The Role of Erythrocyte Membrane Proteins in Haemolytic Anaemias in South African Populations

Lara Dominique Vallet

University of the Witwatersrand

The Role of Erythrocyte Membrane Proteins in Haemolytic Anaemias in South African Populations

Lara Dominique Vallet

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfillment of the requirements for the degree of Master of Science.

Johannesburg, 2005

DECLARATION

I declare that this dissertation is my own unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university.

I declare that ethical clearance was obtained from the Medical School Ethics Committee of the University of the Witwatersrand for the purpose of acquiring blood samples from normal and affected individuals. Clearance certificate #25/1/92.

Lara Dominique Vallet

This 31st day of October, 2005

ABSTRACT

The erythrocyte carries gases between the cells and the lungs, and has to distort to negotiate narrow splenic sinuses and capillaries. This distortion necessitates a high surface area to volume ratio that is maintained by the erythrocyte membrane skeleton, a network of proteins including spectrin and protein 4.1. The skeleton anchors the lipid bilayer through attachment to integral membrane proteins, notably the anion exchange protein, band 3. Abnormalities of the erythrocyte membrane proteins cause loss of cell elasticity and ultimately the erythrocytes become prematurely trapped in the spleen where they are phagocytosed, resulting in haemolytic anaemia.

Three mutations causing band 3-deficient hereditary spherocytosis (HS), a haemolytic anaemia characterised by spherical erythrocytes, were located using restriction enzyme analysis and DNA sequencing. Proband A (Black) is heterozygous for band 3 Pinhal (R490H) and has mild clinical symptoms. Proband B and his mother (Caucasian) are heterozygous for band 3 Bicetre (R490C) and have severe anaemia requiring transfusions and splenectomy, respectively. These results confirm codon 490 as a hotspot for mutations and indicate the effect of different amino acid substitutions in the same position on clinical severity. Proband C (Black) is homozygous for a novel mutation (E508K) for which her parents are heterozygous. The proband is severely affected and transfusiondependent whereas her father has moderate anaemia and her mother is asymptomatic. It is speculated that a secondary factor modulates their clinical symptoms. All of these mutations occur in a CpG dinucleotide, a common source of DNA mutations, and are located within the highly conserved exon 13, which encodes the third to fifth α -helices and the second extracellular loop of the transmembrane region of band 3. The mutations are likely to alter the conformation of band 3, impairing its insertion into the erythrocyte membrane. No causative mutations were located in another 12 band 3-deficient HS kindred using restriction enzymes and single strand conformation polymorphism analysis.

Ten protein 4.1-deficient patients with hereditary elliptocytosis, a haemolytic anaemia characterised by elliptical erythrocytes, were also studied. Immunoblot analyses ruled out abnormally sized protein 4.1 and three known DNA mutations were excluded using restriction enzyme analysis. Further studies are required to elucidate the cause of the haemolytic anaemia in these kindred.

This study advanced our knowledge of the molecular basis of HS in South African kindred and highlighted the susceptibility of CpG dinucleotides to mutations.

CONFERENCE PRESENTATIONS

Poster Presentations

4

Vallet, L.D.; Lyons, C.; Bracher, N.; Sherman, G.; Coetzer, T.L. A Novel Erythrocyte Band 3 Mutation Modulates Clinical Severity of Hereditary Spherocytosis, **IUBMB/SASBMB Special Meeting on the Biochemical and Molecular Basis of Disease,** Cape Town, RSA, 19-23 November 2001

Vallet, L.D.; Lyons, C.; Bracher, N.; Sherman, G.; Coetzer, T.L. A Novel Erythrocyte Band 3 Mutation Modulates Clinical Severity of Hereditary Spherocytosis, **Wits Medical School Research Day**, August 2003

Vallet, L.D.; Naratam, N.; Coetzer, T.L. Identification Of Two Mutations In The Human Erythrocyte Band 3 Gene In South African Kindred With Hereditary Spherocytosis, **Wits Medical School Research Day**, 04 August 2004

Vallet, L.D.; Naratam, N.; Coetzer, T.L. Identification Of Two Mutations In The Human Erythrocyte Band 3 Gene In South African Kindred With Hereditary Spherocytosis, **SASBMB Molecules-R-Us Conference**, Stellenbosch, RSA, 16-20 January 2005 "Now what I want is, Facts. Teach these boys and girls nothing but Facts. Facts alone are wanted in life. Plant nothing else and root out all else... Stick to the Facts, Sir"

Charles Dickens (1812-1870) in Hard Times (1854)

ACKNOWLEDGEMENTS

I wish to thank:

- Professor Theresa L. Coetzer for her guidance and support throughout this project.
- All who have stood by me through the course my studies.
- Medical Research Council of South Africa. National Research Foundation, Medical Faculty Research Endowment Fund and National Health Laboratory Service for financial assistance.

CONTENTS

DECLARATIONiii
ABSTRACTiv
CONFERENCE PRESENTATIONSv
ACKNOWLEDGEMENTSvii
LIST OF FIGURESxii
LIST OF TABLESxvi
LIST OF ABBREVIATIONS AND SYMBOLSxvii
1. CHAPTER I: INTRODUCTION
1.1. The Biology of the Erythrocyte
1.2. The Englisheevite Membrane Skalaton
1.3. The Erythrocyte Memorale Skeleton
1.3.2. Vertical Interactions
1.4 Rand 3 0
1.4. Daily 5
1.4.2 The Band 3 Protein 10
14.3 The Band 3 Transmembrane Anion Exchange Domain 13
1 4 4 The Band 3 Cytoplasmic Domain and the Membrane Skeleton 14
1 4 5 Biogenesis and Processing of Band 3 16
1.4.6. Band 3 Self Association: A Marker of Ervthrocyte Age
1.5. Protein 4.1
1.5.1. The Protein 4.1 Gene
1.5.2. Erythroid Protein 4.1
1.5.3. The Protein 4.1 Membrane Binding Domain
1.5.4. The Protein 4.1 Spectrin-Actin Binding Domain
1.5.5. Conversion of Protein 4.1b to Protein 4.1a: An Indicator of

		Cell Age	29
	1.6. Eryth	rocyte Membrane Skeleton Disorders	29
	1.7. Hered	litary Spherocytosis	30
	1.7.1.	Profile of Hereditary Spherocytosis	30
	1.7.2.	Clinical and Molecular Diagnosis of Hereditary Spherocytosis	30
	1.7.3.	Pathogenesis of Hereditary Spherocytosis	32
	1.7.4.	The Role of Band 3 in Hereditary Spherocytosis	32
	1.7.5.	Factors Modulating Band 3 Deficiency	36
	1.7.6.	The Band 3 Memphis Polymorphism	36
	1.8. Hered	litary Elliptocytosis	37
	1.8.1.	Profile of Hereditary Elliptocytosis	37
	1.8.2.	Clinical and Molecular Diagnosis of Hereditary Elliptocytosis.	37
	1.8.3.	The Role of Protein 4.1 in Hereditary Elliptocytosis	39
	1.9. Aim o	of Study	42
	1.9.1.	Band 3 Strategy	42
	1.9.2.	Protein 4.1 Strategy	42
2.	СНАРТЕ	R 2: METHODOLOGY	43
	2.1. Pati	ient Data and Sample Storage	43
	2.2. Scr	eening of Erythrocyte Protein 4.1 for Size Variations	44
	2.2.1.	Separation of Erythrocyte Membrane Proteins	44
	2.2.2.	Western Blot of Erythrocyte Membrane Proteins	46
	2.2.3.	Immunoblot to Detect Erythrocyte Protein 4.1	47
	2.3. DN	A Extraction	48
	2.4. DN	A Quantitation	49
	2.5. Prir	ner Design and Storage	49
	2.6. Pol	ymerase Chain Reaction Protocols	53
	2.7. Vis	ualisation of PCR Product	55
	2.8. DN	A Precipitation	56
	2.9. Scr	eening for Known DNA Mutations using Restriction Enzyme	
	Ana	alysis	56
	2.10. Sing	gle Strand Conformation Polymorphism (SSCP) Analysis	61
	2.10.1	. Amplification and Preparation of SSCP Samples	61

	2.10.2. Prepa	ration of the SSCP Gel	63
	2.10.3. SSCF	Gel Electrophoresis	64
	2.11. DNA Seq	uencing	64
	2.11.1. DNA	Sequencing Reaction	64
	2.11.2. Prepa	ration of the Sequencing Gel	66
	2.11.3. DNA	Sequencing Gel Electrophoresis	67
3.	CHAPTER 3: F	RESULTS	68
	3.1. Band 3 Cod	on 490 Hotspot Mutations in HS: R490H and R490C.	68
	3.1.1. Clinio	cal Profiles	69
	3.1.2. Eryth	rocyte Membrane Protein Analysis	70
	3.1.3. Band	3 DNA Restriction Enzyme Analysis	73
	3.1.4. Direc	t DNA Sequencing of Band 3 Exons 13	75
	3.2. A Novel Ba	nd 3 Mutation: E508K	77
	3.2.1. Clinie	cal Profiles	77
	3.2.2. Eryth	rocyte Membrane Protein Analysis	78
	3.2.3. Band	3 DNA Restriction Enzyme Analysis	78
	3.2.4. Taq1	Analysis of Unrelated Subjects	80
	3.2.5. Direc	t DNA Sequencing of Band 3 Exons 13	80
	3.2.6. Scree	ning for Modulating Factors	82
	3.3. Detection of	the Band 3 Memphis Polymorphism	83
	3.3.1. Clinio	cal Profile	83
	3.3.2. Band	3 DNA Restriction Enzyme Analysis	83
	3.3.3. SSCI	Analysis	83
	3.3.4. Direc	t DNA Sequencing of Band 3 Exon 4	84
	3.4. Analysis of	Band 3-Deficient Hereditary Spherocytosis Patients	85
	3.4.1. Band	3 DNA Restriction Enzyme Analysis	85
	3.4.2. SSCH	Analysis and DNA Sequencing	93
	3.5. Analysis of	Protein 4.1-Deficienct Hereditary Elliptocytosis Patier	1ts94
	3.5.1. Scree	ning of Protein 4.1 for Size Variations	95
	3.5.2. Prote	in 4.1 Restriction Enzyme Analysis	95
4.	DISCUSSION.		99
	4.1. Pathogenes	is of Hereditary Spherocytosis	99

4.2. HS Erythrocyte Morphology	99
4.3. Position of Band 3 Mutations Causing HS	101
4.4. HS due to Band 3 Codon 490 Hotspot Mutations	101
4.4.1. Clinical Severity	103
4.4.2. Band 3 Deficiency	103
4.4.3. Band 3 Pinhal and Band 3 Bicetre	105
4.4.4. Possible Mechanisms of Band 3 Deficiency	106
4.5. HS Due To a Novel Band 3 Mutation: E508K	107
4.5.1. Clinical Severity	107
4.5.2. Band 3 Deficiency	107
4.5.3. Mutant Band 3 E508K	108
4.5.4. Possible Modulating Factors for the Codon 508 Mutation	109
4.6. The CpG Mutations	111
4.7. Anion Exchange Functions	113
4.8. Protein 4.2 Deficiency	113
4.9. Analysis of 12 Band 3-Deficient Hereditary Spherocytosis Patient	ts114
4.9.1. Exclusion of Known and Novel Mutations	114
4.9.2. Nucleotide Changes in Two Patients	115
4.10. Analysis of Protein 4.1-Deficient Hereditary Elliptocytosis Patien	ts115
4.11.Conclusions	116
APPENDIX A: Band 3 Mutations	118
REFERENCES	124
	····
LIST OF SUPPLIERS OF CHEMICALS AND EQUIPMENT	139

LIST OF FIGURES

CHAPTER 1: INTRODUCTION

Figure 1.1: Schematic Model of the Erythrocyte Membrane	3
Figure 1.2: Separation of Erythrocyte Membrane Proteins using	
Fairbanks Polyacrylamide Gel Electrophoresis	5
Figure 1.3 Organisational Model of Human Erythrocyte Band 3	11
Figure 1.4: Topographical Model of the Membrane Portion of Erythrocyte	
Band 3	12
Figure 1.5: Anion Exchange in the Erythrocyte	15
Figure 1.6: The Variable Motifs of Protein 4.1	20
Figure 1.7: Alternative Splicing of Protein 4.1 mRNA and the Resultant	
Functional Domains of Protein 4.1	22
Figure 1.8: Models for Protein 4.1-Glycophorin C Binding	24
Figure 1.9: Model for Calmodulin Regulation of Protein 4.1-Band 3 Binding	25
Figure 1.10: Diagrammatic Representation of the Protein 4.1 Spectrin-Actin	
Binding Domain	27
Figure 1.11: Pathogenesis of Erythrocyte Membrane Disorders	33

CHAPTER 3: RESULTS

Figure 3.1: HS Pedigree for Family	B69

Figure 3.2: Comparison of Fairbanks SDS-PAGE Densitometry Analysis of

HS Patient and Control7	1
Figure 3.3: Comparison of Laemmli SDS-PAGE Densitometry Analysis of	
HS Patient and Control72	2
Figure 3.4: Acil Restriction Enzyme Analysis of Codon 49074	4
Figure 3.5: DNA Sequence of a Portion of Exon 13 of Proband A Indicating	
the Pinhal Mutation	5
Figure 3.6: DNA Sequence of a Portion of Band 3 Exon 13 of Proband B	
Indicating the Bicetre Mutation	6
Figure 3.7: HS Pedigree for Kindred C7	7
Figure 3.8: <i>Taq</i> I Analysis of Band 3 Exons 12 and 13 of Kindred C79	9
Figure 3.9: TaqI Digestion of Exons 12 and 13 in Random Unrelated	
Samples)
Figure 3.10: DNA Sequence of a Portion of Exon 13 of Family C Indicating	
a Novel Nucleotide Change	
Figure 3.11: SSCP Pattern for Band 3 Exon 483	•
Figure 3.12: DNA Sequence of a Portion of Band 3 Exon 4 of Proband D	
Indicating the Memphis Polymorphism84	ł
Figure 3.13: Avall Digest for the Band 3 Osnabruck I / Lyon Mutation87	,
Figure 3.14: <i>Eco811</i> Digest for the Band 3 Mondego Polymorphism	3
Figure 3.15: <i>Acil</i> Digest for the Band 3 Tuscaloosa Mutation)
Figure 3.16: <i>TaqI</i> Digest for the Band 3 Pribram Mutation90)
Figure 3.17: <i>AciI</i> Digest for the Band 3 Pinhal/Bicetre Mutation9	1
Figure 3.18: <i>MspAI1</i> Digest for Band 3 Exon 760 Hotspot and Most	
Mutations	2

Figure 3.24: Immunoblot of Various Protein 4.1 Deficient Patients	
Figure 3.25: <i>Hsp</i> 92II Restriction Analysis of Exon 4 for Protein 4.1 Madrid	
and Protein 4.1 Lille	97
Figure 3.26: <i>Xmn</i> I Analysis of Exon 17 for Protein 4.1 Aravis	98

CHAPTER 4: DISCUSSION

Figure 4.1: Schematic Model of Hypothetical Mechanisms of Spherocyte	
Formation in Band 3-Deficient HS	100
Figure 4.2: Band 3 Transmembrane Region	102
Figure 4.3: Diagrammatic Representation of Arginine, Histidine and	
Cysteine	105
Figure 4.4: Diagrammatic Representation of Glutamic Acid (Glutamate)	
and Lysine	109
Figure 4.5: Spontaneous Deamination of 5-Methylcytosine to Thymine	112

LIST OF TABLES

CHAPTER 2: METHODOLOGY

Table 2.1: Laemmli SDS-PAGE Gel Components	.45
Table 2.2: Primer Pairs, Annealing Temperatures (T _a) and Expected Fragment	
Sizes for Band 3 Exons	51
Table 2.3: Primer Pairs, Annealing Temperatures (T _a) and Expected Fragment	
Sizes for Protein 4.1 Exons 4 and 17	.53
Table 2.4: Band 3 Mutation Restriction Enzyme Analysis	58
Table 2.5: Protein 4.1 Mutation Restriction Enzyme Analysis	59
Table 2.6: Restriction Enzyme Protocols	.60
Table 2.7: SSCP Restriction Enzyme Digests	62
Table 2.8: SSCP Gel Components for 60ml 0.5x MDE Gel Solution	63
Table 2.9: Sequencing Gel Components for 60ml 8% Acrylamide Gel Solution	66
CHAPTER 3: RESULTS	

CHAPTER 3: RESULTS

Ą.

Table 3.1: Hereditary Spherocytosis Patients with Band 3 Deficiency	86
Table 3.2: Hereditary Elliptocytosis Patients with Protein 4.1 Deficiency	94

ABBREVIATIONS

General Abbreviations

Abbreviation	Meaning
Α	Adenine
A _{260/280}	Absorbance of UV light at 260nm and 280nm
AE1/2/3	Anion exchange protein 1/2/3
ATP	Adenosine 5'-triphosphate
Вр	Basepair
BSA	Bovine serum albumin
С	Cytosine
cAMP	Adenosine 3', 5'-cyclic monophosphate
cDNA	Complementary deoxyribonucleic acid
Ci	Curie
Cpm	Counts per minute
dATP	Deoxyadenosine triphosphate
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleoside triphosphate
ddNTP	Dideoxynucleoside triphosphate
dpm.µg ⁻¹	Disintegrations per minute per microgram
DTT	Dithiothreitol
EDTA	Ethylenediamine tetraacetic acid
ERM	Ezrin-Radixin-Moesin
Fl	Femtolitre
G	Guanine
g.dl ⁻¹	Grams per decilitre
HE	Hereditary Elliptocytosis
HS	Hereditary Spherocytosis
Kb	Kilobases
kD	KiloDalton
М	Molar
mA	MilliAmps
MAGUK	Membrane-associated guanylate kinase
MCV	Mean cell volume
MDE TM	Mutation Detection Enhancement
mM	MilliMolar
μCi	MicroCurie
Nm	Nanometre
ORF	Open reading frame
PAGE	Polyacrylamide gel electrophoresis
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PTC	Premature termination codon
RNA	Ribonucleic acid
Rpm	Revolutions per minute
SAP	Shrimp alkaline phosphatase

SDS	Sodium dodecylsulphate	
SDS-PAGE	Sodium dodecylsulphate polyacrylamide gel	
	electrophoresis	
SSCP	Single strand conformational polymorphism	
Т	Thymine	
TAE	Tris-acetate-EDTA	
TBE	Tris-borate-EDTA	
TE	Tris-EDTA	
TEMED	N,N,N',N'-tetramethylethylenediamine	
Tris	Hydroxymethyl methylamine	
U	Units	
UV	Ultra-violet	
Amino Acid Abbreviations and Codons		

Amino Acid Abbreviations and Codons

Abbreviation	Amino Acid	Codon*
A	Alanine	GCG/A/T/C
С	Cysteine	TGT/C
D	Aspartic Acid	GAT/C
Е	Glutamic Acid	GAG/A
F	Phenylalanine	TTT/C
G	Glycine	GGG/A/T/C
Н	Histidine	CAT/C
Ι	Isoleucine	ATA/T/C
K	Lysine	AAG/A
L	Leucine	TTG/A or CTG/A/T/C
Μ	Methionine (Initiation)	ATG
N	Asparagine	AAT/C
P	Proline	CCG/A/T/C
Q	Glutamine	CAG/A
R	Arginine	CGG/A/T/C
S	Serine	AGT/C
Т	Threonine	ACG/A/T/C
V	Valine	GTG/A/T/C
W	Tryptophan	TGG
Y	Tyrosine	TAT/C

*In the mRNA thymine is replaced by uracil

The termination codon (X) is encoded by nucleotides TTG/A or TGA