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C H A P T E R       5 

FITTING MODELS TO THE ECOLOGICAL DATA SET 

 

5.1       Background to Ecological Data Set 

 

The ecological data set originates from a study conducted in order to determine if the 

suppression of water hyacinth (Eichhornia crassipes) – a potent water weed – under 

biological control can be aided by spraying the plants with a sublethal dosage of 

herbicide during a single spraying event, and if this is affected by the nutrients 

(phosphates and nitrates) in the water (Kirton, 2005). A sublethal dosage of 0.8% of a 

glyphosate herbicide was applied to water hyacinth plants grown at three different 

nutrient levels. Control plants were grown in identical conditions, but without 

herbicide. Two pairs of water hyacinth weevils, Neochetina eichhorniae, were added 

to each plant. Plant growth parameters and insect feeding intensity were measured 

weekly over an eight week period, resulting in nine measurements of each variable 

per plant.  

 

The purpose of spraying the plants with the sublethal dosage of herbicide was to stunt 

the growth of the plants, but not to negatively affect the biological control agents. If 

the dosage was too high, it could result in total loss of the plants, resulting in loss of 

the biological control agents as well, which would then allow new plants to grow 

without suppression from the biological control agents. The growth rate of unsprayed 

plants is dependent on the amount of nutrients in the water. Therefore, if the growth 

rate of sprayed plants also increases with increasing nutrient levels in the water, the 
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success of this integrated method of control could be dependent on the amount of 

nutrients in the water. 

 

Findings of the study were that sprayed plants stopped growing under the influence of 

a sublethal herbicide dose and nutrients had no effect on sprayed plant growth. For all 

nutrient levels, treated plants underwent very little asexual reproduction, and leaf 

production halted.  

 

At the onset of the study, four water hyacinth plants, removed from the same pool, 

were placed into circular 50ℓ plastic tubs containing 42ℓ of water and a mix of 

nutrients, on a laboratory roof top at the University of the Witwatersrand. As the 

plants had been grown in the same conditions over a long period of time, the growth 

forms (which depend on the amount of space, nutrients and light available to the 

plants) of the plants were all the same, and the size of the plants were very similar. 

Three nutrient levels were used: low, 0.5mg Nitrate/ℓ and 0.08mg Phosphate/ℓ; 

medium, 1.5mg Nitrate /ℓ and 0.22mg Phosphate /ℓ; and high, 3mg Nitrate /ℓ and 

0.43mg Phosphate /ℓ. These levels were chosen using country-wide water quality 

analyses from the South African Institute for Water Quality Service (IWQS) recording 

stations. The ratio of nitrogen to phosphorus was approximately 7:1 in each case, 

which has been suggested to yield optimum growth of water hyacinth plants (Wilson, 

2002). Thirty tubs were used in total. These tubs were then divided, by means of a 

random allocation process, into the three nutrient groups. Half of the tubs, selected at 

random, in each nutrient group were sprayed with the sublethal dosage of herbicide at 

the beginning of the experiment, and the other half were sprayed with water. The 

experimental tubs were moved to a different location on the roof for spraying, and a 
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screen was placed up to avoid spraying the control tubs. Five experimental tubs and 

five control tubs were used for each nutrient level. Water and nutrients were replaced 

weekly during the course of the experiment. The plastic tubs were individually 

enclosed in a net canopy to ensure that the weevils remained on the plants. 

  

Four plants were placed into each tub to ensure that growth of the plants was still 

possible. Two N. eichhorniae weevil pairs were released onto each plant in all thirty 

tubs, resulting in an initial weevil density of 4 weevils/plant or 16 weevils/tub, 

matching field infestation rates. Two days before the herbicide was applied, two water 

hyacinth rosettes were randomly chosen from each of the tubs and tagged, and weekly 

measurements were made on these plants. The length of the petiole of the second 

youngest leaf, which is the distance from the point of attachment at the rhizome to the 

base of the lamina was one of the plant performance measurements taken. This is an 

important measure as it reveals information about the state of health and growth form 

of the plant. 

 

5.2        Data Exploration 

 

The ecological data set contains nine measurements on each of the sixty plants, 

resulting in 540 measurements in total, which is larger compared to the PR data set, 

which has a total of 27 subjects measured at four occasions each, resulting in a total of 

108 measurements. 
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The response analysed was the length of the second petiole. The plot of these data 

over time, separated by nutrient level and herbicide application, appears in Fig. 5.1. 

The petiole length of a healthy plant is expected change from week to week as new 

leaves are formed. The plots show that the second petiole length of the sprayed (S) 

plants started off being similar to the length of the unsprayed (NS) plants, but over 

time the unsprayed plants showed a bigger decrease in petiole length compared to the 

sprayed plants, before reaching a constant value. This same pattern is displayed for all 

three nutrient levels (H = high, M = medium, L = low), and a comparison of the 

values at each week, compared between nutrient levels, shows that they appear to be 

very similar. The large change in leaf 2 petiole length observed for the unsprayed 

Fig. 5.1: Means plot of second petiole (leaf 2) length, separated by nutrient 
level and herbicide application. 

 = mean ±1.96×SE 

Nutrients 
H = High 
M =  Medium 
L = Low 
 

Herbicide 
S = Sprayed 
NS = Unsprayed 
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plants is thought to be due to the generation of new leaves, thereby replacing the leaf 

two position with a smaller leaf. The small decrease in leaf 2 petiole length in the 

sprayed plants is thought to be due to the shrinking back of the plant due to its 

compromised state of health (Kirton, 2005). 

 

The analysis which follows on this data set considers two different approaches to 

modelling the mean response. The first is a typical ANOVA approach to modelling 

the mean. This is the type of approach which may have been used if a researcher 

simply wished to obtain p-values for the different fixed effects in the model (an 

approach I have observed among ecology students). Therefore a simplistic linear 

model is used. This analysis assesses the effect of an incorrect mean model choice on 

the conclusions of the study. 

 

Close examination of the mean response over time (Fig. 5.1) shows that a simple 

linear relationship between the length of the second petiole and time does not 

adequately represent the observed relationship. At least two turning points are 

apparent from this figure. Therefore a more appropriate mean structure would include 

at least a quadratic time term. Additional adjustment parameters could also be 

included in order to accommodate for the change in process which appears to take 

place after the first week in the experiment. Analysis of this more complex quadratic 

mean structure allows investigation of the effect of different variance models when 

the mean structure used is adequate. 

 

The purpose of carrying out this analysis was (i) to corroborate the findings of the 

simulation study by determining the appropriateness of the random effects models 
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with ωi = VC and Σ = UN and with ωi = AR(1) and Σ = UN, and the no random 

effects model with TOEP errors; (ii) to determine how covariance structures 

compared, particularly covariance structures which performed well in the simulation 

study, the OLS model, and more complex structures; and (iii) to interpret the results 

of the linear mixed effects model fitting exercise in the context of an ecological study, 

both under a simplistic model and under a more complex mean model. 

 

5.3       Simplistic Linear Model Fitting and Analysis 

 

5.3.1 Simplistic linear mean models 

 

Models considered in this section are the linear mixed effects models, along with the 

simplest case of these models: the OLS ordinary regression model. Preliminary fitting 

included the nutrients effect and the herbicide effect under various covariance 

structures. This analysis confirmed that nutrients was not a significant predictor 

(results for two-way interaction models shown for the random intercept and slope 

model with ωi = VC and Σ = UN in Table 5.1).  

 

The fullest parameterisation of the model considered was 
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where yi is a response from the ith plant, Herbicide is a binary variable indicating 

sprayed or not sprayed (unsprayed = 1), Nutrients1 (high = 1) and Nutrients2 (low = 



 113 

1) are binary indicator variables for the nutrient level (medium is coded as Nutrients1 

= 0 and Nutrients2 = 0), and Week is a quantitative variable for the week number, βi 

are the parameters of the fixed effects, bi are the parameters of the random effects, and 

εi is the error vector of the ith subject. The matrices Σ and ωi are the random effects 

and error covariance matrices respectively. Up to two random effects were included in 

the model, with Week used as the variable for the random slope parameter. 

 

Models were considered with all two-way and three-way interactions. The three-way 

interaction was non-significant for all models (three-way interaction terms had p-

values = 0.78 and 0.35 for the random effects model with ωi = VC and Σ = UN), and 

was therefore removed from the model. Non-significant two-way interaction terms 

were removed next, one at a time, followed by non-significant main effect terms that 

were not contained within any significant interaction terms. All terms containing the 

nutrients effect were found to be non-significant. The confidence intervals of the 

terms containing nutrients fluctuated the most between models with different mean 

structures. Therefore the nutrients effect was excluded from the final model, which 

contained fixed effects for herbicide and week. These models were fit using SAS 

PROC MIXED (ver. 9.1).  
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Table 5.1:  Fixed effects results for simplistic linear model with the nutrients and 
herbicide effects, including all two-way effects, under independent error covariance 
and random intercept and slope with unstructured covariance. 
 
Effect Estimate p-value Lower 95% CI 

Limit 

Upper 95% CI 

Limit 

Model with all two-way interactions 

Intercept 22.9142 <0.0001 20.3152 25.5133 

Week -0.7431 0.0001 -1.1082 -0.3779 

Herbicide -4.4785 0.0084 -7.7713 -1.1856 

Nutrient1 -0.7180 0.6826 -4.2057 2.7698 

Nutrient2 -0.9347 0.5947 -4.4225 2.5530 

Herbicide×Week -0.9014 <0.0001 -1.2665 -0.5363 

Nutrient1×Week 0.1754 0.4353 -0.2718 0.6226 

Nutrient2×Week -0.2729 0.2266 -0.7201 0.1743 

Nutrient1×Herbicide 1.1659 0.5690 -2.9129 5.2447 

Nutrient2×Herbicide 2.3750 0.2482 -1.7037 6.4538 

     

Model with two-way interactions including week 

Intercept 22.2341 <0.0001 19.9814 24.6668 

Week -0.7431 0.0001 -1.1082 -0.3779 

Herbicide -3.2981 0.0066 -5.6408 -0.9555 

Nutrient1 -0.1350 0.9252 -3.0042 2.7342 

Nutrient2 0.2528 0.8605 -2.6164 3.1220 

Herbicide×Week -0.9014 <0.0001 -1.2665 -0.5362 

Nutrient1×Week 0.1754 0.4353 -0.2718 0.6226 

Nutrient2×Week -0.2729 0.2266 -0.7201 0.1743 

     

Model with all main effects and the interaction between week and herbicide effect 

Intercept 22.4717 <0.0001 20.4417 24.5018 

Week -0.7756 <0.0001 -1.0382 -0.5129 

Herbicide -3.2981 0.0071 -5.6624 -0.9339 

Nutrient1 0.6620 0.5153 -1.3636 2.6877 

Nutrient2 -0.9873 0.3331 -3.0129 1.0384 

Herbicide×Week -0.9014 <0.0001 -1.2728 -0.5300 
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5.3.2 Model fits under various covariance structures 

 

The proposed model for the data was: 
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          …(1) 

where yi is a response from the ith plant, Herbicide is a binary variable indicating 

sprayed or not sprayed (unsprayed = 1), Week is a quantitative variable for the week 

number, βi are the parameters of the fixed effects, bi are the parameters of the random 

effects, and εi is the error vector of the ith subject. The matrices Σ and ωi are the 

random effects and error covariance matrices respectively.   

 

All of the parameter estimates, including the covariance parameter estimates, and 

information criteria for each model successfully fitted to the data appear in Appendix 

B1. Due to the large quantity, the outlier and influence diagnostics for selected 

models, have been included in Appendix B2. A summary of model fit results appears 

in Table 5.2 and are discussed below. The parameter estimates appear in the order 

presented in equation (1). This table also shows which models were not fitted to the 

data and the reason for failure to fit these models. 

 

As opposed to the simulation study, certain models with UN or heterogeneous error 

covariance structures performed well. Models fitted with UN and heterogeneous error 

covariance structures obtained the lowest AIC, BIC and AICc values. The most likely 

explanation is that the study was balanced and that there were more subjects per 

treatment compared to the simulation study data set, accommodating more parameters 

in the model. Models which performed particularly badly, obtaining invalid estimates 
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or resulting in non-convergence, were random intercept and slope models fitted with 

an AR(1) or ARH(1) error structure. None of the models in this category obtained 

valid estimates. As observed in the simulation study, when covariance structures were 

fitted to the random effects which forced the variance of the random intercept and 

slope to be the same, such as CS or TOEP structure, the resulting covariance structure 

was not positive definite. This was demonstrated through the calculation of negative 

eigenvalues for these estimated covariance matrices. 

 

 

Successfully fitted models 
ωi Σ Βi Standard 

Error 
AIC BIC AICc 
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Table 5.2: Summary of model fitting results. 
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Table 5.2 (cont): Summary of model fitting results 
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Models which resulted in estimates of ∑ that were not positive definite 
ωi Σ     
VC CS     
CS TOEP     

AR(1) VC     
AR(1) UN     

ARH(1) VC     
ARH(1) CSH/ARH(1)     
ARH(1) UN     
TOEP CS     
TOEP TOEP     

      
Models which had a final Hessian matrix which was not positive definite 

ωi Σ     
CS CSH     

      
Models which did not converge 

ωi Σ     
AR(1) CSH/ARH(1)     

 

The complexity of models ranges. The simplest model, the OLS model, has four fixed 

effects parameters and one variance parameter, totalling five parameters, and resulting 

in an observation to parameter ratio of 108:1. The no random effects models with a 

maximum of 45 covariance parameters, which totals to 49 parameters in total, results 

in an observation to parameter ratio of 11.0:1. The random intercept models have an 

additional sixty random effects parameters that need to be calculated and one random 

effects variance, resulting in a maximum of 110 model parameters, and an observation 

to parameter ratio of 4.9:1. The random intercept and slope models have 120 random 

effects parameters that need to be estimated and up to three random effects covariance 

parameters, resulting in a maximum of 172 parameters, and leading to an observation 

to parameter ratio of 3.1:1. The lowest observation to parameter ratio of the ecological 

data set is twice as large compared to the lowest observation to parameter ratio of the 

Table 5.2 (cont): Summary of model fitting results 
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PR data set. Models successfully fitted to the data had varied observation to parameter 

ratios, ranging between 3.1:1 and 108:1. 

 

Models which were expected to perform well from the results of the simulation study 

include the no random effects model with TOEP error structure, and the random 

intercept and slope models with ωi = AR(1) and Σ = UN, and with ωi = VC and Σ = 

UN. These models obtained information criteria that were close to the minimum 

relatively consistently, and obtained the best coverage probabilities for the fixed 

effects estimates. Of these three models, only two were successfully fitted to the data, 

with the random intercept and slope model with ωi = AR(1) and Σ = UN obtaining an 

estimated variance for the slope of zero in the random effects covariance matrix. 

Models which obtained low mean values for the information criteria in the simulation 

study, namely the no random effects model with ωi = CS model, the random intercept 

model with independent errors, and the random intercept and slope model with ωi = 

VC and Σ = VC, fitted the data successfully, but obtained relatively high AIC and 

BIC values.  The random intercept model with ωi = AR(1), which performed 

relatively well in the simulation study with respect to the information criteria analysis 

and obtained reasonable coverage probabilities, was fitted successfully and obtained 

relatively low values for AIC, BIC and AICc. The no random effects model with ωi = 

AR(1), which obtained coverage probabilities that were too high in the simulation 

study, had a similar fit to the random intercept model and obtained similar fixed 

effects parameter estimates. The OLS model, which also had coverage probabilities 

that were too high in the simulation study, obtained the worst fit. 
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5.3.3 Goodness-of-fit analysis of the linear model under various covariance 

structures 

 

A closer examination will now be carried out on the fit of individual models. 

 

 

 

 

 

5.3.3.1 No random effects model with ωi = UN 

 

The no random effects model with ωi = UN is the best fitting model according to the 

information criteria, as this model obtained the minimum AIC of 2929, a minimum 

BIC of 3023 and a minimum AICc of 2937 (Table 5.2). Table 5.2 shows that the 

estimated fixed effects were all significant at the 5% level. Fig. 5.2 is a plot of the 

fixed effects parameter estimates after the removal of each subject’s observations in 

the study, where the x-axis indicates which subject has been removed. The horizontal 

line in each plot indicates the fixed effect parameter estimate obtained for the model 

Fig. 5.2: Estimates of fixed parameters obtained after the removal of each data point 
for the no random effects simplistic linear model with ωi = UN. 
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fitted to the full data set. The purpose of these plots is to demonstrate the effect an 

individual subject’s observations have on the estimate of the fixed effects parameters. 

This plot shows that the estimates for the intercept coefficients of both sprayed (figure 

with y-axis labelled “Intercept”) and unsprayed plants (figure with y-axis labelled 

“Herbicide NS”) are quite stable, with a maximum difference of less than one unit 

from the actual estimate for subject 1. The estimates for the slopes also show 

relatively little change (of difference of less than 0.1) for deletion of most subjects, 

except in the case of subject 1, for the estimate of the slope of the sprayed plants, and 

subject 19, for the estimate of the difference in slopes between the unsprayed and 

sprayed plants, which result in differences between the deleted estimate and the actual 

estimate of close to 0.2. Both subjects 1 and 19 were in the sprayed treatment. 

 

 

 
 
 

 
Fig. 5.3: Plots of scaled residuals for the no random effects simplistic linear model 
with ωi = UN. 
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Fig. 5.3 contains plots of the transformed residuals. The transformation of these 

residuals is discussed in Chapter two. The transformed residuals can be treated in the 

same way as residuals from an ordinary regression analysis. These residuals should be 

approximately normally distributed and have a mean of zero and a variance of one. 

The first plot is of the predicted values against the transformed residuals. This plot 

shows that the transformed residuals vary between 4 and -4. Since the time variable is 

discrete, the separate bands of residuals that can be seen are the residuals for predicted 

values at a particular week. The bands of residuals on the left of the plot are for the 

predicted values of the unsprayed plants, and those on the right are for the predicted 

values of the sprayed plants. The spread of the residuals for the unsprayed plants 

appear to deviate around the zero line, except those in the last band of residuals. The 

slope of the predicted equation for unsprayed plants is negative, but the plot of the 

observed data (Fig. 5.1) reveals that although there is a decreasing trend in the data, 

the mean of the response for week 8 is increasing relative to week 7, and the mean for 

week 1 is smaller compared to the mean for week 2. Since the equation predicted is 

linear, this information cannot be captured by the model, and therefore the estimates 

for week 8 will be lower compared to the observed data, and the estimates for week 1 

will be higher compared to the observed data. The variability in the residuals of the 

sprayed plants is much higher compared to those of the unsprayed plants. Therefore it 

does not seem that the variability within the sprayed and unsprayed plants is the same. 

This is also suggested by the plot of the observed data (Fig. 5.1). The next two plots in 

Fig. 5.3 are a histogram and a q-q plot of the transformed residuals, and are intended 

to show the normality of the transformed residuals. The histogram of the residuals is 

close to symmetrical, but with slight skewness to the right. The q-q plot shows that 
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most of the points fall on the one-to-one line, but that there is deviation from 

normality in the tails of the distribution of the transformed residuals.  

 

 
 
 

 

 

Fig 5.4 contains plots of four different influence diagnostics. These diagnostics are the 

restricted likelihood distance, the PRESS statistic, Cook’s distance (Cook’s D), and 

covariance ratio (COVRATIO). Each of these diagnostics examines a different aspect 

of the influence an observation has on the estimated model. The restricted likelihood 

distance measures the overall influence of an observation, Cook’s distance  measures 

the influence of an observation on all predicted values, the covariance ratio measures 

the influence of an observation on the precision of the estimates, and the PRESS 

residuals measure the influence of an observation on its own predicted value. The 

deletion takes place at the level of a subject, and so these diagnostics show the 

Fig. 5.4: Plots of the influence diagnostics for the no random effects simplistic linear 
model with ωi = UN. 
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influence that a plant’s observations have on the estimated model. The full set of 

diagnostic values for each subject is available in Appendix B2. Influential subjects are 

identified as those subjects with absolute diagnostic values relatively larger compared 

to other subjects. Subjects 1, 19, and 38 were highlighted as being potentially 

influential, as the diagnostic values for these subjects are higher relative to all other 

subjects. In particular, the values for Cook’s distance and the restricted likelihood 

distance highlight these three subjects, and so these subjects influence the predicted 

values of all other subjects. These three subjects belonged to the sprayed group of 

plants, so therefore the model may be predicting the unsprayed plants better than the 

sprayed plants.  

 

5.3.3.2 Random intercept and slope model with ωi = CSH and ∑ = CSH 

 

The random intercept and slope model with ωi = CSH and ∑ = CSH performed only 

slightly worse. This model obtained an AIC of 3093, a BIC of 3120 and an AICc of 

3093 (Table 5.2). Again all of the fixed parameters were significant. The parameter 

estimates for the intercepts are about two units lower compared to those estimated for 

the previous model, but the slope estimates are very similar. The stability of the fixed 

effects parameter estimates with removal of subjects from the data set was similar 

compared to the previous model, but showed smaller extreme deviations in estimates 

for the slopes (Fig. 5.5). The transformed residuals varied between 4 and -4 (Fig. 5.6). 

The plot of the predicted values against the residuals show the same pattern as for the 

previous model, but show a smaller range in the residuals for the unsprayed plants, 

but with residuals of large predicted value suggesting negative bias in the predicted 

values. The q-q plot shows that more points fall on the one-to-one line compared to 
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the previous model, but the histogram is slightly skewed to the left. The influence 

diagnostics only highlight subject 38 as an influential point (Fig. 5.7). The size of the 

diagnostics is smaller in comparison to the previous model. 

 

 

 

 

 

Fig. 5.5: Estimates of fixed parameters obtained after the removal of each data point 
for the random intercept and slope simplistic linear model with ωi = CSH and Σ = 
CSH. 
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Fig. 5.6: Plots of scaled residuals for the random intercept and slope simplistic linear 
model with ωi = CSH and Σ = CSH. 

Fig. 5.7: Plots of the influence diagnostics for the random intercept and slope 
simplistic linear model with ωi = CSH and Σ = CSH. 
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5.3.3.3 Random intercept and slope model with ωi = VC and Σ = UN 

 

The random intercept and slope model with ωi = VC and Σ = UN was shown to be a 

relatively robust model in the previous simulation study. This model obtained an AIC 

value of 3244, a BIC value of 3252 and an AICc value of 3244 (Table 5.2). The 

estimated parameters of the fixed effects were all significant at the 5% level and 

showed only small deviations, relative to those of the best fitting model, when 

subjects were removed (Fig. 5.8). The estimates of the fixed effects intercept 

parameters were approximately two units higher compared to those obtained for the 

best fitting model, and had steeper downward slopes. The transformed residuals 

varied between 4 and -3 and were close to normality, but some pattern was apparent 

in the plot of the predicted values against the transformed residuals for those residuals 

of the unsprayed plants and was more exaggerated compared to previous models (Fig. 

5.9). Along with subject 38, the influence diagnostics highlight at least five other 

subjects as potential outliers, including observations 2, 7, 25, and 47 (Fig. 5.10). The 

restricted likelihood distances are much smaller compared to all three previous 

models. 
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Fig. 5.8: Estimates of fixed parameters obtained after the removal of each data point 
for the random intercept and slope simplistic linear model with ωi = VC and Σ = UN. 

Fig. 5.9: Plots of scaled residuals for the random intercept and slope simplistic linear 
model with ωi = VC and Σ = UN. 
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5.3.3.4 Random intercept model with ωi = AR(1) 

 

The random intercept model with ωi = AR(1) was another model shown to be 

relatively robust by the simulation study. This model obtained AIC, BIC and AICc 

values of 3177, 3184 and 3177 respectively. These values were more or less in the 

middle of the range of values obtained for the information criteria by models in this 

study. The estimates of the fixed effects (Table 5.2) were very close to those obtained 

in the previous random effects model with ωi = VC and Σ = UN. The deleted 

estimates for the fixed effects show that the estimated fixed effects estimates showed 

relatively small deviation in estimated values when subjects were deleted compared to 

the best fitting model (Fig. 5.11). The transformed residuals varied between 4 and -3 

(Fig. 5.12). The plot of the predicted values against the residuals again shows a  

Fig. 5.10: Plots of the influence diagnostics for the random intercept and slope 
simplistic linear model with ωi = VC and Σ = UN. 
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Fig. 5.11: Estimates of fixed parameters obtained after the removal of each data point 
for the random intercept simplistic linear model with ωi = AR(1). 

Fig. 5.12: Plots of scaled residuals for the random intercept simplistic linear model 
with ωi = AR(1). 
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pattern for the unsprayed plants, where small predicted values tend to be negatively 

biased and large predicted values tend to be positively biased, except in the case of the 

largest predicted values, where the bias changes to negative again. The influence and 

outlier diagnostics show that observations 2 and 38 are potentially influential points 

(Fig. 5.13). The size of the restricted likelihood distances and Cook’s distances is 

much smaller compared to those obtained for the best fitting model. 

 

 

 

 

 

 

Fig. 5.13: Plots of the influence diagnostics for the random intercept simplistic linear 
model with ωi = AR(1).  
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5.3.3.5 No random effects model with ωi = TOEP 

 

The no random effects model with ωi = TOEP, predicted to be a robust model from 

the simulation study, resulted in an AIC, BIC and AICc values of 3174, 3192 and 

3174 respectively (Table 5.2). The fixed parameter estimates were all significant at 

the 5% level and did not show large deviations in size when subjects were excluded 

(Fig. 5.14). Comparing the parameter estimates to the best fitting model, the no 

random effects model with ωi = TOEP obtained similar estimates compared to the 

random intercept and slope model with ωi = VC and Σ = UN and the random intercept 

model with ωi = AR(1) (Table 5.2). The transformed residuals of this model were 

between 4 and -3, and only deviated from normality for large values of scaled 

residuals (Fig. 5.15). The plot of the predicted values against the transformed 

residuals is the best compared to all previous models. This plot shows that the bands 

of residuals vary around the zero line, and that no trend in the residuals is evident 

indicating that the predicted values are not biased. But as in the case of the previous 

models, the homogeneity of the residual variance is poor. Subject 38 was once again 

highlighted as an influential subject, along with subjects 2, 25, 47 and 54 (Fig. 5.16). 

The restricted likelihood distances and Cook’s distances were slightly larger 

compared to the previous model, but not as large as those of the no random effects 

model with ωi = UN. 
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Fig. 5.14: Estimates of fixed parameters obtained after the removal of each data 
point for the no random effects simplistic linear model with ωi = TOEP. 

Fig. 5.15: Plots of scaled residuals for the no random effects simplistic linear model 
with ωi = TOEP. 
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5.3.3.6 OLS model 

 

The final model investigated was the OLS model with independent error covariance 

structure. This model had the highest AIC, BIC and AICc values of 3335, 3339 and 

3335 respectively (Table 5.2). The fixed parameter estimates were very similar to 

those for the previous model. These estimates were all significant at the 5% 

significance level and did not show high sensitivity to the removal of subjects (Fig. 

5.17). The transformed residuals varied between 4 and -3, and when plotted against 

the predicted values showed a trend in the bias of the predictions. The plots for 

normality showed only small departures from normality, but skewness to the right 

(Fig. 5.18). The influence diagnostics highlighted subjects 7, 25, 38 and 47. The 

Cook’s distances were larger compared to previous models, but other diagnostics 

were similar in size (Fig. 5.19). 

Fig. 5.16: Plots of the influence diagnostics for the no random effects model 
simplistic linear with ωi = TOEP. 
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Fig. 5.17: Estimates of fixed parameters obtained after the removal of each data 
point for the simplistic linear OLS model with independent error covariance 
structure. 

Fig. 5.18: Plots of scaled residuals for the simplistic linear OLS model with 
independent error covariance structure. 
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5.3.3.7 Summary 

 

The model fit analysis reveals that for all models, the residuals show that the 

variability of the responses within the sprayed and unsprayed plants is not equal. The 

plot of the predicted values against the transformed residuals shows very different 

spreads for the sprayed and unsprayed plants. Most models also showed a trend in the 

residuals when plotted against predicted values. The size of the deviations of deleted 

fixed effects estimates from actual estimates was similar between models. The size of 

the influence diagnostics varied between models with the restricted likelihood 

distance varying the most and the random effects model with ωi = VC and Σ = UN 

having the largest values for influence diagnostics. Subject 38, followed by subject 1, 

was shown to be a potential outlier in all models. Both these subjects were sprayed 

plants. The no random effects model with ωi = TOEP obtained the best transformed 

Fig. 5.19: Plots of the influence diagnostics for the simplistic linear OLS model 
with independent error covariance structure. 
 



 137 

residuals compared to all other models considered. The residuals varied about the zero 

line and showed very little trend, but as in all the cases considered, the homogeneity 

of the residual variance was poor. The influence diagnostics were not the smallest 

compared to other models, but were smaller compared to the no random effects model 

with ωi = UN. 

 

5.3.4 Fit of the covariance structures under the simplistic linear mean model 

 

In order to determine how well the models performed in terms of the covariance 

structure fitted, graphical methods were employed.  The methods include a semi-

variogram-type approach and a plot of the covariances against the lags in time, as 

discussed in Chapter two. SAS proc mixed (ver. 9.1) does not include an option to 

display the empirical semi-variogram for the fitted linear mixed effect model. 

Applying the available generic function for the calculation of the empirical semi-

variogram (PROC VARIOGRAM (SAS ver. 9.1)) is non-trivial, as it is specifically 

for spatial data and requires two distance variables, namely latitude and longitude. 

Longitudinal data only have one dimension, which is the length in time between 

observations. The equation of the empirical semi-variogram for longitudinal data is: 

)(cov)(var)(var)( ,2
1

2
1

ikijikijijk rrrrh −+=γ  

where i represents the subject, j and k are measurement occasions, and rij is the 

residual on subject i at time j, and hijk is the distance in time between times j and k. 

The transformed residuals (rij
*) were used in place of the ordinary residuals, therefore, 

if the covariance is correctly specified, then the plot of the semi-variogram should 

show a horizontal scatter around the value of one. In order to obtain an estimate of 

var(rij
*), the variance of the residuals obtained between subjects at time j was 
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calculated. Similarly, the covariances of the residuals between times j and k were 

calculated for all subjects in order to obtain an estimate of cov(rij
*, rik

*). These values 

were then used to calculate )(ˆ *
ijkhγ  and were plotted as a function of the distance in 

time between measurements. The plot of the semi-variogram can be used to determine 

if there is misfit of the covariance model. 

 

To obtain a plot of the covariances, the estimated covariance matrices for the random 

errors and random effects (as shown in Appendix B1) were used to calculate the 

estimated covariance matrix of the responses, iiii ωZΣZV ˆˆˆ +′= . These covariances 

were also plotted as a function of the lags between observations. This plot gives a 

visual representation of the covariance matrix, and is useful for comparing the 

variance and covariance estimates between different models. The values plotted at lag 

zero are the estimated variances of the response at each week. 

 

5.3.4.1 No random effects model with ωi = UN 

 

From the analysis of the information criteria, the model which performed best was the 

no random effects model with ωi = UN. A plot of the approximate semi-variogram of 

the transformed residuals (Fig. 5.20) shows that that the points in general are close to 

one, with only a small number occurring below 0.8. The plot of the covariances (Fig. 

5.20) gives a visual description of the covariance structure. It shows that the values of 

the variances (those at lag 0) are quite high relative to the values of the covariances, 

with week 0’s variance being the highest. At one weeks lag, a very large covariance 

estimate was obtained relative to other covariance at this lag, suggesting that this 

model may be over-fitting. The covariances show a decreasing trend towards five 
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weeks lag, but then increases again from five weeks to seven weeks lag, with a slight 

drop at eight weeks lag. The standard errors of this model (Table 5.2) are some of the 

lowest values compared to all other models.  

 

 
 
 
 
 
 

 

 

 

 

 

Fig. 5.20: Plot of semi-variogram (left) and the covariances (right) as function of lag 
in weeks between observations for the no random effects simplistic linear model with 
ωi = UN. 
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5.3.4.2 Random intercept and slope model with ωi = CSH and Σ = CSH 

 

 

 

The next best performing model was the random intercept and slope model with ωi = 

CSH and Σ = CSH. The semi-variogram of this model (Fig. 5.21) shows a relatively 

higher spread in values compared to the no random effects model with ωi = UN, but 

does seem to vary close to the value of one. The plot of the covariances (Fig. 5.21) 

indicates that not all the variances in this case have been estimated to be higher than 

the covariances, as was seen in the previous model. The maximum covariance value is 

much higher, with a value of over 100 estimated for the variance of week 0. This plot 

also shows an increase in the values of the covariances starting from around six weeks 

Fig. 5.21: Plot of semi-variogram (left) and the covariances (right) as function of lag 
in weeks between observations for the simplistic linear model with ωi = CSH and Σ = 
CSH. 
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lag. The standard errors estimated for this model are slightly higher compared to the 

no random effects model with ωi = UN (Table 5.2). The plots for the random intercept 

and slope model with ωi = CSH and Σ = UN were found to be identical to these 

covariance plots, as expected from the estimated covariance matrices obtained for 

these two models (Appendix B1). 

 

5.3.4.3 Random intercept and slope model with ωi = VC and Σ = UN 

 

The random intercept and slope model with ωi = VC and Σ = UN did not perform as 

well according to the goodness-of-fit analysis as the previous three models discussed. 

The approximate semi-variogram (Fig. 5.22) shows that most of the values are well 

below the value one, suggesting that the covariance structure may not be well 

specified. The plot of the covariances (Fig. 5.22) shows a decreasing trend in the 

covariance estimates as the lag in weeks increases. The size of the variances estimated 

at lag zero are relatively smaller compared to the previous two models, and the 

variances are more similar in size. Therefore this structure is more restrictive 

compared to the no random effects model with ωi = UN. The standard errors 

estimated for this model were some of the highest estimated among all the analysed 

models (Table 5.2). 
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5.3.4.4 Random intercept model with ωi = AR(1) 

 

The random intercept model with ωi = AR(1) performed slightly better than the 

previous model, obtaining slightly lower AIC, BIC and AICc values. An analysis of 

the approximate semi-variogram (Fig. 5.23) shows that the values are close to the 

value one, but mostly falling below one. The spread of semi-variogram values is not 

as great compared to the previous model. The covariance plot (Fig. 5.23) shows 

estimates of the variances being around 30 and then the covariance estimates starting 

from values around 15 and decreasing as the lag in weeks increases. The standard 

Fig. 5.22: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the simplistic linear model with ωi = VC and Σ = 
UN. 
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errors for this model are larger compared to the best fitting model, and close to the 

estimated standard errors obtained for the previous model and for the random effects 

model with ωi = CSH and Σ = CSH (Table 5.2). 

 

 

 

 

 

 

 

 

 

Fig. 5.23: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the random intercept simplistic linear model with 
ωi = AR(1). 
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5.3.4.5 No random effects model with ωi = TOEP 

 

 

 

 

The no random effects model with ωi = TOEP obtained slightly lower AIC, BIC and 

AICc values compared to the previous AR(1) model. The plot of the approximate 

semi-variogram (Fig. 5.24) shows that the values are close to one, but most values are 

below one. The range of semi-variogram values is similar to that observed for the 

previous model, with most values between 0.5 and 1.0. The plot of the covariance 

shows that the TOEP structure was able to obtain the same basic structure inherent in 

the no random effects model with ωi = UN. The covariances initially show a decline 

Fig. 5.24: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the no random effects simplistic linear model with 
ωi = TOEP. 
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in value as the lag in weeks increases, but then from week 5 the covariances begin to 

increase, with a dip at week 8 (Fig. 5.24).  The standard errors estimated are similar to 

those obtained for the previous AR(1) model and for the model with ωi = CSH and Σ 

= CSH (Table 5.2). 

 

5.3.4.6 OLS model 

 

 

 

 

The covariances of the OLS model were also analysed. This model performed the 

worst in terms of the information cirtieria out of all models under consideration. The 

Fig. 5.25: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the no random effects simplistic linear model with 
ωi = VC. 
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plot of the semi-variogram (Fig. 5.25) shows values well below the value one, 

indicating that the covariance is not correctly specified. The plot of the covariances 

displays the zero estimates for the covariance terms, as assumed for the OLS model, 

and an estimate of 28 for the variance, which is assumed to be the same at all weeks 

(Fig. 5.25). As opposed to what would be expected from the literature (e.g. Weiss, 

2005), the estimates of the standard errors for the OLS models were relative small 

compared to other models, which would result in narrower confidence intervals 

compared to other models (Table 5.2). The estimates of the standard errors are close 

to those obtained for the no random effects model with ωi = UN. This may be due to 

the absence of the large variance estimate observed in the best fitting models. The 

variance estimate for the OLS model was just below thirty, similar to the estimate of 

the variance from the random intercept model with AR(1) errors and the no random 

effects model with TOEP error structure. 

 

5.3.4.7 Summary 

 

The semi-variogram plots help to identify models where the covariance model has 

been misspecified. The plots for the models considered indicate that the OLS model, 

which assumed independence of observations, had semi-variogram values all below 

zero, and had the most incorrect specification for the covariance structure compared to 

all other models. Comparing the covariance plots of the OLS model to the best fitting 

model indicates that covariance matrix under the OLS model is very different from 

that specified by the best fitting model. The no random effects model with ωi = TOEP 

obtained reasonable values for the semi-variogram, and obtained a very similar 

covariance plot to that of the best fitting model, even though the random effects model 
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with ωi = TOEP only has nine parameters, compared to the 45 parameters of the 

random effects model with ωi = UN. 

 

5.3.5 Discussion on the simplistic linear mean model  

 

Interpretability of linear mixed effects models is an important consideration when 

deciding upon a model. The fixed effect parameter estimates can be considered as the 

average effect of the predictor on the response. The mean structure in this case is 

described by equation (1), which uses sprayed plants as the base group. All of the 

fitted models predict a positive value for the intercept (Table 5.2). This value can be 

considered as the average petiole length of the sprayed plants at the beginning of the 

experiment. The estimate for β2 is the average difference in lengths between the 

unsprayed and sprayed plants at the beginning of the experiment. All models predict 

this value to be small but negative. The estimate for β1 is the average increase or 

decrease in petiole length of the sprayed plants over each week. There are large 

differences between models for this estimate. It is predicted to be negative and around 

three by all the models, except the models with UN or heterogeneous error covariance 

structures, which predicted it to be around six. The estimate for β3 is the average 

difference in changes in the petiole length of the unsprayed plants compared to the 

sprayed plants. This was estimated to be negative and around one for most models, 

expect again the UN and heterogeneous error covariance models which predicted it to 

be around 0.5. Overall, the models shown to be more robust predicted bigger 

differences in the change in the second petiole length of sprayed plants versus 

unsprayed plants, with the second petioles of the unsprayed plants becoming shorter. 
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The parameters of the covariance structures can also be interpreted, but this is easier 

done for less complex covariance structures (estimates available in Appendix B1). 

The σ2 term of the VC error covariance structure is the predicted variance in 

observations of a subject. In this example, the models fitted with VC error covariance 

structures have estimated σ2 values around 20. This value changes depending on how 

much of the overall variance of the model is attributed to differences between 

subjects, and how much is attributed to random error. The AR(1) covariance structure 

has two parameters, σ2 and ρ. The σ2 term can be interpreted in the same way as for the 

VC error structure. The ρ term is the estimated correlation between observations from 

a subject one time unit apart. The autoregressive models in the example had estimated 

variances close to 25 and correlation coefficients around 0.5, indicating quite high 

amounts of correlation between observations close in time. The TOEP structure is a 

little more flexible in that it assumes that observations that are the same number of 

time units apart have the same correlation, but this does not depend on the correlation 

of units that are different time units apart. This means that there are many more 

parameters that need to be interpreted, increasing as the number of measurement 

occasions increases. In this example, the estimates of the TOEP covariance structure 

show that the within individual variance of the observations is close to 30, and that the 

covariance between observations decreases with increasing number of lags until lag 

five is reached, and then increases from lags five to seven. From lags seven to eight a 

decrease in the covariance is estimated. 

 

The covariance structures which have been discussed so far all assume that the 

variance is constant across all measurement occasions. The UN and heterogeneous 

covariance structures do not make this assumption, increasing the number of 
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estimated parameters and the complexity allowed in the covariance matrix, and 

increasing the difficulty in interpreting these values. The values for these covariance 

parameters are very dependent on the analysed data set, and will show much larger 

changes if a new data set were selected from the same population compared to the 

previous covariances. These structures are more appropriate for the random effects 

which should show flexibility as different subjects are included in a population. 

 

From the goodness-of-fit analysis, it appears that the error structure inherent in these 

data is quite complex as the more flexible models consistently performed better. Of 

the simpler models, the no random effects model with ωi = TOEP performed best. 

This is most likely due to the more flexible structures available through this 

specification compared to simpler models, such as the AR(1) model which makes 

very restrictive assumptions about the covariance structure at different time lags. In 

this particular case, the AR(1) structure performed particularly poorly as most 

covariance structures involving an AR(1) specification failed to obtain valid 

estimates, indicating that this is not an appropriate covariance structure for these data. 

By exploring the raw data (Fig. 5.1), it does appear that the mean length of the second 

petiole increases towards the end of the experiment. This would mean that the values 

for second petiole length would be closer to the values obtained at the beginning of 

the experiment than to those obtained after the initial drop off in second petiole 

length. This phenomenon can be captured in the TOEP structure, as it is possible to 

obtain higher covariances at later lags in time compared to earlier lags. A reason for 

this increase in petiole length at the end of the experiment could be due to the 

increased density of plants in the tubs (as asexual reproduction of these would have 

been taking place throughout the eight week period), resulting in the growth form of 



 150 

the plant adapting to produce longer petioles in an attempt to compete for light. 

Therefore the more complex covariance structures reveal a particular biological 

phenomenon in the data. 

 

As concluded in the simulation study, the OLS model performed worst compared to 

all other models considered. Therefore it is inappropriate to obtain estimates via OLS 

estimation if the data is longitudinal and may potentially have a complex covariance 

structure, particularly if there is interest in the variability within the data. 

 

Residual analysis of each of the model structures considered in this simplistic analysis 

clearly indicates that the variance of the residuals for the unsprayed and spray plants 

is not the same. Therefore methods for accounting for this difference in variances 

should be considered.  

 

A second obvious problem is that the linear mean structure considered is not 

appropriate for the data, as can be observed in Fig. 5.1. The shape of the curve seems 

to be somewhat parabolic. To correct the linear model, additional terms could be 

added into the mean structure, such as a quadratic in time, or adjustment parameters. 

More advanced models will be considered in the next section to improve the model fit 

and appropriateness. 

 

5.4 More Complex Quadratic Mean Structure Analysis 

 

Two methods were considered in order to improve the homogeneity of the residual 

variance. The first method accounted for difference in variance between the sprayed 
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and unsprayed plants by adding an additional random effect for the categorical 

herbicide variable.  The idea behind this method was that an additional variance term 

would be added to the random effects covariance structure for herbicide, and this 

would result in differing covariance matrices, Vi, for the sprayed and unsprayed 

plants. This method was not successfully implemented, as the addition of herbicide as 

a random effect resulted in non-positive-definiteness of the final Hessian matrix. 

 

The second method implemented was to log the responses. This method was 

successfully implemented, and improved the homogeneity of the variances of the 

residuals. 

 

To improve the appropriateness of the mean structure, a quadratic term for Week and 

adjustment terms for the start of the experiment and the first week were added. The 

adjustment terms were added as it appears from Fig. 5.1 that a change in the growth 

process occurred after the first week. These additional indicator variables would result 

in estimates of the deviation away from the curve predicted over the full time period, 

accounting for this change in process. These terms were added into the mean structure 

(now modelling the logged length of the second petiole), and were found to be highly 

significant. The results for this analysis are presented in the following sections. 

 

5.4.1 Information criteria obtained for three different quadratic mean models   

 

As new terms were added into the mean structure, it was necessary to include the 

nutrient level in the mean structure once again. The fullest mean structure considered 

was: 
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where all terms are as previously described, Week2 is a quadratic term for Week, and 

Week0 and Week1 are the adjustment parameters for the start of the experiment and 

the first week respectively. An analysis of this model under all covariance structures 

showed that the nutrient effect was not significant – on it’s own or in interaction 

terms. The details of this analysis are given in the next section. 

 

The second mean structure considered was the fullest structure excluding the nutrient 

effect: 
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where the terms are as described for the previous model. An analysis of this mean 

structure under various covariance structures showed that the interaction term 

between Week and Herbicide was non-significant. Therefore this term was dropped 

from the mean structure, resulting in the final mean structure considered: 
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The information criteria obtained for each mean model, under each covariance 

structure considered, are presented in Table 5.3. As it is clear from the simulation 

study, and from the previous analysis, that selecting a random effects covariance 

matrix which assumes equal elements along the diagonal is inappropriate (resulting in 

non-positive definite random effects covariance structures), these covariance 

structures (i.e. CS, TOEP and AR(1)) were not considered for the random effects. 

 

The information criteria from the three different mean models are presented in Table 

5.3. Models under all covariance structures obtained the lowest information criteria 

for the third mean structure. The covariance structure which obtained the lowest AIC 

and AICc values of -167.9 and -159.3 for the third mean model was the no random 

effects model with unstructured errors. The lowest BIC value of -98.0 was obtained 

for the random intercept and slope model with ωi = ARH(1) and Σ = 

UN/CSH/ARH(1). Selecting UN, CSH or ARH(1) for the random effects covariance 

structure results in equivalent model results, therefore the results for these random 

effects covariance structures appear together.  

 

In contrast to the simplistic linear model, the models with error covariance structures 

of AR(1) or ARH(1) performed well, obtaining some of the best values for the AIC, 

BIC and AICc, whereas for the previous simpler linear model, these error structure 

resulted in invalid covariance estimates when included with random effects. In the 

case of the quadratic model, the ARH(1) error structure performed better compared 

the CSH structure, which resulted in invalid parameter estimates. 
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Table 5.3: Information criteria obtained under three different quadratic mean models 
for each of the covariance structures specified. 
 
Successfully fitted models 
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ωi Σ AIC BIC AICc 
UN None -125.4 -31.2 -116.6 

ARH(1) UN/CSH/ARH(1) -74.0 -46.8 -73.3 
ARH(1) VC -48.2 -23.1 -47.6 
ARH(1) Intercept only -46.9 -23.9 -46.4 
AR(1) Intercept only -33.2 -26.9 -33.2 
AR(1) VC -32.8 -24.4 -32.7 
AR(1) UN/CSH/ARH(1) -31.0 -20.6 -30.9 
TOEP None -28.6 -9.7 -28.2 

ARH(1) None -28.0 -7.1 -27.6 
CSH VC -25.5 -0.3 -24.8 
VC UN/CSH/ARH(1) -22.6 -6.2 -14.5 

AR(1) None -12.8 -8.6 -12.7 
CSH Intercept only -12.5 10.5 -12.0 
VC VC -11.8 -5.5 -11.7 

CSH None 1.6 22.5 2.0 
CS None 2.9 7.1 2.9 
VC Intercept only 2.9 7.1 2.9 
VC None 158.6 162.8 158.6 
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ωi Σ AIC BIC AICc 
UN None -160.6 -66.4 -152.1 

ARH(1) UN/CSH/ARH(1) -117.2 -89.9 -116.5 
ARH(1) VC -91.3 -66.2 -90.7 
ARH(1) Intercept only -86.9 -63.8 -86.4 
AR(1) VC -73.0 -64.6 -72.9 
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Table 5.3 (cont.): Information criteria obtained under three different mean models for 
each of the covariance structures specified. 
 
 

ωi Σ AIC BIC AICc 
AR(1) UN/CSH/ARH(1) -71.2 -60.7 -71.1 
AR(1) Intercept only -71.0 -64.7 -70.9 

ARH(1) None -69.3 -48.3 -68.9 
TOEP None -68.7 -49.8 -68.3 
CSH VC -65.6 -40.5 -65.0 
VC UN/CSH/ARH(1) -54.0 -45.6 -53.9 

AR(1) None -52.4 -48.2 -52.4 
VC VC -51.3 -45.0 -51.2 

CSH Intercept only -42.2 -19.2 -41.7 
CS None -27.0 -22.8 -27.0 
VC Intercept only -27.0 -22.8 -27.0 

CSH None -25.3 -4.3 -24.8 
VC None 140.3 144.6 140.3 
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ωi Σ AIC BIC AICc 
UN None -167.9 -73.6 -159.3 

ARH(1) UN/CSH/ARH(1) -125.3 -98.0 -124.6 
ARH(1) VC -99.6 -74.5 -99.0 
ARH(1) Intercept only -95.0 -72.0 -94.5 
AR(1) VC -81.4 -73.1 -81.4 
AR(1) UN/CSH/ARH(1) -79.7 -62.2 -75.5 
AR(1) Intercept only -79.3 -73.0 -79.3 

ARH(1) None -77.3 -56.3 -76.8 
TOEP None -77.1 -58.3 -76.8 
CSH VC -73.8 -48.7 -73.2 
VC UN/CSH/ARH(1) -62.6 -54.3 -62.6 

AR(1) None -60.5 -56.3 -60.4 
VC VC -59.9 -53.6 -59.9 

CSH Intercept only -50.4 -27.4 -49.9 
CS None -35.5 -31.3 -35.4 
VC Intercept only -35.4 -31.3 -35.4 

CSH None -33.6 -12.7 -33.2 
VC None 132.3 136.6 132.3 
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Table 5.3 (cont.): Information criteria obtained under three different mean models for 
each of the covariance structures specified. 
 
Models which had a final Hessian matrix which was not positive definite 

ωi Σ    
CS UN/CSH/ARH(1)    
CS VC    
CS Intercept only    

TOEP UN/CSH/ARH(1)    
TOEP VC    
TOEP Intercept only    
UN UN    

     
Models which did not converge 

ωi Σ    
TOEP VC    
CSH UN/CSH/ARH(1)    
UN UN/CSH/ARH(1)    
UN VC    
UN Intercept only    

 

The models predicted to perform well from the simulation study, i.e. the no random 

effects model with TOEP error structure, the random intercept and slope model with 

AR(1) errors and unstructured random effects, and the random intercept and slope 

model with VC errors and unstructured random effects, obtained valid estimates and 

obtained AIC and AICc values below -60, and BIC values below -50.  The random 

intercept and slope model with ωi = AR(1) and Σ = UN obtained the best information 

criteria of -79.7, -75.5 and -62.2 for the AIC, BIC and AICc respectively, followed by 

the no random effects model with ωi = TOEP and the random intercept and slope 

model with ωi = VC and Σ = UN. 

 

The OLS model obtained the highest information criteria, with an AIC and AICc of 

132.3 each, and a BIC of 136.6. Therefore the information criteria show that the OLS 

model is inferior to models where the covariance structure had been modelled. 
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The observation to parameter ratio of the successfully fitted models ranged between 

54:1 to 3.8:1. The lowest observation to parameter ratio was obtained for the random 

effects models with ARH(1) errors and random effects covariance structures of UN, 

CSH, and ARH(1). For the unsuccessfully fitted models, the highest observation to 

parameter ratio was 7.5:1, which was obtained for the random intercept model with a 

CS error structure. The majority of unsuccessfully fitted models had observation to 

parameter ratios of less than 5:1. A large proportion of the successfully fitted models 

also had a parameter ratio of less than 5:1, and this is mainly due to the large number 

of random effects (120 in the case of the random intercept and slope models) which 

needed to be estimated. The observation to parameter ratio if only taking into the 

random effects of the random intercept and slope models is 4.5:1. 

 

5.4.2 Analysis of quadratic mean models 

 

The mean structure including all the effects, including nutrient level, as well as the 

two-way interactions between these effects, had very few significant parameters 

(Table 5.4). If the nutrient effect is excluded from the model, the significance of the 

other mean parameters improved (Table 5.4). The model with all two-way effects 

excluding nutrients still had non-significant parameters (Table 5.4). Although the 

interaction term with Herbicide and Week has a larger p-value than the interaction 

term with Herbicide and Week2, the interaction with the quadratic was excluded first, 

as it does not make sense to have a model where there is an interaction term with the 

quadratic, but not with the linear term. Excluding the interaction term with Week2 

resulted in an improved model where all the remaining interaction terms were 

significant.  
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Table 5.4: Fixed effects results for advanced mean structures, including effects for 
herbicide, nutrients and the adjustment variables. These estimates were obtained 
under a no random effects model with unstructured error covariance. 
 
 
Effect Estimate p-value Lower 95% CI 

Limit 

Upper 95% CI 

Limit 

Model with all two-way interactions 

Intercept 3.0320 <0.0001 2.7786 3.2854 

Week -0.0683 0.1287 -0.1569 0.0204 

Week2 0.0067 0.1140 -0.0017 0.0152 

Week 0 0.1407 0.2511 -0.1024 0.3838 

Week 1 0.2246 0.0177 0.0404 0.4088 

Herbicide -0.3226 0.0214 -0.5961 -0.0491 

Nutrient1 -0.2266 0.1605 -0.5453 0.0921 

Nutrient2 0.0210 0.8958 -0.2977 0.3397 

Herbicide×Week -0.1105 0.0155 -0.1992 -0.0218 

Nutrient1×Week 0.0963 0.0811 -0.0123 0.2049 

Nutrient2×Week -0.0592 0.2794 -0.1678 0.0494 

Herbicide×Week2 0.0061 0.1511 -0.0023 0.0145 

Nutrient1×Week2 -0.0079 0.1287 -0.0183 0.0024 

Nutrient2×Week2 0.0041 0.4273 -0.0062 0.0144 

Herbicide×Week 0 0.1507 0.2195 -0.0924 0.3938 

Nutrient1×Week 0 0.1744 0.2457 -0.1234 0.4721 

Nutrient2×Week 0 -0.0757 0.6126 -0.3734 0.2221 

Herbicide×Week 1 0.2676 0.0052 0.0834 0.4518 

Nutrient1×Week 1 0.1247 0.2729 -0.1009 0.3503 

Nutrient2×Week 1 -0.0246 0.8281 -0.2502 0.2010 

Nutrient1×Herbicide 0.1085 0.3104 -0.1039 0.3209 

Nutrient2×Herbicide 0.1364 0.2035 -0.0760 0.3488 
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Table 5.4 (cont.): Fixed effects results for advanced mean structures, including effects 
for herbicide, nutrients and the adjustment variables. These estimates were obtained 
under a no random effects model with unstructured error covariance. 
 
 
Fullest model with two-way interactions, excluding the nutrient effect 

Effect Estimate p-value Lower 95% CI 

Limit 

Upper 95% CI 

Limit 

Intercept 2.9624 <0.0001 2.7853 3.1394 

Week -0.0558 0.0954 -0.1217 0.0101 

Week2 0.0055 0.0797 -0.0007 0.01159 

Week 0 0.1741 0.0488 0.0009 0.3472 

Week 1 0.2586 0.0002 0.1285 0.3887 

Herbicide -0.2359 0.0644 -0.4863 0.0145 

Herbicide×Week -0.1140 0.0174 -0.2072 -0.0208 

Herbicide×Week2 0.0064 0.1452 -0.0023 0.0151 

Herbicide×Week0 0.1449 0.2409 -0.0999 0.3897 

Herbicide×Week1 0.2640 0.0057 0.0799 0.4480 

     

Fullest model with two-way interactions, excluding the nutrient effect and the interaction 

between Week2 and Herbicide 

Effect Estimate p-value Lower 95% CI 

Limit 

Upper 95% CI 

Limit 

Intercept 3.0400 <0.0001 2.8957 3.1843 

Week -0.0903 0.0004 -0.1383 -0.0424 

Week2 0.0088 0.0002 0.0044 0.0131 

Week 0 0.1092 0.1517 -0.0410 0.2594 

Week 1 0.2260 0.0005 0.1033 0.3487 

Herbicide -0.3867 <0.0001 -0.5313 -0.2420 

Herbicide×Week -0.0470 <0.0001 -0.0678 -0.0261 

Herbicide×Week0 0.2709 0.0031 0.0955 0.4463 

Herbicide×Week1 0.3272 0.0002 0.1644 0.4900 

 

This final mean model has significant interactions between Herbicide and the time 

variables Week, Week 0 and Week 1 (Table 5.4). This can be interpreted to mean that 

the slope parameter differs between sprayed and unsprayed plants, as well as the 

adjustments required at the beginning of the experiment and at the first week to 
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accommodate for a change in process which occurred after this time. Since the 

interaction term with the quadratic term is non-significant, it means that the curvature 

parameter does not differ significantly between sprayed and unsprayed plants. The 

derivative with respect to Week for both the sprayed plants and unsprayed plants’ 

curve is increasing, and therefore, by definition, the curve will be concave up 

(Stewart, 1998). The adjustment terms, as well as the adjustment terms in interaction 

with Herbicide, are positive (Table 5.4), indicating that the values at weeks 0 and 1 

need to be increased compared to the estimated quadratic over the full time period, 

and more so for the unsprayed plants. A plot of the predicted line superimposed over 

the observed mean line appears in Fig. 5.26. This plot shows that the observed mean 

values fit within the confidence limits of the predicted values, as they should, showing 

that the model is compatible with the data. 
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Fig. 5.26: Plot of the predicted mean log response over week superimposed over the 
plot for the observed mean log response. The error bars represent the 95% 
confidence interval of the predicted mean values. 
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5.4.3 Goodness-of-fit analysis of the quadratic model, with adjustment 

parameters, under various covariance structures 

 

5.4.3.1 No random effects model with ωi = UN 

 

As for the linear model, the no random effects model with unstructured error 

covariance matrix obtained the best fit compared to the models with other covariance 

structures according to the AIC and AICc values (Table 5.3). For the goodness-of-fit 

analysis of the quadratic model, the deleted estimates are not shown due to the large 

quantity of plots resulting from the additional fixed effects parameters. These plots are 

included in Appendix B2 which shows the full influence analysis of each of the 

models considered. The residual analysis plots shown in Fig. 5.27 show that the     

               

 

 

 

Fig. 5.27: Plots of scaled residuals for the quadratic model with no random effects 
and ωi = UN. 
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homogeneity of the residual variance is improved compared to the linear model, and 

the mean of the residuals is close to zero. This analysis also shows that the residuals 

are close to normality. The restricted likelihood distance highlights subjects 1 and 2 as 

potential outliers, Cook’s D highlights subjects 1 and 19, the PRESS statistic 

highlights subject 47, and the COVRATIO highlights subject 1 (Fig. 5.28). All these 

subjects highlighted are sprayed plants. Therefore although the goodness-of-fit plots 

show that the quadratic model, with additional adjustment parameters, modelling the 

logged response is an improvement of the linear model, there appears to be some bias 

in the estimates for the sprayed plants. 

 

 

 

 

Fig. 5.28: Plots of the influence diagnostics for the quadratic model with no random 
effects and ωi = UN. 
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5.4.3.2 Random intercept and slope model with ωi = ARH(1) and Σ = UN 

 

The random intercept and slope model with ωi = ARH(1) and Σ = UN was the second 

best model, according the AIC and AICc values, and the best fitting model according 

to the BIC value. The variance of the residuals is relatively homogeneous, the mean of 

the residuals is close to zero, and the residuals are close to normality (Fig. 5.29). The 

restricted maximum likelihood values (Fig. 5.30) again highlight subjects 1 and 2, but 

are smaller in comparison to those of the previous model (Fig. 5.28). Cook’s D is also 

smaller relative to the results from the previous model, and highlights subjects 1, 42 

and 47 (Fig. 5.28).  The PRESS statistics and COVRATIO are similar in size to those 

of the previous model, and highlight the same subjects (Fig. 5.28). Subject 42 is an 

unsprayed plant, but all the other highlighted observations are sprayed plants. 

 

 

 

 

Fig. 5.29: Plots of scaled residuals for the quadratic model with random intercept 
and slope, and ωi = ARH(1) and Σ = UN. 
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Fig. 5.30: Plots of influence diagnostics for the quadratic model with random 
intercept and slope, and ωi = ARH(1) and Σ = UN. 

Fig. 5.31: Plots of scaled residuals for the quadratic model with random intercept 
and slope, and ωi = AR (1) and Σ = UN. 
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5.4.3.3 Random intercept and slope model with ωi = AR(1) and Σ = UN 

 

Of the three models expected to perform well from the simulation study, the random 

intercept and slope model with ωi = AR(1) and Σ = UN obtained the lowest 

information criteria values. The residual plots for this model (Fig. 5.31) show that the 

residuals are closely distributed as normal, the mean of the residuals is close to zero, 

and that the homogeneity of the variance is similar to that of the previous two models. 

The restricted likelihood distance is smaller compared to the previous two models, 

and highlights subjects 2 and 47 as potential outliers (Fig. 5.32). Subject 47 is also 

highlighted by Cook’s D, the PRESS Statistic and the COVRATIO (Fig. 5.32). 

 

 

Fig. 5.32: Plots of influence diagnostics for the quadratic model with random 
intercept and slope, and ωi = AR (1) and Σ = UN. 
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5.4.3.4 No random effects model with ωi = TOEP 

 

The no random effects model with TOEP error structure was another of the models 

shown to be robust under misspecification. This model obtained only slightly larger 

values for the information criteria compared to the previous model. The residuals of 

this model have a mean of exactly zero, and the variance of the residuals is similar to 

that of the previous models (Fig. 5.33). The residuals are closely distributed as normal 

(Fig. 5.33). The plots of the influence diagnostics (Fig. 5.34) highlight the same 

observations mentioned for the previous models, in particular Subject 2, which 

obtained a restricted likelihood distance much larger in comparison with the other 

subjects. 

 

 

 

 

Fig. 5.33: Plots of scaled residuals for the quadratic model with no random effects, 
and ωi = TOEP. 



 167 

 

 

 

 

 

 

Fig. 5.34: Plots of influence diagnostics for the quadratic model with no random 
effects, and ωi = TOEP. 

Fig. 5.35: Plots of scaled residuals for the quadratic model with random intercept 
and slope, and ωi = VC and Σ = UN. 
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5.4.3.5 Random intercept and slope model with ωi = VC and Σ = UN 

 

The random intercept and slope model with ωi = VC and Σ = UN is the third model 

expected to perform well from the simulation study, and obtained the highest 

information criteria of the three models. The plots of the scaled residuals (Fig. 5.35) 

indicate, as for the previous models, that the mean of the residuals is close to zero, the 

variance of the residuals is relatively homogeneous, and are closely distributed as 

normal. The influence diagnostics are similar to those obtained for the random 

intercept and slope model with ωi = AR (1) and Σ = UN (Fig. 5.36). Subject 47 is 

identified by all the diagnostics as a potential outlier. 

 

 

 

Fig. 5.36: Plots of influence diagnostics for the quadratic model with random 
intercept and slope, and ωi = VC and Σ = UN. 
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5.4.3.6 Random intercept model with ωi = AR(1) 

 

In order to include a random intercept model for comparison, the random intercept 

model with ωi = AR(1) was selected. This model performed relatively well in the 

simulation study, and obtained low values for the information criteria (Table 5.3). The 

residual plots of the model (Fig. 5.37) are very similar to those obtained for the 

previous model. The distribution of the residuals is close to normal, the mean of the 

residuals is very close to zero, and the homogeneity of the residual variance is similar 

as for previous models. The plots of the influence diagnostics (Fig. 5.38) are also very 

similar to those of the previous model, once again highlighting subjects 2 and 47. 

 

 

 

 

 

Fig. 5.37: Plots of scaled residuals for the quadratic model with random intercept, 
and ωi = AR(1). 
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. 

 

5.4.3.7 OLS model 

 

The residual diagnostics of the OLS model (Fig. 5.39) indicate that the residual 

variance is relatively homogeneous, but that there appears to be slight skewness to the 

right, thereby deviating more from normality than the previous models discussed. The 

influence diagnostics are similar in size to the previous models (Fig. 5.40). Only 

subject 47 is clearly highlighted as a potentially influential point. 

 

Fig. 5.38: Plots of influence diagnostics for the quadratic model with random 
intercept, and ωi = AR(1). 
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Fig. 5.39: Plots of scaled residuals for the quadratic model with no random effects, 
and ωi = VC (OLS Model). 
 

Fig. 5.40: Plots of influence diagnostics for the quadratic model with no random 
effects, and ωi = VC (OLS Model). 
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5.4.3.8 Summary 

 

In general the residual diagnostics were very similar between all the quadratic models 

considered. These analyses show an improvement in the homogeneity of the variance 

of the residuals compared to the simpler linear models. The influence diagnostics 

tended to highlight the same subjects, in particular, subjects 2 and 47. Although the no 

random effects model with unstructured error covariance obtained the lowest AIC and 

AICc values, the residuals are not as close to normality compared to those of other 

models considered, nor are the influence diagnostics the smallest in size. The random 

intercept and slope models with ωi = ARH(1) and Σ = UN, with ωi = AR(1) and Σ = 

UN, and with ωi = VC and Σ = UN, and the no random effects model with ωi = TOEP 

obtained very similar residual plots. The size of the influence diagnostics were also 

similar, except in the case of the restricted likelihood diagnostic of the no random 

effects model with ωi = TOEP, which was relatively large for one observation. 
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5.4.4   Fit of the covariance structures under quadratic mean model 

 

5.4.4.1 No random effects model with ωi = UN 

 

 

 

The plot of the semi-variogram of the best fitting model (in terms of the AIC and 

AICc), the no random effects model with ωi = UN, shows values very close to one, 

ranging between 0.96 and 1.02 (Fig. 5.41). The plot of the covariances shows that the 

size of the covariances decreases with increasing lag until a lag 5, where after the 

covariances again start to increase in size (Fig. 5.41). Therefore the pattern of the 

covariances over increasing lag forms a U-shape.   

Fig. 5.41: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the no random effects quadratic model with ωi = 
UN. 
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5.4.4.2 Random intercept and slope model with ωi = ARH(1) and Σ = UN 

 

 

 

 

Although the random intercept and slope model with ωi = ARH(1) and Σ = UN was 

the second best fitting model in terms of the AIC and AICc values, and the best fitting 

model in terms of the BIC value, the covariance plots appear very different to those of 

the previous model, which obtained the best AIC and AICc values (Fig. 5.42). The 

range of values for the semi-variogram is much wider, ranging between 0.5 and 1.7. 

Although the size of the covariances is similar to that of the previous model, the 

Fig. 5.42: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the random intercept and slope quadratic model 
with ωi = ARH(1) and Σ = UN. 
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pattern of the covariances is very different, showing a sharply decreasing trend in the 

size of the covariances as the lag in weeks increases. 

 

5.4.4.3 Random intercept and slope model with ωi = AR(1) and Σ = UN 

 

 

 

The random intercept and slope model with ωi = AR(1) and Σ = UN obtained values 

for the semi-variogram similar to those for the random effects model with ωi = 

ARH(1) and Σ = UN (Fig. 5.43). The size and pattern of the covariances is also 

similar (Fig. 5.43). 

Fig. 5.43: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the random intercept and slope quadratic model 
with ωi = AR(1) and Σ = UN. 
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5.4.4.4 No random effects model with ωi = TOEP 

 

 

 

The values of the semi-variogram for the no random effects model with TOEP error 

structure have an average of approximately one, and range between zero and two. The 

plots of the covariances show that there is a steep decline in the covariances from lag 

0 to lag 5, after which the decline becomes less steep until lag 8 when the covariances 

increase. 

 

 

 

Fig. 5.44: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the no random effects quadratic model with ωi = 
TOEP. 
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5.4.4.5 Random intercept and slope model with ωi = VC and Σ = UN 

 

 

 

The semi-variogram and the covariance plots of the random intercept and slope model 

with ωi = VC and Σ = UN is very similar to that of the random intercept and slope 

model with ωi = AR(1) and Σ = UN. The range of values for the semi-variogram is 

almost identical, and the pattern of the covariances is very similar. In the no random 

effects cases of these models, i.e. the OLS model and the AR(1) no random effects 

model, the estimated covariance matrices would have been quite different. Therefore 

the covariance matrix of the random effects is playing an important role in 

Fig. 5.45: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the random intercept and slope quadratic model 
with ωi = VC and Σ = UN. 
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determining the pattern of the overall model covariances, resulting in two models with 

different error covariance structures obtaining very similar overall covariance 

matrices. 

 

5.4.4.6 Random intercept model with ωi = AR(1) 

 

 

 

 

The random intercept model with ωi = AR(1) has a semi-variogram with values 

ranging between zero and two (Fig. 5.46). The covariance plots shows covariances 

Fig. 5.46: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the random intercept quadratic model with ωi = 
AR(1). 
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which steeply decrease with increasing lag until lag 4, after which covariances remain 

constant at a value of approximately two.  

 

5.4.4.7 OLS model 

 

 

 

The OLS model obtained a semi-variogram with values mostly below one, averaging 

approximately 0.6. The variance estimate obtained was close to 0.07, similar to the 

variances obtained by the previous models. 

 

 

Fig. 5.47: Plot of semi-variogram (left) and the covariances (right) as a function of lag 
in weeks between observations for the quadratic model with VC errors (OLS model). 
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5.4.4.8 Summary 

 

With the exception of the no random effects model with ωi = UN and the OLS model, 

the plots of the semi-variogram and the covariances were very similar between the 

models considered, i.e. the random intercept and slope models with ωi = ARH(1) and 

Σ = UN, with ωi = AR (1) and Σ = UN, and with ωi = VC and Σ = UN, the random 

intercept model with ωi = AR (1), and the no random effects model with ωi = TOEP, 

obtained very similar overall covariance matrices. The no random effects model with 

ωi = UN obtained the best semi-variogram as all the values were close to one. The 

pattern of the covariances was very different to other models, which generally 

predicted a decline the size of the covariances as the lag between weeks increased. 

Therefore, in this particular example, choosing the model preferred by the AIC, or 

choosing the model preferred by the BIC would have resulted in fairly different 

covariance matrices for the responses, thereby affecting the standard errors of the 

estimated fixed effects. The OLS model obtained the worst values for the semi-

variogram as the majority of the values were below one. 

 

5.4.5   Discussion on the quadratic model 

 

The quadratic mean model based on the logged length of the second petiole, which 

includes adjustment parameters, is an improvement over the linear model based on the 

actual length of the second petiole. This is revealed by the improvement of the 

distribution of the residuals, and the increase in homogeneity of the residual variance. 

The plot of the predicted mean response over time superimposed over the observed 
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mean response over time (Fig. 5.26) clearly shows that the estimated mean model 

very accurately describes the mean response of the logged observations. 

 

The residual and influence diagnostics were very similar between the different 

covariance structures considered. The covariance analysis showed that most models 

had very similar estimated covariance matrices, except in the case of the no random 

effects model with UN errors. The model under this covariance structure resulted in 

very large estimates for the covariance at eight weeks lag relative to the estimates 

obtained by other models. The semi-variogram values of this model were close to one, 

more so compared to the other models considered.  

 

In this example, if the choice of the best fitting model had been based on the AIC or 

AICc values, the no random effects model with UN errors would have been the clear 

choice. But if the choice were based on the BIC, the random effects model with ωi = 

ARH(1) and Σ = UN would have been chosen. Therefore this may be an example 

where the BIC over penalises a model for having a large number of covariance 

parameters. 

 

The three covariance structures expected to perform well based on the simulation 

study (i.e. random intercept and slope models with ωi = AR (1) and Σ = UN, and with 

ωi = VC and Σ = UN, and the no random effects model with ωi = TOEP) obtained 

valid model estimates, and obtained information criteria close that of the random 

effects model with ωi = ARH(1) and Σ = UN, the model selected by the BIC. The 

residual and influence diagnostics, as well as the covariance analysis, showed that 

these three models obtained estimates for both the mean model and the covariance 
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model that were very close to the random effects model with ωi = ARH(1) and Σ = 

UN.  

 

As for the linear model, the OLS model performed the worst compared to all other 

models. The information criteria obtained was substantially higher compared to other 

models, the residuals deviated from normality more compared to other models, and 

the simple covariance structure obtained for this model did not adequately describe 

the complexity of the covariance matrix evident from the estimates obtained for other 

models.  

 

5.5 Comparison between the Simplistic Linear Model and the More Complex 

Quadratic Model 

 

As concluded in the previous discussion section, the quadratic mean model more 

adequately describes the relationship of the response over time compared to the 

simplistic linear model. By modelling the logged length of the second petiole, the 

normality of the residuals and the homogeneity of the residual variance improved 

compared to the linear model based on the actual length of the second petiole. 

 

Considering the performance of the three covariance structures predicted to perform 

well from the simulation study, compared to the simpler linear model, these three 

covariance structures performed better. Therefore, if a mean structure is selected 

which adequately describes the mean process, it’s possible to fit simpler covariance 

structures to the data, and successfully model the covariance of the data. In the same 

breath, the more complex covariance structures under the linear mean model gave 
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more interesting estimates for the covariance matrix of the response compared to the 

same covariance structures under the quadratic linear model. For example, the no 

random effects model with TOEP error structure gave estimates for the covariances 

that resulted in a spike in the size of the covariances from approximately six weeks 

lag under the linear mean model. The same covariance structure for the quadratic 

model also resulted in a spike, but comparatively smaller, and only at eight weeks lag. 

Therefore the covariance estimates are accommodating for the misspecification of the 

mean model for the linear case, by inflating the covariances for those lags where the 

error of the mean structure would have been most apparent.  

 

The quadratic model is slightly more difficult to interpret, compared to the simple 

linear model. The researcher analysing the model output needs insight into the effect 

that each coefficient has on the shape of the response curve over time in order to be 

able to accurately assess the estimated response curve, as well as an understanding of 

the effect that the coefficients of the indicator variable for Herbicide would have on 

the two separate curves for the two levels of this categorical variable. In this example 

both models predict a separation in the curves of sprayed and unsprayed plants, with 

the curve of the sprayed plants sitting above the curve of the unsprayed plants. 

Therefore the conclusion that the growth process of the sprayed and unsprayed plants 

is different could be concluded from both the simplistic linear model and the more 

complex quadratic model. On the other hand, the linear model predicts a steady 

decline in growth of the plants over time, whereas the quadratic model predicts a 

decelerating decline until approximately week 7 (for the sprayed plants) and week 8 

(for the unsprayed plants) when the growth then begins to increase. The description of 

the growth available from the quadratic model is more accurate, and potentially 
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reveals important characteristics about the growth curves of the sprayed and 

unsprayed plants not available from the linear model.  

 

The disadvantage of the quadratic model compared to the simplistic linear mean 

model is the further limitation of the observation to parameter ratio, which is already 

constrained in the case of the random intercept and slope models. Therefore any 

additional parameters added to the model will result in greater sensitivity of the model 

to individual observations. 

 

 

 


