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Abstract

Increasing trees are labelled rooted trees in which labels along any branch from the root

appear in increasing order. They have numerous applications in tree representations of

permutations, data structures in computer science and probabilistic models in a multitude

of problems.

We use a generating function approach for the computation of parameters arising from

such trees. The generating functions for some parameters are shown to be related to ordi-

nary differential equations. Singularity analysis is then used to analyze several parameters

of the trees asymptotically.

Various classes of trees are considered. Parameters such as depth and path length for

heap ordered trees have been analyzed in [35]. We follow a similar approach to determine

grand averages for such trees. The model is that p of the n nodes are labelled at random in(
n
p

)
ways, and the characteristic parameters depend on these labelled nodes. Also, we will

attempt to look at the limiting distributions involved. Often, when they are Gaussian,

Hwang’s quasi power theorem, from [18], can be employed.

Spanning tree size and the Wiener index for binary search trees have been computed in

[33]. The Wiener index is the sum of all distances between pairs of nodes in a tree. A

related parameter of interest is the Steiner distance which generalises, to sets of k nodes,

the Wiener index (k=2). Furthermore, the distribution of the size of the ancestor-tree

and of the induced spanning subtree for random trees is presented in [30]. The same

procedure is followed to obtain the Steiner distance for heap ordered trees and for other

varieties of increasing trees.
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1

Preliminaries

You can’t be suspicious of a tree, or accuse a

bird or a squirrel of subversion or challenge the

ideology of a violet.

Sundial of the Seasons

Hal Borland

What are trees and what does one do with them? The answers to these questions can be

summed up with the following quote from the book of Flajolet and Sedgewick, [11]:

Trees are fundamental structures that arise implicitly and explicitly in many

practical algorithms and it is important to understand their properties in order

to be able to analyze these algorithms. Many algorithms construct trees explic-

itly; in other cases trees assume significance as models of programs, especially

recursive programs. Indeed, trees are the quintessential non trivial recursively

defined objects: a tree is either empty or a root node connected to a sequence

(or a multiset) of trees.

We begin with the following formal definition of a tree:

1.1 Definition [Knuth [22]] A tree is a finite set T of one or more nodes such that

(a) there is one specially designated node called the root of the tree, root(T ) and;

(b) the remaining nodes (excluding the root) are partitioned into m ≥ 0 disjoint sets

T1, T2, . . . , Tm and each of these sets in turn is a tree. The trees T1, T2, . . . , Tm are called

the subtrees of the root.

It follows that every node of a tree is the root of some subtree contained in the whole

tree. The number of subtrees of a node is called the degree of that node.

A labelled tree is one in which all the nodes are distinguishable, in other words each node

has its own identity. We speak of “labels” as a combinatorial device to distinguish nodes.

There are many parameters that arise in tree analysis, among them the height of nodes

and path length being the well known ones. Some recent research papers [35], [36] deal

1



1 Preliminaries 2

with statistics of the height of the nodes in heap ordered trees. The altitude of nodes in

random trees was also studied in [24].

One often encounters the level of a node in a tree: the root is at level 0, descendants of

the root are at level 1 and, in general, descendants of a node at level k are at level k + 1.

Thus the level is the distance traversed to get from the root to the node.

1.2 Definition [11] For a tree T , the path length of the tree is the sum of the levels of each

of the nodes in T and the height of the tree is the maximum level among all the nodes of

the tree.

Now the height of a node in a tree T is defined as the number of nodes lying on the unique

path from the root to this node. In this thesis we consider a simple generalization of this

height: for p given nodes in a heap ordered tree T we consider the size of the ancestor

tree of these selected nodes.

1.3 Definition [30] The ancestor tree is the subtree of T which is spanned by the root and

the p chosen nodes and hence it is defined as the tree containing all ascendants of the p

given nodes.

Spanning tree size and the Wiener index for binary search trees have been computed in

[23], [28] and [33]. This index was introduced by the chemist H. Wiener in 1947, [42], in the

study of organic compounds and their molecular graphs and has numerous applications

in chemistry and combinatorics.

1.4 Definition [19] The Wiener index, W (G), of a connected graph G is the sum of all the

distances between pairs of vertices of G.

A related parameter of interest which will be analysed throughout the thesis is the Steiner

distance which is a generalisation of the Wiener index.

1.5 Definition [32] Consider a tree T and choose p random nodes in it. The Steiner distance

is the size of the smallest subtree generated by the p nodes.

So, the Steiner distance is a scaled down version of the Wiener index; in a sense they

behave roughly like path length versus (insertion) depth. For expectations, the concepts

are equivalent, but not for higher moments and the limiting distribution. We consider a

natural generalization: instead of selecting two random nodes and looking at the distance,

we consider p randomly chosen nodes and look at the size of the subtree spanned by these

nodes. If all of the p selected nodes lie in one subtree of the root then the Steiner distance
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is smaller than the size of the ancestor tree. Otherwise the two parameters are the same.

A different generalization of the Steiner distance can, for example, be found in [4].

How does one count trees? Given an infinite class of finite sets Ti, where i ranges over

some index set, we need to count the number t(i) of elements of each Ti “simultaneously”.

The answer is eloquently provided by R. Stanley, [40]:

The most useful but most difficult to understand method for evaluating t(i) is

to give its generating function.

Results from Flajolet and Sedgewick, [11], [13]

Given the nature of trees, one needs to derive expressions for the value of terms in a

sequence of quantities a0, a1, a2, a3, . . . which usually measure some parameter. It is very

useful to work with a single mathematical object which represents the whole sequence.

1.6 Definition [11] Given a sequence a0, a1, a2, . . . , ak, . . . , the function

A(z) =
∑

k≥0

akz
k , (1)

is called the ordinary generating function of the sequence. One uses the notation [zk]A(z)

to refer to the coefficient ak.

Some sequences are dealt with in a more convenient way by a generating function that

involves a normalising factor.

1.7 Definition [11] Given a sequence a0, a1, a2, . . . , ak, . . . , the function

A(z) =
∑

k≥0

ak
zk

k!
, (2)

is called the exponential generating function of the sequence. One uses the notation

k![zk]A(z) to refer to the coefficient ak.

Exponential generating functions are central to the analysis of the trees in this thesis since

we deal with labelled structures: say k nodes are labelled such that each has a distinct

identity. Then the factor k! accounts for all of the arrangements of the labelled nodes.

An application of generating functions is their use for computing probabilities, averages

and variances.
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1.8 Definition [11] Given a random variable X that takes on only non-negative integer

values, with pk ≡ P{X = k}, the function

P (u) =
∑

k≥0

pku
k , (3)

is called the probability generating function for the random variable.

Generally one is not only interested in counting tree structures of a given size, but also

in finding values of parameters relating to the trees. Bivariate generating functions are

used for this purpose. These are functions of two variables that represent doubly indexed

sequences: one index for the problem size and one for the value of the parameter under

analysis.

1.9 Definition [11] Given a doubly indexed sequence {ank}, the function

A(u, z) =
∑

n≥0

∑

k≥0

anku
kzn , (4)

is called the bivariate generating function of the sequence. We use the notation [ukzn]A(u, z)

to refer to ank, [zn]A(u, z) to refer to
∑
k≥0

anku
k and [uk]A(u, z) to refer to

∑
n≥0

ankz
n.

One uses bivariate generating functions to count parameter values in trees. For p ∈ P ,

where P is a certain class of trees, let cost(p) be a function that gives the value of some

parameter defined for each tree. Then we have the following generating function for the

class of trees

P (u, z) =
∑

p∈P
u{cost(p)}z|p| =

∑

n≥0

∑

k≥0

pnku
kzn , (5)

where |p| denotes the cardinality of p and pnk is the number of trees of size n and cost k.

One also writes

P (u, z) =
∑

n≥0

pn(u)zn , (6)

where

pn(u) = [zn]A(u, z) =
∑

k≥0

pnku
k , (7)

to separate all the costs for the trees of size n and

P (u, z) =
∑

k≥0

qk(z)uk , (8)
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where

qk(z) = [uk]A(u, z) =
∑

n≥0

pnkz
n , (9)

to separate all the trees of cost k. It is useful to note that

P (1, z) =
∑

p∈P
z|p| =

∑

n≥0

pn(1)zn =
∑

k≥0

qk(z) , (10)

is the ordinary generating function that enumerates P .

Of great interest for this thesis is the fact that pn(u)
pn(1)

is the probability generating function

for the random variable representing cost, if all trees of size n are equally likely. Thus

knowing pn(u) and pn(1) allows us to compute the average cost and other moments.

Differentiating with respect to u and evaluating at u = 1, one finds that

p′n(1) =
∑

k≥0

kpnk . (11)

The partial derivative with respect to u of P (u, z) evaluated at u = 1 is the generating

function for this quantity. We know that pn(1) is the number of trees in P of size n. If we

consider the latter to be equally likely, then the probability that a tree of size n has cost k

is pnk
pn(1)

, the average cost of a tree of size n is p′n(1)
pn(1)

and the variance is p′′n(1)
pn(1)

+ p′n(1)
pn(1)
−
(
p′n(1)
pn(1)

)2
.

1.10 Definition [11] Let P be a class of trees with bivariate generating function P (u, z). Then

the function
∂P (u, z)

∂u

∣∣∣
u=1

=
∑

p∈P
cost(p)z|p| , (12)

is defined to be the cumulative generating function for the class. Also, let Pn denote the

class of all trees of size n in P . Then the sum

∑

p∈Pn
cost(p) , (13)

is defined to be the cumulated cost for the trees of size n.

1.11 Theorem [11] Consider a bivariate generating function P (u, z) for a class of trees. Then

the average cost for all trees of a particular size is given by the cumulated cost divided

by the number of trees, or

[zn]∂P (u,z)
∂u

∣∣∣
u=1

[zn]P (1, z)
. (14)

The importance of the use of bivariate generating functions is that the average cost can

be calculated by extracting coefficients independently from ∂P (u,z)
∂u

∣∣
u=1

and P (1, z) and
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then dividing as outlined in the above theorem.

In this thesis we mainly encounter trivariate generating functions but the results outlined

above are analogous. There are many techniques for computing the required coefficients

and they appear, for example, in [15], [37] and [43]. When these coefficients have no

simple closed form one needs to employ special techniques to find them asymptotically.

This is described in various sources such as [10], [12] and [16].

Many applications rely on determining the asymptotic coefficients of a function which is

analytic at the origin. It is well-known that the function’s dominant singularities (the

ones with smallest modulus) contain a lot of information about these coefficients. To this

end, singularity analysis of generating functions is employed. In [9], this is defined to be

a class of methods by which one can translate, on a term by term basis, an

asymptotic expansion of a function around a dominant singularity into a cor-

responding asymptotic expansion for the Taylor coefficients of the function.

This approach is based on contour integration using Cauchy’s formula and

Hankel-like contours.

Let G be the class of functions gα = K(1 − z)α, for α a real number and K a constant.

The Taylor coefficients of any member of G are known both exactly

[zn](1− z)α =

(
n− α− 1

n

)
=

Γ(n− α)

Γ(−α)Γ(n+ 1)
, (15)

and asymptotically from Stirling’s formula (α 6= {0, 1, 2, . . .})

[zn](1− z)α ∼ nα−1

Γ(−α)

(
1 +

α(α+ 1)

2n
+
α(α+ 1)(α + 2)(3α + 1)

24n2
+ · · ·

)
. (16)

The general form of the asymptotic coefficients above, as it appears in [9], is presented

below.

1.12 Proposition [Flajolet, Odlyzko, [9]] The binomial coefficients expressing [zn](1 − z)α

have an asymptotic expansion as n→∞,

[zn](1− z)α ∼ n−α−1

Γ(−α)

(
1 +

∑

k≥1

e
(α)
k

nk

)
, α /∈ {0, 1, 2, · · · }, where

e
(α)
k =

2k∑

l=k

(−1)lλk,l(α+ 1)(α + 2) · · · (α+ l) , with
∑

k,l≥0

λk,lv
ktl = et(1 + vt)−1−1/v .

(17)
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The authors in [9] were then able to come up with the following very important transfer

theorem:

1.13 Theorem [9] Assume that, with the sole exception of the singularity z = 1, f(z) is

analytic in the domain ∆ = ∆(φ, η), where η > 0 and 0 < φ < π
2
. Assume further that as

z tends to 1 in ∆

f(z) = O(|1− z|α) , (18)

for some real number α. Then the n-th Taylor coefficient of f(z) satisfies

fn = [zn]f(z) = O(n−α−1) . (19)

1.14 Note We recall two useful formulas which will be used in the thesis. Firstly, Cauchy’s

formula is

fn =
1

2πi

∫

O+

f(z)
dz

zn+1
, (20)

where fn and f(z) are as described in the theorem above. Secondly, Stirling’s formula is

n! ∼
√

2πn
(n
e

)n(
1 +

1

12n
+

1

288n2
− 139

5140n3
+ · · ·

)
. (21)

Often one needs to analyse the coefficients of a function defined implicitly by an equation

y(z) = zφ(y(z)) , (22)

and the procedures involved can be found for instance in [5], [6] and [13]. The next result

gives us the idea of what is required.

1.15 Proposition [13] Let φ be a function analytic at zero having non negative Taylor coeffi-

cients with φ(0) = 0 and such that there exists a positive solution τ to the characteristic

equation

φ(τ)− τφ′(τ) = 0 , (23)

strictly within the disc of convergence of φ. Let y(z) be the solution analytic at the origin

of y(z) = zφ(y(z)). Then y(z) has a dominant singularity at

z = ρ where ρ =
τ

φ(τ)
. (24)

The singular expansion of y at ρ is of the form

y(z) = τ +
∞∑

j=1

d∗j

(
1− z

ρ

)j/2
, (25)
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for some computable constants d∗j . In particular one has

d∗1 = −
√

2φ(τ)

φ′′(τ)
. (26)

We note that, for all the problems analysed in the chapters that follow, the dominant

singularity is always of square-root type. Thus the asymptotic form of the coefficients

turns out to be

[zn]y(z) ∼ C ρ−n n−3/2 . (27)

Results from Harary and Palmer, [17]

Let

T (x) =
∞∑

p=1

Tpx
p , (28)

be the generating function for rooted trees. Thus Tp is the number of rooted trees of

order p. The following result of Pólya, [34], can be employed to calculate the coefficients

of T (x).

1.16 Theorem [34] The counting series T (x) for rooted trees satisfies

T (x) = x exp
{ ∞∑

k=1

T (xk)

k

}
. (29)

Pólya found asymptotic formulas for chemical compounds by regarding the generating

functions as ordinary analytic functions such that the coefficients could be estimated by

means of the Cauchy integral formula. Otter, [29], observed that the same method could

be applied to trees and in what follows we present some of his results.

1.17 Lemma [17] The power series T (x) for rooted trees converges in a circle of radius η ≥ 1
4
.

All the coefficients of T (x) are positive so η is a singularity of T (x). However, T (x)

converges with x = η, which can be proved by using the next result.

1.18 Lemma [17] The limit of T (x) as x→ η− exists and is equal to
∞∑
k=1

Tkη
k.

Proof: Since T (x) satisfies the functional equation (29) we have for all x in (0, η)

log
(T (x)

x

)
= T (x) +

∞∑

k=2

T (xk)

k
. (30)
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From this it follows that
T (x)
x

log
(T (x)

x

) ≤ 1

x
, (31)

and hence T (x) is bounded on the interval (0, η). Since T (x) is monotone, the left hand

side limit at η exists and we let

b0 = lim
x→η−

T (x) . (32)

It now follows immediately that b0 = T (η). �

The value of b0 is determined by the next lemma.

1.19 Lemma [17] The series T (x) for rooted trees has the property that

T (η) = 1 . (33)

Proof: First we define the complex valued function F (x, y) for complex x and y by

F (x, y) = x exp
{
y +

∞∑

k=2

T (xk)

k

}
− y , (34)

and consider the equation

F (x, y) = 0 . (35)

From (29) we can show that y = T (x) is the unique analytic solution of (35) and we

know it has a singularity at x = η. The preceding lemma implies that F (η, b0) = 0

and furthermore it is easy to see that F (x, y) is analytic in each variable separately in

neighbourhoods of η and b0.

On differentiating (34) with respect to y we find

∂F

∂y
= F (x, y) + y − 1 . (36)

Since F (η, b0) = 0, we know that this partial derivative at (η, b0) is given by

δF

δy
(η, b0) = b0 − 1 . (37)

Furthermore, this partial derivative must be zero at (η, b0), in other words b0 = 1. Other-

wise, by the implicit function theorem, there is a unique solution y = f(x) of (35) which

is analytic in a neighbourhood of η, in particular at η itself. But such a solution would

have to be y = T (x) and we know that the latter is not analytic at x = η, proving (33).�

Often one needs to know the asymptotic expansions of various functions around their
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dominant singularity. The next theorem (which is a combination of the implicit function

theorem and observations of Polya, Otter, Ford and Uhlenbeck) is pivotal in this respect.

1.20 Theorem [17] Let F (x, y) be analytic in each variable separately in some neighbourhood

of (x0, y0) and suppose that the following conditions are satisfied:

(i) F (x0, y0) = 0;

(ii) y = f(x) is analytic in |x| < |x0| and x0 is the unique singularity on the circle of

convergence;

(iii) if f(x) =
∞∑
n=0

fnx
n is the expansion of f at the origin, then y0 =

∞∑
n=0

fnx
n
0 ;

(iv) F (x, f(x)) = 0 for |x| < x0;

(v) ∂F (x0,y0)
∂y

= 0;

(vi) ∂2F (x0,y0)
∂y2 6= 0.

Then f(x) may be expanded about x0:

f(x) = f(x0) +
∞∑

k=1

ak(x0 − x)k/2 , (38)

and if a1 6= 0,

f(x) ∼ − a1

2
√
π
x
−n+1/2
0 n−3/2 , (39)

and if a1 = 0 but a3 6= 0

fn ∼
3a3

4
√
π
x
−n+3/2
0 n−5/2 . (40)

To apply this theorem, one notes that the function in (34) satisfies all the conditions with

(x0, y0) = (η, 1) and f(x) = T (x). Hence T (x) can be expanded as in (38) and if a1 6= 0,

then the coefficients behave as in (39). It remains to be shown that if

T (x) = 1− b1(η − x)1/2 + b2(η − x) + b3(η − x)3/2 + · · · , (41)

then b1 6= 0 and b3 6= 0 and one also requires approximations to b1 and η. After differen-

tiating (41) we obtain

T ′(x) =
1

2
b1(η − x)−1/2 − b2 + · · · , (42)

where the terms omitted contain (η − x)1/2 to the first power at least. By multiplying

both sides of T ′(x) with 1− T (x) as obtained from (41) we have

T ′(x)(1− T (x)) =
1

2
b2

1 + · · · , (43)
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where once again the terms omitted contain (η − x)1/2 to at least the first power. Hence

lim
x→η−

T ′(x)(1− T (x)) =
1

2
b2

1 . (44)

On the other hand, by differentiating (29), one obtains

T ′(x) =
T (x)

x
+ T (x)

∞∑

k=1

T ′(xk)xk−1 , (45)

and therefore

T ′(x)(1− T (x)) =
T (x)

x
+ T (x)

∞∑

k=2

T ′(xk)xk−1 . (46)

Thus the limit in (44) can also be obtained from the above and we have

1

2
b2

1 =
1

η
+
∞∑

k=2

T ′(ηk)ηk−1 . (47)

Using (29) and (33), Otter estimated that η = 0.3383219. Then from an equation similar

to the one above he found that

b1η
1/2

2
√
π

= 0.4399237 . . . , (48)

with b1 = 2.681127.

Results from Bergeron, Flajolet and Salvy, [2]

1.21 Definition [2] A labelled tree of size n is a rooted tree comprising n nodes that are labelled

by distinct integers from the set {1, 2, 3, . . . , n}.

1.22 Definition [2] An increasing tree is a labelled rooted tree in which labels along any

branch from the root appear in increasing order.

These trees appear in problems involving tree representations of permutations, data struc-

tures in computer science and probabilistic models in diverse applications. An interesting

approach to the enumeration of parameters in these trees was developed in [2], whereby

the generating functions are related to a simple ordinary differential equation

d

dz
Y (z) = φ(Y (z)) , (49)
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which is non linear and autonomous. Then one applies singularity analysis in order to

analyse asymptotically the required parameters.

There are two important types of increasing trees:

(i) non-plane trees, which are defined in the graph theoretic sense so that subtrees stem-

ming from a node are not ordered among themselves;

(ii) plane trees, where a plane embedding is specified so that subtrees stemming from a

node are ordered among themselves.

1.23 Definition [2] Let {sr}∞r=0 be a sequence of non negative integers, such that s0 6= 0 and

sr 6= 0 for some r ≥ 2. The variety of trees associated to {sr} and the specification of an

element of {Plane, Non-Plane} is the collection of all increasing trees (plane or non-plane

depending on the specification) with sr sorts of nodes of outdegree r for all r.

The degree function of a variety of trees associated with {sr} is defined as follows

in the plane case: φ(ω) =
∑

r≥0

srω
r ,

in the non-plane case: φ(ω) =
∑

r≥0

sr
ωr

r!
. (50)

Now, the coefficients of the degree function φ(ω) are denoted by φr such that

φ(ω) =

∞∑

r=0

φrω
r , with





φr = sr in the plane case and

φr = sr
r!

in the non-plane case .
(51)

Whenever the collection of node types allowed is finite, φ(ω) is a polynomial and we call

the variety a polynomial variety. The degree of φ(ω) is denoted by d, an integer, which is

the maximum node degree allowed in the variety.

The main result is as follows: fix a variety of trees Y , that is fix the degree function φ(ω).

Let Yn be the number of trees of size n in the variety. The exponential generating function

of the variety of trees

Y (z) =

∞∑

n=1

Yn
zn

n!
, (52)

is defined implicitly by
Y (z)∫

0

dω

φ(ω)
= z . (53)

Under general conditions (in particular whenever φ(ω) is a polynomial, which means
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a finite set of allowed degrees) the equation (53) can be analysed near its dominant

singularity, ρ. For polynomial varieties this leads to an asymptotic counting result of the

form

Yn
n!
∼ Kρ−nn−(d−2)/(d−1) with ρ =

∞∫

0

dω

φ(ω)
, (54)

where K = Kφ is a constant that depends on φ alone and d is the degree of the variety.

The quantity ρ appears to be always a logarithmic form in algebraic numbers.



2

Ordered Trees

The chestnut’s proud, and the lilac’s pretty,

The poplar’s gentle and tall,

But the plane tree’s kind to the poor dull city -

I love him best of all.

Child’s Song in Spring

Edith Nesbit

2.1 Introduction

In this chapter we consider ordered trees, a special class of simply generated trees. What

is presented here constitutes a specialisation of the results obtained by Panholzer in [30].

Although the general results are not new, they serve to illustrate the methods and ideas

employed in subsequent chapters of the this thesis.

Simply generated trees include several tree families such as binary trees and planted

plane (planar, ordered or rooted) trees. Let T be the set of ordered labelled trees with

exponential generating function

T (z) =
∑

t∈T

z|t|

|t|! =
∑

n≥0

Tn
zn

n!
, (1)

where Tn is the number of ordered trees with n nodes. Then the generating function for

ordered trees satisfies

T (z) =
z

1− T (z)
, thus T (z) =

1−
√

1− 4z

2
. (2)

2.1 Theorem [11] Let tn denote the number of ordered trees with n nodes. Then tn is equal

to the number of binary trees with n− 1 nodes and is given by the Catalan numbers

tn =
1

n

(
2n− 2

n− 1

)
=

1

2n− 1

(
2n− 1

n

)
=

(2n− 2)!

n!(n− 1)!
. (3)

14
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A class T of simply generated trees can also be defined in the following way.

2.2 Definition [30] The weight, w(T ), of any simply generated tree T is defined by a sequence

of non-negative numbers (φk)k≥0 with φ0 > 0 such that

w(T ) =
∏

v

φd(v) , (4)

where v ranges over all vertices of T and d(v) is the number of descendants of v. Then

the family T consists of all trees T and its weights w(T ).

Furthermore,

Tn =
∑

|T |=n
w(T ) , (5)

where |T | is the size of the tree and has the generating function

T (z) =
∑

n≥0

Tnz
n . (6)

This generating function satisfies the functional equation

T (z) = zφ(T (z)) , (7)

where φ(t) is given as the formal power series

φ(t) =
∑

k≥0

φkt
k . (8)

If all φk are non-negative integers then Tn counts the number of trees in T with size n.

Figure 2.1: All 5 ordered trees of size 4.
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2.2 Size of the ancestor tree in ordered trees

We consider the results of Panholzer from [30] and derive them explicitly for ordered trees.

Let Xn,p be the random variable which counts the size of the ancestor tree of p randomly

chosen nodes in an ordered tree of size n. We denote with gn,p,m the sum of the weights

w(T ) coming from all different pairs (T, S) of a simply generated tree T of size n and a

subset S of p nodes of T such that the ancestor tree of these p nodes in T has size m. It

follows that

gn,p,m = P(Xn,p = m)Tn

(
n

p

)
, (9)

and the trivariate generating function

G(z, u, v) =
∑

n≥1

∑

0≤p≤n

∑

m≥0

gn,p,mz
nupvm , (10)

satisfies the following functional equation from [30]

G(z, u, v) = zv(1 + u)φ(G(z, u, v)) + (1− v)T (z) , (11)

where the term (1 − v)T (z) results from the case where no nodes are selected in the

tree. We look at a special case of (11), namely the planar trees, for which the functional

equation becomes

G(z, u, v) =
zv(1 + u)

1−G(z, u, v)
+ (1− v)T (z) . (12)

However, for planar trees, we know T (z) and its solution. Since there is no tree of size 0

we have

T (z) =
1−
√

1− 4z

2
=
∑

n≥1

1

n

(
2n− 2

n− 1

)
zn .

Substituting this value in (12) we obtain:

2.3 Theorem [30] The generating function for the size of the ancestor tree in ordered trees

satisfies the functional equation

G(z, u, v) =
zv(1 + u)

1−G(z, u, v)
+

(1− v)(1−
√

1− 4z )

2
. (13)

First, the solution of (13) is computed

G(z, u, v) =
3− v

4
+

√
1− 4z(v − 1)

4

−
√

2 + 2
√

1− 4z − 4z − 8zv + 2v2 − 2v2
√

1− 4z − 4v2z − 16zvu

4
.

(14)
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Our aim is to find the expectation and variance of the size of the ancestor tree with the

help of the probabilities

P{Xn,p = m} =
[znupvm]G(z, u, v)(

n
p

)
Tn

,

for fixed p and n → ∞, and thus one needs to produce [znupvm]G(z, u, v). For the

expectation we differentiate (14) with respect to v and evaluate at v = 1, namely

∂

∂v
G(z, u, v)

∣∣∣
v=1

=

√
1− 4z − 1

4
+

z(1 + u)√
1− 4z(1 + u)

+

√
1− 4z − 1

4
√

1− 4z(1 + u)
. (15)

Now we can easily find the coefficients [znup] from (15), as follows

[znup]
z(1 + u)√

1− 4z(1 + u)
=

(
n

p

)(
2n− 2

n− 1

)
,

[znup]

√
1− 4z

4
√

1− 4z(1 + u)
= 4n−p−1

(
2p

p

)(
n− 1

p− 1

)
,

[znup]
1

4
√

1− 4z(1 + u)
=

1

4

(
n

p

)(
2n

n

)
. (16)

The final step is to divide these coefficients by the normalising constant
(
n
p

)
1
n

(
2n−2
n−1

)
and

then the expectation becomes

En,p =
[znup] ∂

∂v
G(z, u, v)

∣∣
v=1(

n
p

)
1
n

(
2n−2
n−1

) =
1

2
+ 4n−p−1 (2p)!(n− 1)!(n− 1)!

p!(p− 1)!(2n− 2)!
, (17)

and moreover, by standard methods (using Stirling’s formula) we obtain the following

asymptotic equivalents

En,p =





n− l
2
− l(l−1)

8n
+O

(
1
n2

)
, for l = n− p fixed ,

4−p−1 p
(

2p
p

)√
πn+O(1) , for p fixed ,

1
2

+ 2−ρn−4
√
πn

(ρn−1)!
+O(1) , for p = ρn and 0 < ρ < 1 .

(18)

To find the variance of the size of the ancestor tree one differentiates (14) twice with

respect to v and lets v = 1, thus

∂2

∂v2
G(z, u, v)

∣∣∣
v=1

=
2z2u(1 + u)

(1− 4z(1 + u))3/2
. (19)
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Then we compute the coefficient [znup] in (19)

[znup]
z2u(1 + u)

(1− 4z(1 + u))3/2
= 2(2n− 3)

(
n− 1

p− 1

)(
2n− 4

n− 2

)
.

Upon dividing this coefficient by the normalising constant we obtain the variance

Vn,p =
[znup] ∂

2

∂v2G(z, u, v)
∣∣
v=1(

n
p

)
1
n

(
2n−2
n−1

) + En,p − (En,p)
2

= p(n− 1) +
1

2
+

4n−p−1(2p)! ((n− 1)!)2

p!(p− 1)!(2n− 2)!
−
(

1

2
+

4n−p−1(2p)! ((n− 1)!)2

p!(p− 1)!(2n− 2)!

)2

.

(20)

We can also find the first two moments for the size of the ancestor tree by using singularity

analysis. Proceeding from (15), one can use MAPLE to compute the coefficients ai of its

series expansion in u and the first few are

a1 = −z(4z −
√

1− 4z − 1)

2(1− 4z)3/2
,

a2 =
z2(4z − 3

√
1− 4z − 1)

2(1− 4z)5/2
,

a3 = −z
3(4z − 5

√
1− 4z − 1)

(1− 4z)7/2
,

a4 =
5z4(4z − 7

√
1− 4z − 1)

2(1− 4z)9/2
,

a5 = −7z5(4z − 9
√

1− 4z − 1)

(1− 4z)11/2
. (21)

We observe that z = 1
4

is the only singularity appearing in the ai. By computing series

expansions around this singularity and considering the first two terms only, we are able

to compute the coefficients of up and then zn in (15).

2.4 Lemma The coefficients of up in the first derivative of G(z, u, v) are

[up]
∂G(z, u, v)

∂v

∣∣∣
v=1
∼ 1

22p+2

(
2p

p

)
(1− 4z)−p , z → 1

4
. (22)

Proof: This is done via straight forward computations of the coefficient of up in the

dominant term
√

1−4z

4
√

1−4z(1+u)
from (15). �
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Then the coefficient of zn in the first derivative of G(z, u, v) turns out to be

[znup]
∂

∂v
G(z, u, v)

∣∣∣
v=1
∼
(

2p

p

)
4nnp−1

22p+2Γ(p)
, (23)

and the expectation is found by normalising the above with
(
n
p

)
1
n

(
2n−2
n−1

)
∼ 4nn−3/2

4
√
π

np

Γ(p+1)

En,p ∼
p
√
π

22p

(
2p

p

)√
n , (24)

which agrees with the result in (17). A similar method works for the second moment.

2.5 Lemma The coefficients of up in the second derivative of G(z, u, v) have the asymptotic

form

[up]
∂2

∂v2
G(z, u, v)

∣∣∣
v=1
∼ p

22p+2

(
2p

p

)
(1− 4z)−p−1/2 , z → 1

4
. (25)

Proof: One proceeds by extracting the desired coefficient of the dominant term from (19)

as follows

[up]
∂2

∂v2
G(z, u, v)

∣∣∣
v=1
∼ [up]

2z2u

(1− 4z(1 + u))3/2
= 2z2[up−1]

1

(1− 4z)3/2
(
1− 4zu

1−4z

)3/2

= 2z2(−4z)p−1

(−3/2

p− 1

)
(1− 4z)−p−1/2

=
p

22p+2
(1− 4z)−p−1/2 , z → 1

4
,

(26)

which proves the result. �

Next, the coefficient of zn in the second derivative of G(z, u, v) was computed

[znup]
∂2

∂v2
G(z, u, v)

∣∣∣
v=1
∼ p4n

22p+2

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (27)

and its normalisation leads to the second moment. Hence, the asymptotic formula for the

variance of the ancestor tree size is

Vn,p ∼
[znup] ∂

2

∂v2G(z, u, v)
∣∣
v=1

4nn−3/2

4
√
π

np

Γ(p+1)

+ En,p − (En,p)
2

∼ p
√
π

22p

(
2p

p

)
Γ(p+ 1)

Γ(p+ 1
2
)
n− p2π

24p

(
2p

p

)2

n

= pn
(

1− pπ

24p

(
2p

p

)2)
,

(28)
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where 1− pπ
24p

(
2p
p

)2 → 0 as p→∞.

2.3 The Steiner distance in ordered trees

We turn our attention to the random variable Yn,p which counts the size of the Steiner

distance of p randomly chosen nodes in an ordered tree of size n and specialise the results

of Panholzer, [30]. Let fn,p,m be the sum of the weights w(T ) coming from all different

pairs (T, S) of a simply generated tree T of size n and a subset S of p nodes of T such

that the ancestor tree of these p nodes in T has size m. It follows that

fn,p,m = P(Yn,p = m)Tn

(
n

p

)
, (29)

and the trivariate generating function

F (z, u, v) =
∑

n≥1

∑

0≤p≤n

∑

m≥0

fn,p,mz
nupvm , (30)

satisfies the following functional equation which appears in [30]

F (z, u, v) = G(z, u, v)−zvφ′(T (z))G(z, u, v)+zφ′(T (z))F (z, u, v)−z(1−v)φ′(T (z))T (z) .

(31)

However, this equation for F (z, u, v) can be obtained by translating the equation (7). The

difference between the parameters Xn,p and Yn,p coming from the case where the root is

not selected and all selected nodes appear on the same subtree leads to the given relation

between both generating functions. Thus (31) becomes

F (z, u, v) =
G(z, u, v)(1− zvφ′(T (z)))− z(1− v)φ′(T (z))T (z)

1− zφ′(T (z))
. (32)

We apply this result to the case of planar trees. Since φ′(t) = 1
(1−t)2 we have

φ′(T (z)) =
1

(1− T (z))2
. (33)

Substituting this value of φ′(T (z)) into the functional equation (32) we obtain the following

result.

2.6 Theorem [30] The Steiner distance in ordered trees has the generating function

F (z, u, v) =
(1 +

√
1− 4z − 2z(1 + v))G(z, u, v)− z(1 + v +

√
1− 4z(1− v))

1 +
√

1− 4z − 4z
. (34)
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One can find the expectation and variance of the size of the Steiner distance with the help

of the probabilities

P{Yn,p = m} =
[znupvm]F (z, u, v)(

n
p

)
Tn

,

for fixed p and n→∞, and thus the first step is to compute [znupvm]F (z, u, v).

Now we substitute the value of G(z, u, v) from (14) into the lemma above, then we differ-

entiate with respect to v and set v = 1, which gives

∂

∂v
F (z, u, v)

∣∣∣
v=1

=
z(2 + u(1 +

√
1− 4z)− 2

√
1− 4z

√
1− 4z(1 + u)− 8z(1 + u))√

1− 4z(1 + u)(1 +
√

1− 4z − 4z)
.

(35)

We proceed with finding the coefficients of znup in (35). It is advantageous to first find

the coefficients of up and then use

1

1 +
√

1− 4z − 4z
=

1

4z
√

1− 4z
− 1

4z
, (36)

obtained by multiplying top and bottom by 1 − 4z −
√

1− 4z, to find the coefficients of

zn. It follows that

[znup]
∂

∂v
F (z, u, v)

∣∣∣
v=1

=
1

2
4n−p

(
2p

p

)(
n

n− p

)
− 1

2
4n−p

(
2p

p

)(
n− 1

2

n− p

)

+ 4n−p
(

2p− 2

p− 1

)(
n

n− p+ 1

)
− 4n−p

(
2p− 2

p− 1

)(
n− 1

2

n− p+ 1

)

+ 4n−p
(

2p− 2

p− 1

)(
n− 1

2

n− p+ 1

)
− 4n−p

(
2p− 2

p− 1

)(
n− 1

n− p+ 1

)

+ 2 · 4n−p−1

(
2p

p

)(
n− 3

2

n− p− 1

)
− 2 · 4n−p−1

(
2p

p

)(
n− 1

n− p− 1

)

+ 2 · 4n−p
(

2p− 2

p− 1

)(
n− 3

2

n− p

)
− 2 · 4n−p

(
2p− 2

p− 1

)(
n− 1

n− p

)
.

(37)

Next, (37) is divided by the normalising factor 1
n

(
n
p

)(
2n−2
n−1

)
which yields the expectation

for the Steiner distance

En,p = 4n−p
(p− 1)(2p− 2)! ((n− 1)!)2

((p− 1)!)2 (2n− 2)!)
+ 4n−p

(2p− 1)!(n− 1)!(n− 3
2
)!

2(p− 1
2
)!(p− 1)!(2n− 2)!

= 4n−p
(p− 1)(2p− 2)! ((n− 1)!)2

((p− 1)!)2 (2n− 2)!)
+ 1

=




n, p = n ,

1, p = 1 .
(38)
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To compute the second moment, we differentiate F (z, u, v) twice with respect to v and

then put v = 1 to obtain

∂2F (z, u, v)

∂v2

∣∣∣
v=1

=
z

(1− 4z(1 + u))3/2(1− 4z +
√

1− 4z)

[√
1− 4z(−1 + 2z(1 + u)(2 + u))

+ (1−
√

1− 4z)(1− 4z(1 + u))3/2 + 2z(1 + u)(u(1 + 4z)− 4(1 + 2z))
]
.

(39)

Now the coefficients of up and zn need to be extracted. It is obvious that the methods

employed to compute the expectation become quite cumbersome here. To this end, singu-

larity analysis proves to be a better approach. Before proceeding with the second moment,

it is interesting to see to see how one obtains the expectation for the Steiner distance using

singularity analysis. The series expansion in u of (35) reveals our old singularity z = 1
4
.

2.7 Lemma The coefficients of up in the first derivative of F (z, u, v) are

[up]
∂

∂v
F (z, u, v)

∣∣∣
v=1
∼ p− 1

(2p− 1)22p+1

(
2p

p

)
(1− 4z)−p , z → 1

4
. (40)

Furthermore, the coefficients of zn in the first derivative of F (z, u, v) can be easily com-

puted now

[znup]
∂

∂v
F (z, u, v)

∣∣∣
v=1
∼ (p− 1)4n

(2p− 1)22p+1

(
2p

p

)
np−1

Γ(p)
, (41)

and their normalisation yields the same expectation obtained in (38)

En,p ∼
p(p− 1)

√
π

(2p− 1)22p−1

(
2p

p

)√
n . (42)

2.8 Note For p = n in the above expectation, one obtains

En,n ∼ n− 5

8
− 23

128
n−1 +O

(
n−2
)
. (43)

For the second moment, the coefficients extracted from the dominant term in (39) are

given in the next result.

2.9 Lemma The coefficients of up in the second derivative of F (z, u, v) have the form

[up]
∂2

∂v2
F (z, u, v)

∣∣∣
v=1
∼ p− 1

22p+2

(
2p

p

)
(1− 4z)−p−1/2 , z → 1

4
. (44)
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So it follows that the coefficients of zn in the second derivative of F (z, u, v) are given

asymptotically by

[znup]
∂2

∂v2
F (z, u, v)

∣∣∣
v=1
∼ (p− 1)4n

22p+2

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (45)

moreover, the second moment is

[znup] ∂
2

∂v2F (z, u, v)
∣∣∣
v=1

4n

4
√
π
n−3/2 np

Γ(p+1)

∼ (p− 1)n , (46)

and the variance for the Steiner distance becomes

Vn,p ∼ (p− 1)n
(

1− πp2(p− 1)

(2p− 1)224p−2

(
2p

p

)2)
. (47)

2.10 Note For p = 1 the variance above is zero and for p = n we obtain

Vn,n ∼
1

4
n− 1

32
− 5

128
n−1 +O(n−2) . (48)

Also, 1− πp2(p−1)
(2p−1)224p−2

(
2p
p

)2 → 0 as p→∞.

We started the analysis of tree structures with one of the simplest constructions: the

ordered (planar) tree. While it was possible to obtain closed form results in some cases,

computing asymptotics turned out to be a better approach.
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Heap Ordered Trees

If what I say resonates with you, it is merely

because we are both branches on the same tree.

William Butler Yeats

3.1 Introduction

3.1 Definition [35] A heap ordered tree with n nodes (“size n”) can be described as a planted

plane tree together with a bijection from the nodes to the set {1, . . . , n} which is mono-

tonically increasing when going from the root to the leaves.

The enumeration of heap ordered trees appeared in [38] and parameters such as depth,

path length and level of nodes have been analysed in [35] and [36].

3.2 Theorem [35] Let an be the number of heap ordered trees of size n. Then an satisfies

the recursion

an+1 =
∑

k≥1

∑

j1+...+jk=n

(
n

j1, . . . , jk

)
aj1 · · · ajk , for n ≥ 1 , a1 = 1 . (1)

It follows that the exponential generating function for heap ordered trees

A(z) =
∑

n≥0

an
zn

n!
, (2)

fulfills the differential equation

A′(z) =
1

1− A(z)
with A(0) = 0 . (3)

Its solution is

A(z) = 1−
√

1− 2z , (4)

and it follows that

an = n!21−nCn , (5)

24
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Figure 3.1: All 15 heap ordered trees with 4 nodes.

where Cn represents the shifted Catalan number 1
n

(
2n−2
n−1

)
.

The aim is to compute the expectation and variance for the size of the ancestor tree and the

Steiner distance in heap ordered trees. Also, we will consider the limiting distributions

involved. For the parameters discussed the distributions turn out to be Gaussian and

we will use Hwang’s quasi power theorem, see [18], to determine them. All the results

presented in this chapter have appeared in [26].

3.3 Theorem [H. K. Hwang, [18]] Let {Ωn}n≥1 be a sequence of integral random variables.

Suppose that the moment generating function satisfies the asymptotic expression

Mn(s) = E(eΩns) =
∑

m≥0

P{Ωn = m}ems = eHn(s)(1 +O(κ−1
n )) ,

the O-term being uniform for |s| ≤ τ , s ∈ C, τ > 0, where

(i) Hn = u(s)φ(n) + v(s), with u(s) and v(s) analytic for |s| ≤ τ and independent of n;
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u′′(0) 6= 0,

(ii) φ(n)→∞,

(iii) κn →∞.

Under these assumptions the distribution of Ωn is asymptotically Gaussian:

P
{Ωn − u′(0)φ(n)√

u′′(0)φ(n)
< x

}
= Φ(x) +O

(
1

κn
+

1√
φ(n)

)
,

uniformly with respect to x, x ∈ R. Here Φ(x) denotes the distribution function of the

standard normal distribution N (0, 1). Moreover, the mean and variance of Ωn satisfy

E(Ωn) = u′(0)φ(n) + v′(0) +O(κ−1
n ), V(Ωn) = u′′(0)φ(n) + v′′(0) +O(κ−1

n ) .

(We will use the letters u and v also in a different context in the chapter, but there is no

chance of confusion.)

For fixed p and n → ∞, the expected value of both, the ancestor tree, and the Steiner

distance, are asymptotic to p
2

log n, the difference being in the smaller order terms. To

apply the quasi power theorem, an inductive process (with respect to p) is used. Part of

the difficulty is that a certain trivariate generating function is only implicitly given, and

sufficient information must be “pumped out” of this implicit equation.

3.2 Size of the ancestor tree in heap ordered trees

For a given tree family let Xn,p denote the random variable that counts the size of the

ancestor tree of p randomly chosen nodes in a heap ordered tree of size n and Tn the

number of such trees of size n.

A simple family of increasing trees (which includes heap ordered trees) is defined by

labelled rooted trees in which labels along any branch from the root go in increasing

order, see [2]. For this type of problem, it is natural to consider exponential generating

functions. First, we introduce the generating functions

T (z) =
∑

n≥0

Tn
n!
zn and G(z, u, v) =

∑

n≥0, p≥0,m≥0

P
{
Xn,p = m

}
Tn

(
n

p

)
zn

n!
upvm , (6)

which lead to the functional equations

T ′(z) = ϕ(T (z)) and
∂

∂z
G(z, u, v) = v(1 + u)ϕ(G(z, u, v)) + (1− v)ϕ(T (z)), (7)
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Figure 3.2: A heap ordered tree of size 10 with the ancestor tree under consideration;
nodes 7 and 10 are labelled.

with initial values T (0) = 0 and G(0, u, v) = 0. The first term in (7) takes care of the

instance where the root is labelled and the second term accounts for a non–labelled root.

Here the degree generating function ϕ(t) =
∑

n≥0 ϕnt
n satisfies ϕi ≥ 0 for i ≥ 1 and

ϕ0 > 0. This function is responsible for the recursive generation of these trees. However,

we are only concerned with the case where each degree can occur with weight one which

gives the case of heap ordered trees.

Thus, we have ϕ(t) = 1
1−t , and we obtain the differential equation

T ′(z) =
1

1− T (z)
, T (0) = 0 , (8)

which gives the well-known formula

T (z) = 1−
√

1− 2z , (9)

for the exponential generating function T (z). By extracting coefficients the number of

heap ordered trees is obtained,

Tn =

n−1∏

k=1

(2k − 1) =
(n− 1)!

2n−1

(
2n− 2

n− 1

)
. (10)

The differential equation of interest for G(z, u, v) in the case of heap ordered trees is as

follows:
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3.4 Theorem [26] The generating function for the size of the ancestor tree in heap ordered

trees satisfies
∂

∂z
G(z, u, v) =

v(1 + u)

1−G(z, u, v)
+

1− v√
1− 2z

, (11)

where G(0, u, v) = 0, G(z, u, 1) = 1−
√

1− 2z(1 + u).

It turns out that it is advantageous to make the following substitution in (11)

H(z, u, v) =
1−G(z, u, v)√

1− 2z
, (12)

so the differential equation becomes

H(z, u, v)− v(1 + u)

H(z, u, v)
− 1 + v = (1− 2z)

∂

∂z
H(z, u, v), H(0, u, v) = 1 . (13)

Using separation of variables we get the implicit solution

1

2
log

1

1− 2z
=

∫ H(z,u,v)

x=1

xdx

x2 − (1− v)x− v(1 + u)
, (14)

and by integration it follows that

log
1

1− 2z
= log

(
1− (H(z, u, v)− 1)(H(z, u, v) + v)

vu

)

− 1− v√
4vu+ (1 + v)2

log
(

1 +
2(H(z, u, v)− 1)√

4vu+ (1 + v)2 + 2− (1− v)

)

+
1− v√

4vu+ (1 + v)2
log
(

1− 2(H(z, u, v)− 1)√
4vu+ (1 + v)2 + (1− v)− 2

)
. (15)

Now H(z, u, v) is replaced with 1−G(z,u,v)√
1−2z

in (15) and is differentiated with respect to v.

In the resulting equation we let v = 1 and solve for ∂
∂v
G(z, u, v)

∣∣
v=1

which gives

∂

∂v
G(z, u, v)

∣∣∣
v=1

=
1

2

√
1− 2z − 1

2

√
1− 2z(1 + u)

− 1

4

u
(

log(2 + u− 4z(1 + u) + 2
√

(1− 2z(1 + u))(1− 2z)(1 + u)
)

√
(1 + u)(1− 2z(1 + u))

− 1

4

2u log(1 +
√

1 + u )√
(1 + u)(1− 2z(1 + u))

. (16)

From (16) one can find ∂2

∂z∂v
G(z, u, v)

∣∣
v=1

as well which will be used in the next section

to compute the expectation for the Steiner distance, see (120). We differentiate equation
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(15) to get

∂2

∂z∂v
G(z, u, v)

∣∣∣
v=1

=− 1

2
√

1− 2z
− 1 + u

2
√

1− 2z(1 + u)

+

(
4(1 + u)− 2(1 + u)(1− 2z)(1 + u) + 2(1− 2z(1 + u))(1 + u)√

(1− 2z(1 + u))(1− 2z)(1 + u)

)

× u

4(2 + u− 4z(1 + u))
√

(1− 2z(1 + u))(1 + u) + 8(1− 2z(1 + u))(1 + u)
√

1− 2z

−
(

log
(
2 + u− 4z(1 + u) + 2

√
(1− 2z(1 + u))(1− 2z)(1 + u)

)

− log(2 + u+ 2
√

1 + u )

)
u
√

1 + u

4(1− 2z(1 + u))3/2
. (17)

Next the (formal) expansions are considered

G(z, u, v) =
∑

p≥0

Gp(z, v)up respectively H(z, u, v) =
∑

p≥0

Hp(z, v)up , (18)

where our aim is to describe the limiting behaviour of [zn]Gp(z, v) uniformly in a neigh-

bourhood of v = 1 and then apply a central limit theorem (Hwang’s quasi power theorem)

to find the Gaussian limiting distribution of Xn,p for fixed p ≥ 1.

Obviously one has

Gp(z, v) =
∑

n≥0,m≥0

P
{
Xn,p = m

}
Tn

(
n

p

)
zn

n!
vm ,

Hp(z, v) = −Gp(z, v)√
1− 2z

, p ≥ 1 ,

H0(z, v) =
1−G0(z, v)√

1− 2z
. (19)

Since P
{
Xn,0 = m

}
= δm,n, we immediately get that

G0(z, v) = T (z) = 1−
√

1− 2z ,

H0(z, v) = 1 .
(20)

The required expansion for p ≥ 1 is stated as the following lemma.

3.5 Lemma [26] The coefficients Hp(z, v) have for p ≥ 1 around their (only) dominant sin-
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gularity z = 1
2

uniformly for |v − 1| ≤ ε and ε > 0 the expansion

Hp(z, v) = hp(v)
1

(1− 2z)
p(v+1)

2

+O
( log(1− 2z)

(1− 2z)
(p−1)(v+1)

2

)
. (21)

The coefficient generating function C(v, x) =
∑

p≥1 hp(v)xp of the hp(v) is given implicitly

by the equation

C(v, x)(1 + v + C(v, x))

vx
= −

( 1 + C(v,x)
1+v

−1+v
v

C(v,x)
x

) 1−v
1+v

(22)

and it holds for

hp(1) = [xp]C(1, x) = − 2

4pp

(
2(p− 1)

p− 1

)
, (23)

where

C(1, x) = −1 +
√

1− x ,

Cv(1, x) =
C(1, x)

2
+
x

4

1

1 + C(1, x)
log
(1 + C(1,x)

2

−2C(1,x)
x

)
.

(24)

Thus the expansion for the Gp(z, v) for p ≥ 1 is given by

Gp(z, v) = −hp(v)
1

(1− 2z)
p(v+1)−1

2

+O
( log(1− 2z)

(1− 2z)
(p−1)(v+1)−1

2

)
. (25)

Proof: To obtain H1(z, v) and thus G1(z, v) we consider (15) and compare coefficients at

u0. It follows that

[u0] log
(

1− (H(z, u, v)− 1)(H(z, u, v) + v)

vu

)

= [u0] log
(

1− (H1(z, v)u+O(u2))(1 + v +O(u))

vu

)
= log

(
1− 1 + v

v
H1(z, v)

)
, (26)

[u0]
1− v√

4vu+ (1 + v)2
log
(

1 +
2(H(z, u, v)− 1)√

4vu+ (1 + v)2 + 2− (1− v)

)

= [u0]
1− v
1 + v

1√
1 + 4v

(1+v)2u
log
(

1 +
2(H1(z, v)u+O(u2))

(1 + v)
√

1 + 4v
(1+v)2u+ 1 + v

)

= [u0]
1− v
1 + v

(1 +O(u)) log(1 +O(u)) = 0, (27)

[u0]
1− v√

4vu+ (1 + v)2
log
(

1− 2(H(z, u, v)− 1)√
4vu+ (1 + v)2 + (1− v)− 2

)

= [u0]
1− v
1 + v

(1 +O(u)) log
(

1− 2(H1(z, v)u+O(u2))

(1 + v)
√

1 + 4v
(1+v)2u− 1− v

)
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= [u0]
1− v
1 + v

(1 +O(u)) log(1− 1 + v

v
H1(z, v) +O(u)) =

1− v
1 + v

log
(

1− 1 + v

v
H1(z, v)

)
,

(28)

and further

log
( 1

1− 2z

)
=

2

1 + v
log
(

1− 1 + v

v
H1(z, v)

)
, (29)

which gives

H1(z, v) =
v

1 + v

(
1− 1

(1− 2z)
v+1

2

)
and G1(z, v) =

√
1− 2z v

1 + v

( 1

(1− 2z)
v+1

2

− 1
)
. (30)

Therefore the asymptotic expansion given above holds for p = 1 (although the bound for

the remainder term is not tight here) with h1(v) = − v
1+v

and thus the stated formula for

hp(1) is also valid for p = 1.

Now we assume that the lemma for Hl(z, v), respectively Gl(z, v) is true for all 1 ≤ l ≤ p

and we will show that it then also holds for p+ 1. To prove the result for Hp+1(z, v), we

will consider the coefficients of up in the equation (15).

For the first term in (15), one uses the expansion

log
(

1− (H(z, u, v)− 1)(H(z, u, v) + v)

vu

)
= log

(
1− 1 + v

v
H1(z, v)

)
+log

(
1−H̃(z, u, v)

)
,

(31)

with

H̃(z, u, v) =
∑

l≥1

H̃l(z, v)ul

=
1

1− 1+v
v
H1(z, v)

((H(z, u, v)− 1)(H(z, u, v) + v)

vu
− 1 + v

v
H1(z, v)

)
.

(32)

Then we get

[up] log
(

1− (H(z, u, v)− 1)(H(z, u, v) + v)

vu

)
= −

p∑

j=1

1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

H̃pi(z, v)

= −
1+v
v
Hp+1(z, v)

1− 1+v
v
H1(z, v)

−
1
v

∑p
k=1 Hk(z, v)Hp+1−k(z, v)

1− 1+v
v
H1(z, v)

−
p∑

j=2

1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

H̃pi(z, v) ,

(33)
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where

H̃l(z, v) =
1

1− 1+v
v
H1(z, v)

1

v

(
(1 + v)Hl+1(z, v) +

l∑

k=1

Hk(z, v)Hl+1−k(z, v)
)
. (34)

Under the assumptions of the lemma we now obtain, for 1 ≤ l ≤ p − 1, around the

dominant singularity z = 1
2

in a neighbourhood of v = 1, the uniform expansion

H̃l(z, v) = (1− 2z)
v+1

2

( 1+v
v
hl+1(v)

(1− 2z)
(l+1)(v+1)

2

+
1
v

∑l
k=1 hk(v)hl+1−k(v)

(1− 2z)
(l+1)(v+1)

2

+O
( log(1− 2z)

(1− 2z)
l(v+1)

2

))

= h̃l(v)
1

(1− 2z)
l(v+1)

2

+O
( log(1− 2z)

(1− 2z)
(l−1)(v+1)

2

)
, (35)

where

h̃l(v) =
1

v

(
(1 + v)hl+1(v) +

l∑

k=1

hk(v)hl+1−k(v)
)
. (36)

With the abbreviations

Ĥ(z, u, v) =
∑

l≥1

Ĥl(z, v)ul =
2(H(z, u, v)− 1)√

4vu+ (1 + v)2 + 2− (1− v)
,

âl(v) = [ul]
1√

1 + 4v
(1+v)2u

,

b̂l(v) = [ul]
2√

4vu+ (1 + v)2 + 2− (1− v)
, (37)

the following expansion for the coefficients of the second term in (15) is obtained

[up]
1− v√

4vu+ (1 + v)2
log
(

1 +
2(H(z, u, v)− 1)√

4vu+ (1 + v)2 + 2− (1− v)

)

=
1− v
1 + v

p∑

k=1

âp−k(v)
k∑

j=1

(−1)j+1

j

∑

k1+···+kj=k
ki≥1

j∏

i=1

Ĥki(z, v)

=
1− v
1 + v

p∑

j=1

(−1)j+1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

Ĥpi(z, v)

+
1− v
1 + v

p−1∑

k=1

âp−k(v)
k∑

j=1

(−1)j+1

j

∑

k1+···+kj=k
ki≥1

j∏

i=1

Ĥki(z, v) , (38)
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where

Ĥl(z, v) =

l∑

k=1

Hk(z, v)̂bl−k(v) . (39)

Under the assumptions of the lemma we obtain, for 1 ≤ l ≤ p, the uniform expansion

Ĥl(z, v) =
l∑

k=1

( hk(v)

(1− 2z)
k(v+1)

2

+O
( log(1− 2z)

(1− 2z)
(k−1)(v+1)

2

))
b̂l−k(v)

= ĥl(v)
1

(1− 2z)
l(v+1)

2

+O
( log(1− 2z)

(1− 2z)
(l−1)(v+1)

2

)
, (40)

where

ĥl(v) =
1

1 + v
hl(v) . (41)

Finally, for the third term in (15) we use the expansion

1− v√
4vu+ (1 + v)2

log
(

1− 2(H(z, u, v)− 1)√
4vu+ (1 + v)2 + (1− v)− 2

)

=
1− v√

4vu+ (1 + v)2
log
(

1− 1 + v

v
H1(z, v)

)
+

1− v√
4vu+ (1 + v)2

log
(

1−H(z, u, v)
)
,

(42)

with

H(z, u, v) =
∑

l≥1

H l(z, v)ul

=
1

1− 1+v
v
H1(z, v)

( 2(H(z, u, v)− 1)√
4vu+ (1 + v)2 + (1− v)− 2

− 1 + v

v
H1(z, v)

)
.

(43)

In what follows, the abbreviations below will be employed

al(v) = [ul]
1√

1 + 4v
(1+v)2u

, bl(v) = [ul]
2u√

4vu+ (1 + v)2 + (1− v)− 2
. (44)

We get the expansion

[up]
1− v√

4vu+ (1 + v)2
log
(

1− 2(H(z, u, v)− 1)√
4vu+ (1 + v)2 + (1− v)− 2

)

=
1− v
1 + v

ap(v) log
(

1− 1 + v

v
H1(z, v)

)
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− 1− v
1 + v

p∑

k=1

ap−k(v)
k∑

j=1

(−1)j+1

j

∑

k1+···+kj=k
ki≥1

j∏

i=1

Hki(z, v)

=
1− v
1 + v

ap(v) log
(

1− 1 + v

v
H1(z, v)

)
− 1− v

1 + v

1+v
v
Hp+1(z, v)

1− 1+v
v
H1(z, v)

− 1− v
1 + v

∑p−1
k=0 Hk+1(z, v)bp−k(v)

1− 1+v
v
H1(z, v)

− 1− v
1 + v

p∑

j=2

1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

Hpi(z, v)

− 1− v
1 + v

p−1∑

k=1

ap−k(v)
k∑

j=1

1

j

∑

k1+···+kj=k
ki≥1

j∏

i=1

Hki(z, v) , (45)

where

H l(z, v) =
1

1− 1+v
v
H1(z, v)

l∑

k=0

Hk+1(z, v)bl−k(v) . (46)

Now, under the assumptions of the lemma, for 1 ≤ l ≤ p − 1, the following uniform

expansion is obtained

H l(z, v) = (1− 2z)
v+1

2

l∑

k=0

( hk+1(v)

(1− 2z)
(k+1)(v+1)

2

+O
( log(1− 2z)

(1− 2z)
k(v+1)

2

))
bl−k(v)

= hl(v)
1

(1− 2z)
l(v+1)

2

+O
( log(1− 2z)

(1− 2z)
(l−1)(v+1)

2

)
, (47)

where

hl(v) =
1 + v

v
hl+1(v) . (48)

Comparing coefficients leads to the following equation for Hp+1(z, v):

2

v

1

1− 1+v
v
H1(z, v)

Hp+1(z, v) =

−
1
v

∑p
k=1 Hk(z, v)Hp+1−k(z, v)

1− 1+v
v
H1(z, v)

−
p∑

j=2

1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

H̃pi(z, v)

− 1− v
1 + v

p∑

j=1

(−1)j+1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

Ĥpi(z, v)
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− 1− v
1 + v

p−1∑

k=1

âp−k(v)
k∑

j=1

(−1)j+1

j

∑

k1+···+kj=k
ki≥1

j∏

i=1

Ĥki(z, v)

+
1− v
1 + v

ap(v) log
(

1− 1 + v

v
H1(z, v)

)
− 1− v

1 + v

∑p−1
k=0 Hk+1(z, v)bp−k(v)

1− 1+v
v
H1(z, v)

− 1− v
1 + v

p∑

j=2

1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

Hpi(z, v)

− 1− v
1 + v

p−1∑

k=1

ap−k(v)
k∑

j=1

1

j

∑

k1+···+kj=k
ki≥1

j∏

i=1

Hki(z, v) . (49)

The asymptotic expansion

Hp+1(z, v) = hp+1(v)
1

(1− 2z)
(p+1)(v+1)

2

+O
( log(1− 2z)

(1− 2z)
p(v+1)

2

)
, (50)

follows by inspection, where

hp+1(v) =
v

2

[
− 1

v

p∑

k=1

hk(v)hp+1−k(v)−
p∑

j=2

1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

h̃pi(v)

− 1− v
1 + v

p∑

j=1

(−1)j+1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

ĥpi(v)− 1− v
1 + v

p∑

j=2

1

j

∑

p1+···+pj=p
pi≥1

j∏

i=1

hpi(v)

]
,

(51)

and this part of the lemma is proved. The expansion of Gp(z, v) given in (25) follows

immediately. It should be remarked, that this detailed description of Hp+1(z, v) shown

inductively also shows that the assumptions necessary for the application of singularity

analysis are satisfied. The logarithmic remainder term appears for p = 2 due to

log
(

1− 1 + v

v
H1(z, v)

)
= −v + 1

2
log(1− 2z) , (52)

and thus it also arises for p ≥ 2. To get an equation for the coefficient generating function

C(v, x) =
∑

p≥1

hp(v)xp , (53)

one could of course use equation (51), but it follows much easier directly from (15), when
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considering which terms give contributions to the main term of Hp(z, v). Then one gets

log
(

1−
C(v,x)
x

(1 + v + C(v, x))− (v + 1)h1(v)

v

)

− 1− v
1 + v

log
(

1 +
C(v, x)

1 + v

)
+

1− v
1 + v

log
(

1− 1 + v

v

(C(v, x)

x
− h1(v)

))
= 0, (54)

or
C(v, x)(1 + v + C(v, x))

vx
= −

( 1 + C(v,x)
1+v

−1+v
v

C(v,x)
x

) 1−v
1+v

. (55)

From (55), one obtains the equation

C(1, x)(2 + C(1, x))

x
= −1 , (56)

which gives

C(1, x) = −1 +
√

1− x and (57)

hp(1) = [xp]C(1, x) = − 2

4pp

(
2(p− 1)

p− 1

)
, for p ≥ 1. (58)

This completes the proof of the lemma. �

Using singularity analysis, from the above lemma we obtain the following expansion,

which is uniform for |v − 1| ≤ ε and ε > 0,

∑

m≥0

P
{
Xn,p = m

}
vm =

n!(
n
p

)
Tn

[zn]Gp(z, v)

= − p!hp(v)2
√
π

Γ
(
p(v+1)−1

2

)n p(v−1)
2

(
1 +O

( 1

n1−ε

))

= exp
[p(v − 1)

2
log n+ log

(−2
√
πp!hp(v)

Γ
(
p(v+1)−1

2

)
)](

1 +O
( 1

n1−ε

))
,

(59)

where we used the asymptotic expansion for the number Tn of heap ordered trees

Tn =
n!2n−1n−

3
2√

π

(
1 +O

( 1

n

))
. (60)

With the notations of the quasi power theorem, one obtains

u(s) =
p(es − 1)

2
and v(s) = log

(
−2
√
πp!hp(e

s)

Γ
(p(es+1)−1

2

)
)
. (61)
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To apply the quasi power theorem, v(s) has to be analytic around s = 0. But this is true

since

hp(1) = − 2

4pp

(
2(p− 1)

p− 1

)
6= 0 . (62)

Moreover, we find

u′(s) =
p

2
es, u′′(s) =

p

2
es, thus u′(0) =

p

2
, u′′(0) =

p

2
. (63)

Therefore the limiting distribution for the size of the ancestor tree is obtained:

3.6 Theorem [26] The distribution of the random variable Xn,p, which counts the size of the

ancestor tree of p randomly chosen nodes in a random heap ordered tree of size n is for

p ≥ 1 asymptotically Gaussian, where the convergence rate is of order O
(

1√
log n

)
:

P

{
Xn,p − p

2
log n√

p
2

log n
< x

}
= Φ(x) +O

( 1√
log n

)
, (64)

and the expectation En,p = E(Xn,p) and the variance Vn,p = V(Xn,p) satisfy

En,p =
p

2
log n+ v′(0) +O

( 1

n1−ε

)
,

Vn,p =
p

2
log n+ v′′(0) +O

( 1

n1−ε

)
.

(65)

Remark. By inspection we can get the following expansions from the first derivative of

G(z, u, v)

[up]
∂

∂v
G(z, u, v)

∣∣∣
v=1

=

p∑

i=1

(−1)p+i(p− 1)i−1 (2i− 2)!

(i− 1)! 4i
1

(1− 2z)i−1/2
log

1

1− 2z

+

p−1∑

i=0

bi(p)
1

(1− 2z)p−i−1/2
.

(66)

The computation of the bi(p)’s is cumbersome as they become increasingly involved. How-

ever, we were able to obtain b1(p) and b2(p) explicitly:

b1(p) = 2−2p−1

(
2p

p

)(
H2p −Hp

)
,

b2(p) = −H2p−1

(
22p−3 +

1

2

(
2p− 2

p

)
+

(
2p− 2

p− 1

))
+

p∑

k=0

(p+ 1− k)

(
2p− 2

k

)
H2p−1−k .

(67)
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The constant v′(0) in the expectation can also be computed. One gets

v′(s) =
h′p(e

s)es

hp(es)
− p

2
esΨ

(p(es + 1)− 1

2

)
, thus v′(0) =

h′p(1)

hp(1)
− p

2
Ψ
(2p− 1

2

)
. (68)

Here Ψ(x) denotes the digamma function Ψ(x) = (log Γ(x))′. For properties of this

function we refer the reader to [1]. There remains the calculation of h′p(1) = [xp]Cv(1, x).

One gets the equation

Cv(1, x) =
C(1, x)

2
+

x

4(1 + C(1, x))
log
(1 + C(1,x)

2

−2C(1,x)
x

)

=

√
1− x− 1

2
+

x

4
√

1− x log
(1 +

√
1−x−1

2

−2
√

1−x−1
x

)
.

(69)

To extract coefficients, we consider

[xp] log
(1 +

√
1−x−1

2

−2
√

1−x−1
x

)
=

1

p
[xp−1]

[
log
(1 +

√
1−x−1

2

−2
√

1−x−1
x

)]′

=
1

p
[xp−1]

(
− 1

x
√

1− x +
1

x

)
= − 1

4pp

(
2p

p

)
, (70)

and one finds with Lemma 3.7 (below)

h′p(1) = − 1

4pp

(
2(p− 1)

p− 1

)
− 1

4p

p−1∑

j=1

1

j

(
2j

j

)(
2(p− 1− j)
p− 1− j

)

= − 1

4pp

(
2(p− 1)

p− 1

)
− 2

4p

(
2(p− 1)

p− 1

)
(H2p−2 −Hp−1)

= − 1

4p

(
2(p− 1)

p− 1

)(
1

p
+ 2(H2p−2 −Hp−1)

)
. (71)

However, the way (69) is expressed is ungainly and the substitution x = 4t
(1+t)2 is useful

for the following computations

Cv(1, x) =
2t

1− t2 log

(
1

1 + t

)
− t

1 + t
,

Cvv(1, x) = − 2t(t2 + 1)

(1− t)3(1 + t)
log2

(
1

1 + t

)
+

2t

(1− t)2
log

(
1

1 + t

)
+

t

1− t2 .
(72)
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3.7 Lemma [26]

(i)
∑

j≥1

1

j

(
2j

j

)
zj = 2 log

(1−
√

1− 4z

2z

)
,

(ii)

p−1∑

j=1

1

j

(
2j

j

)(
2(p− 1− j)
p− 1− j

)
=

(
2(p− 1)

p− 1

)
(H2p−2 −Hp−1) .

(73)

Proof: (i) It is easier to prove the equivalent result

∑

j≥1

(
2j

j

)
zj−1 = 2

d

dz

[
log
(1−

√
1− 4z

2z

)]

=
4√

1− 4z(1−
√

1− 4z)
− 2

z
=

1

z

[ 1√
1− 4z

− 1
]
.

(74)

Now, it is well known that
∑

j≥0

(
2j

j

)
zj =

1√
1− 4z

, (75)

and thus ∑

j≥1

(
2j

j

)
zj−1 =

1

z

[ 1√
1− 4z

− 1
]
, (76)

which proves the first part of the lemma.

(ii) We use the substitution

z =
u

(1 + u)2
, dz =

1− u
(1 + u)3

du,
√

1− 4z =
1− u
1 + u

, (77)

to simplify the given summation as follows

p−1∑

j=1

1

j

(
2j

j

)(
2(p− 1− j)
p− 1− j

)
= [zp−1]

1√
1− 4z

log
(1−

√
1− 4z

2z

)2

(78)

=
1

2πi

∮
(1 + u)2p−2

up
2 log(1 + u)du

= [up−1]2(1 + u)2p−2 log(1 + u)

= (−1)p[up−1]2(1− u)2p−2 log
( 1

1− u
)

= 2(−1)p
( −p
p− 1

)
(H−p −H−2p+1)

= 2

(
2p− 2

p− 1

)
(H2p−2 −Hp−1) . (79)

�
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We can determine the constant term v′(0) in the asymptotic expansion of the expectation

En,p given above:

v′(0) =
1

2
+ p(H2p−2 −Hp−1)− p

2
Ψ
(2p− 1

2

)

=
1

2
+ p(H2p−2 −Hp−1)− p

2

(
2H2p−2 −Hp−1 + Ψ

(1

2

))
= −p

2
Hp +

p

2
γ + p log 2 .

(80)

Next v′′(0) in the variance is computed. We obtain

v′′(s) =
h′′p(e

s)e2s

hp(es)
+
h′p(e

s)es

hp(es)
− (h′p(e

s))2e2s

h2
p(e

s)

− p

2
esΨ

(
p(es + 1)− 1

2

)
− p2

4
e2sΨ′

(
p(es + 1)− 1

2

)
,

v′′(0) =
h′′p(1)

hp(1)
+
h′p(1)

hp(1)
− (h′p(1))2

h2
p(1)

− p

2
Ψ

(
2p− 1

2

)
− p2

4
Ψ′
(

2p− 1

2

)
. (81)

Firstly, we are required to calculate h′′p(1) = [xp]Cvv(1, x), namely

[xp]

(
− 2t(t2 + 1)

(1− t)3(1 + t)
log2

(
1

1 + t

)
+

2t

(1− t)2
log

(
1

1 + t

)
+

t

1− t2
)
. (82)

We confine ourselves to considering the first few terms only. From the series expansion of

(83) one can produce the local expansion around the dominant singularity x = 1 and use

singularity analysis [9]:

h′′p(1) = [xp]

(
− log2 2

4
(1− x)−3/2 +

(1

2
− log 2

4

)
(1− x)−1/2 +O(1)

)

= − log2 2

4

(−3/2

p

)
+
(1

2
− log 2

4

)(−1/2

p

)
+O(1).

(83)

From this it follows that

v′′(0) = −1

2
p log p+ p

(
log 2− 5

4

)
+

1

8
log 2 +

15

16
− 1

4
log2 2 +O(p−1) . (84)
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Figure 3.3: The probability distributions of the ancestor tree for n = 30, p = 1, . . . , 20.

3.2.1 Some numerical experiments

Using numerical methods, we find an asymptotic value for the expectation of the ances-

tor tree. We differentiate G(z, u, v) in (11) with respect to v, put v = 1 and use the

substitutions

∂

∂v
G(z, u, v)

∣∣∣
v=1

= H(z) , G(z, u, 1) = 1−
√

1− 2z(1 + u) . (85)

The resulting equation is

∂

∂z
H(z) =

1 + u√
1− 2z(1 + u)

+
(1 + u)H(z)

1− 2z(1 + u)
− 1√

1 + 2z
, (86)

with initial condition H(0, u) = 0. Its solution (as computed by MAPLE) has the form

H(z) =
1

2

√
1− 2z − 1

2

√
1− 2z(1 + u)

− 1

4

u(log(2 + u− 4z(1 + u) + 2
√

(−1 + 2z(1 + u))(−1 + 2z)(1 + u) )√
(1 + u)(1− 2z(1 + u))

− 1

4

2u log(1 +
√

1 + u )√
(1 + u)(1− 2z(1 + u))

.

(87)

Then we produce a series expansion, S, in u up to 16 terms and compute the (simplified)

coefficients, ap, of the series S, in u, for 0 ≤ p ≤ 15 (with the following substitution in ap:
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csgn(−1 + 2z) = −1). The first few terms in the expansion of ap are

a2 =
−1

8

2z2 + 2z − 4z log(1− 2z) + log(1− 2z)

(−1 + 2z)
√

1− 2z
,

a3 =
1

32

16z log(1− 2z)− 3 log(1− 2z)− 32z2 log(1− 2z)− 6z + 26z2 + 8z3

(−1 + 2z)2
√

1− 2z
,

a4 =
1

192

108z log(1− 2z)− 15 log(1− 2z)− 288z2 log(1− 2z)− 30z + 384z3 log(1− 2z)

(−1 + 2z)3
√

1− 2z

+
1

192

186z2 − 400z3 − 60z4

(−1 + 2z)3
√

1− 2z
. (88)

The behaviour of the ai’s can be analysed by looking at their log and non-log parts.

The Log Term. One can estimate the generating function for the log-terms in the ai’s

by computing the coefficients, bi, from the series expansion of ai in log(1− 2z) around 1,

b2 = −1

8

−4z + 1

(−1 + 2z)
√

1− 2z
,

b3 =
1

32

16z − 3− 32z2

(−1 + 2z)2
√

1− 2z
,

b4 =
1

192

108z − 15− 288z2 + 384z3

(−1 + 2z)3
√

1− 2z
,

b5 = − 1

1536

6144z4 − 960z + 105 + 3456z2 − 6144z3

(−1 + 2z)4
√

1− 2z
. (89)

The bi’s will be simplified by multiplying them with a factor of (1− 2z)p−1/2 and then we

substitute z with Z
2
. Our newly obtained coefficients, ci, have the form

c2 =
1

8
− 1

4
Z ,

c3 =
1

4
Z − 3

32
− 1

4
Z2 ,

c4 = − 9

32
Z +

5

64
+

3

8
Z2 − 1

4
Z3 ,

c5 = −1

4
Z4 +

5

16
Z − 35

512
− 9

16
Z2 +

1

2
Z3 ,

c6 = −1

4
Z5 +

5

8
Z4 − 175

512
Z +

63

1024
+

25

32
Z2 − 15

16
Z3 . (90)

Then Z is substituted with w+ 1 in the series expansion of ci and this yields a new series

with coefficients ei of the form

e2 = −1

8
− 1

4
w ,
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e3 = −1

4
w − 3

32
− 1

4
w2 ,

e4 = − 9

32
w − 5

64
− 3

8
w2 − 1

4
w3 ,

e5 = −1

4
w4 − 1

2
w3 − 9

16
w2 − 5

16
w − 35

512
,

e6 = −1

4
w5 − 5

8
w4 − 15

16
w3 − 25

32
w2 − 175

512
w − 63

1024
. (91)

Let fi be the coefficients of w0 in ei. Then, for each fi we consider two sequences: l1,

say, containing the numbers i = 2, . . . , 15 and l2, say, containing the corresponding fi

coefficients. By using the function ‘interp’ in MAPLE, we compute polynomials of deg

≤ i, in some variable X, say, which interpolate the points

(l1(2), l2(2)), (l1(3), l2(3)), . . . , (l1(i− 1), l2(i− 1)) .

The first few polynomials obtained with this method are:

i = 2 : −1

8
(X − 1) ,

i = 3 : − 3

64
(X − 1)(X − 2) ,

i = 4 : − 5

384
(X − 1)(X − 2)(X − 3) ,

i = 5 : − 35

12288
(X − 1)(X − 2)(X − 3)(X − 4) ,

i = 6 : − 21

40960
(X − 1)(X − 2)(X − 3)(X − 4)(X − 5) .

Then the list, L, containing the coefficients of X0 in these polynomials is:

L =
[1

4
,
1

8
,

3

64
,

5

384
,

35

12288
,

21

40960
,

77

983040
,

143

13762560
,

143

117440512
,

2431

19025362944
,

46189

3805072588800
,

4199

3986266521600
,

96577

1148044758220800
,

7429

45921790328832
,

7429

95245194756096

]
,

and thus the generating function that incorporates them is given by

((i− 1)!)34i

(2i− 2)!
. (92)

Now we find the coefficients lp from lp
1

(1−2z)p−1/2 log 1
1−2z

. Since

lp =

p−1∑

i≥0

Cp,i(1− 2z)i , (93)
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our coefficient formula becomes

p−1∑

i≥0

Cp,i
(1− 2z)p−i−1/2

log
1

1− 2z
. (94)

The dominant term occurs when i = 0. The first few coefficients are

Cp,p−1 : (−1)p
1

4

Cp,p−2 : (−1)p
p− 1

8

Cp,p−3 : (−1)p
−3

64
(p− 1)2

Cp,p−4 : (−1)p
5

384
(p− 1)3

...

Cp,p−i : (−1)p+i (p− 1)i−1 (2i− 2)!

((i− 1)!)34i
. (95)

So the log term is

p∑

i=1

(−1)p+i(p− 1)i−1 (2i− 2)!

(i− 1)!34i
(1− 2z)p−i

1

(1− 2z)p−1/2
log

1

1− 2z
. (96)

The explicit coefficients of [zn] in the above are

p∑

i=1

(−1)p+i(1− p)i−1 (2i− 2)!

((i− 1)!)34i
2n
(
n+ i− 3

2

n

)
[Hn+i−3/2 −Hi−3/2] , (97)

and the asymptotic ones from i = p have the form

(p− 1)p−1 (2p− 2)!

((p− 1)!)34p
2n
(
n+ p− 3/2

n

)
[Hn+p−3/2 −Hp−3/2] . (98)

With MAPLE we find the leading coefficient for i = p

(p− 1)!(2p− 2)!

(p− 1)!34p
2n

np−3/2

Γ(p− 1
2
)

log n , (99)

which has to be divided by the normalising factor 1

(np)
n!

1.3...(2n−3)
. Since

n!

1.3 . . . (2n− 3)
∼ 21−nn3/2

√
π , (100)
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and
(
n
p

)
∼ np

p!
∼ np

p!
, the leading term becomes

(2p− 2)! 2p
√
π

(p− 1)! 4p Γ(p− 1
2
)

log n . (101)

Now,

Γ(2z) =
1√
2π

22z−1/2 Γ(z) Γ(z +
1

2
) , (102)

and thus
1

Γ(p− 1
2
)

=
22p−5/2 Γ(p− 1)√

2π Γ(2p− 2)
. (103)

Substituting into (101) gives p
2

and we conclude that the leading term of the average

(parameter p) is of form
p

2
log n+Kp +O

( log n

n

)
, (104)

which agrees with the result obtained from the limiting distribution of the ancestor tree.

The Non-Log Term. Now we turn our attention to obtaining the generating function

for the non-log terms which appeared ai. Using a procedure similar to the one for the

log-term we obtain the list of coefficients

L =

[
0,

1

8
,

7

64
,

37

384
,

533

6144
,

1627

20480
,

18107

245760
,

237371

3440640
,

477745

7340032
,

8161705

132120576
,

155685007

2642411520
,

156188887

2768240640
,

3602044091

66437775360
,

18051406831

345476431872
,

7751493599

153545080832
,

225175759291

4606352424960
,

13981692518567

294806555197440
,

14000078506967

303740087173120
,

98115155543129

2186928627646464
,

3634060848592973

83103287850565632

]
.

Then we use ‘listtorec’ and ‘rectodiffeq’ (from the MAPLE package GFUN, [39]) to obtain

the following differential equation satisfied by the coefficients from L,

T ′(z) =2f(z) + (−28 + 34z)D(f)(z) + (16 + 40z2 − 56z)D2(f)(z)

+ (−16z2 + 8z3 + 8z)D3(f)(z) .
(105)

The first term in the solution to the above equation is

T1(u) =
1

2

[ log 2√
1− u −

log(1 +
√

1− u)√
1− u

]
. (106)

To find the coefficients of up in this term the following substitutions will be used

u =
4v

(1 + v)2
, du =

4(1− v)

(1 + v)3
dv,

√
1− u =

1− v
1 + v

, (107)
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and then the contour integration method is employed as follows

[up]
1

2

[ log 2√
1− u −

log(1 +
√

1− u)√
1− u

]

=
1

2

1

2πi

∮
du

up+1

1

2

[ log 2√
1− u −

log(1 +
√

1− u)√
1− u

]

=
1

4πi

∮
4(1− v)

(1 + v)3
dv

(1 + v)2p+2

4p+1

[
log 2

(1 + v

1− v
)
− log

( 2

1 + v

)1 + v

1− v
]

=
1

4
[vp]4−p(1 + v)2p log(1 + v)

= 2−2p−1
∑

k=1

(−1)k−1

(
2p

p− k

)
. (108)

Alternatively, from (108), one can proceed with

1

4
[vp]4−p(1 + v)2p log(1 + v) = 2−2p−1(−1)p−1[vp](1− v)2p log

1

1− v(
since α + 1 = −2p, α = −2p− 1, p+ α = −p− 1, for

1

(1− v)α+1

)

= 2−2p−1(−1)p−1

(
p+ α

p

)
[Hp+α −Hα]

= 2−2p−1(−1)p−1

(−p− 1

p

)[ 1

−2p
+ · · ·+ 1

−(p+ 1)

]

= 2−2p−1

(
2p

p

)[ 1

2p
+ · · ·+ 1

(p+ 1)

]

= 2−2p−1

(
2p

p

)
[H2p −Hp] . (109)

Thus we can express the coefficients of up in (106) as

2−2p−1
∑

k=1

(−1)k−1

(
2p

p− k

)
or as 2−2p−1

(
2p

p

)
[H2p −Hp] . (110)

The next term in the differential equation is

(−1
8

+ 1
4

log(2))u(u− 2)

(1− u)3/2
− 1

8

u(1 + 2
√

1− u+ 2(u− 2) log(
√

1− u+ 1))

(1− u)3/2
. (111)



3.2 Size of the ancestor tree in heap ordered trees 47

The list of coefficients from which (111) is obtained consists of

L =

[
0,−1

8
,− 5

16
,−3

8
,−163

384
,−2875

6144
,−1299

2560
,−133679

245760
,− 994529

1720320
,−4479885

7340032
,−42340055

66060288
,

−1770733217

2642411520
,−40259683

57671680
,−48165130403

66437775360
− 129706240867

172738215936
,−119140740885

153545080832

]
.

Now we are in a position to compute the coefficients of up in (111)

[up]
(−1

8
+ 1

4
log(2))u(u− 2)

(1− u)3/2
− 1

8

u(1 + 2
√

1− u+ 2(u− 2) log(
√

1− u+ 1))(
1− u)3/2

= 2−2p[vp]
(1 + v)2p−2(1 + v2)

(1− v)2
log

1

1 + v
− 22p+2[vp]

(1 + v)2p−2(3v + 1)v

1− v ,

(112)

where the substitutions from (107) have been used once again. Next, the coefficients of

vp are extracted for each term above. The first one is

[vp]
(1 + v)2p−2

(1− v)2
log

1

1 + v

= (−1)p[vp]
1

(1 + v)2
(1− v)2p−2 log

1

1− v

= (−1)p
p∑

k=0

(−1)p−k(p+ 1− k)

(
k − 2p+ 1

k

)
[Hk−2p+1 −H−2p+1]

= (−1)p
p∑

k=0

(−1)p−k(p+ 1− k)

(−k + 2p− 1 + k − 1

k

)
(−1)k(−1)[H2p−1 −H2p−1−k]

= −
p∑

k=0

(p+ 1− k)

(
2p− 2

k

)
[H2p−1 −H2p−1−k]

= −H2p−1

p∑

k=0

(p+ 1− k)

(
2p− 2

k

)
+

p∑

k=0

(p+ 1− k)

(
2p− 2

k

)
H2p−1−k

= −H2p−1

(
22p−3 +

1

2

[(2p− 2

p

)
+ 2

(
2p− 2

p− 1

)])
+

p∑

k=0

(p+ 1− k)

(
2p− 2

k

)
H2p−1−k

= −
( 2p−1∑

k=0

1

2k − 1

)(
22p−3 +

1

2

[(2p− 2

p

)
+ 2

(
2p− 2

p− 1

)])

+

p∑

k=0

(p+ 1− k)

(
2p− 2

k

)
H2p−1−k . (113)
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Furthermore, the coefficients of vp in the second term of (112) turn out to be

[vp]
(1 + v)2p−2(3v + 1)v

1− v = 3[vp−2]
1

1− v (1 + v)2p−2 + [vp−1]
1

1− v (1 + v)2p−2

= 3

p−2∑

i=0

(
2p− 2

i

)
+

p−1∑

i=0

(
2p− 2

i

)

=
3

2

(
22p−2 −

(
2p− 2

p− 1

))
+

1

2

(
22p−2 +

(
2p− 2

p− 1

))

= 22p−1 −
(

2p− 2

p− 1

)
. (114)

This is substituted back into (112) to obtain the coefficients of up in the second term of

the differential equation

[up]T2(u) =
1

2
− 1

2p+1

(
2p− 2

p− 1

)

−
( 2p−1∑

k=0

1

2k − 1

)(
24p−1 + 22p+1

(
2p− 2

p

)
+ 2p+2

(
2p− 2

p− 1

))

+ 22p+2

p∑

k=0

(p+ 1− k)

(
2p− 2

k

)
H2p−1−k . (115)

3.3 The Steiner distance in heap ordered trees

Once again we are interested in finding the expectation, variance and limiting distribution

for the Steiner distance. Here Yn,p will denote the random variable that counts the Steiner

distance of p randomly chosen nodes in a heap ordered tree of size n.

For increasing trees we introduce the generating function

F (z, u, v) =
∑

n≥0,p≥0,m≥0

P
{
Yn,p = m

}
Tn

(
n

p

)
zn

n!
upvm , (116)

which gives the functional equation

∂

∂z
F (z, u, v) = ϕ′(T (z))F (z, u, v) +

∂

∂z
G(z, u, v)− vϕ′(T (z))G(z, u, v)

− (1− v)ϕ′(T (z))T (z) , (117)

with initial value F (0, u, v) = 0. The generating functions T (z) and G(z, u, v) are as

defined in the earlier section. The first two terms in (117) arise when the root is labelled
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1
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5

3 4

6

8 9 10

7

Figure 3.4: A heap ordered tree of size 10 with the Steiner distance under consideration;
nodes 7 and 10 are labelled.

and the last two terms represent the corrections arising when the root is not labelled.

Again, we only look at ϕ(t) = 1
1−t which is the special case of heap ordered trees.

3.8 Lemma [26] The generating functions G(z, u, v) of the Steiner distance in heap ordered

trees satisfies the following functional-differential equation

∂

∂z
F (z, u, v) =

∂

∂z
G(z, u, v)+F (z, u, v)

1

1− 2z
−G(z, u, v)

v

1− 2z
− 1− v

1− 2z
(1−
√

1− 2z ) .

(118)

This is a first order differential equation which will be solved for F (z, u, v)

F (z, u, v) =
1√

1− 2z

z∫

0

√
1− 2t

[ ∂
∂t
G(t, u, v)−G(t, u, v)

v

1− 2t
− 1− v

1−
√

1− 2t

]
dt . (119)

For the expectation, F (z, u, v) is differentiated with respect to v and evaluated at v = 1

∂

∂v
F (z, u, v)

∣∣∣
v=1

=
1√

1− 2z

z∫

0

√
1− 2t

[
∂2

∂v∂t
G(t, u, v)

∣∣∣
v=1
− ∂

∂v
G(t, u, v)

∣∣∣
v=1

1

1− 2t

−1−
√

1− 2t(1 + u)

1− 2t
+

1

1−
√

1− 2t

]
dt ,

(120)

since G(z, u, v)
∣∣
v=1

= 1−
√

1− 2z(1 + u). This integration is cumbersome, so instead of
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performing it we find the coefficients up in (120) and then consider the dominant term

only

[up]
∂

∂v
F (z, u, v)

∣∣∣
v=1

= [up]
1√

1− 2z

z∫

0

√
1− 2t

[
∂2

∂v∂t
Gp(t, v)

∣∣∣
v=1
− ∂

∂v
Gp(t, v)

∣∣∣
v=1

1

1− 2t

− 1−
√

1− 2t(1 + u)

1− 2t
+

1

1−
√

1− 2t

]
dt

=

(
php(1) log(1− 2z)

(1− 2z)p−1/2
− h′p(1)

(1− 2z)p−1/2
+

h′p(1)

(1− 2z)1/2

)
+O

(
log(1− 2z)

(1− 2z)p−3/2

)

− [up]
1√

1− 2z

z∫

0

1−
√

1− 2t(1 + u)√
1− 2t

dt , (121)

where hp(1) and h′p(1) were computed in (58) and (71) respectively. It is not difficult to

see that

[up]
1√

1− 2z

z∫

0

1−
√

1− 2t(1 + u)√
1− 2t

dt = O
( 1

(1− 2z)p−1/2

)
, (122)

therefore the main contribution comes from php(1) log(1−2z)

(1−2z)p−1/2 .

The expected value of the Steiner distance, E(Yn,p), is found by normalising (121) with(
n
p

)−1 n!
1·3···(2n−3)

and then reading off the coefficient of zn in the resulting equation. Firstly,

looking at the dominant term in (121) one sees that

En,p = [zn]

(
n
p

)
1 · 3 · · · (2n− 3)

n!

php(1) log(1− 2z)

(1− 2t)p−1/2

= [zn]

(
n
p

)
1 · 3 · · · (2n− 3)

n!

−p 2
p4p

(
2(p−1)
p−1

)
log(1− 2z)

(1− 2z)p−1/2

∼ p

2
log n , (123)

since we have the following

[zn]
1

(1− 2z)p−1/2
log(1− 2z) = −2n[zn]

1

(1− z)p−1/2
log

1

1− z

= −2n
(
n+ p− 3/2

n

)
(Hn+p−3/2 −Hp−3/2)

∼ −2n
np−3/2

Γ(p− 1
2
)

log n (n→∞, p fixed) , (124)

as well as n!
1·3···(2n−3)

∼ 21−nn3/2
√
π and

(
n
p

)
∼ np

p!
.
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To obtain limiting theorems for the distribution of Yn,p, we want to apply the quasi

power theorem again and will therefore require for |v − 1| ≤ ε a uniform expansion of

Fp(z, v) = [up]F (z, u, v) around the dominant singularity z = 1
2
. From equation (119) one

obtains immediately

Fp(z, v) =
1√

1− 2z

∫ z

t=0

√
1− 2t

( ∂
∂t
Gp(t, v)− v

1− 2t
Gp(t, v)

)
dt. (125)

We will now use the following more detailed expansion of Gp(z, v) which follows from the

proof of Lemma 3.5:

Gp(z, v) = −hp(v)
1

(1− 2z)
p(v+1)−1

2

+
∑

1≤k≤p−1,

0≤j≤p−k

αp,k,j(v)
logj(1− 2z)

(1− 2z)
k(v+1)−1

2

+ αp,0,0(v)
√

1− 2z.

(126)

This is also used to obtain the bound for the remainder term given below. The integrand

in (125) is then given by

√
1− 2t

( ∂
∂t
Gp(t, v)− v

1− 2t
Gp(t, v)

)

=
√

1− 2t
(−hp(v)(p(v + 1)− 1)

(1− 2t)
p(v+1)+1

2

+
vhp(v)

(1− 2t)
p(v+1)+1

2

+O
( log(1− 2t)

(1− 2t)
(p−1)(v+1)+1

2

))

= −hp(v)(p− 1)(v + 1)

(1− 2t)
p(v+1)

2

+O
( log(1− 2t)

(1− 2t)
(p−1)(v+1)

2

)
, (127)

and for p ≥ 2 the following expansion arises

Fp(z, v) = −hp(v)(p− 1)(v + 1)

p(v + 1)− 2

1

(1− 2z)
p(v+1)−1

2

+O
( log(1− 2z)

(1− 2z)
(p−1)(v+1)−1

2

)
.

Using singularity analysis to extract coefficients leads to

[zn]Fp(z, v) = −hp(v)(p− 1)(v + 1)

p(v + 1)− 2

2nn
p(v+1)−1

2
−1

Γ(p(v+1)−1
2

)

(
1 +O

( 1

n1−ε

))
, (128)

and furthermore

∑

m≥0

P(Yn,p = m)vm =
n!(
n
p

)
Tn

[zn]Fp(z, v)

= −2
√
πp!(p− 1)(v + 1)hp(v)

Γ(p(v+1)−1
2

)(p(v + 1)− 2)
n
p(v−1)

2

(
1 +O

( 1

n1−ε

))
. (129)
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With the notations used in the quasi power theorem we have

u(s) =
p(es − 1)

2
, v(s) = log

(−2
√
πp!(p− 1)(es − 1)hp(e

s)

Γ(p(e
s+1)−1

2
)(p(es + 1)− 2)

)
, (130)

which gives

u′(0) =
p

2
, u′′(0) =

p

2
, (131)

for p ≥ 2, v(1) 6= 0 since hp(1) < 0 and thus the quasi power theorem is applicable. On

the other hand, for p = 1 one knows, a priori, from the combinatorial description, that

P{Yn,1 = 1} = 1 for n ≥ 1.

For the constant v′(0) in the expectation En,p = E(Yn,p) we compute

v′(s) =
[

log(es + 1) + log
(
hp(e

s)
)
− log

(
p(es + 1)− 2

)
− log Γ

(p(es + 1)− 1

2

)]′

=
es

es + 1
+
h′p(e

s)es

hp(es)
− pes

p(es + 1)− 2
− pes

2
Ψ
(p(es + 1)− 1

2

)
, (132)

and further

v′(0) =
h′p(1)

hp(1)
− p

2
Ψ
(2p− 1

2

)
− 1

2(p− 1)
= −p

2
Hp +

p

2
γ + p log 2− 1

2(p− 1)
. (133)

We note that this gives us the expected value with a higher accuracy than (123) and it

leads to the following theorem.

3.9 Theorem [26] The distribution of the random variable Yn,p, which counts the Steiner

distance of p randomly chosen nodes in a random heap ordered tree of size n is for p ≥ 2

asymptotically Gaussian, where the convergence rate is of order O
(

1√
logn

)
:

P

{
Yn,p − p

2
log n√

p
2

log n
< x

}
= Φ(x) +O

( 1√
log n

)
, (134)

and the expectation En,p = E(Yn,p) and the variance Vn,p = V(Xn,p) satisfy

En,p =
p

2
log n− p

2
Hp +

p

2
γ + p log 2− 1

2(p− 1)
+O

( 1

n1−ε

)
,

Vn,p =
p

2
log n+ v′′(0) +O

( 1

n1−ε

)
. (135)

For the proof, it remains to discuss the variance. Since we have obtained the variance of

the size of the ancestor tree in (84), we can easily get the variance of the Steiner distance.
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It follows that

v′′(s) =
es

es + 1
− e2s

es + 1
+
h′′p(e

s)es

hp(es)
+
h′p(e

s)es

hp(es)
− (h′p(e

s))2e2s

h2
p(e

s)

− pes

p(es + 1)− 2
+

p2e2s

(p(es + 1)− 2)2

− pes

2
Ψ

(
p(es + 1)− 1

2

)
− p2e2s

4
Ψ′
(
p(es + 1)− 1

2

)
, (136)

where h′′p(1) is given by (83) and moreover,

v′′(0) =
3

4
+
h′′p(1)

hp(1)
+
h′p(1)

hp(1)
− (h′p(1))2

h2
p(1)

− p

2(p− 1)
+

p2

4(p− 1)2

− p

2
Ψ

(
2p− 1

2

)
− p2

4
Ψ′
(

2p− 1

2

)

= −p
2

log p+ p
(

log 2− 5

4

)
+

1

8
log 2 +

23

16
− 1

4
log2 2 +O(p−1) . (137)
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Figure 3.5: The probability distributions of the Steiner distance for n = 30, p = 2, . . . , 20.

We have analysed heap ordered trees by using the differential equation satisfied by their

generating function, a method which is described in the Preliminaries chapter. Although

dealing with this equation proved to be challenging, its solution ultimately enabled us to

completely characterize the properties of the parameters of interest.



4

Monotone Functions of Tree

Structures

The trees that are slow to grow bear the best

fruit.

Molière

4.1 Introduction

Let T be a rooted tree structure with n nodes t1, . . . , tn. A function f : {t1, . . . , tn} into

{1 < . . . < k} is monotone if whenever ti is a descendant of tj then f(ti) ≥ f(tj). Also,

if k = n and f is a bijection then it is called a monotone bijection. In their paper [38],

Prodinger and Urbanek have determined the average number of such bijections for several

classes of trees. The average height of the j-th leaf of monotonic trees with n leaves has

been considered by Kirschenhofer in [20]. Further results on monotonic ordered trees

appeared in [21].

The aim of this chapter is to consider the monotonic tree structures from [38] and analyse

our regular parameters, namely the size of the ancestor tree and the Steiner distance. The

results presented here appear in [25] and [27].

4.2 Monotonic binary trees

From Knuth [22] and Stanley [40, 41] we know that a binary tree is a finite set of nodes

which either is empty or consists of a root and two binary trees called the left and right

subtrees of the root.

The generating function for binary trees is

B(z) = 1 + zB2(z) , with solution B(z) =
1−
√

1− 4z

2z
. (1)

4.1 Theorem [11] Let Bn be the number of binary with n nodes. Then Bn is given by the

54
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Catalan numbers

Bn =
1

n+ 1

(
2n

n

)
=

4n√
πn3

(
1 +O

( 1

n

))
. (2)

We consider the binary model proposed in [38], i.e. the class, Bk, of binary trees whose

nodes are monotonically labelled with 1, 2, . . . , k, with corresponding generating function

yk(z) =
∑

n≥0

b(k)
n zn ,

where b
(k)
n denotes the number of trees in Bk with n nodes. Moreover, we let B̃k be

the class of binary trees whose nodes are monotonically labelled with 2, . . . , k + 1. The

generating functions of Bk and B̃k coincide. Using the terminology from Flajolet [7] and

[38] we obtain that

B1 = + 1

B1 B1

B2 = + 1

B2 B2

+ 2

B̃1 B̃1

= B̃1 + 1

B2 B2

...

Bk = B̃k−1 + 1

Bk Bk

+ · · ·

4.2 Theorem [38] The generating functions for monotonic binary trees are

yk(z) = yk−1(z) + zy2
k(z) , k ≥ 1, y0(z) = 1 , (3)

with solutions

yk(z) =
1−

√
αk(z)

2z
, (4)

where α1(z) = 1− 4z and αk+1(z) = −1 + 2
√
αk(z).

Other constants needed for our results are presented in the table below. Exact values are

given for the first few cases of k.
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constant k = 1 k = 2 k = 3

ck = 2(r2 · · · rk)−1/4 2 2
√

2 8/
√

5

pk = ck/(4
√
πqk) 1/

√
π 4/

√
6π 32/

√
195π

qk = (1− rk)/4; qk+1 = qk(1− qk) 1/4 3/16 39/256

rk = 1− 4qk 0 1/4 25/64

Since we are interested in the asymptotic behaviour of the coefficients of yk, we have to

determine the singularity qk of yk nearest the origin. This is given as the solution of the

equation αk(z) = 0. As yk → qk, from [38], we have

yk =
1

2qk
− ck

2qk
(qk − z)1/2 +O(qk − z) . (5)

4.2.1 Size of the ancestor tree

It is perhaps easiest to begin the section with a result relating to the size of ancestor tree

in binary trees and then use it to derive the corresponding one for monotonic binary trees.

4.3 Theorem [25] The generating function for the size of the ancestor tree in binary trees

satisfies

B(z, u, v) = zv(1 + u)B2(z, u, v)− zvT 2(z) + T (z) , (6)

where T (z) = 1−√1−4z
2z

is the generating function for binary trees.

Proof: Let φp be the generating function of the size of the ancestor tree in a binary tree

of size n with p nodes selected at random. Then φp satisfies the recurrence

φp(z, v) = zv

p−1∑

i=0

φi(z, v)φp−1−i(z, v) + zv

p∑

i=0

φi(z, v)φp−i(z, v) , p ≥ 1 , (7)

where the first term comes from selecting the root and the second term arises when the

root is not selected. Now we multiply both sides with up and sum over p to obtain

∑

p≥1

up φp(z, v) = zv
∑

p≥1

up
p−1∑

i=0

φi(z, v)φp−1−i(z, v)+zv
∑

p≥1

up
p∑

i=0

φi(z, v)φp−i(z, v) , p ≥ 1 .

(8)
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It follows that

∑

p≥0

up φp(z, v)− φ0(z, v) = zv
∑

p≥0

up
p−1∑

i=0

φi(z, v)φp−1−i(z, v)− zvφ0(z, v)φ0(z, v)

+ zv
∑

p≥0

up
p∑

i=0

φi(z, v)φp−i(z, v) , p ≥ 0 .

(9)

We let B(z, u, v) =
∑
p≥0

up φp(z, v) and T (z) = φ0(z, v) and obtain

B(z, u, v)− φ0(z, v) = zvuB2(z, u, v) + zvB2(z, u, v)− zvφ2
0(z, v) . (10)

�

We can easily modify (6) to obtain the equations of the size of the ancestor tree for

the binary trees given in the Prodinger-Urbanek model. We replace T (z) with yk and

B(z, u, v) with Bk(z, u, v).

4.4 Theorem [25] The generating functions defining the size of the ancestor tree in monotonic

binary trees are determined by

Bk(z, u, v) = Bk−1(z, u, v) + zv(1 + u)B2
k(z, u, v) + z(1− v)y2

k(z) , B0(z, u, v) = 1 . (11)

The aim is to produce the expectation and variance for the size of the ancestor tree. First,

we consider a few particular values for k.

Case k = 1

For notational convenience, the first derivative of B1 with respect to v (evaluated at v = 1)

is denoted by β1(z, u). Also, we represent B1(z, u, 1) = y1(z(1 + u)) by ȳ1(z). Then the

following is obtained

β1(z, u) =
ȳ1(z)− y1(z)

1− 2z(1 + u)ȳ1(z)
, (12)

where z(1 + u)y2
1(z(1 + u)) = y1(z(1 + u))− 1. Since we are interested in the asymptotic

behaviour of the coefficients of u and z in β1, it is appropriate to use the local expansion

of y1 (and of ȳ1) as given in [38]

y1(z) ∼ 1

2q1

− c1

2q1

, z → q1 , (13)
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which is substituted in the expression for β1, with q1 = 1
4
. We obtain

β1(z, u) ∼ 2
√

1− 4z√
1− 4z(1 + u)

, (14)

and this enables us to compute the required coefficients.

4.5 Lemma As z → q1 the coefficients of up in β1 are

[up]β1(z, u) ∼ 1

22p−1

(
2p

p

)
(1− 4z)−p . (15)

Proof: The coefficient of up in (14) is computed as follows:

[up]
2
√

1− 4z√
1− 4z(1 + u)

= 2(1− 4z)1/2[up]
1

(1− 4z)1/2
(

1− 4zu
1−4z

)1/2

= 2(−4z)p
(−1

2

p

)(
1− z

qk

)−p
∼ 1

22p−1

(
2p

p

)
(1− 4z)−p , z → q1 .

(16)

�

4.6 Note The results of the lemma above can be verified with MAPLE. From (14), one can

produce a series expansion in u and extract the simplified coefficients of u. Since these

now contain only powers of z, series expansions around z = 1
4

(around the dominant

singularity q1) are computed for each one. The first few coefficients have the form

w2(z) =
3

64

(1

4
− z
)−2

+O
((1

4
− z
)−1)

w3(z) =
5

512

(1

4
− z
)−3

+O
((1

4
− z
)−2)

w4(z) =
35

16384

(1

4
− z
)−4

+O
((1

4
− z
)−3)

w5(z) =
63

131072

(1

4
− z
)−5

+O
((1

4
− z
)−4)

. (17)

For p = 2, . . . , 5, these coefficients fit perfectly the asymptotic formula given in Lemma

4.5.

The coefficients of zn in β1 are extracted, via Proposition 1.12 with α = −p

[znup]β1(z, u) ∼ 4n

22p−1

(
2p

p

)
np−1

Γ(p)
. (18)
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The expectation for the size of the ancestor tree is obtained by dividing the above with

the normalising factor p1q
−n
1 n−3/2

(
n
p

)
∼ 1√

π
(1

4
)−nn−3/2 np

Γ(p+1)

E(1)
n,p ∼

p
√
π

22p−1

(
2p

p

)√
n . (19)

In order to find the second moment, B1 is differentiated twice with respect to v and then

evaluated v = 1. If this derivative is denoted by Θ1(z, u) then it follows that

Θ1(z, u) =
4z(1 + u)ȳ1(z)β1(z, u) + 2z(1 + u)β2

1(z, u)

1− 2z(1 + u)ȳ1(z)

∼ 8zu

(1− 4z(1 + u))3/2
, z → q1 .

(20)

This asymptotic expansion will be used in analysing the behaviour of the coefficients of

up and zn in Θ1.

4.7 Lemma The coefficients of up in Θ1 have the form

[up]Θ1(z, u) ∼ p

22p−2

(
2p

p

)
(1− 4z)−p−1/2 , z → q1 . (21)

Proof: This lemma can be easily proved by computing the coefficient of up from (20):

[up]
8zu

(1− 4z(1 + u))3/2
= 8z[up−1]

1

(1− 4z)3/2
(

1− 4zu
1−4z

)3/2

=
8pz(4z)p−1

22p−1

(
2p

p

)
(1− 4z)−p−1/2 ∼ p

22p−2

(
2p

p

)
(1− 4z)−p−1/2 , z → q1 .

(22)

�

4.8 Note Once again MAPLE was employed to verify the coefficients of up in Θ1. By first

computing series expansions in u and then around z = 1
4

from (20), we obtain

e2(z) =
3
√

4

64

(1

4
− z
)−5/2

+O
((1

4
− z
)−2)

e3(z) =
15
√

4

1024

(1

4
− z
)−7/2

+O
((1

4
− z
)−3)

e4(z) =
35
√

4

8192

(1

4
− z
)−9/2

+O
((1

4
− z
)−4)

e5(z) =
315
√

4

262144

(1

4
− z
)−11/2

+O
((1

4
− z
)−5)

. (23)
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Proposition 1.12 will be applied to the result in the lemma above. From this we get the

coefficients of zn

[znup]Θ1(z, u) ∼ 4np
√
π

22p−2

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (24)

and we will normalise them to obtain the second moment

[znup]Θ1(z, u)
1√
π
(1

4
)−nn−3/2 np

Γ(p+1)

∼ p
√
π

22p−2

Γ(p+ 1)

Γ(p+ 1
2
)
n = 4pn . (25)

Finally we can compute the variance of the size of the ancestor tree for the case k = 1

V (1)
n,p =

[znup]Θ1(z, u)
1√
π
(1

4
)−nn−3/2 np

Γ(p+1)

+ E(1)
n,p −

(
E(1)
n,p

)2

∼
(

4 p− π p2

24p−2

(
2p

p

)2)
n+O(

√
n ) . (26)

4.9 Note As p→∞ we have 4 p− π p2

24p−2

(
2p
p

)2 → 0 in the above variance.

Two more particular cases of k were analysed for Bk. Similar methods to the case k = 1

were employed to compute the usual statistics and the results are presented below.

Case k = 2

The derivative of B2 with respect to v, evaluated at 1 is

β2(z, u) ∼ 8(1− 16z
3

)1/2

3(1− 16z(1+u)
3

)1/2
. (27)

4.10 Lemma The coefficients of up in B2 are

[up]β2(z, u) ∼ 1

3 · 22p−3

(
2p

p

)(
1− 16

3
z
)−p

, z → 3

16
. (28)

Then the coefficients of zn in β2 have the form

[znup]β2(z, u) ∼ 1

3 · 22p−3

(16

3

)n(2p

p

)
np−1

Γ(p)
, (29)

and upon normalisation by 4√
6π

(16
3

)nn−3/2 np

Γ(p+1)
, they lead to the expectation for the size

of the ancestor tree

E(2)
n,p ∼

√
6π p

3 · 22p−1

(
2p

p

)√
n . (30)

The second derivative of B2 with respect to v, evaluated at v = 1 is

Θ2(z, u) ∼ 128
√

6zu

27(1− 16z(1+u)
3

)3/2
. (31)
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4.11 Lemma The coefficients of up in Θ2 have the form

[up]Θ2(z, u) ∼ p

3
√

3 · 22p−9/2

(
2p

p

)(
1− 16

3
z
)−p−1/2

, z → 3

16
. (32)

Next, the coefficients of zn in β2 are

[znup]Θ2(z, u) ∼ p

3
√

3 · 22p−9/2

(16

3

)n(2p

p

)
np−1/2

Γ(p+ 1
2
)
, (33)

and their normalisation yields the second moment

√
π p

3 · 22p−3

(
2p

p

)
Γ(p+ 1)

Γ(p+ 1
2
)
n =

8p

3
n , (34)

which leads to the variance for the size of the ancestor tree

V (2)
n,p ∼

(8p

3
− π p2

3 · 24p−3

(
2p

p

)2)
n+O(

√
n ) , (35)

where 8p
3
− π p2

3·24p−3

(
2p
p

)2 → 0 , p→∞.

Case k = 3

The derivative of B3 with respect to v, evaluated at 1 is

β3(z, u) ∼ 128(1− 256z
39

)1/2

39(1− 256z(1+u)
39

)1/2
. (36)

4.12 Lemma The coefficients of up in β3 are

[up]β3(z, u) ∼ 1

3 · 13 · 22p−7

(
2p

p

)(
1− 256

39
z
)−p

, z → 39

256
. (37)

Then the coefficients of zn in β3 have the form

[znup]β3(z, u) ∼ 1

3 · 13 · 22p−7

(256

39

)n(2p

p

)
np−1

Γ(p)
, (38)

and after being normalised by 32√
195π

(256
39

)nn−3/2 np

Γ(p+1)
, they give the expectation for the

size of the ancestor tree

E(3)
n,p ∼

√
195π p

3 · 13 · 22p−2

(
2p

p

)√
n . (39)
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The second derivative of B3 with respect to v (evaluated at 1) turns out to have the

asymptotic expansion

Θ3(z, u) ∼ 65536
√

5zu

39
√

39(1− 256z(1+u)
39

)3/2
. (40)

4.13 Lemma The coefficients of up in β3 are

[up]Θ3(z, u) ∼
√

5 · p
3
√

3 · 13
√

13 · 22p−9

(
2p

p

)(
1− 256

39
z
)−p−1/2

, z → 39

256
. (41)

Finally, the coefficients of zp in β3 have the form

[znup]Θ3(z, u) ∼
√

5 · p
3
√

3 · 13
√

13 · 22p−9

(256

39

)n(2p

p

)
np−1/2

Γ(p+ 1
2
)
, (42)

and upon normalisation give the second moment

5
√
π p

3 · 13 · 22p−4

(
2p

p

)
Γ(p+ 1)

Γ(p+ 1
2
)
n =

80p

39
n . (43)

This leads to the variance for the size of the ancestor tree

V (3)
n,p ∼

(80p

39
− 5π p2

39 · 24p−4

(
2p

p

)2)
n+O(

√
n ) , (44)

where 80p
39
− 5π p2

39·24p−4

(
2p
p

)2 → 0 , p→∞.

We turn our attention to the general case. The aim is to produce the expectation and

variance for the size of the ancestor tree and this is done via the usual method of dif-

ferentiating the generating function, as outlined in the Preliminaries chapter. Firstly,

we find the expectation by differentiating Bk with respect to v and then evaluating

at v = 1. To simplify our notation we denote this first derivative by βk(z, u) and let

Bk(z, u, 1) = yk(z(1 + u)) = ȳk(z) which yields

(1− 2z(1 + u)ȳk(z))βk(z, u) = βk−1(z, u) + ȳk(z)− ȳk−1(z)− yk(z) + yk−1(z) . (45)

4.14 Lemma [25] The solution of βk(z, u) is given by

βk(z, u) =
k∑

j=1

[ k∏

i=j

(1− 2z(1 + u)ȳi(z))
]−1(

ȳj(z)− ȳj−1(z)− yj(z) + yj−1(z)
)
, (46)
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with β0(z) = 0. Hence the dominant term in this solution is

βk(z, u) ∼ ȳk(z)− yk(z)

1− 2z(1 + u)ȳk(z)
∼
√
qk − z −

√
qk − z(1 + u)

2qk
√
qk − z(1 + u)

. (47)

Proof: We multiply both sides of (45) with the product
k−1∏
i=1

(1−2z(1+u)ȳi(z)) and obtain

[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
]
(1− 2z(1 + u)ȳk(z))βk(z, u)

=
[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
]
βk−1(z, u)

+
[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
](
ȳk(z)− ȳk−1(z)− yk(z) + yk−1(z)

)
. (48)

By rewriting
[ k−1∏
i=1

(1−2z(1+u)ȳi(z))
]
(1−2z(1+u)ȳk(z))βk(z, u) as Tk(z, u) we can easily

solve this recursion as follows

Tk(z, u) = Tk−1(z, u) +
[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
](
ȳk(z)− ȳk−1(z)− yk(z) + yk−1(z)

)
,

Tk−1(z, u) = Tk−2(z, u) +
[ k−2∏

i=1

(1− 2z(1 + u)ȳi(z))
](
ȳk−1(z)− ȳk−2(z)

− yk−1(z) + yk−2(z)
)
,

Tk−2(z, u) = Tk−3(z, u) +
[ k−3∏

i=1

(1− 2z(1 + u)ȳi(z))
](
ȳk−2(z)− ȳk−3(z)

− yk−2(z) + yk−3(z)
)
, (49)

and so on. Now we can sum over the k’s

Tk(z, u) = T0(z, u)+
k−1∑

j=0

[ j∏

i=1

(1−2z(1+u)ȳi(z))
](
ȳj(z)− ȳj−1(z)−yj(z)+yj−1(z)

)
, (50)
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which we write using the original βk(z, u)

[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
]
(1− 2z(1 + u)ȳk(z))βk(z, u)

= β0(z, u) +

k−1∑

j=0

[ j∏

i=1

(1− 2z(1 + u)ȳi(z))
](
ȳj(z)− ȳj−1(z)− yj(z) + yj−1(z)

)
,

(51)

and dividing both sides of this equality by the product
k∏
i=1

(1− 2z(1 + u)ȳi(z)) we finally

obtain our desired result

βk(z, u) =
k∑

j=1

[ k∏

i=j

(1− 2z(1 + u)ȳi(z))
]−1(

ȳj(z)− ȳj−1(z)− yj(z) + yj−1(z)
)
. (52)

Now the dominant term occurs for i = j = k. Since the singularities of yk−1(z) and ȳk−1(z)

are further away from the origin than those of yk(z) and ȳk(z) they will not contribute

to the main term in βk(z, u) and we do not include them. Thus the dominant term in

βk(z, u) is as given in the statement of the theorem. �

4.15 Note From (45) we also observe that

βk(z, u) = βk−1(z, u) + ȳk(z)− ȳk−1(z) + 2z(1 + u)ȳk(z)βk(z, u)− yk(z) + yk−1(z) , (53)

and thus

βk(z, u) =
βk−1(z, u)

1− 2z(1 + u)ȳk(z)
+

yk−1(z)− ȳk−1(z)

1− 2z(1 + u)ȳk(z)
+

ȳk(z)− yk(z)

1− 2z(1 + u)ȳk(z)
. (54)

4.16 Lemma As z → qk, the coefficients of up in βk(z, u) have the form

[up]βk(z, u) ∼ 1

22p+1 qk

(
2p

p

)(
1− z

qk

)−p
. (55)

Proof: We look at the coefficient of up in (47)

[up]

√
qk − z

2qk
√
qk − z(1 + u)

=

(
1− z

qk

)1/2

2qk
[up]

1
(

1− z
qk

)1/2(
1−

zu
qk

1− z
qk

)1/2

=
1

2qk

(
− z

qk

)p(−1
2

p

)(
1− z

qk

)−p
=

zp

22p+1
qp+1
k

(
2p

p

)(
1− z

qk

)−p
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∼ 1

22p+1qk

(
2p

p

)(
1− z

qk

)−p
, z → qk . (56)

�

In order to obtain the first moment the coefficients of zn in βk(z, u) are also needed. This

is done by using Proposition 1.12 with α = −p, which yields

[znup]βk(z, u) ∼ 1

22p+1 qn+1
k

(
2p

p

)
np−1

Γ(p)
. (57)

Finally, these coefficients will be normalised by pkq
−n
k n−3/2

(
n
p

)
∼ pkq

−n
k n−3/2 np

Γ(p+1)
.

4.17 Theorem [25] The expectation for the size of the ancestor tree in monotonic binary trees

is

E(k)
n,p ∼

p

22p+1 pk qk

(
2p

p

)√
n , n→∞ , fixed k . (58)

Higher order statistics can be computed in the same fashion, so for the variance of the size

of the ancestor tree, Bk is differentiated twice with respect to v and evaluated at v = 1.

For convenience, we denote this derivative by Θk(z, u), which gives

(
1−2z(1+u)ȳk(z)

)
Θk(z, u) = Θk−1(z, u)+4z(1+u)ȳk(z)βk(z, u)+2z(1+u)β2

k(z, u) , (59)

4.18 Lemma [27] The solution to Θk(z, u) has the closed form

Θk(z, u) =

k∑

j=1

[ k∏

i=j

(1− 2z(1 + u)ȳi(z))
]−1(

4z(1 + u)ȳj(z)βj(z, u) + 2z(1 + u)β2
j (z, u)

)
,

(60)

and the dominant term is asymptotically

Θk ∼
4z(1 + u)ȳk βk + 2z(1 + u)β2

k(z, u)

1− 2z(1 + u)ȳk
. (61)

Proof: First, multiply (59) with the product
k−1∏
i=1

(1− 2z(1 + u)ȳi(z)). We obtain

[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
](

1− 2z(1 + u)ȳk(z)
)
Θk(z, u)

=
[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
]
Θk−1(z, u)
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+
[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
](

4z(1 + u)ȳk(z)βk(z, u) + 2z(1 + u)β2
k(z, u)

)
. (62)

By rewriting
[ k−1∏
i=1

(1 − 2z(1 + u)ȳi(z))
](

1 − 2z(1 + u)ȳk(z)
)
Θk(z, u) as Sk(z, u) we can

easily solve this recursion as follows

Sk(z, u) = Sk−1(z, u) +
[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
](

4z(1 + u)ȳk(z)βk(z, u)

+ 2z(1 + u)β2
k(z, u)

)
,

Sk−1(z, u) = Sk−2(z, u) +
[ k−2∏

i=1

(1− 2z(1 + u)ȳi(z))
](

4z(1 + u)ȳk−1(z)βk−1(z, u)

+ 2z(1 + u)β2
k−1(z, u)

)
,

Sk−2(z, u) = Sk−3(z, u) +
[ k−3∏

i=1

(1− 2z(1 + u)ȳi(z))
](

4z(1 + u)ȳk−2(z)βk−2(z, u)

+ 2z(1 + u)β2
k−2(z, u)

)
, (63)

and so on. Now we can sum over the k’s

Sk(z, u) =S0(z, u) +

k−1∑

j=0

[ j∏

i=1

(1− 2z(1 + u)ȳi(z))
](

4z(1 + u)ȳj(z)βj(z, u)

+ 2z(1 + u)β2
j (z, u)

)
,

(64)

which we write using the original Θk(z, u)

[ k−1∏

i=1

(1− 2z(1 + u)ȳi(z))
](

1− 2z(1 + u)ȳk(z)
)
Θk(z, u)

=
k−1∑

j=0

[ j∏

i=1

(1− 2z(1 + u)ȳi(z))
](

4z(1 + u)ȳj(z)βj(z, u) + 2z(1 + u)β2
j (z, u)

)
,

(65)

since S0(z, u) = 0, Θ0(z, u) = 0, and dividing both sides of this equality by the product
k−1∏
i=1

(1− 2z(1 + u)ȳi(z)) we obtain the desired result

Θk(z, u) =

k∑

j=1

[ k∏

i=j

(1− 2z(1 + u)ȳi(z))
]−1(

4z(1 + u)ȳj(z)βj(z, u) + 2z(1 + u)β2
j (z, u)

)
.

(66)

By letting i = j = k in this solution the dominant term arises. �
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Using the known local asymptotic expansions for ȳk and yk, we can rewrite (61) as

Θk(z, u) ∼
4z(1 + u)ȳk

(
ȳk−yk

1−2z(1+u)ȳk

)
+ 2z(1 + u)

(
ȳk−yk

1−2z(1+u)ȳk

)2

1− 2z(1 + u)ȳk

∼
4qk

(
1

2qk
− ck
√
qk−z(1+u)

2qk

)(√
qk−z−

√
qk−z(1+u)

2qk
√
qk−z(1+u)

)

1− 2qk

(
1

2qk
− ck
√
qk−z(1+u)

2qk

) +
2qk

(√
qk−z−

√
qk−z(1+u)

2qk
√
qk−z(1+u)

)2

1− 2qk

(
1

2qk
− ck
√
qk−z(1+u)

2qk

)

=
1

qk
−

√
qk − z

qk
√
qk − z(1 + u)

+
zu

2ckqk(qk − z(1 + u))3/2
, (67)

and this enables us to look at the asymptotic behaviour of the coefficients.

4.19 Lemma The coefficients of up in Θk(z, u) have the form

[up]Θk ∼
p

22p ck q
3/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

=
p

22p+2
√
π pk q2

k

(
2p

p

)(
1− z

qk

)−p−1/2

, ck = 4pk
√
π qk , z → qk .

(68)

Proof: The third term in (67) gives the main contribution. So the coefficient of up there

is

[up]
zu

2ckqk(qk − z(1 + u))3/2
=

z

2ckq
5/2
k

[up−1]
1

(
1− z

qk

)3/2(
1−

zu
qk

1− z
qk

)3/2

=
pzp

22pckq
p+3/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

∼ p

22p ck q
3/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk .

(69)

�

Once again Proposition 1.12 with α = −p− 1/2 is applied to get the coefficients of zn in

Θk

[znup]Θk ∼
p

22p+2
√
π pk q

n+2
k

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (70)

and they are used in computing the second moment.

4.20 Theorem [25] The variance for the size of the ancestor tree in monotonic binary trees is

V (k)
n,p =

[znup]Θk(z, u)

pkq
−n
k

n
Γ(p+1)

n−3/2
+ E(k)

n,p − (E(k)
n,p)

2 =
p

4p2
kq

2
k

( 1

π
− p

24p

(
2p

p

)2)
n+O(

√
n ) , (71)

for n→∞ and fixed k.
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One notes that 1
π
− p

24p

(
2p
p

)2 → 0 as p→∞.

4.2.2 The limiting distribution for the size of the ancestor tree

Let Xn,p be the random variable which counts the size of the ancestor tree of p randomly

chosen nodes in a monotonic binary tree of size n. We study the probabilities

P{Xn,p = m} =
[znupvm]Bk(z, u, v)

b
(k)
n

(
n
p

) , (72)

where b
(k)
n ∼ pkq

−n
k n−3/2 is the number of monotonic binary trees which was computed in

[38]. The first step in obtaining our limiting distribution is to find all the moments for

Bk. If we differentiate Bk M times with respect to v then using Leibniz’s rule we obtain

∂MBk(z, u, v)

∂vM
=
∂MBk−1(z, u, v)

∂vM

+Mz(1 + u)

M−1∑

i=0

(
M − 1

i

)
∂iBk(z, u, v)

∂vi
∂M−i−1Bk(z, u, v)

∂vM−i−1

+ zv(1 + u)
M∑

i=0

(
M

i

)
∂iBk(z, u, v)

∂vi
∂M−iBk(z, u, v)

∂vM−i
, M ≥ 2 , (73)

and it follows that

∂MBk(z, u, v)

∂vM
(1− 2zv(1 + u)Bk(z, u, v))

=
∂MBk−1(z, u, v)

∂vM
+Mz(1 + u)

M−1∑

i=0

(
M − 1

i

)
∂iBk(z, u, v)

∂vi
∂M−i−1Bk(z, u, v)

∂vM−i−1

+ zv(1 + u)
M−1∑

i=1

(
M

i

)
∂iBk(z, u, v)

∂vi
∂M−iBk(z, u, v)

∂vM−i
, M ≥ 2 . (74)

This recursive relation is now used to solve for the M -th derivative of Bk and the latter

is evaluated at a particular point.

4.21 Lemma [27] The M -th derivative with respect to v in Bk(z, u, v), evaluated at v = 1 has

the form

∂MBk(z, u, v)

∂vM

∣∣∣
v=1

=
k∑

j=1

[ k∏

l=j

(1− 2z(1 + u)ȳl(z))
]−1

×

[
Mz(1 + u)

M−1∑

i=0

(
M − 1

i

)
∂iBj(z, u, v)

∂vi

∣∣∣
v=1

∂M−i−1Bj(z, u, v)

∂vM−i−1

∣∣∣
v=1
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+ z(1 + u)
M−1∑

i=1

(
M

i

)
∂iBj(z, u, v)

∂vi

∣∣∣
v=1

∂M−iBj(z, u, v)

∂vM−i

∣∣∣
v=1

]
, M ≥ 2 ,

(75)

and its dominant term is

∂MBk(z, u, v)

∂vM

∣∣∣
v=1
∼
[
(1− 2z(1 + u)ȳk(z))

]−1

×
[
Mz(1 + u)

M−1∑

i=0

(
M − 1

i

)
∂iBk(z, u, v)

∂vi

∣∣∣
v=1

∂M−i−1Bk(z, u, v)

∂vM−i−1

∣∣∣
v=1

+ z(1 + u)
M−1∑

i=1

(
M

i

)
∂iBk(z, u, v)

∂vi

∣∣∣
v=1

∂M−iBk(z, u, v)

∂vM−i

∣∣∣
v=1

]
. (76)

Proof: We multiply both sides of (74) with
k−1∏
l=1

(1 − 2z(1 + u)ȳl(z)) and proceed with

iterating the result. The method of proof is similar to the one for Lemma 4.18 so we do

not give the details here. �

The required moments are produced by analysing the behaviour of the coefficients in (76)

near their dominant singularities qk. For the coefficients of up we find that

[up]
∂MBk(z, u, v)

∂vM

∣∣∣
v=1

∼





M/2−1∏
i=0

(p+ i)
M/2−1∏
i=1

(2p+ 2i− 1)

22p−M/2+1q
(M+1)/2
k cM−1

k

(
2p

p

)(
1− z

qk

)−p−(M−1)/2

, M even ,

(M−1)/2−1∏
i=0

(p+ i)
(M−1)/2∏
i=1

(2p+ 2i− 1)

22p−(M−1)/2+1q
(M+1)/2
k cM−1

k

(
2p

p

)(
1− z

qk

)−p−(M−1)/2

, M odd ,

(77)

and they simplify to the following

[up]
∂MBk(z, u, v)

∂vM

∣∣∣
v=1
∼ Γ(2p+M − 1)

p22pq
(M+1)/2
k cM−1

k (Γ(p))2

(
1− z

qk

)−p−(M−1)/2

. (78)

Moreover, the coefficients of zn are

[znup]
∂MBk(z, u, v)

∂vM

∣∣∣
v=1
∼ 2M−2Γ(p+ M

2
)

p
√
πq

(M+1)/2+n
k cM−1

k (Γ(p))2
np−(3−M)/2 , (79)

which (after normalisation) lead to the next result.
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4.22 Theorem [27] The M -th moments, E(XM
n,p), of the size of the ancestor tree of p randomly

chosen nodes in a monotonic binary tree of size n are asymptotically given by

E(XM
n,p) =

[znup]∂
MBk(z,u,v)
∂vM

∣∣
v=1

pkq
−n
k

np

Γ(p+1)
n−3/2

=
2M−2

√
πcM−1

k q
(M+1)/2
k pk

Γ
(
p+ M

2

)

Γ(p)
nM/2

(
1 +O

( 1√
n

))
,

(80)

for M ≥ 2, fixed p ≥ 1 and n→∞, where ck = 2
( k∏
i=2

(1− 4qi)
)−1/4

and pk = ck
4
√
πqk

.

Proof: Induction on M is employed. Let M = 2, then the left hand side of (80) is

[znup]∂
2Bk(z,u,v)
∂v2

∣∣
v=1

pkq
−n
k pk

np

Γ(p+1)
n−3/2

=
[znup]

(
4z(1+u)ȳk(z)

∂Bk(z,u,v)

∂v

∣∣
v=1

+2z(1+u)
(
∂Bk(z,u,v)

∂v

∣∣
v=1

)2)
1−2z(1+u)ȳk(z)

pkq
−n
k

np

Γ(p+1)
n−3/2

=
p

4πp2
kq

2
k

+O
( 1√

n

)
,

(81)

as computed earlier, which also equals the right hand side of (80). Now, assume (80) is

true for M and prove it for M + 1. We have

1

pkq
−n
k

np

Γ(p+1)
n−3/2

[znup]Mz(1 + u)
M−1∑

i=0

(
M − 1

i

)
∂iBk(z, u, v)

∂vi

∣∣∣
v=1

∂M−i−1Bk(z, u, v)

∂vM−i−1

∣∣∣
v=1

∼ 2M−5Γ(M + 1)

πcM−3
k q

(M−1)/2
k p2

k(Γ(p))2

M−1∑

i=0

Γ(p+ i
2
)Γ(p+ M−i−1

2
)

Γ(i+ 1)Γ(M − i) ,

(82)

as well as

1

pkq
−n
k

np

Γ(p+1)
n−3/2

[znup]z(1 + u)
M−1∑

i=1

(
M

i

)
∂iBk(z, u, v)

∂vi

∣∣∣
v=1

∂M−iBk(z, u, v)

∂vM−i

∣∣∣
v=1

∼ 2M−4Γ(M + 1)

πcM−2
k q

M/2
k p2

k(Γ(p))2

M−1∑

i=1

Γ(p+ i
2
)Γ(p+ M−i

2
)

Γ(i+ 1)Γ(M − i+ 1)
.

(83)

�

It is well-known that the density function of the generalised Gamma distribution is

g(a, h,A;x) =
|h|

Γ(a)A

( x
A

)ah−1

e
−
(
x
A

)h
, (84)

for x > 0 and it will be used for the derivation of our limiting distribution.
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4.23 Theorem [27] The probability, P{Xn,p = m}, that the size of the ancestor tree of p

randomly selected nodes in a monotonic binary tree of size n is equal tom is asymptotically

P{Xn,p = m} = mp−1 q
p/2
k

np(p− 1)!
e−q

1/2
k

m
n

(
1 +O

( 1√
n

)
+O

( n
m

)
+O

( 1

m

))
, (85)

for p ≥ 1, n→∞ and m ≤ K
√
n (K > 0 arbitrary but fixed) .

The above result leads to the following theorem which characterises the limiting distribu-

tion for the size of the ancestor trees in monotonic binary trees.

4.24 Theorem [27] For fixed p ≥ 1, x > 0, m = x
√
n we have

√
nP{Xn,p = m} ∼ xp−1 q

p/2
k

(p− 1)!
e−q

1/2
k x = g

(
p, 1,

1√
qk

;x
)
. (86)

Thus the limiting distribution of the normalised random variable Xn,p√
n

is asymptotically, for

fixed p ≥ 1 and n→∞, a generalised Gamma distribution with parameters
(
p, 1, 1√

qk

)
.
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Figure 4.1: The probability distributions for the size of the ancestor tree in monotonic
binary trees for n = 51, p = 1 . . . 30 and k = 1, 2, 3.

4.2.3 The Steiner distance

Our second parameter of interest is now analysed. The generating function of the Steiner

distance in ordinary binary trees is presented first and then modified suitably for the

monotonic case.
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4.25 Theorem [25] The generating function for the Steiner distance in binary trees is

C(z, u, v) =
zv(1 + u)B2(z, u, v)− 2zv T (z)B(z, u, v) + zT 2(z)(v − 2) + T (z)

1− 2z T (z)
. (87)

Proof: One starts with the recurrence

ψp(z, v) = zv

p−1∑

i=0

φi(z, v)φp−1−i(z, v)+zv

p−1∑

i=1

φi(z, v)φp−i(z, v)+2z ψ0(z, v)ψp(z, v) , p ≥ 1 ,

(88)

and then sum on p on both sides. �

This theorem is adapted (by replacing B(z, u, v) with Bk(z, u, v) and T (z) with yk(z))

and gives the corresponding result for monotonic binary trees.

4.26 Theorem [25] The generating function for the Steiner distance in monotonic binary trees

satisfies the equation

Ck(z, u, v) =
zv(1 + u)B2

k(z, u, v)− 2zvyk(z)Bk(z, u, v) + zy2
k(z)(v − 2) + yk(z)

1− 2zyk(z)
. (89)

First, we look at a particular case and compute the necessary statistics for the Steiner

distance.

Case k = 2

Now, C2 is differentiated with respect to v and evaluated v = 1. This derivative is denoted

by Ω2(z, u) and yields

Ω2(z, u) =
z(1 + u)ȳ2

2(z) + β2(z, u)[2z(1 + u)ȳ2(z)− 2zy2(z)]− 2zy2(z)ȳ2(z) + zy2
2(z)

1− 2zy2(z)
,

(90)

since ȳ2(z) = ȳ1(z) + z(1 + u)ȳ2
2(z) (recall that ∂B2(z,u,v)

∂v

∣∣
v=1

= β2(z, u), as well as

B2(z, u, 1) = y2(z(1 + u)) = ȳ2(z)). We make use of the known asymptotic expansions to

obtain an asymptotic expression for Ω2

Ω2(z, u) ∼ 16
√

3− 16z

3
√

3− 16z(1 + u)
− 128zu

3
√

3− 16z
√

3− 16z(1 + u)
, (91)

which is needed to analyse the behaviour of the coefficients.

4.27 Lemma The coefficients of up in Ω2 are

[up]Ω2(z, u) ∼ (p− 1)

3 (2p− 1) 22p−4

(
2p

p

)(
1− 16

3
z
)−p

, z → q2 . (92)
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Proof: The lemma will be proved by computing the coefficients of up from (91). The

first term gives

[up]
16
√

3− 16z

3
√

3− 16z(1 + u)
= 16

(
1− 16z

3

)1/2

[up]
1

(
1− 16z

3

)1/2(
1−

16zu
3

1− 16z
3

)1/2

=
16

3

(
− 16

3

)p(−1
2

p

)(
1− 16z

3

)−p
∼ 1

3 · 22p−4

(
2p

p

)(
1− 16z

3

)−p
, z → 3

16
,

(93)

and the second term yields

− [up]
128zu

3
√

3− 16z
√

3− 16z(1 + u)
= − 128z

9
(

1− 16z
3

)1/2
[up−1]

1
(

1− 16z
3

)1/2(
1−

16zu
3

1− 16z
3

)1/2

= −128z

9

(
− 16z

3

)p−1
( −1

2

p− 1

)(
1− 16z

3

)−p

∼ − p

3 · 22p−4(2p− 1)

(
2p

p

)(
1− 16z

3

)−p
, z → 3

16
. (94)

The result in the lemma is obtained by adding these two coefficients. �

Now Proposition 1.12 will be used in the computation of the coefficients of zn from (91)

as follows

[znup]Ω2(z, u) ∼ (p− 1)

3 (2p− 1) 22p−4

(
2p

p

)(16

3

)nnp−1

Γ(p)
, (95)

and we obtain the expectation of the Steiner distance for C2 by dividing the above with

the normalisation factor 4√
6π

(16
3

)nn−3/2 np

Γ(p+1)

E(2)
n,p ∼

√
6π (p− 1) p

3 (2p− 1) 22p−2

(
2p

p

)√
n . (96)

We move on to finding the second moment for the Steiner distance. The second derivative

of C2 with respect to v (evaluated at v = 1) is denoted by Λ2(z, u) and gives

Λ2(z, u) =
1

1− 2z y2(z)

(
4z(1 + u) ȳ2(z) β2(z, u) + 2z(1 + u) β2

2(z, u)

+ 2z(1 + u) ȳ2(z) Θ2(z, u)− 4z y2(z) β2(z, u)− 2z y2(z) Θ2(z, u)
)

∼ 128
√

2zu

(3− 16z(1 + u))3/2
− 16

√
2(3− 16z)

3(3− 16z(1 + u))3/2
. (97)

This local expansion of Λ2 gives us the possibility to look at the behaviour of its coeffi-

cients.
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4.28 Lemma For z → q2, the coefficients of up in Λ2 are

[up]Λ2(z, u) ∼
√

2 (p− 1)

3
√

3 · 22p−4

(
2p

p

)(
1− 16

3
z
)−p−1/2

. (98)

Proof: As usual in this type of proof, the coefficients of up are computed from (97)

[up]
128
√

2zu

(3− 16z(1 + u))3/2
=

128
√

2z

3
√

3
[up−1]

1
(

1− 16z
3

)3/2(
1−

16zu
3

1− 16z
3

)3/2

=
128
√

2z

3
√

3

(
− 16z

3

)p−1
( −3

2

p− 1

)(
1− 16

3
z
)−p−1/2

∼
√

2p√
3 · 22p−4

(
2p

p

)(
1− 16

3
z
)−p−1/2

, z → 3

16
, (99)

as well as

− [up]
16
√

2(3− 16z)

3(3− 16z(1 + u))3/2
= −

16
√

2
(

1− 16z
3

)

3
√

3
[up]

1
(

1− 16z
3

)3/2(
1−

16zu
3

1− 16z
3

)3/2

= −16
√

2

3
√

3

(
− 16z

3

)p(−3
2

p

)(
1− 16

3
z
)−p−1/2

∼ −
√

2(2p+ 1)

3
√

3 · 22p−4

(
2p

p

)(
1− 16

3
z
)−p−1/2

, z → 3

16
. (100)

Thus combining these coefficients gives the result in the lemma. �

The lemma above enables us to find the coefficients of zn easily

[znup]Λ2(z, u) ∼
√

2 (p− 1)

3
√

3 · 22p−4

(
2p

p

)(16

3

)n np−1/2

Γ(p+ 1
2
)
, (101)

which (after normalisation) will give the second moment arising from C2

[znup]Λ2(z, u)
4√
6π

(16
3

)nn−3/2 np

Γ(p+1)

∼
√
π(p− 1)

3 · 22p−3

(
2p

p

)
Γ(p+ 1)

Γ(p+ 1
2
)
n =

8(p− 1)

3
n , (102)

and now we are in a position to compute the variance of the Steiner distance for the case

k = 2

V (2)
n,p ∼

(8(p− 1)

3
− π(p− 1)2p2

3(2p− 1)224p−5

(
2p

p

)2)
n+O(

√
n) , (103)

where 8(p−1)
3
− π(p−1)2p2

3(2p−1)224p−5

(
2p
p

)2 → 0 as p→∞.
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The focus of the analysis will now be shifted to the general case k. First, the expectation

of the Steiner distance will be computed. After denoting the derivative of Ck with respect

to v (and evaluated at 1) by Ωk(z, u) and making the usual substitutions we obtain

Ωk(z, u) =
1

1− 2zyk(z)

(
z(1 + u)ȳ2

k(z) + 2z(1 + u)ȳk(z)βk(z, u)

− 2zyk(z)ȳk(z)− 2zyk(z)βk(z, u) + zy2
k(z)

)
.

(104)

One can use the known asymptotic expansions and rewrite Ωk as

Ωk(z, u) ∼ 1

1− 2qk

(
1

2qk
− ck

√
qk−z

2qk

)
{
qk

( 1

1− 2qk
− ck

√
qk − z(1 + u)

2qk

)2

+ 2qk

( 1

1− 2qk
− ck

√
qk − z(1 + u)

2qk

)(√qk − z −
√
qk − z(1 + u)

2qk
√
qk − z(1 + u)

)

− 2qk

( 1

2qk
− ck
√
qk − z
2qk

)( 1

1− 2qk
− ck

√
qk − z(1 + u)

2qk

)

− 2qk

( 1

2qk
− ck
√
qk − z
2qk

)(√qk − z −
√
qk − z(1 + u)

2qk
√
qk − z(1 + u)

)

+ qk

( 1

2qk
− ck
√
qk − z
2qk

)2}

∼
√
qk − z

qk
√
qk − z(1 + u)

− zu

2qk
√
qk − z

√
qk − z(1 + u)

. (105)

In order to proceed with our computations, we require the asymptotic behaviour of the

coefficients in Ωk.

4.29 Lemma As z → qk, the coefficients of up in Ωk(z, u) have the form

[up]Ωk(z, u) ∼ p− 1

22p (2p− 1) qk

(
2p

p

)(
1− z

qk

)−p
. (106)

Proof: The coefficient in the first term of (105) has been computed already

[up]

√
qk − z

qk
√
qk − z(1 + u)

∼ 1

22pqk

(
2p

p

)(
1− z

qk

)−p
. (107)
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Then the coefficient in the second term is as follows

− [up]
zu

2qk
√
qk − z

√
qk − z(1 + u)

= − z

2q2
k

[up−1]
1

(
1− z

qk

)1/2(
1−

zu
qk

1− z
qk

)1/2

= − zpp

22pqp+1
k (2p− 1)

(
2p

p

)(
1− z

qk

)−p
∼ − p

22pqk(2p− 1)

(
2p

p

)(
1− z

qk

)−p
, z → qk .

(108)

Finally, adding the above coefficients gives the required result. �

Next, the coefficients of zn in Ωk(z, u) turn out to be

[zpup]Ωk(z, u) ∼ p− 1

(2p− 1) 22p qn+1
k

(
2p

p

)
np−1

Γ(p)
, (109)

and their normalisation leads to the first moment.

4.30 Theorem [25] The expectation for the Steiner distance in monotonic binary trees is

E(k)
n,p ∼

(p− 1) p

(2p− 1) 22p pk qk

(
2p

p

)√
n , n→∞ , fixed k. (110)

We move on to finding the next moment for the Steiner distance. The second derivative

of Ck with respect to v (evaluated at v = 1), denoted by Λk(z, u), is

Λk(z, u) =
1

1− 2zyk(z)

(
4z(1 + u)ȳk(z)βk(z, u) + 2z(1 + u)β2

k(z, u)

+ 2z(1 + u)ȳk(z)Θk(z, u)− 4zyk(z)βk(z, u)− 2zyk(z)Θk(z, u)
)
.

(111)

Once again we make use of the known asymptotic expansions to rewrite Λk as follows

Λk(z, u) ∼ 1

1− 2qk

(
1

2qk
− ck

√
qk−z

2qk

)
{

2qk

(√qk − z −
√
qk − z(1 + u)

2qk
√
qk − z(1 + u)

)2

+ 4qk

( 1

1− 2qk
− ck

√
qk − z(1 + u)

2qk

)(√qk − z −
√
qk − z(1 + u)

2qk
√
qk − z(1 + u)

)

− 4qk

( 1

1− 2qk
− ck
√
qk − z
2qk

)(√qk − z −
√
qk − z(1 + u)

2qk
√
qk − z(1 + u)

)

+

[4qk

(
1

2qk
− ck
√
qk−z(1+u)

2qk

)(√
qk−z−

√
qk−z(1+u)

2qk
√
qk−z(1+u)

)

1− 2qk

(
1

2qk
− ck
√
qk−z(1+u)

2qk

)
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+
2qk

(√
qk−z−

√
qk−z(1+u)

2qk
√
qk−z(1+u)

)2

1− 2qk

(
1

2qk
− ck
√
qk−z(1+u)

2qk

)
][

2qk

( 1

2qk
− ck

√
qk − z(1 + u)

2qk

)

− 2qk

( 1

2qk
− ck
√
qk − z
2qk

)]}

∼ 3zu

2ckqk(qk − z(1 + u))3/2
− qk − z
ckqk(qk − z(1 + u))3/2

. (112)

This simplified form of the derivative is used for finding the behaviour of the coefficients

of up and zn.

4.31 Lemma The coefficients of up in Λk(z, u) are

[up]Λk(z, u) ∼ (p− 1)

22p ck q
3/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk . (113)

Proof: The coefficients of up in the first term of (112) are

[up]
3zu

2ckqk(qk − z(1 + u))3/2
=

3z

2ckq
5/2
k

[up−1]
1

(
1− z

qk

)3/2(
1−

zu
qk

1− z
qk

)3/2

=
3pzp

22pckq
p+3/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

∼ 3p

22pckq
3/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk ,

(114)

and similarly

− [up]
qk − z

ckqk(qk − z(1 + u))3/2
∼ − 2p+ 1

22pckq
3/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk . (115)

Thus combining these coefficients gives the result in the lemma. �

Next, we find that the coefficients of zn are:

[znup] Λk(z, u) ∼ p− 1

22p+2
√
π pk q

n+2
k

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (116)

which lead to the following result.

4.32 Theorem [25] The variance for the Steiner distance in monotonic binary trees is

V (k)
n,p =

(p− 1)

p2
kq

2
k

( 1

4π
− (p− 1) p2

(2p− 1)2 24p

(
2p

p

)2)
n+O(

√
n ) , (117)
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as n→∞ and fixed k.

It is interesting to note that, by Stirling’s formula, 1
4π
− (p−1) p2

(2p−1)2 24p

(
2p
p

)2
goes to zero as

p→∞.

4.2.4 The limiting distribution for the Steiner distance

Let Yn,p be the random variable which counts the size of the Steiner distance for p randomly

chosen nodes in a monotonic binary tree of size n. So we are interested in the probabilities

P{Yn,p = m} = [znupvm]Ck(z,u,v)

b
(k)
n (np)

.

4.33 Theorem [27] The M -th moments, E(Y M
n,p), of the Steiner distance for p randomly chosen

nodes in a monotonically labelled binary tree of size n are asymptotically given by

E(Y M
n,p) =

[znup]∂
MCk(z,u,v)
∂vM

∣∣
v=1

pkq
−n
k

np

Γ(p+1)
n−3/2

=
2M−2

√
πcM−1

k q
(M+1)/2
k pk

Γ
(
p+ M

2
− 1
)

Γ(p− 1)
nM/2

(
1 +O

( 1√
n

))
,

(118)

for fixed p ≥ 2 and n→∞, where ck = 2
( k∏
i=2

(1− 4qi)
)−1/4

and pk = ck
4
√
πqk

.

Once again the density function of the generalised Gamma distribution is used to derive

the limiting distribution.

4.34 Theorem [27] The probability, P{Yn,p = m}, that the Steiner distance for p randomly

selected nodes in a monotonic binary tree of size n is equal to m is asymptotically

P{Yn,p = m} ∼ mp−2 q
(p−1)/2
k

np−1(p− 2)!
e−q

1/2
k

m
n

(
1 +O

( 1√
n

)
+O

( n
m

)
+O

( 1

m

))
, (119)

for p ≥ 2, n→∞ and m ≤ K
√
n (K > 0 arbitrary but fixed) .

Now we are in a position to find the limiting behaviour of the Steiner distance for our

monotonic binary trees.

4.35 Theorem [27] For fixed p ≥ 2, x > 0, m = x
√
n we have

√
nP{Yn,p = m} ∼ xp−2 q

(p−1)/2
k

(p− 2)!
e−q

1/2
k x = g

(
p− 1, 1,

1√
qk

;x
)
. (120)

Thus the limiting distribution of the normalised random variable Yn,p√
n

is asymptotically, for

fixed p ≥ 2 and n→∞, a generalised Gamma distribution with parameters
(
p−1, 1, 1√

qk

)
.
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Figure 4.2: The probability distributions for the size of the Steiner distance in monotonic
binary trees for n = 51, p = 2 . . . 30 and k = 1, 2, 3.

4.3 Monotonic binary trees with two labels

Another interesting problem involving monotonic binary trees is their analysis when two

labels are in place. Once again, the starting point is the binary model of Prodinger

and Urbanek from [38] which can be extended to include more than one set of labels.

We consider the class, Bk,l, of binary trees whose nodes are monotonically labelled with

{1, 2, . . . , k} and {1, 2, . . . , l}. Their generating function is

yk,l(z) =
∑

n≥0

b(k,l)
n zn ,

where b
(k,l)
n represents the number of trees in Bk,l with n nodes. We illustrate this with

an example: consider monotonic binary trees with three nodes. Then there are five types
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of trees that arise, as shown in the figure below.

Type 1 Type 2 Type 3 Type 4 Type 5

Figure 4.3: All 5 types of monotonic binary trees of size n = 3.

The next step is to attach a specific number of labels, p, to each node. For our example

two labels from the set {1, 2} will be considered.

1 1

1 1 1 1

1 1

1 1 1 2

1 1

1 2 1 2

1 2

1 2 1 2

2 2

2 2 2 2

Figure 4.4: Type 1 of monotonic binary tree gives 5 possibilities for one label consisting
of {1, 2} , thus giving 25 trees in total.

Using the generating function for the case of one label, which was done in the previous

section on monotonic binary trees, one obtains the following result.

4.36 Theorem The generating function for monotonic binary trees with two labels is

yk,l(z) =

k∑

i=1

l∑

j=1

zy2
i,j + 1 , (121)

where yi,j = yj,i.
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Naturally, yk,1 and y1,l constitute the old binary model. The singularities of the generating

function need to be computed first. We begin by considering a few particular cases. First,

we fix l say. If one lets yk,1 = fk, then the following holds

fk(z) = z
k∑

i=1

f 2
i (z) + 1 = z

k−1∑

i=1

f 2
i (z) + zf 2

k (z) + 1 , (122)

which has solution

fk(z) =
1−

√
1− 4zfk−1(z)

2z
. (123)

In order to find the singularities the equation 1−4zfk−1(z) = 0 needs to be solved. We are

interested in the dominant one, qk,1, which is the solution of fk−1(qk,1) = 1
4qk,1

as z → qk,1.

Next, if yk,2 = gk then

gk(z) = z
k∑

i=1

f 2
i (z) + z

k∑

i=1

g2
i (z) + 1 = fk(z) + z

k−1∑

i=1

g2
i (z) + zg2

k(z) , (124)

but z
k−1∑
i=1

g2
i (z) = gk−1(z)−fk−1(z) so the above equation can be written more conveniently

as

zg2
k(z)− gk(z) + fk(z)− fk−1(z) = 0 . (125)

Its solution is

gk(z) =
1−

√
1− 4z(gk−1(z) + fk(z)− fk−1(z))

2z
, (126)

so it follows that the relevant singularity qk,2 satisfies the equation

gk−1(qk,2) + fk(qk,2)− fk−1(qk,2) =
1

4qk,2
, z → qk,2 . (127)

Now, for yk,3 = hk we have the following

hk(z) = z

k∑

i=1

f 2
i (z) + z

k∑

i=1

g2
i (z) + z

k∑

i=1

h2
i (z) + 1

= fk(z)− fk−1(z) + gk(z)− gk−1(z) + hk−1(z) + zh2
k(z) ,

(128)

with solution

hk(z) =
1−

√
1− 4z(hk−1(z) + gk(z)− gk−1(z) + fk(z)− fk−1(z))

2z
, (129)
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and its dominant singularity qk,3 is the solution to the equation

hk−1(qk,3) + gk(qk,3)− gk−1(qk,3) + fk(qk,3)− fk−1(qk,3) =
1

4qk,3
, z → qk,3 . (130)

For the general setting, one can write (121) as

yk,l(z) = z
k−1∑

i=1

l−1∑

j=1

y2
i,j(z) + zy2

k,l(z) + 1 , (131)

which has solution

yk,l(z) =
1−

√
1− 4zyk−1,l−1(z)

2z
, (132)

and its singularity satisfies

yk−1,l−1(qk,l) =
1

4qk,l
, z → qk,l . (133)

By employing similar methods to those used in the case of monotonic binary trees with

one label, one can analyse these singularities in great detail. Various parameters such as

the size of the ancestor tree and the Steiner distance could also be considered. However,

this is beyond the scope of the thesis and we do not aim to present those results here.

4.4 Monotonic t-ary trees

We now look at t-ary trees which constitute a natural generalisation of binary trees.

4.37 Definition [11] A t-ary tree is either an external node or an internal node attached to

an ordered sequence of t subtrees, all of which are t-ary trees.

4.38 Theorem [11] The ordinary generating function that enumerates t-ary trees satisfies the

functional equation

T (z) = z + T t(z) . (134)

The number of t-ary trees with n nodes is

1

(t− 1)(n+ 1)

(
tn

n

)
∼ dt(et)

n

n3/2
, (135)

where dt = 1q
2π(t−1)3

t

and et = tt

(t−1)t−1 .

In this section we generalise the monotonic binary tree model and consider the class of

monotonic t-ary trees, whose defining equations (as introduced in [38]) are given by
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B1 = + 1

B1 B1
. . . B1︸ ︷︷ ︸

t times

B2 = B̃1 + 1

B2 B2
. . . B2︸ ︷︷ ︸

t times

...

Bk = B̃k−1 + · · ·

4.39 Theorem [38] The generating functions for monotonic t-ary trees satisfy

yk(z) = yk−1(z) + zytk(z) , with y0(z) = 1 . (136)

From the paper of Prodinger and Urbanek, [38], we know that as z tends to the singularity

qk, the generating function has the following local expansion

yk(z) = yk(qk)− Ck(t)
√
qk − z +O(qk − z)

=
1

rk
− Ck(t)

√
qk − z +O(qk − z) ,

(137)

for Ck(t) some constants which are defined below.

4.40 Lemma [27] The constants Ck(t) are given by

[
2
( k−1∑

i=1

((yk(qk)− yk−1(qk))

z

k−1∏

j=i

1

1− t (yj(qk)−yj−1(qk))

yj(qk)

)
+

(yk(qk)− yk−1(qk))

z

)yk(qk)
t− 1

]1/2

.

(138)

Proof: It was shown in [38] that

1

2
C2
k(t) = lim

z→qk
y′k(z)(yk(qk)− yk(z)) , (139)

as well as

y′k(z) =
y′k−1(z) + ytk(z)

1− ztyt−1
k (z)

. (140)
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Furthermore, we can expand the denominator around the singularity qk as follows

1− ztyt−1
k = 1−

( yk
yk(qk)

)t−1

=
(

1− yk
yk(qk)

)(
1 +

yk
yk(qk)

+ · · ·+
( yk
yk(qk)

)t−2)
.

(141)

Now we need to determine y′k−1. We use our recursive idea

y′k−1 =
y′k−2 + ytk−1

1− ztyt−1
k−1

=
(

(y′k−3 + ytk−2)
( 1

1− ztyt−1
k−2

)
+ ytk−1

) 1

1− ztyt−1
k−1

= y′k−3

( 1

1− ztyt−1
k−2

)( 1

1− ztyt−1
k−1

)
+ ytk−2

( 1

1− ztyt−1
k−2

)( 1

1− ztyt−1
k−1

)

+ ytk−1

( 1

1− ztyt−1
k−1

)

= y1

( 1

1− ztyt−1
1

)( 1

1− ztyt−1
2

)
· · ·
( 1

1− ztyt−1
k−1

)

+ y2

( 1

1− ztyt−1
2

)( 1

1− ztyt−1
3

)
· · ·
( 1

1− ztyt−1
k−1

)

+ · · ·+ ytk−1

( 1

1− ztyt−1
k−1

)

=
k−1∑

i=1

(
yti

k−1∏

j=i

1

1− ztyt−1
j

)
. (142)

So we can substitute the above in (139) to obtain

1

2
C2
k(t) =

( k−1∑

i=1

(
yti(qk)

k−1∏

j=i

1

1− ztyt−1
j (qk)

)
+ ytk(qk)

)yk(qk)
t− 1

, (143)

and moreover

Ck(t) =

(
2
( k−1∑

i=1

(
yti(qk)

k−1∏

j=i

1

1− ztyt−1
j (qk)

)
+ ytk(qk)

)yk(qk)
t− 1

)1/2

=

[
2
( k−1∑

i=1

((yk(qk)− yk−1(qk))

z

k−1∏

j=i

1

1− t (yj(qk)−yj−1(qk))

yj(qk)

)
+

(yk(qk)− yk−1(qk))

z

)yk(qk)
t− 1

]1/2

,

(144)

since ytk(z) = yk(qk)−yk−1(qk)

z
and yt−1

j (z) =
ytj(z)

yj(z)
. �
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To establish the validity of this formula we check it for k = 1, 2 against the binary case

t = 2, for z → qk,

C1(2) =
(

2
( 0∑

i=1

(
y2
i (q1)

0∏

j=i

1

1− 2zyj(q1)

)
+ y2

1(q1)
)
y1(q1)

)1/2

=
√

2(0 · 1 + 4)2 = 4 ,

C2(2) =
(

2
( 1∑

i=1

(
y2
i (q2)

1∏

j=i

1

1− 2zyj(q2)

)
+ y2

2(q2)
)
y2(q2)

)1/2

=
(

2
( y2

1(q2)

1− 2q2y1(q2)
+ y2

2(q2)
)
y2(q2)

)1/2

=
(

2
( (4

3
)2

1− 2 3
16

4
3

+
(8

3

)2)8

3

)1/2

=
16
√

2

3
.

(145)

which are the constants we obtained in the binary tree section.

4.41 Note We know that yi(qk) = ai,k(t) +O(qk− z) for i < k and ai,k(t) some constant. The

constant ai,k(t) has been computed in [20] and [38]

yi(qk) =
(qk−i
qk

)1/(t−1)

=
rk−i
rk

. (146)

For example consider k = 1 and t = 2. The solution to y1(z) = 1+y2
1(z) is y1(z) = 1−√1−4z

2z

which we can evaluate at q2 = 3
16

, say. Thus we find that y1(q2) = 4
3
.

Other quantities needed for our results are presented in the table below.

constant k = 1 k = 2 k = 3

dk = 1
qk

t
( t−1
t

)t−1
t

(
t−1−( t−1

t )t

t
)t−1

t

(
t−1−( t−1

t )t−(
t−1−( t−1

t )t

t )t

t
)t−1

qk =
rt−1
k

t

( t−1
t

)t−1

t

(
t−1−( t−1

t )t

t
)t−1

t

(
t−1−( t−1

t )t−(
t−1−( t−1

t )t

t )t

t
)t−1

t

rk+1 = rk − rtk
t

; r0 = 1 t−1
t

t−1−( t−1
t

)t

t

t−1−( t−1
t

)t−(
t−1−( t−1

t )t

t
)t

t

yk(qk) = 1
rk

t
t−1

t
t−1−( t−1

t
)t

t

t−1−( t−1
t

)t−(
t−1−( t−1

t )t

t
)t

4.4.1 Size of the ancestor tree

We begin this section by first presenting the generating function for t-ary trees (which is

a generalisation of the result in the binary trees discussion).
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4.42 Theorem [27] The generating function for the size of the ancestor tree in t-ary trees is

G(z, u, v) = zv(1 + u)Gt(z, u, v)− zvT t(z) + T (z) . (147)

Proof: This can be done by generalising the proof from the monotonically labelled binary

trees. �

One can easily modify (147) to obtain the equations of the size of the ancestor tree for

the recursive binary trees given in the Prodinger-Urbanek model. We replace T with yk

and G with Gk.

4.43 Theorem [25] The generating functions definining the size of the ancestor tree in the

monotonic t-ary trees are

Gk(z, u, v) = Gk−1(z, u, v) + zv(1 + u)Gt
k(z, u, v) + (1− v)zytk(z) , G0(z, u, v) = 1 . (148)

The aim is to produce the expectation and variance for our parameter using the generating

function in the theorem above. It is convenient to start by considering the first two cases

of k.

Case k = 1

As usual, G1 is differentiated with respect to v and then evaluated at v = 1. If this

derivative is denoted by g1(z, u) then we obtain

g1(z, u) =
z(1 + u)Gt

1(z, u, 1)− zy1(z)

1− z(1 + u)tGt−1
1 (z, u, 1)

=
ȳ1(z)− y1(z)

1− t (ȳ1(z)−1)
ȳ1(z)

, (149)

where G1(z, u, 1) = y1(z(1 + u)) = ȳ1(z) and ȳt−1
1 (z) =

ȳt1(z)

ȳ1(z)
. The asymptotic expansion

y1(z) ∼ 1

r1

− C1(t)
√
q1 − z , (150)

and the equivalent one for ȳ1(z) are now substituted in (149)

g1(z, u) ∼ t
√
q1 − z

(t− 1)2
√
q1 − z(1 + u)

, (151)

which helps in determining the behaviour of the coefficients in g1.
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4.44 Lemma The coefficients of up in g1(z, u) satisfy

[up]g1(z, u) ∼ t

22p(t− 1)2

(
2p

p

)(
1− z

q1

)−p
, z → q1 , (152)

where q1 = (t−1)t−1

tt
.

Proof: In order to prove this lemma, we extract the coefficients of up from (149) as follows

[up]
t
√
q1 − z

(t− 1)2
√
q1 − z(1 + u)

=
t(1− z

q1
)1/2

(t− 1)2
[up]

1

(1− z
qk

)1/2
(

1−
zu
q1

1− z
q1

)1/2

=
t

(t− 1)2

(
− z

q1

)p(−1
2

p

)(
1− z

q1

)−p
∼ t

22p(t− 1)2

(
2p

p

)(
1− z

q1

)−p
, z → q1 .

(153)

�

While the above lemma gives the behaviour of the coefficients of up for any natural number

t, it is interesting to investigate them for particular values. In order to do this, MAPLE

was used to obtain the coefficients for t = 2, . . . , 11 and the results are presented in the

table below.

t singularity [up]g1(z, u)

2 1
4

(
2p
p

) 1
22p−1 (1− 4z)−p

3 22

33

(
2p
p

) 3
22p+2 (1− 33

22 z)−p

4 33

28

(
2p
p

) 1
32 · 22p−2 (1− 28

33 z)−p

5 28

55

(
2p
p

) 5
22p+4 (1− 55

28 z)−p

6 55

26 · 36

(
2p
p

) 3
52 · 22p−1 (1− 26 · 36

55 z)−p

7 26 · 36

77

(
2p
p

) 7
32 · 22p+2 (1− 77

26 · 36 z)−p

8 77

224

(
2p
p

) 1
72 · 22p−3 (1− 224

77 z)−p

9 224

318

(
2p
p

) 32

72 · 22p+6 (1− 318

224 z)−p

10 318

210 · 510

(
2p
p

) 5
34 · 22p−1 (1− 210 · 510

318 z)−p

11 210 · 510

1111

(
2p
p

) 11
52 · 22p+2 (1− 1111

210 · 510 z)−p

4.45 Note For t = 2 we have [up]g1(z, u) ∼ 1
22p−1

(
2p
p

)
(1 − 4z)−p. As expected, these are the
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coefficients of up we found in the monotonic binary trees case (15).

We use the result of Proposition 1.12, with α = −p, and find that

[znup]g1(z, u) ∼ q−n1 t

22p(t− 1)2

(
2p

p

)
np−1

Γ(p)
. (154)

It follows that the expectation for the size of the ancestor tree for k = 1 is obtained by

dividing the above with the normalising factor p1q
−n
1 n−3/2 np

Γ(p+1)

E(1)
n,p ∼

pt

p1 · 22p(t− 1)2

(
2p

p

)√
n =

pt
√
π

22p(t− 1)2

(
2p

p

)√
n , p1 =

1√
π
. (155)

4.46 Note By putting t = 2 in the above expectation one obtains the same result (19) as in

the monotonic binary tree case.

Next, we proceed with computing the second moment for the size of the ancestor tree

for the particular value k = 1. The second derivative of G1 with respect to v (evaluated

at 1) is denoted by h1(z, u). After making the appropriate substitutions the following is

obtained

h1(z, u) =
1

1− t(ȳ1(z)−1)
ȳ1(z)

(2t(ȳ1(z)− 1)g1(z, u)

ȳ1(z)

+
t2(ȳ1(z)− 1)g2

1(z, u)

ȳ2
1(z)

− t(ȳ1(z)− 1)g2
1(z, u)

ȳ2
1(z)

)

∼ t2zu

C1(t)(t− 1)4(q1 − z(1 + u))3/2
. (156)

4.47 Lemma The coefficients of up in h1(z, u) have the form

[up]h1(z, u) ∼ pt2

C1(t)22p−1q
1/2
1 (t− 1)4

(
2p

p

)(
1− z

q1

)−p−1/2

, z → q1 , (157)

where C1(t) =
(

2(1−r1)

r2
1q1(t−1)

)1/2

.

Proof: The coefficients of up in h1 are computed from (156) as follows

[up]
t2zu

C1(t)(t− 1)4(q1 − z(1 + u))3/2
=

t2z

C1(t)q
3/2
1 (t− 1)4

[up−1]
1

(1− z
q1

)3/2
(

1−
zu
q1

1− z
q1

)3/2

=
t2z

C1(t)q
3/2
1 (t− 1)4

(
− z

q1

)p−1
( −3

2

p− 1

)(
1− z

q1

)−p−1/2
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∼ pt2

C1(t)22p−1q
1/2
1 (t− 1)4

(
2p

p

)(
1− z

q1

)−p−1/2

, z → q1 . (158)

�

The lemma above will be applied in MAPLE to compute some particular coefficients of

up for t = 2, . . . , 7. The results are summarised below.

t singularity [up]h1(z, u)

2 1
4

(
2p
p

) p
C1(t) · 22p−4 (1− 4z)−p

3 22

33

(
2p
p

) 37/2 · p
C1(t) · 22p+4 (1− 33

22 z)−p

4 33

28

(
2p
p

) p
C1(t) · 311/2 · 22p−9 (1− 28

33 z)−p

5 28

55

(
2p
p

) 59/2 · p
C1(t) · 22p+11 (1− 55

28 z)−p

6 55

26 · 36

(
2p
p

) 35 · p
C1(t) · 513/2 · 22p−6 (1− 26 · 36

55 z)−p

7 26 · 36

77

(
2p
p

) 711/2 · p
C1(t) · 37 · 22p+6 (1− 77

26 · 36 z)−p

4.48 Note Once again for t = 2 we obtain exactly the same coefficient of up as in (21), where

C1(2) = 4 was computed earlier in this section.

Now, Proposition 1.12 is employed with α = −p− 1
2

to extract the coefficients of zn in h1

[znup]h1(z, u) ∼ pt2

C1(t)22p−1q
n+1/2
1 (t− 1)4

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (159)

which will be normalised and give the second moment. Thus, the variance for the size of

the ancestor tree for the case k = 1 is

V (1)
n,p ∼

pt2
√
π

C1(t)22p−1q
1/2
1 (t− 1)4

(
2p

p

)
Γ(p+ 1)

Γ(p+ 1
2
)
n− πp2t2

24p(t− 1)4

(
2p

p

)
n+O(

√
n )

=
pt2

(t− 1)4

( 2
√
π

C1(t)q
1/2
1

− πp

24p

(
2p

p

))
n+O(

√
n ) , q1 =

(t− 1)t−1

tt
.

(160)

4.49 Note If we let t = 2 and C1(2) = 4 in the above variance then we get the result from the

section on monotonic binary trees (26).

Case k = 2

We conduct a similar analysis on the size of the ancestor tree as in the previous case.

Since the methods are the same as in the case k = 1, the results are presented without
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much detail or proofs. First, the expectation will be computed. It turns out that the

derivative of G2 with respect to v (evaluated at v = 1) and denoted by g2(z, u) is

g2(z, u) =
g1(z, u) + z(1 + u)Gt

2(z, u, 1)− zyt2(z)

1− zt(1 + u)Gt−1
2 (z, u, 1)

=
g1(z, u) + (ȳ2(z)− ȳ1(z))− (y2(z)− y1(z))

1− t (ȳ2(z)−ȳ1(z))
ȳ2(z)

(161)

where we have used the usual substitutions and the fact that

Gt−1
2 (z, u, 1) = ȳt−1

2 (z) =
ȳt2(z)

ȳ2(z)
. (162)

It is convenient to substitute the known asymptotic expansions in (161) and we obtain

g2(z, u) ∼ t
√
q2 − z

(t− 1)
(
t− 1− ( t−1

t
)t
)√

q2 − z(1 + u)
, (163)

since y1(q2) = r1
r2

(and similarly for ȳ1(q2)). This expansion will enable us to look at

the behaviour of the coefficients in g2. We note that g1, which appears in (161), gives no

contribution to the main term shown in the asymptotic form of g2 (this was easily checked

with MAPLE).

4.50 Lemma The coefficients of up in g2(z, u) are given by

[up]g2(z, u) ∼ t

22p(t− 1)
(
t− 1− ( t−1

t
)t
)
(

2p

p

)(
1− z

q2

)−p
, z → q2 . (164)

Moreover, the coefficients of zn in g2 have the form

[znup]g2(z, u) ∼ t

22p(t− 1)
(
t− 1− ( t−1

t
)t
)
( 1

q2

)n(2p

p

)
np−1

Γ(p)
, (165)

which yield the expectation for the size of the ancestor tree upon normalisation with

p2q
−n
2 n−3/2 np

Γ(p+1)

E(2)
n,p ∼

pt

22pp2(t− 1)
(
t− 1− ( t−1

t
)t
)
(

2p

p

)√
n . (166)
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One can now proceed with finding the second moment for G2. The second derivative of

G2 with respect to v and evaluated at v = 1 yields

h2(z, u) =
1

1− t(ȳ2(z)−ȳ1(z))
ȳ2(z)

(
h1(z, u) +

2t(ȳ2(z)− ȳ1(z))g2(z, u)

ȳ2(z)

+
t2(ȳ2(z)− ȳ1(z))g2

2(z, u)

ȳ2
2(z)

− t(ȳ2(z)− ȳ1(z))g2
2(z, u)

ȳ2
2(z)

)
.

(167)

An asymptotic form of g2 will be derived by replacing the terms in the above with their

local expansions around q2

h2(z, u) ∼ t2zu

C2(t)(t− 1)2
(
t− 1− ( t−1

t
)t
)2

(q2 − z(1 + u))3/2
, (168)

and this will make it easier for us to analyse the behaviour of the coefficients in g2.

4.51 Lemma The coefficients of up in h2(z, u) have the form

[up]h2(z, u) ∼ pt2

C2(t)22p−1q
1/2
2 (t− 1)2

(
t− 1− ( t−1

t
)t
)2

(
2p

p

)(
1− z

q2

)−p−1/2

, z → q2 .

(169)

Finally, the coefficients of zn in (168) are

[znup]h2(z, u) ∼ pt2

C2(t)22p−1q
n+1/2
2 (t− 1)2

(
t− 1− ( t−1

t
)t
)2

(
2p

p

)
n−p−1/2

Γ(p+ 1
2
)
, (170)

which, upon normalisation, result in the second moment:

2pt2
√
πC2(t)p2q

1/2
2 (t− 1)2

(
t− 1− ( t−1

t
)t
)2 n . (171)

The latter will be used in deriving the variance for the size of the ancestor tree for the

particular case G2 as follows

V (2)
n,p ∼

pt2

p2(t− 1)2
(
t− 1− ( t−1

t
)t
)2

( 2
√
πC2(t)q

1/2
2

− p

24pp2

(
2p

p

)2)
n+O(

√
n ) . (172)

We are now in a position to produce the usual statistics for the general case. The first step

in getting the expectation for the size of the ancestor tree is to differentiateGk with respect

to v and evaluate it at v = 1. Then we denote it by gk(z, u) and set Gk(z, u, 1) = ȳk(z)

(1− tz(1 + u)ȳt−1
k (z))gk(z, u) = gk−1(z, u) + ȳk(z)− ȳk−1(z)− yk(z) + yk−1(z) , (173)
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since zytk(z) = yk(z)− yk−1(z) and z(1 + u)ytk(z(1 + u)) = ȳk(z)− ȳk−1(z).

4.52 Lemma [27] The solution to the recursion in (173) is

gk(z, u) =

k∑

j=1

[ k∏

i=j

(1− tz(1 + u)ȳt−1
i (z))

]−1(
ȳj(z)− ȳj−1(z)− yj(z) + yj−1(z)

)
, (174)

and its dominant term has the form

gk(z, u) ∼ ȳk(z)− yk(z)

1− t (ȳk(z)−ȳk−1(z))

ȳk(z)

. (175)

Proof: Both sides of (173) are multiplied with the product
k−1∏
i=1

(1− tz(1+u)ȳt−1
i (z)). Then

we sum over the k’s and obtain

[ k−1∏

i=1

(1− tz(1 + u)ȳt−1
i (z))

]
(1− tz(1 + u)ȳt−1

k (z))gk(z, u)

=
k−1∑

j=0

[ j∏

i=1

(1− tz(1 + u)ȳt−1
i (z))

](
ȳj(z)− ȳj−1(z)− yj(z) + yj−1(z)

)
,

(176)

which yields the required result upon division with
k∏
i=1

(1−tz(1+u)ȳt−1
i (z)). The dominant

term in this occurs when i = j = k. Since the singularities of yk−1(z) and ȳk−1(z) are

further away from the origin than those of yk(z) and ȳk(z) they will not contribute to the

main term in gk(z, u) and we do not include them. Thus the dominant term in gk(z, u) is

as given in the statement of the theorem. �

Now we substitute the known asymptotic expansions in (175) and obtain

gk(z, u) ∼
√
qk − z

(t− 1)(tqk)1/(t−1)
√
qk − z(1 + u)

. (177)

which enables us to look at the behaviour of the coefficients in gk.

4.53 Lemma The coefficients of up in gk(z, u) have the form

[up]gk(z, u) ∼ 1

22pq
1/(t−1)
k (t− 1)t1/(t−1)

(
2p

p

)(
1− z

qk

)−p
, z → qk . (178)
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Proof: The coefficients of up in (177) are computed, as follows

[up]

√
qk − z

(t− 1)(tqk)1/(t−1)
√
qk − z(1 + u)

=
(1− z

qk
)1/2

(t− 1)(tqk)1/(t−1)
[up]

1

(1− z
qk

)1/2
(

1−
zu
qk

1− z
qk

)1/2

=
zp

22p(t− 1)(tqk)1/(t−1)qpk

(
2p

p

)(
1− z

qk

)−p
∼ 1

22p(t− 1)(tqk)1/(t−1)

(
2p

p

)(
1− z

qk

)−p
,

(179)

as z tends to the dominant singularity qk. �

Finally, we use Proposition 1.12, with α = −p, to obtain the asymptotic expansion for

the coefficients of zn

[znup]gk(z, u) ∼ 1

22pq
n/(t−1)
k (t− 1)t1/(t−1)

(
2p

p

)
np−1

Γ(p)
. (180)

4.54 Theorem [25] The expectation for the size of the ancestor tree in monotonic t-ary trees

is

E(k)
n,p ∼

p

22pq
1/(t−1)
k pk(t− 1)t1/(t−1)

(
2p

p

)√
n , n→∞ , fixed k . (181)

One can proceed with finding the variance for the size of the ancestor tree. The second

derivative of Gk with respect to v (evaluated at 1) is denoted by hk(z, u) and gives

(1− tz(1 + u)ȳt−1
k (z))hk(z, u) = hk−1(z, u) + 2tz(1 + u)ȳt−1

k (z)gk(z, u)

+ tz(1 + u)ȳt−2
k (z)g2

k(z, u)(t− 1) .
(182)

4.55 Lemma [27] The solution to the recursion in (182) has the closed form

hk(z, u) =

k∑

j=1

{( k∏

i=j

(1− tz(1 + u)ȳt−1
i (z))

)−1[
2tz(1 + u)ȳt−1

j (z)gj(z, u)

+ tz(1 + u)ȳt−2
j (z)g2

j (z, u)(t− 1)
]}
,

(183)

and the dominant term is

hk(z, u) ∼ 2tz(1 + u)ȳt−1
k (z)gk(z, u) + tz(1 + u)ȳt−2

k (z)g2
k(z, u)(t− 1)

1− tz(1 + u)ȳt−1
k (z))

. (184)
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Proof: We solve the recursion in (182) by first multiplying both sides with the product
k−1∏
i=1

(1− tz(1 + u)ȳt−1
i (z)) and then summing up all the hk(z, u)

k−1∏

i=1

(1− tz(1 + u)ȳt−1
i (z))(1− tz(1 + u)ȳt−1

k (z))hk(z, u)

=
k−1∑

j=0

{ j∏

i=1

(1− tz(1 + u)ȳt−1
i (z))

[
2tz(1 + u)ȳt−1

j (z)gj(z, u)

+ tz(1 + u)ȳt−2
j (z)g2

j (z, u)(t− 1)
]}
, (185)

where h0(z, u) = 0. Next, we solve for hk(z, u)

hk(z, u) =
k∑

j=1

{( k∏

i=j

(1− tz(1 + u)ȳt−1
i (z))

)−1[
2tz(1 + u)ȳt−1

j (z)gj(z, u)

+ tz(1 + u)ȳt−2
j (z)g2

j (z, u)(t− 1)
]}
.

(186)

The dominant term here occurs when i = j = k and this completes the proof. �

Furthermore, if we substitute ȳk−1(z) and ȳk(z) with their known asymptotic expressions

then hk(z, u) simplifies to

hk(z, u) ∼ zu

Ck(t)(t− 1)2(qk − z(1 + u))3/2(tqk)2/(t−1)
. (187)

Our analysis requires us to find the asymptotic behaviour of the coefficients of up and zn

in the simplified version of hk.

4.56 Lemma The coefficients of up in hk(z, u) have the asymptotic expansion

[up]hk(z, u) ∼ pq
−(3+t)/(2(t−1))
k

22p−1Ck(t)(t− 1)2t2/(t−1)

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk . (188)

Proof: The coefficient of up in (187) gives the result of the lemma

[up]
zu

Ck(t)(t− 1)2(qk − z(1 + u))3/2(tqk)2/(t−1)

=
z

Ck(t)(t− 1)2q
3/2
k (tqk)2/(t−1)

[up−1]
1

(
1− z

qk

)3/2(
1−

zu
qk

1− z
qk

)3/2

=
pzp

22p−1Ck(t)(t− 1)2q
p+1/2
k (tqk)2/(t−1)

(
2p

p

)(
1− z

qk

)−p−1/2
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∼ p

22p−1Ck(t)(t− 1)2q
1/2
k (tqk)2/(t−1)

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk . (189)

�

Proposition 1.12, with α = −p− 1
2
, is then used to find the asymptotic expansion for the

coefficients of zn

[znup]hk(z, u) ∼ pq
−(3+t)/(2(t−1))−n
k

22p−1Ck(t)(t− 1)2t2/(t−1)

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (190)

which will be normalised and give the second moment

1

pkq
−n
k

np

Γ(p+1)
n−3/2

[znup]hk(z, u)

∼ pq
−(3+t)/(2(t−1))
k

22p−1Ck(t)(t− 1)2t2/(t−1)

(
2p

p

)
Γ(p+ 1)

Γ(p+ 1
2
)
n =

2pq
−(3+t)/(2(t−1))
k√

πpkCk(t)(t− 1)2t2/(t−1)
n .

(191)

4.57 Theorem [27] The variance for the size of the ancestor tree in monotonic t-ary trees is

V (k)
n,p =

p

pk(t− 1)2t2/(t−1)

( 2
√
πCk(t)q

(3+t)/(2(t−1))
k

− p

24pq
2/(t−1)
k pk

(
2p

p

)2)
n+O(

√
n ) , (192)

for n→∞ and k fixed.

4.4.2 The Steiner distance

We begin by presenting the generating function of ordinary t-ary trees which gives us a

starting point for developing the corresponding result for monotonic t-ary trees.

4.58 Theorem [27] The generating function for the Steiner distance in t-ary trees is

F (z, u, v) =
zv(1 + u)Gt(z, u, v)− tzvT t−1(z)G(z, u, v) + zT t(z)(v − t) + T (z)

1− tzT t−1(z)
. (193)

This result is modified, by replacing T (z) with yk(z), so that it gives the Steiner distance

for the t-ary tree model in [38].

4.59 Theorem [27] The Steiner distance for monotonic t-ary trees satisfies

Fk(z, u, v) =
zv(1 + u)Gt

k(z, u, v)− tzvyt−1
k (z)Gk(z, u, v) + zytk(z)(v − t) + yk(z)

1− tzyt−1
k (z)

.

(194)
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It is useful to look at this parameter for some particular values of k. We consider k = 1, 2

and briefly state the statistics obtained for F1 and F2. The usual method of computing

the moments is employed.

Case k = 1

The first derivative of F1 with respect to v, where v = 1, is

∂F1(z, u, v)

∂v

∣∣∣
v=1

=
1

1− tzyt−1
1 (z)

(
z(1 + u)ȳt1(z) + tz(1 + u)ȳt−1

1 (z)g1(z, u)

− tzyt−1
1 (z)ȳ1(z, u)− tzyt−1

1 (z)g1(z, u) + zyt1(z)
)

∼ 2t
√
q1 − z

(t− 1)2
√
q1 − z(1 + u)

− tzu

(t− 1)2
√
q1 − z

√
q1 − z(1 + u)

(195)

4.60 Lemma The coefficients of up in ∂F1(z,u,v)
∂v

∣∣
v=1

are

[up]
∂F1(z, u, v)

∂v

∣∣∣
v=1
∼ (p− 1)t

22p−1(2p− 1)(t− 1)2

(
2p

p

)(
1− z

q1

)−p
, z → q1 . (196)

The coefficients of zn in the first derivative of F1 have the form

[znup]
∂F1(z, u, v)

∂v

∣∣∣
v=1
∼ (p− 1)t

22p−1(2p− 1)(t− 1)2qn1

(
2p

p

)
np−1

Γ(p)
, (197)

and their normalisation leads to the expectation of the Steiner distance for k = 1

E(1)
n,p ∼

p(p− 1)t

22p−1(2p− 1)(t− 1)2p1

(
2p

p

)√
n . (198)

The second derivative of F1 with respect to v, evaluated at v = 1, is

∂2F1(z, u, v)

∂v2

∣∣∣
v=1

=
1

1− tzyt−1
1 (z)

(
2tz(1 + u)ȳt−1

1 (z)g1(z, u) + tz(1 + u)ȳt−2
1 (z)g2

1(z, u)(t− 1)

+ tz(1 + u)ȳt−1
1 (z)h1(z, u)− 2tzyt−1

1 (z)g1(z, u)− tzyt−1
1 (z)h1(z, u)

)

∼ t2zu

C1(t)(t− 1)4(q1 − z(1 + u))3/2
− 2t2

C1(t)(t− 1)4
√
q1 − z(1 + u)

(199)

4.61 Lemma The coefficients of up in ∂2F1(z,u,v)
∂v2

∣∣
v=1

have the form

[up]
∂2F1(z, u, v)

∂v2

∣∣∣
v=1
∼ (p− 1)t2

C1(t)22p−1(t− 1)4q
1/2
2

(
2p

p

)(
1− z

q1

)−p−1/2

, z → q1 . (200)
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We use Proposition 1.12 to compute the coefficients of zn in the second derivative of F1

as follows

[znup]
∂2F1(z, u, v)

∂v2

∣∣∣
v=1
∼ (p− 1)t2

C1(t)22p−1(t− 1)4q
n+1/2
2

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (201)

which, upon normalisation, give us the second moment and this will be used to compute

the variance of the Steiner distance when k = 1

V (1)
n,p ∼

(p− 1)t2

p1(t− 1)4

( 2
√
πC1(t)q

1/2
1

− p2(p− 1)

24p−2(2p− 1)2p1

(
2p

p

)2)
n . (202)

Case k = 2

The first derivative of F2 with respect to v, where v = 1, is

∂F2(z, u, v)

∂v

∣∣∣
v=1

=
1

1− tzyt−1
2 (z)

(
z(1 + u)ȳt2(z) + tz(1 + u)ȳt−1

2 (z)g2(z, u)

− tzyt−1
2 (z)ȳ2(z, u)− tzyt−1

2 (z)g2(z, u) + zyt2(z)
)

∼ 2t
√
q2 − z

(t− 1)
(
t− 1− ( t−1

t
)t
)√

q2 − z(1 + u)
− tzu

(t− 1)
(
t− 1− ( t−1

t
)t
)√

q2 − z(1 + u)

(203)

4.62 Lemma The coefficients of up in ∂F2(z,u,v)
∂v

∣∣
v=1

are

[up]
∂F2(z, u, v)

∂v

∣∣∣
v=1
∼ (p− 1)tt+1

22p−1(2p− 1)(t− 1)2(tt − (t− 1)t−1)

(
2p

p

)(
1− z

q2

)−p
, z → q2 .

(204)

The coefficients of zn in the first derivative of F2 have the form

[znup]
∂F2(z, u, v)

∂v

∣∣∣
v=1
∼ (p− 1)tt+1

22p−1(2p− 1)(t− 1)2(tt − (t− 1)t−1)qn2

(
2p

p

)
np−1

Γ(p)
, (205)

and their normalisation leads to the expectation of the Steiner distance for k = 2

E(2)
n,p ∼

p(p− 1)tt+1

22p−1(2p− 1)(t− 1)2(tt − (t− 1)t−1)p2

(
2p

p

)√
n . (206)
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The second derivative of F2 with respect to v, evaluated at v = 1, is

∂2F2(z, u, v)

∂v2

∣∣∣
v=1

=
1

1− tzyt−1
2 (z)

(
2tz(1 + u)ȳt−1

2 (z)g2(z, u) + tz(1 + u)ȳt−2
2 (z)g2

2(z, u)(t− 1)

+ tz(1 + u)ȳt−1
2 (z)h2(z, u)− 2tzyt−1

2 (z)g2(z, u)− tzyt−1
2 (z)h2(z, u)

)

∼ t2zu

C2(t)(t− 1)2
(
t− 1− ( t−1

t
)t
)2

(q2 − z(1 + u))3/2

− 2t2

C2(t)(t− 1)2
(
t− 1− ( t−1

t
)t
)2√

q2 − z(1 + u)
.

(207)

4.63 Lemma As z → qk, the coefficients of up in ∂2F2(z,u,v)
∂v2

∣∣
v=1

have the form

[up]
∂2F2(z, u, v)

∂v2

∣∣∣
v=1
∼ (p− 1)t2t+2

C2(t)22p−1(t− 1)4(tt − (t− 1)t−1)2q
1/2
2

(
2p

p

)(
1− z

q2

)−p−1/2

.

(208)

Proposition 1.12 is used to find the coefficients of zn in the second derivative of F2 as

follows

[znup]
∂2F2(z, u, v)

∂v2

∣∣∣
v=1
∼ (p− 1)t2t+2

C2(t)22p−1(t− 1)4(tt − (t− 1)t−1)2q
n+1/2
2

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
,

(209)

and they will be normalised in order to compute the second moment. The latter is

employed in the derivation of the variance of the Steiner distance for k = 2

V (2)
n,p ∼

(p− 1)t2t+2

(t− 1)4(tt − (t− 1)t−1)2p2

( 2
√
πC2(t)q

1/2
2

− p2(p− 1)

24p−2(2p− 1)2p2

(
2p

p

)2)
n . (210)

The focus of the analysis shifts to the general case now. The first moment is computed by

differentiating Fk with respect to v and evaluating at v = 1. Then the known asymptotic

formulas are substituted in to simplify the derivative

∂Fk(z, u, v)

∂v

∣∣∣
v=1

=
1

1− tzyt−1
k (z)

(
z(1 + u)ȳtk(z) + tz(1 + u)ȳt−1

k (z)gk(z, u)

− tzyt−1
k (z)ȳk(z, u)− tzyt−1

k (z)gk(z, u) + zytk(z)
)

∼ 2
√
qk − z

(t− 1)(tqk)1/(t−1)
√
qk − z(1 + u)

− zu

(t− 1)(tqk)1/(t−1)
√
qk − z

√
qk − z(1 + u)

, (211)
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and this enables us to consider the behaviour of the coefficients of up around their domi-

nant singularity qk.

4.64 Lemma For z → qk, the coefficients of up in ∂Fk(z,u,v)
∂v

∣∣
v=1

are

[up]
∂Fk(z, u, v)

∂v

∣∣∣
v=1
∼ p− 1

22p−1(2p− 1)(t− 1)(tqk)1/(t−1)

(
2p

p

)(
1− z

qk

)−p
. (212)

Proof: The coefficient of up from the first term in (211) is

[up]
2
√
qk − z

(t− 1)(tqk)1/(t−1)
√
qk − z(1 + u)

=
2
(

1− z
qk

)1/2

(t− 1)(tqk)1/(t−1)
[up]

1
(

1− z
qk

)1/2(
1−

zu
qk

1− z
qk

)1/2

=
zp

22p−1(t− 1)(tqk)1/(t−1)qpk

(
2p

p

)(
1− z

qk

)−p
∼ 1

22p−1(t− 1)(tqk)1/(t−1)

(
2p

p

)(
1− z

qk

)−p
,

(213)

for z → qk. Moreover the second term yields

− [up]
zu

(t− 1)(tqk)1/(t−1)
√
qk − z

√
qk − z(1 + u)

∼ − p

22p−1(2p− 1)(t− 1)(tqk)1/(t−1)

(
2p

p

)(
1− z

qk

)−p
,

(214)

around the dominant singularity qk. Adding these two coefficients gives the result of the

lemma. �

Next, the coefficients of zn are computed as follows

[znup]
∂Fk(z, u, v)

∂v

∣∣
v=1
∼ (p− 1)

22p−1(2p− 1)(t− 1)(tqk)1/(t−1)qnk

(
2p

p

)
np−1

Γ(p)
, (215)

which will be normalised and give the first moment.

4.65 Theorem [27] The expectation of the Steiner distance in monotonic t-ary trees is

E(k)
n,p ∼

p(p− 1)

22p−1(2p− 1)(t− 1)(tqk)1/(t−1)pk

(
2p

p

)√
n , n→∞ , fixed k . (216)

We proceed by computing the next moment for the Steiner distance. After differentiating

Fk twice with respect to v (and evaluating at 1) we get

∂2Fk(z, u, v)

∂v2

∣∣∣
v=1

=
1

1− tzyt−1
k (z)

(
2tz(1 + u)ȳt−1

k (z)gk(z, u) + tz(1 + u)ȳt−2
k (z)g2

k(z, u)(t− 1)
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+ tz(1 + u)ȳt−1
k (z)hk(z, u)− 2tzyt−1

k (z)gk(z, u)− tzyt−1
k (z)hk(z, u)

)

∼ zu

Ck(t)(t− 1)2(tqk)2/(t−1)(qk − z(1 + u))3/2
− 2

Ck(t)(t− 1)2(tqk)2/(t−1)
√
qk − z(1 + u)

.

(217)

This asymptotic expression makes it easy for us to analyse the behaviour of its coefficients.

4.66 Lemma The coefficients of up in ∂2Fk(z,u,v)
∂v2

∣∣
v=1

are

[up]
∂2Fk(z, u, v)

∂v2

∣∣∣
v=1
∼ p− 1

22p−1Ck(t)(t− 1)2t2/(t−1)q
(3+t)/(2(t−1))
k

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk .

(218)

Proof: The coefficients of up from the terms in (217) are extracted as follows

[up]
zu

Ck(t)(t− 1)2(tqk)2/(t−1)(qk − z(1 + u))3/2

=
z

Ck(t)(t− 1)2(tqk)2/(t−1)q
3/2
k

[up−1]
1

(
1− z

qk

)3/2(
1−

zu
qk

1− z
qk

)3/2

=
pzp

22p−1Ck(t)(t− 1)2(tqk)2/(t−1)q
p+1/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

∼ p

22p−1Ck(t)(t− 1)2(tqk)2/(t−1)q
1/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk , (219)

and similarly

− [up]
2

Ck(t)(t− 1)2(tqk)2/(t−1)
√
qk − z(1 + u)

∼ 1

22p−1Ck(t)(t− 1)2(tqk)2/(t−1)q
1/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk .

(220)

By adding these two coefficients we obtain the result of the lemma. �

The last required coefficients are:

[znup]
∂2Fk(z, u, v)

∂v2

∣∣∣
v=1
∼ p− 1

22p−1Ck(t)(t− 1)2t2/(t−1)q
(3+t)/(2(t−1))
k qnk

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
,

and after normalisation they give rise to the second moment.
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4.67 Theorem [27] The variance for the Steiner distance in monotonic t-ary trees is

V (k)
n,p =

(p− 1)

pk(t− 1)2t2/(t−1)

( 2
√
πCk(t)q

(3+t)/(2(t−1))
k pk

− p2(p− 1)

24p−2(2p− 1)2q
2/(t−1)
k pk

(
2p

p

)2)
n+O(

√
n ) , n→∞ , fixed k .

(221)

4.5 Monotonic ordered trees

We now consider the class, Bk, of ordered trees whose nodes are monotonically labelled

with 1, 2, . . . , k and we let B̃k be the class of ordered trees whose nodes are monotonically

labelled with 2, . . . , k + 1. The defining equations for the classes Bk are given in [38] by

B1 = 1 + 1

B1

+ 1

B1 B1

+ 1

B1 B1 B1

+ . . .

B2 = B̃1 + 1 + 1

B2

+ 1

B2 B2

+ 1

B2 B2 B2

+ . . .

...

Bk = B̃k−1 + 1 + . . .

4.68 Theorem [38] The generating functions for monotonic ordered trees are

y1(z) =
z

1− y1(z)
,

y2(z) = y1(z) +
z

1− y2(z)
,

. . .

yk(z) = yk−1(z) +
z

1− yk(z)
. (222)

The results in this section contain various constants depending on k. They are illustrated

in the table below and specific values are given for the first few cases of k.
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constant k = 1 k = 2 k = 3

qk = 1
r2
k

1/4 4/25 100/841

rk+1 = rk + 1
rk

; r0 = 1 2 5/2 29/10

yk(qk) = 1− 1
rk

1/2 3/5 19/29

4.5.1 Size of the ancestor tree

In chapter one, we have presented the generating function for ordered trees. We can easily

adapt that result and obtain the functional equation for monotonic ordered trees.

4.69 Theorem [25] The generating functions for the size of the ancestor tree in monotonic

ordered trees are

Pk(z, u, v) = Pk−1(z, u, v) +
zv(1 + u)

1− Pk(z, u, v)
+

z(1− v)

1− yk(z)
, P0(z, u, v) = 0 . (223)

As usual, statistics for this parameter will be computed. We begin by looking at two

particular values of k.

Case k = 1

After differentiating P1 with respect to v and then setting v = 1, we get

A1(z, u) =
(

1− z(1 + u)

(1− ȳ1(z))2

)−1( z(1 + u)

1− ȳ1(z)
− z

1− y1(z)

)

=
(

1− ȳ1(z)

1− ȳ1(z)

)−1

(ȳ1(z)− y1(z)) ,

(224)

where ∂P1(z,u,v)
∂v

∣∣
v=1

= A1(z, u) and P1(z, u, 1) = y1(z(1 + u)) = ȳ1(z). An asymptotic

expression for the first derivative of P1 around the dominant singularity q1 = 1
4

will be

obtained by substituting the known expansions in the above

A1(z, u) ∼
√
q1 − z

4
√
q1 − z(1 + u)

, (225)

which enables us to look at the behaviour of its coefficients.

4.70 Lemma The coefficients of up in A1(z, u) are

[up]A1(z, u) ∼ 1

22p+2

(
2p

p

)
(1− 4z)−p , z → 1

4
. (226)
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Next, the coefficients of zn in A1 will be computed using Proposition 1.12

[znup]A1(z, u) ∼ 4n

22p+2

(
2p

p

)
np−1

Γ(p)
, (227)

and upon normalisation by p1q
−n
1 n−3/2 np

Γ(p+1)
(where p1 = 1

4
√
π
) they yield the expectation

of the ancestor tree for k = 1

E(1)
n,p ∼

p
√
π

22p

(
2p

p

)√
n . (228)

The second moment can be computed now. By denoting the second derivative of P1 with

respect to v (evaluated at v = 1) with B1(z, u) one gets

B1(z, u) =
(

1− z(1 + u)

(1− ȳ1(z))2

)−1(2z(1 + u)A1(z, u)

(1− ȳ1(z))2
+

2z(1 + u)A2
1(z, u)

(1− ȳ1(z))3

)

=
(

1− ȳ1(z)

1− ȳ1(z)

)−1(2ȳ1(z)A1(z, u)

1− ȳ1(z)
+

2ȳ1(z)A2
1(z, u)

(1− ȳ1(z))2

)

∼ zu

16d1(q1 − z(1 + u))3/2
, (229)

around the singularity q1, where d1 = 1. This local expansion helps in determining the

behaviour of the coefficients of up and zn in B1.

4.71 Lemma The coefficients of up in B1(z, u) have the form

[up]B1(z, u) ∼ p

22p+2

(
2p

p

)(
1− 4z

)−p−1/2

, z → 1

4
. (230)

Furthermore, the coefficients of zn are

[znup]B1(z, u) ∼ 4np

22p+2

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (231)

which will be normalised in order to compute the second moment

p
√
π

22p

(
2p

p

)
Γ(p+ 1)

Γ(p+ 1
2
)
n . (232)

Then, the variance for the size of the ancestor tree is

V (1)
n,p ∼ p

(
1− pπ

24p

(
2p

p

)2)
n , (233)

where 1− pπ
24p

(
2p
p

)2 → 0 as p→∞.
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4.72 Note The asymptotic values of E
(1)
n,p and V

(1)
n,p obtained above coincide with those of the

ordered trees considered in their chapter.

Case k = 2

The derivative of P2 with respect to v, evaluated at v = 1, which is denoted by A2(z, u)

gives the following

A2(z, u) =
(

1− z(1 + u)

(1− ȳ2(z))2

)−1(
A1(z, u) +

z(1 + u)

1− ȳ2(z)
− z

1− y2(z)

)

=
(

1− (ȳ2(z)− ȳ1(z)

1− ȳ2(z)

)−1

(A1(z, u) + ȳ2(z)− ȳ1(z)− y2(z) + y1(z))

∼
√
q2 − z

5
√
q2 − z(1 + u)

, (234)

and this expansion makes it possible to look at the behaviour of its coefficients.

4.73 Lemma The coefficients of up in A2(z, u) are

[up]A2(z, u) ∼ 1

5 · 22p

(
2p

p

)(
1− 25z

4

)−p−1/2

, z → 4

25
. (235)

Then the coefficients of zn in A2 have the form

[znup]A2(z, u) ∼ 1

5 · 22p

(25

4

)n(2p

p

)
np

Γ(p+ 1)
, (236)

so their normalisation leads to the expectation for the size of the ancestor tree

E(2)
n,p ∼

p

5 · 22pp2

(
2p

p

)√
n . (237)

One can proceed with computing the next moment. Let B2(z, u) be the second derivative

of P2 with respect to v (evaluated at 1). Then we obtain

B2(z, u) =
(

1− z(1 + u)

(1− ȳ2(z))2

)−1(
B1(z, u) +

2z(1 + u)A2(z, u)

(1− ȳ2(z))2
+

2z(1 + u)A2
2(z, u)

(1− ȳ2(z))3

)

=
(

1− (ȳ2(z)− ȳ1(z))

1− ȳ2(z)

)−1(
B1(z, u) +

2(ȳ2(z)− y1(z))A2(z, u)

1− ȳ2(z)
+

2(ȳ2(z)− y1(z))A2
2(z, u)

(1− ȳ2(z))2

)

∼ zu

25d2(q2 − z(1 + u))3/2
, (238)

and the behaviour of the coefficients of up around q2 is presented in the next lemma.
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4.74 Lemma The coefficients of up in B2(z, u) are

[up]B2(z, u) ∼ p

25 · 22p−1d2

(
2p

p

)(
1− 25z

4

)−p−1/2

, z → 4

25
. (239)

The other required coefficients in the second derivative of P2 are given by

[znup]B2(z, u) ∼ p

25 · 22p−1d2

(25

4

)n(2p

p

)
np−1/2

Γ(p+ 1
2
)
, (240)

which will be normalised in order to obtain the second moment. Finally, the variance for

the size of the ancestor tree in the case k = 2 is

V (2)
n,p ∼

p

25p2

( 2√
πd2

− p

24pp2

(
2p

p

)2)
n . (241)

The results presented above will be generalised now. The expectation for the size of the

ancestor tree is the first quantity of interest. We denote the derivative of Pk with respect

to v (evaluated at 1) by Ak(z, u) and let Pk(z, u, 1) = yk(z(1 + u)) = ȳk(z). This gives

Ak(z, u) =
(

1− z(1 + u)

(1− ȳk(z))2

)−1(
Ak−1(z, u) +

z(1 + u)

1− ȳk(z)
− z

1− yk(z)

)

=
(

1− (ȳk(z)− ȳk−1(z))

1− ȳk(z)

)−1(
Ak−1(z, u) + ȳk(z)− ȳk−1(z)− yk(z) + yk−1(z)

)
.

(242)

4.75 Lemma [27] The solution to the recursion in (242) is

Ak(z, u) =
k∑

j=1

[ j∏

i=1

(
1− z(1 + u)

(1− ȳi(z))2

)−1( z(1 + u)

1− ȳj(z)
− z

1− yj(z)

)]
, (243)

with A0(z, u) = 0, hence the dominant term has the asymptotic form

Ak(z, u) ∼
(

1− z(1 + u)

(1− ȳk(z))2

)−1( z(1 + u)

1− ȳk(z)
− z

1− yk(z)

)
. (244)
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Proof: We multiply both sides of (242) with the product
k−1∏
i=0

(
1− z(1+u)

(1−ȳi(z))2

)
then sum over

the k’s and obtain

k−1∏

i=0

(
1− z(1 + u)

(1− ȳi(z))2

)(
1− z(1 + u)

(1− ȳk(z))2

)
Ak(z, u)

=
k−1∑

j=0

[ j∏

i=0

(
1− z(1 + u)

(1− ȳi(z))2

)( z(1 + u)

1− ȳj(z)
− z

1− yj(z)

)]
.

(245)

The result of the lemma is obtained by dividing this with
k∏
i=0

(
1 − z (1+u)

(1−ȳi(z))2

)
and the

dominant term occurs when i = j = k. �

Now from [38] one knows the following: the local expansion of the generating function

yk(z) = yk(qk)− dk
√
qk − z +O(qk − z)

= 1−√qk − dk
√
qk − z +O(qk − z) , (246)

as z → qk. The recursion of the yk’s around the dominant singularities is

yk−l(qk) = 1− rlw , (247)

for w = 1
rl

=
√
ql and one also has

yk−1(qk) = 1− r1w = 1− 2
√
qk . (248)

We observe that z
1−yk(z)

= yk(z)−yk−1(z) (and similarly for ȳk(z)), so these are substituted

into (244)

Ak(z, u) ∼
√
qk
√
qk − z

2
√
qk − z(1 + u)

. (249)

This expression for the first derivative makes it possible for us to find the asymptotic

behaviour of the coefficients of up and zn around their dominant singularities qk.

4.76 Lemma The coefficients of up in Ak(z, u) are

[up]Ak(z, u) ∼ q
1/2
k

22p+1

(
2p

p

)(
1− z

qk

)−p
, z → qk . (250)
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Proof: We proceed by finding the coefficient of up from (249), which proves the result

[up]

√
qk
√
qk − z

2
√
qk − z(1 + u)

=
q

1/2
k

(
1− z

qk

)1/2

2
[up]

1
(

1− z
qk

)1/2(
1−

zu
qk

1− z
qk

)1/2

=
q

1/2−p
k zp

22p+1

(
2p

p

)(
1− z

qk

)−p
∼ q

1/2
k

22p+1

(
2p

p

)(
1− z

qk

)−p
, z → qk .

(251)

�

Next, the coefficients of zn are computed

[znup]Ak(z, u) ∼ q
1/2−n
k

22p+1

(
2p

p

)
np−1

Γ(p)
, (252)

which will be normalised in order to find the first moment.

4.77 Theorem [27] The expectation for the size of the ancestor tree in monotonic ordered

trees is asymptotically given by

E(k)
n,p ∼

p
√
qk

22p+1 pk

(
2p

p

)√
n , n→∞ , fixed k. (253)

Now we move on and compute the variance. For convenience, the second derivative of Pk

with respect to v, evaluated at v = 1, is denoted by Bk(z, u), and it follows that

(
1− z(1 + u)

(1− ȳk(z))2

)
Bk(z, u) = Bk−1(z, u)+

2z(1 + u)Ak(z, u)

(1− ȳk(z))2
+

2z(1 + u)A2
k(z, u)

(1− ȳk(z))3
. (254)

4.78 Lemma [27] The solution of the recursion in (254) is

Bk(z, u) =
k∑

j=1

[ j∏

i=1

(
1− z(1 + u)

(1− ȳi(z))2

)−1(2z(1 + u)Aj(z, u)

(1− ȳj(z))2
+

2z(1 + u)A2
j(z, u)

(1− ȳj(z))3

)]
,

(255)

with dominant term

Bk(z, u) ∼
(

1− z(1 + u)

(1− ȳk(z))2

)−1(2z(1 + u)Ak(z, u)

(1− ȳk(z))2
+

2z(1 + u)A2
k(z, u)

(1− ȳk(z))3

)
. (256)
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Proof: By multiplying both sides of (254) with the product
k−1∏
i=0

(
1 − z(1+u)

(1−ȳi(z))2

)
and then

summing all the k’s, the recursion becomes

k−1∏

i=0

(
1− z(1 + u)

(1− ȳi(z))2

)(
1− z(1 + u)

(1− ȳk(z))2

)
Bk(z, u)

=
k−1∑

j=0

[ j∏

i=0

(
1− z (1 + u)

(1− ȳi(z))2

)(2z (1 + u)Aj(z, u)

(1− ȳj(z))2
+

2z (1 + u)A2
j(z, u)

(1− ȳj(z))3

)]
,

(257)

or simply

Bk(z, u) =
k∑

j=1

[ j∏

i=1

(
1− z(1 + u)

(1− ȳi(z))2

)−1(2z(1 + u)Aj(z, u)

(1− ȳj(z))2
+

2z(1 + u)A2
j(z, u)

(1− ȳj(z))3

)]
,

(258)

and from this the dominant term arises for i = j = k. �

After substituting in the known asymptotic expansions, (256) simplifies to the following

Bk(z, u) ∼ zuqk
4dk(qk − z(1 + u))3/2

, (259)

and this expression is used in analysing the behaviour of its coefficients.

4.79 Lemma The coefficients of up in Bk(z, u) are

[up]Bk(z, u) ∼ p q
1/2
k

dk 22p+1

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk . (260)

Proof: The extraction of the coefficient of up in (259) gives the following

[up]
zuqk

4dk(qk − z(1 + u))3/2
=

z

4dkq
1/2
k

[up−1]
1

(
1− z

qk

)3/2(
1−

zu
qk

1− z
qk

)3/2

=
pzp

22p+1dkq
p−1/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

∼ pq
1/2
k

22p+1dk

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk .

(261)

�

Moreover, the coefficient of zn

[znup]Bk(z, u) ∼ p q
1/2−n
k

dk 22p+1

(
2p

p

)
np−1/2

Γ(p+ 1
2
)

=
p q1−n

k√
πpk22p+2

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (262)

and it yields the second moment upon normalisation.
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4.80 Theorem [27] The variance for the size of the ancestor tree in monotonic ordered trees

is asymptotically

V (k)
n,p =

pqk
p2
k

( 1

4π
− p

24p+2

(
2p

p

)2)
n+O(

√
n ) , n→∞ , fixed k , (263)

and 1
4π
− p

24p+2

(
2p
p

)2 → 0 as p→∞.

4.5.2 The Steiner distance

Once again, the derivation of the generating function for this parameter is most convenient

when we use the defining equation of the Steiner distance in ordered trees as a starting

point. This was presented already in the previous chapter on ordered trees, but for

convenience we give it below

S(z, u, v) =
P (z, u, v)(1− zv

(1−N(z))2 )− z(1−v)N(z)
(1−N(z))2

1− z
(1−N(z))2

. (264)

Then, one can modify the above to produce an equivalent result for monotonic ordered

trees.

4.81 Theorem [25] The generating function for the Steiner distance in monotonic ordered

trees is given by

Sk(z, u, v) =
Pk(z, u, v)

(
1− zv

(1−yk(z))2

)
− z(1−v)yk(z)

(1−yk(z))2

1− z
(1−yk(z))2

. (265)

As usual we first settle particular cases of k before looking at the general analysis. For

k = 1 this has already been done in the chapter on ordered trees. Therefore we consider

the case k = 2 only.

Case k = 2

In order to find the expectation S2 is differentiated with respect to v (and evaluated at

v = 1)

∂S2(z, u, v)

∂v

∣∣∣
v=1

=
A2(z, u)

(
1− z

(1−y2(z))2

)
− zȳ2(z)

(1−y2(z))2 + zy2(z)
(1−y2(z))2

1− z
(1−y2(z))2

=
A2(z, u)

(
1− (y2(z)−y1(z))

1−y2(z)

)
− ȳ2(z)(y2(z)−y1(z))

1−y2(z)
+ y2(z)(y2(z)−y1(z))

1−y2(z)

1− (y2(z)−y1(z))
1−y2(z)
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∼ 2
√
q2 − z

5
√
q2 − z(1 + u)

− zu

5
√
q2 − z

√
q2 − z(1 + u)

, (266)

where A2 is the derivative of P2 as defined in the section for the size of the ancestor tree.

Then the behaviour of the coefficients around q2 will be investigated below.

4.82 Lemma The coefficients of up in ∂S2(z,u,v)
∂v

∣∣
v=1

are

[up]
∂S2(z, u, v)

∂v

∣∣∣
v=1
∼ p− 1

5(2p− 1)22p−1

(
2p

p

)(
1− 25z

4

)−p
, z → 4

25
. (267)

The coefficients of zn in the first derivative of S2 are

[znup]
∂S2(z, u, v)

∂v

∣∣∣
v=1
∼ p− 1

5(2p− 1)22p−1qn2

(
2p

p

)
np−1

Γ(p)
, (268)

and after normalisation they lead to the expectation for the Steiner distance

E(2)
n,p ∼

p− 1

5(2p− 1)22p−1p2

(
2p

p

)√
n . (269)

Now the second moment will be computed. The second derivative of S2 with respect to

v, at v = 1 is

∂2S2(z, u, v)

∂v2

∣∣∣
v=1

=
B2(z, u)

(
1− (y2(z)−y1(z))

1−y2(z)

)
− 2A2(z,u)(y2(z)−y1(z))

1−y2(z)

1− (y2(z)−y1(z))
1−y2(z)

∼ 3zu

25d2(q2 − z(1 + u))3/2
− 2(q2 − z)

25d2(q2 − z(1 + u))3/2
,

(270)

where B2 is the second derivative of P2 with respect to v, as introduced in the previous

section. This asymptotic expansion enables one to look at the behaviour of the coefficients

in the above derivative.

4.83 Lemma The coefficients of up in ∂2S2(z,u,v)
∂v2

∣∣
v=1

have the form

[up]
∂2S2(z, u, v)

∂v2

∣∣∣
v=1
∼ p− 1

5 · 22pd2

(
2p

p

)(
1− 25z

4

)−p−1/2

, z → 4

25
. (271)

Next, the coefficients of zn will be computed using Proposition 1.12

[znup]
∂2S2(z, u, v)

∂v2

∣∣∣
v=1
∼ p− 1

5 · 22pd2qn2

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (272)
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and their normalisation will give the second moment. Thus the variance of the Steiner

distance is

V (2)
n,p ∼

p− 1

5p2

( 1√
πd2

− p− 1

5(2p− 1)224p−2p2

(
2p

p

)2)
n . (273)

Our focus shifts to the general case now. To compute the expectation, we differentiate

Sk with respect to v and evaluate at 1. Then we substitute in the known asymptotic

expressions and get

∂Sk(z, u, v)

∂v

∣∣∣
v=1

=
Ak(z, u)

(
1− z

(1−yk(z))2

)
− zȳk(z)

(1−yk(z))2 + zyk(z)
(1−yk(z))2

1− z
(1−yk(z))2

=
Ak(z, u)

(
1− (yk(z)−yk−1(z))

1−yk(z)

)
− ȳk(z)(yk(z)−yk−1(z))

1−yk(z)
+ yk(z)(yk(z)−yk−1(z))

1−yk(z)

1− (yk(z)−yk−1(z))

1−yk(z)

∼
√
qk
√
qk − z√

qk − z(1 + u)
− zu

√
qk

2
√
qk − z

√
qk − z(1 + u)

. (274)

This simplified expansion helps us with finding the asymptotic behaviour of the coefficients

in the first derivative of Sk.

4.84 Lemma The coefficients of up in ∂Sk(z,u,v)
∂v

∣∣
v=1

have the form

[up]
∂Sk(z, u, v)

∂v

∣∣∣
v=1
∼ q

1/2
k (p− 1)

(2p− 1)22p

(
2p

p

)(
1− z

qk

)−p
, z → qk . (275)

Proof: We compute the coefficients of up in (274). The first term gives the following

[up]

√
qk
√
qk − z√

qk − z(1 + u)
= q

1/2
k

(
1− z

qk

)1/2

[up]
1

(
1− z

qk

)1/2(
1−

zu
qk

1− z
qk

)1/2

=
zp

22pq
p−1/2
k

(
2p

p

)(
1− z

qk

)−p
∼ q

1/2
k

22p

(
2p

p

)(
1− z

qk

)−p
, z → qk .

(276)

Finally, for the second term in (274) we find

− [up]
zu
√
qk

2
√
qk − z

√
qk − z(1 + u)

∼ − pq
1/2
k

22p(2p− 1)

(
2p

p

)(
1− z

qk

)−p
, z → qk . (277)

The result of the lemma is obtained by adding these two coefficients. �
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Now it is easy to find the other coefficients:

[znup]
∂Sk(z, u, v)

∂v

∣∣∣
v=1
∼ q

1/2
k (p− 1)

(2p− 1) 22p

(
2p

p

)
q−nk

np−1

Γ(p)
, (278)

and they are used to find the first moment.

4.85 Theorem [25] The expectation for the Steiner distance in monotonic ordered trees is

E(k)
n,p ∼

q
1/2
k p(p− 1)

pk(2p− 1)22p

(
2p

p

)√
n , n→∞ , fixed k. (279)

Finally, the variance of the Steiner distance can be analysed. The second derivative of Sk

with respect to v (evaluated at v = 1) yields

∂2Sk(z, u, v)

∂v2

∣∣∣
v=1

=
Bk(z, u)

(
1− (yk(z)−yk−1(z))

1−yk(z)

)
− 2Ak(z,u)(yk(z)−yk−1(z))

1−yk(z)

1− (yk(z)−yk−1(z))

1−yk(z)

∼ 3zuqk
4dk(qk − z(1 + u))3/2

− qk(qk − z)

2dk(qk − z(1 + u))3/2
.

(280)

This asymptotic expression is used to find the behaviour of the coefficients of up and zn

in the above derivative of Sk.

4.86 Lemma The coefficients of up in ∂2Sk(z,u,v)
∂v2

∣∣
v=1

are

[up]
∂2Sk(z, u, v)

∂v2

∣∣∣
v=1
∼ q

1/2
k (p− 1)

dk 22p+1

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk . (281)

Proof: One proceeds by computing the coefficients of up in (280). For the first term we

find

[up]
3zuqk

4dk(qk − z(1 + u))3/2
=

3z

4dkq
1/2
k

[up−1]
1

(
1− z

qk

)3/2(
1−

zu
qk

1− z
qk

)3/2

=
3pzp

22p+1q
p−1/2
k

(
2p

p

)(
1− z

qk

)−p−1/2

∼ 3pq
1/2
k

22p+1dk

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk .

(282)

For the second term in (280) we obtain

− [up]
qk(qk − z)

2dk(qk − z(1 + u))3/2
∼ −(2p+ 1)q

1/2
k

22p+1dk

(
2p

p

)(
1− z

qk

)−p−1/2

, z → qk . (283)

By adding these two coefficients we get the result of the lemma. �
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Then one finds that the coefficients of zn are:

[znup]
∂2Sk(z, u, v)

∂v2

∣∣∣
v=1
∼ q

1/2−n
k (p− 1)

dk22p+1

(
2p

p

)
np−1/2

Γ(p+ 1
2
)
, (284)

which will be normalised to produce the second moment.

4.87 Theorem [27] The variance for the Steiner distance in monotonic ordered trees is

V (k)
n,p ∼

(p− 1)q
1/2
k

pk

( 1

2
√
πdk
− p2(p− 1)q

1/2
k

24p(2p− 1)2pk

(
2p

p

)2)
n+O(

√
n ) , n→∞ , fixed k ,

(285)

where 1
2
√
πdk
− p2(p−1)q

1/2
k

24p(2p−1)2pk

(
2p
p

)2 → 0 as p→∞.

4.6 Monotonic non-crossing trees

4.6.1 Introduction

This section is based on non-crossing geometric configurations built on vertices of a convex

polygon in the plane as described in [8]. Let Pn = {v1, v2, . . . , vn} be a set of points

conventionally ordered counter-clockwise that are vertices of a convex n-gon. A non-

crossing graph is defined as a graph with vertex set Pn whose edges are straight line

segments that do not cross. We recall that a graph is connected if any two vertices can

be joined by a path. A tree is a connected acyclic graph and the number of edges in a

tree is one less than the number of vertices.

4.88 Definition [8] Let d be the degree of a vertex v1 in a non-crossing tree t. Then t is a

sequence attached to v1 of d ordered pairs of trees sharing a common vertex. Moreover,

a butterfly is an ordered pair of non-crossing trees with a common vertex.

The name aims to convey the idea that the pair of trees looks like the two wings of a

butterfly. If v1 has degree d, then the non-crossing tree t can be identified with a sequence

of d butterflies pending from v1. Or more simply: to the root vertex we attach an ordered

collection of vertices, each of which has an end-node that is the common root of two

non-crossing trees, one on the left of the edge and the other on the right of the edge.

4.89 Theorem [8] The number of non-crossing trees with n vertices, Tn, is

Tn =
1

2n− 1

(
3n− 3

n− 1

)
. (286)
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v1

Figure 4.5: Butterflies pending from vertex v1

If T (z) and B(z) denote the generating functions for non-crossing trees and butterflies

respectively, then the following equations hold

T (z) =
z

1−B(z)
, B(z) =

T 2(z)

z
, (287)

where the division by z in the second equation occurs because one identifies two root

vertices to form a butterfly.

Bijections between ternary trees and non-crossing trees have been constructed in [31]. It

turns out that the number Tn of non-crossing trees of size n satisfies

Tn+1 = tn with tn =
1

2n+ 1

(
3n

n

)
, (288)

where tn enumerates the ternary trees of size n. Thus a useful relationship between these

classes of trees can be established.

4.90 Theorem [31] The number of ternary trees of size n, tn, satisfies the recurrence

3(3n− 1)(3n− 2)tn−1 = 2n(2n+ 1)tn . (289)

In this section we are concerned with the analysis of the monotonically labelled non-

crossing tree model.

4.91 Theorem The generating functions for monotonic non-crossing trees is

yk(z) = yk−1(z) +
z

1− y2
k(z)

z

, y0(z) = 0 . (290)
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4.6.2 Singularities

We have seen in previous sections that tree generating functions such as the one for non-

crossing trees above are best dealt with using singularity analysis. One needs to manipu-

late (290) in order to get it into a more convenient form. First, we use the transformation

z = Z2

yk(Z
2) = yk−1(Z2) +

Z2

1− y2
k(Z2)

Z2

, y0(z) = 0 , (291)

and then put Tk(Z) = yk(Z2)
Z

which gives

ZTk(Z) = ZTk−1(Z) +
Z2

1− T 2
k (Z)

, (292)

or

Tk(Z) = Tk−1(Z) +
Z

1− T 2
k (Z)

. (293)

Upon differentiating with respect to Tk(Z) we obtain

1 =
2τkρk

(1− τ 2
k )2

(294)

for Z → ρk and Tk(Z)→ τk, so we have an expression for ρk in terms of τk

ρk =
(1− τ 2

k )2

2τk
. (295)

Then (293) becomes

Tj−1(ρk) = Tj(ρk)−
(1− τ 2

k )2

2τk

1

1− T 2
j (ρk)

, (296)

moreover

Tk−l−1(ρk) = Tk−l(ρk)−
(1− τ 2

k )2

2τk

1

1− T 2
k−l(ρk)

. (297)

For convenience, we let rl = Tk−l(ρk).

rl+1 = rl −
(1− τ 2

k )2

2τk

1

1− r2
l

(298)

We know that r0 = τk and rk = 0. So we must solve equation (298) which produces the

τk. The solutions which tend to one are relevant, since ρk → 0. We consider τk to be the

special values of t which solve the equation rk(t) = 0 for t ∼ 1. Then we must solve the
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recursion

rl+1 = rl −
(1− t2)2

2t

1

1− r2
l

. (299)

Since r0 = t, the first term in (299) is

r1 = t− (1− t2)

2t
(300)

and it has the following series expansion around t = 1

r1 = 1− 2(1− t) +O((1− t)2) . (301)

We substitute this expression for r1 into the recursion for r2

r2 = r1 −
(1− t2)2

2t

1

(1− r2
1)

∼ 1− 2(1− t)− (1− t2)2

2t

1

(1− (1− 2(1− t))2)
,

(302)

and the series expansion of r2 around t = 1 is

r2 = 1− 5

2
(1− t) +O((1− t)2) . (303)

Similarly,

r3 = 1− 29

10
(1− t) +O((1− t)2) . (304)

Proceeding in this way we find the series expansion around t = 1 for the k-th term in the

recursion. First, we let rk−1 = 1−Bk−1(1− t) +O((1− t)2). Then

rk = rk−1 −
(1− t2)2

2t

1

1− r2
k−1

∼ 1−Bk−1(1− t)− (1− t2)2

2t

1

1− (1−Bk−1(1− t))2

(305)

and rk has the following series expansion around t = 1

rk = 1−
(
Bk−1 +

1

Bk−1

)
(1− t) +O((1− t)2)

= 1−Bk(1− t) +O((1− t)2) .

(306)

Thus we have obtained an asymptotic recursion for the rk’s

rk ∼ 1−Bk(1− t) (307)
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and a recursion for the Bk’s

Bk = Bk−1 +
1

Bk−1

, B0 = 1 . (308)

The solution to (308), which can be handled similarly to De Bruijn, [3], is

Bk = k + log k +O
(

log k

k

)
. (309)

Next, we solve the equation rk(t) = 0, that is 1−Bk(1− t) = 0, and we get

Bk ∼
1

1− τk
, τk ∼ 1− 1

Bk

. (310)

Since τk is “known” approximately for k →∞, we have an expression for ρk

ρk ∼
(1− (1− 1

Bk
)2)2

2(1− 1
Bk

)
=

(2Bk − 1)2

2B3
k(Bk − 1)

∼ 2

k2
, k →∞ . (311)

The local expansion of Tk about ρk starts with

Tk(Z) ∼ λk − µk
√
ρk − Z , Z → ρk (312)

and from Tk(Z) = yk(Z2)
Z

we obtain

yk(Z
2) ∼ λkZ − µkZ

√
ρk − Z

∼ λkρk − µkρk
√
ρk − Z .

(313)

Now we need to go back to z in the above local expansion. We observe that

ρ2
k − Z2 = (ρk − Z)(ρk + Z) ∼ 2ρk(ρk − Z) , Z → ρk . (314)

Thus ρk − Z ∼ 1
2ρk

(ρ2
k − Z2) and since z = Z2 it follows that Z → ρk and z → √ρk, so

ρk −
√
z ∼ 1

2ρk
(ρ2
k − z). The local expansion for yk becomes

yk(z) ∼ λkρk − µk
ρk√
2ρk

√
ρ2
k − z , z → ρ2

k . (315)

The constants λk and ρk are known for k → ∞ so it remains to produce an asymptotic

form for the µk’s.
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4.92 Lemma The constants µk have the asymptotic form

µk ∼
√

2

2
k1/2 , k →∞ . (316)

Proof: From Harary and Palmer, [17] and the Preliminaries chapter, we know that the

constants µk can be computed by means of the equation

1

2

(
µk

ρk√
2ρk

)2

= lim
z→ρ2

k

y′k(z)(λkρk − yk(z)) . (317)

We differentiate (290) with respect to z

y′k(z) = y′k−1(z) +
1

1− y2
k(z)

z

−
z
(
−2yk(z)y′k(z)

z
+

y2
k(z)

z2

)

(
1− y2

k(z)

z

)2
, (318)

which simplifies to

(
1− 2yk(z)

(
1− y2

k(z)

z

)2

)
y′k(z) = y′k−1(z) +

1

1− y2
k(z)

z

− y2
k(z)

z
(
1− y2

k(z)

z

)2
. (319)

This first order recursion can be solved as follows. We multiply (319) with the product
k−1∏
i=0

(
1− 2yi(z)(

1− y
2
i

(z)

z

)2

)
. Then, a more convenient notation is introduced

ak(z) =
k−1∏

i=0

(
1− 2yi(z)

(
1− y2

i (z)

z

)2

)(
1− 2yk(z)

(
1− y2

k(z)

z

)2

)
y′k(z) , (320)

which gives the new recursion

ak(z) = ak−1(z) +
k−1∏

i=0

(
1− 2yi(z)

(
1− y2

i (z)

z

)2

)( 1

1− y2
k(z)

z

− y2
k(z)

z
(
1− y2

k(z)

z

)2

)
. (321)

By iterating the above k times one gets

ak(z) = a0(z) +
k∑

j=0

[ j∏

i=0

(
1− 2yi(z)

(
1− y2

i (z)

z

)2

)]( 1

1− y2
j (z)

z

− y2
j (z)

z
(
1− y2

j (z)

z

)2

)
, (322)
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and, after dividing through by
k−1∏
i=0

(
1− 2yi(z)(

1− y
2
i

(z)

z

)2

)
, the solution to (319) is obtained

y′k(z) =
k∑

j=0

[ k∏

i=j+1

(
1− 2yi(z)

(
1− y2

i (z)

z

)2

)]−1( 1

1− y2
j (z)

z

− y2
j (z)

z
(
1− y2

j (z)

z

)2

)

=

k∑

j=0

[ k∏

i=j+1

(
1− 2yi(z)(yi(z)− yi−1(z))2

z2

)]−1(yj(z)− yj−1(z)

z

−
(

1− z

yj(z)− yj−1(z)

)(yj(z)− yj−1(z)

z

)2)

=
k∑

j=0

[ k∏

i=j+1

(
1− 2yi(z)(yi(z)− yi−1(z))2

z2

)]−1((yj(z)− yj−1(z))(2z − yj(z) + yj−1(z))

z2

)
,

(323)

where 1− y2
k(z)

z
= z

yk(z)−yk−1(z)
. The dominant term here occurs when i = j = k and since

the singularities of yk−1(z) are further away from the origin than those of yk(z) they will

not contribute to the dominant term in the first derivative of yk which is asymptotically

y′k(z) ∼ yk(z)(2z − yk(z))

z2 − 2y3
k(z)

. (324)

As z → ρ2
k we have yk(z) ∼ λkρk and y′k(z)→∞, so the limit in (317) is of indeterminate

form ∞ · 0. Then (317) is written to make use of l’Hôpital’s rule

1

2

(
µk

ρk√
2ρk

)2

= lim
z→ρ2

k

λkρk − yk(z)
1

y′k(z)

= lim
z→ρ2

k

−y′k(z)
−y′′k (z)

(y′k(z))2

= lim
z→ρ2

k

(y′k(z))3

y′′k(z)
. (325)

Now (290) is differentiated twice with respect to z

y′′k(z) = y′′k−1(z) + (2(y′k(z))2 + 2yk(z)y′′k(z))
(

1− y2
k(z)

z

)−2

+ 2z
(
− 2yk(z)y′k(z)

z
+
y2
k(z)

z2

)2(
1− y2

k(z)

z

)−3

,

(326)

and simplification yields

(
1− 2yk(z)

(
1− y2

k(z)

z

)2

)
y′′k(z) = y′′k(z) + 2(y′k(z))2

(
1− y2

k(z)

z

)−2

+ 2z
(
− 2yk(z)y′k(z)

z
+
y2
k(z)

z2

)2(
1− y2

k(z)

z

)−3

.

(327)

In order to solve this recursion, we first multiply (327) with the product
k−1∏
i=0

(
1− 2yi(z)(

1− y
2
i

(z)

z

)2

)
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and rewrite the terms in a simpler notation

bk(z) =
k−1∏

i=0

(
1− 2yi(z)

(
1− y2

i (z)

z

)2

)(
1− 2yk(z)

(
1− y2

k(z)

z

)2

)
y′′k(z) . (328)

The new recursion

bk(z) = bk−1(z)+

k−1∏

i=0

(
1− 2yi(z)
(
1− y2

i (z)

z

)2

)( 2(y′k(z))2

(
1− y2

k(z)

z

)2
+

2z
(
− 2yk(z)y′k(z)

z
+

y2
k(z)

z2

)2

(
1− y2

k(z)

z

)3

)
, (329)

is iterated k times which gives

bk(z) = b0(z) +

k∑

j=0

[ j∏

i=0

(
1− 2yi(z)

(
1− y2

i (z)

z

)2

)]( 2(y′j(z))2

(
1− y2

j (z)

z

)2
+

2z
(
− 2yj(z)y

′
j(z)

z
+

y2
j (z)

z2

)2

(
1− y2

j (z)

z

)3

)
.

(330)

Upon division by
k−1∏
i=0

(
1− 2yi(z)(

1− y
2
i

(z)

z

)2

)
, the solution to (327) arises

y′′k(z) =
k∑

j=0

[ k∏

i=j+1

(
1− 2yi(z)

(
1− y2

i (z)

z

)2

)]−1( 2(y′j(z))2

(
1− y2

j (z)

z

)2
+

2z
(
− 2yj(z)y

′
j(z)

z
+

y2
j (z)

z2

)2

(
1− y2

j (z)

z

)3

)

=
k∑

j=0

[ k∏

i=j+1

(
1− 2yi(z)(yi(z)− yi−1(z))2

z2

)]−1(2(y′j(z))2(yj(z)− yj−1(z))2

z2

+ 2z
(
− 2yj(z)y′j(z)

z
+

1

z

(
1− z

yj(z)− yj−1(z)

))2( z

yj(z)− yj−1(z)

)−3

=

k∑

j=0

[ k∏

i=j+1

(
1− 2yi(z)(yi(z)− yi−1(z))2

z2

)]−1(2(y′j(z))2(yj(z)− yj−1(z))2

z2

+
2(yj(z)− yj−1(z))

{
(yj(z)− yj−1(z))(1− 2yj(z)y′j(z))− z

}2

z4

)
, (331)

where the substitution 1 − y2
k(z)

z
= z

yk(z)−yk−1(z)
was used once again. It follows that an

asymptotic expansion for this second derivative of yk can be derived by considering the

dominant term in the above and disregarding yi−1 and yj−1 (since they will not contribute

to the main term)

y′′k(z) ∼
(

1− 2y3
k(z)

z2

)−1(2(y′k(z))2y2
k(z)

z2
+

2yk(z)
{
yk(z)(1− 2yk(z)y′k(z))− z

}2

z4

)

=
2yk(z)

(
y6
k(z)(2z − yk(z))2 + z3(zyk(z)− z2 − 2y3

k(z))2
)

z3(z2 − 2y3
k(z))3

.

(332)

At this stage one can use the solutions of y′k(z) and y′′k(z) to proceed with the computation



4.6 Monotonic non-crossing trees 121

of µk from (325)

µk =
2√
ρk

√
(y′k(ρ

2
k))

3

y′′k(ρ2
k)

=
2√
ρk

(
( k∑
j=0

[ k∏
i=j+1

(
1− 2yi(ρ

2
k)(

1− y
2
i

(ρ2
k

)

ρ2
k

)2

)]−1( ρ2
k−2y2

j (ρ2
k)

ρ2
k

(
1−

y2
j

(ρ2
k

)

ρ2
k

)2

))3

k∑
j=0

[ k∏
i=j+1

(
1− 2yi(ρ2

k)(
1− y

2
i

(ρ2
k

)

ρ2
k

)2

)]−1( 2(y′j(ρ
2
k))2

(
1−

y2
j

(ρ2
k

)

ρ2
k

)2 +
2ρ2
k

(
−

2yj(ρ2
k

)y′
j
(ρ2
k

)

ρ2
k

+
y2
j

(ρ2
k

)

ρ4
k

)2

(
1−

y2
j

(ρ2
k

)

ρ2
k

)3

)

)1/2

∼ 2√
ρk

( y3
k(ρ2

k)(2ρ2
k−yk(ρ2

k))3

(ρ4
k−2y3

k(ρ2
k))3

2yk(ρ2
k)
(
y6
k(ρ2

k)(2ρ2
k−yk(ρ2

k))2+ρ6
k(ρ2

kyk(ρ2
k)−ρ4

k−2y3
k(ρ2

k))2
)

ρ6
k(ρ4

k−2y3
k(ρ2

k))3

)1/2

=
2√
ρk

( ρ6
ky

2
k(ρ

2
k)(2ρ

2
k − yk(ρ2

k))
3

2
(
y6
k(ρ

2
k)(2ρ

2
k − yk(ρ2

k))
2 + ρ6

k(ρ
2
kyk(ρ

2
k)− ρ4

k − 2y3
k(ρ

2
k))

2
)
)1/2

. (333)

But as z → ρ2
k it was established that yk(ρ

2
k) ∼ λkρk and λk ∼ 1 − 1

k
as well as ρk ∼ 2

k2

for k →∞. Therefore, we obtain the following

µk ∼
√

2

2
k1/2 , k →∞ . (334)

�

In their paper [14], Gittenberger and Panholzer have produced general results regarding

the singularities of monotonically labelled simply generated trees. One can also apply

those results to our analysis in order to describe the limiting distributions for the param-

eters of interest.

Let a sequence of non-negative numbers (ϕk)k≥0 define the weight w(T ) of any non-crossing

tree, T by

w(T ) =
∏

v

ϕd(v) , (335)

where v ranges over all vertices of T and d(v) is the out-degree of v. Moreover, let

ϕ(t) =
∑

k≥0

ϕkt
k , (336)

be the degree-weight generating function ϕ(t).

4.93 Proposition [14] The degree-weight generating function ϕ(t) satisfies the following:

(i) ϕ(t) is aperiodic, that is gcd{k : ϕk > 0} = 1 ,

(ii) ϕ(t) has a positive radius of convergence R > 0 ,
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(iii) for all k ≥ 1 there exists a minimal positive solution τk < R of the equation

t =
ϕ(t)

ϕ′(t)
+ Tk−1

( 1

ϕ′(t)

)
, (337)

From the above result and the methods from [6] and [24] it follows that the dominant

singularity ρk of Tk(z) is given by

ρk =
1

ϕ′(τk)
, (338)

which agrees with the results we obtained in the beginning of this subsection. The local

expansion of Tk(z) around the dominant singularity z = ρk follows also directly from [6]

Tk(z) = gk(z)− hk(z)

√
1− z

ρk

= τk −
√

2(ϕ(τk) + T ′k−1(ρk))

ϕ′′(τk)

√
1− z

ρk
+O

(
1− z

ρk

)
, (339)

where gk(z) and hk(z) are analytic functions in a neighbourhood of z = ρk.

4.6.3 Size of the ancestor tree

We begin the analysis of the first parameter of interest for the monotonic non-crossing

trees. As usual one requires statistics such as the expectation and variance. The method

followed in the beginning is similar to that used in the previous sections. However, we

will apply the general results from [14] to derive the limiting distribution.

4.94 Theorem The equation for the size of the ancestor tree in monotonic non-crossing trees

is

Ak(z, u, v) = Ak−1(z, u, v) +
zv(1 + u)

1− A2
k(z,u,v)

z

+
z(1− v)

1− y2
k(z)

z

. (340)

We differentiate Ak with respect to v, let v = 1 and use the substitutions

∂Ak(z, u, v)

∂v

∣∣∣
v=1

= αk(z, u) , Ak(z, u, 1) = yk(z(1 + u)) = ȳk(z) , (341)

which give the following recursion

(
1− 2(1 + u)ȳk(z)

(
1− ȳ2

k(z)

z

)2

)
αk(z, u) = αk−1(z, u) +

z(1 + u)

1− ȳ2
k(z)

z

− z

1− y2
k(z)

z

. (342)
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Using the substitution 1− y2
k(z)

z
= z

yk(z)−yk−1(z)
(respectively for ȳk), the above can be more

conveniently written as

(
1− 2(1 + u)ȳk(z)(yk(z)− yk−1(z))2

z2

)
αk(z, u) = αk−1(z, u) + (1 + u)(ȳk(z)− ȳk−1(z))

− yk(z) + yk−1(z) .

(343)

This first order recursion will be easily solved by multiplying through with the product
k−1∏
i=1

(
1− 2(1+u)ȳi(z)(yi(z)−yi−1(z))2

z2

)
and then summing over all k, which leads to the following

k−1∏

i=1

(
1− 2(1 + u)ȳi(z)(yi(z)− yi−1(z))2

z2

)(
1− 2(1 + u)ȳk(z)(yk(z)− yk−1(z))2

z2

)
αk(z, u)

=
k−1∑

j=0

[ j∏

i=1

(
1− 2(1 + u)ȳi(z)(yi(z)− yi−1(z))2

z2

)]

×
[
(1 + u)(ȳj(z)− ȳj−1(z))− yj(z) + yj−1(z)

]
.

(344)

Finally, we divide by
k∏
i=1

(
1− 2(1+u)ȳi(z)(yi(z)−yi−1(z))2

z2

)
and obtain

αk(z, u) =
k∑

j=1

[ k∏

i=j

(
1− 2(1 + u)ȳi(z)(yi(z)− yi−1(z))2

z2

)]−1[
(1 + u)(ȳj(z)− ȳj−1(z))

− yj(z) + yj−1(z)
]
,

(345)

since α0(z, u) = 0. However, the dominant term occurs for i = j = k and yk−1, ȳk−1 will

not contribute to this term so it follows that

αk(z, u) ∼ z2((1 + u)ȳk(z)− yk(z))

z2 − 2(1 + u)ȳ3
k(z)

. (346)

In order to obtain the expectation from the above, one can substitute in the local ex-

pansions for yk and ȳk−1 and compute the coefficients [znup]αk(z, u). For computing the

second moment, we differentiate Ak twice with respect to v and then evaluate at v = 1.
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After denoting this second derivative by βk(z, u), the following recursion arises

(
1− 2(1 + u)ȳk(z)

(
1− ȳ2

k(z)

z

)2

)
βk(z, u) = βk−1(z, u) +

2(1 + u)αk(z, u)
(
αk(z, u) + 2ȳk(z)

)
(
1− ȳ2

k(z)

z

)2

+
8(1 + u)ȳ2

k(z)α2
k(z, u)

z
(
1− ȳ2

k(z)

z

)3
.

(347)

Its solution will be obtained in a similar manner to the that of the recursion for αk. Then

the dominant term is

βk(z, u) ∼ 2(1 + u)ȳ2
k(z)αk(z, u)

[
z2(αk(z, u) + 2ȳk(z)) + 4ȳ3

k(z)α2
k(z, u)

]

z2(z2 − 2(1 + u)ȳ3
k(z))

, (348)

which enables one to look at the behaviour of the coefficients [znup]βk(z, u) around the

singularity ρ2
k and it ultimately leads to the variance.

Naturally, one is interested in computing all the moments for the size of the ancestor tree

and finding a suitable function for them. A very useful technique developed by Panholzer

in [30] can be employed: differentiate the generating function for the size of the ancestor

tree, A(z, u, v), p-times with respect to u and evaluate at u = 0. Then the following

representation can be used

NuD
p
uAk(z, u, v) = p![up]Ak(z, u, v) , (349)

where Du denotes the differential operator with respect to u and Nu is the evaluation

operator at u = 0. The next result was adjusted accordingly for our monotonic non-

crossing trees.

4.95 Lemma [14] For p ≥ 1, m = O(
√
n ) and n→∞ we have the following

NuD
p
uAk(z, u, v) ∼ (p− 1)!

ϕ′′(Tk(z))2p−1

(
2(p− 1)

p− 1

)(
Ck(z)ϕ′′(Tk(z))

)p (zv)2p−1

(1− zvϕ′(Tk(z)))2p−1
,

(350)

with

Ck(z) =

k∑

l=1

(ϕ′(Tk(z)))k−lϕ(Tl(z))
k−l∏
s=l

(
ϕ′(Tk(z))− ϕ′(Ts(z))

) . (351)

Extracting the coefficients of vm from (350) gives

[vm]NuD
p
uAk(z, u, v) ∼ m2p−2

(p− 1)!

(Ck(z)ϕ′′(Tk(z)))p

ϕ′′(Tk(z))2p−1(ϕ′(Tk(z)))2p−1
(zϕ′(Tk(z)))m . (352)
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Let Xn,p be the random variable which counts the size of the ancestor tree of p ran-

domly selected nodes in monotonic non-crossing trees of size n. We wish to compute the

probabilities

P{Xn,p = m} =
[znupvm]Ak(z, u, v)(

n
p

)
Tn

, (353)

so the coefficients of zn need to be extracted from (352). This can be done in the same

fashion as for simply generated trees in [30] and together with the evaluation

Ck(ρk) = ϕ(τk) + T ′k−1(ρk) , (354)

which follows by induction, one obtains the following result (slightly adjusted to depict

the class of monotonically labelled non-crossing trees).

4.96 Lemma [14] The probability that the size of the ancestor tree of p randomly chosen

nodes in a monotonic non-crossing tree of size n is equal to m is asymptotically

P{Xn,p = m} =
[znvm]NuD

u
pAk(z, u, v)

p!
(
n
p

)
[zn]Tk(z)

∼ 2m2p−1

np(p− 1)!

( σk√
2

)2p

e−
σ2
km

2

2n , (355)

where σk =
√
ρ2
kϕ
′′(τk)(ϕ(τk) + T ′k−1(ρk)).

By making an appropriate substitution for m, one obtains the following result which

characterises the limiting distribution for our parameter.

4.97 Theorem [14] For m = x
√
n+ o(

√
n ) and fixed p ≥ 1 we have

√
nP{Xn,p = m} ∼ 2

(p− 1)!

( σk√
2

)2p

x2p−1e−
σ2
kx

2

2

= g(p, 2,

√
2

σk
;x) , (356)

where g(b, h,B;x) = |h|
Γ(b)B

(
x
B

)bh−1
e−( x

B
)h is the density function of the generalised Gamma

distribution. Thus the limiting distribution of the normalised random variable Xn,p√
n

is

asymptotically for fixed p ≥ 1 and n → ∞ a generalised Gamma distribution with

parameters (p, 2,
√

2
σk

;x).
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4.6.4 The Steiner distance

We have already seen that the Steiner distance is closely related to the size of the ancestor

tree and this shows yet again in the following result.

4.98 Theorem The Steiner distance for monotonic non-crossing trees is

Sk(z, u, v) =

Ak(z, u, v)
(

1− 2vyk(z)(
1− y

2
k

(z)

z

)2

)
− 2(1−v)y2

k(z)(
1− y

2
k

(z)

z

)2

1− 2yk(z)(
1− y

2
k

(z)

z

)2

. (357)

The results from [14] are applied to this parameter as well. Instead of computingNuD
p
uSk(z, u, v)

one need only find NuD
p
uAl(z, u, v) for 1 ≤ l ≤ k since

NuD
p
uSk(z, u, v) =

1− zvϕ′(Tk(z))

1− zϕ′(Tk(z))
NuD

p
uAk(z, u, v)

+
k−1∑

l=1

k−1∏
s=l

z(1− v)ϕ′(Ts(z))

k∏
s=l

(1− zϕ′(Ts(z)))

NuD
p
uAl(z, u, v) . (358)

From [14] we have that

NuDuSk(z, u, v) ∼ 1− zvϕ′(Tk(z))

1− zϕ′(Tk(z))
NuD

p
uAk(z, u, v) , (359)

for p ≥ 2 fixed, m = O(
√
n ) and n → ∞. Using the formula (350), one can show the

following for the random variable Yn,p which counts the Steiner distance of p randomly

selected nodes in monotonic non-crossing trees of size n

P{Yn,p = m} =
[znvm]NuD

p
uSk(z, u, v)

p!
(
n
p

)
[zn]Tk(z)

∼ 2m2p−3

np−1(p− 2)!

( σk√
2

)2(p−1)

e−
σ2
km

2

2n , (360)

where σk is as defined in the section for the size of the ancestor tree. Upon setting

m = x
√
n+ o(

√
n ) we obtain

√
nP{Yn,p = m} ∼ 2

(p− 1)!

( σk√
2

)2p

x2p−1e−
σ2
kx

2

2

= g(p− 1, 2,

√
2

σk
;x) , (361)
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which means that the limiting distribution of the normalised random variable Yn,p√
n

is

asymptotically for fixed p ≥ 1 and n → ∞ a generalised Gamma distribution with

parameters (p− 1, 2,
√

2
σk

;x).

Certain classes of monotonically labelled trees (binary, t-ary, ordered) and their properties

were introduced by Prodinger and Urbanek in [38]. In this chapter we have used the

models proposed in their paper to analyse our usual parameters. In order to produce

general results it was useful to consider particular cases first. Although sometimes tedious,

this method enabled us to gauge the behaviour of the parameters.

Very recently, Gittenberger and Panholzer, [14], have derived general results for monoton-

ically labelled random trees which we have applied in our study, especially when limiting

distributions were determined.



5

Conclusion

There’s nothing that keeps its youth,

So far as I know, but a tree and truth.

The Deacon’s Masterpiece

Oliver Wendell Holmes

The results presented in this thesis pertain to specific classes of increasing and monotonic

trees and they constitute only a very small fraction of the vast domain that tree structures

occupy in areas such as analysis of algorithms, combinatorics and theoretical computer

science. Trees appear everywhere, from the studies of chemical compounds (for example

[34], [42]) to financial, genetic and statistical modelling.

In recent years, many general techniques have been found which make it possible to

learn characteristics of complicated new tree structures. Some notable advances are the

methods employed for determining limiting distributions for just about any conceivable

tree parameter. The development of the “quasi-power theorem”, as described in [18], is

particularly useful in this respect.

The tools required for studying tree structures rely on many fields of mathematics such as

algebra, approximation theory, complex analysis and differential equations. Our approach

has been through generating functions and singularity analysis. These enable one to

understand the behaviour of several parameters from which we have presented two that

describe the distances between nodes, namely the size of the ancestor tree and the Steiner

distance. Naturally, there are many other ways of understanding trees, for instance from

algebraic, geometric and graph theoretic (see [4]) points of view.

Although tree structures have been the subject of much study there are many important

problems to be solved. For example, accurate results about a basic parameter, tree height,

have only recently been produced. Distances between nodes and limiting distributions

in priority trees (one of the most useful structures for implementing queues) have not

appeared as yet.

It is through the analysis of trees that many interesting methods and theories have come

to light and as their understanding grows so does their value. Whichever way one comes

128
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across these structures, there will always be scope for further investigation. Indeed, Knuth,

[22], refers to trees as being

the most important nonlinear structures that arise in computer algorithms.



6

Appendix

There is, I conceive, scarcely any tree that may

not be advantageously used in the various

combinations of form and color.

William Gilpin

We present some numerical experiments which deal one of the parameters analysed in the

thesis. Consider the generating function for the size of the ancestor tree in monotonic

ordered trees. We will illustrate it for small values of the tree size n and number of labels

p. If n = 3 say, then p can have four values p = 0, . . . , 3. In the figures which follow, we

present all the possible cases and their respective contribution to the size of the ancestor

tree.
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Figure 6.1: All monotonic ordered trees of size n = 3; the contribution to the generating
function for the size of the ancestor tree is 18z3.
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Figure 6.2: All monotonic ordered trees of size 3 with the the root labelled; the size of
the ancestor tree is 1 and the contribution to the generating function is 18uvz3.
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Figure 6.3: All monotonic ordered trees of size 3 with one node, other than the root,
labelled; the size of the ancestor tree is 2 and the contribution to the generating function
is 18uv2z3.
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Figure 6.4: All monotonic ordered trees of size n = 3 with one node, other than the root,
labelled; size of the ancestor tree for the first nine trees is 2 and their contribution to the
generating function is 9uv2z3; size of the ancestor tree for the last nine trees is 3 and their
contribution is 9u2v3z3.
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Figure 6.5: All monotonic ordered trees of size 3 with one node, other than the root,
labelled; the size of the ancestor tree is 2 and the contribution to the generating function
is 18uv2z3.
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Figure 6.6: All monotonic ordered trees of size 3 with one node, other than the root,
labelled; the size of the ancestor tree for the first nine trees is 2 and their contribution is
9uv2z3; the size of the ancestor tree for the last nine trees is 3 and their contribution is
9u2v3z3.
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Figure 6.7: All monotonic ordered trees of size 3 with the root and one other node
labelled; the size of the ancestor tree is 2 and the contribution to the generating function
is 18u2v2z3.
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Figure 6.8: All monotonic ordered trees of size n = 3 with the root and one other node
labelled; the size of the ancestor tree for the first nine trees is 2 and their contribution is
9u2v2z3; the size of the ancestor tree for the last nine trees is 3 and their contribution is
9u2v3z3.
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Figure 6.9: All monotonic ordered trees of size 3 with the root and one other node
labelled; the size of the ancestor tree is 2 and the contribution to the generating function
is 18u2v2z3.
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Figure 6.10: All monotonic ordered trees of size n = 3 with the root and one other node
labelled; the size of the ancestor tree for the first nine trees is 2 and their contribution is
9u2v2z3; the size of the ancestor tree for the last nine trees is 3 and their contribution is
9u2v3z3.
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Figure 6.11: All monotonic ordered trees of size 3 with two nodes other than the root
labelled; the size of the ancestor tree is 3 and their contribution to the generating function
is 18u2v3z3.
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Figure 6.12: All monotonic ordered trees of size 3 with three nodes labelled; the size of
the ancestor tree is 3 and their contribution to the generating function is 18u3v3z3.
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Paris-Sud-Orsay, 1979.

[8] P. Flajolet and M. Noy. Analytic combinatorics of non-crossing configurations. INRIA

Rocquencourt, Research Report number 3196, 1997.

[9] P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM

Journal of Discrete Mathematics, 3:216–240, 1990.

[10] P. Flajolet and R. Sedgewick. The average case analysis of algorithms: complex

asymptotics and generating functions. INRIA Rocquencourt, Research Report num-

ber 2026, 1993.

[11] P. Flajolet and R. Sedgewick. An Introduction to the Analysis of Algorithms.

Addison-Wesley, 1996.

[12] P. Flajolet and R. Sedgewick. The average case analysis of algorithms: multivariate

asymptotics and limit distributions. INRIA Rocquencourt, Research Report number

3162, 1997.

[13] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Appears on the following

website http://pauillac.inria.fr/algo/flajolet/Publications/books.html,

2005.

[14] B. Gittenberger and A. Panholzer. Some results for monotonically labelled simply

generated trees. Discrete Mathematics and Theoretical Computer Science, 2005.

135



[15] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-

Wesley, 1994.

[16] D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms.

Birkhäuser, 1982.

[17] F. Harary and E. M. Palmer. Graphical Enumeration. Academic Press, 1973.

[18] H.-K. Hwang. On convergence rates in the central limit theorems for combinatorial

structures. European Journal of Combinatorics, 19:329–343, 1998.

[19] S. Janson. The Wiener index of simply generated random trees. Random Structures

and Algorithms, 22(4):337–358, 2003.

[20] P. Kirschenhofer. On the average shape of monotonically labelled tree structures.

Discrete Applied Mathematics, 7:161–181, 1984.

[21] P. Kirschenhofer and H. Prodinger. On the average oscillation of the contour of

monotonically labelled ordered trees. Proceedings of the Second World Conference

on Mathematics at the Service of Man (Las Palmas), pages 394–399, 1982.

[22] D. E. Knuth. The Art of Computer Programming: Volume 1, Fundamental Algo-

rithms. Addison-Wesley, 2002.

[23] H. Mahmoud and R. Neininger. Distribution of distances in random binary search

trees. Annals of Applied Probability, 13(1):253 –276, 2003.

[24] A. Meir and J. W. Moon. On the altitude of nodes in random trees. Canadian

Journal of Mathematics, 30:997–1015, 1978.

[25] K. Morris. On some parameters in monotonically labelled trees. In Mathematics and

Computer Science III: Algorithms, Trees, Combinatorics and Probabilities, Trends in

Mathematics, pages 261–263. Birkhäuser, 2004.
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