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Abstract

In this thesis we consider the construction of exact solutions for models describ-

ing heat transfer through extended surfaces (fins). The interest in the solutions

of the heat transfer in extended surfaces is never ending. Perhaps this is be-

cause of the vast application of these surfaces in engineering and industrial

processes. Throughout this thesis, we assume that both thermal conductivity

and heat transfer are temperature dependent. As such the resulting energy

balance equations are nonlinear. We attempt to construct exact solutions for

these nonlinear models using the theory of Lie symmetry analysis of differential

equations.

Firstly, we perform preliminary group classification of the steady state

problem to determine forms of the arbitrary functions appearing in the consid-

ered equation for which the principal Lie algebra is extended by one element.

Some reductions are performed and invariant solutions that satisfy the Dirich-

let boundary condition at one end and the Neumann boundary condition at

the other, are constructed.

Secondly, we consider the transient state heat transfer in longitudinal rect-

angular fins. Here the imposed boundary conditions are the step change in

the base temperature and the step change in base heat flow. We employ the

local and nonlocal symmetry techniques to analyze the problem at hand. In

one case the reduced equation transforms to the tractable Ermakov-Pinney

equation. Nonlocal symmetries are admitted when some arbitrary constants

appearing in the governing equations are specified. The exact steady state

solutions which satisfy the prescribed boundary conditions are constructed.
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Since the obtained exact solutions for the transient state satisfy only the zero

initial temperature and adiabatic boundary condition at the fin tip, we sought

numerical solutions.

Lastly, we considered the one dimensional steady state heat transfer in fins

of different profiles. Some transformation linearizes the problem when the ther-

mal conductivity is a differential consequence of the heat transfer coefficient,

and exact solutions are determined. Classical Lie point symmetry methods

are employed for the problem which is not linearizable. Some reductions are

performed and invariant solutions are constructed.

The effects of the thermo-geometric fin parameter and the power law expo-

nent on temperature distribution are studied in all these problems. Further-

more, the fin efficiency and heat flux are analyzed.
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Chapter 1

Introduction

1.1 Literature review

1.1.1 Background and motivation

Extended surfaces (fins) play an important role in increasing the efficiency of

heating systems. In particular, fins are used in power generators, air condi-

tioning, semiconductors, refrigeration, cooling of computer processor, exother-

mic reactors and many other devices in which heat is generated and must be

transported [1]. Many problems describing heat transfer in fins have been well

documented (see e.g. [2, 3]). The literature on this topic is quite sizeable.

The exact solutions satisfying the relevant boundary conditions provide

insight into heat transfer processes and may be used as bench marks for the

numerical schemes (see e.g. [4]). The analysis of constructed solutions may

also assist in the designs of the fins, for example, it is well known that a longer

and thicker fins provide higher heat transfer rates than shorter and thinner

ones [5].

1
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1.1.2 Recent developments

Considerable effort is given in devising accurate and efficient exact, analytical

and approximate schemes for solving differential equations, particularly those

arising in heat conduction though the one-dimensional (see e.g. [6, 7, 8, 9, 10,

11]) and the two-dimensional extended surfaces (see e.g. [12, 13, 14, 15, 16,

17, 18, 19, 20, 21]). In one-dimensional cases, the obtained solutions include

series solutions [7, 8, 11], homotopy methods [6] and differential transforma-

tion method [4, 22]. Few exact solutions exist for one- and two-dimensional

problems. In fact, existing solutions are constructed only for constant thermal

conductivity and heat transfer coefficient.

Recently Moitsheki et al.,[23, 24, 25] constructed the exact solutions of the

one-dimensional fin problem given nonlinear thermal conductivity and heat

transfer coefficient. Some of this work has been extended in [26] whereby the

introduction of the Kirchhoff transformation linearized the one-dimensional fin

problem when heat transfer coefficient is a differential consequence of thermal

conductivity.

Exact solution for steady two-dimensional fin problems exists only for the

linear constant coefficient Laplace equation whereby internal heat generation

function (source or sink term) is usually neglected (see e.g. [5]). The fin base

temperature is usually assumed to be a constant, but it may be modeled as

non-constant function of spatial variable [13].

Symmetry methods in particular group classification, have been used to an-

alyze the one-dimensional fin problems with heat transfer coefficient depending

on the spatial variable [27, 28, 29, 30, 31]. However, these analysis excluded

real-world applications. In recent years many authors have been interested in

the steady state problems [6, 7, 8, 25] describing heat flow in one-dimensional

longitudinal rectangular fins. Recently Moitsheki and Harley [32], Moitsheki
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and Mhlongo [33] and Mhlongo et al., [34, 35] considered analysis of heat trans-

fer in fins of various profiles with both heat transfer coefficient and thermal

conductivity being given by temperature dependent.

An accurate transient analysis provided insight into the design of fins that

would fail in steady state operations but worked well for some operating pe-

riod [38]. The transient problem is considered for a fin of arbitrary profile

in [39]. However, both thermal conductivity and heat transfer coefficient are

considered to be constants.

1.2 Aims and objectives of the thesis

The main objective of the thesis is to analyze fin problems in one-dimensional

case when thermal conductivity and heat transfer coefficient are both non-

constant and temperature-dependent. Furthermore we aim to analyze the

problem subject to various boundary conditions. Also, we aim to investigate

heat transfer in fins of different profiles.

Techniques such as local and nonlocal symmetries, equivalent transforma-

tions and preliminary group classification are utilized. Symmetry reductions

are performed and group invariant solutions are attempted to be constructed.

The fin efficiency and the effects on temperature distribution of any parameter

that may appear in the dimensionless models are analysed. We will also make

use of computer aided procedures, in particular, we will use the freely available

software DIMSYM [40] and REDUCE [41].

1.3 Outline of the thesis

The thesis is outlined as follows:
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• Chapter 2 will briefly describe the mathematical formulation of heat

conduction problem.

• Symmetry techniques for differential equations will be briefly discussed

in chapter 3. The concepts, Lie point (local) symmetries, Lie algebras,

nonlocal (potential) symmetries, preliminary group classification, invari-

ant solution and optimal system will be discussed.

• Chapter 4 deals with the analysis of a steady non linear one-dimensional

heat transfer in fin of a rectangular profile. Part of the results were

published in a paper by Moitsheki and Mhlongo [33].

• In chapter 5 we discuss the transient response of longitudinal rectangular

fin to step change in base temperature and in base heat flow conditions.

Some of the results are published in Mhlongo et al., [34].

• In chapter 6 will look at the analysis of a steady one-dimensional fin

problem of different profiles. The results have been submitted to ISI

journal for possible publication [35].

• Lastly we provide conclusions in chapter 7.



Chapter 2

Mathematical description

2.1 Introduction

In this chapter we briefly discuss the models representing heat transfer in lon-

gitudinal fins of different profiles. The fins considered here are given in terms

of the characteristic length may be a contributing factor to why not many ex-

act solutions exist, in particular similarity (invariant) solutions. Mathematical

formulation is given in Section 2.2. Section 2.3 briefly discusses various fin pro-

files. Descriptions of heat transfer coefficient and thermal conductivity follow

in section 2.4. Physical boundary conditions are briefly described in Section

2.5. Section 2.6 discusses fin efficiency and heat flux. Dimensionless variables

and numbers are described in Section 2.7. Lastly we provide the concluding

remarks in section 2.8.

This chapter is mainly on a brief theoretical background on heat transfer

in longitudinal fins of different profiles. For a complete theory the reader is

referred to text such as [2].

5



2.2. THE ENERGY BALANCE MODEL 6

2.2 The energy balance model

We consider a longitudinal one-dimensional fin with a cross sectional area Ac

as shown in Fig. 2.1. The perimeter of the fin is denoted by P and the length

of fin by L. The fin is attached to a fixed base surface of temperature Tb and

extends into a fluid of temperature Ta. The fin profile is given by the function

F (X), fin thickness δ depends on the fin profile and the fin thickness at the

base is δb.

Figure 2.1: Schematic representation of a longitudinal fin of an arbitrary pro-

file.

The energy balance for a longitudinal fin of an arbitrary profile is given by

ρc
∂T

∂t
=

∂

∂X

(
2

δb
F (X)K(T )

∂T

∂X

)
− P

Ac

H(T ) (T − Ta) , 0 < X < L, (2.1)

where ρ is the mass density, c is the specific heat, K and H are the non-

uniform thermal conductivity and heat transfer coefficient depending on the

temperature (see for example [6, 7, 10, 25]), T is the temperature distribution,

F (X) is the fin profile, t is time and X is the spatial variable. The thermal
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conductivity denoted byK(T ) is the property of a material’s ability to conduct

heat which, in many engineering applications, varies with temperature. The

heat transfer coefficient is the amount of heat which passes through a unit

area of a medium or system in a unit time when the temperature difference

between the boundaries of the system is 1 degree. The fin length is measured

from the tip to the base as shown in Fig. 2.1.

2.3 Fin profiles

In this section we present some fin profiles considered in this study. Fins with

triangular and parabolic profiles contain less material and are more efficient

requiring minimum weight.

2.3.1 Applications of fins

It is well known [2] that a straight fin with a concave parabolic profile provides

the maximum heat dissipation for a given profile area. However the concave

parabolic shape is difficult and costly to manufacture. Thus for most appli-

cations the rectangular profile is preferred for the sake of simplicity in the

fabrication even though it does not utilize the material most efficiently [36].

The optimization design focuses on finding the shape and dimensions of the

fins that would minimize the volume or mass for a given amount of heat dis-

sipation, or alternatively, to maximize the heat dissipation for a given volume

or mass. One way to analyze the optimization problem is to select a suitable

profile, then to determine the dimensions of the fins and to yield the maximum

heat dissipation for a given volume and shape of the fin.

Laor and Kalman [37] analyzed a general optimization problem of con-

vective fins with constant thermal parameters The profile function F (X) for
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longitudinal fins will take the general form

F (X) =
δb
2

(
X

L

) 1−2p
1−p

. (2.2)

Here p ∈ R, p ̸= 1.

2.3.2 Longitudinal fin of rectangular profile

For the longitudinal fin of rectangular profile shown in Fig. 2.2, the exponent

on the general profile of Eq. (2.2) satisfies the geometry when p = 1
2
. The

profile function for the fin then becomes [2]

F (X) =
δb
2
. (2.3)

Figure 2.2: Schematic representation of a longitudinal fin of a rectangular

profile.
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2.3.3 Longitudinal fin of triangular profile

If p = 0 we get a longitudinal fin of triangular profile shown in Fig. 2.3. The

profile function for the fin then becomes

F (X) =
δb
2

X

L
. (2.4)

Figure 2.3: Schematic representation of a longitudinal fin of a triangular profile.

2.3.4 Longitudinal fin of concave parabolic profile

If p → ∞ we get a longitudinal fin of concave parabolic profile shown in Fig.

2.4. The profile function for the fin then becomes

F (X) =
δb
2

(
X

L

)2

. (2.5)
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Figure 2.4: Schematic representation of a longitudinal fin of a concave parabol-

ic profile.

2.3.5 Longitudinal fin of convex parabolic profile

The profile functions for longitudinal fin of convex parabolic profile which is

shown in Fig. 2.5 is given by Eq. (2.6)

F (X) =
δb
2

(
X

L

) 1
2

. (2.6)

The results of exponential fin profile are included although not discussed

in details.

2.4 Boundary conditions

We consider a couple of boundary conditions. First throughout this work, we

assume that the fin tip is insulated. If the tip is not assumed to be insulated

then the problem becomes overdetermined (see also, [47]). This boundary
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Figure 2.5: Schematic representation of a longitudinal fin of a convex parabolic

profile.

condition is realized for sufficiently long fins [46]. In this case we have

∂T (0, t)

∂X
= 0. (2.7)

The boundary condition at the base of the fin is given by the step change

in base temperature [2]

T (L, t) = Tb, (2.8)

in one case and by the step change in base heat flow

∂T (L, t)

∂X
=

qb
kaAc

, (2.9)

in the other.

Here qb is the base heat flux, and other parameters have been defined earlier.

The initial fin temperature is assumed to be

T (X, 0) = 0. (2.10)
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2.5 Thermal conductivity and heat transfer co-

efficient

The thermal conductivity of a material may be assumed for other physical

phenomena as a constant and as a function of spatial variable for functionally

graded fins. However, in many engineering applications it is given as a linear

function and expressed as [6, 9, 32]

K(T ) = ka[1 + β(T − Ta)], (2.11)

where β is the thermal conductivity gradient and ka is thermal conductivity

at the ambient temperature.

Also the thermal conductivity of the fin may be assumed to vary nonlinearly

with the temperature, that is

K(T ) = ka

(
T − Ta
Tb − Ta

)m

and k(T ) = ka

(
kaAc(T − Ta)

qbL

)m

, (2.12)

for step change in base temperature and step change in base heat flow con-

ditions, respectively. Indeed, thermal conductivity of some material such as

Gellium Nitride (GaN) and Aluminium Nitride (AlN) can be modeled by the

power law (see e.g. [42]). Furthermore, the experimental data indicates that

the exponent of the power law for these materials is positive for lower temper-

atures and negative for at higher temperatures [43, 44, 45].

On the other hand, for most industrial applications the heat transfer coef-

ficient may be given by the power law [46]

H(T ) = hb

(
T − Ta
Tb − Ta

)n

, (2.13)

given the step change in the base temperature and

h(T ) = hb

(
kaAc(T − Ta)

qbL

)n

(2.14)
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given the step change in the base heat flow. Here the exponent n and hb are

constants. The constant n may vary between −6.6 and 5. However, in most

practical applications it lies between −3 and 3 [46]. If the heat transfer coeffi-

cient is given by Equation (2.13) and (2.14), then the hypothetical boundary

condition (i.e. insulation) at the tip of the fin is taken into account [46]. Also,

the heat transfer through the outermost edge of the fin is negligible compared

to that which passes through the side [47]. The exponent n represents laminar

film boiling or condensation when n = −1
4
, laminar natural convection when

n = 1
4
, turbulent natural convection when n = 1

3
, nucleate boiling when n = 2,

radiation when n = 4, and n = 0 implies a constant heat transfer coefficient.

Exact solutions may be constructed for the steady-state one-dimensional dif-

ferential equation describing temperature distribution in a straight fin when

the thermal conductivity is a constant and n = −1, 0, 1 and 2 [46]. In this

thesis, we attempt to construct exact steady state solutions given nonconstant

thermal conductivity.

2.6 Fin efficiency and heat flux

2.6.1 Fin efficiency

The heat transfer rate from a fin is given by Newton’s second law of cooling

(see e.g. [2])

Q =

∫ L

0

PH(T )(T − Ta)dX. (2.15)

Fin efficiency is defined as the ratio of the fin heat transfer rate to the rate

that would be if the entire fin were at the base temperature and it is given by

η =
Q

Qideal

=

∫ L

0
PH(T )(T − Ta)dX

PhbL(T − Ta)
. (2.16)
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2.6.2 Heat flux

Heat flux at the base of the fin is given by the Fourier’s law (see e.g. [2])

qb = AcK(T )
dT

dX
. (2.17)

The total heat flux of the fin is given by

q =
qb

AcH(T )(T − Ta)
. (2.18)

2.7 Non-dimensionalization

We introduce the dimensionless variables and the dimensionless numbers given

by

x =
X

L
, τ =

kat

ρcL2
, k =

K

ka
, h =

H

hb
,M2 =

PhbL
2

Acka
, f(x) =

2

δb
F (X), (2.19)

with step change in base heat flow, the dimensionless temperature becomes [2]

θ =
kaAc(T − Ta)

qbL
, (2.20)

and with the step change base temperature we have

θ =
T − Ta
Tb − Ta

. (2.21)

Hence Eq. (2.1) becomes

∂θ

∂τ
=

∂

∂x

(
f(x)k(θ)

∂θ

∂x

)
−M2h(θ)θ, 0 ≤ x ≤ 1. (2.22)

The initial condition is given by

θ(x, 0) = 0, (2.23)

the step change in fin base temperature is given by

θ(1, τ) = 1, (2.24)
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the step change in fin base heat flux is given by

∂θ

∂x

∣∣∣∣
x=1

= 1 (2.25)

and fin tip boundary condition is given by

∂θ

∂x

∣∣∣∣
x=0

= 0. (2.26)

Here M is the thermo-geometric fin parameter, θ is the dimensionless tem-

perature, x is the dimensionless spatial variable, f(x) is the dimensionless fin

profile, τ is dimensionless time, k is the dimensionless thermal conductivity, h

is the dimensionless heat transfer coefficient and hb is the heat transfer coeffi-

cient at the fin base. M is inversely proportional to the length L, and that is

why the analysis of constructed solutions assist in the designs of the fins, for

example, it is well known that a longer and thicker fins provide higher heat

transfer rates than shorter and thinner ones [5]. The non-dimensional heat

transfer coefficient and thermal conductivity of the fin are given by

h(θ) = θn, k(θ) = θm

respectively.

The fin efficiency and heat flux in dimensionless variables are given by

η =

∫ 1

0

θn+1dx (2.27)

and

q =
1

Bi

k(θ)

h(θ)

dθ

dx
(2.28)

respectively. Here the dimensionless parameter Bi =
hbL

ka
is the Biot number.
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2.8 Concluding remarks

In this chapter, we have discussed the mathematical formulation representing

heat transfer in longitudinal fins of various profiles. We have taken into con-

sideration, the energy balance equation, the physical boundary conditions and

definition of fin efficiency and heat flux. Furthermore, the initial and bound-

ary value problems are given in terms of the non-dimensionless variables and

numbers.



Chapter 3

Symmetry analysis of

differential equations

3.1 Introduction

In this chapter we shall discuss Lie symmetry techniques for differential e-

quations. A brief historical account and theoretical background are given in

Sections 3.1.1 and 3.1.2 respectively. In Section 3.2 we discuss the calculations

of classical (local) Lie point symmetries. Calculations of nonlocal (potential)

symmetries are discussed in Section 3.3. In Section 3.4 we discuss the e-

quivalence transformation and the notion of preliminary group classification.

Furthermore, we present the method for constructing optimal system of sub-

algebras in Section 3.5. In Sections 3.6 we discuss the construction of the

group-invariant solutions for partial differential equations (PDEs). Methods

of linearization and reductions of ordinary differential equations (ODEs) are

discussed in Section 3.7. Conclusion is given in Section 3.8.

17
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3.1.1 A brief historical account

The theory of groups of transformation for differential equations (DEs) was

introduced by Sophus Lie in the latter part of the nineteenth century, as an

extension to various specialized methods for solving ODEs. His work was

motivated by the lectures given Sylow on Galois theory and Abel’s works.

As a significant contribution, Lie showed that the order of an ODE could be

reduced by one, constructively, if it is invariant under a one-parameter Lie

group of point transformations.

Various topics in determining the solutions of ODEs are related to Lie’s

work including among others, integrating factor, separable equation, homoge-

neous equation, reduction of order, the methods of undetermined coefficients

and variation of parameters for linear equations, solution of the Euler equation,

and the use of the Laplace transform. Lie also indicated that for linear PDEs,

invariance under a Lie group leads directly to superpositions of solutions in

terms of transforms.

3.1.2 A brief theoretical background of Lie symmetry

analysis

In brief, a symmetry of a differential equation is an invertible transformation

of dependent and independent variables which leave the form of the equation

in question unchanged [48, 49, 50, 51, 52, 53]. This point transformation, in

Lie’s view [54], forms a group that depend on a continuous parameter. The

elementary examples of Lie groups include groups of translations, rotations,

and scalings.

In his fundamental theorem, Lie showed that groups are characterized by

their infinitesimal generators. These infinitesimal generators, can be extended
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to act on the space of independent and dependent variables, and their deriva-

tives up to any finite order. If the coefficients of governing differential equation

(or a system of equations) are functions of independent and/or dependent vari-

ables, then the vector fields or symmetries admitted by the equation in question

when these coefficients are arbitrary span the principal Lie algebra (PLA) (see

e.g. [55]). The consequence of the action of the infinitesimal generators on

DEs is the reduction in the original equation as follows (but not limited to),

(i) In the case of the first order ODE equations, it reduces to a separable

first order ODE.

(ii) A second order 1+1 dimensional PDE may be reduced to a second order

ODE.

(iii) A nonlinear second order ODE may be reduced linear second order ODE

or to first order ODE or to the ODE with a cubic in the first derivative.

(iv) A PDE with n independent variables can be reduced to one with n − 1

independent variables.

For further theory and applications of symmetry analysis excellent text

such as those of [48, 49, 50, 51, 52, 53, 56, 57, 58] can be used.

3.2 Calculation of Lie point (local) symme-

tries

3.2.1 One-parameter group of transformations

A set GT of transformations

Tϵ : x
i = f i(x, u, ϵ), uα = ϕα(x, u, ϵ), i = 1, 2 . . . , n; α = 1, 2, . . . ,m; (3.1)
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where ϵ is real parameter which is continuous in the neighborhood D ⊂ R of

ϵ = 0 and f i, ϕα are differentiable functions. GT is a continuous one-parameter

(local) Lie group of transformations in Rn+m if the following properties hold,

i) Identity. If Te ∈ G such that TeTϵ = TϵTe = Tϵ, for any ϵ ∈ D∗ ⊂ D and

Tϵ ∈ GT . Te is the identity in GT and e is the identity in D.

ii) Closure. If Tϵ, Tδ are in GT and ϵ, δ inD∗ ⊂ D, then TϵTδ = Tγ ∈ G, γ =

ψ(ϵ, δ) ∈ D.

iii) Inverse element. For Tϵ, ϵ ∈ D∗ ⊂ D, there exists T−1
ϵ = Tϵ−1 ∈ GT , ϵ

−1 ∈

D such that TϵTϵ−1 = Tϵ−1Tϵ = Te

iv) Associativity. If Tϵ, Tδ, Tγ are inGT and ϵ, δ, γ inD∗ ⊂ D, then (TϵTδ)Tγ =

Tϵ(TδTγ).

v) ϵ is a continuous parameter i.e. ϵ ∈ D∗, where D is an interval in R,

vi) φi and ϕα are analytic,

vii) ψ(ϵ, δ) is an analytic function of ϵ and δ.

According to the theory of Lie, the construction of a one-parameter group

GT is equivalent to the determination of the corresponding infinitesimal trans-

formation generated by the infinitesimal generator. One-parameter groups are

obtained by their corresponding generator either by Lie equations or by the

exponential map.

3.2.2 The invariance criterion

An rth order PDE in s independent variables x = (x1, x2, . . . , xn) and one

dependent variable u, given by

F (x, u, u(1), . . . , u(r)) = 0, (3.2)
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where u(r), denotes the set of coordinates corresponding to all rth order partial

derivatives of u with respect to x1, x2, . . . , xn. That is, a coordinate u(r) is

denoted by

uj1j2...jk =
∂ru

∂xj1∂xj2 . . . ∂xjr
, (3.3)

with jq = 1, 2, . . . , n and q = 1, 2, . . . , r. Note that in case of the ODE, one

consider one independent and one dependent variable. To determine the sym-

metry for the Eq. (3.2), one may seek the transformations of the form

xj = xj + ϵξj(x, u) +O(ϵ2), (3.4)

u = u+ ϵη(x, u) +O(ϵ2) (3.5)

called infinitesimal transformations. The coefficients ξj and η are the compo-

nents of the infinitesimal generator acting on the (x, u) space given by

Γ = ξj(x, u)
∂

∂xj
+ η(x, u)

∂

∂u
, (3.6)

which leaves the DE in question invariant. The action of Γ is extended in the

governing equation through the rth prolongation given by

Γ[r] = Γ + η1(x, u, u
(1))

∂

∂uj
+ . . .+ ηj1j2...jr(x, u, u

(1), . . . , u(r))
∂

∂uj1j2...jr
, (3.7)

where r = 1, 2, . . .

ηj = Dj(η)− ukDj(ξk), j = 1, 2, . . . , n; (3.8)

ηj1j2...jr = Djr(ηj1j2...jr−1)− uj1j2...jr−1kDjr(ξk), (3.9)

with jq = 1, 2, . . . , n and q = 1, 2, . . . , r, r = 2, 3, . . . and Dj being the total xj

derivative operator defined by

Dj =
∂

∂xj
+ uj

∂

∂u
+ . . .+ uj1j2...jr

∂

∂uj1j2...jr
. (3.10)



3.2. CALCULATION OF LIE POINT (LOCAL) SYMMETRIES 22

The invariance criterion for symmetry determination is given by

Γ[r] (F = 0)|F=0 = 0. (3.11)

Since the coefficients of Γ do not involve derivatives, we can separate (3.11)

with respect to the derivatives of u and solve the resulting overdetermined sys-

tem of linear homogeneous partial differential equations known as determining

equations. The calculation are algorithmic and may be were facilitated by a

computer software such as REDUCE [41] or YaLie [59].

It may happen that the only solution to the overdetermined system of linear

equations is trivial. When the general solution of the determining equations

is nontrivial two cases arise: (a) if the general solution contains a finite num-

ber, p, of essential arbitrary constants then it corresponds to a p-parameter

Lie algebra spanned by the base vectors (3.6); and (b) if the general solution

cannot be expressed in terms of a finite number of essential constants, for ex-

ample when it contains an arbitrary function of independent and/or dependent

variables variables, then it corresponds to an infinite-parameter Lie group of

transformations of the infinite-dimensional symmetry generator.

Illustrative example

As an illustrative example, we consider a nonlinear ODE

d

dx

[
θm

dθ

dx

]
−M2θn+1 = 0. (3.12)

Given n = −3m − 4, and considering the transformation y = θm+1, then

Eq. (3.12) becomes the Ermakov-Pinney type equation [60]

y′′ = (m+ 1)M2y−3. (3.13)
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The invariance criterion for symmetry determination is given by

Γ[2]
(
y′′ − (m+ 1)M2y−3

)∣∣
y′′=(m+1)M2y−3 = 0, (3.14)

where

Γ[2] = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ η1

∂

∂y′
+ η2

∂

∂y′′
(3.15)

is the second prolongation of symmetry generator and the coefficients η1 and

η2 are determined from the equations

η1 = Dx(η)− y′Dx(ξ), (3.16)

η2 = Dx(η1)− y′′Dx(ξ). (3.17)

The total derivative Dx is given by

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ . . . . (3.18)

The resulting determining equations are given by

ξyy = 0, (3.19)

ηyy − 2ξxy = 0, (3.20)

2y3ηxy − y3ξxx + 3(m+ 1)M2ξy = 0, (3.21)

y4ηxx − (m+ 1)M2yηy + 2(m+ 1)M2yξx − 3(m+ 1)M2η = 0. (3.22)

Solving Eqs. (3.19)-(3.22), yield the symmetry generators

Γ1 =
∂

∂x
, (3.23)

Γ2 = x2
∂

∂x
+ xy

∂

∂y
, (3.24)

Γ3 = x
∂

∂x
+
y

2

∂

∂y
. (3.25)

One may easily show that symmetry generators (3.23)-(3.25) span the

SL(2,R) = {

 a b

c d

 : a, b, c, d ∈ R, ad − bc = 1} Lie algebra (see e.g.

[61]).
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3.3 Calculation of nonlocal symmetries

A symmetry generator is said to be nonlocal if at least one of the coefficients

of the infinitesimal generator depends explicitly on independent and the de-

pendent variables and also on integrals of the dependent variables.

Using nonlocal (potential) symmetry method, it is possible to find further

exact solutions that are not obtainable via local symmetries. Furthermore,

one may construct solutions for boundary value problems posed for PDEs and

linearisation of nonlinear PDEs is also possible via potential symmetry analysis

[49].

The method for finding potential symmetries involves writing a given PDE

in a conserved form with respect to some choices of its variables. We consider a

scalar rth order PDE R{x, u} with s independent variables x = (x1, x2, . . . , xs)

and a single dependent variable u and suppose R{x, u} can be written in a

conserved form

Djf
j(x, y, u(1), u(2), . . . , u(r−1)) = 0, (3.26)

whereDj is the total derivative operator defined in (3.10). Now, one may intro-

duce r−1 auxiliary dependent variables or the potentials v = (v1, v2, . . . , vr−1)

and form an auxiliary system S{x, u, v} namely;

f 1(x, y, u(1), u(2), . . . , u(r−1)) =
∂

∂x2
v1;

fk(x, y, u(1), u(2), . . . , u(r−1)) = (−1)(k−1)

(
∂

∂xk+1

vk +
∂

∂xk−1

vk−1

)
, 1 < k < s;

f s(x, y, u(1), u(2), . . . , u(r−1)) = (−1)(s−1) ∂

∂xs−1

vs−1. (3.27)

Local symmetries admitted by (3.27) may induce nonlocal symmetries of

R{x, u}. The necessary conditions for a PDE written in conserved form, to

admit potential symmetries is presented in [62]. In addition [63] provides an

association between potential symmetries and reduction methods of order two.
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We also note that any solution u(x), v(x) of S{x, u, v} will define a solution

of u(x) of R{x, u} because R{x, u} is contained in S{x, u, v}. The reader is

referred to [49] for detailed outline of this technique.

3.4 Equivalence transformations and prelimi-

nary group classification

An equivalence transformation of the class of differential equations (3.2) is an

isomorphism F (x, u, u(1), . . . , u(r)) 7→ F (x, u, u(1), . . . , u(r)), that is, a one-to-

one and onto mapping of dependent and independent variables of Eq. (3.2)

to those of say, F (x, u, u(1), . . . , u(r)) = 0 in the same family. The said trans-

formation enables one to map solutions of the differential equation to those of

an equivalent equation. The concept of equivalence transformation has many

advantages. One of them is that, we can develop methods of solving a family

of differential equations instead of one [56]. The equivalence transformations

defines a set of all point transformations which form a group called equivalence

group GE . Lie’s algorithm is used to calculate equivalence transformations after

regarding all arbitrary coefficient functions of the system of governing differ-

ential equations to be variables (see e.g. [55, 64]).

In the case when a DE has arbitrary functions, then the invariance criterion

leads to the determining equation which may be solved when the functions are

considered arbitrary. The symmetry generators admitted by the equation,

given arbitrary functions, span the PLA (see e.g. [55, 64]).

One may utilize the equivalence transformation to determine the forms

of arbitrary functions which extended the principal Lie algebra by one (see

e.g. [55]). The method of searching for the forms of arbitrary functions which

increase the PLA by one, is called preliminary group classification. The prelim-
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inary group classification does not provide all the forms of arbitrary functions

which allow extra symmetries being admitted. One may consider enhanced

group classification (see e.g. [65]). We however, we restrict our study to the

preliminary group classification.

3.5 Lie algebras

In this section we discuss the notion of Lie algebras. The reader is referred

to texts by Bluman et al., [48, 49] for more details. Consider the infinitesimal

generators

Γ1 = ξi1
∂

∂xi
+ η1

∂

∂u
(3.28)

and

Γ2 = ξi2
∂

∂xi
+ η2

∂

∂u
. (3.29)

The Lie bracket or the commutator of Γ1 and Γ2 is defined as

[Γ1,Γ2] = (Γ1ξ
i
2 − Γ2ξ

i
1)

∂

∂xi
+ (Γ1η2 − Γ2η1)

∂

∂u
= Γ1Γ2 − Γ2Γ1. (3.30)

The nonzero commutator of any two infinitesimal generator is also, an infinites-

imal generator. It follows from (3.30) that the Lie bracket is skew-symmetric

that is

[Γ1,Γ2] = −[Γ2,Γ1]. (3.31)

Furthermore, any three infinitesimal generators Γ1,Γ2,Γ3 satisfy the Jacobi’s

identity

[[Γ1,Γ2],Γ3] + [[Γ2,Γ3],Γ1] + [[Γ3,Γ1],Γ2] = 0. (3.32)



3.6. ONE DIMENSIONAL OPTIMAL SYSTEM OF SUBALGEBRAS 27

A Lie algebra L is a vector space over some vector field F with an additional

law of combination of elements in L satisfying the properties skew-symmetry

and the Jacobi’s identity. Furthermore, the following axioms hold;

the commutator is bilinear,

[aΓ1 + bΓ2,Γ3] = a[Γ1,Γ3] + b[Γ2,Γ3] (3.33)

[Γ1, aΓ2 + bΓ3] = a[Γ1,Γ2] + b[Γ1,Γ3] (3.34)

where a, b are arbitrary constants. The infinitesimal generators (or base vec-

tors) span the Lie algebra.

It is more convenient to represent the Lie brackets in a commutator ta-

ble. For example, considering the generators in (3.23)-(3.25), we construct the

commutator Table. 3.1.

Table 3.1: Lie Bracket of the admitted symmetry algebra for (3.13)

[Γi,Γj] Γ1 Γ2 Γ3

Γ1 0 2Γ3 Γ1

Γ2 −2Γ3 0 −Γ2

Γ3 −Γ1 Γ2 0

3.6 One dimensional optimal system of subal-

gebras

Essentially there are two ways of constructing the one dimensional optimal

system of subalgebras (see e.g. [66]), one is by Ovsiannikov [56, 67], based on

determining the matrix of inner automorphism corresponding to the operators

of the adjoint group of a given Lie algebra. The other method is by Olver
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[53] whereby the generator is simplified as much as possible by subjecting it to

chosen adjoint transformation. Here we adopt and briefly discuss the Olver’s

method.

Suppose that a PDE of the form (3.2) admits an s dimensional Lie algebra

Ls viz., Γ1,Γ2, . . . ,Γs. Reductions of independent variables by one is possible

using any linear combination of base vectors

Γ = a1Γ1 + a2Γ2 + . . .+ asΓs (3.35)

In order to ensure that a minimal complete set of reduction is obtained from

symmetries admitted by the governing equation, an optimal system [55, 56]

is constructed. An optimal system of a Lie algebra is a set of r dimensional

subalgebras such that every r dimensional subalgebra is equivalent to a unique

element of the set under some element of the adjoint representation;

Ad
(
eϵΓi
)
Γj =

∞∑
n=0

ϵn

n!
(AdΓi)

n Γj = Γj−ϵ [Γi,Γj]+
ϵ2

2!
[Γi, [Γi,Γj]]−. . . , (3.36)

where [Γi,Γj] is the commutator of Γi and Γj. Patera and Winternitz [68]

constructed the optimal system of all one dimensional Lie subalgebras arising

from three and four dimensional Lie algebras by comparing the Lie algebra

with standard classifications previously evaluated. An alternative method de-

veloped by Olver [53] involves simplifying as much as possible the generator

(3.37) by subjecting it to chosen adjoint transformations.

Illustrative example

Consider the three dimensional Lie algebra spanned by the base vectors (3.23)-

(3.25). Their Lie brackets are shown in the commutator Table. 3.1. Reduction

of order of Eq. (6.31) by one is possible using any linear combination

Γ = a1Γ1 + a2Γ2 + a3Γ3 (3.37)
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where a1, a2, a3 are real constants. We need to simplify as much as possible the

coefficients a1, a2, a3 by carefully applying the adjoint maps to Γ. To compute

the optimal system we first need to determine the Lie brackets as given for

example, in Table. 3.2. Using (3.36) in conjunction with the commutator

Table 3.1, for example

Ad(exp(ϵΓ1))Γ3 = Γ3 − ϵ[Γ1,Γ3] +
ϵ2

2!
[Γ1, [Γ1,Γ3]]− . . . = Γ3 − ϵΓ1

we construct the adjoint representation table shown in Table. 3.2.

Table 3.2: Adjoint representation table for (3.13)

Ad (exp(ϵΓi)) Γj Γ1 Γ2 Γ3

Γ1 Γ1 Γ2 − 2ϵΓ3 + ϵ2Γ1 Γ3 − ϵΓ1

Γ2 Γ1 + 2ϵΓ3 + ϵ2Γ2 Γ2 Γ3 + ϵΓ2

Γ3 eϵΓ1 e−ϵΓ2 Γ3

Starting with a nonzero vector (3.37) with a1 ̸= 0 and rescaling such that

a1 = 1, it follows from Table. 3.2 that acting on Γ by Ad

(
exp

(
1± i

√
3

2
Γ2

))
,

one obtains ΓI = Γ1 + ã3Γ3. Acting on ΓI by Ad (exp(c1Γ3)) we get Γ1 +

ã3e
−c1Γ3. Depending on the sign of ã3, the coefficient of Γ3 can be assigned

either +1,−1, or 0. Next, suppose that a1 = 0, and assume that a3 ̸= 0 (say

a3 = 1 by rescaling); acting on the remaining vector by Ad (exp(−a2Γ2)) ,

we obtain Γ3. No further simplifications are possible. Therefore any one

dimensional subalgebra spanned by ΓI with a1 = 0 and a3 ̸= 0 is equivalent to

the one spanned by Γ3. Eventually, we choose a2 ̸= 0 (say a2 = 1 by rescaling)

and this yield Γ2, and so no further simplifications are possible. Thus the one

dimensional optimal system is {Γ1 ± Γ3,Γ3,Γ2}.
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3.7 Basis of invariants

In the method of variable reduction by invariants one seeks a compatible in-

variant solution expressed in the form

µ(φ1, φ2, . . . , φn) = 0; (3.38)

where φ1, φ2, . . . , φn is a complete set of n independent invariants for a one-

parameter Lie point transformation group (3.4) and (3.5).

The basis for invariants may be constructed by solving the characteristics

equations in Pfaffian form, corresponding to the (3.6) and (3.11)

dx1
ξ1

=
dx2
ξ2

= . . . =
du

η
(3.39)

A one-parameter group of transformations is a classical symmetry of (3.2),

provided (3.4) and (3.5) leave (3.2) invariant. Moreover, an invariant solution

of (3.2),

u = G(x), (3.40)

must satisfy the invariant surface condition (I.S.C.)

∑
j

ξj(x, u)
∂u

∂xj
= η(x, u), (3.41)

which follows from

d

dϵ
(u−G(x)) = 0, (3.42)

Illustrative example

Equation

∂θ

∂τ
=

∂

∂x

[
θm

∂θ

∂x

]
−M2θn+1 (3.43)
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admits among others symmetry generator

Γ =

(
m− n

2

)
x
∂

∂x
+ θ

∂

∂θ
− nτ

∂

∂τ
. (3.44)

By solving the characteristic equation

dτ

−nτ
=

dx(
m−n
2

)
x
=
dθ

θ
(3.45)

we obtain the basis of invariants

γ = xτ
m−n
2n and θ = τ−

1
nG(γ). (3.46)

Substituting (3.46) into the governing equation (3.43), one obtains the

second order ODE

[GmG′]
′
+

1

n
G− γG′ −M2Gn+1 = 0. (3.47)

Although Eq. (3.47) may not be solved exactly, the application of a sym-

metry generator have resulted in the reduction which may be easier to solve

numerically.

3.8 Methods of linearization and reductions of

ODEs.

The second order (in particular nonlinear) ODE admitting two, three or eight

dimensional Lie algebra may be integrated completely using two dimensional

Lie (sub)algebra. The two admitted symmetries by a second order ODE, may

either linearize the original equation or give rise to a second order equation

in terms of the canonical coordinates, with cubic as highest degree of the

first order derivative. Note that any linear second order ODE admitting eight

symmetries is equivalent to the simple equation y′′ = 0.
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Suppose that a given equation admits a non-Abelian two dimensional al-

gebra (subalgebra). That is, suppose the admitted Lie algebra is given by

[Γ1,Γ2] = λ1Γ1, λ1 ∈ R. Following reduction of the original given equation

by Γ1,Γ2 in new variables is automatically admitted by the reduced equation.

Such symmetries are referred to as inherited symmetries.

In the case where the admitted symmetry algebra is one-dimensional or

when one considers the one-dimensional subalgebra, the order of equation may

be reduced by one using the method of differential invariants discussed below.

3.8.1 Method of differential invariants

This method involves determining invariants from the first prolongation of the

given symmetries. That is, suppose one is given a second order ODE, then the

order of this equation may be reduced by one upon determining the invariants

from the first prolongation of the given symmetry generator. To illustrate, we

consider the example below.

Illustrative example

Given symmetry generator Γ2 in (3.24), the first prolongation is given by

Γ
[1]
2 = x2

∂

∂x
+ xy

∂

∂y
+ (y − xy′)

∂

∂y′
(3.48)

The basis of invariants may be constructed by solving the equations

dx

x2
=
dy

xy
=

dy′

y − xy′
. (3.49)

The invariants are therefore

t =
y

x
, u = y − xy′ (3.50)
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Writing u = u(t), one obtains

u
du

dt
=

(m+ 1)M2

t3
, (3.51)

which is a variable separable equation. The exact solution is given by

u2

2
+

(m+ 1)M2

2t2
+ k1 = 0. (3.52)

In terms of the original variables we obtain

y2(y − xy′)2 + (m+ 1)M2x2 +K1y
2 = 0. (3.53)

where K1 = 2k1.

3.8.2 Lie’s method of canonical coordinates

This method involves reduction of the second order ODE using two dimensional

Lie (sub)algebra. Any two dimensional Lie algebra can be transformed using

proper choice of basis and canonical variables t and u. Furthermore, (see e.g.

[69])

(i) A second order ODE admitting commutating pair of symmetries Γ1 and

Γ2 that is, [Γ1,Γ2] = 0, such that a point transformation t = ϕ(x, y) and

u = ψ(x, y) which bring the canonical form to

(a)

Γ1 =
∂

∂t
, Γ2 =

∂

∂u
and

(b)

Γ1 =
∂

∂u
, Γ2 = t

∂

∂u

reduce the original equation into

(a)

u′′ = f(u′) and
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(b)

u′′ = f(u) respectively.

(ii) A second order ODE admitting non-commutating symmetries Γ1 and

Γ2 i.e. [Γ1,Γ2] = Γ1, such that a point transformation t = ϕ(x, y) and

u = ψ(x, y) which bring the canonical form to

(a)

Γ1 =
∂

∂u
, Γ2 = t

∂

∂t
+ u

∂

∂u
and

(b)

Γ1 =
∂

∂u
, Γ2 = u

∂

∂u

reduce the original equation into

(a)

u′′ =
1

t
f(u′) and

(b)

u′′ = f(t)u′ respectively.

Note that (a) is an equation which is at most cubic in the first derivative

and (b) is linear. For the detailed account on reductions of ODEs, in

particular second order ODEs, by Lie point symmetries the reader is

referred to [69].

Illustrative example

As an illustration, we observed that Eq. (3.13) admits a three dimensional Lie

algebra spanned by the base vectors given in (3.23)-(3.25). The non commuting

pair of symmetries Γ1 and Γ3 leads to the canonical variables

t = y2, u = x+ y2 (3.54)
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The corresponding canonical forms of Γ1 and Γ3 are

Γ∗
1 = ∂u, Γ∗

3 = t∂t + u∂u (3.55)

Writing u = u(t) transforms Eq. (3.13) to

u′′ = −1

2

u′ − 1

t

[
1 + 4(m+ 1)M2(u′ − 1)2

]
(3.56)

Here the prime denotes the total derivative with respect to t.

Solving the equation Eq. (3.56), we obtain the solution that satisfies the

Neumann boundary condition at x = 0, and the Dirichlet condition at x = 1,

namely

θ =
[
1 + (m+ 1)M2(x2 − 1)

] 1
2(m+1) . (3.57)

3.9 Concluding Remarks

In this chapter, a brief outline of Lie symmetry techniques is provided. Both

historical and theoretical background of the field of symmetry analysis are

discussed. A connection between the one-parameter group of transformations

and corresponding infinitesimal transformation is provided. Furthermore we

discussed the determination of local and nonlocal symmetries, the notion of

equivalence transformations and Lie algebras. Also, we discussed the steps for

construction of the optimal systems. The use of symmetries admitted by both

the ODEs and PDEs are discussed and illustrated.



Chapter 4

Preliminary group classification

of a steady nonlinear

one-dimensional fin problem

Some results in this chapter have been published in an Institute for Scientific

Information journal of 2013 impact factor 0.6777, as follows;

R.J. Moitsheki and M.D. Mhlongo, Classical Lie point symmetry analysis

of a steady nonlinear one-dimensional fin problem, Journal of Applied

Mathematics, Vol. 2012, Article ID 671548, 13 pages.

4.1 Introduction

In this chapter we consider a one-dimensional model describing steady state

heat transfer in a longitudinal rectangular fin. Both the heat transfer coeffi-

cient and the thermal conductivity are given as arbitrary functions of temper-

ature. Preliminary group classification is performed and cases for which the

PLA is increased by one are determined. Realistic cases are then selected and

36
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the problem is analyzed. In section 4.2, we provide the mathematical formu-

lation of the problem. Symmetry analysis is performed in Section 4.3. We

determine the principal Lie algebra, equivalence transformations and list the

cases for which the principal Lie algebra is extended. In section 4.4, we employ

symmetry techniques to determine wherever possible, the invariant solutions.

4.2 Mathematical models

Consider a longitudinal rectangular one-dimensional fin as shown in Fig. 2.2.

The steady energy balance equation is given by [8]

Ac
d

dX

(
K(T )

dT

dX

)
= PH(T )(T − Ta), 0 ≤ X ≤ L, (4.1)

and the variables and parameters are defined in chapter 2.

In dimensionless variables equation (4.1) becomes

d

dx

[
k(θ)

dθ

dx

]
−M2h(θ)θ = 0, 0 ≤ x ≤ 1, (4.2)

and the boundary conditions become

θ(1) = 1 and θ′(0) = 0. (4.3)

Since h(θ) is an arbitrary function of temperature, we can therefore equate

the product h(θ)θ to G(θ). Moitsheki et al., [25] conducted the analysis of

Eq. (4.2), wherein the heat transfer coefficient was assumed to be given by the

power law function of temperature. In this investigation, both the heat transfer

coefficient and thermal conductivity are arbitrary functions of temperature.

We employ preliminary group classification techniques to determine the forms

which lead to exact solutions. We now consider the governing equation

d

dx

[
k(θ)

dθ

dx

]
−M2G(θ) = 0, 0 ≤ x ≤ 1. (4.4)
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We note that equation (4.4) is linearizable provided G is a differential

consequence of k. The proof of this statement follows from chain rule [24]. This

implies that Eq. (4.4) may be linearizable for any k such that its derivative isG.

Also, the linearization of Eq. (4.4) was performed in [70] wherein approximate

techniques were employed to solve the problem. In this study we apply Lie

symmetry techniques to analyze the problem.

4.3 Symmetry analysis

In the next subsections we construct the equivalence algebra and hence e-

quivalence group of transformations admitted by Eq. (4.4). Furthermore we

determine the Lie point symmetries admitted by Eq. (4.4) with arbitrary func-

tions k and G i.e. we seek the principal Lie algebra. Symmetry technique are

algorithmic and tedious. Here we utilize the interactive computer software

algebra REDUCE [41] to facilitate the calculations.

4.3.1 Equivalence transformations

To determine the equivalence transformation, one may seek the equivalence

algebra generated by the vector field

Γ̃ = ξ(x, θ)∂x + η(x, θ)∂θ + η1(x, θ, k,G)∂k + η2(x, θ, k,G)∂G. (4.5)

The second prolongation is given by

Γ̃[2] = Γ + ζx∂θ′ + ζxx∂θ′′ + µ1
x∂kx + µ1

θ∂k′ + µ2
x∂Gx , (4.6)
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where

ζx = Dx(η)− θ′Dx(ξ),

ζxx = Dx(ζx)− θ′′Dx(ξ),

µ1
x = D̃x(η

1)− kxD̃x(ξ)− k′D̃x(η),

µ2
x = D̃x(η

2)−HxD̃x(ξ)−G′D̃x(η),

µ1
θ = D̃θ(η

1)− kxD̃θ(ξ)− k′D̃θ(η), (4.7)

with Dx and D̃x being the total derivative operator defined by

Dx = ∂x + θ′∂θ + θ′′∂θ′ + ...,

D̃x = ∂x + kx∂k +Gx∂G + kxx∂kx + ... = ∂x,

and

D̃θ = ∂θ + k′∂k + ...

respectively. The prime implies differentiation with respect to θ. The invari-

ance surface condition is given by

Γ̃[2](
d

dx

[
k(θ)

dθ

dx

]
−M2G(θ) = 0)| ( d

dx [k(θ)
dθ
dx ]−M2G(θ)=0) = 0,

Γ̃[2](kx = 0)|kx=0 = 0,

Γ̃[2](Gx = 0)|Gx=0 = 0. (4.8)

This system of equations yields the infinite dimensional equivalence algebra

spanned by the base vectors

Γ̃1 = ∂x, Γ̃2 = x∂x−2G∂G, Γ̃3 = u(θ)∂θ−u′(θ)k∂k, Γ̃4 = v(H) (k∂k +G∂G) ,

admitted by Eq. (4.4). Here u and v are arbitrary functions of θ and G,

respectively.
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4.3.2 Principal Lie algebra

To determine the Principal Lie algebra of the governing equation we seek

transformations of the form

x = x+ ϵξ(x, θ) +O(ϵ2)

θ = θ + ϵη(x, θ) +O(ϵ2), (4.9)

generated by the vector field

Γ = ξ(x, θ)
∂

∂x
+ η(x, θ)

∂

∂θ
,

which is admitted by the governing equation for any arbitrary functions k and

G. We seek invariance in the form

Γ[2](
d

dx

[
k(θ)

dθ

dx

]
−M2G(θ) = 0)|( d

dx [k(θ)
dθ
dx ]−M2G(θ)=0) = 0

Here Γ[2] is the second prolongation defined by

Γ[2] = Γ + η1
∂

∂θ′
+ η2

∂

∂θ′′
,

where

η1 = Dx(η)− θ′Dx(ξ)

η2 = Dx(η1)− θ′′Dx(ξ) (4.10)

with

Dx =
∂

∂x
+ θ′

∂

∂θ
+ θ′′

∂

∂θ′
.

The principal Lie algebra is one-dimensional and spanned by space trans-

lation. For nontrivial function k and G we obtain the determining equations

(1) k′ξθ − kξθθ = 0,

(2) k2ηθθ + kk′ηθ + kk′′η − (k′)
2
η − 2k2ξxθ = 0,
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(3) 2kηxθ + 2k′ηx − kξxx − 3M2Gξθ = 0,

(4) k2ηxx +M2kHηθ −M2kH ′η +M2Hk′η − 2M2kHξx = 0.

The determining equation (1) implies that ξ = ϕ(θ) + ψ(x) and k = ϕ′(θ),

where ϕ and ψ are arbitrary functions of θ and x, respectively. The determining

equations (2), (3) and (4) become

(2*) ηθθϕ
′2 + ϕ′′ϕ′ηθ + (ϕ′′′ϕ′ − ϕ′′2)η = 0,

(3*) 2ηxθϕ
′ + 2ηxϕ

′′ + ϕ′ψ′′ − 3M2ϕ′G = 0,

(4*) ηxxϕ
′2 +M2ηθϕ

′G−M2G′ϕ′η +M2ϕ′′ηG− 2M2ϕ′ψ′G = 0.

It appears that full group classification of Eq. (4.4) may be difficult to

achieve. Hence, we resort to the preliminary group classification techniques.

4.3.3 Preliminary group classification

We follow the sketch of the preliminary group classification technique as out-

lined in [55]. We note that the Eq. (4.4) admits an infinite equivalence algebra

as given in Section 4.3.1. So we are free to take any finite dimensional subal-

gebra as large as we desire and use it for preliminary group classification. We

choose a five dimensional equivalence algebra spanned by the vectors

Γ̃1 = ∂x, Γ̃2 = x∂x−2G∂G, Γ̃3 = ∂θ, Γ̃4 = θ∂θ−k∂k, Γ̃5 = k∂k+G∂G. (4.11)

Recall that k and G are θ dependent. Thus we consider the projections

of (4.11) on the space of (θ, k,G). The nonzero projections of operators (4.11)

are

v1 = pr(Γ̃2) = −2H∂H , v2 = pr(Γ̃3) = ∂θ, v3 = pr(Γ̃4) = θ∂θ − k∂k,

v4 = pr(Γ̃5) = k∂k +G∂G. (4.12)
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Proposition 1 (see e.g. [55]) Let Lr be an r−dimensional subalgebra of the

algebra L4. Denote by Zi, i = 1, ..., r a basis of Lr and by Wi the elements of

the algebra L5 such that Zi = projections of Wi on (θ, k,G). If equations

k = µ(θ), G = φ(θ)

are invariant with respect to the algebra Lr then the equation

d

dx

(
µ(θ)

dθ

dx

)
−M2φ(θ) = 0 (4.13)

admits the operator

Zi = projection of Wi on (x, θ).

Proposition 2 (see e.g. [55]) Let Eq. (4.13) and equation

d

dx

(
µ(θ)

dθ

dx

)
−M2φ(θ) = 0 (4.14)

be constructed according to proposition 1 via subalgebras Lr and Lr, respec-

tively. If Lr and Lr, are similar subalgebras in L5 the Eq. (4.13) and (4.14)

are equivalent with respect to the equivalence group G5 generated by Lr. This

propositions imply that the problem of preliminary group classification of Eq.

(4.4) is reduced to the algebraic problem of constructing nonsimilar subalge-

bras of L4 or optimal system of subalgebras [55]. We explore methods in [53]

to construct the one dimensional optimal system of subalgebras. The set of

nonsimilar one dimensional subalgebras is

{v1 + αv3 + βv4, v3 ± v2 + αv4, v3 + αv4, v4 + αv2,v2} .

Here α and β are arbitrary constants. As an example we apply Proposition

1 to one of the element of the optimal system. since this involves routine

calculations of invariants we list the rest of cases in Table 4.1, wherein λ, p
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and q are arbitrary constants. Note that the power law k was obtained in [25],

therefore we omit this case in this manuscript.

Consider the subalgebra

v2 + v4 = k∂k +G∂G + ∂θ

where without loss of generality we have assumed α to be unity. A basis of

invariants is obtained from the equation

dk

k
=
dG

G
=
dθ

1

and the forms of k and G are

k = eθ and G = eθ.

For simplicity we have allowed both integration constants to vanish. Fur-

ther cases are listed in Table 4.1. By applying Proposition 1, we obtain the

symmetry generator Γ2 = ∂θ. We shall show in Section 4.4, that for this forms

of k and G one may obtain seven more Lie point symmetry generators.

4.4 Symmetry reductions and invariant solu-

tions

The main use of symmetries is to reduced the number of independent vari-

ables of the given equation by one. If a partial differential equation (PDE) is

reduced to an ordinary differential equation (ODE), one may or may not solve

the resulting ODE exactly. If a second order ODE admits a two-dimensional

Lie (sub)algebra, then one can use Lie’s method of canonical coordinates to

completely integrate the equation (see e.g. [69]).
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Table 4.1: Extensions of the Principal Lie algebra.

Forms Symmetries

k G Γ1 = ∂x.

epθ eqθ Γ2 = x∂x +
2

p−q
∂θ, p ̸= q.

p eqθ Γ2 = x∂x − 2
q
θ∂θ.

(1 + λθ) (1 + λθ)p Γ2 = x∂x +
2(1+λθ)
λ(p−2)

∂θ, p ̸= −6.

Γ2 = 2λx2∂x + x(1 + λθ)∂θ,

Γ3 = 2λx∂x + (1 + λθ)∂θ, p = −6

Example 1

As an illustrative example, we consider the case k = epθ and h = θ−1eqθ where

p ̸= q. In this case Eq. (4.2) admits a non-Abelian two-dimensional Lie algebra

spanned by the base vectors listed in Table 1. This non commuting pair of

symmetries leads to the canonical variables

t = e
p−q
2

θ, and u = c1e
p−q
2

θ + x,

where c1 is an arbitrary constant. We have two cases, the ‘particular’ canonical

variables when c1 = 0 and the ‘general’ canonical variables given a nonzero c1,

say c1 = 1.

The corresponding canonical forms of Γ1 and Γ2 are

Γ∗
1 = ∂u, and Γ∗

2 = t∂t + u∂u.
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Writing u = u(t) transforms Eq. (4.4) to

u′′ =
u′

t

[(
2p

p− q
− 1

)
−
(
p− q

2

)
M2u′2

]
, p ̸= q. (4.15)

Here prime is the total derivative with respect to t. Three cases arise.

case i, for u′ = 0 we obtain the constant solution which is not related to the

original problem. Thus we ignore it.

case ii, If the term in the square bracket vanish then we obtain in terms of

original variables the exact ‘particular’ solution

θ =

(
2

p− q

)
ln

[
(p− q)M

±
√

2(p+ q)

(
x− 1±

√
2(p+ q)

(p− q)M
e(p−q)/2

)]
.

Note that this exact solution satisfy the boundary only at one end. The

Neumann’s boundary condition leads to a contradiction since the thermo-

geometric fin parameter is a nonzero constant.

case iii, If u′ ̸= 0 and
(

2p
p−q

− 1
)
−
(
p−q
2

)
M2u′2 ̸= 0, we obtain the solution in

complicated quadratures and therefore we omit it.

4.4.1 General canonical form

In this case the transformed equations is given by

u′′ =
(u′ − 1)

t

[(
2p

p− q
− 1

)
−
(
p− q

2

)
M2(u′ − 1)2

]
, p ̸= q. (4.16)

Clearly u′ − 1 → y′ reduces Eq. (4.16) to Eq. (4.15). We herein omit

further analysis.

Example 2

We consider as an example Eq (4.4) with thermal conductivity given as ex-

ponential function of temperature i.e., k = epθ and heat transfer coefficient
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is given as the product θ−1eqθ. Given p = q, then equation (4.4) admits a

maximal eight dimensional symmetry algebra spanned by the base vectors

Γ1 = e
√
pMx+pθ

{
∂x +

M√
p
∂θ

}
,

Γ2 = e−
√
pMx+pθ

{
∂x − M√

p
∂θ

}
,

Γ3 = e
√
pMx−pθ∂θ, X4 =

√
pe2

√
pMx

M
∂θ,

Γ5 = ∂x, Γ6 = e−
√
pMx−pθ {∂x + ∂θ} ,

Γ7 = e−2
√
pMx

{
−

√
p

M
∂x + ∂θ

}
, Γ8 = ∂θ.


(4.17)

Equation (4.4) is linearizable or equivalent to y′′ = 0 (see e.g. [69]). In

fact, we note that the point transformation µ = epθ, p ∈ R linearizes Eq (4.4)

given p = q. Following a simple manipulation we obtain the invariant solutions

satisfying the prescribed boundary conditions, namely

θ = ln

[
ep cosh

(
M

√
p x
)

cosh
(
M

√
p
) ] 1

p

, p > 0. (4.18)

Solution (4.18) is depicted in Figs. 4.1 and 4.2. Note that for p = 0 and

p < 0 we obtain solutions which have no physical significance for heat transfer

in fins. Therefore we herein omit such solutions.

The fin efficiency is defined as the ratio of actual heat transfer from the fin

surface to the surrounding fluid while the whole fin surface is kept at the same

temperature (see e.g. [2]). Given (4.18) fin efficiency (η) is given by

η =

∫ 1

0

epθdx = ep tanh (M
√
p) . (4.19)

The fin efficiency (4.19) is depicted in Fig. 4.3.

4.5 Concluding remarks

We considered a one dimensional fin model describing steady state heat trans-

fer in longitudinal rectangular fins. Here, the thermal conductivity and heat
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Figure 4.1: Temperature profile in a fin with varying values of the thermo-

geometric fin parameter. Here p is fixed at unity.
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Figure 4.2: Temperature profile in a fin with varying values of the p. Here the

thermo-geometric fin parameter is fixed at 1.85.
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Figure 4.3: Fin efficiency.

transfer coefficient are temperature dependent. As such the considered prob-

lem are highly nonlinear. This is a significant improvement to the results

presented in the literature (see e.g. [6, 7]). Preliminary group classification

led to a number of cases of thermal conductivity and heat transfer coefficien-

t for which extra symmetries are obtained. Exact solutions are constructed

when thermal conductivity and heat transfer coefficient increase exponential

with temperature. We observed in Fig. 4.1, that temperature inversely pro-

portional to the values of the thermo-geometric fin parameter. Furthermore

we observe that for certain values of M , the solution is not physically sound

(see also, [71]). One may recall that the thermo-geometric fin parameter de-
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Figure 4.4: Temperature profile in a fin of varying values of the thermo-

geometric fin parameter. Here p is fixed at unity.
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pends also on heat transfer coefficient at the base of the fin. We notice that

the exponential temperature dependent heat transfer coefficient in this paper

leads to lower values of M for which the solutions are realistic. That is, the

maximum values of M , say Mmax for which the solutions are physically sound

is around 2. We observe in Fig. 4.4, that for as values of M increase beyond

2 the temperature profile becomes negative. This contradicts the rescaling of

temperature (the dimensionless temperature). Unlike in [25] and [32] whereby

heat transfer is given by a power law, this value is much higher. The rea-

sons behind this observation is studied elsewhere. In Fig. 4.2, temperature

increases with increased values of the exponent p. Furthermore, fin efficiency

decreases with increased values of the thermo-geometric fin parameter. We

observed in Fig. 4.3, that the maximum value of the thermo-geometric fin

parameter for which the fin efficiency is realistic in again around 2.



Chapter 5

Transient response of

longitudinal rectangular fins to

step change in base temperature

and in base heat flow conditions

Some results in this chapter have been published in an Institute for Scientific

Information journal of 2013 impact factor 2.407, as follows;

M.D. Mhlongo, R.J. Moitsheki and O.D. Makinde, Transient response

of longitudinal rectangular fins to step change in base temperature and

in base heat flow conditions, International Journal of Heat and Mass

Transfer, 57 (2013) 117-125.

5.1 Introduction

In this chapter we extend the work in [32]. Unlike in [32] wherein thermal con-

ductivity was given as a linear function of temperature, here both the thermal

52
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conductivity and the heat transfer coefficient are given as power law tempera-

ture dependent, as such the models become highly nonlinear. Furthermore we

consider the step change in base heat flux flow conditions. Few exact solutions

are known and perhaps this is due to the added difficulty by the nonlinearity.

In fact, exact solutions are constructed for fin problems when both thermal

conductivity and heat transfer coefficient are constant. In this investigation we

attempt to construct the exact solutions given (i) step change in base tempera-

ture and (ii) step change in base heat flow conditions. The governing equation

admits a number of local point symmetries, and nonlocal symmetries for spe-

cific values of the exponents. We construct the steady state solutions which

satisfy the boundary conditions. Since the exact solutions for transient state

do not satisfy the entire boundary conditions we seek the numerical solutions.

Mathematical models are given in Section 5.2. We utilize local and nonlocal

symmetry methods in Section 5.3. In Section 5.4, we seek numerical solution-

s and provide exciting results. Lastly we provide the concluding remarks in

Section 5.5.

5.2 Mathematical models

The energy balance for a longitudinal fin of a rectangular profile is a special

case of Eq. (2.22) given by

∂θ

∂τ
=

∂

∂x

(
k(θ)

∂θ

∂x

)
−M2h(θ)θ, 0 ≤ x ≤ 1. (5.1)

The use of the power law for the heat transfer coefficient and thermal

conductivity, changes the one dimensional transient heat conduction Eq. (5.1)

into

∂θ

∂τ
=

∂

∂x

[
θm

∂θ

∂x

]
−M2θn+1, 0 ≤ x ≤ 1. (5.2)
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The initial condition is given by

θ(x, 0) = 0, (5.3)

the step change in fin base temperature is given by

θ(1, τ) = 1, (5.4)

the step change in fin base heat flux is given by

∂θ

∂x

∣∣∣∣
x=1

= 1 (5.5)

and fin tip boundary condition is given by

∂θ

∂x

∣∣∣∣
x=0

= 0. (5.6)

We refer to Eq. (5.2) as the governing equation.

5.3 Classical Lie point symmetry analysis

Determining symmetries for the governing Eq. (5.2), implies seeking transfor-

mations of the form

x = x+ ϵξ1(τ, x, θ) +O(ϵ2)

τ = τ + ϵξ2(τ, x, θ) +O(ϵ2)

θ = θ + ϵΘ(τ, x, θ) +O(ϵ2)

 (5.7)

generated by the vector field

Γ = ξ1(τ, x, θ)
∂

∂x
+ ξ2(τ, x, θ)

∂

∂τ
+Θ(τ, x, θ)

∂

∂θ
, (5.8)

which leave the governing equation invariant. Here ϵ is a Lie group parameter.

Note that we seek symmetries that leave a single Eq. (5.2) invariant rather than

the entire boundary value problem, and apply the boundary condition to the
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obtained invariant solutions. It is well known that the dimension of symmetry

algebra admitted by the governing equation may reduce if one seeks invariance

of the entire BVP (see e.g. [49]). The action of Γ is extended to all the

derivatives appearing in the governing equation through second prolongation

Γ[2] = Γ + ζτ
∂

∂θτ
+ ζx

∂

∂θx
+ ζxx

∂

∂θxx
, (5.9)

where

ζτ = Dτ (Θ)− θxDτ (ξ
1)− θτDt (ξ

2) ,

ζx = Dx (Θ)− θxDx (ξ
1)− θτDx (ξ

2) ,

ζxx = Dx (ζx)− θxxDx (ξ
1)− θxτDx (ξ

2)

and, Dx and Dτ are the operators of total differentiation with respect to x and

τ respectively. The operator Γ is a point symmetry of the governing Eq. (5.2),

if

Γ[2]

(
∂θ

∂τ
− ∂

∂x

[
θm

∂θ

∂x

]
+M2θn+1 = 0

)∣∣∣∣
∂θ
∂τ

− ∂
∂x [θm

∂θ
∂x ]+M2θn+1=0

= 0,

Γ[2]

(
∂θ

∂x
= 0

)∣∣∣∣
∂θ
∂x

=0

= 0.

(5.10)

Since the coefficients of Γ do not involve derivatives, we can separate (5.10)

with respect to the derivatives of θ and solve the resulting overdetermined

system of linear homogeneous partial differential equations known as the de-

termining equations. Further calculations are omitted at this stage as they

were facilitated by a freely available package DIMSYM [40], a subprogram of

REDUCE [41].

More often, differential equations arising in real world problem involve one

or more functions depending on either the independent variables or on the

dependent variables given a system of equations. It is possible by symmetry

techniques to determine the cases which allow the equation in question to
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admit extra symmetries. The exercise of searching for the forms of arbitrary

functions that extend the principal Lie algebra is called group classification.

Here we assume the realistic thermal conductivity and heat transfer coefficient

for a fin with rectangular profile.

5.3.1 Local symmetries

Group classification of a class of nonlinear heat equation with a source has been

carried out by Dorodnitsyn in the late nineteen seventies and early eighties (see

Chapter 10 in [72]). Also, classical symmetry analysis of diffusion equations for

thermal energy storage was performed by Moitsheki and Makinde [73]. Here

we consider a subclass of Dorodnitsyn class of heat equation arising in heat flow

in longitudinal fins. For some case of the exponents of heat transfer coefficient

and thermal conductivity the considered equation is transformable to tractable

equation Ermakov-Pinney type equation. We determine the general exact

analytical solutions. Symmetry analysis reveals a three dimensional Lie algebra

being admitted by Eq. (5.2) with m ̸= n. The algebra is spanned by the base

vectors

Γ1 = ∂τ , Γ2 = ∂x, Γ3 =
1

m

{
θ∂θ +

m− n

2
x∂x − nτ∂τ

}
. (5.11)

Following the method in [53], we construct the one-dimensional optimal

system of subalgebras and obtain the set

{Γ3, Γ2 ± Γ1, Γ2, Γ1} . (5.12)

The reductions by these elements of the one-dimensional optimal system are

given in Table 5.1, wherein the prime indicates differentiation with respect to

the given invariant (similarity variable). We observe that reductions in Table

5.1 lead to general exact analytical solutions provided m = 0 and n = −1,
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but this choice renders the original equation linear. Such linear problems are

of no interest to us therefore we omit them here. Given n = m = −4/3, Eq.

(5.2) admits a five dimensional Lie algebra spanned by base vectors (see also

see Chapter 10 in [72])

Γ1 = ∂τ , Γ2 = − 3
4M2∂x, Γ3 = 3θ∂θ + 4τ∂τ

Γ4 =
1√
3

{
−3M cos

(
2Mx√

3

)
θ∂θ +

√
3 sin

(
2Mx√

3

)
∂x

}
,

Γ5 =
1√
3

{
3M sin

(
2Mx√

3

)
θ∂θ +

√
3 cos

(
2Mx√

3

)
∂x

}
.

 (5.13)

The one-dimensional optimal system of subalgebra is

{Γ5 + αΓ3, Γ3 + αΓ4, Γ4 + αΓ1, Γ2 ± Γ1, Γ2} . (5.14)

The reductions by these elements of the optimal system are provided in

Table 5.2.

Local symmetry reductions

Symmetries, when admitted, may be used to reduced the independent vari-

ables of a partial differential equation by one. The reduced equations may or

may not be solved. The similarity solutions constructed by symmetries are

called invariant (exact) solution. Even when explicit exact solutions may not

be constructed, reduction of variable has a number of advantages. For ex-

ample, the nonlinear boundary value problems which are compatible may be

easily solvable by the numerical schemes or the differential equations in fewer

variables or lower order have been extensively studied.

Example 1: Steady state solutions

The admitted symmetry generator Γ = ∂τ leads to the steady state heat trans-

fer, that is, the governing Eq. (5.2) is invariant under time translation. The
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Table 5.1: Reductions by elements of the optimal systems (5.12)

Symmetry Reductions

Γ3 γ = xτ (m−n)/2n; θ = τ−1/nG(γ) where G satisfies

− 1
n
G+ γG′ = [GmG′]′ −M2Gn+1.

Γ2 ± Γ1 γ = x± aτ ; θ = G(γ), where G satisfies

±aG = [GmG′]′ −M2Gn+1.

Table 5.2: Reductions by elements of the optimal systems (5.14)

Symmetry Reductions

Γ2 + Γ1 γ = x+ 3
4M
τ ; θ = G(γ) where G satisfies[

G−4/3G′]′ = 3
4M2G

′ +M2G−1/3.

Γ4 + αΓ1 γ =
[
csc
(

2Mx√
3

)
− cot

(
2Mx√

3

)]
e−τ/α;

α ̸= 0 θ = sin
(

2Mx√
3

)−3/2

G(γ); where G satisfies

γ2
[
G−4/3G′]′ + γG−4/3G′ +M2G−1/3 + γ

α
G′ = 0.

Γ3 + αΓ4 γ =
[
csc
(

2Mx√
3

)
− cot

(
2Mx√

3

)]√3/2αM

τ−1/4;

α ̸= 0 θ = sin
(

2Mx√
3

)−3/2 [
csc
(

2Mx√
3

)
− cot

(
2Mx
3
√
3

)]3√3/2αM

G(γ);

GG′′ + 1
4
α2γ3G′G7/3 + (3− α2)γ2G2 − 4

3
G′2 − 1

γ
GG′ = 0.

Γ5 + αΓ3 γ =
[
sec
(

2Mx√
3

)
+ tan

(
2Mx√

3

)]√3/2M

τ−1/4α;

α ̸= 0 θ = cos
(

2Mx√
3

)−3/2 [
sec
(

2Mx√
3

)
+ tan

(
2Mx√

3

)]3√3α/2M

G(γ);

αγ2GG′′ − 4
3
αγ2(G′)2 − α(2α− γ)GG′

+1
4
γ1+4αG7/3G′ − 3α3G2 − 4αM2G = 0.

steady state problem with given m = n = −4/3, is given by

d

dx

[
θ−4/3 dθ

dx

]
−M2θ−1/3 = 0, (5.15)



5.3. CLASSICAL LIE POINT SYMMETRY ANALYSIS 59

(i) Subject to the step change in base temperature conditions

θ′(0) = 0, θ(1) = 1 and (5.16)

(ii) Subject to the step change in base heat flow conditions

θ′(0) = 0, θ′(1) = 1. (5.17)

The exact solution to Eq. (5.15) subject to the conditions (5.16) is

θ =

 cos
(

M√
3

)
cos
(

Mx√
3

)


3

. (5.18)

Solution (5.18) is depicted in Fig. 5.2. The exact analytical solution to Eq.

(5.15) subject to (5.17) is given by

θ =
cos
(

M√
3

)4
√
3M sin

(
M√
3

) cos

(
Mx√
3

)−3

. (5.19)

Solution (5.19) is depicted in Fig. 5.1. Note that the exact analytical

steady-state solutions may be also obtained when m = n ̸= −4/3 [25].

Example 2: Solutions for transient heat flow

Symmetry generator Γ3 in (5.13) leads to the functional form of the exact

solution

θ(τ, x) = τ 3/4H(x),

where H satisfies the ordinary differential equation

3

4
H =

d

dx

(
H−4/3dH

dx

)
−M2H−1/3. (5.20)

The above functional form is a separation of variables, however this has

been exposed by symmetry methods. The transformation

w = H−1/3,
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reduces equation (5.20) to the tractable Ermakov-Pinney type equation

w′′ +
M2

3
w +

1

4
w−3 = 0. (5.21)

Equation (5.21) admits the algebra of SL(2,R) which is isomorphic to the

noncompact algebra so(2, 1) [61]. Furthermore equation of this type arise in

many other areas including for example cosmology, elasticity, quantum me-

chanics and nonlinear systems (see e.g. [61] and references therein). We omit

the symmetry analysis of Eq. (5.21) but directly solve it using method by

Pinney [60]. The general exact solution to Eq. (5.21) is given by

c1w
2 = −1

4
y2 + y2

(
c2 + c1

∫
dx

y2

)2

, (5.22)

where y(x) is a solution to the linear equation (see e.g. [74])

y′′ +
M2

3
y = 0.

In terms of the original variables we obtain the general exact solutions

θ =


√
c1 τ

1/4

cos
(

Mx√
3

)[(
c2 +

c1
√
3

M
tan
(

Mx√
3

))2
− 1

4

]1/2


3

(5.23)

and

θ =


√
c1τ

1/4

sin
(

Mx√
3

)[(
c2 − c1

√
3

M
cot
(

Mx√
3

))2
− 1

4

]1/2


3

. (5.24)

Note that these general exact solutions satisfy the zero initial temperature

and the no flux flow (adiabatic) boundary condition at the fin tip.

5.3.2 Nonlocal symmetries

In this section we employ nonlocal symmetry methods in an attempt to solve

the given heat transfer problem, particularly when m ̸= n. The symmetry
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solutions constructed using nonlocal symmetries cannot be obtained via Lie

point (local) symmetries. It is common when constructing nonlocal symmetries

to first express the governing equation in conserved form as a system of first

order differential equations, known as the auxiliary system. A single equation

may be expressed in more than one auxiliary system, thus one needs to be

careful as nonlocal symmetry bearing auxiliary system may be hidden [75].

Given n = −1 and m = −2, one may write Eq. (5.2) as a system

vx = θ,

vτ = θ−2θx −M2x.

 (5.25)

Here v is the potential variable. This system indicate a globally conserved

quantity ∫
θdx

with the corresponding flux density θ−2θx −M2x. Lie point symmetries ad-

mitted by the auxiliary system (5.25) yield nonlocal symmetries of Eq. (5.2)

provided that at least one of the infinitesimals depend explicitly on the po-

tential variable [49, 76]. Eq. (5.2) with n = −1 and m = −2 was analyzed

using Lie-Bäcklund transformation by Dorodnitsyn and Svirschchevskii (see

page 137 in [72]). The point symmetries admitted by the auxiliary system

(5.25) are

v1 = ∂τ , v2 = v∂v + 2u∂u − x∂x + 2τ∂τ , v3 = ∂v,

v4 =
1

M2 {−M2τ∂v + ∂x} ,

v5 =
1

M2 {−M2τv∂v − (θ2 + 2M2τθ) ∂θ + (v +M2xτ) ∂x −M2τ 2∂τ} .


(5.26)

Clearly v5 is a genuine nonlocal symmetry of Eq. (5.2).
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Nonlocal symmetry reductions

Here we perform symmetry reductions using the nonlocal symmetry v5. The

basis for invariants may be constructed by solving the characteristic equations

in Pfaffian form

− dv

M2τv
= − dθ

θ2 + 2M2τθ
=

dx

v +M2xτ
= − dτ

M2τ 2
. (5.27)

Following a straightforward calculations we obtain the general exact solu-

tions for the system (5.25), namely

v +M2xτ =

√
2

c1
tanh

(
v + c2τ√

2c1τ

)
, (5.28)

θ =
c21M

2τ

sech2
(

v+c2τ√
2c1τ

)
− c21τ

. (5.29)

We note that these general exact solutions are implicit and we therefore

omit further analysis at this stage.

5.3.3 Exact results

We have obtained the exact analytical steady-state solutions using the local

symmetry techniques and these are depicted in Figs. 5.2 and 5.1. These

solutions are obtained for m = n = −4/3 may be used as benchmarks for

the numerical schemes and provide insight into thermal flow processes in fins.

In particular, the exponent m = −4/3 for power law thermal conductivity

agrees well with the range of GaN model 2 at ka = 220 W/mK, and is close

to the AlN at ka = 350 W/mK (see Table 2 in [42]). Furthermore these

models compare and are in agreement with the experimental observations [42].

We observe in Figs. 5.2 and 5.1, that temperature decreases with increasing

values of the thermo-geometric fin parameter. Note that the thermo-geometric

fin parameter M = (Bi)1/2E, where Bi = hbδ/ka is the Biot number and
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E = L/δ is the aspect ratio or the extension factor. Evidently, small values

of M correspond to the relatively short and thick fins of high conductivity

and high values of M correspond to longer and thin fins of poor conductivity

[77]. A fin is an excellent dissipator at small values of M. We observe that

temperature decreases as the values of the thermo-geometric fin parameter

increase. The general exact analytical transient solutions satisfy the initial

condition and only the adiabatic boundary condition at the fin tip.

Some of the limitations of applications of Lie symmetry methods include;

(a) exact analytical solutions are harder to construct particularly when the

spatial variable or boundary is defined by a characteristic length, and (b) one

losses a number of admitted symmetries when analyzing the entire boundary

value problem rather than a single equation [49]. One may assume semi-

infinite fins. On the other hand, symmetry methods may be used to determine

the forms of arbitrary functions, appearing in the equation, for which extra

symmetries are admitted. One may then select the physically realistic cases.

The advantage of utilizing the Lie symmetry methods, particularly in this

problem, is that we were able to construct exact solutions which are invariant

under time translation. We observe that the transient numerical solution-

s approached these obtained exact solution. As such this gave confidence

in the choice of the numerical schemes used. Furthermore, if necessary one

may manipulate the general exact solutions (5.23) and (5.24) and use these as

benchmarks for the numerical schemes.

5.4 Numerical solutions

The transient heat flow problem is harder to solve exactly, particularly when

m ̸= n. Thus we resort to numerical methods to determine solutions. In this
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section we seek numerical solution for the nonlinear initial boundary value

problems (IBVP) (5.1) with (5.3) - (5.6). The given IBVP will give rise to

DE (stiff DE) for which certain numerical methods are numerically unstable,

unless the step size is taken to be extremely small. The availability of robust

stiff ODE integrators gives advantage to the method of lines [78]. We first

consider IBVP (5.2) with (5.3), (5.4) and (5.6).

5.4.1 Step change in base temperature

The IBVP (5.2) with (5.3), (5.4) and (5.6) is transformed into a system of

ODEs using finite difference for the spatial derivative. The discretization is

based on a linear cartesian mesh and uniform grid. A spatial interval 0 ≤ x ≤ 1

is partitioned into N equal parts with grid size ∆x = 1/N and grinds points

xi = i∆x, 0 ≤ i ≤ N. The first and second order spatial derivatives in

Eq. (5.2) are approximated with second order central difference. Let θi(τ) be

the approximation of θ(τ, xi), then the semi discrete system for the problem

becomes

dθi
dτ

=
θmi

(∆x)2
(θi+1 − 2θi + θi−1) +mθm−1

[
θi+1 − θi−1

2∆x

]2
−M2θn+1

i , (5.30)

with initial conditions

θi(0) = 0, 0 ≤ i ≤ N. (5.31)

The equations corresponding to the first and last grid points are modified

to incorporate the boundary conditions, that is.,

θN = 1, θ2 = θ0. (5.32)

Eqs. (5.30) - (5.32) are first order initial value problem and contain only one

independent variable. The in built ODE solver program in Matlab can easily
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be employed to integrate the set of ordinary differential equations using a

fourth order Runge-Kutta iteration scheme. The results are depicted in Figs.

5.3 - 5.7. Figs. 5.8 and 5.9 depict the effects of the parameters n and M on

the base heat flux.

Figure 5.1: Exact steady state temperature profile given step change in heat

flux at the fin base.
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Figure 5.2: Exact steady state temperature profile for step change in base

temperature condition.
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Figure 5.3: Temperature variation with increasing time and space for step

change in base temperature condition when m = 0.1, n = 4,M = 2.
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Figure 5.4: Temperature variation with increasing time for step change in base

temperature condition when m = 0.1, n = 4,M = 2.
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Figure 5.5: Temperature profiles for step change in base temperature condition

when τ = m =M = 1.
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Figure 5.6: Temperature profiles when M for step change in base temperature

condition when τ = m = 1, n = 4.
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Figure 5.7: Temperature profiles increasing m for step change in base temper-

ature condition when τ =M = 1, n = 4.
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……n = -1/4

*****n = 1/4

++++ n =1/3

ooooon = 2

...... n = 4

Figure 5.8: Effect of n on the base heat flow when τ = 1,M = 0.5
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……M = 0.1

++++ M =0.5

oooooM = 1

...... M = 1.2

Figure 5.9: Effect of M on the base heat flow when τ = 1, n = 4
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5.4.2 Step change in base heat flow

The IBVP (5.1) with (5.3), (5.5) and (5.6) is treated the same way as the IBVP

(5.1) with (5.3), (5.4) and (5.6) above. Here the boundary condition become

θN = θN−2 +
2

N
, θ2 = θ0. (5.33)

The solutions are depicted in Figs. 5.10 - 5.14.

5.4.3 Numerical results

We observed that the problem at hand particulary when considering the tran-

sient heat flow, is difficult to solve analytically, thus the problem is solved

numerically when the exponents are distinct. Fig. 5.3, depicts the temper-

ature profile given increasing time and space. In Fig. 5.4, we observe that

the fin temperature increases with increasing time and approaches the steady

state. We observe in Fig. 5.5 that temperature increase with the increasing

values of n (recalling that, n = 4 represents radiation and n = −1/4 repre-

sents laminar film boiling state). In Fig. 5.6, we observe that temperature

decreases with increasing values of the thermo-geometric fin parameter. The

increase in values of the thermal conductivity result in decreasing temperature

as displayed in 5.7 where in the base heat flow is fixed. This implies heat is

lost rapidly at high thermal conductivity. Figs. 5.8 and 5.9 show the effects of

n and M on the base heat flux flow. The heat flow decreases with increasing

values of n and M . Figs. 5.10 depicts the heat flow profile at fixed m,n and

M. In Fig. 5.11, we observe that the fin temperature increases with increasing

time. In Fig. 5.12 we observe that temperature increases with increasing val-

ues of n, whilst temperature decreases with increasing values of M. Unlike in

Fig. 5.7, temperature increases with increasing thermal conductivity as shown
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in Fig. 5.14 where the base heat flow changes. This indicates the fin response

to different changes in the fin base temperature.

Figure 5.10: Temperature variation with increasing time and space for constant

base heat flow condition when m = 0.1, n = 4,M = 2.

5.5 Concluding remarks

In this chapter we considered the models describing the heat transfer in lon-

gitudinal rectangular fins. We employed symmetry techniques in attempt to

solve the resulting IBVP. In particular, we employed the nonlocal and the Lie

point (local) symmetry techniques. The governing equation admitted nonlocal
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Figure 5.11: Temperature variation with increasing time for constant base heat

flow condition when m = 0.1, n = 4,M = 2.
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Figure 5.12: Temperature profiles for constant base heat flow condition when

τ = 2,m = 0.5,M = 1.
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Figure 5.13: Temperature profiles with increasing M for constant base heat

flow condition when τ = 2,m = 0.5.
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Figure 5.14: Temperature profiles with increasing m for constant base heat

flow condition when τ = 2,m = 0.5,M = 1.
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symmetries for a special case. The genuine nonlocal symmetry generator led

to general exact analytical implicit solutions. On the other hand, Lie point

symmetries led to construction of general exact analytical solutions for tran-

sient heat flow when m = n = −4/3. Furthermore, the time invariance led to

some exiting exact analytical solutions for the steady state problem. The case

m = n = −4/3, was fully exploited since it allowed easier mathematical manip-

ulations and some exact analytical solutions particularly for the steady state

problem. Furthermore, the assumption that temperature dependent thermal

conductivity may be given by the power law is physically realistic. The con-

vergence of transient numerical solutions to exact analytical steady state is

conspicuous. We have observed that the symmetry analysis of the transient

problem led to the general exact solutions which satisfied the adiabatic fin

tip boundary condition and the zero initial temperature. The problem is even

harder whenm ̸= n. However, after gaining confidence in the method of second

order central difference and integration by fourth order Runge-Kutta iteration

scheme were used to obtain the numerical solutions.

The method of separation of variable may be invoked in attempt to solve

Eq. (5.1) when the exponents are the same. The resulting separated ordi-

nary differential equation in spatial variable is transformable to a tractable

Ermakov-Pinney equation. Nonlinear superposition principle may be exploit-

ed.



Chapter 6

Some exact solutions of

nonlinear fin problem for steady

heat transfer in longitudinal fin

with different profiles

Some results in this chapter have been submitted to an Institute for Scientific

Information journal for consideration to be published.

6.1 Introduction

In this chapter, we determine exact solutions of nonlinear fin problem for

steady heat transfer in longitudinal fin of various profiles. Here the thermal

conductivity is related to temperature by a power law. In section 6.2, we

provide the mathematical formulation of the problem. In Section 6.3, we

employ some transformation that linearizes the problem and construct exact

solutions. We employ Lie point symmetry techniques to determine wherever

81
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possible, the invariant solutions of some problems which are not linearizable.

In section 6.4 remarks are given in Section 6.6.

6.2 Mathematical models

We consider a longitudinal one-dimensional fin with the fin profile given by

the function F (X). The steady-state energy balance for a longitudinal fin is a

special case of (2.1) and is given by

Ac
d

dX

(
F (X)K(T )

dT

dX

)
=
δb
2
PH(T ) (T − Ta) , 0 < X < L, (6.1)

where parameters are as explained in chapter 1. The prescribed boundary

conditions are given by (see e.g. [2])

T (L) = Tb, and
dT

dX

∣∣∣∣
X=0

= 0. (6.2)

Introducing the dimensionless variables and the dimensionless numbers re-

duce Eq. (6.1) to

d

dx

(
f(x)k(θ)

dθ

dx

)
=M2h(θ)θ, 0 < x < 1. (6.3)

The dimensionless boundary conditions are given by

θ(1) = 1,
dθ

dx

∣∣∣∣
x=0

= 0. (6.4)

If we consider the power law for the heat transfer coefficient and thermal

conductivity, the one dimensional heat balance equation then becomes

d

dx

[
f(x)θm

dθ

dx

]
=M2θn+1, 0 < x < 1, (6.5)

Recently Equation (6.5) has been analyzed using the Differential Transform

Methods (DTM) [79]. It was revealed that DTM may not be suitable to solve

equations such as (6.5) for given fractional powers of f(x). Here we employ

basic integration and Lie point symmetry techniques.
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6.3 Exact solutions

In subsections 6.3.1 - 6.3.3 we analyze the governing Equation (6.5), given

m = n. We then analyze the case m ̸= n in subsection 6.3.4. If m = n,

then Eq. (6.5) is linearizable by a transformation y = θn+1. Under such a

transformation Eq. (6.5) becomes

d

dx

[
f(x)

dy

dx

]
− (n+ 1)M2y = 0 (6.6)

the boundary conditions transform to

y(1) = 1, and y′(0) = 0. (6.7)

Eq. (6.6) is analyzed for various situations in the next sections and all

the solutions in illustrative examples satisfy both the Dirichlet and Neumann

boundary conditions.

6.3.1 Case: n > −1 with m = n ̸= −1.

As an illustration we use two examples, and the rest of the solutions are listed

in Tables 6.1 and 6.2.

Example 1

Given f(x) =
√
x+ 1, Eq. (6.6) becomes

(x+ 1)y′′ +
y′

2
− (n+ 1)M2

√
x+ 1 = 0, (6.8)

with solution

θ =

[
(x+ 1)

1
4J 1

3

(
β

(
x+ 1

2

) 3
4

)(
Y Y

J 1
3
(β)

− Y Y − 1

)] 1
n+1

, (6.9)
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where β = 4
3
M

√
−n− 1, γ = 2

3
4 and Y Y is given by the expression

1
2

(
Y 1

3
(β
γ
) + 3

2
βY 4

3
(β)
)
J 1

3
(βγ)

−J 1
3
(β)Y 1

3
(βγ) + Y 1

3
(β)J 1

3
(βγ) + 3

2
β
(
Y 1

3
(βγ)J 4

3
(β)− J 1

3
(βγ)Y 4

3
(β)
) . (6.10)

The efficiency is given by

η =

∫ 1

0

[
(x+ 1)

1
4J 1

3

(
β

(
x+ 1

2

) 3
4

)(
Y Y

J 1
3
(β)

− Y Y − 1

)]
dx.

The temperature distribution along the surface for are depicted in Figures

6.1 and 6.2. The fin efficiency as function of the thermo-geometric parameter

is shown in Figure 6.3.

Example 2

In case of f(x) = (x+ 1)3, the Eq. (6.6) is transformed into

(x+ 1)3y′′ + 3(x+ 1)2y′ − (n+ 1)M2y = 0 (6.11)

has a solution in terms of Bessel functions given by

θ =

 J2

(
α√
x+1

)
JJ

J2

(
α√
2

)
(x+ 1)

−
Y2

(
α√
x+1

)
Y2

(
α√
2

)
(x+ 1)

(JJ − 2)


1

n+1

, (6.12)

where α = 2M
√
−n− 1 and

JJ =
−2Y1(α)J2(

α√
2
)

Y2(
α√
2
)J1(α)− J2(

α√
2
)Y1(α)

. (6.13)

The efficiency is given by

η =

∫ 1

0

 J2

(
α√
x+1

)
JJ

J2

(
α√
2

)
(x+ 1)

−
Y2

(
α√
x+1

)
Y2

(
α√
2

)
(x+ 1)

(JJ − 2)

 dx.
The temperature distribution along the surface for this profile is depicted

in Figures 6.4 and 6.5. The fin efficiency as function of the thermo-geometric

fin parameter is shown in Figure 6.6.
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Table 6.1: General solutions for n > −1 with m = n ̸= −1 where i2 = −1

f(x) Solution

xa θn+1 = c1 x
1−a
2 J 1−a

a−2

(
i2M

√
n+1 x1−a

2

a−2

)
+ c2 x

1−a
2 Y 1−a

a−2

(
i2M

√
n+1 x1−a

2

a−2

)

1 θn+1 = c1 sinh
(
M

√
n+ 1 x

)
+ c2 cosh

(
M

√
n+ 1 x

)
x

1
2 θn+1 = c1 x

1
4J 1

3

(
i4M

√
n+1 x

3
4

3

)
+ c2 x

1
4Y 1

3

(
i4M

√
n+1 x

3
4

3

)
x θn+1 = c1J0

(
i2M

√
(n+ 1) x

)
+ c2Y0

(
i2M

√
(n+ 1) x

)
x2 θn+1 = c1 x

− 1
2
+ 1

2

√
1+4M2(n+1) + c2 x

− 1
2
− 1

2

√
1+4M2(n+1)

x3 θn+1 =
c1J2

(
i2M

√
(n+1)

x

)
+c2Y2

(
i2M

√
(n+1)

x

)
x

eax θn+1 = c1 e
−ax

2 J1

(
i2M

√
n+1e−

ax
2

a

)
+ c2 e

−ax
2 Y1

(
i2M

√
n+1e−

ax
2

a

)
sinx θn+1 = c1HeunG

(
2,−(n+ 1)M2, 0, 1, 1

2
, 1, sin x+ 1

)
+ (1−sinx)

3
4×√

cosx[
c2
(
1 +

√
1− cos2 x

) 1
4

]
HeunG

(
2,−(n+ 1)M2 + 5

4
, 1
2
, 3
2
, 3
2
, 1, sinx+ 1

)
cosx θn+1 = c1HeunG

(
2,−(n+ 1)M2, 0, 1, 1

2
, 1, cosx+ 1

)
+ (1−cosx)

3
4√

sinx
×[

c2

(
1 +

√
1− sin2 x

) 1
4

]
HeunG

(
2,−(n+ 1)M2 + 5

4
, 1
2
, 3
2
, 3
2
, 1, sinx+ 1

)
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Table 6.2: Modified general solutions for f(X ) where X = x+ 1, n > −1 and

m = n ̸= −1 and i2 = −1

f(X ) Solution

X a θ =
[
c1 X 1−a

2 J 1−a
a−2

(
i2M

√
n+1 X 1−a

2

a−2

)
+ c2 X 1−a

2 Y 1−a
a−2

(
i2M

√
n+1 X 1−a

2

a−2

)] 1
n+1

1 θ =
[
c1 sinh

(
M

√
n+ 1 X

)
+ c2 cosh

(
M

√
n+ 1 X

)] 1
n+1

X 1
2 θ =

[
c1 X 1

4J 1
3

(
i4M

√
n+1 X

3
4

3

)
+ c2 X 1

4Y 1
3

(
i4M

√
n+1 X

3
4

3

)] 1
n+1

X θ =
[
c1J0

(
i2M

√
(n+ 1) X

)
+ c2Y0

(
i2M

√
(n+ 1) X

)] 1
n+1

X 2 θ =
[
c1 X− 1

2
+ 1

2

√
1+4M2(n+1) + c2 X− 1

2
− 1

2

√
1+4M2(n+1)

] 1
n+1

X 3 θ =

[
c1J2

(
i2M

√
(n+1)

X

)
+c2Y2

(
i2M

√
(n+1)

X

)
X

] 1
n+1

eaX θ =

[
c1 e

−aX
2 J1

(
i2M

√
n+1e−

aX
2

a

)
+ c2 e

−aX
2 Y1

(
i2M

√
n+1e−

aX
2

a

)] 1
n+1

sinX θn+1 = c1HeunG
(
2,−(n+ 1)M2, 0, 1, 1

2
, 1, sinX + 1

)
+ (1−sinX )

3
4√

cosX ×[
c2
(
1 +

√
1− cos2X

) 1
4

]
HeunG

(
2,−(n+ 1)M2 + 5

4
, 1
2
, 3
2
, 3
2
, 1, sinX + 1

)
cosX θn+1 = c1HeunG

(
2,−(n+ 1)M2, 0, 1, 1

2
, 1, cosX + 1

)
+ (1−cosX )

3
4√

sinX ×[
c2

(
1 +

√
1− sin2 X

) 1
4

]
HeunG

(
2,−(n+ 1)M2 + 5

4
, 1
2
, 3
2
, 3
2
, 1, sinX + 1

)
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6.3.2 Case: n < −1 with m = n ̸= −1.

We shall use two examples as in the previous case, the general solutions are

listed in Tables 6.3 and 6.4.

Example 3

Starting with f(x) = x2, Eq. (6.6) in its changed form will be

x2y′′ + 2xy′ + (n+ 1)M2y = 0 (6.14)

with solution

θ = x
1

2(n+1)

(√
1−4(n+1)M2−1

)
. (6.15)

The efficiency is given by

η =

∫ 1

0

x
1
2

(√
1−4(n+1)M2−1

)
dx

=
2√

1− 4(n+ 1)M2 + 1 + 2n
. (6.16)

Example 4

We consider f(x) =
√
x+ 1 as the second example in this case. This transforms

Eq. (6.6) into

(x+ 1)y′′ +
y′

2
+ (n+ 1)M2

√
x+ 1y = 0 (6.17)

with solution

θ =

[
(x+ 1)

1
4J 1

3

(
β

(
x+ 1

2

) 3
4

)(
Y Y

J 1
3
(β)

− Y Y − 1

)] 1
n+1

, (6.18)
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where β = 4
3
M

√
n+ 1, γ = 2

3
4 and Y Y given by the expression

1
2

(
Y 1

3
(β
γ
) + 3

2
βY 4

3
(β)
)
J 1

3
(βγ)

−J 1
3
(β)Y 1

3
(βγ) + Y 1

3
(β)J 1

3
(βγ) + 3

2
β
(
Y 1

3
(βγ)J 4

3
(β)− J 1

3
(βγ)Y 4

3
(β)
) . (6.19)

The efficiency is given by

η =

∫ 1

0

[
(x+ 1)

1
4J 1

3

(
β

(
x+ 1

2

) 3
4

)(
Y

J 1
3
(β)

− Y − 1

)]
dx.

Table 6.3: Solution for n < −1 with m = n ̸= −1

f(x) Solution

xa θ =
[
c1 x

1−a
2 J 1−a

a−2

(
i2M

√
n+1 x1−a

2

a−2

)
+ c2 x

1−a
2 Y 1−a

a−2

(
i2M

√
n+1 x1−a

2

a−2

)] 1
n+1

a ̸= 2

1 θ =
[
c1 sin

(
M
√
−(n+ 1) x

)
+ c2 cos

(
M
√
−(n+ 1) x

)] 1
n+1

x
1
2 θ =

[
c1 x

1
4J 1

3

(
4M

√
n+1 x

3
4

3

)
+ c2 x

1
4Y 1

3

(
4M

√
n+1 x

3
4

3

)] 1
n+1

x θ =
[
c1J0

(
2M
√
(n+ 1) x

)
+ c2Y0

(
2M
√
(n+ 1) x

)] 1
n+1

x2 θ =
[
c1 x

− 1
2
+ 1

2

√
1−4M2(n+1) + c2 x

− 1
2
− 1

2

√
1−4M2(n+1)

] 1
n+1

x3 θ =

[
c1J2

(
2M

√
(n+1)

x

)
+c2Y2

(
2M

√
(n+1)

x

)
x

] 1
n+1

eax θ =
[
c1 e

−ax
2 J1

(
2M

√
n+1e−

ax
2

a

)
+ c2 e

−ax
2 Y1

(
2M

√
n+1e−

ax
2

a

)] 1
n+1

sin x θn+1 = c1HeunG
(
2, (n+ 1)M2, 0, 1, 1

2
, 1, sinx+ 1

)
+ (1−sinx)

3
4√

cosx
×[

c2
(
1 +

√
1− cos2 x

) 1
4

]
HeunG

(
2, (n+ 1)M2 + 5

4
, 1
2
, 3
2
, 3
2
, 1, sinx+ 1

)
cos x θn+1 = c1HeunG

(
2, (n+ 1)M2, 0, 1, 1

2
, 1, cos x+ 1

)
+ (1−cosx)

3
4√

sinx
×[

c2

(
1 +

√
1− sin2 x

) 1
4

]
HeunG

(
2, (n+ 1)M2 + 5

4
, 1
2
, 3
2
, 3
2
, 1, sinx+ 1

)
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Table 6.4: Modified solution for f(X ) where X = x+1, n < −1 and m = n ̸=

−1

f(X ) Solution

X a θ =
[
c1 X 1−a

2 J 1−a
a−2

(
i2M

√
n+1 X 1−a

2

a−2

)
+ c2 X 1−a

2 Y 1−a
a−2

(
i2M

√
n+1 X 1−a

2

a−2

)] 1
n+1

a ̸= 2

1 θ =
[
c1 sin

(
M

√
n+ 1 X

)
+ c2 cos

(
M

√
n+ 1 X

)] 1
n+1

X 1
2 θ =

[
c1 X 1

4J 1
3

(
4M

√
n+1 X

3
4

3

)
+ c2 X

1
4Y 1

3

(
4M

√
n+1 X

3
4

3

)] 1
n+1

X θ =
[
c1J0

(
2M
√
(n+ 1) X

)
+ c2Y0

(
2M
√

(n+ 1) X
)] 1

n+1

X 2 θ =
[
c1 X− 1

2
+ 1

2

√
1−4M2(n+1) + c2 X− 1

2
− 1

2

√
1−4M2(n+1)

] 1
n+1

X 3 θ =

[
c1J2

(
2M

√
(n+1)

X

)
+c2Y2

(
2M

√
(n+1)

X

)
X

] 1
n+1

eaX θ =

[
c1 e

−aX
2 J1

(
2M

√
n+1e−

aX
2

a

)
+ c2 e

−aX
2 Y1

(
2M

√
n+1e−

aX
2

a

)] 1
n+1

sinX θn+1 = c1HeunG
(
2, (n+ 1)M2, 0, 1, 1

2
, 1, sinX + 1

)
+ (1−sinX )

3
4√

cosX ×[
c2
(
1 +

√
1− cos2X

) 1
4

]
HeunG

(
2, (n+ 1)M2 + 5

4
, 1
2
, 3
2
, 3
2
, 1, sinX + 1

)
cosX θn+1 = c1HeunG

(
2, (n+ 1)M2, 0, 1, 1

2
, 1, cosX + 1

)
+ (1−cosX)

3
4√

sinX ×[
c2

(
1 +

√
1− sin2 X

) 1
4

]
HeunG

(
2, (n+ 1)M2 + 5

4
, 1
2
, 3
2
, 3
2
, 1, sinX + 1

)
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6.3.3 Case: m = n = −1.

The governing Eq. (6.5) becomes

d

dx

[
f(x)θ−1 dθ

dx

]
=M2. (6.20)

After simplification Eq. (6.20) becomes

dθ

θ
=

[
M2x+ c1
f(x)

]
dx. (6.21)

The general solutions to Eq. (6.21) for various f(x) are given in Tables 6.5

and 6.6.

Example 5

f(x) = x3 is considered as an example, and the solutions is

θ = eM
2(1− 1

x
), (6.22)

and satisfying boundary conditions

θ(1) = 1, lim
x→0

dθ

dx
= 0. (6.23)

The corresponding fin efficiency is given by

η =

∫ 1

0

eM
2(1− 1

x
)dx. (6.24)

6.3.4 Case: m ̸= n

Example 6

We consider f(x) = 1 and n = −3m − 4 and let y = θm+1,which transforms

the governing Eq. (6.5) into
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y′′ = (m+ 1)M2y−3. (6.25)

By direct integration using Polyanin and Zaitsev [74] we get

x =

∫ (
2c1y

2 − 2(m+ 1)M2

2y2

)− 1
2

dy + c2, (6.26)

which yields

x =

√
c1y2 − (m+ 1)M2

c21
+ c2. (6.27)

Using the boundary conditions (6.7) we get a solution

y =

√√√√√ 1
2

[
1 +

√
1− 4(m+ 1)M2

]2
x2 + 2(m+ 1)M2

1 +
√
1− 4(m+ 1)M2

. (6.28)

In terms of the original variables we have

θ =

 1
2

[
1 +

√
1− 4(m+ 1)M2

]2
x2 + 2(m+ 1)M2

1 +
√
1− 4(m+ 1)M2


1

2(m+1)

. (6.29)

The corresponding fin efficiency is given by

η =

∫ 1

0

 1
2

[
1 +

√
1− 4(m+ 1)M2

]2
x2 + 2(m+ 1)M2

1 +
√

1− 4(m+ 1)M2


1
2

dx. (6.30)

6.4 Symmetry reductions and invariant solu-

tions

We follow the procedure in Section 4.3.2, and employ the direct group clas-

sification to determine cases for which extra symmetries are admitted by Eq.

(6.5). Here we consider problems which are not linearizable. A few cases arise.
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6.4.1 Case: m = n = −1

For f(x) = xa and f(x) = eax, the symmetries are listed in Tables 6.7 and 6.8.

6.4.2 Case: m ̸= n,m ̸= −1, f(x) = (x+ 1)a

Example 7

As an illustrative example, we consider f(x) = 1 and n = −3m − 4. The

governing Eq. (6.5) becomes

y′′ = (m+ 1)M2y−3. (6.31)

The symmetries were discussed in subsection 3.2.2 and its solution given

in subsection 3.8.2. The temperature distribution along the surface for this

profile is depicted in Figures 6.7 and 6.8. The fin efficiency as function of the

thermo-geometric fin parameter is shown in Figure 6.9.

Example 8

Given f(x) = x + 1 and n ̸= m, m = −1, then the the governing Eq. (6.5)

becomes

y′′ =
(n+ 1)M2ey − y′

x+ 1
(6.32)

after the substitution ey = θn+1. The two dimensional Lie algebra admitted

by Eq. (6.32) are listed in Table 6.10. Canonical variables are

t =
1√

(x+ 1)ey
, u = 2− ln(x+ 1) +

1√
(x+ 1)ey

. (6.33)

The corresponding canonical forms of X1 and X2 are

Γ1 = ∂u, Γ2 = t∂t + u∂u. (6.34)
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By writing u = u(t) Eq. (6.32) is transformed into

u′′ = −1

t
(u′ − 1)

[
(n+ 1)M2

2
(u′ − 1)2 − 1

]
. (6.35)

We solve Eq. (6.35), and obtain the solution that satisfy both the Dirichlet

and Neumann boundary conditions.

θ =

 2 cosh2
(
tanh−1

(
1

2M

√
2

n+1

)
−M

√
n+1
2

ln 2
)

(x+ 1) cosh2
(
tanh−1

(
1

2M

√
2

n+1

)
−M

√
n+1
2

ln(x+ 1)
)


1
n+1

The fin efficiency is given by

η1 =

∫ 1

0

 2 cosh2
(
tanh−1

(
1

2M

√
2

n+1

)
−M

√
n+1
2

ln 2
)

(x+ 1) cosh2
(
tanh−1

(
1

2M

√
2

n+1

)
−M

√
n+1
2

ln(x+ 1)
)
 dx
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Table 6.5: Solution for m = n = −1

f(x) Solution

xa θ = c1 e
−

x1−a[(a−2)c2+(a−1)M2x]
(a−1)(a−2)

a ̸= 2

1 θ = c1 e
1
2
x(2c2+M2x)

x
1
2 θ = c1 e

2
3

√
x(3c2+M2x)

x θ = c1 e
M2xxc2

x2 θ = c1 x
M2
e−

c2
x

x3 θ = c1 e
− 1

2
c2+2M2x

x2

eax θ = c1 e
−

e−ax

[
ac2+(a+1)(1+IeIx)

−M2x
x

]
a2

sin x θ = c1

[
1−IeIx

1+IeIx

]M2x

eIM
2polylog2(−eIx)−IM2polylog2(eIx)−2c2 arg tanh(eIx)

cos x θ = c1

[
1−IeIx

1+IeIx

]M2x

eI[M
2dilog(1+IeIx)−M2dilog(1+IeIx)−2c2 arctan(eIx)]

lnx θ = c1e
−[M2Ei1(−2 lnx)+c2Ei1(− lnx)]
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Table 6.6: Modified general solution for f(X ) where X = x+ 1, and m = n =

−1

f(X ) Solution

X a θ = c1 e
−

X1−a[(a−2)c2+(a−1)M2X]
(a−1)(a−2)

a ̸= 2

1 θ = c1 e
1
2
X(2c2+M2X)

X 1
2 θ = c1 e

2
3

√
X(3c2+M2X)

X θ = c1 e
M2XX c2

X 2 θ = c1 XM2
e−

c2
X

X 3 θ = c1 e
− 1

2
c2+2M2X

X2

eaX θ = c1 e
−

e−aX
[
ac2+(a+1)(1+IeIX )

−M2X
X

]
a2

sinX θ = c1

[
1−IeIX

1+IeIX

]M2X
eIM

2polylog2(−eIX )−IM2polylog2(eIX )−2c2 arg tanh(eIX)

cosX θ = c1

[
1−IeIX

1+IeIX

]M2X
eI[M

2dilog(1+IeIX )−M2dilog(1+IeIX )−2c2 arctan(eIX )]

lnX θ = c1e
−[M2Ei1(−2 lnX )+c2Ei1(− lnX )]
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Table 6.7: Symmetries for m = n = −1, f(x) = xaandf(x) = eax

Symmetries

f(x)

1 X1 =
∂
∂θ
, X2 = 2x2 ∂

∂x
+ (2 ln θ + x2M2)θ ∂

∂θ
X3 = x ∂

∂x
+ x2M2θ ∂

∂θ

X4 = 2(x2M2 − 2 ln θ)x ∂
∂x

+ (x4M4 − 4 ln2 θ)θ ∂
∂θ

X5 = (2 ln θ − x2M2)θ ∂
∂θ

X6 = (3x2M2 − 2 ln θ) ∂
∂x

+ 2x3M4θ ∂
∂θ

X7 = −xθ ∂
∂θ
, X8 = −θ ∂

∂θ

√
x X1 = −θ ∂

∂θ
, X2 = −4x

√
x ∂
∂x

− (8
3
x2M2 − 2

√
x ln θ)θ ∂

∂θ
X3 = x ∂

∂x
+ x

√
xM2θ ∂

∂θ

X4 =
(√

x ln θ − 2
3
x2M2

)
∂
∂x

+
(
x ln θ − 2

3
x2
√
xM2

)
M2θ ∂

∂θ
X5 =

(3
√
x ln θ−2x2M2)

3
√
x

θ ∂
∂θ

X6 = 2
√
xθ ∂

∂θ
, X7 = − 1√

x
∂
∂x

− xM2θ ∂
∂θ

X8 =
(
2
3
x
√
xM2 − ln θ

)
x ∂
∂x

−
(
1
2
ln2 θ − 4

9
x3M4 + 1

3
x
√
xM2 ln θ

)
θ ∂
∂θ

x X1 = −x2 lnx ∂
∂x

+ (xM2 − x lnxM2 − ln θ) θ lnx ∂
∂θ

X2 = x lnx ∂
∂x

+ x lnxM2θ ∂
∂θ

X3 = (ln θ − xM2) x ∂
∂x

+ (ln θ −M2x)xθM2 ∂
∂θ

X4 = −x ∂
∂x

− xM2θ ∂
∂θ

X5 = −θ ∂
∂θ
, X6 = θ lnx ∂

∂θ
, X7 = (ln θ − xM2) θ ∂

∂θ
X8 = − (ln θ − xM2)x lnx ∂

∂x

−θ
(
ln2 θ + ln θ lnxM2x− 2x ln θM2 − x2M4 lnx+ x2M4

)
∂
∂θ

x2 X1 = −x ∂
∂x
, X2 = − ∂

∂x
+
(

ln θ−lnxM2−M2

x

)
θ ∂
∂θ

X3 = −x2 ∂
∂x

− xθM2 ∂
∂θ

X4 = x2(lnxM2 − ln θ) ∂
∂x

+ xθ(lnxM2 − ln θ)M2 ∂
∂x

X5 = (ln θ −M2 lnx)θ ∂
∂θ

X6 = x2 (M2 − lnx− ln θ) ∂
∂x

+ θ (ln θ −M2 lnx)
2 ∂
∂θ

X7 = − θ
x

∂
∂θ
, X8 = −θ ∂

∂θ

eax X1 = −θ ∂
∂θ
, X2 = − θ

aeax
∂
∂θ
, X3 = − eax

a
∂
∂x

− xθM2

a
∂
∂θ

X4 =
∂
∂x

+ (ax+ 1)M2 ∂
∂θ

X5 =
1

a2eax
∂
∂x

+ (a2eax lnx+M2)θ ∂
∂θ

X6 =
(

a2eax ln θ+(ax+1)M2

a2eax

)
θ ∂
∂θ

X7 =
(

aeax ln θ+xM2

a2

)
θ ∂
∂x

+ xθM2
(

a2eax ln θ+xM2

a2eax

)
θ ∂
∂θ

X8 =
(

aeax ln θ+xM2

aeax

)
θ ∂
∂x

+
(

a3e2ax ln2 θ+a2xeaxM2 ln θ+aeaxM2 ln θ+xM4

aeax

)
θ ∂
∂θ
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Table 6.8: Modified symmetries for f(X ) = X a, f(X ) = eaX where X = x+ 1

and m = n = −1,

Profile Symmetries

f(X )

1 X1 =
∂
∂θ
, X2 = 2X 2 ∂

∂x
+ (2 ln θ + X 2M2)θ ∂

∂θ
, X3 = X ∂

∂x
+ X 2M2θ ∂

∂θ

X4 = 2(X 2M2 − 2 ln θ)x ∂
∂x

+ (X 4M4 − 4 ln2 θ)θ ∂
∂θ
, X5 = (2 ln θ −X 2M2)θ ∂

∂θ

X6 = (3X 2M2 − 2 ln θ) ∂
∂x

+ 2X 3M4θ ∂
∂θ
, X7 = −X θ ∂

∂θ
, X8 = −θ ∂

∂θ
√
X X1 = −θ ∂

∂θ
, X2 = −4X

√
X ∂

∂x
− (8

3
X 2M2 − 2

√
X ln θ)θ ∂

∂θ
,

X3 =
(√

X ln θ − 2
3
X 2M2

) (
∂
∂x

+M2θ ∂
∂θ

)
, X4 =

(3
√
X ln θ−2X 2M2)

3
√
X θ ∂

∂θ

X5 = 2
√
X θ ∂

∂θ
, X6 = − 1√

X
∂
∂x

−XM2θ ∂
∂θ
, X7 = X

(
∂
∂x

+
√
XM2θ ∂

∂θ

)
,

X8 =
(

2
3
X
√
XM2 − ln θ

)
X ∂

∂x

−
(

1
2
ln2 θ − 4

9
X 3M4 + 1

3
X
√
XM2 ln θ

)
θ ∂
∂θ

X X1 = −X 2 lnX ∂
∂x

+ (XM2 −X lnXM2 − ln θ) θ lnX ∂
∂θ
,

X2 = (ln θ −XM2)X ∂
∂x

+ (ln θ −M2X )X θM2 ∂
∂θ
, X3 = −X ∂

∂x
−XM2θ ∂

∂θ

X4 = −θ ∂
∂θ
, X5 = θ lnX ∂

∂θ
, X6 = (ln θ −XM2) θ ∂

∂θ
, X7 = X lnX

(
∂
∂x

+M2θ ∂
∂θ

)
X8 = − (ln θ −XM2)X lnX ∂

∂x

−θ
(
ln2 θ + ln θ lnXM2X − 2X ln θM2 −X 2M4 lnX + X 2M4

)
∂
∂θ

X2 X1 = −X ∂
∂x
, X2 = − ∂

∂x
+
(

ln θ−lnXM2−M2

x

)
θ ∂
∂θ
, X3 = −X2 ∂

∂x
−X θM2 ∂

∂θ
,

X4 = X2(lnXM2 − ln θ) ∂
∂x

+ X θ(lnXM2 − ln θ)M2 ∂
∂x
, X5 = (ln θ −M2 lnX )θ ∂

∂θ
,

X6 = X2 (M2 − lnX − ln θ) ∂
∂x

+ θ (ln θ −M2 lnX )
2 ∂
∂θ
, X7 = − θ

X
∂
∂θ
, X8 = −θ ∂

∂θ

eaX X1 = −θ ∂
∂θ
, X2 = − θ

aeaX
∂
∂θ
, X3 = − eaX

a
∂
∂x

− XθM2

a
∂
∂θ
, X4 =

∂
∂x

+ (aX + 1)M2 ∂
∂θ
,

X5 =
1

a2eaX
∂
∂x

+ (a2eaX lnX +M2)θ ∂
∂θ
, X6 =

(
a2eaX ln θ+(aX+1)M2

a2eaX

)
θ ∂
∂θ
,

X7 =
(

aeaX ln θ+XM2

a2

)
θ ∂
∂x

+ X θM2
(

a2eaX ln θ+XM2

a2eaX

)
θ ∂
∂θ
,

X8 =
(

aeaX ln θ+XM2

aeaX

)
θ ∂
∂x

+
(

a3e2aX ln2 θ+a2XeaXM2 ln θ+aeaXM2 ln θ+XM4

aeaX

)
θ ∂
∂θ
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Table 6.9: Symmetries for m ̸= n, n ̸= −1 various f(x)

Fin profile Parameter n Symmetries

(parameter a)

f(x) = xa

arbitrary n arbitrary X1 = x ∂
∂x

+ a−2
n−m

y ∂
∂y

Rectangular n arbitrary X1 =
∂
∂x
, X2 = x ∂

∂x
− 2

n−m
y ∂
∂y

a = 0 n = −3m− 4 X1 =
∂
∂x
, X2 =

∂
∂x

− y
2

∂
∂y
,

X3 =
1

m+1
[−2(m+ 1)x ∂

∂x
− y ∂

∂y
]

Convex parabolic n arbitrary X1 =
m

3(m+1)
[2x ∂

∂x
− 3y ∂

∂y
]

a = 1
2

n = −4m− 5 X1 = 4x
√
x ∂
∂x

+ 2
√
xy ∂

∂y
],

X2 = −2x ∂
∂x

− 3
5
y ∂
∂y

Triangular n arbitrary X1 =
m

m+1
[(n−m)x ∂

∂x
− y ∂

∂y
]

a = 1 m = −1 X1 = −x ∂
∂x

+ ∂
∂y
,

X2 = (2− lnx)x ∂
∂x

+ ln x ∂
∂y

Concave parabolic n arbitrary X1 = −2x ∂
∂x

a = 2 n = −m− 2 X1 =
∂
∂x

− y
x

∂
∂y
, X2 = x ∂

∂x

Cubic n arbitrary X1 = −2x ∂
∂x

a = 3 n = −3m−5
2

X1 = − 1
2x

∂
∂x

+ y
x2

∂
∂y
, X2 =

x
2

∂
∂x

− y
5

∂
∂y

f(x) = eax

exponential n arbitrary X1 =
m

a(m+1)
[(m− n) ∂

∂x
− ay ∂

∂y
]

a arbitrary n = −2m− 3 X1 =
eax

a2
∂
∂x

− eax

a
y ∂
∂y
,

X2 =
1
a

∂
∂x

− y
3

∂
∂y
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Table 6.10: Modified symmetries for f(X ) where X = x+1 andm ̸= n, n ̸= −1

various

Fin profile Parameter n Symmetries

(parameter a)

f(X ) = X a

arbitrary n arbitrary X1 = X ∂
∂x

+ a−2
n−m

y ∂
∂y

Rectangular n arbitrary X1 =
∂
∂x
, X2 = X ∂

∂x
− 2

n−m
θ ∂
∂y

a = 0 n = −3m− 4 X1 =
∂
∂x
, X2 =

∂
∂x

− y
2

∂
∂y
,

X3 =
1

m+1
[−2(m+ 1)X ∂

∂x
− θ ∂

∂y
]

Convex parabolic n arbitrary X1 =
m

3(m+1)
[2X ∂

∂x
− 3θ ∂

∂y
]

a = 1
2

n = −4m− 5 X1 = 4X
√
X ∂

∂x
+ 2

√
X y ∂

∂y
,

X2 = −2X ∂
∂x

− 3
5
y ∂
∂y

Triangular n arbitrary X1 =
m

m+1
[(n−m)X ∂

∂x
− θ ∂

∂y
]

a = 1 m = −1 X1 = −X ∂
∂x

+ ∂
∂y
,

X2 = (2− lnX )X ∂
∂x

+ lnX ∂
∂y

Concave parabolic n arbitrary X1 = −2X ∂
∂x

a = 2 n = −m− 2 X1 =
∂
∂x

− y
X

∂
∂y
, X2 = X ∂

∂x

Cubic n arbitrary X1 = −2X ∂
∂x

a = 3 n = −3m−5
2

X1 = − 1
2X

∂
∂x

+ y
X 2

∂
∂y
, X2 =

X
2

∂
∂x

− y
5

∂
∂y

f(X ) = eaX

exponential n arbitrary X1 =
m

a(m+1)
[(m− n) ∂

∂x
− ay ∂

∂y
]

a arbitrary n = −2m− 3 X1 =
eaX

a2
∂
∂x

− eaX

a
y ∂
∂y
,

X2 =
1
a

∂
∂x

− y
3

∂
∂y
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Table 6.11: Lie Bracket of the admitted symmetry algebra for m ̸= n, n ̸= −1

and various f(x)

f(x) = xa, a = 0, n arbitrary f(x) = xa, a = 0, n = −3m− 4

[Xi, Xj] X1 X2 [Xi, Xj] X1 X2 X3

X1 0 X1 X1 0 X1 X3

X2 X1 0 X2 −X1 0 2X2

X3 −X3 −2X2 0

f(x) = xa, a = 1
2
, n = −4m− 5 f(x) = xa, a = 1, m = −1

[Xi, Xj] X1 X2 [Xi, Xj] X1 X2

X1 0 X1 X1 0 X1

X2 −X1 0 X2 −X1 0

f(x) = xa, a = 2, n = −m− 2 f(x) = eax, any a, n arbitrary

[Xi, Xj] X1 X2 [Xi, Xj] X1 X2

X1 0 X1 X1 0 X1

X2 −X1 0 X2 X1 0
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Table 6.12: The type of second-order equations admitting L2 for m ̸= n,

n ̸= −1 various f(x)

Fin profile Parameter n Canonical form of the equation

(parameter a)

f(x) = xa

Rectangular n arbitrary u′′ = − (n−m)
2

u′

t

[
2(n+m)+4
(n−m)2

−M2u′2
]

a = 0 n = −3m− 4 u′′ = −1
2
u′−1
t

[1 + 4(m+ 1)M2(u′ − 1)2]

Convex parabolic

a = 1
2

n = −4m− 5 u′′ = −u′−1
t

[
3
5
+ 40(m+ 1)M2(u′ − 1)2

]
Triangular

a = 1 m = −1 u′′ = −u′−1
t

[
1− (n+1)M2(u′−1)2

2

]
Concave parabolic

a = 2 n = −m− 2 u′′ = − (u′−1)3

t
(m+ 1)M2

Cubic

a = 3 n = −3m−5
2

u′′ = −5(n+1)M2

16
u′−1
t

[
16

25(n+1)M2 − (u′ − 1)2
]

f(x) = eax

exponential

a arbitrary n = −2m− 3 u′′ = −u′−1
t

[
1
3
+ 3(m+1)M2(u′−1)2

2a4

]
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Table 6.13: Reductions arising from Table 6.12

Fin profile

(parameter a)

f(x) = xa

Rectangular (i) u′ = 0 ⇒ u = const

a = 0 (ii) 1 + 4(m+ 1)M2(u′ − 1)2 = 0 ⇒ u =
(
1± i 1

2
√
m+1M

)
t+ c

n = −3m− 4 (iii) u′′ ̸= 0 ⇒ u = t± 1√
m+1M

√
c1t− 1 + c2

Convex parabolic (i) u′ = 0 ⇒ u = const

a = 1
2

(ii) 3
5
+ 40(m+ 1)M2(u′ − 1)2 ⇒ u =

(
1± i 1

10M

√
3

2(m+1)

)
t+ c

n = −4m− 5 (iii) u′′ ̸= 0 ⇒ u = t± 1
10M

√
3

2(m+1)
ln
[
t+

√
c1t2 − 1

]
+ c2

Triangular (i) u′ = 0 ⇒ u = const

a = 1 (ii) 1− (n+1)M2(u′−1)2

2
= 0 ⇒ u =

(
1± 1

M

√
2

n+1

)
t+ c

m = −1 (iii) u′′ ̸= 0 ⇒ u = t±M
√

n+1
2

arcsin c1t+ c2

Concave parabolic (i) u′ = 0 ⇒ u = const

a = 2

n = −m− 2 (ii) u′′ ̸= 0 ⇒ u = t±
∫

1√
c+(m+1)M2 ln t

dt

Cubic (i) u′ = 0 ⇒ u = const

a = 3 (ii) 16
25(n+1)M2 − (u′ − 1)2 ⇒ u =

(
1± 4

M
√
n+1

)
t+ c

m = −3m−5
2

(iii) u′′ ̸= 0 ⇒ u = t± 4
M

√
n+1

∫
dt√

1−(c1t)
2
5

+ c2

f(x) = eax

exponential (i) u′ = 0 ⇒ u = const

a arbitrary (ii) 1
3
+ 3(m+1)M2(u′−1)2

2a4
⇒ u =

(
1± i a2

3M

√
2

m+1

)
t+ c

n = −2m− 3 (iii) u′′ ̸= 0 ⇒ u = t±
∫

a2

3M

√
2

m+1
1√

(c1t)
2
3−1

dt+ c2
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Table 6.14: Original variables for m ̸= n, n ̸= −1 various f(x)

Fin profile Parameter n Solution

(parameter a)

f(x) = xa

Rectangular

a = 0 n = −3m− 4 θ = [1 + (m+ 1)M2(x2 − 1)]
1

2(m+1)

Convex parabolic

a = 1
2

n = −4m− 5 θ =

[
x

1
2

(
1
c1
cosh

(
±5Mc1

√
2(m+1)

3

(
1− 1√

x

)))] 1
5(m+1)

Triangular

a = 1 m = −1 θ =

[
2 cosh2

(
tanh−1(± 1

2M

√
2

n+1)−±M
√

n+1
2

ln 2
)

(x+1) cosh2
(
tanh−1(± 1

2M

√
2

n+1)−±M
√

n+1
2

ln(x+1)
)
] 1

n+1

Concave parabolic

a = 2 n = −m− 2 u = t±
∫

1√
c+(m+1)M2 ln t

dt

f(x) = eax

exponential

a arbitrary n = −2m− 3 θ =
[
−9(m+1)M2(aeax+c)2e3ax

2a4

] 1
3(m+1)
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Figure 6.1: Temperature distribution in a fin with a profile f(x) =
√
x+ 1

given in (6.9) in a fin with varying values of M .
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Figure 6.2: Temperature distribution in a fin with a profile f(x) =
√
x+ 1

given in (6.9) in a fin with varying values of n.
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Figure 6.3: Efficiency of a fin with a profile f(x) =
√
x+ 1 as given in the

solution (6.11) with varying values of n.
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Figure 6.4: Temperature distribution of a fin profile f(x) = (x + 1)3 as given

in the solution (6.12) in a fin with varying values of the thermogeometric fin

parameter. Here, n is fixed at −1
4
.
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Figure 6.5: Temperature distribution of a fin profile f(x) = (x+1)3 as given in

the solution (6.12) in a fin with varying values of n . Here the thermogeometric

fin parameter is fixed at 1.58.
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Figure 6.6: Fin efficiency for the profile f(x) = (x+1)3 as given in the solution

(6.14) in a fin with varying values of n.
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Figure 6.7: Temperature distribution in a fin with a profile f(x) = 1, n ̸= m

as given in the solution (6.36) with varying values of M .
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Figure 6.8: Temperature distribution in a fin with a profile f(x) = 1, n ̸= m

as given in the solution (6.36) with varying values of n.
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Figure 6.9: Efficiency of a fin with a profile f(x) = 1, n ̸= m as given in the

solution (6.36) with varying values of n.
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6.5 Concluding remarks

We have analyzed the steady-state fin problem using solutions given in Eqs.

(6.9) and (6.11) and the results are as expected. We observe in Figure 6.4

that for the case of laminar film boiling or condensation, the temperature is

inversely proportional to the thermo-geometric fin parameter. An increase

in values of M yielded the decrease in values of temperature. Temperature

distribution along the surface was studied for varying values of n between -3

and 3, while M was kept constant. The results depicted in Figure 6.5 shows

that the temperature is directly proportional to the parameter n. The fin

efficiency as function of the thermo-geometric fin parameter is shown in 6.6.

Similar trends can be observed from Figures showing temperature distribution

and efficiency for other profiles.

Solutions for f(x) = xa are furnished in the Table 6.1 most of them do not

satisfy one of the boundary conditions. This was modified into f(x) = (x+1)a

as shown in Table 6.2 and the solutions given satisfied both boundary con-

ditions. Symmetries and further analysis of f(x) ϵ {sinx, cosx, lnx} where

ignored in this paper. The solution for f(x) = eax for n = m is given in [80]

therefore we focused on the case where n ̸= m. Exact solution for fin problem

with power law temperature-depended thermal conductivity and heat trans-

fer coefficient were determined. Lie symmetry techniques were used in cases

where direct integration was not feasible. Results showing longitudinal fin of

of various profiles were presented. The obtained solutions satisfy the physical

boundary conditions. Solutions constructed could be used as benchmarks or

validation tests for numerical schemes.



Chapter 7

Conclusions

A significant improvement to the study of heat transfer in extended surfaces

has been achieved in this thesis. Unlike, the existing knowledge that exact

solutions can only be constructed when heat transfer coefficient and thermal

conductivity are constant we have actually shown that one may assume these

thermal properties to be temperature dependent. Lie symmetry methods re-

vealed the possibility of classifying these properties and construction of exact

solutions.

In one case classical Lie point symmetry analysis of a steady nonlinear one

dimensional fin problem was considered. Dirichlet boundary conditions were

imposed at one end while the Neumann boundary conditions were imposed

at the other end. The heat transfer coefficient and thermal conductivity were

given as arbitrary functions of temperature. We utilize the preliminary group

classification methods to determine the forms of arbitrary functions for which

the PLA increased by one. Realistic forms were chosen and invariant solutions

were constructed. The effects of thermogeometric fin parameter and the ex-

ponent of the thermal properties on temperature were studied. Furthermore,

the fin efficiency was analyzed.

114



115

As the second step in our investigation we considered the transient re-

sponse of a longitudinal rectangular fin to step change in base temperature

and base heat flow conditions. Heat conductivity and heat transfer coefficient

were assumed to be power law temperature dependent. In the analysis both

local and nonlocal symmetry techniques were applied to the fin problem. The

symmetry reduction yielded the tractable Emmakov-Pinney equation one case.

Nonlocal symmetries were admitted when some arbitrary constants appearing

in the governing equations were specified. The exact analytical steady state

solutions which satisfy the prescribed boundary conditions were constructed.

The obtained general exact analytical solutions for the transient state satisfy

only zero initial temperature and adiabatic boundary condition at the fin tip,

which prompted resorting to numerical solutions. The boundary value problem

considered here introduced stiffness. However, we are able to transform it into

a system of ODEs using finite difference for the spatial derivative. The built

in ODE solver program was used to integrate a set of ODEs using a fourth or-

der Runge-Kutta iterations scheme. Again the effects of thermo-geometric fin

parameter and power law exponent on temperature distribution are studied.

Lastly, a one dimensional steady state heat transfer in fins of different pro-

files was studied. here it is assumed that the base temperature is constant and

the fin tip is insulated. The thermal conductivity and heat coefficients were

assumed to be temperature dependent which made the resulting differential e-

quation highly nonlinear. An introduction of a point transformation linearizes

the problem when the problem is given by the same power law for thermal

conductivity and heat transfer coefficient. Classical Lie point symmetry meth-

ods were employed in cases where the problem was not linearizable. Some

invariant solutions were constructed. The effects of parameters appearing in

the model and the fin efficiency were studied.
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These solutions may be used as bench marks for the approximate analytical

and numerical solutions (see e.g. [22]).
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T. Suski and T. Paszkiewicz, Thermal conductivity of GaN crystals in 4.2-

300K range, Solid State Communications, 128 (2003) 69-73.

[44] M.D. Kamatagi, N.S. Sankeshwar and B.G. Mulimani, Thermal conduc-

tivity of GaN, Journal: Diamond and Related Materials, 16 (2007) 98-106.

[45] M.D. Kamatagi, R.G. Vaidya, N.S. Sankeshwar and B.G. Mulimani, Low-

temperature lattice thermal conductivity in free-standing GaN thin films,

International Journal of Heat and Mass Transfer, 52 (2009) 2885-2892.
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