CHAPTER 5

FITTING MODELSTO THE ECOLOGICAL DATA SET

5.1  Background to Ecological Data Set

The ecological data set originates from a studydaooted in order to determine if the
suppression of water hyacintki¢hhornia crassipes) — a potent water weed — under
biological control can be aided by spraying thentdawith a sublethal dosage of
herbicide during a single spraying event, and if tis affected by the nutrients
(phosphates and nitrates) in the water (Kirton, 5308 sublethal dosage of 0.8% of a
glyphosate herbicide was applied to water hyacpiéimts grown at three different
nutrient levels. Control plants were grown in ideait conditions, but without

herbicide. Two pairs of water hyacinth weeviNgochetina eichhorniae, were added

to each plant. Plant growth parameters and insssdifig intensity were measured
weekly over an eight week period, resulting in nmeasurements of each variable

per plant.

The purpose of spraying the plants with the subletbsage of herbicide was to stunt
the growth of the plants, but not to negativelyeeffthe biological control agents. If
the dosage was too high, it could result in tadaklof the plants, resulting in loss of
the biological control agents as well, which wotihén allow new plants to grow
without suppression from the biological control @ige The growth rate of unsprayed
plants is dependent on the amount of nutrienthénvtater. Therefore, if the growth

rate of sprayed plants also increases with inangasutrient levels in the water, the
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success of this integrated method of control cdadddependent on the amount of

nutrients in the water.

Findings of the study were that sprayed plantspsdgrowing under the influence of
a sublethal herbicide dose and nutrients had rextedin sprayed plant growth. For all
nutrient levels, treated plants underwent veryelitisexual reproduction, and leaf

production halted.

At the onset of the study, four water hyacinth gdamemoved from the same pool,
were placed into circular B0plastic tubs containing 42of water and a mix of
nutrients, on a laboratory roof top at the Univigref the Witwatersrand. As the
plants had been grown in the same conditions oveng period of time, the growth
forms (which depend on the amount of space, nufiand light available to the
plants) of the plants were all the same, and the sf the plants were very similar.
Three nutrient levels were used: low, 0.5mg Nifitatand 0.08mg Phosphate/
medium, 1.5mg Nitratet/and 0.22mg Phosphatg, /and high, 3mg Nitratet/and
0.43mg Phosphatet./ These levels were chosen using country-wide watedity
analyses from the South African Institute for Wa@erality Service (IWQS) recording
stations. The ratio of nitrogen to phosphorus wagraximately 7:1 in each case,
which has been suggested to yield optimum growtivaier hyacinth plants (Wilson,
2002). Thirty tubs were used in total. These tulesewthen divided, by means of a
random allocation process, into the three nutrggatips. Half of the tubs, selected at
random, in each nutrient group were sprayed wighstiiblethal dosage of herbicide at
the beginning of the experiment, and the other tedfe sprayed with water. The

experimental tubs were moved to a different locata the roof for spraying, and a
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screen was placed up to avoid spraying the cotubd. Five experimental tubs and
five control tubs were used for each nutrient leVéater and nutrients were replaced
weekly during the course of the experiment. Thestmatubs were individually

enclosed in a net canopy to ensure that the wesrmained on the plants.

Four plants were placed into each tub to ensuregtmwvth of the plants was still
possible. Twad\. eichhorniae weevil pairs were released onto each plant ithatty
tubs, resulting in an initial weevil density of 4eewils/plant or 16 weevils/tub,
matching field infestation rates. Two days befdére herbicide was applied, two water
hyacinth rosettes were randomly chosen from eatheofubs and tagged, and weekly
measurements were made on these plants. The lehdtte petiole of the second
youngest leaf, which is the distance from the pofrdttachment at the rhizome to the
base of the lamina was one of the plant performameasurements taken. This is an
Important measure as it reveals information abloaitstate of health and growth form

of the plant.

52 Data Exploration

The ecological data set contains nine measurenm@nteach of the sixty plants,

resulting in 540 measurements in total, which rgda compared to the PR data set,

which has a total of 27 subjects measured at focasions each, resulting in a total of

108 measurements.
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Fig. 5.1: Means plot of second petiole (leaf 2N separated by nutrient
level and herbicide application.

The response analysed was the length of the squetmle. The plot of these data
over time, separated by nutrient level and herki@gplication, appears in Fig. 5.1.
The petiole length of a healthy plant is expectiednge from week to week as new
leaves are formed. The plots show that the secetidl@ length of the sprayed (S)
plants started off being similar to the length lo¢ tunsprayed (NS) plants, but over
time the unsprayed plants showed a bigger decregsstiole length compared to the
sprayed plants, before reaching a constant valis.Same pattern is displayed for all
three nutrient levels (H = high, M = medium, L amMp and a comparison of the
values at each week, compared between nutrienis|esteows that they appear to be

very similar. The large change in leaf 2 petiolaglls observed for the unsprayed
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plants is thought to be due to the generation of leaves, thereby replacing the leaf
two position with a smaller leaf. The small deceeas leaf 2 petiole length in the
sprayed plants is thought to be due to the shrgnliack of the plant due to its

compromised state of health (Kirton, 2005).

The analysis which follows on this data set consideo different approaches to
modelling the mean response. The first is a typkddOVA approach to modelling
the mean. This is the type of approach which mayeHaeen used if a researcher
simply wished to obtain p-values for the differdited effects in the model (an
approach | have observed among ecology studenk®tefore a simplistic linear
model is used. This analysis assesses the effeat wfcorrect mean model choice on

the conclusions of the study.

Close examination of the mean response over tinge @1) shows that a simple
linear relationship between the length of the sdcpetiole and time does not
adequately represent the observed relationshipleast two turning points are
apparent from this figure. Therefore a more appat@mean structure would include
at least a quadratic time term. Additional adjustmparameters could also be
included in order to accommodate for the changpratess which appears to take
place after the first week in the experiment. Asayof this more complex quadratic
mean structure allows investigation of the effectifferent variance models when

the mean structure used is adequate.

The purpose of carrying out this analysis was ikorroborate the findings of the

simulation study by determining the appropriatenaglsshe random effects models
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with @; = VC andX = UN and withe; = AR(1) andX = UN, and the no random
effects model with TOEP errors; (ii) to determin@wh covariance structures
compared, particularly covariance structures wigeiformed well in the simulation
study, the OLS model, and more complex structumed; (iii) to interpret the results
of the linear mixed effects model fitting exercisghe context of an ecological study,

both under a simplistic model and under a more d¢exymean model.

53 Simplistic Linear M oddl Fitting and Analysis

5.3.1 Simplistic linear mean models

Models considered in this section are the lineatedhieffects models, along with the
simplest case of these models: the OLS ordinamessgpn model. Preliminary fitting
included the nutrients effect and the herbicidee@ffunder various covariance
structures. This analysis confirmed that nutriewtss not a significant predictor
(results for two-way interaction models shown fbe trandom intercept and slope

model withe; = VC andX = UN in Table 5.1).

The fullest parameterisation of the model considievas

y, = B, + B, (Herbicide) + 5, (Week) + S, (Nutrientsl) + S, (Nutrients2)
+ B (Herbicide) x (\Week) + 5, (Nutrientsl) x (Week) + £, (Nutrients2) x (Week)
+ B (Nutrientsl) x (Herbicide) + 5, (Nutrients2) x (Herbicide)
+ B, (Nutrientsl) x (Herbicide) x (Week) + 5, (Nutrients2) x (Herbicide) x (Week)
+b1i +b2i(Vveek)+£i
b, ~N(0,2),& ~ N(O,®;)

wherey; is a response from th& plant, Herbicide is a binary variable indicating

sprayed or not sprayed (unsprayed =Nujrientsl (high = 1) andNutrients2 (low =
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1) are binary indicator variables for the nutrieevtel (medium is coded adutrientsl

= 0 andNutrients2 = 0), andWeek is a quantitative variable for the week numlfer,
are the parameters of the fixed effettgre the parameters of the random effects, and
& is the error vector of th#" subject. The matrices andw; are the random effects
and error covariance matrices respectively. Upvtmrtandom effects were included in

the model, witheek used as the variable for the random slope paramete

Models were considered with all two-way and threspwnteractions. The three-way
interaction was non-significant for all models @éfway interaction terms had p-
values = 0.78 and 0.35 for the random effects maatbl ®; = VC andX = UN), and

was therefore removed from the model. Non-significevo-way interaction terms
were removed next, one at a time, followed by ngniBcant main effect terms that
were not contained within any significant interaatiterms. All terms containing the
nutrients effect were found to be non-significafihe confidence intervals of the
terms containing nutrients fluctuated the most leetwmodels with different mean
structures. Therefore the nutrients effect wasuged from the final model, which
contained fixed effects for herbicide and week. Sehenodels were fit using SAS

PROC MIXED (ver. 9.1).
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Table 5.1: Fixed effects results for simplistingar model with the nutrients and
herbicide effects, including all two-way effect)d@r independent error covariance
and random intercept and slope with unstructuregance.

Effect Estimate p-value Lower 95% CI | Upper 95% CI
Limit Limit

Model with all two-way interactions

Intercept 229142 <0.0001 20.3152 25.5133
Week -0.7431 0.0001 -1.1082 -0.3779
Herbicide -4.4785 0.0084 -7.7713 -1.1856
Nutrientl -0.7180 0.6826 -4.2057 2.7698
Nutrient2 -0.9347 0.5947 -4.4225 2.5530
HerbicidexWeek -0.9014 <0.0001 -1.2665 -0.5363
NutrientlxWeek 0.1754 0.4353 -0.2718 0.6226
Nutrient2xWeek -0.2729 0.2266 -0.7201 0.1743
NutrientlxHerbicide 1.1659 0.5690 -2.9129 5.2447
Nutrient2xHerbicide 2.3750 0.2482 -1.7037 6.4538

M odel with two-way interactionsincluding week

Intercept 22.2341 <0.0001 19.9814 24.6668
Week -0.7431 0.0001 -1.1082 -0.3779
Herbicide -3.2981 0.0066 -5.6408 -0.9555
Nutrientl -0.1350 0.9252 -3.0042 2.7342
Nutrient2 0.2528 0.8605 -2.6164 3.1220
HerbicidexWeek -0.9014 <0.0001 -1.2665 -0.5362
NutrientlxWeek 0.1754 0.4353 -0.2718 0.6226
Nutrient2xWeek -0.2729 0.2266 -0.7201 0.1743

~~+

M odel with all main effects and the inter action between week and herbicide effec

Intercept 22.4717 <0.0001 20.4417 24.5018
Week -0.7756 <0.0001 -1.0382 -0.5129
Herbicide -3.2981 0.0071 -5.6624 -0.9339
Nutrientl 0.6620 0.5153 -1.3636 2.6877
Nutrient2 -0.9873 0.3331 -3.0129 1.0384
HerbicidexWeek -0.9014 <0.0001 -1.2728 -0.5300
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5.3.2 Modd fitsunder various covariance structures

The proposed model for the data was:

y. = f3, + B,(Herbicide) + B,(Week) + S, (Herbicide) x (\Week) + b, +b,, (Week) + £,
bi - N(O,Z),SI -~ N(O’(’)I)
(1)

wherey; is a response from th& plant, Herbicide is a binary variable indicating
sprayed or not sprayed (unsprayed =\V¥gek is a quantitative variable for the week
number B; are the parameters of the fixed effebigre the parameters of the random
effects, andg; is the error vector of thé" subject. The matriceE and o; are the

random effects and error covariance matrices réispéc

All of the parameter estimates, including the c@race parameter estimates, and
information criteria for each model successfullyefd to the data appear in Appendix
B1l. Due to the large quantity, the outlier and uefice diagnostics for selected
models, have been included in Appendix B2. A sunynaimodel fit results appears
in Table 5.2 and are discussed below. The paramestenates appear in the order
presented in equation (1). This table also showswimodels were not fitted to the

data and the reason for failure to fit these models

As opposed to the simulation study, certain modets UN or heterogeneous error
covariance structures performed well. Models fitteth UN and heterogeneous error
covariance structures obtained the lowest AIC, Bhd AICc values. The most likely
explanation is that the study was balanced and ttlexte were more subjects per
treatment compared to the simulation study dataeasebmmodating more parameters

in the model. Models which performed particularbdly, obtaining invalid estimates
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or resulting in non-convergence, were random iefgr@and slope models fitted with
an AR(1) or ARH(1) error structure. None of the ralsdin this category obtained
valid estimates. As observed in the simulation gtwhen covariance structures were
fitted to the random effects which forced the vace of the random intercept and
slope to be the same, such as CS or TOEP struteregsulting covariance structure
was not positive definite. This was demonstratedugh the calculation of negative

eigenvalues for these estimated covariance matrices

Table 5.2: Summary of model fitting results.

Successfully fitted models
; )Y B, Standard AlIC BIC AlCc
Error
UN None 1950 066 2929.0 3023.2 2937 .4
- 454 093
-021 009
- 065 013
CSH CSH/ARH(1)| (1787 085 3092.7 3120.0 30934
- 632 120
-028 011
- 050 016
CSH UN 1787 085 3092.7 3120.0 30934
- 632 120
-028 011
- 050 016
ARH(1) None 2115 093 3097.6 3118.6 3098.0
- 420 132
- 060 017
- 080 025
CSH None 1714 083 3124.2 3145.2 3124.7
- 665 118
- 031 010
- 054 015
TOEP None 2272 082 3173.1 3192.0 3173.5
-293 115
- 081 014
-101 020
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Table 5.2 (cont): Summary of model fitting results

Successfully fitted models

[0y X B; Standard AlIC BIC AlCc
Error
AR(1) | Interceptonly (2243 084 3177.4 3183.7 3177.4
-302 119
- 070 015
- 096 021
AR(1) None 2247 085 3180.4 | 3184.6 3180.4
- 294 121
- 068 017
- 097 023
VC CSH/ARH(1) 2236 081 3243.8 3252.1 3243.8
-330 115
-078 013
- 090 019
VC UN 2236 081 3243.8 3252.1 3243.8
-330 115
-078 013
- 090 019
VC VC 2236 070 3247.4 | 3253.7 3247.5
-330 100
- 078 011
- 090 016
CS None 2236 072 3247.6 3251.8 3247.7
-330 102
- 078 011
- 090 015
VC Intercept only| (2236 072 3247.7 3251.8 3247.7
-330 102
-078 011
- 090 015
VC None 2236 059 3334.9 3339.2 3334.9
-330 084
-078 013
- 090 017
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Table 5.2 (cont): Summary of model fitting results

M odelswhich resulted in estimates of } that were not positive definite

(O] p
VC CS
CS TOEP
AR(1) VC
AR(1) UN
ARH(1) VC
ARH(1) CSH/ARH(1)
ARH(1) UN
TOEP CS
TOEP TOEP

M odels which had a final Hessian matrix which was not positive definite
(O] p

CS CSH

Models which did not converge

0y p

AR(1) CSH/ARH(1)

The complexity of models ranges. The simplest mdtdel OLS model, has four fixed

effects parameters and one variance parametdtingtive parameters, and resulting

in an observation to parameter ratio of 108:1. mbaandom effects models with a
maximum of 45 covariance parameters, which totaka parameters in total, results
in an observation to parameter ratio of 11.0:1. fidrelom intercept models have an
additional sixty random effects parameters thatineebe calculated and one random
effects variance, resulting in a maximum of 110 eiqguhrameters, and an observation
to parameter ratio of 4.9:1. The random intercejpt slope models have 120 random
effects parameters that need to be estimated atulthpee random effects covariance
parameters, resulting in a maximum of 172 pararegterd leading to an observation
to parameter ratio of 3.1:1. The lowest observatiioparameter ratio of the ecological

data set is twice as large compared to the lowestroation to parameter ratio of the
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PR data set. Models successfully fitted to the Hathvaried observation to parameter

ratios, ranging between 3.1:1 and 108:1.

Models which were expected to perform well from tbsults of the simulation study
include the no random effects model with TOEP eswucture, and the random
intercept and slope models with = AR(1) andX = UN, and withe; = VC andX =
UN. These models obtained information criteria thegre close to the minimum
relatively consistently, and obtained the best caye probabilities for the fixed
effects estimates. Of these three models, onlywtere successfully fitted to the data,
with the random intercept and slope model wisth= AR(1) andX = UN obtaining an
estimated variance for the slope of zero in thedoam effects covariance matrix.
Models which obtained low mean values for the imfation criteria in the simulation
study, namely the no random effects model wit= CS model, the random intercept
model with independent errors, and the random éefarand slope model wiid; =
VC andX = VC, fitted the data successfully, but obtainetatively high AIC and
BIC values. The random intercept model with = AR(1), which performed
relatively well in the simulation study with respéc the information criteria analysis
and obtained reasonable coverage probabilities,fitad successfully and obtained
relatively low values for AIC, BIC and AlICc. The mandom effects model with; =
AR(1), which obtained coverage probabilities tharevtoo high in the simulation
study, had a similar fit to the random interceptdeioand obtained similar fixed
effects parameter estimates. The OLS model, wheh laad coverage probabilities

that were too high in the simulation study, obtdittee worst fit.
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5.3.3 Goodness-of-fit analysis of the linear model under various covariance

Structures

A closer examination will now be carried out on fih®f individual models.
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Fig. 5.2: Estimates of fixed parameters obtainégr diie removal of each data point
for the no random effects simplistic linear modéhvey; = UN.

5.3.3.1 No random effects model with w; = UN

The no random effects model wiih = UN is the best fitting model according to the
information criteria, as this model obtained thenimum AIC of 2929, a minimum
BIC of 3023 and a minimum AICc of 2937 (Table 5.Zable 5.2 shows that the
estimated fixed effects were all significant at &% level. Fig. 5.2 is a plot of the
fixed effects parameter estimates after the remof/@ach subject’s observations in
the study, where the x-axis indicates which subj@st been removed. The horizontal

line in each plot indicates the fixed effect partanestimate obtained for the model
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fitted to the full data set. The purpose of thekxspis to demonstrate the effect an
individual subject’s observations have on the esteof the fixed effects parameters.
This plot shows that the estimates for the intercepfficients of both sprayed (figure
with y-axis labelled “Intercept”) and unsprayed i (figure with y-axis labelled
“Herbicide NS”) are quite stable, with a maximunifelience of less than one unit
from the actual estimate for subject 1. The estsidbr the slopes also show
relatively little change (of difference of less th@.1) for deletion of most subjects,
except in the case of subject 1, for the estimhtbeoslope of the sprayed plants, and
subject 19, for the estimate of the difference lopss between the unsprayed and
sprayed plants, which result in differences betwtberdeleted estimate and the actual

estimate of close to 0.2. Both subjects 1 and 1@ wethe sprayed treatment.

Scaled Residuals for PetLen
— 40+
[}
3
z 304 .
@ @
o 2 20
o @
@ o
] 10
[
o 0
T T T T T T T T T T T T T
7.5 10 12.5 15 17.5 20 56 -4 -24 -08 08B 24 4
Predicted Mean Scaled Residual
4 oo Residual Statistics
= Mo, of obs not missing H40
3 24 Minimum -6.214
E Arithmetic Mean 0.0764
@ 04 aximum 4.007
= Stel. Deviation 0.9943
> 2 Fit Statistics
E Objective Function 2839
M 44 o AIC (smalleris better) 26249
o AICT (smaller is hetter) 2037 .4
T T T BIC (smaller is better) 30232
-2 0 2
Quantile

Fig. 5.3: Plots of scaled residuals for the no caneffects simplistic linear model
with @; = UN.
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Fig. 5.3 contains plots of the transformed resisludlhe transformation of these
residuals is discussed in Chapter two. The transfdrresiduals can be treated in the
same way as residuals from an ordinary regressialysis. These residuals should be
approximately normally distributed and have a mehrero and a variance of one.
The first plot is of the predicted values agais transformed residuals. This plot
shows that the transformed residuals vary betweamd4-4. Since the time variable is
discrete, the separate bands of residuals thabeaeen are the residuals for predicted
values at a particular week. The bands of residorlthe left of the plot are for the
predicted values of the unsprayed plants, and thoste right are for the predicted
values of the sprayed plants. The spread of thduals for the unsprayed plants
appear to deviate around the zero line, excepethoghe last band of residuals. The
slope of the predicted equation for unsprayed pl@negative, but the plot of the
observed data (Fig. 5.1) reveals that althoughetiera decreasing trend in the data,
the mean of the response for week 8 is increasilagive to week 7, and the mean for
week 1 is smaller compared to the mean for weekirkce the equation predicted is
linear, this information cannot be captured by ith@del, and therefore the estimates
for week 8 will be lower compared to the observathgdand the estimates for week 1
will be higher compared to the observed data. Tdr@ability in the residuals of the
sprayed plants is much higher compared to thoseeofinsprayed plants. Therefore it
does not seem that the variability within the spthgind unsprayed plants is the same.
This is also suggested by the plot of the obsedatd (Fig. 5.1). The next two plots in
Fig. 5.3 are a histogram and a g-q plot of thesfi@med residuals, and are intended
to show the normality of the transformed residu@lse histogram of the residuals is

close to symmetrical, but with slight skewnesshe tight. The g-gq plot shows that
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most of the points fall on the one-to-one line, Iidt there is deviation from

normality in the tails of the distribution of thehsformed residuals.

Fixed Effects Influence Diagnostics for PetLen
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Fig. 5.4: Plots of the influence diagnostics fag tio random effects simplistic linear
model with®; = UN.

Fig 5.4 contains plots of four different influendiagnostics. These diagnostics are the
restricted likelihood distance, the PRESS stati€licok’s distance (Cook’s D), and
covariance ratio (COVRATIO). Each of these diagimsseéxamines a different aspect
of the influence an observation has on the estinatedel. The restricted likelihood
distance measures the overall influence of an ghtien, Cook’s distance measures
the influence of an observation on all predictetli®@s, the covariance ratio measures
the influence of an observation on the precisionthgf estimates, and the PRESS
residuals measure the influence of an observatioitsoown predicted value. The

deletion takes place at the level of a subject, amdhese diagnostics show the
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influence that a plant’s observations have on thiemated model. The full set of
diagnostic values for each subject is availablappendix B2. Influential subjects are
identified as those subjects with absolute diagoastiues relatively larger compared
to other subjects. Subjects 1, 19, and 38 wereliglged as being potentially
influential, as the diagnostic values for thesejexttb are higher relative to all other
subjects. In particular, the values for Cook’s ahste and the restricted likelihood
distance highlight these three subjects, and seetBabjects influence the predicted
values of all other subjects. These three subjeelsnged to the sprayed group of
plants, so therefore the model may be predictiegutsprayed plants better than the

sprayed plants.

5.3.3.2 Random intercept and slope model with wj = CSH and ). = CH

The random intercept and slope model vah= CSH and), = CSH performed only
slightly worse. This model obtained an AIC of 3083BIC of 3120 and an AlCc of
3093 (Table 5.2). Again all of the fixed parameteexe significant. The parameter
estimates for the intercepts are about two unig&facompared to those estimated for
the previous model, but the slope estimates angsigrilar. The stability of the fixed
effects parameter estimates with removal of subjécm the data set was similar
compared to the previous model, but showed smekgeme deviations in estimates
for the slopes (Fig. 5.5). The transformed resislvaried between 4 and -4 (Fig. 5.6).
The plot of the predicted values against the redgdshow the same pattern as for the
previous model, but show a smaller range in thelvess for the unsprayed plants,
but with residuals of large predicted value sugggshegative bias in the predicted

values. The g-q plot shows that more points fallttoe one-to-one line compared to
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the previous model, but the histogram is slightgweed to the left. The influence
diagnostics only highlight subject 38 as an infliedrpoint (Fig. 5.7). The size of the

diagnostics is smaller in comparison to the previowdel.
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5.3.3.3 Random intercept and slope model with w; = VC and 2 = UN

The random intercept and slope model weh= VC andX = UN was shown to be a
relatively robust model in the previous simulatgindy. This model obtained an AIC
value of 3244, a BIC value of 3252 and an AICc gabf 3244 (Table 5.2). The
estimated parameters of the fixed effects weresighificant at the 5% level and
showed only small deviations, relative to thosetlué best fitting model, when
subjects were removed (Fig. 5.8). The estimateghef fixed effects intercept
parameters were approximately two units higher amenb to those obtained for the
best fitting model, and had steeper downward slopé&e transformed residuals
varied between 4 and -3 and were close to normdlity some pattern was apparent
in the plot of the predicted values against thedfamed residuals for those residuals
of the unsprayed plants and was more exaggeratadared to previous models (Fig.
5.9). Along with subject 38, the influence diagmmsthighlight at least five other
subjects as potential outliers, including obseorati2, 7, 25, and 47 (Fig. 5.10). The
restricted likelihood distances are much smallemgared to all three previous

models.
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5.3.3.4 Random intercept model with w; = AR(1)

The random intercept model witth; = AR(1) was another model shown to be
relatively robust by the simulation study. This rabdbtained AIC, BIC and AICc
values of 3177, 3184 and 3177 respectively. Thedeeg were more or less in the
middle of the range of values obtained for the rimfation criteria by models in this
study. The estimates of the fixed effects (Tab®) @ere very close to those obtained
in the previous random effects model with = VC andX = UN. The deleted
estimates for the fixed effects show that the estdah fixed effects estimates showed
relatively small deviation in estimated values wisebjects were deleted compared to
the best fitting model (Fig. 5.11). The transformediduals varied between 4 and -3

(Fig. 5.12). The plot of the predicted values agihe residuals again shows a
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pattern for the unsprayed plants, where small ptedivalues tend to be negatively
biased and large predicted values tend to be pelitbiased, except in the case of the
largest predicted values, where the bias changesdative again. The influence and
outlier diagnostics show that observations 2 andr@Bpotentially influential points

(Fig. 5.13). The size of the restricted likelihodidtances and Cook’s distances is

much smaller compared to those obtained for theflitssg model.

131




5.3.3.5 No random effects model with @w; = TOEP

The no random effects model wiiy = TOEP, predicted to be a robust model from
the simulation study, resulted in an AIC, BIC antCé values of 3174, 3192 and
3174 respectively (Table 5.2). The fixed paramettimates were all significant at
the 5% level and did not show large deviationsize svhen subjects were excluded
(Fig. 5.14). Comparing the parameter estimateshéo Hest fitting model, the no
random effects model with; = TOEP obtained similar estimates compared to the
random intercept and slope model with= VC andX = UN and the random intercept
model with®; = AR(1) (Table 5.2). The transformed residualsto$ model were
between 4 and -3, and only deviated from normdity large values of scaled
residuals (Fig. 5.15). The plot of the predicteduga against the transformed
residuals is the best compared to all previous soddis plot shows that the bands
of residuals vary around the zero line, and thatread in the residuals is evident
indicating that the predicted values are not biaBed as in the case of the previous
models, the homogeneity of the residual variangeo. Subject 38 was once again
highlighted as an influential subject, along wittbgcts 2, 25, 47 and 54 (Fig. 5.16).
The restricted likelihood distances and Cook’s atises were slightly larger
compared to the previous model, but not as largdh@se of the no random effects

model withm; = UN.
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Fig. 5.14: Estimates of fixed parameters obtairfest the removal of each data
point for the no random effects simplistic lineanael withe; = TOEP.
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Fig. 5.16: Plots of the influence diagnostics fog ho random effects model
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5.3.3.6 OLS model

The final model investigated was the OLS model wiitlependent error covariance
structure. This model had the highest AIC, BIC &i@c values of 3335, 3339 and
3335 respectively (Table 5.2). The fixed paramei&imates were very similar to
those for the previous model. These estimates vediresignificant at the 5%

significance level and did not show high sensiitid the removal of subjects (Fig.
5.17). The transformed residuals varied betweend4-38, and when plotted against
the predicted values showed a trend in the biaghefpredictions. The plots for
normality showed only small departures from nortgalbut skewness to the right
(Fig. 5.18). The influence diagnostics highlighteabjects 7, 25, 38 and 47. The
Cook’s distances were larger compared to previooslats, but other diagnostics

were similar in size (Fig. 5.19).
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Fig. 5.19: Plots of the influence diagnostics foF simplistic linear OLS model
with independent error covariance structure.

5.3.3.7 Summary

The model fit analysis reveals that for all moddlse residuals show that the
variability of the responses within the sprayed andprayed plants is not equal. The
plot of the predicted values against the transformesiduals shows very different
spreads for the sprayed and unsprayed plants. iModéls also showed a trend in the
residuals when plotted against predicted values. Site of the deviations of deleted
fixed effects estimates from actual estimates wadas between models. The size of
the influence diagnostics varied between modelsh wviite restricted likelihood
distance varying the most and the random effectdetnwith ®; = VC andX = UN
having the largest values for influence diagnostisbject 38, followed by subject 1,
was shown to be a potential outlier in all mod@&seth these subjects were sprayed

plants. The no random effects model with= TOEP obtained the best transformed
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residuals compared to all other models considdred.residuals varied about the zero
line and showed very little trend, but as in a# tases considered, the homogeneity
of the residual variance was poor. The influen@gudostics were not the smallest
compared to other models, but were smaller comparéte no random effects model

with @; = UN.

5.3.4 Fit of the covariance structuresunder the simplistic linear mean model

In order to determine how well the models perforniederms of the covariance
structure fitted, graphical methods were employethe methods include a semi-
variogram-type approach and a plot of the covagranggainst the lags in time, as
discussed in Chapter two. SAS proc mixed (ver. 8dgs not include an option to
display the empirical semi-variogram for the fittdidear mixed effect model.
Applying the available generic function for the adétion of the empirical semi-
variogram (PROC VARIOGRAM (SAS ver. 9.1)) is non4al, as it is specifically
for spatial data and requires two distance vargbhamely latitude and longitude.
Longitudinal data only have one dimension, whichthe length in time between
observations. The equation of the empirical semiegaam for longitudinal data is:
y(hy ) =3 var(r;) + 3 var(r, ) —cov(r; r, )

wherei represents the subjegt,and k are measurement occasions, ands the
residual on subjedtat timej, andhjy is the distance in time between timesndk.
The transformed residualls,-*() were used in place of the ordinary residualsetfoee,

if the covariance is correctly specified, then filet of the semi-variogram should
show a horizontal scatter around the value of émerder to obtain an estimate of

var(ri,-*), the variance of the residuals obtained betwednjests at timej was
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calculated. Similarly, the covariances of the reald between timep and k were

calculated for all subjects in order to obtain atireate of covrﬁ,-*, ri ). These values

were then used to calculafe(hi}k) and were plotted as a function of the distance in

time between measurements. The plot of the senogr@am can be used to determine

if there is misfit of the covariance model.

To obtain a plot of the covariances, the estimatadriance matrices for the random

errors and random effects (as shown in Appendix Bé&je used to calculate the
estimated covariance matrix of the responsﬁé,s,: Zif:Z{ +@, . These covariances

were also plotted as a function of the lags betwaeservations. This plot gives a
visual representation of the covariance matrix, anduseful for comparing the
variance and covariance estimates between diffenedels. The values plotted at lag

zero are the estimated variances of the resporeschtweek.

5.3.4.1 No random effects model with w; = UN

From the analysis of the information criteria, thedel which performed best was the
no random effects model with; = UN. A plot of the approximate semi-variogram of
the transformed residuals (Fig. 5.20) shows thait title points in general are close to
one, with only a small number occurring below 0'Be plot of the covariances (Fig.

5.20) gives a visual description of the covariasitacture. It shows that the values of
the variances (those at lag 0) are quite highivelab the values of the covariances,
with week O’s variance being the highest. At oneekeelag, a very large covariance
estimate was obtained relative to other covariaaicéhis lag, suggesting that this

model may be over-fitting. The covariances showearelsing trend towards five
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weeks lag, but then increases again from five wéelseven weeks lag, with a slight
drop at eight weeks lag. The standard errors sfrtiodel (Table 5.2) are some of the

lowest values compared to all other models.
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Fig. 5.20: Plot of semi-variogram (left) and thezanances (right) as function of lag
in weeks between observations for the no randoatesffsimplistic linear model with
@i = UN.
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5.3.4.2 Random intercept and slope model with w; = CSH and 2= CSH
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Fig. 5.21: Plot of semi-variogram (left) and thezanances (right) as function of lag
in weeks between observations for the simplistiedr model withw; = CSH andt =
CSH.

The next best performing model was the random defgrand slope model with; =
CSH andX = CSH. The semi-variogram of this model (Fig. 5.8hpws a relatively
higher spread in values compared to the no randteate model withw; = UN, but
does seem to vary close to the value of one. Toegblthe covariances (Fig. 5.21)
indicates that not all the variances in this camechbeen estimated to be higher than
the covariances, as was seen in the previous mblaelmaximum covariance value is
much higher, with a value of over 100 estimatedttiervariance of week 0. This plot

also shows an increase in the values of the cowaesastarting from around six weeks
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lag. The standard errors estimated for this mooelsaghtly higher compared to the
no random effects model with; = UN (Table 5.2). The plots for the random int@ice
and slope model witlm; = CSH andX = UN were found to be identical to these
covariance plots, as expected from the estimatedr@nce matrices obtained for

these two models (Appendix B1).

5.3.4.3 Random intercept and slope model with w;j = VC and 2 = UN

The random intercept and slope model vaih= VC andX = UN did not perform as
well according to the goodness-of-fit analysistes pirevious three models discussed.
The approximate semi-variogram (Fig. 5.22) shoved thost of the values are well
below the value one, suggesting that the covarisstogcture may not be well
specified. The plot of the covariances (Fig. 5.8Bpws a decreasing trend in the
covariance estimates as the lag in weeks incredibessize of the variances estimated
at lag zero are relatively smaller compared to phevious two models, and the
variances are more similar in size. Therefore thtisicture is more restrictive
compared to the no random effects model with= UN. The standard errors
estimated for this model were some of the highesimated among all the analysed

models (Table 5.2).
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Fig. 5.22: Plot of semi-variogram (left) and thevanances (right) as a function of lag
in weeks between observations for the simplistiedr model withw; = VC andX =
UN.

5.3.4.4 Random intercept model with w; = AR(1)

The random intercept model wiid; = AR(1) performed slightly better than the
previous model, obtaining slightly lower AIC, BlI@i& AICc values. An analysis of
the approximate semi-variogram (Fig. 5.23) showat the values are close to the
value one, but mostly falling below one. The spreademi-variogram values is not
as great compared to the previous model. The caweei plot (Fig. 5.23) shows
estimates of the variances being around 30 andttieenovariance estimates starting

from values around 15 and decreasing as the lageks increases. The standard
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errors for this model are larger compared to thet bding model, and close to the
estimated standard errors obtained for the prewoodel and for the random effects

model withe@; = CSH and = CSH (Table 5.2).
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Fig. 5.23: Plot of semi-variogram (left) and thevaonances (right) as a function of lag
in weeks between observations for the random iagrsimplistic linear model with
i = AR(1).
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5.3.4.5 No random effects model with @w; = TOEP
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Fig. 5.24: Plot of semi-variogram (left) and thevaonances (right) as a function of lag
in weeks between observations for the no randoeceffsimplistic linear model with
®; = TOEP.

The no random effects model wiih) = TOEP obtained slightly lower AIC, BIC and
AICc values compared to the previous AR(1) modéie Plot of the approximate
semi-variogram (Fig. 5.24) shows that the valuescéwse to one, but most values are
below one. The range of semi-variogram values nslai to that observed for the
previous model, with most values between 0.5 ald The plot of the covariance
shows that the TOEP structure was able to obt&rséime basic structure inherent in

the no random effects model with = UN. The covariances initially show a decline
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in value as the lag in weeks increases, but thamn fveek 5 the covariances begin to
increase, with a dip at week 8 (Fig. 5.24). Tlandard errors estimated are similar to
those obtained for the previous AR(1) model andfiermodel withw; = CSH and:

= CSH (Table 5.2).

5.3.4.6 OLS model
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Fig. 5.25: Plot of semi-variogram (left) and thevanances (right) as a function of lag
in weeks between observations for the no randoatesffsimplistic linear model with
i =VC.

The covariances of the OLS model were also analy§ks model performed the

worst in terms of the information cirtieria out @f models under consideration. The
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plot of the semi-variogram (Fig. 5.25) shows valwesll below the value one,
indicating that the covariance is not correctlycfoed. The plot of the covariances
displays the zero estimates for the covariancedea®s assumed for the OLS model,
and an estimate of 28 for the variance, which suaed to be the same at all weeks
(Fig. 5.25). As opposed to what would be expectedhfthe literature (e.g. Weiss,
2005), the estimates of the standard errors forQh& models were relative small
compared to other models, which would result inravaer confidence intervals
compared to other models (Table 5.2). The estimaftéise standard errors are close
to those obtained for the no random effects model w; = UN. This may be due to
the absence of the large variance estimate obsenvdte best fitting models. The
variance estimate for the OLS model was just bdluviy, similar to the estimate of
the variance from the random intercept model witR(B) errors and the no random

effects model with TOEP error structure.

5.3.4.7 Summary

The semi-variogram plots help to identify modelsevehthe covariance model has
been misspecified. The plots for the models coms@tlendicate that the OLS model,
which assumed independence of observations, hadvegiogram values all below
zero, and had the most incorrect specificatiortHercovariance structure compared to
all other models. Comparing the covariance plothhefOLS model to the best fitting
model indicates that covariance matrix under th&s@hodel is very different from
that specified by the best fitting model. The nodam effects model witlv; = TOEP
obtained reasonable values for the semi-variograng obtained a very similar

covariance plot to that of the best fitting modeien though the random effects model
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with ®; = TOEP only has nine parameters, compared to thpatameters of the

random effects model witdd; = UN.

5.3.5 Discussion on the simplistic linear mean model

Interpretability of linear mixed effects models aa important consideration when
deciding upon a model. The fixed effect parameséimates can be considered as the
average effect of the predictor on the response. Mian structure in this case is
described by equation (1), which uses sprayed plastthe base group. All of the
fitted models predict a positive value for the mapt (Table 5.2). This value can be
considered as the average petiole length of theysprplants at the beginning of the
experiment. The estimate f@ is the average difference in lengths between the
unsprayed and sprayed plants at the beginningeoéxiperiment. All models predict
this value to be small but negative. The estimatep{ is the average increase or
decrease in petiole length of the sprayed plantr @ach week. There are large
differences between models for this estimate. reslicted to be negative and around
three by all the models, except the models withddMeterogeneous error covariance
structures, which predicted it to be around sixe ®Estimate fof}; is the average
difference in changes in the petiole length of timsprayed plants compared to the
sprayed plants. This was estimated to be negatideaaound one for most models,
expect again the UN and heterogeneous error coxaianodels which predicted it to
be around 0.5. Overall, the models shown to be motmist predicted bigger
differences in the change in the second petiolgtlerof sprayed plants versus

unsprayed plants, with the second petioles of tisprayed plants becoming shorter.
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The parameters of the covariance structures canbasnterpreted, but this is easier
done for less complex covariance structures (estsnavailable in Appendix Bl).
The ¢* term of the VC error covariance structure is thredjtted variance in
observations of a subject. In this example, the etsfitted with VC error covariance
structures have estimatefl values around 20. This value changes dependirfgpan
much of the overall variance of the model is attidadl to differences between
subjects, and how much is attributed to randonrefilee AR(1) covariance structure
has two parameters? andp. Thes’term can be interpreted in the same way as for the
VC error structure. The term is the estimated correlation between obsemvsifrom

a subject one time unit apart. The autoregressivaefs in the example had estimated
variances close to 25 and correlation coefficiaartsund 0.5, indicating quite high
amounts of correlation between observations clostame. The TOEP structure is a
little more flexible in that it assumes that obsgions that are the same number of
time units apart have the same correlation, bstdbes not depend on the correlation
of units that are different time units apart. Thi®ans that there are many more
parameters that need to be interpreted, increassnghe number of measurement
occasions increases. In this example, the estinuditdee TOEP covariance structure
show that the within individual variance of the ebh&tions is close to 30, and that the
covariance between observations decreases witkasicrg number of lags until lag
five is reached, and then increases from lagstbv&even. From lags seven to eight a

decrease in the covariance is estimated.

The covariance structures which have been discuseethr all assume that the

variance is constant across all measurement octsasithne UN and heterogeneous

covariance structures do not make this assumptiocreasing the number of
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estimated parameters and the complexity allowedha covariance matrix, and
increasing the difficulty in interpreting these was. The values for these covariance
parameters are very dependent on the analysedsefatand will show much larger
changes if a new data set were selected from thme gepulation compared to the
previous covariances. These structures are moreppgie for the random effects

which should show flexibility as different subjeeti® included in a population.

From the goodness-of-fit analysis, it appears thaterror structure inherent in these
data is quite complex as the more flexible modeissistently performed better. Of
the simpler models, the no random effects modeh wit = TOEP performed best.
This is most likely due to the more flexible stuwes available through this
specification compared to simpler models, suchhasAR(1) model which makes
very restrictive assumptions about the covariartinectire at different time lags. In
this particular case, the AR(1) structure perfornpatticularly poorly as most
covariance structures involving an AR(1) specifmat failed to obtain valid
estimates, indicating that this is not an appraeravariance structure for these data.
By exploring the raw data (Fig. 5.1), it does apghat the mean length of the second
petiole increases towards the end of the experinféns would mean that the values
for second petiole length would be closer to thieies obtained at the beginning of
the experiment than to those obtained after thgaindrop off in second petiole
length. This phenomenon can be captured in the T&R&Rture, as it is possible to
obtain higher covariances at later lags in time garad to earlier lags. A reason for
this increase in petiole length at the end of tkpeement could be due to the
increased density of plants in the tubs (as asengymbduction of these would have

been taking place throughout the eight week peribulting in the growth form of
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the plant adapting to produce longer petioles inattempt to compete for light.
Therefore the more complex covariance structuregalea particular biological

phenomenon in the data.

As concluded in the simulation study, the OLS maquksfformed worst compared to
all other models considered. Therefore it is inappate to obtain estimates via OLS
estimation if the data is longitudinal and may pttely have a complex covariance

structure, particularly if there is interest in theriability within the data.

Residual analysis of each of the model structuoesidered in this simplistic analysis
clearly indicates that the variance of the resisidat the unsprayed and spray plants
is not the same. Therefore methods for accountimgHis difference in variances

should be considered.

A second obvious problem is that the linear meamcsire considered is not
appropriate for the data, as can be observed in5Flg The shape of the curve seems
to be somewhat parabolic. To correct the linear ehoddditional terms could be
added into the mean structure, such as a quadinaiime, or adjustment parameters.
More advanced models will be considered in the segtion to improve the model fit

and appropriateness.

54 MoreComplex Quadratic Mean Structure Analysis

Two methods were considered in order to improvehinmogeneity of the residual

variance. The first method accounted for differemcgariance between the sprayed
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and unsprayed plants by adding an additional ran@diect for the categorical

herbicide variable. The idea behind this method that an additional variance term
would be added to the random effects covarianagctstre for herbicide, and this
would result in differing covariance matriceg;, for the sprayed and unsprayed
plants. This method was not successfully implentras the addition of herbicide as

a random effect resulted in non-positive-definitmnef the final Hessian matrix.

The second method implemented was to log the regsonThis method was
successfully implemented, and improved the homageré the variances of the

residuals.

To improve the appropriateness of the mean strectuguadratic term faMeek and
adjustment terms for the start of the experiment the first week were added. The
adjustment terms were added as it appears fromSFigthat a change in the growth
process occurred after the first week. These amtditiindicator variables would result
in estimates of the deviation away from the curtedjzted over the full time period,
accounting for this change in process. These tarens added into the mean structure
(now modelling the logged length of the secondgbe}j and were found to be highly

significant. The results for this analysis are présd in the following sections.

54.1 Information criteriaobtained for three different quadratic mean models

As new terms were added into the mean structur@a#t necessary to include the

nutrient level in the mean structure once agaire fliiest mean structure considered

was:
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log(y;) = B, + B,(Herbicide) + B, (Week) + 5, (Nutrientsl) + 5, (Nutrients2)
+ B (Week0) + /3, (Week1) + 3, (Week *)
+ B, (Herbicide) x (Week) + £, (Nutrientsl) x (\Week) + £,,(Nutrients2) x (Week)
+ B,,(Herbicide) x (Week0) + 8,, (Nutrientsl) x (Week0) + S, (Nutrients2) x (WeekO0)
+ B,,(Herbicide) x (Week1) + S, (Nutrientsl) x (Weekl) + S, (Nutrients2) x (Week1)

+ B, (Herbicide) x (Week ?) + B, (Nutrientsl) x (Week *) + B, (Nutrients2) x (Week *)
+ B,o(Nutrientsl) x (Herbicide) + £,, (Nutrients2) x (Herbicide)

+hy; +b, (Week) + ¢,

where all terms are as previously describaek® is a quadratic term foiVeek, and
WeekO andWeekl are the adjustment parameters for the start okxperiment and
the first week respectively. An analysis of thisdabunder all covariance structures
showed that the nutrient effect was not significanbn it's own or in interaction

terms. The details of this analysis are given ertext section.

The second mean structure considered was thetfstiesture excluding the nutrient

effect:

log(y;) = B, + B,(Herbicide) + 3, (Week) + 3,(Week0) + 3, (Week1) + B, (Week *)
+ B, (Herbicide) x (Week) + 3, (Herbicide) x (Week0) + S, (Herbicide) x (Week1)
+ B, (Herbicide) x (Week®) + by, +b, (Week) + &,

where the terms are as described for the previoademAn analysis of this mean
structure under various covariance structures stowat the interaction term
betweenWeek andHerbicide was non-significant. Therefore this term was dexpp

from the mean structure, resulting in the final metaucture considered:

log(y;) = B, + B,(Herbicide) + 3, (Week) + 3,(Week0) + /3, (Week1) + S, (Week *)
+ B, (Herbicide) x (Week) + 3, (Herbicide) x (Week0) + S, (Herbicide) x (Week1)
+b1i +b2i(Vved()+£i'
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The information criteria obtained for each mean etpdinder each covariance
structure considered, are presented in Table 5s3it As clear from the simulation
study, and from the previous analysis, that selgca random effects covariance
matrix which assumes equal elements along the dalgs inappropriate (resulting in
non-positive definite random effects covarianceudtires), these covariance

structures (i.e. CS, TOEP and AR(1)) were not aersid for the random effects.

The information criteria from the three differeneam models are presented in Table
5.3. Models under all covariance structures obthite lowest information criteria
for the third mean structure. The covariance stmectvhich obtained the lowest AIC
and AICc values of -167.9 and -159.3 for the thirdan model was the no random
effects model with unstructured errors. The lowBKE value of -98.0 was obtained
for the random intercept and slope model wih = ARH(1) and ¥ =
UN/CSH/ARH(1). Selecting UN, CSH or ARH(1) for thendom effects covariance
structure results in equivalent model results, éftee the results for these random

effects covariance structures appear together.

In contrast to the simplistic linear model, the mlsdwith error covariance structures
of AR(1) or ARH(1) performed well, obtaining sometbe best values for the AIC,
BIC and AICc, whereas for the previous simpler dnenodel, these error structure
resulted in invalid covariance estimates when idetl with random effects. In the
case of the quadratic model, the ARH(1) error $tmécperformed better compared

the CSH structure, which resulted in invalid parsnestimates.
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Table 5.3: Information criteria obtained under thdifferent quadratic mean models

for each of the covariance structures specified.

Successfully fitted models

log(y,) = B, + B,(Herbicide) + 5, (Week) + S, (Nutrientsl) + S, (Nutrients2)

+ 85 (Week0) + B, (Week) + 3, (Week )

+ [, (Herbicide) x (Week) + 5, (Nutrientsl) x (Week) + £,,(Nutrients2) x (Week)

+ B,,(Herbicide) x (Week0) + S,, (Nutrientsl) x (Week0) + £, (Nutrients2) x (Week0)
+ B,,(Herbicide) x (Weekl) + £, (Nutrientsl) x (Weekl) + 5, (Nutrients2) x (Week1)
+ 3, (Herbicide) x (Week *) + B, (Nutrientsl) x (\Week *) + B,,(Nutrients2) x (Week *)
+ B,,(Nutrientsl) x (Herbicide) + 5,, (Nutrients2) x (Herbicide)

+hy; +b, (Week) + ¢,
(0] z AlC BIC AlCc
UN None -125.4 -31.2 -116.6
ARH(1) UN/CSH/ARH(1) -74.0 -46.8 -73.3
ARH(1) VC -48.2 -23.1 -47.6
ARH(1) Intercept only -46.9 -23.9 -46.4
AR(1) Intercept only -33.2 -26.9 -33.2
AR(1) VC -32.8 -24.4 -32.7
AR(1) UN/CSH/ARH(1) -31.0 -20.6 -30.9
TOEP None -28.6 -9.7 -28.2
ARH(1) None -28.0 -7.1 -27.6
CSH VC -25.5 -0.3 -24.8
VC UN/CSH/ARH(1) -22.6 -6.2 -14.5
AR(1) None -12.8 -8.6 -12.7
CSH Intercept only -12.5 10.5 -12.0
VC VC -11.8 -5.5 -11.7
CSH None 1.6 22.5 2.0
CS None 2.9 7.1 2.9
VC Intercept only 2.9 7.1 2.9
VC None 158.6 162.8 158.6

log(y;) = B, + B, (Herbicide) + 3, (Week) + 3, (WeekO) + 3, (Weekl) + 3, (Week *)
+ B, (Herbicide) x (Week) + 3, (Herbicide) x (Week0) + /3, (Herbicide) x (Weekd)
+ B, (Herbicide) x (Week?) + b, +b, (Week) +¢,

(0] X AlC BIC AlCc

UN None -160.6 -66.4 -152.1
ARH(1) UN/CSH/ARH(1) -117.2 -89.9 -116.5
ARH(1) VC -91.3 -66.2 -90.7
ARH(1) Intercept only -86.9 -63.8 -86.4
AR(1) VC -73.0 -64.6 -72.9
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Table 5.3 (cont.): Information criteria obtaineddenthree different mean models for

each of the covariance structures specified.

(0] X AlIC BIC AlCc
AR(1) UN/CSH/ARH(1) -71.2 -60.7 -71.1
AR(1) Intercept only -71.0 -64.7 -70.9

ARH(1) None -69.3 -48.3 -68.9
TOEP None -68.7 -49.8 -68.3
CSH VC -65.6 -40.5 -65.0
VC UN/CSH/ARH(1) -54.0 -45.6 -53.9
AR(1) None -52.4 -48.2 -52.4
VC VC -51.3 -45.0 -51.2
CSH Intercept only -42.2 -19.2 -41.7

CS None -27.0 -22.8 -27.0

VC Intercept only -27.0 -22.8 -27.0
CSH None -25.3 -4.3 -24.8
VC None 140.3 144.6 140.3

log(y;) = B, + B,(Herbicide) + 3, (Week) + 3, (WeekO) + 3, (Weekl) + S, (Week *)
+ B, (Herbicide) x (Week) + 3, (Herbicide) x (Week0) + S, (Herbicide) x (Week1)

+by +b, (Week) +¢,
(0] )y AlC BIC AlCc
UN None -167.9 -73.6 -159.3
ARH(1) UN/CSH/ARH(1) -125.3 -98.0 -124.6
ARH(1) VC -99.6 -74.5 -99.0
ARH(1) Intercept only -95.0 -72.0 -94.5
AR(1) VC -81.4 -73.1 -81.4
AR(1) UN/CSH/ARH(1) -79.7 -62.2 -75.5
AR(1) Intercept only -79.3 -73.0 -79.3
ARH(1) None -77.3 -56.3 -76.8
TOEP None -77.1 -58.3 -76.8
CSH VC -73.8 -48.7 -73.2
VC UN/CSH/ARH(1) -62.6 -54.3 -62.6
AR(1) None -60.5 -56.3 -60.4
VC VC -59.9 -53.6 -59.9
CSH Intercept only -50.4 -27.4 -49.9
CS None -35.5 -31.3 -35.4
VC Intercept only -35.4 -31.3 -35.4
CSH None -33.6 -12.7 -33.2
VC None 132.3 136.6 132.3
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Table 5.3 (cont.): Information criteria obtaineddenthree different mean models for
each of the covariance structures specified.

Modelswhich had a final Hessian matrix which was not positive definite

[0y p
CS UN/CSH/ARH(1)
CS VC
CS Intercept only
TOEP UN/CSH/ARH(1)
TOEP VC
TOEP Intercept only
UN UN

M odels which did not converge

[0y p
TOEP VC
CSH UN/CSH/ARH(1)
UN UN/CSH/ARH(1)
UN VC
UN Intercept only

The models predicted to perform well from the siatioin study, i.e. the no random
effects model with TOEP error structure, the randotarcept and slope model with
AR(1) errors and unstructured random effects, dmdrandom intercept and slope
model with VC errors and unstructured random e$feabtained valid estimates and
obtained AIC and AICc values below -60, and BlCueal below -50. The random
intercept and slope model with = AR(1) andX = UN obtained the best information
criteria of -79.7, -75.5 and -62.2 for the AIC, B&0d AICc respectively, followed by
the no random effects model witlh = TOEP and the random intercept and slope

model withe; = VC andX = UN.

The OLS model obtained the highest informationeciat, with an AIC and AICc of

132.3 each, and a BIC of 136.6. Therefore the mé&tion criteria show that the OLS

model is inferior to models where the covariancecttire had been modelled.
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The observation to parameter ratio of the succlgditied models ranged between
54:1 to 3.8:1. The lowest observation to parametio was obtained for the random
effects models with ARH(1) errors and random eHemtvariance structures of UN,
CSH, and ARH(1). For the unsuccessfully fitted medé&e highest observation to
parameter ratio was 7.5:1, which was obtainedHerrandom intercept model with a
CS error structure. The majority of unsuccessflitted models had observation to
parameter ratios of less than 5:1. A large proportf the successfully fitted models
also had a parameter ratio of less than 5:1, asdgtmainly due to the large number
of random effects (120 in the case of the randam@reept and slope models) which
needed to be estimated. The observation to paramsdte if only taking into the

random effects of the random intercept and slopdatsas 4.5:1.

5.4.2 Analysisof quadratic mean models

The mean structure including all the effects, idatg nutrient level, as well as the
two-way interactions between these effects, had/ yew significant parameters
(Table 5.4). If the nutrient effect is excludedrfrahe model, the significance of the
other mean parameters improved (Table 5.4). Theemath all two-way effects
excluding nutrients still had non-significant paeters (Table 5.4). Although the
interaction term withHerbicide and Week has a larger p-value than the interaction
term with Herbicide andWeek?, the interaction with the quadratic was excludest,f
as it does not make sense to have a model whaee ithan interaction term with the
quadratic, but not with the linear term. Excludithg interaction term withWeek?
resulted in an improved model where all the renm@gninteraction terms were

significant.
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Table 5.4: Fixed effects results for advanced nwsaunctures, including effects for
herbicide, nutrients and the adjustment variabldsese estimates were obtained
under a no random effects model with unstructuresr €ovariance.

Effect Estimate p-value Lower 95% CI | Upper 95% CI
Limit Limit
Model with all two-way interactions
Intercept 3.0320 <0.0001 2.7786 3.2854
Week -0.0683 0.1287 -0.1569 0.0204
WeeK 0.0067 0.1140 -0.0017 0.0152
Week 0 0.1407 0.2511 -0.1024 0.3838
Week 1 0.2246 0.0177 0.0404 0.4088
Herbicide -0.3226 0.0214 -0.5961 -0.0491
Nutrientl -0.2266 0.1605 -0.5453 0.0921
Nutrient2 0.0210 0.8958 -0.2977 0.3397
HerbicidexWeek -0.1105 0.0155 -0.1992 -0.0218
NutrientlxWeek 0.0963 0.0811 -0.0123 0.2049
Nutrient2xWeek -0.0592 0.2794 -0.1678 0.0494
HerbicidexWeek 0.0061 0.1511 -0.0023 0.0145
Nutrient1xWeek -0.0079 0.1287 -0.0183 0.0024
Nutrient2xWeek 0.0041 0.4273 -0.0062 0.0144
HerbicidexWeek 0 0.1507 0.2195 -0.0924 0.3938
NutrientlxWeek 0 0.1744 0.2457 -0.1234 0.4721
Nutrient2xWeek 0 -0.0757 0.6126 -0.3734 0.2221
HerbicidexWeek 1 0.2676 0.0052 0.0834 0.4518
NutrientlxWeek 1 0.1247 0.2729 -0.1009 0.3503
Nutrient2xWeek 1 -0.0246 0.8281 -0.2502 0.2010
NutrientlxHerbicide 0.1085 0.3104 -0.1039 0.3209
Nutrient2xHerbicide 0.1364 0.2035 -0.0760 0.3488
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Table 5.4 (cont.): Fixed effects results for adwhmean structures, including effects
for herbicide, nutrients and the adjustment vadgablThese estimates were obtained
under a no random effects model with unstructuresr €ovariance.

Fullest model with two-way interactions, excluding the nutrient effect

Effect Estimate p-value Lower 95% CI | Upper 95% CI
Limit Limit

Intercept 2.9624 <0.0001 2.7853 3.1394
Week -0.0558 0.0954 -0.1217 0.0101
WeeK 0.0055 0.0797 -0.0007 0.01159
Week 0 0.1741 0.0488 0.0009 0.3472
Week 1 0.2586 0.0002 0.1285 0.3887
Herbicide -0.2359 0.0644 -0.4863 0.0145
HerbicidexWeek -0.1140 0.0174 -0.2072 -0.0208
HerbicidexWeek 0.0064 0.1452 -0.0023 0.0151
HerbicidexWeek0 0.1449 0.2409 -0.0999 0.3897
HerbicidexWeek1 0.2640 0.0057 0.0799 0.4480

Fullest model with two-way interactions, excluding the nutrient effect and the interaction
between Week? and Herbicide

Effect Estimate p-value Lower 95% CI | Upper 95% CI
Limit Limit

Intercept 3.0400 <0.0001 2.8957 3.1843
Week -0.0903 0.0004 -0.1383 -0.0424
WeeK 0.0088 0.0002 0.0044 0.0131
Week 0 0.1092 0.1517 -0.0410 0.2594
Week 1 0.2260 0.0005 0.1033 0.3487
Herbicide -0.3867 <0.0001 -0.5313 -0.2420
HerbicidexWeek -0.0470 <0.0001 -0.0678 -0.0261
HerbicidexWeek0 0.2709 0.0031 0.0955 0.4463
HerbicidexWeek1 0.3272 0.0002 0.1644 0.4900

This final mean model has significant interactidoetweenHerbicide and the time
variablesWeek, Week 0 andWeek 1 (Table 5.4). This can be interpreted to mean that
the slope parameter differs between sprayed andrayed plants, as well as the

adjustments required at the beginning of the erpamt and at the first week to
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accommodate for a change in process which occuafed this time. Since the
interaction term with the quadratic term is nonmagfigant, it means that the curvature
parameter does not differ significantly betweenagpd and unsprayed plants. The
derivative with respect tdVeek for both the sprayed plants and unsprayed plants’
curve is increasing, and therefore, by definititne curve will be concave up
(Stewart, 1998). The adjustment terms, as welhasatljustment terms in interaction
with Herbicide, are positive (Table 5.4), indicating that theues at weeks 0 and 1
need to be increased compared to the estimatedajicadver the full time period,
and more so for the unsprayed plants. A plot ofpteslicted line superimposed over
the observed mean line appears in Fig. 5.26. Tlbtsshows that the observed mean
values fit within the confidence limits of the pretgd values, as they should, showing

that the model is compatible with the data.

—e— Obsenved data (Sprayed) —=— Obsened data (Unsprayed)
Predicted data (Sprayed) —x— Predicted data (Unsprayed)

3.5

3.3 A

29 " == T . 23
L I .

2.7 A

2.5

23 R§\\ .y

2.1 M

1.9

Ln(Leaf 2 Petiole Length)

1.7 A

15

Week

Fig. 5.26: Plot of the predicted mean log respanas week superimposed over the
plot for the observed mean log response. The ba® represent the 95%
confidence interval of the predicted mean values.
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54.3 Goodness-of-fit analysis of the quadratic model, with adjustment

parameters, under various covariance structures

5.4.3.1 No random effects model with w; = UN

As for the linear model, the no random effects nhode&h unstructured error
covariance matrix obtained the best fit comparethéomodels with other covariance
structures according to the AIC and AICc valuesb{@&.3). For the goodness-of-fit
analysis of the quadratic model, the deleted estisnare not shown due to the large
quantity of plots resulting from the additionaldtk effects parameters. These plots are
included in Appendix B2 which shows the full infhee analysis of each of the

models considered. The residual analysis plots sBhowig. 5.27 show that the
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Fixed Effects Influence Diagnostics for log_Leaf 2
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Fig. 5.28: Plots of the influence diagnostios the guadratic model with no random
effects ando; = UN.

homogeneity of the residual variance is improvechgared to the linear model, and
the mean of the residuals is close to zero. Thadyars also shows that the residuals
are close to normality. The restricted likelihoastaince highlights subjects 1 and 2 as
potential outliers, Cook’s D highlights subjectsahd 19, the PRESS statistic
highlights subject 47, and the COVRATIO highligstsbject 1 (Fig. 5.28). All these
subjects highlighted are sprayed plants. Theredttteough the goodness-of-fit plots
show that the quadratic model, with additional atiient parameters, modelling the
logged response is an improvement of the linearahakere appears to be some bias

in the estimates for the sprayed plants.
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5.4.3.2 Random intercept and slope model with @i = ARH(1) and 2 = UN

The random intercept and slope model with- ARH(1) andX = UN was the second
best model, according the AIC and AICc values, #uedbest fitting model according
to the BIC value. The variance of the residualelatively homogeneous, the mean of
the residuals is close to zero, and the residual€lase to normality (Fig. 5.29). The
restricted maximum likelihood values (Fig. 5.30a@ghighlight subjects 1 and 2, but
are smaller in comparison to those of the previnogel (Fig. 5.28). Cook’s D is also
smaller relative to the results from the previousdel, and highlights subjects 1, 42
and 47 (Fig. 5.28). The PRESS statistics and COMRAare similar in size to those
of the previous model, and highlight the same saibjéFig. 5.28). Subject 42 is an

unsprayed plant, but all the other highlighted obestons are sprayed plants.
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Fig. 5.32: Plots of influence diagnostics for thexdratic model with random
intercept and slope, argl = AR (1) and® = UN.

5.4.3.3 Random intercept and slope model with @i = AR(1) and 2 = UN

Of the three models expected to perform well fréve simulation study, the random
intercept and slope model with; = AR(1) andX = UN obtained the lowest

information criteria values. The residual plots fieis model (Fig. 5.31) show that the
residuals are closely distributed as normal, thamud the residuals is close to zero,
and that the homogeneity of the variance is sinbddhat of the previous two models.
The restricted likelihood distance is smaller comedato the previous two models,
and highlights subjects 2 and 47 as potential enstl(Fig. 5.32). Subject 47 is also

highlighted by Cook’s D, the PRESS Statistic arel@©VRATIO (Fig. 5.32).
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5.4.3.4 No random effects moddl with @w; = TOEP

The no random effects model with TOEP error stmectuas another of the models
shown to be robust under misspecification. This ehadbtained only slightly larger
values for the information criteria compared to gnevious model. The residuals of
this model have a mean of exactly zero, and thewee of the residuals is similar to
that of the previous models (Fig. 5.33). The reasislare closely distributed as normal
(Fig. 5.33). The plots of the influence diagnost(€sg. 5.34) highlight the same
observations mentioned for the previous modelspanticular Subject 2, which

obtained a restricted likelihood distance much darip comparison with the other

subjects.
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Fig. 5.34: Plots of influence diagnostics for thexdratic model with no random
effects, andn; = TOEP.
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and slope, and; = VC andX = UN.
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Fig. 5.36: Plots of influence diagnostics for thedratic model with random
intercept and slope, argl = VC andX = UN.

5.4.3.5 Random intercept and slope model with w;j = VC and 2 = UN

The random intercept and slope model vath= VC andX = UN is the third model

expected to perform well from the simulation stuénd obtained the highest
information criteria of the three models. The plotshe scaled residuals (Fig. 5.35)
indicate, as for the previous models, that the neéahe residuals is close to zero, the
variance of the residuals is relatively homogeneauml are closely distributed as
normal. The influence diagnostics are similar tost obtained for the random
intercept and slope model with; = AR (1) andX = UN (Fig. 5.36). Subject 47 is

identified by all the diagnostics as a potentialieu
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5.4.3.6 Random intercept model with w; = AR(1)

In order to include a random intercept model fomparison, the random intercept
model withm; = AR(1) was selected. This model performed red&dgiwvell in the

simulation study, and obtained low values for tiferimation criteria (Table 5.3). The
residual plots of the model (Fig. 5.37) are vemikir to those obtained for the
previous model. The distribution of the residualslose to normal, the mean of the
residuals is very close to zero, and the homoggwéithe residual variance is similar
as for previous models. The plots of the influedizgnostics (Fig. 5.38) are also very

similar to those of the previous model, once agaghlighting subjects 2 and 47.
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Fig. 5.37: Plots of scaled residuals for the quiacimodel with random intercept,
andm; = AR(1).
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Fig. 5.38: Plots of influence diagnostics for thedratic model with random
intercept, ando; = AR(1).

5.4.3.7 OLS model

The residual diagnostics of the OLS model (Fig.9%.dicate that the residual
variance is relatively homogeneous, but that themears to be slight skewness to the
right, thereby deviating more from normality théwe fprevious models discussed. The
influence diagnostics are similar in size to thevpyus models (Fig. 5.40). Only

subject 47 is clearly highlighted as a potentiailjuential point.
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Fig. 5.39: Plots of scaled residuals for the quicdmodel with no random effects,
andw; = VC (OLS Model).
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Fig. 5.40: Plots of influence diagnostics for thmdratic model with no random
effects, ando; = VC (OLS Model).
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5.4.3.8 Summary

In general the residual diagnostics were very sinbetween all the quadratic models
considered. These analyses show an improvemeheihdmogeneity of the variance
of the residuals compared to the simpler linear eleodThe influence diagnostics
tended to highlight the same subjects, in particiabjects 2 and 47. Although the no
random effects model with unstructured error cauaze obtained the lowest AIC and
AICc values, the residuals are not as close to altyncompared to those of other
models considered, nor are the influence diagre#tie smallest in size. The random
intercept and slope models widh = ARH(1) andX = UN, with®; = AR(1) andX =

UN, and withe; = VC andX = UN, and the no random effects model with= TOEP

obtained very similar residual plots. The size le# tnfluence diagnostics were also
similar, except in the case of the restricted Ih@bd diagnostic of the no random

effects model withw; = TOEP, which was relatively large for one obs&ora
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5.4.4 Fit of the covariance structures under quadratic mean model

5.4.4.1 No random effects model with w; = UN
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Fig. 5.41: Plot of semi-variogram (left) and thevaonances (right) as a function of lag
in weeks between observations for the no randostestiquadratic model with; =
UN.

The plot of the semi-variogram of the best fittimpdel (in terms of the AIC and

AICc), the no random effects model wiith = UN, shows values very close to one,
ranging between 0.96 and 1.02 (Fig. 5.41). The @idhe covariances shows that the
size of the covariances decreases with increasigguhtil a lag 5, where after the
covariances again start to increase in size (Figl)5 Therefore the pattern of the

covariances over increasing lag forms a U-shape.
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5.4.4.2 Random intercept and slope model with w; = ARH(1) and 2 = UN
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Fig. 5.42: Plot of semi-variogram (left) and thevanances (right) as a function of lag
in weeks between observations for the random ieptrand slope quadratic model
with ®; = ARH(1) and® = UN.

Although the random intercept and slope model wit= ARH(1) andX = UN was
the second best fitting model in terms of the Al@ AICc values, and the best fitting
model in terms of the BIC value, the covariancdagappear very different to those of
the previous model, which obtained the best AIC Aidc values (Fig. 5.42). The
range of values for the semi-variogram is much widanging between 0.5 and 1.7.

Although the size of the covariances is similarthiat of the previous model, the
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pattern of the covariances is very different, singra sharply decreasing trend in the

size of the covariances as the lag in weeks ineseas

5.4.4.3 Random intercept and slope model with w; = AR(1) and X' = UN
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Fig. 5.43: Plot of semi-variogram (left) and thev@nances (right) as a function of lag
in weeks between observations for the random ieptrand slope quadratic model
with @; = AR(1) and® = UN.

The random intercept and slope model wih= AR(1) andX = UN obtained values
for the semi-variogram similar to those for the dam effects model withw; =
ARH(1) andX = UN (Fig. 5.43). The size and pattern of the cmarares is also

similar (Fig. 5.43).
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5.4.4.4 No random effects moddl with @w; = TOEP
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Fig. 5.44: Plot of semi-variogram (left) and thev@nances (right) as a function of lag
in weeks between observations for the no randoectsfiguadratic model wiih; =
TOEP.

The values of the semi-variogram for the no ranadfacts model with TOEP error

structure have an average of approximately oneramge between zero and two. The
plots of the covariances show that there is a stieepine in the covariances from lag
0 to lag 5, after which the decline becomes lesspstintil lag 8 when the covariances

increase.
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5.4.4.5 Random intercept and slope model with w; = VC and 2 = UN
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Fig. 5.45: Plot of semi-variogram (left) and thevanances (right) as a function of lag
in weeks between observations for the random iaggrand slope quadratic model
with @; = VC andX = UN.

The semi-variogram and the covariance plots ofdineéom intercept and slope model
with ®; = VC andX = UN is very similar to that of the random intercemd slope
model withe; = AR(1) andX = UN. The range of values for the semi-variogram is
almost identical, and the pattern of the covariansevery similar. In the no random
effects cases of these models, i.e. the OLS maueltlze AR(1) no random effects
model, the estimated covariance matrices would t&en quite different. Therefore

the covariance matrix of the random effects is iplgyan important role in
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determining the pattern of the overall model camaces, resulting in two models with
different error covariance structures obtaining yvesimilar overall covariance

matrices.

5.4.4.6 Random intercept model with w; = AR(1)
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Fig. 5.46: Plot of semi-variogram (left) and thev@nances (right) as a function of lag
in weeks between observations for the random iafgrguadratic model witt; =

AR(1).

The random intercept model witk; = AR(1) has a semi-variogram with values

ranging between zero and two (Fig. 5.46). The damae plots shows covariances
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which steeply decrease with increasing lag ungl4aafter which covariances remain

constant at a value of approximately two.

5.4.4.7 OLS model
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Fig. 5.47: Plot of semi-variogram (left) and thevanances (right) as a function of lag
in weeks between observations for the quadraticainedh VC errors (OLS model).

The OLS model obtained a semi-variogram with valmestly below one, averaging
approximately 0.6. The variance estimate obtained alose to 0.07, similar to the

variances obtained by the previous models.
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5.4.4.8 Summary

With the exception of the no random effects modéhw; = UN and the OLS model,
the plots of the semi-variogram and the covariaveerse very similar between the
models considered, i.e. the random intercept aspksinodels witho; = ARH(1) and

Y = UN, with®; = AR (1) andZX = UN, and withe; = VC andX = UN, the random
intercept model witho; = AR (1), and the no random effects model veh= TOEP,
obtained very similar overall covariance matricBse no random effects model with
®; = UN obtained the best semi-variogram as all thkeias were close to one. The
pattern of the covariances was very different tbheotmodels, which generally
predicted a decline the size of the covariancethadag between weeks increased.
Therefore, in this particular example, choosing thedel preferred by the AIC, or
choosing the model preferred by the BIC would hassulted in fairly different
covariance matrices for the responses, therebytaftethe standard errors of the
estimated fixed effects. The OLS model obtained wwest values for the semi-

variogram as the majority of the values were bebow.

5.4.5 Discussion on the quadratic model

The quadratic mean model based on the logged lesfgtine second petiole, which
includes adjustment parameters, is an improvemesttbe linear model based on the
actual length of the second petiole. This is rexeaby the improvement of the
distribution of the residuals, and the increaskamogeneity of the residual variance.

The plot of the predicted mean response over tinpersmposed over the observed
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mean response over time (Fig. 5.26) clearly shdvas the estimated mean model

very accurately describes the mean response ddgilged observations.

The residual and influence diagnostics were vermjilar between the different

covariance structures considered. The covarianaysia showed that most models
had very similar estimated covariance matricesegpix the case of the no random
effects model with UN errors. The model under ttosariance structure resulted in
very large estimates for the covariance at eightksdag relative to the estimates
obtained by other models. The semi-variogram vatdie¢lsis model were close to one,

more so compared to the other models considered.

In this example, if the choice of the best fittimpdel had been based on the AIC or
AICc values, the no random effects model with Ubex would have been the clear
choice. But if the choice were based on the BI€,raindom effects model with; =
ARH(1) andX = UN would have been chosen. Therefore this maarbexample
where the BIC over penalises a model for havingargd number of covariance

parameters.

The three covariance structures expected to perfoeth based on the simulation
study (i.e. random intercept and slope models wjth AR (1) andX = UN, and with
o; = VC andX = UN, and the no random effects model with= TOEP) obtained
valid model estimates, and obtained informatiorteda close that of the random
effects model withw; = ARH(1) andX = UN, the model selected by the BIC. The
residual and influence diagnostics, as well asdinariance analysis, showed that

these three models obtained estimates for bothmien model and the covariance
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model that were very close to the random effectdehwith ; = ARH(1) andX =

UN.

As for the linear model, the OLS model performed tworst compared to all other
models. The information criteria obtained was samsally higher compared to other
models, the residuals deviated from normality mmepared to other models, and
the simple covariance structure obtained for thaxleh did not adequately describe
the complexity of the covariance matrix evidenthirthe estimates obtained for other

models.

55 Comparison between the Simplistic Linear Model and the More Complex

Quadratic Modedl

As concluded in the previous discussion sectior, dhadratic mean model more
adequately describes the relationship of the respaver time compared to the
simplistic linear model. By modelling the loggeddgh of the second petiole, the
normality of the residuals and the homogeneity lef tesidual variance improved

compared to the linear model based on the actngtheof the second petiole.

Considering the performance of the three covariataectures predicted to perform
well from the simulation study, compared to the @en linear model, these three
covariance structures performed better. Therefdr@, mean structure is selected
which adequately describes the mean process, assilple to fit simpler covariance
structures to the data, and successfully modetdivariance of the data. In the same

breath, the more complex covariance structures rutige linear mean model gave
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more interesting estimates for the covariance matirithe response compared to the
same covariance structures under the quadratiarlimeodel. For example, the no
random effects model with TOEP error structure gasemates for the covariances
that resulted in a spike in the size of the covenrgs from approximately six weeks
lag under the linear mean model. The same covarisatwicture for the quadratic

model also resulted in a spike, but comparativelglier, and only at eight weeks lag.
Therefore the covariance estimates are accommadatirthe misspecification of the

mean model for the linear case, by inflating theac@mnces for those lags where the

error of the mean structure would have been mqstrapt.

The quadratic model is slightly more difficult totérpret, compared to the simple
linear model. The researcher analysing the modgubuneeds insight into the effect
that each coefficient has on the shape of the resspourve over time in order to be
able to accurately assess the estimated response as well as an understanding of
the effect that the coefficients of the indicatariable forHerbicide would have on
the two separate curves for the two levels of ¢tategorical variable. In this example
both models predict a separation in the curvepady®d and unsprayed plants, with
the curve of the sprayed plants sitting above thevec of the unsprayed plants.
Therefore the conclusion that the growth procegh@fsprayed and unsprayed plants
is different could be concluded from both the sista linear model and the more
complex quadratic model. On the other hand, thealinmodel predicts a steady
decline in growth of the plants over time, wheréas quadratic model predicts a
decelerating decline until approximately week # ffee sprayed plants) and week 8
(for the unsprayed plants) when the growth thennsetp increase. The description of

the growth available from the quadratic model isrenaccurate, and potentially
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reveals important characteristics about the growtinves of the sprayed and

unsprayed plants not available from the linear rhode

The disadvantage of the quadratic model comparethg¢osimplistic linear mean
model is the further limitation of the observatimnparameter ratio, which is already
constrained in the case of the random intercept slopge models. Therefore any
additional parameters added to the model will teésujreater sensitivity of the model

to individual observations.
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