
SCHOOL OF STATISTICS AND ACTUARIAL SCIENCES

MASTERS RESEACH REPORT IN MATHEMATICAL STATISTICS

A study of risk factors for acute
myeloid leukemia using parametric

and semi parametric models

Student:
MC MUCHATIBAYA
(1259754)

Supervisor:
Dr Jacob Majakwara

A research report submitted to the Faculty of Science, University of the Witwatersrand,
in partial fulfilment of the requirements for the degree of Master of Science

February 9, 2022



Dedication

I would like to dedicate this research report to God Almighty,
my parents, Maxwell and Itayi Muchatibaya;

and siblings, David, Desmond and Michelle Muchatibaya.
This research report would not have been possible without your support and

inspiration.
I love you all!



Acknowledgement

I would like to firstly thank my God Almighty who got me this far in my life. I want
to give all praise to Him for bringing all the right people into my life in order for this
degree to be possible.

To my uncle, Dr Gift Muchatibaya, thank you for believing in me and gaining this
opportunity for me at the University of Witwatersrand. I was able to study and work
amongst great statisticians because you saw it fit that I be granted the opportunity. May
the dear Lord bless you.

I am grateful to my supervisor, Dr Jacob Majakwara. Thank you for pushing me
to always aim for better and for helping me see beyond my own capabilities – your
support and guidance is truly appreciated. I am also grateful for the support I received
from Dr Honest Chipoyera and Dr Charles Chimedza throughout my time at the
University.

Lastly, to my parents, siblings and friends, thank you for always being there for me.
The love you have for me pushed me forward. I am truly blessed to have such
a wonderful support system. I am deeply indebted to God for giving me such an
amazing family and friends. Thank you for every cheer and for every little form
of encouragement and support you have offered me over the years. May my Lord
Almighty bless you all.



Declaration

I, Maxeen Muchatibaya, declare that this research report is my own, unaided work.
It is being submitted for the degree of Master of Science by coursework and research
report at the University of the Witwatersrand, Johannesburg. It has not been submitted
before for any degree or examination at any other university.

Signature:
Full name: Maxeen Chiedza Muchatibaya
Date: 10 February 2022



Abstract

This research report involves the study of a dataset compiled at a single cancer centre
of patients with the chronic disease known as Acute Myeloid Leukemia (AML). A
semi-parametric model (i.e., the Cox Proportional Hazard (PH)) and four parametric
models, namely: exponential, Weibull, lognormal, and the log-logistic were fitted to
the data. In fitting the survival models, variables such as patient age at diagnosis,
sex, hemoglobin levels, cytogenic categories, and infection status, as well as whether
or not the patient had chemotherapy before treatment, were found to be significant
in the models. Based on information criteria and forecast error metrics, the Cox PH
model, the semi-parametric model performed best in comparison to the parametric
models. The Cox PH model had the smallest Akaike’s information criterion (AIC)
and Bayesian information criterion (BIC) values and Integrated Brier Score (IBS). The
Cox PH model gave the best predictions.
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Chapter 1

Introduction

Hematologists and oncologists consider a vast number of prognostic factors before
recommending a treatment plan to a patient suffering from any kind of blood-related
disease or cancer. In most cases, clinical trials determine the treatment plan to be used.
If the type of cancer or disease is rare, however, it makes it difficult to conduct large
clinical trials. In such instances, the preferred approach is to use multivariate survival
models that are built from large observational databases (e.g., the Acute Myeloid
Leukemia (AML) dataset). Models derived from large databases can offer better
guidance for assessing each patient’s different outcomes, as influenced by different
factors. In this study, different models, such as the Cox Proportional Hazard (PH),
exponential, Weibull, log-logistic, and lognormal models were employed. These
models were used to evaluate the effects of covariates on the overall survival times
of respective patients.

AML (also known as Acute Myelogenous Leukemia or Acute Myelocytic Leukemia),
is one of many types of cancers of the blood and bone marrow; it is, thus, also one
of the most rapidly-killing types of diseases (Lowenberg et al., 1999). This type of
cancer is acquired or inherited through genetic alteration and is characterised by the
multiplication of the number of myeloid cells found in the bone marrow of human
beings (Lowenberg et al., 1999). These multiplied myeloid cells, in turn, interfere with
the production of normal blood cells, which can affect the process of the bone marrow
producing normal blood cells. As a result, the disease ultimately leads to hematopoietic
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stem cells insufficiency. The condition of having insufficient hematopoietic stem cells
is medically identified as anemia (Lowenberg et al., 1999).

The majority of anemic patients have also been diagnosed with primary AML, which
has no risk factors or exposures to account for its development. A few of these
patients have, however, been diagnosed with secondary AML, which is known as
‘myeloproliferative disease’ (Oran et al., 2007). Secondary AML develops in patients
with disorders that affect the blood or blood-forming organs, or through other inherited
diseases. Patients with secondary AML would, thus, have had a disease known as
myelodysplastic syndrome (MDS) for 3 months or more before being diagnosed with
AML. As a result, such patients would most likely have been exposed to leukemogenic
agents during therapy sessions for various unrelated diseases (Oran et al., 2007).

AML is described as a clonal hematopoietic blood-related disease (Mardis et al., 2009).
This disease has mutations in malignancy-associated genes. Due to the nature of the
disease, most clinicians study the chromosomes of AML cells to predict whether or not
a patient has the disease (Mardis et al., 2009). However, it has come to researchers’
attention that AML can easily be mistaken for closely related diseases, such as MDS
and/or acute lymphoblastic leukemia (ALL) (Xu et al., 2009) and (Mardis et al., 2009).
AML can, still, be distinguished from ALL by committing to the myeloid lineage,
which is a method of distinguishing blood cells. Such distinction is conducted through
the insightful use of biological methods that distinguish abnormal cells. In comparison,
it is more difficult to distinguish AML from MDS (Lowenberg et al., 1999), which
requires a more mindful clinical, structural, and genetic analysis.

Statistics published in the United States of America (USA) show that AML is one of
the rarest types of all cancers. Studies done in the USA claim that in every year, 24
people in a million are diagnosed with AML, which is less than 1% of the American
population (Lowenberg et al., 1999). Data analysis conducted by Gill et al. (2020)
reveals that more men have been diagnosed with the disease than women although the
average lifetime risk of being diagnosed for both sexes is equal. The annual incidence
for adults who are 65 years of age and older is 126 per 1 million adults (Lowenberg
et al., 1999). Both the young (45 years and below) and old (65 years and older) can be
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diagnosed with AML, but it is more commonly detected in adults. It is very uncommon
to diagnose the disease in individuals aged 45 years and below. Studies show that the
average age of those diagnosed with the disease is 65 years in the USA (Hassan and
Smith, 2014).

The AML Outcome Prediction Challenge survey presented by the M.D. Anderson
Cancer Center predicted that by the end of 2014, there would be at least 18860 cases
of AML. Both Oran et al. (2007) and Mardis et al. (2009) had conducted studies that
further supported a similar prediction. Due to the diverse prognoses of AML patients,
however, there were 10460 deaths, which was more than half of the patients that were
diagnosed that year. Moreover, it was discovered that of the patients who are diagnosed
with AML, less than a quarter survive for more than 5 years (Hassan and Smith, 2014).

It should be noted that the diagnostic methods used in the early 1970s were solely
dependent on blood tests and the cytologic/pathological examination of bone marrow
(Lowenberg et al., 1999). These diagnosis methods yielded survival rates of no more
than 15% (Lowenberg et al., 1999). A survival rate associated with a disease relates
to the fraction of people who remain alive from out of the group diagnosed over a
particular time span. As time progressed beyond the 1970s, methods of diagnosing
AML subtypes and advanced therapeutic approaches were incorporated in dealing with
the disease. However, these improved diagnostic methods still did not increase patients
with AML’s survival rates. Indeed, the survival rates of patients below the age of 65
continue to remain low at 40% (Hassan and Smith, 2014).

The treatment of various types of cancer is influenced by a number of factors, including
patient age, general health status, and any possible coexisting conditions. Age is
a particularly important factor, as some treatment options may be too harsh for the
elderly (Mardis et al., 2009). Treatment for AML has, thus, constituted a combination
of different methods, with some failing and leading to patient relapse. Such failure
is problematic, as the main objective of any treatment is to increase remission and
prevent relapse. In terms of AML, specifically, remission is indicated by the patient
reporting less than 5% blast cells in his or her bone marrow, along with the recovery
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of peripheral blood counts (Mardis et al., 2009).

AML treatment occurs in two stages. The first stage involves the induction of
remission, where the medication daunorubicin is administered to a patient thrice
daily. Daunorubicin is given in doses of 40-60 milligrams per square metre of the
body-surface area (Rowe and Tallman, 2010). Oftentimes, this drug is administered in
conjunction with courses of chemotherapy (Mardis et al., 2009). The second stage is
post-induction therapy, which works to prevent relapse after remission. It should be
noted that, in general, post-induction therapy tends to be more efficient for younger
patients (Mardis et al., 2009).

Another option for treatment is allogeneic bone marrow transplantation, whereby
diseased blood stem cells are replaced by healthy ones (Sengsayadeth et al., 2018).
The recipient of these healthy blood stem cells can, however, only receive such from
a Human Leukocyte Antigen (HLA)-matched donor – the donor may or may not
be a relative. An alternative option is the autologous bone marrow transplantation
(Sengsayadeth et al., 2018). While this option does not significantly change the
risk of relapse for adults, it has been relatively successful in children (Oran et al.,
2007). According to Oran et al. (2007) and Heuser et al. (2020), a single high dose of
cytarabine is another effective treatment that can enhance the survival rate for patients.

There have also been several clinical prognostic factors noted by Grimwade (2012).
The most common and significant ones used to predict complete remission and
overall survival have been found to be: 1) a lack of myeloproliferative disease, 2)
a young age, 3) a high white blood cell count, and 4) a low degree of adverse
cytogenic abnormalities. Myeloproliferative disease (defined as secondary AML) is
considered a much worse prognosis than AML, as complete remission is close to
impossible (Sengsayadeth et al., 2018). The presence of myeloproliferative disease
is, furthermore, an indication of the presence of adverse cytogenics (Thirman and
Larson, 1996). Patients with a high degree of adverse cytogenic abnormalities are,
thus, considered ‘high risk’ (Hassan and Smith, 2014).
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There are many methods/techniques discovered that can assist in diagnosing medical
patients. In this study, the main challenge noted was the diagnosis of patients and the
identification of variables that will assist in treating AML patients. Survival analysis is
best suited in this case because it allows for the analysis of the study of time until the
event occurs (Klein and Moeschberger, 2006). Survival analysis is known for having
the statistical power to detect the significance of a treatment plan.

Just like most type of modeling, survival models also uses non-parametric,
semi-parametric and parametric models. The non-parametric model is known as the
Kaplan-Meier (K-M) estimator which estimates the chance of a patient surviving for a
specific given time (Guo, 2010). The semi-parametric model, also known as the Cox
PH model, is widely used to detect epidemiologic covariates that contribute to the risk a
patient is facing. The parametric models consist of accelerated failure time models for
example the Weibull and exponential, loglogistic and lognormal models (Guo, 2010).
These models are used as an alternative to the semi-parametric model. They are used
where the proportional hazard assumption is not held constant (Guo, 2010).

In this study, the dataset being used has a distinct starting time and ending time (Klein
and Moeschberger, 2006) and hence, survival analysis will be able to sufficiently
analyse the data.

1.1 Statement of the problem

As the previous section highlighted, it is imperative to find an efficient diagnosis
method. A study done by Levis (2011) identifies the grieve consequences of
misdiagnosing AML in a patient that has any type of cancer especially breast cancer.
Previous cancers increase the relative risk for AML patients by 22% (Levis, 2011).
AML is a disease that unfortunately generally has a poor prognosis (Valentini et al.,
2011). A majority of the patients diagnosed with AML do not survive the disease. The
survival rates are lower than 50% for patients aged 65 years and below, which shows
that the risk factors are not being identified in time for the most effective treatment to



1.2 Aim and Objectives 6

be administered.

The foregoing section indicates that obtaining an efficient diagnostic method has been
a challenge; however, it needs to be done.

1.2 Aim and Objectives

The main aim of this study was to identify the risk factors that affect the survival rates
(time to death) of the AML patients using parametric and semi parametric models.

This was achieved by:

• Imputing the missing values using mean/median.

• Fitting the parametric models namely the Weibull, exponential, log-logistic, and
lognormal models.

• Fitting the Cox PH model.

• Compare the performance of the parametric and semi parametric models using
AIC, AICc, BIC, IBS, Concordance index, MAP, MAD and RMSE.

• Identifying and evaluating the effects of covariates on overall survival.

1.3 Significance of the Study

As mentioned in the closing remark in Section 1.1, finding the best diagnosis for AML
is critically important. Determining factors that lead to either death or survival at a
later stage for patients afflicted by the disease need, therefore, to be investigated. It is
hoped that the model determined by the study could be best used for such predictive
purposes, particularly with regard to being used as a supporting tool for predicting the
overall survival of a patient diagnosed with AML. Prior knowledge is also important
for determining and predicting the overall survival of patients. Therefore, this current
study aimed to assist researchers in distinguishing different methods of treatments
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needed in particular cases.

The rest of the research report is explained as follows: Chapter 2 presents the literature
review, which offers a brief overview of articles where survival analysis was used in
various types of cancer studies. Chapter 3 outlines the methodologies used in this
study (i.e., the models employed and the statistical techniques conducted). Chapter 4
presents the results obtained from the analysis and the interpretation thereof. Chapter
5, presents the conclusion of the study. The appendices, which appear at the end of
this research report, comprise the R and STATA syntax as well as some of the related
results obtained.



Chapter 2

Literature Review

2.1 Introduction

This chapter describes survival analysis and provides a literature review relevant to
the case under investigation. In addition, the chapter details comparative and related
studies conducted by previous researchers. The chapter also reviews the procedures
followed, models used, tests done, and conclusions drawn from related research.
Furthermore, the review of related literature covers the concepts and theories used
in and which frame this current study.

Survival analysis, also known as ‘time to event’ analysis, is used to estimate the time
for an event of interest to occur. Survival analysis is, thus, a statistical technique used
to analyse data that experience a failure at a certain point in time. Allison (2010)
defines survival analysis as “an assembled set of statistical procedures used to estimate
the chance and time in which an event may occur”.

There are many examples of end events, depending on the context and field of study. In
the medical field, for example, an ‘event’ could be death, the re-occurrence of a disease,
or the failure of a drug being tested for patients in a clinical trial. By comparison,
in economics, an event could be related to the duration of a strike or a period of
unemployment. Based on the nature of survival analysis, this approach’s techniques
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have been deemed useful for studying cancers, including AML, since it allows for the
measurement of patients’ average survival time along with the hazards that they face.

Of further note, the response for survival analysis is often referred to as survival time,
event time, or failure time. The random variable for survival analysis, namely time, is
strictly positive. In the case of this current study, the response was related to overall
survival time, measured in weeks. However, survival time may also be measured in
months or years, depending on the end of a given study or event occurrence.

As mentioned in the previous chapter, this current study aimed to identify the influence
of different factors on the time of the study’s determined event. In investigating the
dependence of survival time on one or more predictor variables, most researchers in
the medical field tend to prefer using the Cox PH model, which is a semi-parametric
model, as opposed to a parametric model (Pourhoseingholi et al., 2007), (Schlichting
et al., 1983) and Sephton et al. (2000). This preference is based on how the Cox
PH model is considered to be more appropriate for survival analysis as it reduces the
amount of assumptions that need to be made.

An obstacle normally encountered by researchers when analysing survival data is,
however, the likelihood that some of the individuals involved in a study may not be
fully observed until the ‘end-time’ of the experiment (Schober and Vetter, 2018). In
such cases, researchers are not able to obtain the accurate, full, or complete recovery
time data, or data pertaining to the time until the death of the relevant individuals
(Schober and Vetter, 2018). Rather, researchers only have on record some of the
time before the occurrence of the event. Such incomplete observation of the survival
time is known as ‘censoring’. Allison (2010), thus, emphasises the importance of
survival analysis, since censoring and time-dependent covariates are not easy to use
when employed in conventional statistics. In survival analysis, however, since time
to event is strictly positive and has a skewed distribution (Klein and Moeschberger,
2006), censoring has to be done.

When censoring is not employed, issues may be encountered during data analysis.
There are various types of censoring that can occur, including right censoring, which
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can be classified as either Type I or Type II; left censoring; and interval censoring.
Regardless of the type of censoring, an assumption is enforced that it should be
non-informative about the event (Klein and Moeschberger, 2006). As such, usual
analysis techniques cannot be used. In alignment with this understanding, and as
previously mentioned, the techniques explored in this current study were the Cox
PH model as well as various parametric models, namely the Weibull, exponential,
lognormal, and log-logistic models. Parametric models provide complementary
statistics for clinicians and researchers about how risks differ over time.

The next section details some of the more relevant results obtained by previous
researchers. In addition, a comparison of the procedures used in each reviewed study
in relation to this current study is provided.

2.2 Related Studies

The following previously conducted studies hold similarities to the one described in
this research report:

Pourhoseingholi et al. (2007) conducted a study on the survival of patients with gastric
carcinoma. The Pourhoseingholi et al. (2007) study shares the same main objective
as this current study in that it compares survival regression methods. Specifically,
(Pourhoseingholi et al., 2007) used a dataset comprising 746 individuals, with five
selected prognostic covariables, and compared the efficiency of the selected models
using Akaike’s information criterion (AIC). This gastric carcinoma study shows that
patients diagnosed with AML aged over 45 years were at a much greater risk of death
and other complications than other patients (Pourhoseingholi et al., 2007).

The study conducted by Pourhoseingholi et al. (2007) found a correlation between age
and the degree of risk severity in gastric carcinoma, which aligns with similar findings
established in this current study – namely that patients diagnosed with AML aged
65 years or older tend to be at a very high risk of death or relapse. Pourhoseingholi
et al. (2007) concluded that both the Cox and exponential models in the multivariate
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analysis presented with similar results. In their univariate analysis, the authors found
that lognormal regression was strongly supported by the data; moreover, its results
were more precise (Pourhoseingholi et al., 2007).

Clinical trials on 488 patients with chronic liver disease were performed in 1983 by
Schlichting et al. (1983). These trials included a placebo treatment, and the survival
dataset collected was analysed using the Cox PH model. All 51 variables were used to
build a model. However, the variables were later reduced using a stepwise procedure
so as to build a final model with only 12 variables. The stepwise procedure was used
for the same reasons as it was used in this current study to select variables that had a
significant prognostic effect and could, thus, be used as effective treatment indicators
(Schlichting et al., 1983).

Both Pourhoseingholi et al. (2007) and Schlichting et al. (1983) found age to be highly
significant in their disease studies, which aligns to findings regarding AML. In the
chronic liver disease study conducted by Schlichting et al. (1983), the aim was to
develop a prognostic index based on the final model, which consisted of significant
prognostic effect variables. The index that was ultimately developed, however,
allowed only for the calculation of survival probabilities for the period of 5 years.
Cross-validation methods were, thus, used to test the usefulness of the prognostic
index. The results obtained showed that the difference between the estimated function
and the observed survival function was statistically insignificant (Schlichting et al.,
1983).

Both Alamartine et al. (1991) and Sephton et al. (2000) studied the multivariate
Cox regression model as well as standard univariate models (e.g., the lognormal,
exponential, and Weibull models). These sets of authors specifically compared the
semi-parametric and parametric models by clarifying risk factors for patients. In
the study conducted by Alamartine et al. (1991), the risk was that patients might
experience chronic renal failure (CRF) due to severe kidney inflammation, while the
Sephton et al. (2000) study considered risk in terms of patients with metastatic breast
cancer experiencing diurnal variation of salivary cortisol.
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For the study of patients with IgA glomerulonephritis (IgA-GN), the univariate
comparison between those with CRF and those without indicated multiple risk factors,
whereas the multivariate study indicated only four risk factors. The noted four risk
factors were the only ones that had a statistically significant effect on patient survival
rates (Alamartine et al., 1991). From the results obtained using the data on IgA-GN,
the multivariate study was deemed more useful in finding risk factors for CRF.

For the study conducted on patients with metastatic breast cancer by (Sephton et al.,
2000), patients’ salivary cortisol levels were assessed four times daily for 3 days. The
study included 104 patients. The Cox PH model was used as the basis of the analysis.
Patients with low survival rates were identified as having abnormal diurnal variations
within the levels. It was concluded, therefore, that patients with the type of breast
cancer involving low or abnormal diurnal cortisol rhythms experienced an early failure
rate (i.e., such patients were pronounced dead earlier than those with normal diurnal
variations) (Sephton et al., 2000).

A study conducted by Ravangard et al. (2011) was found to also have the same aim as
this current study, namely to compare the semi-parametric Cox PH model to parametric
models whilst also determining the factors that affect patients’ length of stay (i.e.,
the survival variable). The Ravangard et al. (2011) study involved 3,421 cases from
across different hospital units. The authors used only eight variables to fit the models,
with the AIC and Cox-Snell residuals being used to compare the fit of the models. A
probability-value of 5% was used as an assisting tool to measure the significance of
the models. The graphs generated by the Cox-Snell and the AIC values showed that
the gamma model projected the factors affecting length of stay most accurately. This
finding, thus, highlighted that the gamma model had a better fit to the data than either
the other parametric models or the Cox PH (Ravangard et al., 2011).

Wang et al. (2010) did a survival analysis study in oncology, with special reference to
gallbladder cancer. The main objective of the study was to compare different types of
accelerated failure time parametric survival techniques. These techniques were used
to model the benefit of adjuvant chemotherapy. The semi-parametric model was found
to not be of good use when the proportionality assumption is not met. Indeed, in
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the case of the Wang et al. (2010) study, the assumption was not met; hence, the
semi-parametric model was not used. The researchers further compared the parametric
models using AIC, which was similarly employed as a method of comparison in the
current study as well. Wang et al. (2010) found the lognormal survival model to
be most favorable, as it was able to predict which patients would benefit most from
chemotherapy.

Xihui Lin and Hunter (2014) performed a similar study as this research using the same
dataset. The aim of their study was to predict overall survival time in AML using
a bagged semi-parametric model. They used the benchmark variables as instructed
by the M.D. Anderson Cancer Center. The benchmark variables included age at
diagnosis, hemoglobin levels, cytogenic category, specific anthra based treatment
administered and lastly albumin levels. Xihui Lin and Hunter (2014) found that adding
more variables to the clinical model did not improve the performance of the model.
Addition of new variables reduced the performance of the clinical model. The study
by Xihui Lin and Hunter (2014) concluded that the protein information did not provide
additional predictability to the clinical model. The 5 clinical benchmark variables
gave sufficient information to predict the overall survival time for the AML patients
(Xihui Lin and Hunter, 2014). This research will use parametric survival models to
include other variables that will help improve the predictability of the clinical model.

In all, the majority of articles presented have used the Cox PH model as the basis for
their survival analyses. Hence, Cox PH model is the most commonly used model in
medical research for survival analysis.



Chapter 3

Methodology

3.1 Introduction

In this chapter, the models mentioned in Section 1.2, as well as the methods used in the
analysis of the survival data gleaned in this study, are presented. This study employed
the same terminology as that used by Klein and Moeschberger (2006):

• The ith survival time is denoted by Ti;

• The fixed right censoring time is denoted by Ci; and

• Observations are assumed to be independent and identically distributed.

Let δi = I(Ti ≤ Ci) be the event indicator where if Ti ≤ Ci then δi = 1, otherwise
δi = 0.

3.1.1 Survival function

The survival function S (t) is an essential function in survival analysis. This function is
defined as the probability that a patient or subject will survive past any specified time
t (Klein and Moeschberger, 2006).
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The expression for the survival function is given as:

S(t) = P (T > t) = 1− F (t) =

∫ ∞

t

f(x)dx. (3.1)

The density function is given as f(t) = −∂S(t)
∂t

. Furthermore, the survival function is
a function with domain R+ and counter-domain [0, 1], which satisfies the following
three properties:

• It is a non-increasing function i.e S (t) → 0, as t → ∞; and

• S (0 ) = 1 at t = 0.

3.1.2 Hazard function

The hazard function is the instantaneous rate at which an event occurs, and is presented
as:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t
=

f(t)

S(t)
, (3.2)

where ∆t > 0 represents a small time interval. The hazard function can also be
expressed as h(t) = −∂ log(S(t))

∂t
, and the survival function as:

S(t) = exp(−h(t)). (3.3)

Hence, if one of the two is known, then the other can be calculated:

S(t) = exp

[
−
∫ t

0

h(u)du

]
= exp(−H(t)), t ≥ 0. (3.4)

3.2 Survival models

There are many ways of estimating S (t), using either non-parametric estimators (e.g.,
the K-M estimator), or by making some parametric assumptions (Miller Jr, 2011). By
making use of the assumption that every subject follows the same survival function, it
is possible to simplify the estimation of the survival function.
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3.2.1 Non-parametric model: Kaplan-Meier estimator

The K-M estimate is classified by Goel et al. (2010) as a better option to use
when measuring the fraction of myeloid cells within a patient after remission for
a certain period of time ti. Furthermore, the K-M estimator can be categorised
as a non-parametric method because it makes no assumptions about the shape of
the underlying survival curve. The K-M curve is, thus, equivalent to the empirical
distribution function when no censoring is observed.

An advantage of the K-M method is that it includes all available information about a
researcher’s observations. All uncensored and censored observations that are included
cause a non-parametric analysis to generate wider confidence intervals, compared to
those generated by parametric analyses (Goel et al., 2010). The K-M method is, thus,
the simplest method of computing the survival function until time ti. As a result, this
method is most often used to estimate an individual’s probability of surviving for a
given period of time. The K-M method can also take into account different types of
censored data, particularly right censoring, where the patient does not complete the
experiment (Goel et al., 2010).

The survival function, as presented in the K-M method, can be expressed as a product
of the probabilities of patients surviving a disease in k or more periods. The function
is mathematically represented as:

Sk =
k∏

i=1

pi, (3.5)

where pi =
ri−di
ri

, with ri representing the number of surviving patients at the start of
each period and di the number of deaths observed in each period.

In addition, the K-M estimator is mathematically represented as:

Ŝt =
k∏

i=1

(
ni − di

ni

)
, (3.6)

where ni is the number of subjects facing the risk of death by a disease (e.g., AML) just
before time ti and di is the number of deaths observed at time ti (Kaplan and Meier,
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1958).

It is important to consider the number of censored subjects and their distributions when
evaluating the K-M curve, as the number of participating patients is seen in the number
of steps that the curve has. For example, if there are many participating patients, the
curve will have many small steps. Conversely, the curve will have large steps if there
is a limited number of participating patients.

3.2.2 Semi-parametric model: Cox PH model

The Cox PH model is a semi-parametric model that was developed by Cox (1972).
This model is a multivariate method that is widely used in survival analysis in order
to analyse the effect of several risk factors relating to survival. The Cox PH model is
most generally used to detect clinical variables that contribute to risk. Non-parametric
methods, however, do not allow for easy control of covariates, which leads to the
requirement of categorical predictors. In this current study, the Cox PH model was
used to examine the relationship between the survival function for each patient and
exploratory variables.

It should be noted that there are a few assumptions to be considered in order to use the
model well. The first indicates the independence of the individual survival times of the
patients in a study. The second indicates that there must be a multiplicative relationship
between the hazard and the predictor(s). The final indicates that the hazard ratio should
be constant over time. The Cox PH has been explicitly designed to estimate the hazard
ratio that estimates the hazard rate, which rate represents the probability of an event
occurring (be it death or any other relevant event).

Furthermore, the exploratory variables considered should affect the patient prognosis.
Hence, analysis using the Cox PH is conducted in order to examine the effect of
specified covariates in causing an event such as death to occur in a certain period.
The Cox PH function is given as:

h(t) = h0(t) exp(β1x1 + β2x2 + ...+ βpxp) = h0(t) exp (β
′X). (3.7)



3.2 Survival models 18

If the natural logarithm is taken on both sides of the equation, the Cox PH can be given
as:

log(h(t)) = h0(t) + β1x1 + β2x2 + ...+ βpxp, (3.8)

where X is a vector of predictor variables x1, x2, x3, ..., xp and h0(t) is the baseline
hazard. The coefficients, in turn, measure the effect size of the covariates.

In the case where the predictor variables xi are zero then h(t) = h0(t). The
representation of the survival function under the Cox PH model is then given as:

S(t) = S0(t) exp (β
′X), (3.9)

where S0(t) is the baseline survival function.

In the current study, the Cox PH model was fitted in R in order to investigate the effect
of the chosen risk factors as the most important prognostic features that influence the
survival time of AML patients according to the random forests model. In order to
best fit the Cox PH model for this study, it was necessary to ensure that all variables
were first converted to numeric form so that the model would fit using the command
coxph().

3.2.3 Parametric models

Parametric survival analysis models typically require a non-negative distribution, such
as those mentioned in Section 1.2 (i.e., the lognormal, log-logistic, exponential, and
Weibull models). A non-negative distribution is defined for non-negative real numbers,
and the choice of distribution affects the shape of the model’s hazard function,
as previously explained. The alternative method that requires no distributional
assumptions to be made estimates the hazard function from the data.

Miller Jr (2011) states that any probability distribution that satisfies T ∈ [0,∞) can be
used in a survival model. A parametric survival model is, thus, based on its survival
time following a specified probability distribution. In this current study, the following
were considered, the:
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• Exponential model.

• Weibull model.

• Log-normal model.

• Log-logistic model.

These parametric models were compared to the Cox PH model in this study, and are
further detailed in the following subsections.

The exponential model

The exponential model is considered to be one of the most vital models in survival
analysis. Specifically, this model is the simplest form of distribution in lifetime studies.
If the time to event T follows an exponential distribution with parameter λ > 0, then
the probability density function (pdf) will be given as:

f(t) = λ exp(−λt). (3.10)

The survival function, in turn, is given as:

S(t) = exp(−λt), (3.11)

and the corresponding hazard function as:

h(t) =
f(t)

S(t)
= λ. (3.12)

The hazard function for the exponential distribution is constant, while the exponential
distribution possesses a ‘memoryless’ property (i.e., the failure rate remains constant
and does not change with time).

The Weibull model

The Weibull model is also known as a generalised exponential model. Amongst the
parametric models used in this current study, only the Weibull distribution can be
presented as both a proportional hazard model and as an accelerated failure time model.
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The distribution model is further noted as being vital in medical sciences, as it is helpful
for analysing the uniform increase or decrease observed in patient mortality rates.

If the time to failure follows a two-parameter Weibull distribution, with γ > 0 as its
shape parameter and λ > 0 as its scale parameter, then the pdf will be given as

f(t) = γλtγ−1 exp (−λtγ). (3.13)

The survival function, in turn, is given as

S(t) = exp(−λtγ) (3.14)

and a corresponding hazard function as:

h(t) = γλtγ−1. (3.15)

The hazard function for the Weibull distribution is a monotonic increasing function of
t for γ > 1. When γ < 1, it is decreasing and when γ = 1, the Weibull model has a
constant hazard function (i.e., it becomes an exponential distribution). Therefore, the
exponential distribution is a special case of the Weibull distribution.

The lognormal model

If a random variable T follows a lognormal distribution, then the log of T follows a
normal distribution,

Y = log(T ) = α + σZ,

where Z has a standard normal distribution. The lognormal is a two-parameter
distribution where the mean is denoted as µ and the standard deviation (sd) as σ > 0.

Its pdf is given by

f(t) =
1

tσ
√
2π

exp

(
− (log t− µ)2

2σ2

)
= ϕ

(
log t− µ

σ

)
/t, (3.16)

where ϕ( log t−µ
σ

) is the density function of the standard normal variable.
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The survival and hazard functions of the lognormal are given respectively as:

S(t) = 1− ϕ

(
log t− µ

σ

)
(3.17)

and

h(t) =
ϕ( log t

σ
)

σt[1− ϕ( log t
σ
)]
, (3.18)

where ϕ( log t
σ
) is the cumulative distribution function of the standard normal.

The hazard function for the lognormal distribution increases from 0 to a maximum
value and then it declines monotonically to reach zero as T → ∞ .

The log-logistic model

The log-logistic distribution is a continuous probability distribution for a non-negative
random variable. This model’s pdf is given as:

f(t) =
( ν
α
)( x

α
)ν−1

(1 + ( x
α
)−ν)

, (3.19)

where ν is the shape parameter and α is the scale parameter. It should be noted that
the log-logistic distribution, unlike other distributions, has a nonmonotonic hazard
function when the shape parameter is greater than 1.

The survival function, in turn, is given as:

S(t) =
1

1 + ( t
α
)ν
, (3.20)

and the hazard function as:

h(t) =
(ν
a
)( t

α
)ν−1

1 + ( t
α
)ν

. (3.21)

3.3 Parameter estimation

3.3.1 Censoring

As mentioned previously, the lifetimes of all subjects may not be completely observed
due to censoring. Right censoring occurs when exact lifetimes are known for only
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a portion of individuals under investigation, and the other censoring forms are only
known to exceed certain values. While there are various types of censoring, this current
study only considered right censoring, as it is the most common form of censoring
encountered in survival analysis and in the AML dataset. The fixed censoring time is
denoted by Ci and the survival time by Ti for the ith individual. The observed response
will be denoted as:

Xi = min(Ti, Ci). (3.22)

3.3.2 Partial likelihood

An advantage of the Cox PH model is that partial likelihood estimates the parameters,
which eliminates the need to estimate the baseline hazard. While partial-likelihood
estimates are not as efficient as maximum-likelihood estimates for a correctly specified
parametric hazard regression model, after estimating a Cox PH model, it is possible to
recover a non-parametric estimate of the baseline hazard function.

In such a case, it is necessary to let the probability density for an event that occurred
at time t be represented by p(t |X,β). Hence, if a patient i experiences an event
at time ti they will contribute p(t |Xi , β) to the likelihood. By comparison, if a
patient is censored, they will contribute S (t |Xi , β) to the likelihood, where S (t) is
the probability of survival at time t . The likelihood function is given as:

L(β) =
n∏

i=1

[f(t|Xi, β)]
δi [S(t|Xi, β)]

1−δi .

It should be noted that the partial likelihood is determined at each failure time, and is
expressed as the product of likelihoods:

L(β; X) =
n∏

i=1

(
exp (β′ X)∑max

l∈R(Xi)
exp (β′ X)

)
(3.23)

3.3.3 Maximum likelihood estimate

The Maximum Likelihood Estimation (MLE) method is commonly used on parametric
models. If a patient relapses before the expected time ti, the ith patient contributes
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S(ti) to the likelihood function, where the likelihood is given as:

L(β; X) = S(ti). (3.24)

A censored patient, whose event of relapse did not occur before the expected time ti

contributes just S(ti) to the likelihood function. Such contribution is then interpreted
as the probability of the failure occurring:

L(β; X) = S(ti)h(ti).

The joint likelihood function is, in turn, given as:

L(β; X) ∝
n∏

i=1

f(Xi; βi)
δiS(Xi; βi)

1−δi . (3.25)

3.4 Model development

A model has to be developed in order to summarise and analyse data efficiently. An
efficient model helps identify and reduce the number of covariates, and accomplishes
a high level of explanation and prediction with the least number of predictor variables.

3.4.1 Variable selection

Variable selection is classified as an essential procedure for both data analysis and the
model building process. The main aim for a variable selection procedure is to end
up with a subset of covariates that best explain the data (Kazemitabar et al., 2017).
Considering the ratio of the number of variables and cases in the AML dataset, it is
best to make use of a non-parametric variable selection method. In particular, using a
non-parametric variable selection method that is unrelated to the models compared in
the study helps to reduce bias.

Decision Trees

Decision trees are well known for predicting the performance of a model as well
as for providing important variable information. The decision trees algorithm ranks
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predictors according to importance scores, with the high-ranking predictors being
chosen to model the data. This procedure prunes the variables; thereby allowing for a
more parsimonious model to be constructed (Kazemitabar et al., 2017).

Random Forests

Another well-used method of variable selection is random forests, which are made
up of a multitude of decision trees. In essence, random forests are a machine
learning classification algorithm with similar hyper-parameters as those of decision
trees (Kazemitabar et al., 2017). The benefit of using random forests over decision
trees is, however, that they provide higher levels of accuracy, flexibility, and ease of
output interpretation (Ali et al., 2012). Han et al. (2016) and Ali et al. (2012) further
maintain that random forests improve the performance of decision trees and reduce the
possibility of over-fitting.

The packages randomForest and ranger are often used to execute the variable
selection algorithm in R. The algorithm uses the following control parameters to find
the best model:

1. ntree - number of trees in the forest;

2. importance - set to TRUE, allows for the importance of variables to be assessed;

3. mtry - number of predictors to be randomly drawn as a sample and choose best
split; and

4. maxnodes - number of terminal nodes in the forest.

Random forests also provide extra useful information, such as variable importance and
proximity measures (Ali et al., 2012). Variable importance offers a measure of the
importance of each variable in the building of a model (Genuer et al., 2010). The
process of choosing the covariates is, thus, simplified by the variable importance plot.
The variables are then ordered from most important to least important variable on the
plot. The random forests algorithm also provides an importance table, which gives a
summary of the Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG)
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(Han et al., 2016).

The MDA represents the mean decrease in the accuracy of the model, as the algorithm
classifies the variables whilst excluding the variable. Hence, the more inaccurate the
model is, the higher the importance of the excluded variable. The MDG coefficient
is measured on a scale from 0 to 1, and measures the homogeneity of node, which
depends on the contribution of a certain variable (Han et al., 2016). An MDA graph
is also used to choose the variables by selecting the first few variables separated by
a jump between them. It is necessary, however, to be careful and not select too few
variables, as this could mean that there is insufficient information to create a significant
model. There is also the problem of choosing too many variables, which would mean
that there is more information than the researcher needs (Genuer et al., 2010).

Stepwise Regression

Stepwise regression is a method that iteratively assesses the statistical significance of
each independent variable in a linear regression model. The technique is a combination
of both the forward and backward selection techniques, and is, thus, a modified form
of the forward selection technique (Olusegun et al., 2015). In addition, stepwise
regression assesses each step in which a variable is added to a model and then
determines whether or not the variable’s significance has been reduced below the preset
significance level. Any variable found to be insignificant is removed from the model.

It should be noted that stepwise regression makes use of two significance levels. The
first significance level is used for adding variables and the second is used for removing
insignificant variables from the model. The cutoff probability used to add variables
to the model must also be less than that used to add the variables to the given model
(Olusegun et al., 2015). In so doing, the difference between the cutoff probabilities can
help the procedure to avoid getting into an infinite loop.

For this current study, the best approach to the creation of a parsimonious model was
deemed to be the combination of random forests and the stepwise p-value approach.
The variables were kept in the model when its associated significance level was less
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than a specified p-value. In contrast, if the associated significance level was greater
than the stipulated p-value, then the variable was removed from the model.

3.4.2 Information based criteria

The parametric models and semi-parametric model used in this study were compared
using both the Bayesian information criterion (BIC) and the AIC. These two criteria
have been described as “penalized-likelihood” criteria by (Vrieze, 2012). Penalised
likelihood estimation is a method used to take into account model complexity during
the estimation of parameters from different models. The two information based criteria
are generally used to compare non-nested models, with each of the criterion attempting
to resolve overfitting by making use of a penalty term. A penalty term accounts for the
number of parameters used in the model(s) (Kuha, 2004).

The AIC is defined as a quality estimator of statistical models, and it estimates the
relative amount of information that a model loses. The best model always loses the
least amount of information (Burnham and Anderson, 2004). The AIC is given as:

AIC = −2 log(L) + 2k, (3.26)

where L is the maximised value of the likelihood function of the model, and the number
of parameters estimated in the model being evaluated is represented by k.

The BIC, in turn, was formulated by Schwarz (1978), which is why it is also known
as the Schwarz information criterion. The BIC is well known for penalising model
complexity more severely when compared to the AIC, and is given as:

BIC = −2 log(L) + k log(n), (3.27)

where n is the sample size. The BIC of any model is defined as a true estimation
of the function of posterior probability, and its value represents how true the model
is (Schwarz, 1978). As a result, low values are preferred for this particular criterion.
The criterion is also only valid when the sample size is greater than the number of
parameters in the model (Burnham and Anderson, 2004) which is true for the AML
dataset.
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3.4.3 Model performance evaluation techniques

The model’s overall performance were tested using the Integrated Brier Score and the
concordance index (c-index) techniques as well. According to Graf et al. (1999) IBS
was initially developed for the purposes of predicting inaccuracies encountered when
forecasting weather. Graf et al. (1999) later extended it to measure the performance of
survival models. IBS was developed in such a way that it can provide an overall value
that quantifies the performance of a model at times t1 ≤ t ≤ tmax (Graf et al., 1999).

IBS for a survival model over the interval [0;max(ti)] is given as:

IBS =
1

max(ti)

∫ max(ti)

0

BS(t)dt,

where BS(t) is the Brier score of the model at time t. Perfect accurate predictions will
give a Brier score of 0 and perfect inaccurate predictions will have a Brier score of 1
(Graf et al., 1999).

The c-index is widely used to assess the predictions made by a survival algorithm
(Steck et al., 2008). The index represents the area under the ROC curve which also
includes the censored data (Brentnall and Cuzick, 2018). In this study the c-index was
used to evaluate the predictive abilities of both the parametric and semi-parametric
models which allowed for better comparison of the models.

The c-index assisted by ranking the survival times based on the individual risk scores.
The index is calculated as follows:

C-index =

∑
i,j 1Tj<Ti

· 1ηj>ηi · δj∑
i,j 1Tj<Tj

· δj
,

where

• ηi represents the risk score of i;

• 1Tj<Ti
= 1 if Tj < Ti else 0; and

• 1ηj<ηi = 1 if ηj < ηi else 0.

A good model prediction would give a c-index value of 1 and a random prediction
would give a c-index of 0.5 (Brentnall and Cuzick, 2018).
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3.4.4 Forecast measures

The main purpose of using forecast measures is to examine and evaluate the difference
between the actual values and the predicted values (Chase Jr, 1995). They are used to
define the average model accuracy and performance (Willmott and Matsuura, 2005).
The forecast measures are used as follows:

• Mean absolute deviation (MAD): MAD is the avaerage distance between each
data point and the mean of the data. It is given as:

MAD =
1

n

n∑
i=1

|xi − x̄|,

where n is the number of data values, x̄ is the average of the dataset and xi is the
data values in the data set.

• Mean absolute error (MAE): MAE gives the average absolute error value
expected by obtaining average of the differences between the predicted values
and the actual values. It is given by:

MAE =
1

n

n∑
i=1

|ei|,

where n is the number of errors and ei are the error values for each data value in
the data set.

• Mean absolute percentage error (MAPE): MAPE measures the accuracy of the
forecast system used. It gives the forescast measure as a percentage.

MAPE =
1

n

n∑
i=1

∣∣∣∣ai − fi
ai

∣∣∣∣ ,
where ai is the actual value obtained and fi is the forecasted value.

• Root mean square error (RMSE): RMSE gives the standard deviation of the
prediction errors. It is given by:

RMSE =

[
1

n

n∑
i=1

|ei|2
] 1

2

.
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3.4.5 Model diagnostics

Many assumptions are made when developing models; however, measures to
investigate the validity of these assumptions must also be taken. In this current
study, residuals were used to verify the validity or overall fit of the parametric and
semi-parametric models that were evaluated. In particular, Cox-Snell residuals, which
are defined as a type of standardised residuals, were used (Nardi and Schemper, 2003).

Cox-Snell residuals are widely used for lifetime models. When these residuals are
plotted on an exponential probability plot, they allow easy assessment of the following:

• Extreme data points that require additional attention;

• The appropriateness of the failure time distribution; and

• The appropriateness of the relationship between the failure time and the risk
factors.

In this current study, the Cox-Snell residuals are given in two forms for the Cox PH
model and the parametric models, respectively as follows:

ri = Ĥ0(t) exp (β̂
′X)

and
ri = − log Ŝ(t),

where Ĥ0 represents the fitted Cox PH model’s estimated value of the baseline
cumulative hazard rate, and the estimate of the hazard rate is given by Ŝ(t). The
plot of the cumulative hazard rate versus the residuals helps to give a clear indication
of whether the models fit well. Specifically, the plot of a good fit should have a straight
line passing through the origin with a slope of 1 (Nardi and Schemper, 2003).

Furthermore, the martingale residual is another useful diagnosis method. The primary
use of martingale residuals is to determine the functional forms of covariates in a
model. In other words, the residuals assess nonlinearity (Therneau et al., 1990). Since
the martingale residuals take any value in the range −∞ < rj < +1 values closest
to 1 in this current study represent patients who experienced relapse ‘too early’ (i.e.,



3.5 Data source 30

a failure time was observed before the censored time t). Negative martingale residual
values, in turn, show that no failures were observed before censored time t (Therneau
et al., 1990).

The martingale residuals are given as:

rj = δ − Ĥ0(t) exp (β
′X).

The study makes use of the Schoenfeld residuals to test the proportionality assumptions
of the Cox PH model. The Schoenfeld residuals represent the difference between the
observed covariate and the expected covariate Xi given the risk set Ri at that time ti

(Xue et al., 2013). The residuals are calculated for each individual covariate to check
if the covariates individually satisfy the assumptions of the Cox model. Since the
residuals are calculated for each covariate both the number of predictor variables in
the model and Schoenfeld residual variables are same (Xue et al., 2013). The residuals
are not defined for censored individuals.

The Schoenfeld residuals for an individual predictor variable are given as:

rik = Xik − E(Xik|Ri).

3.5 Data source

The study described in this research report used the patient dataset provided by the
M.D. Anderson Cancer Center. The data were collected over a period of approximately
11 years. This AML dataset was then presented to the public as a challenge, and it is
currently freely available at: https://www.synapse.org/#!Synapse:syn2488690
website.

The data captured 271 measurements for each patient, and included 191 patients
who were diagnosed and treated at the M.D. Anderson Cancer Center. These
patients were treated using cytosine arabinoside (ara-C)-based chemotherapy. The
271 measurements for each patient comprised 40 clinical correlates and 231 protein
and phosphoprotein levels. The clinical correlates describe patient demographics,

 https://www.synapse.org/#!Synapse:syn2488690
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cytogenics, and mutation statuses. These correlates also include the results of several
standard blood tests administered during the course of the treatment.

There are many data imputation techniques, such as partial imputation, mean or median
imputation, regression imputation, and hot and cold imputation. Since the percentage
of missingness of the dataset available on the internet is low at 0.895288%, and the
missingness was found only in numeric variables, it was appropriate for this study to
resort to the use of the mean/median imputation technique.

Among the clinical covariates within the collected data, there were variables that were
deemed clinically important by many prior researchers, including the M.D. Anderson
Cancer Center, to include in the models to be built in this study. Such variables
included: ‘age.at.dx’, ‘SEX’, ‘HGB’, ‘ALBUMIN’, ‘Chemo.Simplest’, ‘Infection’ and
‘cyto.cat’. These variables were, thus, included in all the included models in this study,
whether they are were found to be significant or not by the variable selection methods.
The clinical covariates are as follows:

Table 3.1: Clinical Covariates.

Clinical Covariate Values Desciption

SEX M,F Patient gender

AGE numeric Patient age at the time of diagnosis

AHD numeric Prior antecedent hematologic disorder

PRIOR.CANCER YES,NO Whether the patient has been diagnosed with a prior cancer.

PRIOR.CHEMO YES,NO Whether the patient has had prior chemotherapy

PRIOR.RAD YES,NO Whether the patient has had prior radiation therapy

INFECTION YES,NO Whether the patient was diagnosed with an infection

CYTO.CAT

"-5","-5,-7","-5,-7,

+8","-7,+8","11q23",

"21","8","diploid",

"IM","inv9","Misc",

"t6;9","t8;21","t9;22"

The cytogenic category of the patient

ITD NEG , POS , ND Whether the patient was found to have a ITD FLT3 mutation

D385 NEG , POS , ND Whether the patient was found to have a D835 FLT3 mutatuion

RAS.STAT NEG , POS , NotDone Whether the patient was found to have a Ras Stat mutation

CHEMO.SIMPLEST

Anthra-HDAC,Anthra-Plus,

Flu-HDAC,HDAC-Plus non

Anthra,StdAraC-Plus

The specific Anthra based treatment administered

RESP.SIMPLE CR , RESISTANT Patients were categorized as having a complete response or to be restistant to treatment

RELAPSE Yes , No , NA Whether a patient with complete response later relapsed

VITAL.STATUS A , D The final outcome of each patient at the end of study, either alive or deceased

OVERALL.SURVIVAL numeric Patient’s overall survival time measured in weeks from diagnosis to exiting the study

REMISSION.DURATION numeric or NA The duration of time spent in the remission measured in weeks

WBC numeric The white blood cell count
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Table 3.1 continued from previous page

Clinical Covariate Values Desciption

ABS.BLST numeric The total number of myeloid blast cells measured in blood samples

BM.BLAST numeric The number of myeloid blast cells measured in bone marrow samples

BM.MONO numeric or NA The number of monocytes measured in bone marrow samples

BM.PROM numeric or NA The number of promegakaryocytes measured in bone marrow samples

PB.BLAST numeric or NA The number of myeloid blast cells measured in blood samples

PB.MONOCYTES numeric or NA The number of monocytes measured in blood samples

PB.PROM numeric or NA The number of promegakaryocytes measured in blood samples

HGB numeric or NA Hemoglobin count measured in blood samples

PLT numeric or NA Platelet count measured in blood samples

LDH numeric or NA Lactate dehydrogenase levels measured in blood samples

ALBUMIN numeric Albumin levels measured in blood samples

BILIRUBIN numeric or NA Bilirubin levels measured in blood samples

CREATININE numeric Creatinine levels measured in blood samples

FIBRINOGEN numeric or NA Fibrinogen levels measured in blood samples

CD13 numeric or NA Levels of cell surface marker CD13 detected

CD33 numeric or NA Levels of cell surface marker CD33 detected

CD34 numeric or NA Levels of cell surface marker CD34 detected

CD7 numeric or NA Levels of cell surface marker CD7 detected

CD10 numeric or NA Levels of cell surface marker CD10 detected

CD20 numeric or NA Levels of cell surface marker CD20 detected

HLA.DR numeric or NA Levels of cell surface marker human leukocyte antigen detected

CD19 numeric or NA Levels of cell surface marker CD19 detected

3.5.1 Risk factors for Acute Myeloid Leukemia with missing

values

The variable reduction methods used in this study (i.e., random forests and stepwise
regression) reduced the missing values percentage significantly. Table 3.2 provides
summary statistics of the variables used that had missing values. The number of
myeloid blast cells measured in the bone marrow samples of patients was found to
be roughly symmetrical according to the values presented in Table 3.2, as the mean
equals the median. The method used to impute the missing value was the mean
method. The distribution of values for CD19 as well as the number of monocytes
measured in the blood samples were both positively skewed, as seen in the figures
presented in Appendix A. Hence, the suitable method to impute the missing values
for the two variables was the median method. Based on the information presented in
Table 3.2, more than three quarters of the patients had above-average levels of CD19
and monocytes in their blood samples. The kurtosis of Bilirubin, CD10, CD13, CD19,
and CD33 variables, were also all found to be above 3, which indicates that they have
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heavier tails than the regular normal distribution. The median method of imputation
was therefore used.

Table 3.2: Variables with missing values

Variable Mean Std. Dev. Median Min Max Skewness Kurtosis % of missingness

Bilirubin 0.6047 0.4838 0.5 0.1 5 4.9773 42.3546 0.010

Myeloid Blast 52.75 23.1455 52 5 94 0.0491 1.8224 0.005

CD10 4.011 8.396 2 0 91 7.3035 70.6242 0.021

CD13 79.83 23.3033 90 1 100 -1.599 4.8442 0.021

CD19 7.624 15.5228 1.2 0 94 3.1914 13.6573 0.021

CD33 76.77 30.2431 92 0 100 -1.3473 3.4052 0.021

Fibrogen 442.7 147.7018 421 0 701 0.1203 2.5488 0.073

Hemoglobin 9.591 1.6441 9.4 5.4 13.7 0.2028 2.8352 0.005

3.5.2 Risk factors for Acute Myeloid Leukemia without missing

values

Table 3.3 tabulates a few of the key risk factors of AML that did not have missing
values, while in Table 3.4 there are details noting how the majority of AML patients
(56.84%) had above-average (mean=3.41; sd=0.70) albumin levels in comparison to
the remainder (43.16%) who had below-average levels. Also according to Table 3.3,
the values observed for albumin levels were found to be somewhat symmetrical (i.e.,
mean ≈ median). In the case of the levels of cell surface marker CD19, more than three
quarters (78.69%) of the patients had below-average readings (mean=8.18; sd=15.95),
while less than a quarter (21.31%) of the patients had above-average readings. The
cytogenic categories of the patients were, in turn, regrouped as follows: ‘High’,
‘Intermediate’, ‘Intermediate-low’, and ‘Lower’. These groups were represented as
categories 1, 2, 3, and 4, respectively in Table 3.4. The same table also indicates that
four to five out of 10 (47.54%) patients fell into Category 3 (Intermediate-low), while
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three out of 10 (32.24%) fell into Category 2 (Intermediate); thereby making these two
groups the more highly populated groups. In comparison, Category 1 (High) had the
fewest patients (8.74%) and Category 4 (Lower) had slightly more than Category 1 at
(11.48%).

Table 3.3: Variables without missing values

Variable Mean sd Median Min Max Skewness

ALBUMIN 3.411475 0.69664 3.5 0.7 5 -0.47534

ChemoSimplest 2.202186 1.543364 1 1 5 0.738157

cytocat 2.617486 0.802551 3 1 4 -0.22637

Infection 1.234973 0.425145 1 1 2 1.250183

ITD 2.20765 0.445424 2 1 3 0.86454

PRIORCHEMO 1.103825 0.30587 1 1 2 2.597582

The variable ‘PRIORCHEMO’ presented in Table 3.4 represented whether a patient
had prior chemotherapy.
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Table 3.4: Risk factors frequency

Variable Category Freq. Percent

ALBUMIN Below avg 79 43.16%

Above avg 104 56.84%

CD19 Below avg 144 78.69%

Above avg 39 21.31%

cytocat 1 16 8.74%

2 59 32.24%

3 87 47.54%

4 21 11.48%

PRIORCHEMO 1 164 89.62%

2 19 10.38%

Infection 1 140 76.50%

2 43 23.50%

ITD 1 3 1.64%

2 139 75.96%

3 41 22.40%

ChemoSimplest 1 and 2 109 59.56%

3 29 15.85%

4 20 10.93%

5 25 13.66%

As seen in Table 3.4, almost 9 out of 10 (89.62%) patients had prior chemotherapy
(mean=1.10; sd=0.31), while 10.38% of the patients did not. About three quarters
(76.50%) of the participants had also been diagnosed with an infection, while (23.50%)
had not. Furthermore, three quarters (75.96%) of the patients did not experience ITD
FLTS mutation, while a fifth (22.40%) fell into the ‘unknown’ category. Only 1.64%
of patients actually experienced ITD FLTS mutation. In comparison, the variable
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‘Chemo.Simplest’ presented in Table 3.4 was related to the specific Anthra treatment
administered to patients. There were five types administered, of which almost six
out of 10 (58.47%) patients had received Anthra-HDAC chemotherapy treatment.
Of the remaining four types, a few patients each had received, in descending order
of frequency, Flu-HDAC (15.85%), StdAraC-Plus (13.66%), HDAC-Plus non-Antra
(10.93%) and Antra-Plus (1.09%).

3.6 Variable Selection

3.6.1 Random forests

In Section 3.4, a discussion was presented regarding the random forests technique
and how it has the ability to rank variables in the order of most to least importance.
Table 3.5 presents the variable importance for the first five variables out of the 142
variables chosen using random forests. It should be noted that some of the clinically
important variables mentioned in Section 3.5 were not included in the 54% of the
variables identified as important by the random forests algorithm (e.g., ‘SEX’ and
‘Infection’).

Table 3.5: Variable importance for the first six variables.

Variables Importance

Cytogenic category 0.0067

Age 0.0058

CD19 0.0033

CCND3 0.0019

ALBUMIN 0.0018

Myeloid blast 0.0017

. . . . . .
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3.7 Descriptive Statistics

3.7.1 Gender and Age at death

Table 3.6: Gender and age of participants.

Variable Freq. Percent

Gender
Male 98 51.31

Female 93 48.69

Age group

4-25 years 10 5.24

25-49 years 49 25.65

50-64 years 67 35.08

As noted previously, the database used in this study consisted of participants who
all had AML. Table 3.6 depicts how approximately half of these patients were male
(51.31%), while 48.69% were female. The median patient age at diagnosis was 58
years. The Interquartile Range (IQR) was 46-67 years old. The maximum age at
diagnosis was 87 years, while the minimum was 4 years.

3.7.2 Overall Survival and Survival Status

Figure 3.1: Survival status.
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The survival status variable indicated whether a participant was alive or deceased at
the end of the experiment. During the course of treatment, 142 (74.35%) patients were
unsuccessful in their treatment (i.e., experienced death) while 49 (25.65%) survived,
as shown in Figure 3.1.

Table 3.7 indicates that of those who survived, under half were female (49%) while
the rest (51%) were male. There was, thus, little to no difference between males and
females in terms of survival rate, which indicated that individuals, regardless of gender,
have an almost equal chance of dying from AML. The hazard plot shown in Figure A.4
in Appendix A further indicates, however, that males tend to be slightly less likely to
die when compared to females.

Table 3.7: Survival status by gender.

SEX
Survived Died Total

Freq. Percent Freq. Percent Freq.

Male 25 51.02 73 51.41 98

Female 24 48.98 69 48.59 93

Table 3.8 indicates that those patients aged 50-64 years were almost equally likely
to survive (34.7%), while those aged 25-49 years were more than twice as likely to
survive (44.9%). In comparison, those aged younger than 25 years were five times
more likely to survive (12.2%) than die, and those aged 65 years and older were 5
times more likely to have died than survive (42.9%).
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Table 3.8: Survival status by age.

Variable Freq. Percent

0=4-25 years 10 5.24

25-49 years 49 25.65

50-64 years 67 35.08
Age group

65+ years 65 34.03

Total 191 100

The overall survival of patients was measured in weeks from diagnosis to exiting the
study. The maximum number of weeks was 734 and the minimum was 3, as shown in
Figure 3.2. The median survival period was 69 weeks (IQR: 29-331 weeks), the mean
was 168 weeks, and the sd was 188 weeks. Slightly more than half of the patients
survived up to 90 weeks (54.5%), and the survival period for about one tenth of the
patients was between 91 and 180 weeks (13%). Very few patients survived during
the 181-352 weeks period, but approximately a quarter (23.6%) survived for over 352
weeks. The longest survivor reached 734 weeks, while the shortest survivor reached
only 4 weeks.

Figure 3.2: Distribution of the overall survival of patients in weeks.
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3.7.3 Stepwise regression

From the 142 variables chosen by random forests, stepwise regression was used in
fitting the models. Table 3.9 details the number of variables each model selected using
this technique.

Table 3.9: Number of variables chosen by each model.

Model No. of variables

Exponential 23

Weibull 48

Lognormal 36

Log-logistic 33

Cox PH 32



Chapter 4

Data Analysis and Results

4.1 Introduction

This chapter provides the results of the study of risk factors for AML using parametric
and semi-parametric models. The variables with missing values were imputed in
R using the mean and median imputation method, as the percentage of missingness
was very low. Furthermore, the variables with missing values were only numeric not
categorical. The data were analysed using Stata software (version 16) and R software
(version 4.1.1).

The chapter first provides results from the variable selection procedure conducted using
random forests. Thereafter, the chapter presents descriptive statistics in the form of
frequencies and mean scores for the variables selected as important by the random
forests and stepwise regression methods, and which were used in the model building.
This chapter ends with details regarding the fitting of non-parametric, semi-parametric
and parametric models and a comparison of the models using information based
criteria and forecasting error measures.
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4.2 Kaplan Meier estimator

This section presents curves that were constructed to assess the population failure and
survival rates of patients using the non-parametric method. Figure 4.1 illustrates the
trends in the survival rate of patients. The median survival rate is approximately 53%
which is relatively low.

Figure 4.1: Kaplan-Meier survival Estimate.

Based on the information presented in Figure 4.1, the survival and failure rates were
found to be inversely related. At 200 weeks of the study, the survival rate dropped
from 100% to 30% and the failure rate increased from 0% to 70%. The number of
patients dying increased to approximately 70% in 200 weeks. The steepest decrease
in the survival rate (i.e., converse increase in failure rate) was encountered in the first
200 weeks. Then for the next 300 weeks, the rate of increase in failure (i.e., converse
decrease in survival) decreased and approached a constant rate in the last 250 weeks.

In reference to Table A in Appendix A, at 3.29 weeks, there were 191 patients alive
and only 1 patient experienced death. The probability of death at the serial time of 3.29
weeks was given as the survival rate of 0.9948. The 95% confidence interval for this
event to occur at the serial time of 3.29 weeks was [0.9634; 0.993]. At 9 weeks into
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the study, there were 184 patients alive and still participating in the study. One patient
did, however, experience death at 9 weeks; hence, the probability of failure became
0.0367.

Figure 4.2: Kaplan-Meier failure Estimate.

The 95% confidence interval of this event was [0.9246; 0.9823]. In respect to week
205.4 (Table A), the probability of survival significantly decreased to 0.2946, which
indicated a 70% decrease from the beginning of the study. At this point in the study,
it became evident that the chance of survival for patients was very low. Furthermore,
as shown by the two graphs for the K-M estimates, Table A supports that from week
479.1, the rate of patient death stopped decreasing and remained constant at 0.2290.

4.3 Predictive statistical models

This section presents the results of fitting the respective models: exponential, Weibull,
log-normal, loglogistic and Cox PH. The results of the comparisons conducted between
the predictive statistical models to find the one that best modelled the AML dataset
using information-based criteria and forecast measures are also disccussed in this
section. The other objective of the study was to evaluate and compare a variety
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of parametric models (i.e., Weibull, exponential, log-logistic, and lognormal) to a
semi-parametric model (Cox PH).

All models were trained using 80% of the data and tested using 20% of the data.
The parametric estimates for the exponential, Weibull and lognormal models are in
Appendix A. The hazard rate for age at diagnosis was 1.0025 for the exponential
model fit shown in Table A.1 strongly suggests that older patients were more likely
to die compared to younger patients. The variable had a very high level of significance
close to 0. The lognormal results, in Table A.3, show that the age at diagnosis had a
hazard rate of 1.0042 which supports the same conclusion drawn by the results from
the exponential model that older patients were more likely to die compared to younger
patients. The variable had a high level of significance which approximates to 0 as well.
However, the Weibull model results in Table A.2 and the loglogistic model results in
Table A.4 oppose those found by the exponential and lognormal model fits. According
to the results found by the Weibull (HR= 0.9988, p-value < 0.05) and loglogistic
(HR= 0.9992, p-value < 0.05) model fits older patients were less likely to die when
compared to younger patients.

For the cytogenic categories all four model fit results had hazard rates less than 1
with very high levels of significance. For the parametric models, the patients with
high cytogenic categories were found to be less likely to die compared to the patients
with low cytogenic categories (exponential (HR= 0.9074, p-value < 0.05), Weibull
(HR= 0.9266, p-value < 0.05), lognormal (HR= 0.9489, p-value < 0.05) and
loglogistic (HR= 0.9758, p-value < 0.05)). Hence, the chance of death due to AML
was seen to be reduced by having a high cytocat category.

The results show that there are no statistically significant associations between
hemoglobin, ‘SEX’, ‘Chemo.Simplest’ and infections to all-cause mortality. The
variables were found not statistically significant at the 5% level of significance. All
4 parametric models identified the variable protein ARC as highly significant to the
outcome of a patient in the study. The lognormal model fit results suggested that
patients with positive readings for the ARC protein were less likely to die when
compared to those with negative levels (HR= 0.8901, p-value < 0.05). The lognormal
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model fit results suggested that the probability of death by AML was reduced by ARC
protein positive. The exponential, Weibull and loglostic model fit results, however
strongly suggested that patients with negative ARC protein levels were less likely
to die when copared to the patients with positive ARC protein levels. The hazard
rates and p-values for the exponential, Weibull and loglogistic models were as follows:
HR= 1.1000, p-value < 0.05, HR= 1.3691, p-value < 0.05 and HR= 1.0062, p-value
< 0.05, respectively.

The black survival curve with the 95% confidence interval represents the general plot
of the loglogistic survival model whereas the red survival curve gives the survival curve
produced by the covariates chosen in Figure 4.3. This figure specifically indicates that
the survival rates of patients decrease at a fast rate for the first 250 weeks but slows
thereafter. The full summary of the model fit can be found in Table A.4 (Appendix A).

Figure 4.3: Log-logistic model fit survival curve.

Figure 4.4, furthermore, projects the results of testing the overall fit of the log-logistic
model using Cox-Snell residuals. As can be seen in this figure, the hazard function
for the log-logistic model successfully followed a straight line from the origin. These
results indicate that the hazard function approximated the exponential function with
Hazard Rate 1, which reflected how well the model fit the data.



4.4 Cox PH model fit 46

Figure 4.4: Cox-Snell residuals for the log-logistc model fit.

4.4 Cox PH model fit

Time to event curves analysed by Cox PH regression are commonly used to describe
the outcome of clinical studies. The Cox PH model in this study was fitted using 80%
of the data and tested using 20% of the data. The split presented a ratio of 152:39,
respectively.

The results obtained from fitting the Cox PH model with the variables that were found
to be significant via the variable selection methods, including the clinically significant
variables, are presented in Table 4.1. The results show that even for the Cox PH
model there are no statistically significant associations between hemoglobin, ‘SEX’,
‘Chemo.Simplest’ and infections to all-cause mortality just as found for the parametric
models. The variables were also found to not be statistically significant to the 5%
level of significance. The rest of the variables were, however, found to be statistically
significant.

The Cox PH model fit results strongly indicate that older patients were more likely
to die when compared to younger patients, as the hazard ratio was 1.042, with a very
high level of significance (HR= 1.042, p-value < 0.05). The time to death due to AML
was also found to increase for older patients. Those with high cyto.cat were, in turn,
found to be less likely to die when compared to those with low cytogenic categories
(HR= 0.4430, p-value < 0.05). Chances of dying due to AML were, thus, seen to be
reduced by having a high cyto.cat.
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Table 4.1: Cox PH model fit for all clinical covariates.

Variable coef exp(coef) se(coef) z-value P-value

Age 0.0412 1.042061 0.008905 4.627 3.72E-06

cyto.cat -0.81429 0.442953 0.172519 -4.72 2.36E-06

TGM2 0.313835 1.368664 0.12491 2.512 0.011988

CCNE2 0.391174 1.478716 0.14617 2.676 0.007447

PRIOR.CHEMO 1.227749 3.413538 0.474747 2.586 0.009706

PARP1.cl214 -0.39937 0.670746 0.159319 -2.507 0.012187

PRIOR.CANCER -0.86144 0.422554 0.342115 -2.518 0.011803

GATA3 0.409482 1.506037 0.14999 2.73 0.006332

H3K27Me3 -0.47821 0.61989 0.170595 -2.803 0.005060

ITD 0.99566 2.706509 0.257678 3.864 0.000112

EGLN1 -0.46676 0.627031 0.159332 -2.929 0.003395

Hemoglobin -0.11297 0.893181 0.0732 -1.543 0.122770

SEX -0.1632 0.849424 0.221519 -0.737 0.461296

ALBUMIN -0.48011 0.618716 0.164387 -2.921 0.003494

Chemo.Simplest -0.11274 0.893384 0.082403 -1.368 0.171268

Infection 0.031828 1.03234 0.288892 0.11 0.912272

One highly significant result was that patients who had prior chemotherapy had an
increased chance of death when compared to patients who had not had chemotherapy
prior to being diagnosed with AML (HR= 3.414, p-value < 0.05). Such a result
indicates that prior cancers significantly affect patients’ chance of death from AML.
Patients without prior cancers were also found to be less likely to die when compared
to those who had been diagnosed with prior cancers ( HR= 0.4226, p-value < 0.05).
Chances of dying due to AML were found, therefore, to be reduced by not having any
form of prior cancer.
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AML patients with high levels of TGM2 and CCNE2, and who were found to have
positive results of the ITD mutation, were found to be more likely to die when
compared to those with lower levels of these genes and who were also found to not
have the ITD mutation. Indeed, these patients’ hazard ratios were all above 1, and
the variables were found to be highly significant, as they reported p-values below
5%. A further highly significant result related to this finding was that patients with
an above-average level of albumin tended to be less likely to die when compared to
those who had lower levels (HR= 0.6187, p-value < 0.05). Thus, a strong relationship
was found between patients with above-average levels of albumin and decreased risk
of death from AML.

The Cox PH model fit can be seen in Figure 4.5. The median survival rate is
approximately 60%. This figure includes all the significant variables as well as the
clinically significant variables.

Figure 4.5: Cox PH survival curve.

4.4.1 Cox PH model residuals and assumptions analysis

This section presents the residuals mentioned previously in Section 3.4.5, which were
assessed to check the overall fit of the model using Cox-Snell residuals as well as to
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test the functional form of the predictors selected by the Cox PH model. In addition,
the section summarises the results from testing the proportional hazards assumption of
the Cox PH model. Specifically, Figure 4.6 shows that the hazard function does follows
the 45-degree line but not too closely for very large values of time. This finding reveals
that the Cox PH model fit the data well for mostly small values of time.

Figure 4.6: Cox PH Cox-Snell residuals.

Furthermore, in Table 4.2, the Schoenfeld residuals are computed to display the
proportionality of all the clinically and other significant predictors according to the
Cox PH model fit.
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Table 4.2: Scaled Schoenfeld Residuals of Significant Covariates on the PH.

Variable Chisq DF P-value

Age 1.78e-01 1 0.6732

cyto.cat 5.08e-02 1 0.8217

ARC 2.20e-01 1 0.6388

TGM2 3.70e+00 1 0.0543

PRKCD.pT507 8.53e-03 1 0.9264

CD74 8.96e-02 1 0.7647

CCNE2 2.95e-01 1 0.5869

PRIOR.CHEMO 8.92e-01 1 0.3448

PARP1.cl214 3.37e-01 1 0.5614

PRIOR.Cancer 3.26e-02 1 0.8566

GATA3 1.03e-02 1 0.9192

H3K27Me3 5.44e-01 1 0.4607

ITD 1.81e-03 1 0.9660

EGLN1 1.67e+00 1 0.1960

EGFR.pY992 1.89e-04 1 0.9890

Hemoglobin 3.30e-02 1 0.8558

SEX 4.70e-04 1 0.9827

ALBUMIN 6.74e+00 1 0.0094

Chemo.Simplest 1.21e+00 1 0.2706

Infection 6.44e+00 1 0.0111

GLOBAL 2.06e+01 20 0.4190

As evident in Table 4.2, there was strong evidence of proportionality which was
supported by the small global test statistic and/or the large p-value. All the predictors
in Table 4.2, thus, satisfy the proportional hazards assumption. Since their p-values
are greater than the significance level of 10%, it was not possible to reject the null
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hypotheses. Hence, it can be stated that there is no correlation between the covariates
in Table 4.2 and time. The residual plots related to these findings can be seen in
Appendix A.

The martingale residuals of the Cox PH model predictors, in reference to the functional
form of the predictors classified as clinically significant to fit the Cox PH model, are all
presented in Appendix A. Of particular note is that the relevant figures presented in that
appendix show that ‘SEX’, ‘Infection’, ‘cyto.cat’, ‘Chemo.Simplest’, ‘ALBUMIN’
were all linear variables. In comparison, ‘Age’ and ‘Hemoglobin’ were nonlinear
variables.

Table 4.3 shows the model performance evaluation techniques used, along with the
aforementioned information-based criteria. The results of the forecasting measures
used are presented in Table A.5 in Appendix A. The Chi-square test statistic and log
likelihood for each model as well as the p-values are also displayed in Table 4.3.

According to the p-values for the models presented in Table 4.3, all were statistically
significant to the 5% level of significance. The p-values for all models fitted, including
the Cox PH model with a p-value ≈ 0. These results indicate that all the models were
good at explaining the factors affecting AML patients.

Table 4.3: A summary of the results from training and testing the semi-parametric and

parametric models.

Model IBS C-index AIC BIC AICc Chisq Loglik P-value

Exponential 0.145 0.7689 1363.6960 1424.1730 1297.917 183.72 -625.8 5.70E-29

Weibull 0.196 0.8051 1337.7200 1431.4600 1287.704 189.61 -604.6 1.60E-25

Lognormal 0.123 0.812 1332.3890 1423.1050 1283.892 157.61 -604.3 5.20E-20

Loglogistic 0.087 0.8347 1328.1810 1430.9930 1275.801 183.45 -593.7 3.60E-23

Cox PH 0.064 0.7834 950.6567 1005.5550 917.73 ≈ 0

The median survival time obtained from the K-M was 69.71 weeks and the probability
of survival at that time was approximately 53%. The survival probability from



4.4 Cox PH model fit 52

the parametric models, at 69 weeks were 68.5%, 61.6%, 66.2% and 68.5% for the
exponential, Weibull, lognormal and loglogistic models respectively. All model fits
gave higher chances of survival than that from the non-parametric model. The models
that had highest chance of survival at 69 weeks were the exponential model and the
loglogistic model. At median survival time, using the parameters of the Weibull model
to predict overall survival, at 69 weeks, the probability of survival was closest to that of
the K-M model compared to the other parametric models. The semi-parametric model,
Cox PH, at 69 weeks it gave a chance of survival of 55%. The chance of survival was
even lower compared to that of the parametric models but it was higher than that of
the non-parametric model, the K-M model. The chance of survival from the Cox PH
is closest to that given by the K-M model compared to the parametric models.

The log-likelihood of the log-logistic model was, however, found to be the highest
when compared to the other three models fitted, followed by the lognormal model.
In turn, according to the forecast measures table found in Table A.5 in Appendix
A, the semi-parametric model had the lowest root mean square error and the lowest
mean absolute error, which indicated that the Cox PH model fit had the lowest errors
in respect to the predictions conducted using the test sample. The Weibull model,
in comparison, was found to have the lowest mean absolute percentage error. On
average, the forecast conducted by the Cox PH model was found to be better than the
other model fits because it has the better results for the forecast measures. The mean
absolute deviation further indicated that values for the lognormal model were closer to
the true mean than the other models.

Using IBS and c-index to compare the predictions of the parametric models, the
loglogistic had the lowest IBS, closest to 0 and highest c-index which was closest
to 1 making it the model that made the best predictions compared to other parametric
models. The loglogistic model when compared to the semi-parametric model, the Cox
PH, it does not make better predictions than the semi-parametric model. The Cox PH
had the lowest value of IBS. The exponential model had the least favorable c-index
compared to all models which made it the model with the least favorable predictions.
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The lognormal model presented better forecast results when compared to the other
parametric models; however, the log-logistic model was found to have the lowest
AIC value amongst the parametric models. According to the AIC and BIC values,
for the parametric models, the log-logistic and lognormal models were the best-fitted
parametric models. Furthermore, while all the models had fairly good predictive power
in explaining the factors affecting AML, the Weibull model had the greatest predictive
power. The AICc, which accounts for the sample size, also supported the Cox PH
model as being the best fitted model. Specifically, the Cox PH model minimised all
three information-based criteria.

4.5 Significant variables

This section presents the significant variables for the models fit: exponential, Weibull,
log-normal, loglogistic and Cox PH. A 5% level of significance was used to choose
the variables for each model. Table 4.4 shows all the significant variables used to
fit the respective models. As seen in Table 4.4, the Weibull distribution had the
most significant variables when compared to the other models in this study. From
the group of clinically significant variables, ‘Age’ and ‘cyto.cat’ were the only two
that were found to be significant for all models used. Variables such as ‘SEX’,
‘Chemo.Simplest’, ‘HGB’ and ‘Infection’ were, by comparison, not found to be
significant by all models used; however, clinically, they were found to be significant
and were therefore retained in the models.
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Table 4.4: Significant variables at 5 percent level of significance.

Exponential Weibull Log-normal Loglogistic Cox PH

Age Age Age Age Age

PA2G4.pS65 cyto.cat cyto.cat ABS.BLST cyto.cat

TGM2 ARC ALBUMIN cyto.cat TGM2

ARC TGM2 CAV1 ARC CCNE2

cyto.cat ERG TGM2 CD19 PRIOR.CHEMO

ERG EGFR.pY992 HDAC1 BILIRUBIN PARP1.cl214

CAV1 CCND3 ARC CCND3 PRIOR.CANCER

WBC HDAC1 CDKN2A KIT GATA3

TRIM24 EIF2AK2.pT451 EGLN1 H3K27Me3 H3K27Me3

CTNNA1 SMAD3 SRC GAB2.pY452 ITD

CAV1 GAB2.pY452 HDAC1 EGLN1

H3K27Me3 GSKA_B.pS21_9 AKT1 ALBUMIN

SRC CCND3 MYC

GAB2.pY452 CDKN1B.pS10 EGLN1

CDKN1B.pS10 AKT1 TGM2

PTPN11 PTPN11 PDK1.pS241

CTNNA1 H3K27Me3 EGFR.pY992

ODC1

FOXO3.S318_321

TSC2



Chapter 5

Conclusion and Discussion

A study on survival analysis was conducted and presented in this research report using
the data collected from AML cancer patients. The data for this analysis were retrieved
from the M.D. Anderson Cancer Center, with focus on patients who were treated using
ara-C-based chemotherapy. This research report specifically focused on comparing
two different groups of survival models, namely one semi-parametric model (i.e.,
the Cox PH model), and various parametric models (i.e., the exponential, Weibull,
lognormal, and log-logistic models). The comparison presented in this study was based
on attempting to determine which model best explains the predictors of AML as well
as which best fits the data.

The purpose of the study, as noted in Chapter 1, was to find the best diagnosis for AML
and to determine the factors that lead to either death or survival at a later stage for
patients afflicted by the disease. In pursuit of this aim, it was necessary to establish the
variables that all the models identified as significant via the variable selection method.
All models chose the following variables: the age at diagnosis and the cytogenic
category in which a patient falls; and the specific total number of myeloid blast cells
measured in blood samples, represented by the variable ‘ABS.BLST’. All models also
chose ‘ARC’ and ‘TGM2’ as being significant, which are RPPA variables.

Of particular note is that the ‘age.at.dx’ was found to be highly significant in and across
all the included models. This finding concurs with the descriptive results presented
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previously, as it was found that the chance of survival doubled in the younger age
groups. Specifically, the youngest age group (4-25 years) was 5 times more likely to
survive than die according to the descriptive statistics. However, the 65+ age group
were reported as having a 42.9% chance of dying. The age at diagnosis may, thus, help
to categorise patient as higher or lower risk. The cytogenic category and Anthra-based
treatment option administered were also found to be important to consider, as these
significantly affected patients’ chances of survival. These findings indicate that the
majority of patients studied were given the Anthra-HDAC chemotherapy treatment
option and were in the intermediate-low group of the cytogenic category.

Only 25.65% of the 191 patients who initially enrolled in the study were alive at the
end of the study. This finding supports the assertion that there was an undeniable
need for a more efficient diagnosis method. Furthermore, the majority of the patients
did not survive beyond 250 weeks. The K-M estimator gave a good illustration of
the underlying survival curve of the AML data without making any prior assumptions
about the data. In particular, the K-M estimator survival curve illustrated the drastic
decline of the rate of survival for patients in the first 200 weeks. This finding translates
to the importance of the first 200 weeks for patients after diagnosis in determining
whether or not they are likely to survive the cancer. The K-M estimator also provided
the median survival rate of 69 weeks which is critical in comparing the predictions
made by the models. From this research it is noted that the Cox PH model gave a
similar approximation of the chance of survival at the median survival time as that of
the K-M model. The parametric models predicted high chances of survival above 60%.

The hazard rates from the models further indicated that the older group was more
likely to die due to AML compared to the younger group. The cytogenic category
of the patient was also found to be a variable that may help to determine the risk
level of a patient. Specifically, the hazard rates indicated that having a high cytocat
level meant that a patient could be considered low-risk. Of further note was that the
log-logistic hazard rate for the number of myeloid blast cells in a patient’s blood sample
was less than 1, with a p-value close to 0. This finding suggests that there is a strong
relationship between patients with above-average total number of myeloid blasts cells
and decreased death risk. It would be useful to use the variables found to be significant
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in this study as prior information that may assist in predicting the overall survival
potential of patients.

The results obtained from fitting the parametric models, using the variables selected
by stepwise regression, revealed that the log-logistic model best explained the effects
of the predictors of AML patients. Specifically, the log-logistic model minimised the
AIC, but the lognormal model minimised the BIC. The log-logistic model also had the
highest log-likelihood value as well as the highest significant number of variables. The
log-logistic model also minimised the IBS index and maximized the C-index which
meant that the model provided better predictions of the overall survival rate than the
other parametric models. These findings indicate that the log-logistic model is the best
predictive model when compared to the other parametric models. The residual test for
the log-logistic model’s overall fit further showed that the model fitted the AML data
well.

In fulfillment of the main aim of the research report, the best model, overall, was
found to be the Cox PH model. Similar to the previously noted models, the Cox
PH model also identified the age at diagnosis and cytogenic category as important
prior-information variables. In addition to those two variables, however, the model also
identified the following variables: whether or not the patient had prior chemotherapy,
ITD, and whether or not the patient had been diagnosed with a prior cancer. It was
determined that the verification of these variables would be useful when diagnosing
a patient. It should be noted although the Cox PH model did not identify the sex of
a patient as a variable to consider at diagnosis, according to the hazard ratio for the
variable ‘SEX’, being a male patient did indicate a slightly lower likelihood of death
(approximately 38%).

Furthermore, according to the Cox-Snell residuals, the Cox PH model did not fit
the data well for large values of time. This finding also applied to the log-logistic
model. For small values of time, however, both models follow the 45-degree line
closely. As a result, the Cox PH model was compared to the log-logistic model, using
information-based criteria, where it was found that both the AIC and the BIC for the
Cox PH model were minimised. The Cox PH model gave the best results for the IBS
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and C-index. Thus, while the cumulative hazard for the log-logistic model followed
the 45-degree line more closely than that of the Cox model, the Cox PH cumulative
hazard was generally found to be above the expected 45-degree line. The log-logistic
model was, therefore, able to identify more prognostic factors when compared to the
Cox PH model; hence it was determined that the log-logistic model explains the effects
of AML best.

The findings of this research are similar to those obtained by one researcher who
analysed at this dataset. Xihui Lin and Hunter (2014) obtained a similar conclusion
that the Cox PH model best fits this data. It explained the data well and gave better
predictions. However, the standard Cox PH model was found not to give as good
results as the bagged Cox PH model which the researchers used.



Chapter 6

Limitations and Recommendations for

future

To improve comparison, it would be best to work with datasets that were previously
widely used in research purposes. There are many other parametric models that can
be included in future work to increase the comparison spectrum and increase the
probability of finding very important covariates that will assist in predicting overall
survival. A bagged Cox PH model could be used to increase the quality of the
predictions. Obtaining the best model that predicts AML outcome may assist medical
researchers to find the better ways of treating the patients, hence increasing overall
survival time for patients with AML.

To account for the heterogeniety of patients, it would be best to use heterogeniety
survival models that include frailty modeling in future studies.
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Appendix A

Extra results

Figure A.1: Distribution for PB.MONO.
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Figure A.2: Distribution for BM.BLAST.

Figure A.3: Distribution for CD19.

KAPLAN-MEIER ESTIMATES

sts list

failure _d: vitalstatus == 2

analysis time _t: Overall_Survival

At Survivor Std.
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Time Risk Fail Lost Function Error [95\% Conf. Int.]

------------------------------------------------------------------------

3.29 191 1 0 0.9948 0.0052 0.9634 0.9993

5.86 190 1 0 0.9895 0.0074 0.9588 0.9974

6.43 189 1 0 0.9843 0.0090 0.9521 0.9949

.

.

.

43.43 116 1 0 0.6095 0.0355 0.5362 0.6749

43.86 115 1 0 0.6042 0.0355 0.5308 0.6698

50 110 1 0 0.5777 0.0359 0.5041 0.6444

.

.

.

122 74 1 0 0.3911 0.0356 0.3214 0.4600

235.4 53 1 0 0.2891 0.0331 0.2260 0.3550

250.7 52 1 0 0.2835 0.0329 0.2209 0.3492

.

.

.

501 14 0 1 0.2290 0.0336 0.1667 0.2973

703.9 2 0 1 0.2290 0.0336 0.1667 0.2973

734.9 1 0 1 0.2290 0.0336 0.1667 0.2973

-------------------------------------------------------------------------------
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Parametric Model fits

Table A.1: Exponential model fit for all clinical covariates.

Variable Hazard rate Value Std. Error Z-value P-value

Age.at.Dx 1.0025 -0.0426 0.0089 -4.7600 0.0000

PA2G4.pS65 1.0814 -0.3690 0.1208 -3.0500 0.0023

TGM2 1.0894 -0.4366 0.1351 -3.2300 0.0012

ARC 1.1000 -0.6013 0.1327 -4.5300 0.0000

cyto.cat 0.9074 0.8062 0.1764 4.5700 0.0000

ERG 1.1784 -0.2858 0.1292 -2.2100 0.0269

CAV1 0.9315 0.3955 0.1477 2.6800 0.0074

WBC 0.9991 -0.0065 0.0024 -2.7200 0.0064

TRIM24 1.0709 -0.3702 0.1673 -2.2100 0.0269

CTNNA1 1.0685 -0.4186 0.1324 -3.1600 0.0016

replace_median_CD33 1.0003 -0.0022 0.0041 -0.5400 0.5925

SEX 0.9775 0.4144 0.2220 1.8700 0.0620

replace_median_HGB 0.9939 0.0286 0.0733 0.3900 0.6965

ALBUMIN 1.0782 0.1590 0.1678 0.9500 0.3434

Chemo.Simplest 1.0313 0.0788 0.0760 1.0400 0.2997

Infection 1.2220 -0.2555 0.2689 -0.9500 0.3421
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Figure A.4: SEX harzard plot.

Figure A.5: Schoenfeld residuals (1).
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Figure A.6: Schoenfeld residuals (2).

Figure A.7: Schoenfeld residuals (3).
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Figure A.8: Schoenfeld residuals (4).

Figure A.9: Schoenfeld residuals (5).
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Table A.2: Weibull model fit for all clinical covariates.

Variable Hazard rate Value Std. Error Z-value P-value

Age.at.Dx 0.9988 -0.0289 0.0075 -3.8800 0.0001

cyto.cat 0.9266 0.9729 0.1440 6.7500 0.0000

ARC 1.3691 -0.6651 0.1280 -5.2000 0.0000

TGM2 1.1282 -0.3146 0.1251 -2.5100 0.0119

ERG 1.2014 -0.4401 0.1150 -3.8300 0.0001

EGFR.pY992 0.8982 0.4986 0.1759 2.8300 0.0046

CCND3 1.0838 -0.3663 0.1186 -3.0900 0.0020

HDAC1 0.9610 -0.6405 0.1273 -5.0300 0.0000

EIF2AK2.pT451 0.9050 0.5976 0.1205 4.9600 0.0000

SMAD3 0.9192 0.3174 0.1328 2.3900 0.0169

CAV1 0.8621 0.3323 0.1484 2.2400 0.0252

H3K27Me3 1.0453 0.3384 0.1366 2.4800 0.0132

SRC 0.6441 0.4877 0.1273 3.8300 0.0001

GAB2.pY452 1.0346 -0.3497 0.1323 -2.6400 0.0082

CDKN1B.pS10 0.7217 0.2702 0.1315 2.0600 0.0399

PTPN11 1.8410 -0.5983 0.2007 -2.9800 0.0029

CTNNA1 1.3113 -0.6257 0.1223 -5.1100 0.0000

ODC1 0.8091 0.2776 0.1351 2.0500 0.0399

FOXO3.S318_321 1.5431 -0.4650 0.1318 -3.5300 0.0004

TSC2 0.7213 0.4286 0.1569 2.7300 0.0063

SEX 1.0493 0.3274 0.1935 1.6900 0.0907

replace_median_HGB 1.0108 0.0468 0.0627 0.7500 0.4551

ALBUMIN 1.2081 0.1043 0.1551 0.6700 0.5013

Chemo.Simplest 1.1157 -0.0077 0.0664 -0.1200 0.9071

Infection 1.0302 -0.2032 0.2314 -0.8800 0.3798

Log(scale) 0.0724 -0.2470 0.0762 -3.2400 0.0012
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Table A.3: Lognormal model fit for all clinical covariates.

Variable Hazard rate Value Std. Error Z-value P-value

Age.at.Dx 1.0042 -0.0273 0.0068 -4.0200 0.0001

cyto.cat 0.9489 0.6645 0.1339 4.9600 0.0000

ALBUMIN 0.8941 0.3386 0.1394 2.4300 0.0151

CAV1 1.3202 0.4042 0.1410 2.8700 0.0042

TGM2 0.8117 -0.3362 0.1453 -2.3100 0.0206

HDAC1 0.9513 -0.4087 0.1335 -3.0600 0.0022

ARC 0.8901 -0.4665 0.1245 -3.7500 0.0002

CDKN2A 1.2191 0.2429 0.1126 2.1600 0.0310

EGLN1 1.1238 0.5607 0.1560 3.5900 0.0003

SRC 1.4458 0.4465 0.1286 3.4700 0.0005

GAB2.pY452 0.8858 -0.4408 0.1171 -3.7700 0.0002

GSKA_B.pS21_9 1.2053 0.4309 0.1391 3.1000 0.0019

CCND3 0.9433 -0.4564 0.1167 -3.9100 0.0001

CDKN1B.pS10 1.4046 0.3097 0.1396 2.2200 0.0265

AKT1 1.1848 0.3315 0.1334 2.4800 0.0130

PTPN11 0.6783 -0.4853 0.1902 -2.5500 0.0107

H3K27Me3 0.9124 0.3838 0.1351 2.8400 0.0045

SEX 1.0558 0.3175 0.1864 1.7000 0.0885

replace_median_HGB 0.9367 0.0511 0.0550 0.9300 0.3525

Chemo.Simplest 0.9049 -0.0101 0.0670 -0.1500 0.8806

Infection 0.9401 -0.0063 0.2499 -0.0300 0.9798

Log(scale) 1.2927 -0.0650 0.0699 -0.9300 0.3519



Extra results 74

Table A.4: Loglogistic model fit for all clinical covariates.

Variable Hazard rate Value Std. Error Z-value P-value

Intercept 0.6986 3.0500 1.0900 2.7900 0.0053

Age.at.Dx 0.9992 -0.0314 0.0064 -4.8900 0.0000

ABS.BLST 1.0000 0.0000 0.0000 -4.3200 0.0000

cyto.cat 0.9758 0.6680 0.1270 5.2500 0.0000

ARC 1.0062 -0.4580 0.1180 -3.9000 0.0001

replace_median_CD19 0.9996 0.0194 0.0073 2.6600 0.0079

replace_median_BILIRUBIN 0.9619 -0.4110 0.1660 -2.4800 0.0132

CCND3 0.9931 -0.3960 0.1070 -3.7100 0.0002

KIT 1.0104 -0.3210 0.1060 -3.0200 0.0025

H3K27Me3 1.0020 0.5520 0.1180 4.6700 0.0000

GAB2.pY452 0.9971 -0.4640 0.1230 -3.7800 0.0002

HDAC1 0.9930 -0.5290 0.1320 -4.0100 0.0001

AKT1 0.9981 0.2750 0.1240 2.2200 0.0266

replace_median_HGB 0.9975 0.0928 0.0493 1.8800 0.0597

MYC 0.9904 0.3890 0.1210 3.2200 0.0013

EGLN1 0.9992 0.5490 0.1320 4.1700 0.0000

TGM2 0.9976 -0.2800 0.1100 -2.5600 0.0106

PDK1.pS241 1.0053 -0.2250 0.1110 -2.0200 0.0433

EGFR.pY992 1.0086 0.3290 0.1270 2.5900 0.0097

replace_median_CD33 0.9999 -0.0031 0.0029 -1.0600 0.2914

SEX 1.0017 0.2510 0.1710 1.4700 0.1415

ALBUMIN 1.0119 0.1710 0.1470 1.1600 0.2443

Chemo.Simplest 1.0028 0.0726 0.0550 1.3200 0.1868

Infection 1.0212 0.0676 0.2170 0.3100 0.7557

Log(scale) 0.7202 -0.7340 0.0814 -9.0200 0.0000
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Table A.5: A summary of the forecast results from training and testing the semi-parametric

and parametric models.

Model RMSE MAD MAE MAPE

Exponential 3081.2160 126.0577 944.3498 0.8725

Weibull 2042.3720 108.2825 831.6822 0.7250

Lognormal 1761.5130 43.0330 654.5751 1.0611

Loglogistic 3763.0380 81.3889 815.5974 1.0458

Cox PH 236.8715 60.4927 148.9592 4.2525

Figure A.10: Schoenfeld residuals (5).



Appendix B

R and STATA code

setwd("C:/Users/Maxeen/Desktop/Back up/aml challenge")

#Loading packages

library(ranger) # a faster implementation of randomForest

library(randomForest) # basic implementation

library(survival)

library(randomForestSRC)

library(dplyr)

library(ggplot2)

library(flexsurv)

library(survminer)

library(ggfortify)

set.seed(123)

#Loading the data

RFDATA<- read.csv("DataSurv.csv")
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sapply(RFDATA, class)

#Removing missing values

DT <- select(RFDATA, -X.Patient_id)

DATA<- na.omit(DT)

write.csv(DATA, "FitData.csv")

#Creating survival object

fit <- with(DATA, Surv(Overall_Survival, vital.status))

####Random forests for variable selection####

rd_fit <- ranger(Surv(Overall_Survival, vital.status)~ ., DATA,

importance = "permutation",

splitrule = "extratrees",

verbose = TRUE)

var_impi <- data.frame(sort(round(rd_fit$variable.importance, 4),

decreasing = TRUE))

var_impi

head(var_impi)

write.csv(var_impi, "variable import.csv")

####Stepwise regression method####

stepwdata<-read.csv("Subsetdata.csv")
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sw_data <- na.omit(stepwdata)

stw_data <- select(sw_data, -X.Patient_id)

#EXPONENTIAL DISTRIBUTION

Fitexp <- survreg(Surv(Overall_Survival, vital.status) ~ .

, data = stw_data, dist = "exponential")

summary(Fitexp)

Fitstartexp <- survreg(Surv(Overall_Survival, vital.status) ~ 1,

data = stw_data, dist = "exponential")

head(Fitstartexp)

stepModexp <- step(Fitstartexp, direction = "both", scope =

formula(Fitexp))

# Get the shortlisted variable.

shortlistedVars <- names(unlist(stepModexp[[1]]))

shortlistedVarsexp <- shortlistedVars[!shortlistedVars %in%

"(Intercept)"] # remove intercept

# Show in spreadsheet

print(shortlistedVarsexp)

write.csv(shortlistedVarsexp, "vars_exp.csv")

#WEIBULL DISTRIBUTION

Fitwei <- survreg(Surv(Overall_Survival, vital.status) ~ .

, data = stw_data, dist = "weibull")

Fitstartwei <- survreg(Surv(Overall_Survival, vital.status) ~ 1,

data = stw_data, dist = "weibull")



R and STATA code 79

head(Fitstartwei)

stepModwei <- step(Fitstartwei, direction = "both", scope =

formula(Fitwei))

# Get the shortlisted variable.

shortlistedVars <- names(unlist(stepModwei[[1]]))

shortlistedVarswei <- shortlistedVars[!shortlistedVars %in%

"(Intercept)"] # remove intercept

# Show in spreadsheet

print(shortlistedVarswei)

write.csv(shortlistedVarswei, "vars_wei.csv")

#LOGLOGISTIC DISTRIBUTION

Fitllg <- survreg(Surv(Overall_Survival, vital.status) ~ .

, data = stw_data, dist = "loglogistic")

Fitstartllg <- survreg(Surv(Overall_Survival, vital.status) ~ 1,

data = stw_data, dist = "loglogistic")

head(Fitstartllg)

stepModllg <- step(Fitstartllg, direction = "both", scope =

formula(Fitllg))

#Get the shortlisted variable.

shortlistedVars <- names(unlist(stepModllg[[1]]))

shortlistedVarsllg <- shortlistedVars[!shortlistedVars %in%

"(Intercept)"] # remove intercept
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# Show in spreadsheet

print(shortlistedVarsllg)

write.csv(shortlistedVarsllg, "vars_llg.csv")

#LOG-NORMAL DISTRIBUTION

Fitln <- survreg(Surv(Overall_Survival, vital.status) ~ .

, data = stw_data, dist = "lognormal")

Fitstartln <- survreg(Surv(Overall_Survival, vital.status) ~ 1,

data = stw_data, dist = "lognormal")

head(Fitstartln)

stepModln <- step(Fitstartln, direction = "both", scope =

formula(Fitln))

#Get the shortlisted variable.

shortlistedVars <- names(unlist(stepModln[[1]]))

shortlistedVarsln <- shortlistedVars[!shortlistedVars %in%

"(Intercept)"] # remove intercept

# Show in spreadsheet

print(shortlistedVarsln)

write.csv(shortlistedVarsln, "vars_ln.csv")

#COX PH MODEL

Fitcoxph <- coxph(Surv(Overall_Survival, vital.status) ~

ABS.BLST+ACTB+Age.at.Dx+AHD+AKT1+AKT1_2_3.pS473
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+AKT1_2_3.pT308+ALBUMIN+ARC+ASH2L+BAD.pS136

+BAD.pS155+BAX+BCL2+BCL2L11+BECN1+BID

+BILIRUBIN+BIRC5+BM.BLAST+BMI1+BRAF+CASP3.cl175

+CASP9+CASP9.cl330+CAV1+CCNB1+CCND3+CCNE1+CCNE2

+CD10+CD13+CD19+CD33+CD74+CDK1+CDK2+CDK4

+CDKN1B.pS10+CDKN2A+Chemo.Simplest+CLPP

+COPS5+CREATININE+CREB1+CTNNA1+cyto.cat+DIABLO

+EGFR.pY992+EGLN1+EIF2AK2+EIF2AK2.pT451+EIF2S1

+EIF2S1.pS51.+EIF4E+ELK1.pS383+ERBB2.pY1248+ERG

+FIBRINOGEN+Fli1+FN1+FOXO3+FOXO3.S318_321

+GAB2.pY452+GAPDH+GATA3+GSKA_B+GSKA_B.pS21_9

+H3histon+H3K27Me3+H3K4Me2+H3K4Me3+HDAC1+HDAC3

+HGB+HNRNPK+HSP90AA1_B1+HSPB1+IGF1R+IRS1.pS1101

+ITD+JMJD6+KDR+KIT+LGALS3+MAPK1+MAPK14.pT180Y182

+MAPT+MET.pY1230_1234_1235+MSI2+MYC+NPM1+NPM1.3542

+NR4A1+ODC1+PA2G4.pS65+PA2G4.pT37_46+PA2G4.pT70

+PARK7+PARP1.cl214+PB.BLAST+PDK1+PDK1.pS241

+PIK3CA+PIM2+PPARG+PRIOR.CHEMO+PRIOR.MAL

+PRIOR.XRT+PRKCB.II+PRKCD.pT507+PTEN.pS380T382T383

+PTPN11+RAC1_2_3+RPS6KB1.pT389+SIRT1+SMAD2+SMAD3

+SMAD4+SMAD5+SMAD6+SOCS2+SPP1+SRC+SRC.pY527

+STAT1.pY701+STAT3.pS727+STAT5A_B+STK11+STMN1

+TGM2+TNK1+TP53+TP53.pS15+TRIM24+TRIM62

+TSC2+VASP+WBC+YAP1+YAP1p+ZNF296

,data = stw_data)

Fitstartcoxph <- coxph(Surv(Overall_Survival, vital.status) ~ 1

,data = stw_data)
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head(Fitstartcoxph)

stepModcoxph <- step(Fitstartcoxph, direction = "both",

scope = formula(Fitcoxph))

# Step 4: Get the shortlisted variable.

shortlistedVars <- names(unlist(stepModcoxph[[1]]))

shortlistedVarscoxph <- shortlistedVars[!shortlistedVars %in%

"(Intercept)"] # remove intercept

# Show in spreadsheet

print(shortlistedVarscoxph)

write.csv(shortlistedVarscoxph, "vars_coxph.csv")

####Checking Percentage of missingness####

Data<- read.csv("Subsetdata.csv")

sapply(Data, class)

summary(Data)

#Removing missing values

is.na(Data)

complete.cases(Data)

mean(complete.cases(Data)) #0.895288 ->

16 cases with missing values

####Checking for skewness, kurtosis, summary

of variables with missingness####
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Data2<- na.omit(Data)

#1)Bilirubin

summary(Data2$BILIRUBIN)

sd(Data2$BILIRUBIN)

skewness(Data2$BILIRUBIN)

kurtosis(Data2$BILIRUBIN)

#2)Bm.Blast

summary(Data2$BM.BLAST)

sd(Data2$BM.BLAST)

skewness(Data2$BM.BLAST)

kurtosis(Data2$BM.BLAST)

#3)CD10

summary(Data2$CD10)

sd(Data2$CD10)

skewness(Data2$CD10)

kurtosis(Data2$CD10)

#4)CD13

summary(Data2$CD13)

sd(Data2$CD13)

skewness(Data2$CD13)

kurtosis(Data2$CD13)
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#5)CD19

summary(Data2$CD19)

sd(Data2$CD19)

skewness(Data2$CD19)

kurtosis(Data2$CD19)

#6)CD33

summary(Data2$CD33)

sd(Data2$CD33)

skewness(Data2$CD33)

kurtosis(Data2$CD33)

#7)FIBROGEN

Data2<- transform( Data2, FIBRINOGEN =

as.numeric(Data2$FIBRINOGEN))

summary(Data2$FIBRINOGEN)

sd(Data2$FIBRINOGEN)

skewness(Data2$FIBRINOGEN)

kurtosis(Data2$FIBRINOGEN)

#8)HGB

summary(Data2$HGB)

sd(Data2$HGB)

skewness(Data2$HGB)

kurtosis(Data2$HGB)

####Imputing with the median of each variable as
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they are numeric variables.####

#Loading the data

Imputedata<- read.csv("Subsetdata.csv")

#Function: Imputing Missing Values with median

# Return the column names containing missing observations

list_na <- colnames(Imputedata)[ apply(Imputedata, 2, anyNA) ]

list_na

Imputedata<- transform( Imputedata, FIBRINOGEN =

as.numeric(Imputedata$FIBRINOGEN))

median_missing <- apply(Imputedata[,colnames(Imputedata) %in% list_na],

2,

median,

na.rm = TRUE)

Imputedata_replace <- Imputedata %>%

mutate(replace_median_CD19 = ifelse(is.na(CD19),

median_missing[1], CD19),

replace_median_BILIRUBIN = ifelse(is.na(BILIRUBIN),

median_missing[1], BILIRUBIN),

replace_median_CD13 = ifelse(is.na(CD13),

median_missing[1], CD13),

replace_median_CD33 = ifelse(is.na(CD33),

median_missing[1], CD33),
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replace_median_CD10 = ifelse(is.na(CD10),

median_missing[1], CD10),

replace_median_HGB = ifelse(is.na(HGB),

median_missing[1], HGB),

replace_median_FIBRINOGEN = ifelse(is.na(FIBRINOGEN),

median_missing[1], FIBRINOGEN),

replace_median_BM.BLAST = ifelse(is.na(BM.BLAST),

median_missing[1], BM.BLAST))

head(Imputedata_replace)

list_na2 <- colnames(Imputedata_replace)[ apply(Imputedata_replace,

2, anyNA) ]

list_na2

write.csv(Imputedata_replace,"Imputeddata.csv")

cleanset5 <- select(Imputedata_replace, -c(BILIRUBIN, BM.BLAST,

CD13, CD19, CD33, CD10, HGB, FIBRINOGEN))

write.csv(cleanset5,"Imputeddatafinal.csv")

#### Model fits ####

#Model fits with variable selected from rf and stepwise, to choose

significant variables.
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#EXPONENTIAL(1)

Expmodel <- survreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+PA2G4.pS65+ABS.BLST+TGM2

+ARC+cyto.cat+ERG+HDAC1+EIF2AK2.pT451

+SMAD3+CAV1+WBC+EIF2AK2+replace_median_HGB+TRIM24

+TNK1+CTNNA1+replace_median_CD33,

data = cleanset5, dist = "exponential")

summary(Expmodel)

#WEIBULL(1)

Weimodel <- survreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+ABS.BLST+cyto.cat+ARC+TGM2

+ERG+AKT1+EGFR.pY992+CCND3+HDAC1

+EIF2AK2.pT451+SMAD3+EIF2AK2+CAV1+ALBUMIN

+BMI1+H3K27Me3+H3K4Me2+SRC+TNK1

+NPM1+RPS6KB1.pT389+AKT1_2_3.pT308+ERBB2.pY1248

+GAB2.pY452

+BAD.pS155+CDKN1B.pS10+PTPN11+CTNNA1+EGLN1

+CD74+GATA3+ODC1+TP53.pS15+FOXO3.S318_321

+MSI2+STAT1.pY701+TSC2+COPS5+PDK1.pS241

+EIF2S1.pS51.+BECN1+PIM2+PA2G4.pT70+BAX

+DIABLO+STMN1+replace_median_BILIRUBIN,

data = cleanset5, dist = "weibull")
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summary(Weimodel)

#LOG-LOGISTIC(1)

Llgmodel <- survreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+ABS.BLST+cyto.cat+ARC

+replace_median_CD19+replace_median_BILIRUBIN

+ZNF296+CCND3

+KIT+H3K27Me3+GAB2.pY452+HDAC1

+AKT1+EIF2AK2+EIF2S1.pS51.+replace_median_HGB

+MYC+EGLN1+TGM2+PDK1.pS241

+EGFR.pY992+MAPK1+NPM1+CDKN1B.pS10

+GSKA_B.pS21_9+CD74+SMAD4+replace_median_CD33

+ERBB2.pY1248+NR4A1+COPS5+CASP3.cl175

+MAPK14.pT180Y182,

data = cleanset5, dist = "loglogistic")

summary(Llgmodel)

#LOGNORMAL(1)

Lnmodel <- survreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+ABS.BLST+cyto.cat+ALBUMIN+CAV1

+TGM2+HDAC1+ARC+ERG+RPS6KB1.pT389

+CDKN2A+EGFR.pY992+SMAD6+EGLN1+BAD.pS155

+SRC+GAB2.pY452+ERBB2.pY1248+GSKA_B.pS21_9

+replace_median_CD10
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+WBC+CCND3+CDKN1B.pS10+STK11+CDK2

+TNK1+AKT1+PIM2+replace_median_FIBRINOGEN+TP53.pS15

+PTPN11+H3K27Me3+AKT1_2_3.pT308+H3K4Me2+TRIM62

+COPS5,

data = cleanset5, dist = "lognormal")

summary(Lnmodel)

#COXPH(1)

Coxphmodel <- coxph(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+ABS.BLST+cyto.cat+ARC+TGM2

+ZNF296+PRKCD.pT507+CD74+CCNE2+CDK1

+TP53+PRIOR.CHEMO+PARP1.cl214+PB.BLAST+TNK1

+PRIOR.MAL+GATA3+AKT1_2_3.pS473+AKT1

+replace_median_BILIRUBIN

+MAPT+H3K27Me3+Fli1+ITD+EGLN1

+HDAC3+Chemo.Simplest+SMAD3+PIM2+EGFR.pY992

+SMAD4+EIF4E ,

data = cleanset5)

summary(Coxphmodel)

####Model fits with testing####

##Model fits with variables selected from rf, stepwise and
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those found as significant

#by the respective models.

#Model fits include clinically significant variables:

#Age.at.Dx, SEX, cyto.cat, HGB, ALBUMIN, Chemo.Simplest and Infection.

library(forecast)

library(tidyverse)

library(caret)

library(MLmetrics)

library(h2o)

#Loading Data

Modeldata <- read.csv("Imputeddatafinal.csv")

model_data <- select(Modeldata, -c(X.Patient_id,X))

#Checking for categorical variables

categorical_variables <- factor(model_data)

model_data<- transform( model_data,

AHD = as.numeric(model_data$AHD),

cyto.cat = as.numeric(model_data$cyto.cat),

PRIOR.CHEMO = as.numeric(model_data$PRIOR.CHEMO),

SEX = as.numeric(model_data$SEX),

Infection = as.numeric(model_data$Infection),

vital.status = as.numeric(model_data$vital.status),



R and STATA code 91

ITD = as.numeric(model_data$ITD),

PRIOR.XRT = as.numeric(model_data$PRIOR.XRT),

PRIOR.MAL = as.numeric(model_data$PRIOR.MAL),

Chemo.Simplest = as.numeric(model_data$Chemo.Simplest)

)

set.seed(123) #Set seed for reproducibility

#Split data into 80\% training and 20\% test

modeldata <- sort(sample(nrow(model_data), nrow(model_data)*0.8))

train<-model_data[modeldata,]

test<-model_data[-modeldata,]

#EXPONENTIAL(2)

Exp2model <- survreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+PA2G4.pS65+TGM2+ARC

+cyto.cat+ERG+CAV1+WBC+TRIM24

+CTNNA1+replace_median_CD33+SEX

+replace_median_HGB+ALBUMIN

+Chemo.Simplest+Infection,

data = train, dist = "exponential")
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Exp_con = concordance(Exp2model)

summary(Exp2model)

ExpPred <- predict(Exp2model,test)

Expdata <- data.frame(

Exp_RMSE = RMSE(test$Overall_Survival, ExpPred),

Exp_R2 = R2(test$Overall_Survival, ExpPred),

Exp_MAD = mad(test$Overall_Survival, ExpPred),

Exp_MAE = MAE(test$Overall_Survival, ExpPred),

Exp_MAPE = MAPE(test$Overall_Survival, ExpPred),

AIC = extractAIC(Exp2model),

BIC = BIC(Exp2model),

AICc = AICc(Exp2model)

)

fitexpn<- flexsurvreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+PA2G4.pS65+TGM2+ARC

+cyto.cat+ERG+EIF2AK2.pT451+SMAD3
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+CAV1+WBC+EIF2AK2+TRIM24+CTNNA1

+replace_median_CD33+SEX+replace_median_HGB

+ALBUMIN+Chemo.Simplest+Infection,

data =train,dist = "exponential" )

plot(fitexpn, xlab="Time(days/weeks)", ylab= "Survival",

main="EXPONENTIAL MODEL")

summary(fitexpn, times=69)

#WEIBULL(2)

Wei2model <- survreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+cyto.cat+ARC+TGM2

+ERG+EGFR.pY992+CCND3+HDAC1

+EIF2AK2.pT451+SMAD3+CAV1

+H3K27Me3+SRC+GAB2.pY452

+CDKN1B.pS10+PTPN11+CTNNA1

+ODC1+FOXO3.S318_321

+TSC2+SEX+replace_median_HGB

+ALBUMIN+Chemo.Simplest+Infection,

data = train, dist = "weibull")

summary(Wei2model)

WeiPred <- predict(Wei2model, test)
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Weidata <- data.frame(

Wei_RMSE = RMSE(test$Overall_Survival, WeiPred),

Wei_R2 = R2(test$Overall_Survival, WeiPred),

Wei_MAD = mad(test$Overall_Survival, WeiPred),

Wei_MAE = MAE(test$Overall_Survival, WeiPred),

Wei_MAPE = MAPE(test$Overall_Survival, WeiPred),

AIC = extractAIC(Wei2model),

BIC = BIC(Wei2model),

AICc = AICc(Wei2model)

)

Wei_con = concordance(Wei2model)

fitwei<- flexsurvreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+cyto.cat+ARC+TGM2

+ERG+EGFR.pY992+CCND3+HDAC1

+EIF2AK2.pT451+SMAD3+CAV1
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+H3K27Me3+SRC+GAB2.pY452

+CDKN1B.pS10+PTPN11+CTNNA1

+ODC1+FOXO3.S318_321

+TSC2+SEX+replace_median_HGB

+ALBUMIN+Chemo.Simplest+Infection,

data = train, dist = "weibull")

plot(fitwei, xlab="Time(days/weeks)", ylab= "Survival",

main="WEIBULL MODEL")

summary(fitwei)

#LOGNORMAL(2)

Lln2model <- survreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+cyto.cat+ALBUMIN+CAV1

+TGM2+HDAC1+ARC+CDKN2A+EGLN1

+SRC+GAB2.pY452+GSKA_B.pS21_9

+CCND3+CDKN1B.pS10

+AKT1+PTPN11+H3K27Me3+SEX

+replace_median_HGB+Chemo.Simplest

+Infection,

data = train, dist = "lognormal")

summary(Lln2model)
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LlnPred <- predict(Lln2model, test)

Llndata <- data.frame(

Lln_RMSE = RMSE(test$Overall_Survival, LlnPred),

Lln_R2 = R2(test$Overall_Survival, LlnPred),

Lln_MAD = mad(test$Overall_Survival, LlnPred),

Lln_MAE = MAE(test$Overall_Survival, LlnPred),

Lln_MAPE = MAPE(test$Overall_Survival, LlnPred),

AIC = extractAIC(Lln2model),

BIC = BIC(Lln2model),

AICc = AICc(Lln2model)

)

Lln_con = concordance(Lln2model)

fitlln<- flexsurvreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+cyto.cat+ALBUMIN+CAV1

+TGM2+HDAC1+ARC+CDKN2A+EGLN1

+SRC+GAB2.pY452+GSKA_B.pS21_9
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+CCND3+CDKN1B.pS10

+AKT1+PTPN11+H3K27Me3+SEX

+replace_median_HGB+Chemo.Simplest

+Infection,

data = model_data, dist = "lognormal")

plot(fitlln, xlab="Time(days/weeks)", ylab= "Survival",

main="LOGNORMAL MODEL")

#LOGLOGISTIC(2)

Llg2model <- survreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+ABS.BLST+cyto.cat+ARC

+replace_median_CD19+replace_median_BILIRUBIN

+CCND3+KIT+H3K27Me3+GAB2.pY452+HDAC1

+AKT1+replace_median_HGB

+MYC+EGLN1+TGM2+PDK1.pS241+EGFR.pY992

+replace_median_CD33

+SEX+ALBUMIN+Chemo.Simplest

+Infection,

data = train, dist = "loglogistic")

summary(Llg2model)

LlgPred <- predict(Llg2model, test)

Llgdata <- data.frame(
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Llg_RMSE = RMSE(test$Overall_Survival, LlgPred),

Llg_R2 = R2(test$Overall_Survival, LlgPred),

Llg_MAD = mad(test$Overall_Survival, LlgPred),

Llg_MAE = MAE(test$Overall_Survival, LlgPred),

Llg_MAPE = MAPE(test$Overall_Survival, LlgPred),

AIC = extractAIC(Llg2model),

BIC = BIC(Llg2model),

AICc = AICc(Llg2model)

)

Llg_con = concordance(Llg2model)

#PLOT

fitllg<- flexsurvreg(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+ABS.BLST+cyto.cat+ARC

+replace_median_CD19

+replace_median_BILIRUBIN
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+ZNF296+CCND3+KIT+H3K27Me3

+GAB2.pY452+HDAC1

+AKT1+EIF2AK2+EIF2S1.pS51.

+replace_median_HGB

+MYC+EGLN1+TGM2+PDK1.pS241

+EGFR.pY992+MAPK1

+GSKA_B.pS21_9+CD74+SMAD4

+replace_median_CD33

+ERBB2.pY1248+COPS5+SEX

+ALBUMIN+Chemo.Simplest

+Infection,

data = model_data, dist = "llogis")

plot(fitllg, xlab="Time(days/weeks)", ylab= "Survival",

main="LOG-LOGISTIC MODEL")

#Cox sell for log-logistic model

streg AgeatDx ABSBLST cytocat ARC

replace_median_CD19

replace_median_BILIRUBIN ZNF296 CCND3 KIT

H3K27Me3 GAB2pY452 HDAC1 AKT1 EIF2AK2

EIF2S1pS51 replace_median_HGB

MYC EGLN1 TGM2 PDK1pS241 EGFRpY992

MAPK1 GSKA_BpS21_9 CD74 SMAD4

replace_median_CD33 ERBB2pY1248 COPS5 SEX

ALBUMIN ChemoSimplest Infection, dist(loglogistic)

predict double cs, csnell partial
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predict double lgcs, csnell partial

stset lgcs, failure (vitalstatus==2)

sts generate km=s

generate double H=-ln(km)

line H lgcs lgcs, sort

#CoxPH(2)

Coxph2model <- coxph(Surv(Overall_Survival, vital.status) ~

Age.at.Dx+cyto.cat+ARC+TGM2+PRKCD.pT507

+CD74+CCNE2+PRIOR.CHEMO+PARP1.cl214

+PRIOR.MAL+GATA3+H3K27Me3+ITD+EGLN1

+EGFR.pY992+replace_median_HGB+SEX

+ALBUMIN+Chemo.Simplest+Infection ,

data = train)

summary(Coxph2model)

cox.zph(Coxph2model) #proportinal hazard test

plot(cox.zph(Coxph2model))

par(mfrow=c(2,2))

CoxphPred <- predict(Coxph2model, test)

Coxphdata <- data.frame(
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Coxph_RMSE = RMSE(test$Overall_Survival, CoxphPred),

Coxph_R2 = R2(test$Overall_Survival, CoxphPred),

Coxph_MAD = mad(test$Overall_Survival, CoxphPred),

Coxph_MAE = MAE(test$Overall_Survival, CoxphPred),

Coxph_MAPE = MAPE(test$Overall_Survival, (CoxphPred*100)),

AIC = extractAIC(Coxph2model),

BIC = BIC(Coxph2model),

AICc = AICc(Coxph2model)

)

Coxphcon = concordance(Coxph2model)

# Plot the baseline survival function

coxphfit <- survfit(Coxph2model)

plot(coxphfit, main = "Cox PH regression", xlab="Days", ylab = "Survival")

autoplot(coxphfit, main = "Cox PH regression", xlab="Days")

#Cox snell
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quietly stcox SEX AgeatDx Infection cytocat ChemoSimplest

BMMONOCYTES ABSBLST HGB ALBUMIN CD13 CCND3

H3K27Me3 TRIM62 GSKA\_B, nohr mgale(mgl)

predict crs, csnell

stset crs, failure(vitalstatus)

sts generate hcs = na

line hcs crs crs, sort xlab(0 1 to 4) ylab(0 1 to 4)

#Martingale

quietly stcox AgeatDx ARC ALBUMIN cytocat TGM2 PRKCDpT507

CD74 CCNE2 PRIORCHEMO PARP1cl214 PRIORMAL GATA3

H3K27Me3 ITD EGLN1 EGFRpY992 SEX replace_median_HGB

ChemoSimplest Infection, nohr mgale(mgl2)

predict crs, csnell

stset crs, failure(vitalstatus)

sts generate hcs = na

line hcs crs crs, sort xlab(0 1 to 4) ylab(0 1 to 4)

stset Overall_Survival, failure(vitalstatus==2) scale(1)

stcox AgeatDx ARC ALBUMIN cytocat TGM2 PRKCDpT507 CD74

CCNE2 PRIORCHEMO PARP1cl214 PRIORMAL GATA3 H3K27Me3

ITD EGLN1 EGFRpY992 SEX replace_median_HGB ChemoSimplest

Infection

predict mresid, mgale

lowess mresid AgeatDx, mean noweight title("") note("") m(o)

lowess mresid ALBUMIN , mean noweight title("") note("") m(o)

lowess mresid ChemoSimplest , mean noweight title("") note("") m(o)
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lowess mresid cytocat , mean noweight title("") note("") m(o)

lowess mresid Infection , mean noweight title("") note("") m(o)

lowess mresid SEX , mean noweight title("") note("") m(o)

lowess mresid replace_median_HGB , mean noweight title("") note("") m(o)

# Comparison of models using IBS

library(survival)

library(rms)

library(pec)

m1 <- psm(Surv(Overall_Survival, vital.status!=2) ~

Age.at.Dx+PA2G4.pS65+TGM2+ARC

+cyto.cat+ERG+CAV1+WBC+TRIM24

+CTNNA1+replace_median_CD33+SEX

+replace_median_HGB+ALBUMIN

+Chemo.Simplest+Infection,

data = train, dist = "exponential")

m2 <- psm(Surv(Overall_Survival, vital.status!=2) ~

Age.at.Dx+cyto.cat+ARC+TGM2

+ERG+EGFR.pY992+CCND3+HDAC1

+EIF2AK2.pT451+SMAD3+CAV1

+H3K27Me3+SRC+GAB2.pY452

+CDKN1B.pS10+PTPN11+CTNNA1

+ODC1+FOXO3.S318_321

+TSC2+SEX+replace_median_HGB

+ALBUMIN+Chemo.Simplest+Infection,

data = train, dist = "weibull")
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m3 <- psm(Surv(Overall_Survival, vital.status!=2)~

Age.at.Dx+cyto.cat+ALBUMIN+CAV1

+TGM2+HDAC1+ARC+CDKN2A+EGLN1

+SRC+GAB2.pY452+GSKA_B.pS21_9

+CCND3+CDKN1B.pS10

+AKT1+PTPN11+H3K27Me3+SEX

+replace_median_HGB+Chemo.Simplest

+Infection,

data = train, dist = "lognormal")

m4 <- psm(Surv(Overall_Survival, vital.status!=2)~

Age.at.Dx+ABS.BLST+cyto.cat+ARC

+replace_median_CD19+replace_median_BILIRUBIN

+CCND3+KIT+H3K27Me3+GAB2.pY452+HDAC1

+AKT1+replace_median_HGB

+MYC+EGLN1+TGM2+PDK1.pS241+EGFR.pY992

+replace_median_CD33

+SEX+ALBUMIN+Chemo.Simplest

+Infection,

data = train, dist = "loglogistic")

m5 <- coxph(Surv(Overall_Survival, vital.status!=2)~

Age.at.Dx+cyto.cat+ARC+TGM2+PRKCD.pT507

+CD74+CCNE2+PRIOR.CHEMO+PARP1.cl214

+PRIOR.MAL+GATA3+H3K27Me3+ITD+EGLN1

+EGFR.pY992+replace_median_HGB+SEX

+ALBUMIN+Chemo.Simplest+Infection ,

data = train,x=TRUE,y=TRUE)
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mbrier <- pec(list("Exponential"=m1, "Weibull"=m2,

"Lognormal"=m3, "Loglogistic"=m4,

"CoxPH"=m5),data=train,formula

=Surv(Overall_Survival, vital.status!=2)~1)

print(mbrier)

count

hist AgeatDx, frequency norm

su AgeatDx, d

tab AgeatDx

gen Agegroup= AgeatDx

recode Agrgroup min/24=0 25/49=1 50/65=2 65/max=3

recode Agegroup min/24=0 25/49=1 50/65=2 65/max=3

tab Agegroup

recode Agegroup min/24.9=0 25/49.9=1 50/65=2 65/max=3

tab Agegroup

drop Agegroup

recode Agegroup min/24.2=0 25/49.9=1 50/65=2 65/max=3

gen Agegroup= AgeatDx

gen Agegroup= AgeatDx

recode Agegroup min/24.2=0 25/49.9=1 50/65=2 65/max=3

tab Agegroup

tab SEX Age group

tab SEX Agegroup

tab Agegroup SEX

tab Agegroup SEX, col chi

tab Agegroup SEX
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tab AHD

tab Overall_Survival

tab vitalstatus

tab Overall_Survival

hist Overall_Survival, frequency norm

su Overall_Survival,d

tab WBC

su WBC, d

su ABSBLST- HGB, d

gen WBC_1= WBC

gen ABSBLST_1= ABSBLST

gen BMBLAST_1= BMBLAST

gen BMMONOCYTES_1= BMMONOCYTES

gen BMPROM_1= BMPROM

gen PBBLAST_1= PBBLAST

gen PBMONO_1= PBMONO

gen PBPROM_1= PBPROM

gen HGB_1= HGB

gen PLT_1= PLT

gen LDH_1= LDH

gen ALBUMIN_1= ALBUMIN

gen BILIRUBIN_1= BILIRUBIN

gen CREATININE_1= CREATININE

gen FIBRINOGEN_1= FIBRINOGEN

su WBC

su WBC, d

recode WBC_1 min/31=0 31.1/max =1
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tab WBC_1

su ABSBLST_1

recode ABSBLST_1 min/18203=0 18203.1/max=1

tab ABSBLST_1

su BMBLAST_1

su BMBLAST_1

recode BMBLAST_1 min/53=0 53.1/max=1

tab BMBLAST_1

su BMMONOCYTES_1

recode BMMONOCYTES_1 min/4.4=0 4.41/max=1

tab BMMONOCYTES_1

su BMPROM_1

recode BMPROM_1 min/1.4=0 1.41/max=1

tab BMPROM_1

su PBBLAST_1

recode PBBLAST_1 min/35=0 35.1/max=1

tab PBBLAST_1

su PBMONO_1

recode PBMONO_1 min/12.4=1 12.41/max=1

tab PBMONO_1

gen PBPROM_2= PBPROM

recode PBMONO_2 min/12.4=0 12.41/max=1

recode PBPROM_2 min/12.4=0 12.41/max=1

tab PBPROM_2

tab PBMONO

drop PBPROM_2 PBMONO_1

gen PBMONO_1=PBMONO
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su PBMONO_1

recode PBMONO_1 min/12.4=-0 12.401/max=1

tab PBMONO_1

su BMPROM_1

tab BMPROM_1

su PBBLAST_1

tab PBBLAST_1

tab PBPROM_1

su PBPROM_1

recode PBPROM_1 min/0.6=0 0.61/max=1

tab PBPROM_1

su HGB_1

recode HGB_1 min/9.7=0 9.701/max=1

tab HGB_1

su PLT_1

recode PLT_1 min/78=0 78.01/max=1

tab PLT_1

su LDH_1

recode LDH_1 min/1577=0 1577.01/max=1

tab LDH_1

su ALBUMIN_1

recode ALBUMIN_1 min/3.4=0 3.401/max=1

tab ALBUMIN_1

su BILIRUBIN_1

recode BILIRUBIN_1 min/0.6=0 0.601/max=1

tab BILIRUBIN_1

su CREATININE_1
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recode CREATININE_1 min/1=0 1.01/max=1

tab CREATININE_1

su FIBRINOGEN_1

recode FIBRINOGEN_1 min/440=0 440.01/max=1

tab FIBRINOGEN_1

su PBMONO_1

su WBC

tab vitalstatus SEX

tab vitalstatus SEX, col chi

tab vitalstatus Agegroup

tab Agegroup vitalstatus

tab Agegroup vitalstatus, col chi

tab SEX vitalstatus

tab Overall_Survival

gen Overall_Surv= Overall_Survival

recode Overall_Surv min/90=0 91/180=1 181/352=2 353/max=3

tab Overall_Surv

recode Overall_Surv 90.1=0

recode Overall_Surv 90.1=1

br Overall_Surv

sort Overall_Surv

replace Overall_Surv = 1 in 191

tab Overall_Surv

tab CD13

su CD13- CD19

gen CD13_1= CD13
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gen CD33_1= CD33

gen CD34_1= CD34

gen CD7_1= CD7

gen CD10_1= CD10

gen CD20_1= CD20

gen HLADR_1= HLADR

gen CD19_1= CD19

drop ACTB ZNF346

drop ACTB-ZNF346

drop AIFM1 -ZNF346

drop AIFM1 - ZNF296

su CD13_1- CD19_1

tab CD13_1

su CD13_1- CD19_1

recode CD13_1 min/80=0 80.01/max=1

tab CD13_1

recode CD33_1 min/78=0 78.01/max=1

tab CD33_1

recode CD34_1 min/50=0 50.01/max=1

tab CD34_1

recode CD7_1 min/16=0 16.01/max=1

tab CD7_1

recode CD10_1 min/4=0 4.01/max=1

tab CD10_1

recode CD20_1 min/0.94=0 0.94.01/max=1

recode CD20_1 min/0.94=0 0.9401/max=1
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tab CD10_1

tab CD20_1

su HLADR_1

recode HLADR_1 min/0.78=0 78.01/max=1

tab HLADR_1

recode HLADR_1 min/78=0 78.01/max=1

tab HLADR_1

drop HLADR_1

gen HLADR_1=HLADR

su HLADR_1

recode HLADR_1 min/78=0 78.01/max=1

tab HLADR_1

su CD19_1

recode CD19_1 min/8.2=0 8.201.01/max=1

recode CD19_1 min/8.2=0 8.201/max=1

tab CD19_1
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