4.81) which is the appropriate DANN

multi-input multi-output (MIMO) control law [Kar and Behera (2009)].

u = gT (ggT )−1
[
−f̂(q) +Kvr + Λ1ė+ q̇2d

]
(4.81)

The unknown system nonlinearity f(x) is approximated by f̂(x) = Ŵ Tφ(x) using a

radial basis function (RBF) network.

The control law (Eq. (4.81)) stabilizes the system in the sense of Lyapunov since

the weight update law ˙̂
W = −Fφ(q)rT is used. φ(x) is a column vector of outputs

of RBF units in a network. F is a positive definite matrix whose size is deter-

mined by the number of units in the RBF network. The closed-loop error dynamics

r = ė+ Λ1e. The error signal e is the difference between the suspension travel y and

the desired output yd. Λ1 and Kv are design parameters defined as positive definite

matrices.

4.5.3 Lyapunov Stability Analysis

Stability of the system could be established based on Lyapunov’s method using the

weight update law.

V =
1
2
r2 +

1
2
W̃ TF−1W̃ (4.82)

where F is a positive definite matrix and the derivative of V with Eq. 4.79 substi-

tuted for ṙ gives

V̇ = −Kvr
2 − W̃ T (φ(x)r + F−1 ˙̃W ) (4.83)

when φ(x)r + F−1 ˙̃W = 0
˙̃W = −Fφ(q)r (4.84)

thus implying that

V̇ = −Kvr
2 (4.85)

also V > 0 and V̇ ≤ 0. This establishes stability so that r, W̃ and W̃ are bounded.

Further integrating and differentiating Eq. (4.85) yields∫ ∞
0
−V̇ dt <∞

V̈ = −2rKv ṙ

and verifies the boundedness of ṙ and V̈ implying that V̇ is uniformly continuous.

According to Barbalat’s lemma, V̇ → 0 as t → ∞. similarly, based on Eq. 4.85,
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r → 0 as t → ∞, thereby implying stable dynamics and the convergence of e(t) to

zero with time [Behera and Kar (2009); Kristic et al. (1995); Slotine and Li (1991)].

The combination of the FBL and NN enables the control design method to benefit

from the strength of FBL in terms of decoupling and linearisation as well as function

approximation of the NN. The system must however be guaranteed of asymptotic

stability of the zero dynamics.

4.5.4 DANN Controller Design

This section presents the performances of the DANN controller using time-domain

response plots. The assessment of the controller performance based on its responses

to constant reference inputs in the presence of either deterministic or random road

excitations.

DANN-Controlled AVSS Responses to Deterministic Road Excitations

Tables 4.10 and 4.11 present the PID tuning parameters for the actuator feedback

loops and values for the design parameters.

Table 4.10: PID Tuning Parameters - Deterministic Road Disturbance Input and

Constant Reference Input
PID Gains

Sub-loop Kp Ki Kd

spool-valve displacement 1× 10−3 1× 10−6 1× 10−9

Actuator force 1.3175 0.75 1× 10−12

Table 4.11: DANN Design Parameters - Deterministic Road Disturbance Input and

Constant Reference Input
Design Parameters

F L Kv

Values 0.01 400 910

Figure 4.23 presents the time history plot for the responses of the DANN controller

to the constant reference input in the presence of deterministic road excitations.

Table 4.5 presents the key to the abbreviations in Figure 4.23.

The peak values of the suspension travel range between −3.7cm and 2.8cm which

occurred at the first hump. The body acceleration ranged between u ±1ms−2
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similarly, the normalized wheel dynamic load ranged between u ±1. After each

hump, the control input demand was at the maximum value. The control voltage

was characterised by the presence of chattering at the locations of the humps.
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Figure 4.23: Time History of the AVSS Responses to Deterministic Road Excitations

The chattering was also visible on the body acceleration, actuator force and spool-

valve displacement plots. The peak values for the actuator force and spool-valve

displacement were within the allowable limits. All the signals returned to steady

states after the humps within 0.6s.

DANN-Controlled AVSS Responses to Random Road Excitations

This section presents the time domain responses of the DANN controller to constant

reference and random road disturbance inputs. The PID tuning gains for the cas-

caded sub-loops and the DANN controller design parameters are presented in Tables

4.12 and 4.13.

Table 4.12: PID Tuning Parameters - Deterministic Road Disturbance Input
PID Gains

Sub-loop Kp Ki Kd

spool-valve displacement 2× 10−9 1× 10−10 1× 10−15

Actuator force 3.7× 106 1× 10−6 1× 10−12
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Table 4.13: DANN Design Parameters - Deterministic Road Disturbance Input
Design Parameters

F L Kv

Values 1× 10−3 1× 104 1× 107

Although the suspension travel did not exceed 4cm, which is far lower than the

allowable rattle space, it could not be regulated for a constant value. The suspension

travel being influenced by the nature of the random road excitation oscillated about

the zero reference input throughout.
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Figure 4.24: Time History of the AVSS Responses to Random Road Excitations

The control input plot was a series of combined sine-waves, oscillating between the

voltage limits of the actuator. The control input also demonstrated chattering whose

concentration is influenced by the amplitudes of road disturbance inputs at different

points.

All the other signals were within the allowable limits. Peak values were marginally

outside ±1kN . The spool-valve displacement peak values were also within ±5mm.

The body acceleration was also within ±1ms−2, and the normalized wheel dynamic

load marginally exceeded 1 on a few occasions.

121



4.6 Performance Evaluation Based on Time Domain Re-

sults

This section presents comparison for the AVSS controllers in the time domain. The

analysis in the first sub-section presents the comparisons of responses of the studied

controllers under the influence of deterministic road disturbance input. The second

subsection presents the comparisons for the cases involving random road disturbance

input.

Suspension Responses to the Deterministic Road Disturbance

Studying Figures 4.25 through 4.30, a similar trend can be seen in all the graphs

except in Figure 4.28 (that is the graph for control voltage). The plots for the

two indirect adaptive neural network controllers (that is, NNFBL and NNMPC) are

completely identical. Also, the difference between the direct and indirect adaptive

neural network controllers is marginal.
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Figure 4.25: Comparison of the AVSS

Body Acceleration Response for the

Controllers
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Figure 4.26: Comparison of the AVSS

Suspension Travel Response for the

Controllers

Figure 4.28 presents the plot for the control input to the controllers. The control

input for the NNFBL was constant at the extreme value of −10V olts throughout the

plot. The control input for the DANN was 0V olts until the first hump. Afterwards,

it follows a seemingly square wave pattern that is oscillating between the limit values

of ±10V olts. The plot for NNMPC started from about −1.2V olts and showed a

cycle of oscillation each at the positions of the humps. The Control voltage plot for

the PID controller maintained steady state at 0V olts, except at the humps where

there are oscillations.

Although Figure 4.30 shows that the spool-valve displacement in all the controllers is

far below the maximum allowable value of 1cm. The PID controller showed the least
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Figure 4.27: Comparison of the AVSS

Normalized Wheel Dynamic Load Re-

sponse for the Controllers
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Figure 4.28: Comparison of the AVSS

Control Input for the Controllers

peak values at the humps while the peak difference between the DANN, NNFBL

and NNMPC spool-valve displacement demand was very marginal.
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Figure 4.29: Comparison of the AVSS

Actuator Force Response for the Con-

trollers
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Figure 4.30: Comparison of the AVSS

Spool-Valve Displacement Response

to Random Road Disturbance

Suspension Responses to the Random Road Disturbance

This sub-section presents the comparisons of the responses for the controllers under

the influence of random road disturbance input. The performance of the DANN

controller was better for all the responses plotted except for the control input and

the spool-valve displacement. The trend in DANN and NNFBL were similar in most

cases, just as PID and NNMPC plots share similar trends in most cases.

The superior performance of the DANN controller, with regard to vehicle body

acceleration is shown in Figure 4.31 with about half the order of magnitudes for

NNMPC and PID controllers.
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Figure 4.31: Comparison of the AVSS Body Acceleration Response for the Con-

trollers

All the suspension controllers did not utilize the entire rattle space available, but

Figure 4.32 shows that the two feedback linearisation based controllers required

approximately half of the rattle space needed by the PID and NNMPC to give

superior suspension performance.
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Figure 4.32: Comparison of the AVSS Suspension Travel Response for the Con-

trollers

Figure 4.33 also shows a similar trend to the suspension travel and body acceleration
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plots. The difference between the ranges of peak values for the NNFBL, NNMPC

and PID plots, which is approximately −2.5 ≤ NWDL ≤ 2.5, is marginal.
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Figure 4.33: Comparison of the AVSS Normalized Wheel Dynamic Load Response

for the Controllers

The control input plots for all the controllers are unique as shown in Figure 4.34.

The figure also shows that the superior performances of the DANN and NNFBL

controllers were achieved at the expense of their control inputs.

0 2 4 6

-10

-5

0

5

10

DANN

0 2 4 6
-11

-10.5

-10

-9.5

-9
NNFBL

0 2 4 6
-2

0

2

4

6

Time (s)

C
on

tr
ol

 I
np

ut
 (

V
ol

ts
)

NNMPC

0 2 4 6
-8

-6

-4

-2

0

2

Time (s)

PID

Figure 4.34: Comparison of the AVSS Control Input for the Controllers
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The DANN control input consisted of continuous square wave signal oscillating be-

tween the maximum allowable values on the control input. The intensity of the

oscillations directly proportional to the intensity of the waviness in the random road

disturbance input.

The control input signal for the NNFBL was permanently on the −10V olts mark.

The control input signal for the NNMPC varied between approximately −1.6V olts

and 5.6V olts. The PID controller showed similar trend but is characterised by the

presence of intermittent chattering.

Figure 4.35 presents the plots for actuator force generated by the controllers. The

plot for the NNMPC and PID are similar, being made up of square waves ranging

between the maximum allowable values of the actuator forces. The plots for the

DANN and NNFBL are within the allowable limits.
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Figure 4.35: Comparison of the AVSS Actuator Force Dynamic Load Response for

the Controllers

Figure 4.36 indicates the movement of the actuator spool-valve in the course of

generation of the actuator forces. While the spool-valve motion in the DANN and

NNFBL are in the order of millimeters, the motion in the NNMPC and PID are in

the order of micrometers. This trend is similar to the pattern for the control input.

126



0 2 4 6
-4

-2

0

2

4

DANN

0 1 2 3 4 5 6

-2

-1

0

1

2

NNFBL

0 2 4 6
-5

0

5
x 10

-4

Time (s)

S
p
o
o
l-
V
al
v
e 
D
is
p
la
ce
m
en
t 
(m

m
)

NNMPC

0 1 2 3 4 5 6
-5

0

5
x 10

-3

Time (s)

PID

Figure 4.36: Comparison of the AVSS Spool-Valve Displacement Response for the

Controllers

4.7 Performance Evaluation Based on Ride Comfort Anal-

ysis - Frequency Domain Results

Frequency domain analysis for vehicle ride comfort is important in vehicle suspen-

sion design because it provides a basis for characterising the dynamics of the system

and evaluating passenger comfort. Frequency domain analysis also presents a better

picture of the superior performance of fully active suspension system especially as

disturbance rejection problems [ElMadany and Qarmoush (2011)].

Conventional frequency domain analysis can not be carried out on the system under

study because of its nonlinear characteristics. Moreover, pseudo-frequency domain

analysis can be carried out based on power spectral density (PSD) estimates using

Welch algorithm in the MATLAB/Simulinkr signal processing toolbox. Welch’s

method is an improvement on Bartlett’s method where the signal undergoes parti-

tioning into several overlapping segments, it is then windowed and the periodogram

computed using the discrete Fourier transform. This process is shown schematically

in Figure 4.37.

The following are the parameters used in computing the Welch’s periodograms: the

windowing function - Hanning window function; the number of points used in form-

ing each fast Fourier transform, NFFT = 1024; length of the window, NWind = 256;

and the sampling frequency of the windows was set at 85Hz to accommodate the
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Figure 4.37: Power Spectral Density Estimate of Frequency Response

whole body vibration range.

The response gains in PSDs are measured in Decibels (dB) and they are estimated

using Equation 4.86, where a is the measured acceleration level in m/s2 and aref

is the reference acceleration level (which is equivalent to 1 in 10−6m/s2). Figure

4.38 shows the scale for conversion of response gains to the conventional unit of

acceleration.

Figure 4.38: Decibel to m/s2 Conversion

N(dB) = 10log10
a2

a2
ref

= 20log10
a

aref
(4.86)

Figures 4.39 to 4.46 present the time and frequency domain plots of the frequency

weighted RMS vertical acceleration magnitudes for deterministic and random road

disturbance input to the vehicle. Similar frequency domain analysis conducted for

actuator force, wheel dynamic load and suspension travel, showed similar trends to

the ones for the vehicle body acceleration for all the controllers and will therefore

not be reported.

4.7.1 Frequency Response Estimates for the DANN Controller

Figure 4.39 presents time and frequency domain plots for the frequency weighted

RMS body acceleration of the vehicle in response to the twin humps road distur-

bances and DANN controller. The peak acceleration value was about 0.28ms−2 and
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the response gain was on the decline from about 3.5dB at approximately 0.1Hz to

about −99.8dB at 63.1Hz where it started to climb.

Figure 4.39: Frequency Weighted

RMS Body Acceleration Response to

Deterministic Road Disturbance for

the DANN-Controlled AVSS

Figure 4.40: Frequency Weighted

RMS Body Acceleration Response to

Random Road Disturbance for the

DANN-Controlled AVSS

The time and frequency domain plots in Figure 4.40 for random road disturbance

input and DANN controller showed that, the peak frequency weighted RMS vertical

acceleration value was about 0.11ms−2 and the response gain also declined from

about −14.67dB at approximately 0.1Hz to about −157.7dB at 42.51Hz from where

the response gain magnitude started to rise.

4.7.2 Frequency Response Estimates for the NNMPC Controller

Figure 4.41 presents the time and frequency domain plots for the frequency weighted

RMS body acceleration of the vehicle in response to the deterministic road distur-

bances and NNMPC controller. The peak acceleration value reached was 0.3ms−2

and the response gain was on the declined from about 4.0dB at approximately 0.1Hz

to about −168.7dB at 41.7Hz where it started to rise.

Time and frequency domain plots in Figure 4.42 for random road disturbance input

and NNMPC controller showed that, the peak frequency weighted RMS vertical ac-

celeration value was about 0.44ms−2 and the response gain also declined from about

−2.37dB at approximately 0.1Hz to about −130.10.2dB at 42.50Hz from where the

response gain magnitude started to rise.
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Figure 4.41: Frequency Weighted

RMS Body Acceleration Response to

Deterministic Road Disturbance for

the NNMP- Controlled AVSS

Figure 4.42: Frequency Weighted

RMS Body Acceleration Response to

Random Road Disturbance for the

NNMPC-Controlled AVSS

4.7.3 Frequency Response Estimates for the NNFBL Controller

Figure 4.43 presents time and frequency domain plots for frequency weighted RMS

body acceleration of the vehicle in response to the twin humps road disturbances

and NNFBL controller. The peak acceleration value was about 0.28ms−2 and the

response gain was on the declined from about −8.6dB at approximately 0.1Hz to

about −174.4dB at 44.0Hz where it started to climb.

The time and frequency domain plots in Figure 4.44 for random road disturbance

input and NNFBL controller showed that, the peak frequency weighted RMS vertical

acceleration value was about 0.22ms−2 and the response gain also declined from

about −9.45dB at approximately 0.1Hz to about −147.20dB at 42.51Hz from where

the response gain magnitude started to rise.
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Figure 4.43: Frequency Weighted

RMS Body Acceleration Response to

Deterministic Road Disturbance for

the NNFBL-Controlled AVSS

Figure 4.44: Frequency Weighted

RMS Body Acceleration Response to

Random Road Disturbance for the

NNFBL-Controlled AVSS

4.7.4 Frequency Response Estimates for the PID Controller

Figure 4.45 presents the time and frequency domain plots for the frequency weighted

RMS body acceleration of the vehicle in response to the deterministic road distur-

bances and PID controller. The peak acceleration value reached was 0.4ms−2 and

the response gain was on the declined from about −4.6dB at approximately 0.1Hz

to about −177.0dB at 42.5Hz where it started to rise.

The time and frequency domain plots in Figure 4.46 for random road disturbance

input and PID controller showed that, the peak frequency weighted RMS vertical

acceleration value was about 0.44ms−2 and the response gain also declined from

about −2.33dB at approximately 0.1Hz to about −131.7dB at 42.50Hz from where

the response gain magnitude started to rise.
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Figure 4.45: Frequency Weighted

RMS Body Acceleration Response to

Deterministic Road Disturbance for

the PID-Controlled AVSS

Figure 4.46: Frequency Weighted

RMS Body Acceleration Response to

Random Road Disturbance for the

PID-Controlled AVSS

4.7.5 Vertical Vehicle Body Vibration and Human Comfort Evalu-

ation

Frequency weighted RMS vehicle body vibration in the vertical direction has been

presented in Figures 4.39 to 4.46 for all the controllers studied. These figures show

that the risks associated with the low resonant frequencies vehicle motion modes

listed in Section 1.2 have been eliminated.
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Figure 4.47: Peak Body Acceleration

Values for Deterministic Road Input
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Input
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Figures 4.47 and 4.48 present comparisons of the peak body acceleration and fre-

quency weighted body acceleration values for the deterministic road disturbance in-

put. There is a marginal difference between the performances of the neural network-

based controllers in this regard. The performance of the PID-controlled AVSS is

however significantly poorer.

The trend shown by comparison of the peak body acceleration values and the peak

frequency weighted acceleration values for random road disturbance input was differ-

ent. Also, the performance of the neural network-based model predictive controller

was at par with the PID controller. While the performance of the direct adaptive

neuro-controller was more than twice better than the others.
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Figure 4.49: Peak Body Acceleration

Values for Random Road Input
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Figure 4.50: Peak Frequency

Weighted RMS Body Acceleration

Values for Random Road Input

Figures 4.48 and 4.50 shows that, the peak frequency weighted vertical acceleration

values for all the controllers are below the European Commission stipulated exposure

action value (EAV) of 0.5m/s2 [European Commission (2002)]. These performance

are rated as shown in Table 4.14 using the International Organization for Standard-

ization and the British Standards’ rating for discomfort levels of passengers in a

public vehicle [BS 6841 (1987); ISO 2631 (2003)].

The feedback linearisation based controllers (that is, DANN and NNFBL) outper-

formed the NNMPC and PID controllers in terms of ISO comfort level by being

comfortable for both road situations. NNMPC is rated little uncomfortable for ran-

dom road disturbance input. This result is corroborated by the tabular presentation

of the performances of the controllers as percentages of the PID controller perfor-

mances in Table 4.15.
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Table 4.14: Comparison of the AVSS Controller Comfort Levels Based on Interna-

tional Standard Ratings [ BS 6841 (1987); ISO 2631 (2003)]
ISO Comfort Level (m/s2)

Deterministic Road Random Road

Controller Type Disturbance Input Disturbance Input

DANN not uncomfortable not uncomfortable

NNFBL not uncomfortable not uncomfortable

NNMPC not uncomfortable a little uncomfortable

PID a little uncomfortable a little uncomfortable

Table 4.15: Peak Body Acceleration Values for the Designed Controllers as Percent-

ages of the Benchmark Controller
Deterministic Road Random Road

Disturbance Disturbance

Controller Actual Values Weighted RMS Actual Values Weighted RMS

Values Values

DANN 55.56% 70.0% 40.22% 25.0%

NNFBL 59.03% 70.0% 87.0% 50.0%

NNMPC 65.28% 75.0% 100.6% 100%

4.8 Performance Evaluation Based on Actuator Power

Consumption

Power consumption level is a vital parameter in evaluating the performance and

applicability of AVSS. It is also the major factor that makes semi-active suspension

system more attractive for real life implementation [ElMadany et al. (2011)]. For

the comparative analysis between the four controllers being studied, Equation 2.80

was used in estimating the power consumption for the actuator in each case [Crolla

and Nour (1992); Marzbanrad et al. (2002); Williams (1997b)].

The suspension system under consideration combines a nonlinear passive suspen-

sion system with an electrohydraulic actuator. The damper and actuator in the

suspension disrupts the continual oscillations of the suspension by dissipating the

energy introduced to the system through the road input.

Figures 4.51 to 4.54 show that the actuator dissipated more energy with the random

road disturbance input, however this difference in energy dissipated differ for the

controllers. Table 4.16 shows the power consumption estimation of the controllers,

134



relative to that of benchmark PID controller.
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Figure 4.51: Actuator Power Con-

sumption for the Deterministic Road

Disturbance Input
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Figure 4.52: Distribution of the Peak

Power Consumption by the Actuator

for Deterministic Road Disturbance

Input

The power dissipated by the actuator was insignificant except when the vehicle was

going over the humps. There were oscillations within the period it went over the

hump because of the restoring behaviour of the suspension spring. Except for the

PID controller, the peak actuator power consumption for all the other controllers

were less than 1kW .
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Figure 4.53: Actuator Power Con-

sumption for the Random Road Dis-

turbance Input
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Figure 4.54: Distribution of the Peak

Power Consumption by the Actuator

for Random Road Disturbance Input

The direct adaptive neural network (DANN) controller outperformed the other con-

trollers especially for the random road disturbance input case. The indirect adaptive

neural network-based model predictive controller’s performance was almost at par

with the PID controller in the same situation.
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Table 4.16: Peak Power Consumption for the Controllers as Percentages of PID
Road disturbance DANN NNFBL NNMPC

Deterministic 46.0% 54.5% 61.6%

Random 24.0% 41.0% 98.5%

4.9 Performance Evaluation Based on Performance In-

dex Evaluation

Aggregated values of the performance indices of the controllers was computed based

on Equation 2.76. The results for the four controllers, using deterministic and

random road disturbance inputs are shown in Figures 4.55 and 4.56. The controller

with the optimal performance is the one with the least performance index.
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Figure 4.55: Aggregate Performance

Index Computed for AVSS Response

to Deterministic Road Disturbance
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Figure 4.56: Aggregate Performance

Index Computed for AVSS Response

to Random Road Disturbance

The direct adaptive neural network (DANN) controller out performed the others in

both cases. This is indicative of the inability of the predicted dynamic model in

the indirect adaptive neural network controllers (that is, NNFBL and NNMPC) to

capture the system dynamics as perfectly as the DANN controller. The difference

is however marginal in the case for deterministic road disturbance input.

The performance of the neural network-based model predictive controller for random

disturbance input case was at par with that of the PID controller. The percentage

comparison of the other controllers to PID is presented in Table 4.17.
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Table 4.17: Aggregate Performance Index Computation for the Controllers as Per-

centages of PID
Road disturbance DANN NNFBL NNMPC

Deterministic 35.37% 42.22% 42.22%

Random 5.04% 16.33% 100.46%

4.10 Summary of Chapter Four - Selection of Best Per-

formed Controller

On the whole, the performances of the three neuro-controllers were superior to the

PID controller, though NNMPC’s performance was at par with that of PID for

random road disturbance input (see Figure 4.56). The performance of DANN was

twice better than that of PID for most suspension parameters studied but this was

achieved at the expense of poor control input characterised by chattering.

The NNFBL control was at par with the NNMPC’s performance for the deter-

ministic road disturbance input (see Figure 4.55) but the control input was also

poor in both cases. While all the neuro-controllers designed required less than

1kW for roads with deterministic road disturbance, NNMPC required about 5 to 6

times of the same power for satisfactory performance on roads with random road

disturbance inputs. Although, DANN and NNFBL controllers have better power

consumption rates, their poor control input characteristics make them less practi-

cally implementable.

All the controllers designed showed good disturbance attenuation within the WBV

frequency range. Their ride comfort levels based on the recommendations of BS6841,

ISO2632 and the European commission were either acceptable or marginally unac-

ceptable, as in the case of the PID control method (please see Table 4.14).

NNMPC was selected above the feedback linearisation control based NNFBL and

DANN controller because its performance was achieved at a better cost for both

deterministic and random road disturbance input cases (see, Figures 4.28 and 4.34).

Implementation of NNMPC is slower (when compared to the FBL based control

methods in DANN and NNFBL) because of its optimisation loop. It is the most

employed industrial control method after PID and it is readily applicable to sys-

tems with time delays, multivariable interactions and constraints [Bequette (2007);

Manenti (2011)].
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5 Neural Network-Based Model Predictive

Controller (NNMPC) Design for Full-Car

AVSS

5.1 Introduction

Model predictive control (MPC) has found more application in the process indus-

tries because of its concept of prediction and online control [Jazayeri et al. (2008)].

In spite of its computational challenges, MPC combined with neural network holds

good prospect for systems with hydraulic actuators [Bequette (2007); He (2009)].

Qin and Badgwell (2000) listed the following two cases where employment of non-

linear model predictive control is essential:

1. Highly nonlinear regulator control problem with high frequency disturbances.

2. Servo control problems associated with frequently changing operating points.

The theory of the NNMPC employed in this chapter has been discussed in Section

4.4. As shown in the previous chapter, the implementation of NNPMC method

is done in two phases; system identification and control. All the numerical ex-

perimentations were carried out using the ordinary differential equation fixed step

solver(ode45) at a sampling frequency of 1kHz in the MATLAB / SIMULINKr

environment.
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5.2 System Identification

The basic description of the system identification process is available in Section 4.2.1.

While the process remain the same, the system being identified now is a multi-input-

multi-output (MIMO) system. The four different processes that constitute system

identification are: Experimentation, Model structure selection, Model estimation

and Validation.

5.2.1 Experimentation

The system was excited using a non-saturating band-limited white noise excitation

signal spanning the entire operation range of the system. A total set of 501, 422

input-output data samples were collected from the numerical experimentation of

each vehicle suspension station in the form:

ZNi,j = f [ui,j(k), yi,j(k)]; k = 1, . . . , N (5.1)

where ZNi,j is the input-output data set at each suspension wheel station, ui,j(k) ∈
[±10V ] is the input signal, yi,j(k) is the output signal k is the sampling instant

and N is the total number of samples, i ∈ [front, rear] and j ∈ [left, right]. The

schematic arrangement for the numerical experimentation and data collection is

shown in Figure 5.1.

Full-car
AVSS Plant

yrr

yrl

yfl

yfr

ufl

ufr

Band-Limited
White Noise

Band-Limited
White Noise

Band-Limited
White Noise

Band-Limited
White Noise

urr

ufl

url

url

ufr

urr

Input-Output
Data Set

ZN

Figure 5.1: Input-Output Data Collection Structure

Figure 5.2 shows the 50, 000 input-output data set selected for each vehicle sus-

pension station. The data set is subsequently divided into two for training and
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validation purposes.

Figure 5.2: Input-Output Data Set for the Four Wheel Stations

The objective of system identification is to obtain a mapping based on the input-

output training data to a set of possible weights ZNi,j ,→ θ̂ thereby yielding ŷi,j(k)

predictions that are as close as possible to the true outputs, yi,j(k).

5.2.2 Model Structure Selection

The model structures listed in Tables 5.1 and 5.2 were tested to check for their

suitability for the identification. The percentage fitness of output error model stood

out among the linear models but the neural network models performed better.

Therefore the AVSS plant can be represented by the NNARX model, where the

generalized NNARX model is given by

yi,j(k) = f [φi,j(k), θi,j ] + εi,j(k) (5.2)

where f is the nonlinear function that is realized by the neural network model,

φi,j(k) represents the regressors, vector θi,j contains the adjustable weights and εi,j

represents the model residual. As a result of the numerical experiment and training,

the network implements an estimation of the non-linear transformation, f̂(∗) which

leads to the predicted output given by:

ŷi,j(k) = f [φi,j(k), θi,j ] (5.3)
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Table 5.1: Percentage Fitness for Predicted Linear Models
Wheel Position

Model Type Description Front Rear Front Rear

Left Left Right Right

m2arx Based on autoregressive 50.46 35.94 14.46 −3.70

exogenous inputs model

m1pem Based on prediction 69.24 35.85 11.95 0.19

error estimate model

moe3 Based on output 85.29 35.10 62.96 83.11

error model

bj5 Based on Box Jenkins 72.65 37.15 16.96 −4.61

polynomial model

armax4 Based on autoregressive 69.32 35.89 17.76 −7.42

moving exogenous inputs

model

Table 5.2: Percentage Fitness for Predicted Neural Network-Based Nonlinear Models
Wheel Position

Model Type Description Front Rear Front Rear

Left Left Right Right

Sigmoidnet Nonlinearity estimator for 99.96 99.96 99.97 99.99

nonlinear ARX and

Hammerstein-Wiener models

Wavenet Nonlinearity estimator for 99.96 99.96 96.96 99.98

nonlinear ARX

Neuralnet Nonlinearity estimator for 99.75 99.78 −47.55 99.94

nonlinear ARX and

Hammerstein-Wiener models
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and the regression vector is

φi,j(k) = [yi,j(k − 1), yi,j(k − 2), . . . , yi,j(k − n), ui,j(k − d), ui,j(k − d− 1),

. . . , ui,j(k − d−m+ 1)] (5.4)

where d is the delay from input to the output in terms of number of samples, n and

m are the number of past outputs and inputs respectively, while i ∈ [front, rear]

and j ∈ [left, right].

It is customary to try a single hidden layer NN structure first, then the next step

is the determination of the number of neurons in the hidden layer, this is achieved

through the use of the lag space-order index plots. Figure 5.3 shows that the knee-

points on the lag space-order index plots for all the vehicle suspension stations 2

indicating that the number of neurons in each hidden layer is five.

Figure 5.3: Order of Index versus Lag Space Plots for the Vehicle Suspension Stations

Therefore the appropriate multilayer feedforward neural network structure for each

of the vehicle suspension station has two layers with five hidden layer neurons, this

is illustrated by Figure 5.4
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Figure 5.4: Multilayer Feedforward Neural Network Structure for Each Wheel Sta-

tion

5.2.3 Model Estimation

Levenberg-Marquardt minimization is typically the first choice training algorithm for

multi-layered perceptron neural networks and the hidden layer activation function

adopted is the tangent hyperbolic function:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(5.5)

5.2.4 Model Validation

The system identification parameters for the AVSS is listed in Table 5.3. Model

validation was achieved using one-step ahead prediction plots for the four neural

network model types as well as, the plots for the residuals in Figures 5.5 to 5.8. Also

the training performance plots are shown in Figures 5.9 to 5.12.

The plots for the residuals were of the order of 10−4 in magnitude except for the

”front-right” wheel which has a order of 10−5. Similarly, the one-step ahead pre-

dictions had approximately 100% fitness with the validation data acquired from the

experiment except for the ”front-right” wheel where it was −47.55%.

The training performance plots in Figures 5.9 to 5.12 shows that all the wheel sta-

tions utilized their maximum number of epochs (300) for the identification exercise.

The mean-squared-error estimates for each exercise is presented in Table 5.4.
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Table 5.3: Parameters for the Neural Network System Identification
Parameters for each suspension station Value

suspension station

Total number of training 50000

and validation samples

Maximum number of epochs 300

Sampling frequency 1kHz

Time delay, nk 1

Number of layers 2

Number of hidden layers 5

neurons

Number of past outputs, n 2

Number of past inputs, n 2

Figure 5.5: One Step Ahead Pre-

diction and Residuals for Front Left

Wheel Station

Figure 5.6: One Step Ahead Predic-

tion and Residuals for Front Right

Wheel Station

Table 5.4: Final Prediction Error Estimates
Wheel Station MSE Value Wheel Station MSE Value

Front left 5.46× 10−11 Front right 6.53× 10−11

Rear left 6.04× 10−11 Rear right 3.32× 10−10
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Figure 5.7: One Step Ahead Pre-

diction and Residuals for Rear Left

Wheel Station

Figure 5.8: One Step Ahead Predic-

tion and Residuals for Rear Right

Wheel Station
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Figure 5.9: Neural Network Training
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Figure 5.10: Neural Network Training

Performance (Rear Left Wheel)
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Figure 5.12: Neural Network Training

Performance (Rear Right Wheel)

5.3 Controller Design

A block diagram illustrating the architecture of the full-car AVSS is presented in

Figure 5.13. The neural network model predictive controllers are used in the outer

control loops while the PID controllers are retained in the inner loops to assist in

stabilising the actuator dynamics.

Inner Loop
Controller

Electro-hydraulic 
Actuator

Inner Loop
ControllerNNMPC

Electro-hydraulic 
Actuator

Inner Loop
ControllerNNMPC

Electro-hydraulic 
Actuator

Inner Loop
Controller

Electro-hydraulic 
Actuator

Sensor

Sensor

Sensor

Sensor

Full-car
Plant

yfr

yrl

yrr

yrl

yfl

yfr

Ffr

Ffl

yfr

Ffr

Frr

Ffl

ufl

ufr

ufr

urr

NNMPC

NNMPC

Figure 5.13: Full-Car NNMPC-Controlled AVSS Architecture

The arrangement of the controllers readily fits into a distributed network of con-

trollers communicating over a controller area network (CAN) bus under the super-

vision of a global controller. It also introduces some degree of active redundancy
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that is necessary for fault tolerant control and monitoring within a condition-based

maintenance scheme [Jeppesen and Cebon (2004); Waldron et al. (2008)]. The pa-

rameters of the NNMPCs in the outer loops are given in Tables 5.5 and 5.8.

5.3.1 Responses of the NNMPC-Controlled Full-Car AVSS to De-

terministic Road Disturbance Inputs

Tables 5.5 to 5.7 present the tuning parameters for the controllers and the key to

acronyms used in time history plots for responses to the deterministic road excitation

in this section. The plots for the responses are presented in Figures 5.14 to 5.19.

Table 5.5: Parameters for the Neural Network Model Predictive Controllers-

Deterministic Road Disturbance Inputs
Parameters Value Parameters Value

Control horizon, Nu 2 Cost horizon, N2 9

Control weighting factor, ρ 0.01 Search parameter, α 0.001

Table 5.6: Tuning Parameters for the PID Controllers - Deterministic road Distur-

bance Inputs
Wheel Station P I D

Front left 5× 10−12 1.34× 10−6 1× 10−10

Rear left 2× 10−12 1.74× 10−6 1× 10−10

Front right 5× 10−13 1.2× 10−5 1× 10−10

Rear right 7.5× 10−12 1× 10−6 1× 10−10

Table 5.7: Parameters Plotted in the Time Histories for NNMPC-Controlled Full-

Car AVSS
Abbreviation Full meaning Abbreviation Full meaning

ST Suspension travel BA Body acceleration

PAA Pitch angular RAA Roll angular

acceleration acceleration

NWDL Normalized wheel SVD spool-valve

displacement displacement

RDI Road disturbance AF Actuator force

input CV Control voltage

The performance of the NNMPC is superior to those of the PID controller and

PVSS in terms of the plots for body heave acceleration and vehicle handling shown

in Figure 5.14. The peak values are 2.8ms−2, 3.5rads−2 and 10.6rads−2 respectively.
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Figure 5.15: Time History of the NNMPC and PID-Controlled AVSS and PVSS

Responses to Deterministic Road Excitations

Figure 5.15 shows the suspension travel time history for the four wheels. None
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exceeded the ±10cm allowable limits. The controlled suspension has better per-

formance with regards to this parameter but when compared with each other, the

difference is marginal. This showed that NNMPC has better body acceleration per-

formance than the PID control though it used approximately the same suspension

travel displacement.

For good road holding, the wheel dynamic load must be maximised. Figure 5.16

however shows that the penalty paid for better body acceleration, vehicle handling

and suspension travel is poor wheel dynamic load, especially in the ”front left” and

the ”rear right” wheels. This may also impact the efficiency of the brakes in these

wheels.
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Figure 5.16: Normalized Wheel Dynamic Load Responses to Deterministic Road

Excitations

Figure 5.17 shows that control voltage were within ±3V olts at the wheel stations.

The actuator forces were also much lower than the vehicle static load, Figure 5.18

shows that they are within ±1.8kN . While Figure 5.19 shows that the spool-valves

were within ±2.5mm.

149



0 1 2 3 4 5 6 7
-2.6

-0.6

1.4

2.4

 

 

0 1 2 3 4 5 6 7
-3

-1

1

3
C
o
n
tr
o
l 
V
o
lt
ag
e 
(V

o
lt
)

 

 

0 1 2 3 4 5 6 7
0

2

4

6

8

R
D
I 
(c
m
)

Time (s)

 

 

Front Wheel

Rear Wheel

Front Right Wheel

Rear Right Wheel

Front Left Wheel

Rear Left Wheel

Figure 5.17: AVSS Control Voltage Responses in the Presence of Deterministic Road

Excitations

0 1 2 3 4 5 6 7
-1.6

-0.7

0.2

1.1

1.8

 

 

0 1 2 3 4 5 6 7
-0.8

-0.4

0

0.4

0.8

A
ct
u
at
o
r 
F
o
rc
e 
(k
N
)

 

 

0 1 2 3 4 5 6 7
0

2

4

6

8

R
D
I 
(c
m
)

Time (s)

 

 

Front Left Wheel

Rear Left Wheel

Front Right Wheel

Rear Right Wheel

Front Wheel

Rear Wheel

Figure 5.18: AVSS Actuator Force Responses in the Presence of Deterministic Road

Excitations

5.3.2 Comparison Between the Controllers Using Peak and RMS

Values for Deterministic Road Excitation

Figures 5.20 to 5.23 present the comparison of the performance of the NNMPC with

that of the PID controller. Percentages of the peak values measured from the plots
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Figure 5.19: Time History of the NNMPC-Controlled, Full-Car AVSS Responses to

Deterministic Road Excitations

and the RMS values estimated from the generated data are used in this case.
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Figure 5.21: Evaluation of the

Improved NNMPC Controller Per-

formance Using Suspension Travel-

Deterministic Road Disturbance

Figure 5.20 shows that there is at least a minimum improvement of 20% when con-

sidering the body heave acceleration and the angular acceleration modes. Similarly,

Figure 5.23 shows that there is at least 16% reduction in energy utilisation.
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Figure 5.23: Evaluation of the Im-

proved NNMPC Controller Perfor-

mance Using Control Voltage

5.3.3 Responses of NNMPC-Controlled, Full-Car AVSS to Ran-

dom Road Disturbance Inputs

Tables 5.8 and 5.9 present the tuning parameters for the NNMPC and PID controlled

AVSS in the presence of random road excitations whose model is described in Section

2.6.2.

Table 5.8: Parameters for the Neural Network Model Predictive Controllers-Random

Road Disturbance Inputs
Parameters Value Parameters Value

Control horizon, Nu 5 Cost horizon, N2 30

Control weighting factor, ρ 0.005 Search parameter, α 0.001

Table 5.9: Tuning Parameters for the PID Controllers-Random Road Disturbance

inputs
Wheel Station P I D

Front left 1.3× 10−6 5× 10−10 2× 10−12

Rear left 6.1× 10−3 6× 10−9 1× 10−10

Front right 5× 10−6 1.3× 10−9 1× 10−10

Rear right 7.5× 10−3 3.6× 10−10 1× 10−12

Figures 5.24 to 5.29 show the time history of responses of the AVSS to the random

road excitation. The plots for the NNMPC and PID controlled AVSS have been

separated and PVSS excluded for better clarity. The superior performance of the

NNMPC to that of PID controller is demonstrated in Figure 5.24 for the body
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acceleration and vehicle handling. The vertical body acceleration was improved by

about ±1m/s2.
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Figure 5.24: Body Heave Acceleration and Handling Responses to Random Road

Excitations

Figures 5.25 and 5.26 show similar trends for the suspension travel and wheel dy-

namic load time history at the four wheel stations. Figure 5.27 shows that about

three times more energy is demanded by the AVSS on a road with random excita-

tion. This trend is however not followed by the ”front right” wheel for both NNMPC

and PID controllers.

the actuator force and control voltage demand by the AVSS controller was lower in

the random disturbance case when compared to the deterministic case. The presence

of the outliers in the signals however introduced difficulty in accurately establishing

an appropriate scale for the estimating the real peak values of the signals (see Figure

5.28).

The NNMPC showed marginal improvement to the PID when considering the spool-

valve displacement in Figure 5.29.
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Figure 5.25: Suspension Travel Responses to Random Road Excitations
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Figure 5.26: Normalized Wheel Dynamic Load Responses to Random Road Excita-

tions
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Figure 5.27: AVSS Control Voltages in the Presence of Random Road Excitations

0 2 4 6
-1

0

1

2

A
F
fl

(k
N
)

NNMPC

0 2 4 6
-0.5

0

0.5

1

1.5 PID

0 2 4 6
-0.5

0

0.5

1

A
F
rl

(k
N
)

0 2 4 6
-0.5

0

0.5

1

1.5

0 2 4 6

0

1

2

A
F
fr

(k
N
)

0 2 4 6
-1

0

1

2

0 2 4 6
-0.5

0

0.5

1

1.5

A
F
rr

(k
N
)

Time (s)
0 2 4 6

-0.5

0

0.5

1

1.5

Time (s)

Figure 5.28: AVSS Actuator Force Responses to Random Road Excitations
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Figure 5.29: AVSS Actuator Spool-Valve Responses to Random Road Excitations

5.3.4 Comparison of the Designed Controllers Using Peak and RMS

Values for Random Road Excitations

Figures 5.30 to 5.33 present the comparison of the performance of the NNMPC with

that of the PID controller. Percentages of the peak values measured from the plots

and the RMS values estimated from the generated data are used in this case.

Figure 5.30 shows an improvement of about 23% in the body heave acceleration,

pitch and roll angular acceleration modes. Moreover, unlike the trend for the deter-

ministic road disturbance case, all the plots for the random disturbance case show

improvements for the NNMPC controller AVSS over the PID control.
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5.4 Frequency Domain Analysis

Frequency domain analysis will be limited to vertical body acceleration, pitch and

roll angular accelerations in this work. They are able to give appropriate repre-

sentation of the trend in frequency domain plots. Detail description of the pseudo-

frequency domain analysis method used (that is PSD estimation) has been presented

in Section 4.7.

Figures 5.34 to 5.37 show the frequency domain plots for the vertical acceleration,

pitch and roll angular acceleration modes of the AVSS when exposed to determinis-

tic and random road disturbance profiles. The figures present a comparison of the

responses for NNMPC and PID controller as well as, the PVSS.
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All the figures showed good disturbance attenuation within the whole-body vibra-

tion frequency range of 0−80Hz. Amplification, however started just after the 80Hz

mark. This evidently demonstrates that the physical parameters of the suspension

system have been optimally chosen; therefore, the passive suspension performs well

in terms of disturbance rejection, but the active suspensions (especially with NN-

MPC) performs better.
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5.4.1 Frequency-Weighted RMS Acceleration - Ride Comfort

An evaluation of the vehicle ride comfort based on frequency-weighted RMS acceler-

ation is presented in Table 5.10. The assessments were done based on international

standards and specifications in BS 6841 (1987); ISO 2631 (2003) and European Com-

mission (2002). The frequency-weighting used are based on the vibration perception

filter design shown in Figure 2.44 in Subsection 2.9.3.

The ride comfort assessment for the two road excitations shows that the PID con-

trolled suspension was outperformed by the NNMPC, corroborating the results in

Figures 5.14 and 5.24. Handling the random road excitation was more challenging

for both controllers but the PID controller had it about 1.5 times more challenging

than the NNMPC. Therefore, ride by the occupants are safely in the comfortable

region for both controller.
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Table 5.10: Ride Comfort Assessments
Type of road Weighted Vibration Comfort Level

Controller disturbance Acceleration, ISO EU-EAV

input av (ms−2) (ms−2) (ms−2)

Deterministic 0.2426 not < EAV

NNMPC uncomfortable

Random 0.6565 fairly > EAV

uncomfortable < ELV

Deterministic 0.2445 not < EAV

PID uncomfortable

Random 0.9078 fairly > EAV

uncomfortable < ELV

5.4.2 Sensitivity to Parameter Variation

In Figures 5.40 to 5.45, results of the analysis for the NNMPC controlled suspension

to changes in the physical parameters related to the suspension is presented. Re-

sults for the body acceleration, pitch and roll angular accelerations were presented;

because they are related to vibration and ride comfort assessment. Moreover, it is

necessary to avoid repetition since similar trend will be expected in the plots for

other parameters. All the plots showed disturbance attenuation within the WBV
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frequency range. This range covers the resonance frequency ranges that are related

to vehicle dynamics. It also covers the frequency ranges related to human comfort

in moving vehicle (please see Subsections 1.2 and 2.9.3).
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The response that is based on the nominal suspension parameter values can be

seen to be separated from the others at frequencies that are approximately less than

7Hz. Between 7 and 8Hz all the responses tend to cluster together. Therefore,

within this range, it could be said that the suspension system tends to be insensitive

to changes in the physical parameters.
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5.5 Summary of Chapter Five

The requisites for good model predictive control includes availability of dynamic

model. Also, it is necessary for nonlinear models model to be affine. The 7DOF full

vehicle suspension model under study meets this requirements, its dynamic model

was obtained through neural network with a prediction fitness of about 99.9%.

In this chapter the superior performance of NNMPC-controlled AVSS over PID-

Controlled AVSS and PVSS was demonstrated. Good ride comfort levels was also

ascertained for these AVSSs according to international standards and specifications.

Lastly, the NNMPC-controlled AVSS was observed to demonstrate robustness to

parameter variations between frequencies 7− 80Hz .
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6 Conclusion and Future Outlook

6.1 Introduction

This thesis has presented direct and indirect adaptive neuro-controllers that en-

hanced the potential performance of the AVSS. The neural network based model

predictive controller was designed for a nonlinear, 7DOF full-car suspension system.

The control results show that enhancements were achieved for ride comfort, vehicle

handling and road holding without violating specified suspension travel limits.

The implemented architecture for the AVSS consist of inner PID feedback loops

to stabilize the actuator dynamics, and outer NNMPC feedback loops to regulate

the suspension travel in the presence of a twin-hump deterministic and a grade C

(average) category of random road excitation.

The research work aimed at designing a suitable neuro-adaptive controller for a non-

linear full-car model. Neural network-based direct adaptive control (DANN), feed-

back linearization control (NNFBL) and model predictive control (NNMPC) meth-

ods were designed and their performances were evaluated for a simpler quarter-car

case. Results presented in Chapter four showed that this three controllers had bet-

ter performance when compared with the PID-controlled AVSS. However, NNMPC-

controlled AVSS had the least performance of the three.

It is however noteworthy that, the superior performance of the DANN and NNFBL-

controlled AVSSs were at the cost of poor control voltage (control input) whose sig-

nals were both characterised by chatterings. The control voltage values also switched

intermittently between ±10V olts limit values. This problem makes their practical

implementation more challenging and less attractive than the NNMPC-controlled

AVSS inspite of their superior performances.

Evaluation of the NNMPC-controlled AVSS for the full-car model in Chapter five
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shows that its performances were superior to those of the PID-controlled AVSS and

the PVSS in terms of ride comfort, vehicle handling, road holding, suspension travel

and control voltage. Disturbances were attenuated within the WBV range, which

contains the resonance frequency ranges that are critical for the vehicle and hu-

man passengers. The superior wheel dynamic load performance assures better road

holding and braking. This is well complemented by its better vehicle handling.

6.2 Neural Network-Based Model Predictive Control

Model predictive controllers has been successfully employed in the chemical and

process plants, where the system dynamics is much slower than that of vehicle sus-

pension. Its area of strength include; its suitability for online implementation, ap-

plicability for multivariable systems and the handling of state and input constraints.

NNMPC overcomes the challenge of acquisition of accurate model by neural network-

based system identification. This method of training is presently well developed and

accurate as shown in Sections 4.2.1 and 5.2.

Another additional advantage of NNMPC is that the relatively simple to imple-

ment multi-layer perceptron neural network with one hidden layer is sufficient for

its identification and control process. Therefore, the more complex and computa-

tionally demanding neural network structures are not needed. Moreover, the system

identification process could be carried out offline, while control is done online. Im-

plementing MPC with neural network is more attractive when compared to fuzzy

logic because it requires less number of parameters, thereby becoming simpler.

Compared to the neural network-based feedback linearisation and PID controllers

designed in this work, NNMPC was found to be relatively slower during implementa-

tion. This is expected because of the internal optimisation loop and computational

challenges arising from the non-convex quadratic problem it solves. Implementation

of the NNMPC will however come with hardware challenges in this regard.

6.3 Possible Future AVSS Controller Design Outlook

The current growth in vehicle suspension research has not influenced the choice of

suspensions fitted to vehicles. Passive suspensions remain the manufacturers’ choice

because of its simplicity. It therefore becomes an economic decision to trade between
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this simplicity and its performance limitations. The advances made in the areas of

electronics, instrumentation and actuators are an indication that technological con-

straints will not continue to hinder the implementation of AVSS on commercial scale.

Linear actuators are already being used to replace the conventional electrohydraulic

actuators in some AVSS research but its commercial viability is low [Xue et al.

(2011)]. Therefore, it is still relevant to improve on the control performance of the

electrohydraulic actuator systems with focus on reducing the size, increasing perfor-

mance and capacity, and improving its control and stability.

Conventional control methods have proven inadequate in nonlinear control of ve-

hicle suspensions, thus there is bound to be more focus on combining computational

intelligence techniques with nonlinear control methods. Future AVSS controller de-

sign work can be expected to address the need for multiobjective optimisation of

controlled parameters in AVSS or in intelligent tuning of the designed controllers.

Moreover, since controller designs are likely to lean more towards intelligent tech-

niques, issues of fault tolerance and diagnosis will need to be considered in the design

process. Computational challenges tend to increase with the complexity of the con-

trol method, thus simple conventional PID can be expected to play bigger roles in

future AVSS control design.

6.3.1 Future PID-Based AVSS Controllers

PID-based controllers remain the most employed industrial controllers because of its

simple structure, easy implementation, lower cost, relative effectiveness and more

intuitive tuning procedures. Often, the economic benefits derivable from the PID

outweighs its lack of robustness, especially when the vicinity of its operating region

could be identified.

The popularity of PID controllers has resulted in progress being made in PID re-

lated research areas like: auto-tuning methods, implementation with evolutionary

algorithms, pseudo-derivative feedback control algorithm, nonlinear PID controllers,

robust PID controllers and fractional-order PID control methods. Unlike the ad-

vanced controllers, application of PID controllers are more universal and are easier

to test.
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These developments and the use of PID controllers for actuator dynamics stabi-

lization show that the prospect for vehicle suspension control based on PID-based

algorithm is high. The challenge lies in improving its robustness to parameter un-

certainty and time-varying operating conditions. Recent works have shown that the

robustness of PID controllers in AVSS can be improved by the addition of neural

network-based controllers in the feedforward path.

In future, global optimisation techniques and evolutionary algorithms can be ex-

pected to play bigger roles in PID controller designs for AVSS but the challenge will

lie in implementing this online because of the necessity for numerous iterations.

6.4 Recommendations for Future Works

Concluding this research work brings to the open following salient and interesting

issues that should be pursued in further works:

1. There is a need to follow-up the analysis carried out with experimental valida-

tion. This could be done with the quarter-car hardware-in-the -loop laboratory

setting or using an actual car.

2. The sensitivity analysis carried out showed that though a lot of works exists in

the literature regarding optimal design of physical parameters for the PVSS,

it should be the first step in AVSS design.

3. Controller design based on intelligently tuned PID control need to be stud-

ied more closely because of its prospects in terms of physical implementation

and simplicity. Further development regarding hybrid-PID control methods is

therefore recommended.

4. The scope of this work does not include investigation regarding induced roll

motion modes and the effects of braking and cornering.

5. Inclusion of fault tolerance concept in the design analysis is also recommended

for future works to enhance the quality and lifespan of the designed AVSS.
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APPENDIX A - AVSS Parameters

The description and values of the physical parameters used in modelling the quarter-

car are provided in Table A.1

Table A.1: Parameters for the Quarter - Car Model
Parameter Symbol Value

Sprung mass ms 290kg

Unsprung mass mu 40kg

Suspension linear stiffness kls 2.35× 104N/m

Suspension nonlinear stiffness knls 2.35× 104N/m

Suspension linear damping coefficient bls 700

Suspension nonlinear damping coefficient bnls 400

Suspension asymmetric damping coefficient bnls 400

tyre stiffness kt 1.9× 105N/m

tyre damping coefficient bt 130

Piston area Ahyd 3.35× 10−4m2

Supply pressure Ps 10.34MPa

Actuator parameter α 4.515× 1013

Actuator parameter β 1

Actuator parameter γ 1.545× 109

Servo valve gain K 0.001m/V

Time constant τ 0.033s

First hump amplitude a1 6.7cm

Second hump amplitude a2 5cm

Input disturbance wavelength λ 4m

Vehicle forward velocity V1 40km/h

(Deterministic road excitation)

Vehicle forward velocity V2 72km/h

(Deterministic road excitation)
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Table A.2: Parameters for the Full - Car Model
Parameter Symbol Value

Sprung mass ms 1160kg

Unsprung masses mufl, mufr 40kg

murl, murr

Pitch axis moment of inertia Iθ 2200kgm2

Roll axis moment of inertia Iφ 460kgm2

Suspension linear stiffness kls 2.35× 104N/m

Suspension nonlinear stiffness knls 2.35× 104N/m

Suspension linear damping coefficient bls 700Ns/m

Suspension nonlinear damping coefficient bnls 400Ns/m

Suspension asymmetric damping coefficient bnls 400Ns/m

tyre stiffness kt 1.9× 105N/m

tyre damping coefficient bt 130Ns/m

Piston area Ahyd 3.35× 10−4m2

Supply pressure Ps 10.34MPa

Actuator parameter α 4.515× 1013

Actuator parameter β 1

Actuator parameter γ 1.545× 109

Servo valve gain K 0.001m/V

Time constant τ 0.033s

First hump amplitude a1 6.7cm

Second hump amplitude a2 5cm

Input disturbance wavelength λ 4m

Vehicle forward velocity V1 40km/h

(Deterministic road excitation)

Vehicle forward velocity V2 72km/h

(Deterministic road excitation)
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APPENDIX B - Glossary of Terms

• Ride Comfort: This is the subjective feeling experienced by the driver or other

vehicle occupants. It is made up of several factors like;

– Chassis vibration, noise, temperature, etc.

– Driver’s feelings, age, health, etc.

Vehicle suspension is mainly concerned about the filtering or attenuating of

the chassis vibration.

• Whole Body Vibration (WBV): 0.5 ≤ LFV ≤ 80Hz [BS 6841 (1987); ISO

2631 (2003); Milosavljevic et al. (2011)]

• Low Frequency Vibration (LFV) range: 0 ≤ LFV ≤ 10Hz [Poussot-Vassal

et al. (2008)]

• High Frequency Vibration (LFV) range: HFV > 10Hz [Poussot-Vassal et al.

(2008)]

• Windowing: This is the multiplying of the time domain data block values by

a mathematical function before FFT computation is carried out on the data

block. Windowing compensates for some FFT algorithm limitations which

causes leakage.

• Hanning Window: This is a window function given by

Hanning window =
1
2

(1− cosθ) for 0 ≤ θ ≤ 2π

A data block multiplied by Hanning window appears like a complete wave

thereby limiting signal leakage associated with FFT.
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