LIST OF FIGURES

Figure 1.1:	Experimental scheme of ICP-OES slurry analysis10
Figure 3.1:	Microwave 3000 (Anton Paar GmbH)80
Figure 3.2:	Multiwave 3000 (Anton Paar GmbH) reaction vessels83
Figure 3.3:	Fritsch GmbH Planetary Mono Mill "Pulverisette 6"84
Figure 3.4:	Malverns Mastersizer S instrument
Figure 3.5:	ICP-OES schematic diagram (Arcinus, 2000)93
Figure 3.6:	Formation of plasma in the torch (Tissue, 1996. ICP
	excitation source)95
Figure 3.7:	Multi-channel instrument with a Rowland circle (Schwedt,
	1997)
Figure 4.1:	Schematic diagrams showing various mechanisms where
	stability may be lost in slurry dispersion108
Figure 4.2:	Schematic diagram of the variation of free energy with
	particle separation according to DVLO theory110
Figure 4.3:	Schematic diagram of the variation of free energy with
	particle separation at higher salt concentrations showing the
	possibility of a secondary minimum111

Figure 4.4: Steric repulsion and electrostatic or charge stabilization....113

Figure 4.5:	(a) Lip-type vessel seals that allow hermatic closure of
	reaction vessels (b) Built-in micro-controller software for
	Multiwave 3000 sensor (c) Multiwave 3000 sensor (d) Air
	gap design of vessel casing for cooling116
Figure 6.1:	Particle sizes and distribution as viewed under SEM (1 mm)
Figure 6.2:	Particle sizes and distribution as viewed under SEM (100 μ m)
Figure 6.3:	Particle sizes and distribution as viewed under SEM (10 $\mu m)$
Figure 6.4:	Initial size distributions of particles in PGMs and gold
	concentrate127
Figure 6.5:	16 hours grinding time at 150 rpm grinding speed histogram
Figure 6.6:	15 hours grinding time at 100 rpm grinding speed histogram
Figure 6.7:	14 hours grinding time at 100 rpm grinding speed histogram
Figure 6.8:	12 hours grinding time at 150 rpm grinding speed histogram
Figure 6.9:	8 hours grinding time at 150 rpm grinding speed histogram

ix

Figure 6.10:	6 hours grinding at 100 rpm grinding speed histogram131
Figure 6.11:	4 hours grinding time at 100 rpm grinding speed histogram
Figure 6.12:	Percentage particle size distributions for grinding modes D – J
Figure 6.13:	Percentage recoveries of Pt, Pd, Rh, Ru and Au for sample
	grinding modes A, B and C138
Figure 6.14:	Percentage recoveries of metals from slurry solutions A1, A2
	and A3140
Figure 6.15:	Percentage recoveries of metals from slurry reagents B, B1,
	B2 and B3142
Figure 6.16:	Percentage recoveries of metals from slurry solutions of
	mixing modes C, C1 and C2144
Figures 6.17	(a) Negative, neutral, positive and blank slurries at 0 minutes,
	(b) Negative, neutral, positive and blank slurries after 30
	minutes, (c) Negative, neutral, positive and blank slurries
	after 40 minutes, (d) Negative, neutral, positive and blank
	slurries after 50 minutes and (e) Negative, negative + neutral,
	neutral, positive and blank slurries after 50 minutes147
Figure 6.18:	Percentage recoveries of metals from Triton X-100 and
	dodecylsulfonic acid sodium salt dispersant slurry solutions

- **Figure 6.19:** Percentage recoveries of metals from Triton X–100 and tetrasodium pyrophosphate dispersant slurry solutions......151
- Figure 6.20: Percentage recoveries of metals from slurry solutions containing Triton X-100 dispersant at varied concentrations

- **Figure 6.21:** Platinum 265.945 wavelength peak for blank, 0.5 and 1 ppm standard solutions and samples A3,0.2 and C,0.2.....157
- Figure 6.22: Palladium 342.124 wavelength peak for blank, 0.5 and 1 ppm

standard solutions and samples A3,0.2 and C,0.2.....158

Figure 6.23: Rhodium 343.489 analytical wavelength peak for blank, 0.5

and 1 ppm standard solutions and samples A3,0.2 and C,0.2

Figure 6.24: Ruthenium 187.534 analytical wavelength peak for blank, 0.5

and 1 ppm standard solutions and samples A3,0.2 and

C,0.2.....160

Figure 6.25: Iridium 224.260 analytical wavelength peak for blank, 0.5 and

1 ppm standard solutions and samples C,0.1; C,0.1.7;C,0.2

and C,0.2,Se.....161

Figure 6.26: Osmium 228.226 analytical wavelength peak for blank, 0.5

and 1 ppm standard solutions and samples A3,0.2 and

C,0.2.....162

Figure 6.27: Nebulizer – spray chamber – torch before modification....169

Figure 6.28:	S-shaped elbow inserted between the spray chamber and the							
	torch170							
Figure 6.29:	Curved elbow fitted between the spray chamber and the torch							
Figure 6.30:	Curved elbow fitted securely in ICP-OES instrument171							
Figure 6.31:	Calibration curve, detection limit (DL), background							
	equivalence concentration (BEC) and correlation coefficient							
	for platinum176							
Figure 6.32:	Calibration curve, detection limit (DL), background							
	equivalence concentration (BEC) and correlation coefficient							
	for palladium177							
Figure 6.33:	Calibration curve, detection limit (DL), background							
	equivalence concentration (BEC) and correlation coefficient							
	for gold177							
Figure 6.34:	Calibration curve, detection limit (DL), background							
	equivalence concentration (BEC) and correlation coefficient							
	for rhodium178							
Figure 6.35:	Calibration curve, detection limit (DL), background							
	equivalence concentration (BEC) and correlation coefficient							
	for ruthenium178							

Figure 6.43: Lewis	structure	of	thiocyanate	hybridization	and	Pt-SCN
structur	re					270