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ABSTRACT 

Global climate change and other environmental disasters have been attributed to 

continuous anthropogenic carbon dioxide (CO2) emission into the atmosphere. 

Today, researchers are constantly seeking measures to reduce anthropogenic CO2 

emission. Traditionally, absorption technology with use of monoethanolamine (MEA) 

is used for separating / capturing of anthropogenic CO2. However, the use of MEA is 

associated with numerous shortcomings, including inefficient energy usage, high 

operating and capital cost, amine degradation, solvent loss and excessive equipment 

corrosion. Alternatively, zeolite based membrane systems are promising technique 

that prove handy and useful than the traditional processes (absorption with 

monoethanolamine). However, zeolitic membranes with zeolite coating on the 

supports (i.e. thin-film supported zeolite membranes) are susceptible to abrasion and 

thermal shock at elevated temperatures due to temperature mismatch between the 

supports and the membranes, making them to lose selectivity at early stages. On the 

contrary, nanocomposite architecture membranes, synthesized via pore-plugging 

hydrothermal route, are more thermally stable and membrane defects are controlled. 

Nanocomposite zeolite (sodalite) membranes have been proposed for gas separations, 

most importantly in the separation of H2/CO2, a major component in pre-combustion 

carbon capture. In addition, sodalite, a porous crystalline zeolite made up of cubic 

array of β-cages as primary building block having cage aperture in the range of 0.26 

and 0.29 nm, is a potential candidate for the separation/purification of light molecules 

such as hydrogen which has a cage aperture of 0.27 nm under certain process 

conditions.  

In this work, nanocomposite architecture hydroxy sodalite membrane with sodalite 

crystals embedded within α-alumina tubes were successfully synthesized using the 

pore-plugging hydrothermal synthesis technique and characterized using techniques 

such as  scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 

morphology of the synthesized membranes shows that sodalite crystals were indeed 

grown within the porous structures of the support.  Furthermore, Basic Desorption 

Quality Test (BDQT) and gas separation measurement were conducted to evaluate the 
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quality of the as-synthesized membrane in industrial gas separation applications. The 

effects of operating variables such as pressure at 1.1 bar, 2.0 bar and 3.0 bar. Also, 

the effects of temperature were conducted on the nanocomposite membrane at 373 K, 

423 K and 473 K. Finally, the gases permeation results were fitted with the well-

known Maxwell-Stefan model.  

Results indicated that, the nanocomposite sodalite / ceramic membrane is a potential 

candidate for removal of H2 from H2/CO2 mixture. The gas permeation measurement 

from the one-stage nanocomposite membrane shows that the membrane displayed H2 

and CO2 permeance of 3.9 x 10
-7

 mols
-1

m
-2

Pa
-1

 and 8.4 x 10
-8

 mols
-1

m
-2

Pa
-1

, 

respectively. However, the morphology of two-stage nanocomposite membrane 

shows that the support was more plugged with sodalite crystals and the permeance of 

H2 and CO2 were 7.4 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1 

and 1.1 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1

, 

respectively. Consequently, the H2/CO2 ideal selectivity for the one-stage 

nanocomposite membrane improved from 4.6 to 6.5 in the two-stage nanocomposite 

membrane.
 

In conclusion, the two-stage synthesized membrane shows better improvement. The 

porous support was well plugged and separation performance was evaluated. 

However, occluded organic matters present in the cages of hydroxy sodalite could 

have adverse effect on the gas permeation performance of the membrane. It is 

expected that an organic-free sodalite supported membrane (such as silica sodalite 

supported membrane) could out-perform the hydroxy sodalite supported membrane 

reported in this work in term of membrane flux because there will be enough pore 

space for gas permeation.   
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1 Introduction  

In this chapter, motivation, research objectives and justification are presented. 

Research contributions to the industrial and scientific community are outlined as well.  

1.1 Motivation 

The advent of the industrial revolution in 1760 marked the birth of world’s energy 

crisis. Technological development, urbanization and improved standard of living 

have influenced greater demand in energy consumption worldwide (Houghton and 

IPCC, 2001; Ashton, 1948). Statistical analysis revealed that the world energy 

production and consumption are  parallel (McHale, 1969). Also, McHale (1969) and 

Ashton (1948) reported that there is an average annual increase of 3.25 % in world 

energy production between 1860 and 1958. In addition, an unprecedented rise of 

about 19 % in energy demands between 1961 and 1964 was recorded, this was 

attributed to growing population and industrialization in developing countries, mainly 

China and India (McHale, 1969). Recently, the International Energy Outlook 

estimated the energy demand over 28-year period from 2012 and projected to 2040 

(IEA, 2016). However, the International Energy Outlook reported that 549 quadrillion 

British thermal unit (Btu) was consumed in 2012 and in the year 2040, it is estimated 

that 815 quadrillion will be consumed, indicating an increase of about 48 % in the 

energy consumption chain (IEA, 2016).  
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Figure 1.1: World energy consumption from 1990 to 2040 (adapted from IEA, 

(2016)).  

Fossil fuels such as coal, natural gas and crude oil serves as a major source of 

world energy. Coincidentally, the discovery of coal occurs simultaneously with the 

emergence of industrial revolution between the 19
th

 and 20
th

 centuries (Ashton, 

1948). Conventionally, coal is combusted for heating, powering of steam engine 

and electricity generation (Ashton, 1948). Up till now, the combustion of coal for 

energy is practiced by industrialized, developing and under-developed countries. 

Coal is identified as a non-renewable energy source and relatively in large 

abundance worldwide in comparison to all other sources of energy. Furthermore, 

noticeable annual average increase in coal, natural gas, nuclear power and 

hydrothermal power energy sources were observed between 1979 and 1983 

(Colombo, 1984). This period is considered as the first and second major 

worldwide energy crisis in history. To date, energy crisis still persists and there has 

been an exponential increase in both energy supply and energy consumption.  
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Over the centuries, there has been tremendous reliance on non-renewable energy 

sources (fossil fuels) (Olajire, 2010; Houghton and IPCC, 2001). International 

Energy Agency (IEA) reported that 80 % of the total primary energy sources are 

from fossil fuels (oil, coal and natural gas) (IEA, 2013). In addition, the recent IEA 

Outlook, projection indicated that coal will persist as the main source of world 

energy in comparison with nuclear and renewable energy sources (IEA, 2016) 

(Figure 1.2) 

 

Figure 1.2: World energy consumption by energy sources (coal, renewables & 

nuclear), from 1990 to 2040 (Adapted from IEA, 2016). 

Coal is the most abundant non-renewable fossil fuel readily available worldwide, 

having recoverable reserves in over 70 countries and possibly more.  There is an 

approximate estimation of 150 to 200 years sufficient reserves of coal worldwide 

(IEA, 2015; Houghton and IPCC, 2001). It is to be noted that coal consumption 

exceeds all other combined sources of non-fossil fuels. Basically, the combustion 

of coal is likely to continue in next decades due to its abundance and continuous 
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use for energy generation that results in greenhouse gases emission (GHGs) 

leading to global climate change (Merkel et al., 2010). 

The combustion of coal generates energy as main product and GHGs as its 

deleterious bye-products. GHGs are released into the atmosphere as huge volumes of 

plumes either at a stationary or mobile point source. Stationary point sources generate 

higher volumes of plumes than the mobile point sources. An approximate one-third of 

carbon dioxide (CO2) emissions is attributed to stationary point sources (e.g. coal 

fired power plants) (IEA, 2016; Metz and IPCC, 2005) A typical coal-fired power 

plants delivering between 500 and 1000 MW energy emits between 6 and 8 Mt  CO2 

per year equivalent (IEA, 2015). This volume of CO2 emitted is higher than CO2 

emission per year of combined oil-fired single cycle power plants and natural gas 

cycle power plants of same energy delivery capacity. In addition, atmospheric 

concentration of CO2 in the energy demanding industrial age has been estimated to be 

about 379 ppm in 2004, whereas 280 ppm CO2-equivalent was estimated in the years 

before industrial age.  Currently, 400 ppm CO2-equivalent has been recorded as the 

atmospheric concentration of CO2 (Abas et al., 2015; IEA, 2013). The increment in 

the atmospheric concentration of CO2 could be attributed to changes in energy 

demand. Energy demand is expected to keep rising due to industrialization in 

developing countries resulting from population growth, urbanization and 

technological development (Saidi and Hammami, 2015; IEA, 2013). Researchers in 

science and technology have attributed GHGs emission to a number of environmental 

issues (rising sea level, droughts, heatwave and etc.). Therefore urgent attention is 

required to reduce the level of CO2 emission into the atmosphere.  

1.2 Problem statement 

Carbon Capture and Storage (CCS) has been identified as a promising technology to 

reduce CO2 emission with the option of continuous combustion of coal.  CCS is the 

process of capturing waste CO2 form large point sources, such as fossil fuel power 

plants, transporting it to a storage site and safely deposit the captured CO2, hindering 

it from reaching the atmosphere, such storage site could be geological formations. 
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The process of capturing CO2 or carbon content of a fuel is the most essential stage of 

CCS and can be achieved by three main capture technologies; post-combustion, pre-

combustion (fuel decarbonization) and oxyfuel combustion.  

However, CCS in South Africa is still at the research phase, therefore, more efforts 

are needed to develop CCS technology in this country. Today, South Africa is ranked 

as highest emitter of GHGs in Africa and stands as 12
th

 in the world with great 

dependency on coal as main source of energy. About 77 % of South Africa’s energy 

needs are meant by coal–fired power stations. Advancement of CCS in South Africa 

could make this country the front runner in the mitigation of anthropogenic CO2 

emission in Africa. Recently, the government of South Africa appointed the South 

African Center for Carbon Capture and Storage (SACCCS) to research and 

implements CCS in the country within the next few decades. 

CO2 separation has been widely used in the natural gas processing since 1969, with 

the use of absorption technique. This conventional separation technique is cost 

inefficient and energy demanding. For example, monoethanolamine (MEA) is used in 

such processes and this requires enormous energy in the stripping process (Olajire, 

2010). Alternatively, polymeric zeolitic membranes prove to overcome some of these 

shortcomings. Polymeric membranes are currently used commercially but battles with 

degradation in harsh conditions. Therefore, they are considered unsuitable for 

dehydration processes and labelled chemically unstable (Olajire, 2010; Chung et al., 

2007; Kazemimoghadam and Mohammadi, 2005). Zeolite based membrane and 

zeolite membrane reactors provide CCS with vast amount of opportunities such as 

molecular size exclusion, uniform molecular sized pores, chemical inertness, high 

thermal and mechanical stability (for example, sodalite membranes are reported to be 

hydrothermally stable up to 723 K), making them material of choice in separation and 

catalytic applications (Daramola et al., 2016, 2015, 2012, 2009b; Kalantari et al., 

2015; Olajire, 2010; Khajavi et al., 2010b, 2007a). However, zeolite membranes are 

faced with problems such as reproducibility.  
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Frequently used supports include; stainless steel, alumina, porous glass, titania and 

anodic alumina. In addition, asymmetric porous supports are found to provide low 

flow resistance, good strength and optimal permeance, example of such material is α-

Al2O3. Alumina is mostly used to synthesis high silica zeolite membrane and they 

provide best support because it only dissociate at high alkalinity (Chiang and Chao, 

2001). However, the synthesis procedure dictates the membrane architecture either as 

a thin-film membrane (TFM) or nanocomposite membrane.  

Nanocomposite membrane has been synthesized via pore-plugging  hydrothermal 

route with high degree of membrane reproducibility(Daramola et al., 2009b; Miachon 

et al., 2006). In addition, Daramola et al.(2012) reported that nanocomposite 

membranes possess higher selectivity as compared with thin-film membranes. 

Sodalite is “a porous crystalline zeolite made of cubic array of β-cages as primary 

building block with 4 & 6-rings and a cage aperture in the range of 0.26 and 0.29 nm 

making it a good candidate for separation / purification of light gases such as helium 

(0.26 nm), water (0.27 nm) and hydrogen (0.27 nm) under certain process conditions” 

(Daramola et al., 2016; Khajavi et al., 2009, 2007b) 

In this work, nanocomposite sodalite / ceramic membrane was synthesized via the 

pore-plugging hydrothermal route by adapting the experimental procedures of 

Daramola et al. (2016). The as-synthesized membranes was characterized and 

evaluated for gas separation.  

1.3 Research questions 

The following research questions were addressed in the course of this project; 

 Can nanocomposite ceramic-sodalite membrane be successfully reproduced 

via pore plugging hydrothermal synthesis technique? 

 What will be the separation performance of the nanocomposite ceramic-

sodalite membrane during the separation of H2 from CO2/H2 gas mixture for 

a CO2 pre-combustion capture? 
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 What optimal operating conditions will favor the separation of H2 from 

CO2/H2 in a pre-combustion carbon capture at industrially relevant feed 

compositions using nanocomposite ceramic-sodalite membrane? 

1.4 Research aim and objectives 

The aim of this research was to synthesize, characterize and evaluate the separation 

performance of as-synthesized nanocomposite sodalite / ceramic membrane. The 

following statements were the objectives of this study; 

1. To successfully synthesize a reproducible nanocomposite ceramic-sodalite 

membrane via hydrothermal technique. Also, to evaluate the quality of the 

membranes using static and dynamic characterization techniques. 

2. To methodically evaluate the separation performance of the as-synthesized 

nanocomposite ceramic-sodalite membrane during H2/CO2 mixture at pre-

combustion CO2 capture conditions and compare results with literature.  

3. To investigate the effects of operating variables (temperature and pressure) 

on the as-synthesized membrane; and evaluate operational stability of the 

membrane during pre-combustion CO2 capture. 

1.5 Expected outcomes 

i. Successful synthesis of a reproducible nanocomposite sodalite ceramic 

membrane via hydrothermal route. 

ii. Information on the effects of operating variables on the separation 

performance of the as-synthesized nanocomposite membranes.  

iii. A well-documented report in the form of a dissertation.  

1.6 Dissertation layout 

The structure of the dissertation is presented as follows: 

Chapter 1 provides detailed background information on the project; highlighting the 

current technological challenges with traditional capture techniques and membrane 
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based technology. In addition, the shortcomings associated with nanocomposite 

architecture were highlighted.  

Chapter 2 presents in-depth literature review of previous studies on zeolitic 

membrane with a focus on zeolite membrane in gas separations especially for pre-

combustion CO2 capture. A brief review on conventional synthesis techniques and 

improvement to synthesis techniques used for development of zeolite membrane are 

provided. More emphasis is on zeolite membranes used in gas separation 

applications. 

Chapter 3 describes experimental procedure used in the synthesis and 

characterization techniques of nanocomposite hydroxy sodalite crystal and 

membrane.  

Chapter 4 discusses the results of the synthesis, characterization techniques 

employed in this work. Scanning electron micrographs and X-ray powder diffraction 

results were compared with literature results.  

Chapter 5 outlines the results of the separation performance of the nanocomposite 

sodalite / ceramic membrane. In addition, separation performance on the synthesized 

nanocomposite sodalite / ceramic membrane using gases (CO2 & H2) and modelling 

of experimental results using a deduced expression from the Maxwell Stefan model.  

Chapter 6 summarizes the research work and conclusions which have been deduced 

from the experimental work. In addition, recommendation for current work and future 

works are provided.  
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2 Literature review 

2.1 Introduction 

Studies indicated that there is a global average temperature rise from                  

0.70 – 0.75 
o
C per 100 years between 1910 and 2009 (IPCC and Edenhofer, 2014; 

Jian-Bin et al., 2012). The global average temperature rise has been attributed to 

greenhouse gases (GHGs) emission (IPCC and Edenhofer, 2014). In an attempt to 

mitigate GHGs emission, a non-legal binding document by United Nations   

Framework Convention on Climate Change (UNFCCC), the European Council and 

Parliament was signed in 2005 (Kyoto Protocol) (IPCC and Edenhofer, 2014). This 

was commissioned with the goal to limit the global average temperature rise to 2 

o
C above the pre-industrial level (European Commission, 2007; Krewitt et al., 

2007). Notwithstanding, a notable rise in sea levels, effects of the bad weather, 

damages to economic sectors, threats to human health and agriculture,  drought and 

cyclones still persist. These problems require more drastic actions to be channeled 

towards the mitigation of the effects of GHGs emission. The last 10 years recorded 

an annual increase in atmospheric CO2 at a rate of 2.11 ppm. In 2004, statistics 

showed an increase in atmospheric CO2 at the rate of 1.87 ppm per year in 

comparison to 1.42 ppm per year in last decades. Whereas in the 60s, 0.73 ppm 

average annual increase of atmospheric CO2 was witnessed (IPCC and Edenhofer, 

2014; Edenhofer et al., 2012). On this note, numerous events as discussed below 

have been reported and attributed to the effects of GHGs emission where CO2 is 

categorized as a major pollutant.  

2.2 Climate and environmental change 

Emission of the greenhouse gases has impacted on climate and environment. 

Below are few of the noticeable incidents; which are caused by anthropogenic 

carbon dioxide emission.  

2.2.1 Natural disasters 

Natural disasters such as earthquakes, volcanic eruptions, flooding, landslides, 

wave/surges and wildfire claimed unprecedented 220,000 lives in the first quarter of 



12 

 

2005 (IPCC and Edenhofer, 2014; Edenhofer et al., 2012). A total of 238 flood events 

were recorded between 1975 and 2001, causing adverse physical and psychological 

human health consequences (IPCC and Edenhofer, 2014; Edenhofer et al., 2012). 

Scientific observation and reports concluded that the events occurred due to 

continuous anthropogenic carbon dioxide emission. These disasters are rapid, 

however, some other effects are long term (IPCC and Edenhofer, 2014; Edenhofer et 

al., 2012). 

2.2.2 Extinction crisis 

Ocean sequestration of CO2 which occurs both naturally and artificially absorbs 

about 30 % of anthropogenic CO2 emission. Noticeable effects of ocean 

sequestration take more time (years). In addition, some reports indicated the 

dissociation of organic minerals into water bodies which consequently resulted in 

the change of pH levels (Czaun et al., 2013; Yang et al., 2008; EEA, 2004) The 

acidification of the water bodies eventually leads to dissolution of marine 

carbonates and noticeable impacts on the biological systems (Czaun et al., 2013). 

For instance, massive pollution along the Yangtze River in China led to extinction 

of Baiji White Dolphin (Le Page, 2007).  Moreover, there is a great reduction in 

amphibians, largely as a result of their permeable skin making them vulnerable to 

effects of pollution and climate change. Global Amphibian Assessment (GAA) 

believes that over one third of amphibians will go into extinction if GHGs emission 

continues (UNEP, 2005).  

Furthermore, glaciers are gradually retreating from the Alps. About one third of the 

glaciers and one half of glaciers’ mass was lost in the European Alps between 1850 

and 1950. Also, 10 % of glacier was lost alone in the hot summer of 2003 

(heatwave period) and 10 % of the snow cover has been lost in the northern 

hemisphere since 1966 (UNEP, 2005; EEA, 2004).  

2.2.3 Heat wave  

Europe witnessed heatwave in the summer of 2002 and 2003. Records provided in 

2004 could ascertain that the heatwave experienced, was as a result of continuous 
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emission of GHGs. EEA predicted that in 2040s’, more than half of Europe’s 

summer will be warmer than what was experienced in 2003 (Saidi and Hammami, 

2015; Le Page, 2007; EEA, 2004). Heatwave-related health issues such as tick-

borne disease and lyme borreliosis have been projected to escalate even further in 

the future (EEA, 2004). In addition, records indicated that number of summer days 

and heatwaves have increased tremendously in the last 100 years. For instance, 

northwest Russia and Iberian Peninsula experience higher temperatures in winter 

than in summer (EEA, 2004).  

These incidents have influenced research and development in science and technology 

to seek for alternative energy sources that are environmentally friendly, renewable 

and cost effective. Some of these alternative sources includes CCS, hydrogen fuel 

cells, wind, solar, geothermal and nuclear energy. Notwithstanding, technologies are 

being developed for the mitigation of the effects of GHGs emission but the 

commercial applications of some of these technologies is hampered due to technology 

maturity, cost, environmental friendliness etc.  (Metz and IPCC, 2005). 

2.3 Mitigation measures on the effect of Greenhouse Gases (GHGs) emission 

Numerous strategies are being applied today to mitigate the effect of continuous 

emission of GHGs by ensuring a tremendous decline in the emission, these 

application include; increasing the energy efficiency of electrical appliances, fuel 

substitution, emissions trading, changes in combustion practices and the use of 

renewable energy (biomass, geothermal, solar, tidal, water and wind energy), 

hydrogen fuels, less carbon intensive sources, natural gas and nuclear energy, 

afforestation and carbon sequestration. These proposed strategies could enable the 

continuous use of fossil fuels with reduced GHGs emissions (Houghton and IPCC, 

2001). Brief and careful examinations of some of the mitigation measures that 

dominate research topics are presented below.  

2.3.1 Non-renewable resources 

Non-renewable resources, also known as finite resources, are resources that their 

economic value cannot be readily replaced and/or does not renew itself at a 
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sustainable rate in comparison to its rate of consumption in meaningful human time-

frames (IPCC and Edenhofer, 2014). They are categorized into two groups; fossil 

fuels (coal, natural gas and oil) and nuclear fuels.  

Nuclear energy is a contending energy sources accounting for about 12.3 % of world 

electricity supply according to a report by Rogner, (2013).  Globally, about 375.5 

gigawatt energy are being generated from 437 reactors as at November 2012. 

However, nuclear stations are primarily stationed close to water bodies (sea, large 

rivers, lake or massive cooling towers) for cooling of the reactor rods submerged in 

them. The case of the Fukushima Daiichi accident of 11
th

 March, 2011 caused by 

earthquake and subsequent tsunami has created a gap in nuclear technology. The 

accident has stimulated countries like Germany, Belgium, Spain and Switzerland to 

phase out their nuclear power stations within the next two decades (Rogner, 2013; 

Scott, 2013). In addition, Italy has shut down all its functioning nuclear power 

stations while countries like Cuba, Kuwait and Libya have outrightly cancelled plans 

to introduce nuclear sources due to financial, political and technical reasons  (Rogner, 

2013). By way of conclusion, nuclear energy sources are faced with poor public 

acceptance, nuclear economics, strict public policy, security and environmental 

concerns in waste disposal (Broecks et al., 2016). Although, they are known to 

deliver unlimited energy and zero emissions (Kidd, 2013; Rogner, 2013). However, 

coal, natural gas and oil are increasingly being the major energy sources in power 

generation. 

Natural gas and oil were simultaneously discovered in 1821 and 1859, respectively, 

during the industrial revolution. Both fuels are considered to be reaching the peaking 

era and it is predicted that natural gas peaks will occur within a decade of oil peaking 

(Abas et al., 2015).  Coal was also discovered during the industrial revolution and it 

played a major role especially in coal-fired steam engines and development of earlier 

rail system. However, coal production and consumption has surpassed natural gas and 

oil due to the fast depletion in oil and gas reservoirs (Abas et al., 2015). Moreover, 
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cleaner energy sources such as renewable energy are being investigated with aim of 

mitigating GHGs emissions and meeting world energy demands.  

2.3.2 Renewable energy 

Renewable energy also known as alternative energy source provides the world with 

potentials of conserving fossil fuels for other applications and future use. Renewable 

energy is defined as “any form of energy from solar, geophysical or biological source 

that is replenished by natural process at a rate that equals or exceeds its rate of use” 

(Edenhofer et al., 2012). Observable increase in global contribution of this source of 

energy was recorded in the last decades. In 1990s, it was observed that renewable 

energy sources increased by only 2 % and impressive increment of 5 % in recent 

years. Renewable energy represents a total of 12.9 % of global primary energy of 

about 492 EJ (exaJoules) (IPCC and Edenhofer, 2014; Edenhofer et al., 2012). 

Biomass, geothermal, ocean, solar, tidal, wind energy and hydropower are all sources 

of renewable energy. 

A prominent source of renewable energy, solar energy technology refers to “the 

harnessing of solar irradiance to generate electricity via photovoltaics (PV) and 

concentrating solar power (CSP) to produce thermal energy” (Salame et al., 2015). In 

spite of being the most abundant renewable resources, solar energy only accounts for 

about 0.04 % of basic power used by human (Salame et al., 2015). This energy source 

could be used in heating and cooling, as well as, to produce fuels, useful for 

transportation and other purposes (Salame et al., 2015).  However, solar energy 

application is still within the research and development (R&D) and mature phase. In 

addition, commercial application of solar energy technology is being hampered by a 

number of factors; high cost of solar panels and storage system.  Advancement in 

technology and production of cheap solar panels and storage system could create a 

platform for wide commercial applications and harnessing of solar energy (Salame et 

al., 2015; Amponsah et al., 2014; IPCC and Edenhofer, 2014). However, there is 

more focus on biofuel as a source of energy. In fact, countries like Brazil and Norway 
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have already introduced biofuel into their energy mix and made it available in 

commercial quantities.  

Biofuels, a renewable energy source, are majorly produced form biomass feedstock 

such as agricultural and livestock waste. Biofuel such as ethanol produced from sugar 

and starch are commercially available (Salame et al., 2015; Amponsah et al., 2014; 

IPCC and Edenhofer, 2014). Biomass has been co-fired and co-gasified with fossil 

fuel with or without CCS. In retrospect, this has reduced the high demand on fossil 

fuels especially at geographical locations where biofuels are produced. Also, biofuels 

has acted as alternative fuels, cutting off the huge demands resulting from 

fluctuations in supply of fossil fuels (Gibbins and Chalmers, 2008). However, biofuel 

energy is insufficient source of energy compare to fossil fuels. In addition, 

environmental impact of biofuels production from land use could lead to land erosion 

as result of the removal of green vegetation. Alternatively, hydropower energy is a 

clean and renewable energy source possessing economic, technical and 

environmental benefits over biofuels.  

Hydropower energy exploits kinetic and potential energies stored in water as a result 

of its movement from a much higher to lower elevations, this in turn, generates 

electricity with aid of a turbine engine. The technology is in its mature phase and it is 

known to exploit mechanical energy of flowing water by forcing it through a piping 

known as penstock, which turns a generator. Hydropower technology  are known to 

provide multiple uses such as irrigation, flood / drought control and energy supply 

(Salame et al., 2015; Amponsah et al., 2014; IPCC and Edenhofer, 2014). 

Hydropower is a proven technology with high efficiency and very low operating and 

maintenance costs. However, hydropower energy is limited to availability of water 

bodies such as river, seawater in a geographical location. In addition, high initial cost 

of hydropower facilities, inundation of land and wildlife habit as well as displacement 

of people living in the reservoir area serve as short comings (Salame et al., 2015). 

However, geothermal energy could serve as an alternative to hydropower energy and 
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it is considered an efficient supply of clean energy with minimal impact to its 

surroundings (Salame et al., 2015).  

Geothermal energy utilizes thermal energy from the earth’s interior using up 

geothermal reservoirs with the aid of wells. Three known use of geothermal energy 

are system heating, electricity generation and use in geothermal heat pumps. 

Geothermal energy is a sustainable and safe source of energy for the environment 

with minimal emission. However, this technology is at the research and development 

(R & D) phase  (Amponsah et al., 2014; IPCC and Edenhofer, 2014). A major 

drawback with geothermal energy is suitable locations. Suitable geothermal power 

plants must be located where there are hot rocks that can be easily drilled. For 

example, China possess richest geothermal resources, other countries include Japan, 

USA, Iceland and Turkey. In addition, geothermal energy could only provide 

relatively small amount of energy compared with other renewable energy sources. 

Moreover, they are faced with safety concerns (Salame et al., 2015; Amponsah et al., 

2014; IPCC and Edenhofer, 2014).  

Fossil fuel combustion is a proven technology which could sufficiently meet the 

energy demand in next few decades. However, with advent of new technology such 

as carbon capture and storage (CCS), there is provision for continuous combustion of 

fossil fuel but with an option of capturing GHGs emission after or prior to 

combustion. Despite the advent of CCS, the mitigation of GHGs with CCS remains 

scientific challenge. Moreover, the commercial application of CCS has been 

hampered due to its energy penalties, high operating and capital cost and technology 

maturity. 

2.4 CO2 Capture and Storage (CCS) 

CCS is a technology in which CO2 is separated from other gases after final 

combustion at a point source or carbon content of a fuel is separated prior to final 

combustion of the fuel, compressed, transported and stored in various geological 

formations (Hammond and Spargo, 2014; Pires et al., 2011). CO2 capture could be 

achieved by incarcerating the carbon in flue gases or fuel (feedstock) prior to final 



18 

 

combustion. The technology employed in the capture process pivot on the type of 

combustion / combustion equipment, fuel source and fuel composition (Metz and 

IPCC, 2005). CO2 capture constitute about 70 - 80 % cost of the total CCS chain 

(Metz and IPCC, 2005).  Diverse CO2 capture technologies are commercially 

available, but cost and energy penalty have limited their applications (Olajire, 2010). 

CO2 capture and storage provides us with continuous combustion of fossil fuels 

and control of the emission of GHGs. The reduction of CO2 emission could be 

applied to both stationary point and mobile sources, but this attracts some 

penalties. Report indicated that CCS could assist in about 19 % of total global 

emission reduction in next few decades (L׳Orange Seigo et al., 2014). However, 

the application of CCS still battles with environmental challenges, regulatory 

issues varying from country to country, public perception especially with issues 

that are  related to possible risks of leakage in storage site  and clear legal 

framework (L׳Orange Seigo et al., 2014; Jan et al., 2012). In addition, public 

perception of CCS is relatively low with little acceptance based on statistics, when 

compared with other climate change mitigation options such as geothermal energy 

and wind energy (Broecks et al., 2016; Jan et al., 2012). CCS public perception 

could be motivated with advancement in R&D, technology advancement and 

public awareness through social media. However, CCS involves three main stages, 

which are the CO2 capture, transport and storage.  

2.4.1 CO2 capture 

CO2 capture is witnessing more attention from researchers today as a result of 

limitation with the present technologies, such as absorption, adsorption, cryogenic 

distillation and membrane, employed in capturing CO2 (Pires et al., 2011; Yang et al., 

2008). These techniques have their own limitations and constraints in capturing CO2 

from point sources. However, after the CO2 is captured at the point sources, it is 

compressed and transported to various geographical storage site. Figure 2.1 shows the 

three stages of CO2 capture and storage chain. 
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Figure 2.1: Schematic showing the three CO2 capture and storage chain. 

2.4.2 Transport of captured CO2 

Transport of the captured CO2 involves the movement of the compressed CO2 from 

a capture point to its storage site and it is the most technically matured stage of 

CCS today (Bouzalakos and Maroto-Valer, 2010). Captured CO2 could be 

transported to its final destination (a storage site or utilization site) via tankers, 

ships or pipeline. The mode of transportation chosen is a factor of the volume of 

captured CO2 and the proximity to the storage or utilization site. Transport of 

captured CO2 via pipelines is the most viable and mature technology. In addition, 

the transport of CO2 to storage site via ship has also improved significantly. 

However, local conditions and regional economic circumstances can play a major 

role in evaluation of the cost of transporting the captured CO2 to its storage site 

(IEA, 2013). Factors limiting the transport of CO2 via pipelines include corrosion 

due to presence of water in the captured CO2, crack formation in pipelines and 

adverse effects of impurities (Olajire, 2010). However, majority of pipelines, 

transport CO2 for utilization purposes. For example, 225 kilometers pipeline built 

in 1972 at Texas Canyon Reef Carriers is devoted for Enhanced Oil Recovery 

(EOR). Over 6000 kilometers of CO2 pipeline exist in the United State and there 

are offshore pipelines transporting CO2 in Snohvit Project, Norway for EOR 

(Olajire, 2010). 

2.4.3 Storage of captured CO2 

Storage of captured CO2 in geological formation involves injecting the captured CO2 

into geological formations located in the depth more than 1 - 3 kilometers below 
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ground level (Gibbins and Chalmers, 2008; Metz and IPCC, 2005). These geological 

formations or geological reservoirs can be basalts, deep unused saline water-saturated 

reservoir rocks, depleted oil and gas reservoirs, unmineable coal seams, oil shales and 

cavities. However, deep saline aquifers have the highest CO2 storage potential which 

could reach between 400 – 10,000 GT of CO2 storage, followed by depleted oil and 

gas fields (920 GT), with the least storage potential to be unmineable coal seams (15 

GT) (Leung et al., 2014). Concentration of compressed CO2 for sequestration either 

in deep underground geological formations or ocean is recommended to be more than 

90 % (Irfan et al., 2011). However, the use of depleted oil reserves and other 

technology has made CO2 storage a bit lucrative such as Enhanced Coal Bed Methane 

Recovery (ECBMR) as well as Enhanced Oil Recovery (EOR)  (Leung et al., 2014). 

For example, Weyburn project in Saskatchewan, Canada is a typical case of EOR 

project with storage capacity of 30 million tons of CO2 transported via 320 kilometers 

pipeline from a gasification plant situated at North Dakota, USA (Leung et al., 2014). 

However, storing CO2 in depleted hydrocarbon fields, deep saline formations 

generate no income but rather increases the cost of storage because of monitoring of 

such sites (IEA, 2016, 2013). These technologies are still active topics of 

investigation. In addition, advancement of CCS technology differs from country to 

country.  Industrialized countries are front runners in CCS. Recently, more focus is 

on developing countries as they tend to meet their energy demand, consequently emit 

more CO2.  

However, the separation of carbon content in end-of-pipe or chemical process can be 

achieved using some available technologies; Post Combustion, Pre Combustion, Oxy 

Fuel Combustion (Olajire, 2010). 

2.5 Post-Combustion CO2 capture 

Post-combustion CO2 capture (PCC) is one of the CO2 capture technologies. It 

provides a viable potential of retrofitting with existing power plants. Post-combustion 

is a downstream process and categorized as an end-of-pipe technology. Report 

indicated that the technology could lead to an increase in energy cost by 32 % and 65 
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% in gas and coal-fired power plants, respectively (Leung et al., 2014; Olajire, 2010). 

This huge increase in energy cost has been attributed to low concentration and 

relatively low partial pressure of CO2 in the flue gases of power plants (Luis et al., 

2012). Therefore, PCC requires a source of driving force in concentrating the flue gas 

for separation. However, coal-fired power plants are known to emit about 7 – 14 % 

CO2 and gas-fired power plants emit about 4 % (Leung et al., 2014; Olajire, 2010). 

Furthermore, enormous energy is required for regeneration of chemical solvents (for 

example monoethanolamine, MEA) used in the capture process (Leung et al., 2014; 

Olajire, 2010). About 4 to 6 GJ / tonne energy is consumed during the regeneration 

process of  CO2 recovered (Bounaceur et al., 2006). The technology is termed energy 

inefficient and least efficient among competing capture technologies. However, 

advances in research and development (R&D) could alleviate some of these short 

comings in post-combustion carbon capture. Figure 2.2 shows the main features of a 

post combustion capture process.  

 

Figure 2.2: Schematic depicting post-combustion CO2 capture (Adapted from Gibbins 

and Chalmers, (2008)) 

2.6 Pre-Combustion CO2 capture 

Pre-Combustion CO2 capture aims to provide a carbon-free fuel (fuel 

decarbonization). This could be hydrogen fuel and other hydrogen fuel based 

technology (Olajire, 2010). Pre-Combustion technology is primarily applied before 

final combustion of the carbon-free fuel such that the heating value of the fossil fuel 

is transferred to H2 (Olajire, 2010). In pre-combustion CO2 capture process, the fuel 

could be conventionally coal or natural gas which liberates mainly carbon monoxide 
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and hydrogen (Figure 2.3 and Figure 2.5). Recent advancements in pre-combustion 

CO2 capture technology have biomass a potential feedstock. Other components of 

pre-combustion are air, steam or controlled amount of oxygen which serves as the 

oxidizing agent necessary for the gasification process (Leung et al., 2014; Olajire, 

2010). Pre-combustion CO2 capture is a three stage process, first stage being the 

gasification / reforming process followed by water-gas shift reaction stage and the 

CO2 capture as seen in Figure 2.3. 

 

 

Figure 2.3: Schematic depicting the three main stages in pre-combustion CO2 capture 

process. 

2.6.1 Reforming / gasification 

Pre-reforming occurs prior to the reforming process by reducing the steam-to-carbon 

ratio in the main reformer, translating into a reduction in the energy required in the 

main reformer. However, the pre-reformer can also acts as “sulfur guard” by 

removing all sulfur to protect the main reformer catalyst and improve efficiency. The 

pre-reformer catalyst could be nickel based on either a magnesium oxide or 

magnesium alumina. Reforming of fossil fuel (natural gas) is normally by the steam 

reforming or partial oxidation. Steam methane reforming is commercializing 

technology which was first developed in 1868 by Tessie du Motay and Marechal. 

This is a catalytic process occurring at temperature of 700 – 1000 
o
C and pressure 

between 3 – 25 bar (Equation 1) (Michalkiewicz and Koren, 2015).   

In case of partial oxidation, the heat required for reforming is generated within the 

reformer and there are three classes of partial oxidation, namely;  
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(i) Partial oxidation with no catalyst 

(ii) Autothermal reforming and 

(iii) Catalytic partial oxidation. 

For natural gas steam reforming and autothermal reforming, Equation 2.1 and 

Equation 2.2 depict the chemical reactions, respectively.  

 

CH4 + H2O     3H2 + CO ΔH
o
298 = 205.9 kJ mol

-1
 2-1  

2CH4 + O2      4H2 + 2CO ΔH
o
298 = -36 kJ mol

-1  
2-2 

Gasification which is applied mainly to coal, occurs at a higher temperature, thus 

requires cooling and scrubbing before water gas shift reaction.  This pretreatment 

often increases H2O to CO ratio as well as temperature depletion to suite the water 

gas shift reaction.  Gasification process could involve either carbon or oxygen. 

The following chemical equations depict the reactions involving carbon in 

gasification: 

 

C + 2H2    CH4  ΔH
o
298= -74.6 kJ mol-1 2-3 

C + CO2      2CO  ΔH
o
298= 172.5 kJ mol-1 2-4 

C + H2O (gas)    H2 + CO ΔH
o
298 = 131.3 kJ mol

-1
 2-5 

2C + O2      2CO  ΔH
o
298 = -110.5 kJ mol

-1
 2-6  

Also, the gasification involving oxygen is represented by the following chemical 

equations: 

2CO + O2     2CO2  ΔH
o
298 = -283.0 kJ mol

-1
 2-7 

4H + O2      2H2O  ΔH
o
298 = 241.8 kJ mol

-1
 2-8  
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2.6.2 Water gas-shift 

Water gas shift reaction is an exothermic reaction which liberates additional H2, the 

water gas-shift reaction is depicted by Equation 2-9. The CO liberated in the 

gasification / reforming process reacts further to give additional H2 and CO2. 

However, lower temperatures favor optimum conversion of CO to H2 and steam in 

the presence of catalyst (see Table 2.1). In addition, by integrating water gas-shift and 

CO2 capture processes, CO2 or H2 can be continuously removed from the reactor, 

therefore, the equilibrium is shifted to the product side.  

 

CO + H2O      CO2 + H2 ΔH
o
298 = - 41.1 kJ mol

-1
  2-9 

  

Furthermore, the water gas-shift catalyst is categorized into three;  

(i) High-temperature shift,  

(ii) Low-temperature shift and  

(iii) Sour shift catalyst (see Table 2.1). 

Table 2.1: Categories of water gas-shift catalyst and their properties. 

 Active components  Operating 

conditions (
o
C) 

Sulfur content in 

feed gas (ppmv) 

High-temperature 

shift 

Fe3O4 with Cr2O3 as 

stabilizer 

350-500 <100 

Low-temperature 

shift 

Cu supported by ZnO and 

Al2O3 

185 -274 <0.1 

Sour shift Sulfided Co and Mo 

(CoMoS) 

250 – 500 >300 

 

2.6.3 CO2 capture 

This stage, the CO2 could be separated from H2, where H2 could serve as fuel for gas 

turbine combined-cycle plants, fuel cells, and chemical feedstocks for production of 
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ammonia (Leung et al., 2014; Olajire, 2010). Also, captured CO2 could be stored or 

used as refrigerants, fire extinguisher gases, food beverages and production of urea 

(Leung et al., 2014; Olajire, 2010). Conventionally, absorption process using 

monoethanolamine (MEA), Selexol, Recticol or Purisol are employed for separating 

CO2 / H2. However, pre-combustion carbon capture using membrane technology has 

been postulated to provide the least energy penalty and best for coal-fired power 

plants (Bounaceur et al., 2006). Pre-combustion carbon capture has numerous 

advantages including the production of carbon-free fuel and capture of CO2 at 

relatively high pressure. Pre-combustion CO2 capture occurs at a pressure of about 20 

to 70 bar and CO2 partial pressure between 3.5 and 27 bar, this translate to a 

reduction in the energy requirement for the separation. Moreover, the composition of 

the flue gas is a function of the feed and the system configuration used in pre-

combustion process, see Figure 2.4. In addition, this technology could be applied in 

an integrated gasification combined cycle (IGCC) (Scholes et al., 2010). 

 

Figure 2.4: Flue composition of air-blown reforming and IGCC pre-combustion 
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Figure 2.5: Schematic depicting Pre-combustion CO2 capture (Adapted from Gibbins 

and Chalmers, 2008) 

Integrated gasification of combined coal cycle is rooted known technology of natural 

gas combined cycle (NGCC). Pre-combustion carbon capture technology employs 

IGCC technique. This is a technique of producing synthesis gas mainly H2, CO and 

very often CO2 from the heating of carbon-based fuels such as coal, biomass and 

natural gas in the presence of air, O2 or steam as oxidant (Scholes et al., 2010). It is 

known to have high CO2 concentration between 35 and 40 % with a total pressure of 

about 20 bar or more. The CO2 in the exit stream is known to have high pressure but 

low temperature, which forms a good basis for CO2 pre-combustion capture. Yang et 

al., (2008) reported that pre-combustion capture systems are less expensive in 

comparison with post-combustion capture system. Also, pre-combustion capture 
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plants incorporated with IGCC are more efficient than the conventional pulverized 

coal-fired power plants (Yang et al., 2008).  

2.7 Oxy-fuel combustion 

Oxy-fuel combustion, which is also known as oxy firing and oxy combustion, is a 

modified post-combustion technology. In this scenario, the two main combustion 

components are O2 and fuel. However, oxyfuel combustion entails the separation of 

oxygen from air using cryogenic separation process or membrane based technology 

(Figure 2.1) (Olajire, 2010). The combustion of oxygen and fuel in oxyfuel 

combustion emits SO2, water, particulate matters and highly concentrated CO2. The 

SO2 could be separated by desulphurization technology and particulate matter 

removed by the use of electrostatic precipitators. CO2 concentration in oxyfuel 

combustion is in the range of 80 – 98 % and could be removed by physical method 

such as distillation, then compressed, transported and stored (Leung et al., 2014; 

Olajire, 2010). Oxy-fuel combustion flue gas has a concentrated amount of CO2 

approximately 80 – 90 %, 5 % N2 and 5 % O2 by volume compared to flue obtained 

from direct combustion with air  which contains approximately 79 % N2, 13 – 15 % 

CO2 and 5 % O2. The major limitation with this technology is the associated capital 

and energy cost required for production of pure O2 or separation of O2 from air. In 

addition, high concentration of SO2 could create severe corrosion damage to the 

system (Leung et al., 2014; Olajire, 2010). Although, the applications of these carbon 

capture technologies requires some separation techniques for successful operation at 

the industrial level. 
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Figure 2.6: Schematic depicting Oxyfuel combustion (Adapted from Gibbins and 

Chalmers, 2008) 

2.8 CO2 separation techniques 

In order to successfully separate CO2, some separation techniques are employed. 

Some of these techniques use solvents (physical and chemical) and membranes to 

capture/separate CO2 content. A brief examination of the separation techniques are 

presented below;  

2.8.1 Absorption-based CO2 capture 

Absorption technology is a mature technology for CO2 capture (Olajire, 2010). 

Absorption technologies are applied in capture processes either as chemical and 

physical sorbents. Chemical sorbents such as monoethanolamine (MEA), 

diethanolamine (DEA), methyl diethanolamine (MDEA), piperazine, anion-

functionalized ionic liquid and potassium carbonates have been used in CO2 

separation. MEA has been commercially available for over 60 years, the use of MEA 

in CO2 separation is a mature technology that has been commercialized. It has been 

used extensively in natural gas industry for the capture of CO2. In this process, the 

MEA solution is contacted with the flue gas in a packed absorber column, where the 

CO2 is preferentially absorb from other flue gases (Leung et al., 2014; Olajire, 2010). 
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This solvent is later sent to a regeneration unit where CO2 is stripped off in a counter 

flowing stream at a temperature range of 100 – 200 
o
C. The CO2 content stripped 

from the solvent is highly concentrated (about 99 %), this could be compressed for 

storage or serve as chemical feedstock in food industries, intermediates and value-

added products (Leung et al., 2014; Olajire, 2010). Nevertheless, the absorption 

process is considered energy inefficient and also suffers from excessive equipment 

corrosion, solvent loss, amine degradation and susceptible to emission of volatile 

degradation compounds (Leung et al., 2014; Olajire, 2010). 

However, in physical absorption of CO2, the process relies on the solubility of the 

CO2 which is a factor of the partial pressure and temperature. Elevated partial 

pressures or lower temperatures are known to favor the solubility of CO2 in physical 

absorbents (Olajire, 2010). However, solvent regeneration occurs at elevated 

temperature or lowering the pressure of such system. In addition, the technology has 

been commercialized for acid gas removal in natural gas processing and CO2 removal 

from syngas in the production of methanol, hydrogen and ammonia (Olajire, 2010). 

For example, Great Plains Synfuels plant located at North Dakota, USA uses this 

technology for the production of synthetic natural gas for over 20 years. 

Notwithstanding, the solvents (Selexol) used in physical absorption has a very high 

affinity for hydrocarbons which usually results in loss of hydrocarbons. Also, the 

process is adequately efficient at high operating pressure but at low pressure, causing 

loss of system efficiency (Olajire, 2010).  

2.8.2 Adsorption-based CO2 capture 

Adsorption is a thermodynamic process that involves a shift of the effluent 

component from the gas phase (feed) by attaching itself onto the surface or within the 

pores of the solid material, that is, the adsorbent (Olajire, 2010). The adsorbent could 

be an activated carbon, zeolite or metal oxides. Adsorption could be a physical 

(physisorption) or chemical (chemisorption) process followed by adsorbent 

regeneration (desorption). Desorption of the adsorbent could be achieved in a number 

of ways; Electrical Swing Adsorption (ESA), Pressure Swing Adsorption (PSA), 
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Temperature Swing Adsorption (TSA) or washing (Olajire, 2010). A brief discussion 

on some of adsorbents use in CO2 capture is given below; 

Molecular sieve are crystalline substances (especially zeolite) with pores of molecular 

dimensions which allow the passage of molecules below its molecular size or mass. 

Molecular sieve has been studied and improved to modify their chemistries, in other 

to adapt for various chemical separation especially carbon capture and sequestration 

(Olajire, 2010). Some of the reported materials include silica, MCM-41 and MCM-

48. These materials are reported to be cost and energy efficient and with great 

potentials in carbon sequestration (Olajire, 2010). 

Activated carbon performance depends largely on the surface chemistry. The surface 

chemistry is dominated by heteroatoms which could exist in the form of acidic, basic 

or neutral organic functional groups. Activated carbons have been applied to a variety 

of industrial processes (Olajire, 2010). Chemical modification of activated carbon has 

been reported to enhance its adsorption behavior in capturing CO2. For example, 

activated carbon has been chemically modified with NH3 and polyethlenimine (PEI) 

impregnation which increased the CO2 capture capacity at elevated temperature 

(Olajire, 2010). 

2.8.3 Chemical looping separation 

A metal oxide is a metallic compound which is formed from metal and O2 in the form 

of oxide ion and are referred to as oxygen carriers which are often used for 

combustion, instead of using pure oxygen as in the case of oxyfuel combustion. In the 

process of combustion, metal oxides are burned to form CO2 and water only, thus, 

reduced back to metal (Leung et al., 2014). A further oxidation reaction, leads to 

release and recycle of the metal and removal of water by condensation. In general, 

this process is termed chemical looping separation and they have great potentials, for 

example, low cost of metal oxides (Leung et al., 2014). 
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2.8.4 Cryogenic distillation 

Cryogenic distillation of gas mixtures relies on fractional condensation and 

distillation at low temperature and high pressure into gas components. This process is 

analogous to traditional distillation processes with the exception that it only applies to 

gaseous mixtures (Leung et al., 2014; Olajire, 2010). It is a commercial process used 

to liquefy and purify CO2 from high purity and it involves cooling at very low 

temperature. CO2 recovery in this process could be in the range of 90 - 95 % of the 

entire flue gas (Leung et al., 2014; Olajire, 2010).. However, the process is hampered 

by intensive energy demand of CO2 recovery in liquid form (Leung et al., 2014; 

Olajire, 2010).  

2.9 Membrane technology for CO2 capture 

Modern membrane technology is novel capture concept which could be applied 

across all carbon capture technology, that is, post, pre and oxyfuel combustion 

technique) (Olajire, 2010). Membrane is defined as a selective semi-permeable 

barriers that separate mixtures, restricting the transport of various chemical species 

(Daramola et al., 2012; Olajire, 2010; Yang et al., 2008). This technology provides an 

important technique whereby process intensification can be implemented; such 

strategy is known to couple both the reaction and separation process together. 

Membrane technology, reduces production cost, maximize energy utilization and 

enhance waste reduction (Daramola et al., 2012; Bernardo et al., 2009). Membrane 

gas separation is pressure driven process and operates on a variety of mechanism; 

adsorption/diffusion, solution/diffusion, molecular sieve and ionic transport. 

However, membrane performance is a function of its permeability and selectivity. 

Permeability is described as the flux of a specific gas over the membrane (in units of 

mol s
-1

 m
-2

 Pa
-1

) and selectivity is the preferential selection of a gas species or 

molecule over the other (s). Membrane selectivity is described as the “ability to 

separate a desired component from the feed mixture” (Daramola et al., 2012; Olajire, 

2010). These functions are inverse of each other, for a highly permeable membrane, it 

does possess a low selectivity and vice versa (Daramola et al., 2012; Olajire, 2010). 
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Among the common configuration for membrane technology are the tube and sheet 

type membrane (Figure 2.7). 

 

 

 

Figure 2.7: Schematic of membrane gas separation in a tube and sheet configuration 

Membrane technology possesses great potential in the separation of CO2 and H2 with 

superior efficiency over conventional thermal separation processes (such as 

absorption). Membrane efficiency is about 10 times more than conventional 

separation processes (Bernardo et al., 2009).  Furthermore, membranes possess 

noticeable advantages over absorption and adsorption processes, they have simple 

modular system, no waste streams and no regeneration energy required. Membrane 

technology eliminates limitations of conventional gas absorption towers and 

adsorption processes, thus, offers high selectivity and high driving force with a 

simple modular design ( Daramola et al., 2012; Luis et al., 2012;  Olajire, 2010)). 

Membrane separation is a proven technology which has been applied in natural gas 

sweetening and commonly used in H2S recovery in refineries (Scholes et al., 2010). 

However, chemical and physical properties of a membrane play a dominant role in 

gas separation. Some of the properties include membrane structure and thickness, 

configuration, module, system design and choice of material (permeability and 

separation factor) (Bernardo et al., 2009). Remarkable success recorded with 

membrane technologies have led to its implementation in power generation, for 

instance, FutureGen power plant located at Coles County, Illinois, USA was planned 
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to operate on IGCC technology, for electricity and hydrogen production with the use 

of membrane (Yang et al., 2008).  

However, membranes can be categorized into two major class based on nature of 

membrane materials, organic and inorganic membranes.  

2.10 Organic membrane 

Organic membrane such as polymers have been extensively studied for gas separation 

and as supports for catalytic membranes, however, they receive limited commercial 

applications due to their decomposition and failure at high temperature (Daramola et 

al., 2012; Armor, 1998). As a result of this limitation, numerous inorganic (ceramic) 

membranes, possessing greater thermal and mechanical stability and chemical 

inertness, have been made commercially available (Daramola et al., 2012; Armor, 

1998).  

2.10.1 Polymeric membrane 

Polymeric membranes possess reasonable process-ability, economic competitiveness 

and scalability (Kosinov et al., 2016). However, major limitations with polymer 

membrane include plasticization when exposed to hydrocarbons or CO2 and 

permeability/selectivity trade-off. In addition, they are chemically unstable and 

deteriorate at high temperatures. Despite these major limitations, they are forefront 

and dominate commercial separation applications. Moreover, their separation 

performance is reduced drastically in ;such process conditions (Bernardo et al., 2009).  

Most polymeric membranes are more selective to CO2 and some has shown great 

potentials in CO2/H2 separation, for example, polyphosphazenes and PDMS 

(Bernardo et al., 2009). However, due to low thermal and mechanical stability and 

poor chemical fastness, polymeric membranes are unfit for hydrogen  separation 

(Michalkiewicz and Koren, 2015). 

2.11 Inorganic membrane 

Inorganic membranes are interesting materials and have shown enormous potential in 

gas separation applications. Owing to their superior thermal resistance, they possess 

great potential application in high temperature membrane reactors for integration in 
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carbon capture power generation plants (Bernardo et al., 2009). For instance, silica, 

carbon molecular sieves and zeolite inorganic membranes are known to be 

chemically, thermally stable and can also withstand high pressure operations 

(Kosinov et al., 2016). Major advantage of inorganic membranes over other 

membranes is that they are highly selective.  However, high cost and reproducibility 

of such membrane has posed serious challenges. Brief discussion of some inorganic 

membranes is presented below: 

2.11.1 Dense metallic membranes (Palladium) 

Dense phase metallic membranes such as palladium and perovskites offer very high 

permeability and produce nearly pure H2. Dense metallic membranes faces serious 

limitations which has limited their application (Michalkiewicz and Koren, 2015). 

Palladium membranes can be poisoned by chemicals such as H2S, CO and H2S. 

Palladium membrane are exceptionally sensitive to H2S, a 1ppm concentration of H2S 

affects the membrane separation performance. In addition, Pd is an expensive 

material and Pd membrane could undergo phase changes resulting in crack formation 

at higher temperature and pressure (Michalkiewicz and Koren, 2015; Daramola et al., 

2012).  

2.11.2 Mixed matrix membranes  

Mixed matrix membranes (MMMs) are conventionally developed to enhance the 

physical and chemical properties of polymeric membranes. They comprise of an 

inorganic material as fillers incorporated into a polymer matrix. In this configuration, 

there is a synergistic combination of polymeric membranes process-ability and the 

superior separation performance of inorganic membranes (Bernardo et al., 2009). 

MMMs possess superior physical and mechanical properties for aggressive separation 

processes over inorganic membranes. However, presence of interfacial defects 

between the inorganic filler and polymeric membrane hampers its industrial 

application. Careful selection of materials and preparation route could enhance the 

synergetic combination by improving MMMs gas separation performance (Mahajan 

and Koros, 2000). 
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More research effort needs to be geared towards MMMs fabrication for the 

development of thin or nanocomposite defect-free mixed membrane structures.   

2.11.3 Zeolite membrane 

First report on zeolite dates back to the late 1930s and they have been extensively 

studied for membrane applications.  Some of those studied include zeolite MFI 

(ZSM-5 & silicalite-1), zeolite X & Y, zeolite NaA and sodalite (Daramola et al., 

2009). Zeolites are best described as porous crystalline, aluminosilicates of alkaline 

or alkali earth metals; either on micro, meso or nano scale (Aoki et al., 2000). 

Zeolites are porous crystalline aluminosilicates with a uniform pore structure and a 

controlled channel diameter which could range between 0.3 and 1.0 nm, this property 

makes them ideal membrane materials (Michalkiewicz and Koren, 2015). By 

aluminosilicates definition; it has a framework composition of SiO4
4-

 and AlO4
5-

 with 

corner sharing, forming open structures (Petrov and Michalev, 2012). Zeolites are 

also known as molecular sieves, named as a result of their molecular pore size 

structures, with ability to sieve larger pore size molecules shape and also adsorption 

properties (Bernardo et al., 2009; Chiang and Chao, 2001). The general formula for 

the framework material is given as Mm[TOx]tXt where T represents the framework 

atom, X the non-framework and M represents the alkali or alkaline earth atom 

(Khajavi et al., 2007a). The T atoms are tetrahedrally coordinated with O2 and are 

connected to other T atoms forming alternating connection of corner sharing TO4 

tetrahedra (Khajavi et al., 2007a). Zeolites membrane possesses superior thermal and 

chemical resistance over polymeric membranes. However, they have been extensively 

studied in last two decades as a result of ease of preparation and separation 

performance.  

Major drawback of zeolite membrane is associated with the ease of formation of non-

zeolitic pores which are larger than the zeolite pores. Non-zeolitic pores are formed 

during zeolite membrane synthesis due to draw backs associated with traditional 

membrane synthesis route. This in-turn reduces the selectivity and separation 

performance. However, with the advent of the temperature controlled crystallization 
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route whereby the active separation layer is grown within the pores of the macro-

porous support, the aforementioned challenge has been eliminated, hence a robust and 

defect free nanocomposite membrane is developed (Daramola et al., 2016; Li et al., 

2008a; Miachon et al., 2006; Chau et al., 2003). 

In addition, transport of gas in a zeolite membrane is described using the Stefan 

Maxwell approach at low temperatures which considers the effect of adsorption, and 

at higher temperature Knudsen diffusion is dominant (Bernardo et al., 2009). For 

instance, pore plugged MFI membrane prepared by Miachon et al., (2006) could best 

be fitted with the Maxwell-Stefan model alone. However, permeance after the lower 

temperature maximum remains constant (Bernardo et al., 2009) 

Nonetheless, natural occurring zeolites possess some limitations of non-uniformity 

in pore size, purity of the crystalline layers and thermal stability. However, 

synthetic zeolites can be size-modified for a wide variety of chemical properties 

(Petrov and Michalev, 2012; Gorgojo et al., 2008). A tabular classification of 

zeolite based on pore size distribution is given Table 2.2.  

Table 2.2: Classification of zeolite based on pore size 

Description (Pore) Rings Range (nm) Types Reference 

Extra Small 6 0.26 – 0.29 SOD (Khajavi et al., 2009) 

Small  8 0.30 – 0.45 Zeolite A (Petrov and Michalev, 

2012) 

Medium 10 0.45 – 0.60 ZSM-11 (Tuan et al., 2001) 

Large 12 0.60 – 0.80 FAU (Lassinantti et al., 2000) 

Extra Large  14 0.80 – 1.00 UTD-1 (McCusker et al., 2001) 
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Numerous zeolites minerals  have been used in commercial applications; Mordenite, 

Chabazite, Erionite and the synthetic zeolites types A, X, Y, L, ZSM-5, ZSM-11 and 

many more. These zeolites have flexibility with size, shape of framework and pore 

corresponding to change in temperature and support (Petrov and Michalev, 2012). In 

past 20 years, efforts have been made to make zeolite a perfect molecular sieve with 

intensive research on growing a thin and continuous membrane on a porous/non-

porous support. Various materials has been used as support for zeolite, these supports 

provide the zeolite membrane with mechanical strength, high area density packing, 

thermal and chemical stability (Daramola et al., 2012; Chiang and Chao, 2001). 

Materials frequently used as supports include stainless steel, alumina, porous glass, 

titania and anodic alumina, there are numerous factors to be considered in choosing a 

support for zeolite membrane; low flow resistance and good strength from 

asymmetric support provides optimal permeance and flow resistance and bonding 

with the zeolite (Chiang and Chao, 2001). 

Moreover, hollow fiber membrane are preferred to disk or tubular support, they 

provide greater surface to volume ratio which could facilitate easy scale-up in 

industrial applications (Daramola et al., 2012). These support types have been 

investigated by various authors. For instance, Alshebani et al., (2008b) gave a 

detailed report on synthesis of MFI nanocomposite on alumina ceramic hollow fiber 

using the pore-plugging hydrothermal route. However, a major breakthrough with 

zeolite membrane has been reported for LTA zeolite membranes. LTA zeolite 

membranes witnessed one of the first commercial applications of zeolite membrane. 

LTA zeolite membranes was synthesized hydrothermally on the surface of porous 

tubular support and applied for solvent dehydration by pervaporation. Numerous 

plants have been installed since 2001 using LTA zeolite membranes for pervaporation 

(Morigami et al., 2001). Various techniques have been employed in synthesizing 

zeolite membrane on support, synthesis procedure dictate the nature of the as-

synthesized membrane. Some of the reported zeolitic membranes are known to be 
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hydrogen or carbon dioxide selective. A brief discussion on gas separation 

mechanisms in zeolite membrane and membrane selectivity is provided below. 

2.11.4 Gas separation mechanism in zeolite membranes 

Gas permeation through zeolitic membranes could undergo a combination of 

adsorption selectivity, diffusion selectivity and size exclusion. In the case of 

adsorption selectivity, adsorption of molecules preludes all separation which occurs at 

the surface of the zeolitic membrane pores (Kosinov et al., 2016). In addition, 

adsorption selectivity is dominant at low temperature and is influenced by adsorbate 

and adsorbent interaction. This mechanism is suitable for dewatering applications and 

CCS (Kosinov et al., 2016).  

Diffusion selectivity occurs at moderate temperature which could be best described as 

“hopping of molecules from one adsorption site to another” (Kosinov et al., 2016). 

This occurs when the diffusivity of the smaller molecule is much faster than the 

larger components in the zeolite micropores (Kosinov et al., 2016). However, 

molecular sieving, also referred to as size exclusion, is an extreme scenario of 

diffusion selectivity. Molecular sieving is occurs when a component of a gas mixture 

can be totally screened out (not allowed to permeate) within the zeolite micropores 

(Kosinov et al., 2016). 

2.12 Membrane Selectivity in CCS 

Generally, metallic membranes are selective towards hydrogen with high degree of 

purity. Conversely, rubbery polymeric membranes are known to be selective towards 

carbon dioxide. Membrane selectivity is majorly influenced by  

(i) Difference in the motilities of the components and  

(ii) Difference in the adsorption behaviors of the each species. 

However, a membrane selectivity could either be towards hydrogen or carbon 

dioxide, a brief review is presented below; 
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2.12.1 H2 selective membranes 

Hydrogen is an energy carrier which could be used in fuel cells. Conventionally, 

hydrogen production is by steam-methane reforming and subsequent water-gas shift 

reaction which produced additional H2 by conversion of carbon monoxide to carbon 

dioxide (Bux et al., 2009; Nanyi Wang et al., 2015). Hydrogen could be recovered 

from numerous mixtures, hydrocarbon separation and CO2 capture from the 

following; syngas, biogas, flue gas and natural gas (Kosinov et al., 2016).  Numerous 

hydrogen selective membranes have been developed from inorganic membranes 

(zeolites, Pt-alloys, microporous amorphous silica, doped silica membranes and 

carbon molecular sieve (CMS) membranes) and organic membranes (polymer)  

(Nanyi Wang et al., 2015). Metallic membranes are known to produce hydrogen of 

high purity up to 99.99 % and are generally based on palladium and its alloys. The 

separation of hydrogen is achieved by dissociative chemisorption of hydrogen at the 

surface of the metallic membrane to produce atomic hydrogen (Scholes et al., 2010). 

The atomic hydrogen diffuses through the metal lattice as a result of partial pressure 

across the membrane. However, the atomic hydrogen recombine into molecular 

hydrogen and diffuses away at the other end of the metallic surface (Scholes et al., 

2010). Conclusively, the process makes metallic membrane highly selective towards 

hydrogen, however, no other gas molecule undergo such dissociation process.  

2.12.2 CO2 selective membranes 

CO2 selective membranes are membranes that restrict the passage of smaller 

molecules such as H2 but larger molecules such as CO2 permeate. The development 

of such membranes remains a technological challenge till date. Porous inorganic 

membranes, polymeric membranes and facilitated transport membranes have been 

used as CO2 selective membranes. However, porous inorganic membranes require a 

form of surface modification to enhance its capillary condensation which results in 

rapid diffusion within the pores (Scholes et al., 2010). In case of polymeric 

membranes, solubility selectivity must support CO2 and diffusivity selectivity of H2 
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must be minimal. Example of such polymers are the rubbery polymeric membranes 

which possess similar characteristics (Scholes et al., 2010). 

In the development of membrane, the synthesis material, synthesis procedure and 

support materials play a major role. Studies indicated that synthesis route employed 

determines the type of membrane being developed such as the thin-film and 

nanocomposite membrane. In addition, numerous synthesis procedures have been 

investigated thoroughly in order to find economically viable synthesis solution. 

Conventional synthesis routes include in-situ crystallization, secondary seeded 

growth synthesis and most recently the pore-plugging hydrothermal synthesis.  

2.13 In-situ crystallization 

In-situ crystallization involves a single step process, such that the nucleation and 

zeolite growth takes place in the presence of the support (Daramola et al., 2012; Caro 

and Noack, 2008; Miachon et al., 2006; Caro et al., 2000; Davis et al., 1990). This 

entails the deposition of a layer containing the Si and Al precursor as a dry 

amorphous aluminosilicates gel onto a support using sol-gel technique followed by 

zeolitization under vapor (Daramola et al., 2012; Caro et al., 2000). The single step 

method in in-situ crystallization is preferred in order to simplify the synthesis 

procedure.  However, the experimental number of synthesis runs depends on the 

zeolite of interest and the preparation conditions. A report by Gorgojo et al., (2008) 

who studied the growth mechanism in in-situ crystallization revealed that the 

concentrations of the reactants in the synthesis gel is reduced during synthesis 

process, the heterogeneous nucleation gets halted and only crystal growth proceeds, 

this only occurs even when dissolved nuclei is used as a feed. In addition, they 

concluded that the nuclei coexist with the crystal for a long time during the synthesis 

of the zeolite material (Gorgojo et al., 2008).  

2.14 Chemical vapor phase transport technique  

The chemical vapour transport method, also referred to as sol-gel conversion and 

vapor phase transport technique, favors nucleation process by a dry-gel conversion. 

Chemical vapor transport is a two-step synthesis technique that involves the coating 
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of a support with amorphous gel containing silica and aluminum. Then, it is followed 

by crystallization under autogenous pressure (Daramola et al., 2012; Miachon et al., 

2006; Caro et al., 2000; Matsufuji et al., 2000; Xu et al., 1990). However, crack 

formation in the amorphous layer is experienced with chemical vapor phase transport 

technique due to competition of the growth process and the nucleation process. In 

addition, the formation of cracks within the amorphous layer results into a major set-

back of obtaining reproducible membranes.  

2.15 Secondary seeded growth method 

Various seeding techniques have been reported and proposed in literature. Secondary 

seeded growth technique has been reported to provide an enhanced reproducibility 

and quality as a result of decoupling of the crystal growth and the nucleation process. 

Secondary seeded growth is a two stage process, firstly, an ex-situ seeding of the 

support, during which a previously synthesized zeolite crystals are deposited on the 

surface of a support and then followed by hydrothermal synthesis (Daramola et al., 

2012; Bonilla et al., 2001; Caro et al., 2000; Gouzinis and Tsapatsis, 1998). Such 

techniques was reported by  Boudreau et al., (1999), in the report, they varied the pH 

of the synthesis solution in order to match the zeta potential of alumina supports and 

thus enhance the seeding process. Another notable contribution to secondary seeded 

growth method was reported by Hedlund et al., (2002) for ZSM-5 membranes on 

non-porous planes like gold plates, the seeding process was enhanced by using 

cationic polymer, thus, promoting the seeds to stick to the surface of the support via 

electrostatic forces.  

2.16 Pore-plugging hydrothermal synthesis technique 

Pore-plugging hydrothermal synthesis technique is “a one-stage technique involving 

growing zeolite crystals within the pores of a support until the pores are completely 

blocked by the zeolite materials” (Daramola et al., 2016, 2015; Deng et al., 2010;  Li 

et al., 2008a; Miachon et al.,2006; Chau et al., 2003). Membranes obtained via pore-

plugging hydrothermal synthesis techniques are reported to possess minimal cracks, 

which usually results from thermal expansion mismatch between the zeolite crystals 
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and the support tube, easy scale up and easiness of membrane handling and module 

assembling (Li et al., 2008). Despite the fact that membranes fabricated via pore-

plugging hydrothermal synthesis technique are reported to have very high selectivity, 

they do have low membrane fluxes (Daramola et al., 2012, 2009b). The low 

membrane fluxes could be attributed to totally plugged support materials. 

However, the strength of zeolite membranes is enhanced by the type of support 

materials. The support materials provide both mechanical and thermal strength to the 

zeolite. Supported zeolite membrane could be in the form of thin-film or 

nanocomposite membrane.  

2.17 Supported membrane for CO2 capture 

Suzuki, (1987) patented the first supported zeolite membrane, since then, numerous 

supported membranes have been produced especially for gas separation application 

and pervaporation. Traditionally, supported membranes are developed via sol-gel or 

chemical vapor deposition (CVD) techniques, micro-wave heating, secondary seeded 

growth, direct hydrothermal synthesis and most recent pore-plugging hydrothermal 

technique with stainless steel, alumina, porous glass, titania and anodic alumina as 

support (substrate). Basically, thin-film membranes and nanocomposite architecture 

have been reported as supported membranes and have been evaluated for CO2 

capture. In addition, the synthesis technique employed determines the type of 

supported membrane to be fabricated.   

2.17.1 Thin film membranes (TFM) 

Thin-films or better described as thin-film selective layers of approximate 1000 nm 

thickness on highly porous substrate. They have been extensively studied  since 

1970s and applied commercially for large scale separation (Yave et al., 2010). 

They have been developed, employing numerous methods depending on the 

specific target requirements. Some of the techniques employed in developing thin-

film membranes are spin coating, dip coating and interfacial polymerization. Thin-

films are largely used in science and technology in separation units, sensors 

display, optical instrument, coatings and membranes (Daramola et al., 2012; Yave 
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et al., 2010); consequently they are of interest in various field of science and 

technology. 

Thin-film configurations have thickness between some microns which 

subsequently affects the flux of material through the membrane. However, this 

limit the separation performance, thus, reducing the technical and economic 

advantage of thin-film membranes (Daramola et al., 2012; Li et al., 2008b; Chau et 

al., 2003). Thin-film membranes in CO2 capture is still within the development 

phase because of their low permeance. This makes thin-film membrane faces 

limiting applications for large scale gas applications (Daramola et al., 2012; Yave 

et al., 2010). State-of-the-art CO2 selective thin-film membranes only possess 

permeance of about 0.3 m
3
 (STP) m

-2
.h

-1
.bar

-1
, which is not high enough for large 

scale carbon sequestration in coal-fired power plants (Yave et al., 2010).  

For example defect-free thin-film membranes were synthesized and reported by 

Khajavi et al., (2007). The group prepared hydroxy sodalite membrane on an 

alumina support which was evaluated through gas permeation test using N2 and He 

and applied for pervaporation. 

2.17.2 Nanocomposites architectural membrane 

Nanocomposite is “a multiphase solid material where one of the phases has one, two 

or more dimensions of less than 100 nm”  (Daramola et al., 2016, 2015; Miachon et 

al., 2006; Chau et al., 2003). Nanocomposite architecture can also be described as 

structures having nanoscale repeating distances between the different phases that 

makes up the material; porous media, colloids, gels and copolymers. 

In nanocomposite architecture membrane, the active phase is embedded within the 

pores of the porous support which could be achieved via pore-plugging hydrothermal 

synthesis (Daramola et al., 2016, 2015; Miachon et al., 2006; Chau et al., 2003). The 

pore-plugging hydrothermal synthesis described by some authors as temperature 

controlled crystallization (Daramola et al., 2016, 2015; Li et al., 2008a; Khajavi et al., 
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2007; Chau et al., 2003). Basically, the following outlines the process involve in this 

synthesis; 

 Formation of solution which constituent is a mixture of zeolite active 

materials (chemical precursor) and bringing it in contact with the porous 

support (host). 

 Embedding zeolite crystals within the pores of the support by employing a 

non-isothermal thermal program using a multi-stage succession processes. 

 Eliminating the residual chemical precursor. 

Interruption time is always introduced to promote the growth of the nuclei or nutrient 

diffusion in the porous structure (Daramola et al., 2009b; Alshebani et al., 2008; 

Chau et al., 2003). In nanocomposite architecture, the zeolite crystal size is subjected 

to the pore diameter of host, thereby, limit differences in thermal expansion.  Also, 

active phase in a nanocomposite architecture is within the pores of the porous 

support, transport of materials occur within this phase (Daramola et al., 2016, 2015; 

Alshebani et al., 2008; Li et al., 2008a). Obviously, it enhances higher separation 

performance (selectivity) and protects the membrane layer from abrasion and shock. 

These properties make nanocomposite architecture membrane better than the thin 

film-like. Moreover, transport of material occurs within zeolite pores instead of 

intercrystalline openings. A schematic comparison of thin-film membranes and 

nanocomposite architecture is illustrated in Figure 2.8. 
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Figure 2.8: Schematic depicting sodalite crystallite growth within / on porous support 

(adapted from Miachon et al., (2006)  



Table 2.3: Major differences between a thin-film membrane and nanocomposite architecture. 

Thin-film membrane (TFM) Nanocomposite architecture membrane 

Low membrane selectivity with high flux High membrane selectivity coupled with low flux 

Active phase forms a layer of thickness > 1000 

nm 

Active phase is embedded within porous support with 

dimension < 100 nm 

Poor mechanical and thermal stability Superior mechanical and thermal stability 

Crack formation due to thermal shocks Limited crack formation  control from thermal shocks 

No report has indicated interruption time during 

TFM synthesis 

Interruption time is always introduced to promote growth 

of the nuclei 

In use industrially for large scale separation Still in the research phase 

(Daramola et al., 2009b; Miachon et al., 2006; Chau et al., 2003) 

 

  



2.18 Zeolites membrane for H2/CO2 separation 

Numerous zeolite membranes have been reported for hydrogen separation / 

purification. A comprehensive review on silica membranes for H2 separation was 

reported by Khatib et al., (2011), Wirawan et al., (2011) reported and prepared  

silicalite-1 composite membrane by secondary seeded growth method and evaluated 

it for H2/CO2 permeation. Also, Rezakazemi et al., (2012) reported on H2 separation 

and purification using crosslinkable PDMS/zeolite-A nanoparticles mixed matrix 

membranes,  other reports provide detailed information on hydrothermal stability, gas 

permeation properties, synthesis technique as well as performance of zeolite 

membranes for H2 separation (Daramola et al., 2016, 2015; Y. Gu et al., 2008; Gu 

and Ted Oyama, 2007; Giessler et al., 2003; Lee and Oyama, 2002). Among the most 

researched zeolites for H2 separation / purification includes LTA (Huang and Caro, 

2011; Varela-Gandía et al., 2011, 2010; Huang et al., 2010; Guan et al., 2001), DDR 

(Bose et al., 2014; Kanezashi et al., 2008; Tomita et al., 2004), silicalite (Wang and 

Lin, 2012; Wirawan et al., 2011; Moon et al., 2008; Gu and Ted Oyama, 2007; 

Giessler et al., 2003), SAPO (Das et al., 2012) and sodalite (Daramola et al., 2016, 

2015). These zeolite materials possess small pore diameter, making them material of 

interest in light gas / molecule separation (H2) (see Table 2.4). Zeolite pore diameter, 

a major factor affecting their molecular sieving ability, influences the gas separation 

performance and separation mechanism. In addition, the nature of zeolite, pore 

volume, surface area, chemical inertness and thermal stability play major roles in the 

separation performance of zeolite membranes (Kosinov et al., 2016; Tomita et al., 

2004; Morigami et al., 2001).  

Furthermore, Gascon and Kapteijn, (2010) reported that high temperature causes a 

reduction in pore volume due to condensation of S-OH groups in silica membranes. 

Silica membranes have been reported to possess high permeability, high selectivity 

but thermally unstable at high temperatures.  The presence of steam (H2O) makes 

silica membrane to lose permeability (Michalkiewicz and Koren, 2015).  
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Investigation on MFI membranes concluded that MFI membranes are not effective 

for H2 separation (Michalkiewicz and Koren, 2015; Hong et al., 2005; Lovallo and 

Tsapatsis, 1996). However, most reports on MFI for H2 separation recorded a low 

permeance (Hong et al., 2005; Lovallo and Tsapatsis, 1996). In addition, it has been 

reported that diffusion of small gas molecules such as H2, CO and CO2 at high 

temperature in MFI zeolites membrane can be best described by the Knudsen 

diffusion (Michalkiewicz and Koren, 2015; Daramola et al., 2009b). In contrast, 

sodalite and silicalite-1 membrane with high silica content are hydrothermally stable 

and possess high resistance to sulfur compounds. In addition, silicate-1 and sodalite 

membranes are relatively cheap and highly selective to H2 over water and CO2, due to 

their hydrophobic surface and molecular sieving ability, respectively (Daramola et al., 

2016, 2012; Michalkiewicz and Koren, 2015).  

However, these zeolitic membranes are yet to be commercialized for industrial gas 

applications as a result of major set-backs due to crack formations in thin-film 

membranes leading to permeation of light gases through non-zeolitic pores, complex 

synthesis techniques, challenges with zeolite membrane reproducibility, poor 

chemical stability and separation performance (Daramola et al., 2016, 2015, 2012; 

Giessler et al., 2003). 

  



Table 2.4: Zeolitic membranes reported for H2 separation / purification. 

Zeolite / Support Membrane type Preparation technique Zeolite pore 

(nm) 

Reference 

LTA     

LTA  AIPO4 / α-

alumina 

Thin film, 

Composite  

Secondary seeded 

growth 

0.4 (Huang et al., 2010; 

Huang and Caro, 2011) 

NaA (Ion 

exchanged Ca
2+

 & 

K
+
) / α-alumina 

Thin film, 

Composite 

In-situ hydrothermal  0.3, 0.5 (Guan et al., 2001) 

Cs-LTA / Carbon  Thin film, 

Composite 

In-situ hydrothermal  0.4 (Varela-Gandía et al., 

2011) 

PDMS Zeolite A Thin film, 

Mixed matrix 

membrane 

Solution-casting  - (Rezakazemi et al., 

2012) 

DDR     

DDR Thin film, 

Composite 

Secondary seeded 

growth  

0.36 X 0.44 (Bose et al., 2014) 

SAPO-34     

SAPO-34 /α-

alumina  

Thin film 

composite 

In-situ hydrothermal  0.38 (Poshusta et al., 1999) 

SAPO-34 /Stainless 

steel tubes 

Thin film 

composite 

In-situ hydrothermal 0.38 (Hong et al., 2008) 

MFI     

Silica / γ- alumina Thin film, 

Composite  

Chemical vapor 

deposition 

0.45, 0.60 (Gu and Ted Oyama, 

2007) 

Silica / vycor glass  Thin film, 

Composite 

Chemical vapor 

deposition 

0.45, 0.60 (Lee and Oyama, 2002) 

ZSM-5 Silicalite /α- Bilayer thin- Direct hydrothermal 0.45, 0.60 (Wang and Lin, 2012) 
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alumina film  

Silicalite-1 /α-

alumina 

Thin film, 

Composite 

Secondary seeded 

growth 

0.45, 0.60 (Wirawan et al., 2011) 

Silicalite-1 /α-

alumina 

Thin film, 

Composite 

In situ nucleation & 

secondary seeded 

growth 

0.45, 0.60 (Algieri et al., 2003) 

Silicalite-1 

/stainless steel 

Thin-film, 

Composite 

Direct hydrothermal 0.45, 0.60 (Kapteijn et al., 1995) 

Silicalite-1 / 

silicalite-1 graphite 

paper 

Thin film, 

Composite 

Direct hydrothermal 0.45, 0.60 (Akhtar et al., 2015) 

SOD     

Sodalite /α-alumina Nanocomposite Pore-plugging 

hydrothermal  

0.26 – 0.29 (Daramola et al., 2016) 



Recently,  Daramola et al., (2016, 2015) reported the synthesis of nanocomposite 

hydroxy sodalite ceramic membrane in view of H2/CO2 separation. However, 

numerous reports have appeared in the past for synthesis of sodalite membrane but a 

few of these reports have characterized such membrane for H2 separation (Kalantari 

et al., 2015; Naskar et al., 2011; Moteki et al., 2008; Zheng et al., 2008; Lee et al., 

2006; Kazemimoghadam and Mohammadi, 2005).  

Sodalite is “a porous crystalline zeolite made of cubic array of β-cages as primary 

building block. It has a cage aperture in the range of 0.26 and 0.29 nm making it a 

potential candidate for the separation/purification of light gas (for example hydrogen 

(0.27 nm)) under specific process conditions” (Daramola et al., 2015; Khajavi et al., 

2010b). Sodalite possesses a framework structure with cubic symmetry from vertex-

linking of SiO4 and AlO4 into four and six membered oxygen-rings (Figure 2.9). 

Thus, the flexible framework, allows the structure to accommodate anions with 

different geometries (Khajavi et al., 2010b).   

 

Figure 2.9: Molecular structure of (a) SOD cage, (b) merged SOD cages in horizontal 

description, (c) merged SOD cages in cubic description, (Adapted from IZA (SOD)) 
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Hydroxy sodalite, which is an interesting member of the sodalite family, has attracted 

application in selective water removal (e.g. water desalination) (Khajavi et al., 2010, 

2007), dehydration (Rohde et al., 2008) and gas separation (Daramola et al., 2016; 

Zheng et al., 2008).  Thin-film hydroxy sodalite membranes have been reported and 

synthesized via direct hydrothermal synthesis  (Wang et al., 2015; Rohde et al., 2008; 

Khajavi et al., 2007), secondary seeded growth method (Zheng et al., 2008; Lee et al., 

2006; Kazemimoghadam and Mohammadi, 2005) and microwave synthesis (Xu et 

al., 2004; Julbe et al., 2003). Recently, nanocomposite sodalite membrane was 

synthesized via the so-called pore-plugging hydrothermal synthesis (Daramola et al., 

2016, 2015). Traditional synthesis techniques (such as secondary seeded growth 

method and microwave synthesis) develop thin-film membranes (TFM), however, 

TFM  presents some serious impediments to its commercial application in gas 

separation and dehydration applications due to defect and crack formation as a result 

of thermal shock, low membrane selectivity, poor thermal and mechanical stabilities 

(Daramola et al., 2012). However, nanocomposite hydroxy sodalite membrane has 

been reported to possess superior quality, coupled with higher degree of 

reproducibility, as compared to its counterpart (thin-film membranes) (Daramola et 

al., 2015).  
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Chapter Three 

Experimental Procedures 
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3 Experimental Procedures 

3.1 Introduction  

This chapter discusses the experimental procedures and materials employed in this 

study.  

3.2 Materials and equipment used for the study 

Anhydrous sodium metasilicate (Na2SiO3, 99%), anhydrous sodium aluminate 

(NaAlO2, 99%) and sodium hydroxide (NaOH, 99%) were all purchased from Sigma 

Aldrich (Pty) South Africa. The gaseous H2 and CO2 were of analytical grade 

obtained from Afrox, South Africa.  The deionized water was prepared within the 

School of Chemical and Metallurgical Engineering, University of the Witwatersrand. 

In addition, all chemicals used in the project were used as-supplied. The supports 

used for sodalite membrane synthesis were asymmetrical α-Al2O3 tubes (inner 

diameter / outer diameter = 7 mm / 10 mm, length 150 mm), sealed with 10 mm 

enamel at both ends. The cross-sectional layers of the substrate were of dimensions: 

outer layer, 1200 nm; intermediate layer, 800 nm; inner layer, 200 nm (Figure 3.1 & 

Figure 3.2) supplied by Fraunhofer IKTS, Germany. 

 

Figure 3.1: Picture of a typical support (Picture not to scale). 
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Figure 3.2: The cross-section of the asymmetrical α-Al2O3 tube supplied by 

Fraunhofer IKTS, Germany. 

The equipment used in this research was; magnetic stirrer, Teflon® lined stainless 

steel autoclave, LABOTEC EcoTherm® oven, filtration setup, membrane module 

and membrane testing system. The heating plate served two purposes during the 

course of the research. Firstly, the heating plate was used during the pretreatment of 

the support, for boiling the supports in de-ionized water, in order to remove dirt and 

loose particles. Secondly, the heating plate was used to mix the precursor solution to 

obtain homogeneous solution. The Teflon® lined stainless steel autoclave of 125 mL 

volume, model 4748A was purchased from Parr Instrument Company, U.S.A (Figure 

3.3). The autoclave was employed for the synthesis of the nanocomposite sodalite 

membranes. LABOTEC EcoTherm® oven was used for hydrothermal synthesis and 

post-drying supports and membranes. The membrane testing system was designed by 

CHEMVAK cc South Africa, Pty and it was used for evaluation of separation 

performance of the synthesized membranes (Figure 3.4 & Figure 3.5).  
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Figure 3.3: Picture of the Teflon
®
-lined autoclave used for the pore-plugging 

hydrothermal synthesis for nanocomposite sodalite / ceramic membrane (Picture not 

to scale). 
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Figure 3.4: Schematic of membrane testing system used in this work. 
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Figure 3.5: Picture of the membrane gas separation system (Picture not to scale). 

 

 

Table 3.1: Components in the membrane testing system. 

No Description 

1 Main feed gas: CO2 

2 Make-up gas: N2 

3 Secondary feed gas: CH4, etc. 

4 Sweep gas: N2 

5 Shut-off valves; 4x 

6 Single-stage in-line regulators + 1/8” BSP fittings; 4x 
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7 Mass Flow Controllers + 1/8” BSP fittings; 3x 

8 1/8” shut-off valves 

9 1/8” SS tubing and Swagelok fittings 

10 Gas mixer unit + 1/8” fittings 

11 Feed gas electronic pressure transducer + 1/8” fittings + display + connector to NI 

LabVIEW DAC system. 

12 Feed gas mixture gas line; 1/8” SS tubing + fittings. 

13 Sweep gas electronic pressure transducer + 1/8” fittings + display + connector to NI 

LabVIEW DAC system. 

14 Split level, ceramic band, clamp-on heater; ambient - 500°C. 

15 Temperature control unit for heater. 

16 Digital thermometer + type-K thermocouple (TC1) + DAC unit 

17 Digital thermometer + type-K thermocouple (TC2) + DAC unit 

18 Sweep gas heat exchanger. 

19 Feed gas heat exchanger. 

20 Membrane reactor + insert/membrane + seals. 

20 Residue gas line + 1/8” fittings for easy access and membrane change. 

21 1/8” Swagelok SS 3-way valve. 

22 1/8” Swagelok SS 3-way valve. 

23 GO Back-pressure regulator for feed/retentate gas line + fittings. 

24 ASCO 3-way electro-pneumatic valve. 

25 1/8” Swagelok SS ball valve. 

26 GO Back-pressure regulator for permeate gas line + fittings. 

27 ASCO 3-way electro-pneumatic valve. 

28 Electric lines to the manual operation switch and the NI LabVIEW control system 

29 1/8” SS gas line to the MFM, GC and column. 

30 Exhaust to atmosphere. 

31 Mass flow meter (MFM). 

32 GC gas sampling valve + 1/8” fittings 

33 GC 

34 NI 240 VAC relay module to control the 3-way electro-pneumatic valves. 

35 Manual valve control system. 

36 NI LabVIEW DAC interface modules for recording temperature, pressure, and 

pneumatic valves. 

37 PC/Laptop with LabVIEW customized software. 

38 1/8” Swagelok SS metering valves. 

39 Vacuum pump + fittings. 

40 Feed gas mixture gas lines.  

41 Retentate gas mixture gas lines. 
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42 Sweep mixture gas lines 

43 Permeate gas mixture gas lines 

44 Custom built trolley, instrument panels, support framework, power supplies etc. 

 

3.3 Experimental procedure 

The experimental procedures were conducted in four main stages as depicted in 

Figure 3.6. 

 

Figure 3.6: Flow diagram showing a summary of the experimental procedure. 

3.4 Support pre-treatment & preparation of precursor solution 

In preparation for the synthesis, three supports (M1, M2 & M3) were totally 

immersed in de-ionized water in a 2 L volumetric flask and heated for about an hour 

to remove loose particles and dirt from the porous structure of the supports. Then, the 

supports were dried in a LABOTEC EcoTherm
®
 oven at 100 

o
C for an hour and 

allowed to cool down to ambient temperature. Figures 3.1 and 3.2 presents picture 

and schematic cross-section of the asymmetrical α-Al2O3 tube used in this work, 

respectively (Daramola et al., 2016, 2015). 

3.5 Membrane synthesis 

The chemicals used were anhydrous sodium metasilicate (Na2SiO3), anhydrous 

sodium aluminate (NaAlO2), sodium hydroxide (NaOH) and deionized water. The 
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chemicals were then mixed together as-supplied in a polytetrafluoroethylene (PTFE) 

bottle and continuously stirred for an hour using a magnetic stirrer, in order to obtain 

an homogeneous precursor of molar composition ratio: 

5SiO2:Al2O3:50Na2O:1005H2O (Daramola et al., 2015). Figure 3.7 depicts schematic 

of the experimental procedure for membrane synthesis via pore-plugging 

hydrothermal route. 

 

Figure 3.7: Schematic of experimental procedure for membrane synthesis via pore-

plugging hydrothermal route (Adapted from Daramola et al., (2015)). 

For the membrane synthesis, about 250 mL of the precursor solution was poured into 

a Teflon®-lined stainless steel autoclave (Figure 3.3) and the pretreated supports 

were totally immersed. The content was left for about 15 minutes to allow the 

penetration of the precursor into the pores of the substrates and displacement of air 

from the pores of the supports. Then, the sealed Teflon
®

 stainless steel autoclave was 

placed in a LABOTEC EcoTherm
®
 oven and subjected to pore-plugging 

hydrothermal (PPH) synthesis according to the temperature programme depicted in 

Figure 3.8. However, no structure directing agent was used for the membrane 

synthesis. The membrane was successfully synthesized via pore-plugging 

hydrothermal route, however, the synthesis procedure employed produce occluded 

sodalite cages. After the completion of the PPH synthesis, the synthesized 

membranes and crystals formed at the bottom of the autoclave were thoroughly 

washed with de-ionized water until the pH of the wash-water was 7. The washed 

membranes and the sodalite crystals were dried in an oven overnight (12 hours) at 
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100 
o
C. The weight of sodalite grown within the pores of the support was obtained by 

subtracting the weight of the support before the synthesis from the weight of the 

membrane after synthesis. 

 

 

Figure 3.8: Temperature programme for sodalite membrane synthesis via pore-

plugging hydrothermal route (Adapted from Daramola et al., (2015)). 

3.6 Membrane characterization 

Scanning electron microscopy (SEM), X-ray Diffraction (XRD) and Basic 

Desorption Quality Test (BDQT) were performed to characterize the as-synthesized 

nanocomposite sodalite ceramic membranes and the techniques are discussed below. 

3.6.1 Static characterization 

Static characterization of the as-synthesized membrane was conducted with scanning 

electron microscopy (SEM) and X-ray diffraction (XRD).  

Scanning electron microscopy is a powerful magnification tools that utilizes focuses 

beams of energetic electrons to obtain visual images of materials (McMullan, 1995). 

Sodalite crystals were examined with SEM to confirm that sodalite crystals were 

indeed embedded within the α-alumina support. A portion of the membrane was cut 

and subjected to SEM analysis as well. A Sigma Zeiss SEM housed in the School of 

Chemical and Metallurgical Engineering at the University of the Witwatersrand, 

Johannesburg was used for SEM analysis.  

X-ray Powder Diffraction (XRD) is “a rapid analytical technique primarily used for 

phase identification of a crystalline material” (Bragg, 1914). It is used to study crystal 
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structure based on constructive interference of monochromatic x-rays and a 

crystalline sample. Sodalite crystals obtained from the bottom of the autoclave and 

finely crushed nanocomposite sodalite / ceramic membrane were used for the XRD 

analysis to ensure the purity of the membranes. A Bruker D8 advance X-ray 

diffractometer using Co Kα radiation (λ = 0.179 nm) at a scan rate of 0.25 sec / step 

and a step size of 0.02
o
 situated at the School of Chemistry, University of the 

Witwatersrand, Johannesburg was employed.  

3.6.2 Dynamic characterization 

Basic Desorption Quality Test (BDQT) was employed to evaluate the quality of the 

as-synthesized nanocomposite sodalite ceramic membrane. Prior to the BDQT, the 

membranes were subjected to thermal treatment at temperature of 100 
o
C for time 

duration of 1.5 hours to remove moisture that might have been absorbed within the 

membrane pores. Then, the membranes were allowed to cool to ambient temperature 

before n-butane saturation. Afterwards, H2 single gas permeation (ΠH2) was carried 

out at 25kPa transmembrane pressure and ambient temperature. This was conducted 

to obtain the maximum H2 gas permeance through the membrane. The synthesized 

nanocomposite sodalite / ceramic membranes were saturated with n-butane for a 

duration of 1.5 hours at ambient temperature and a partial pressure of 14 kPa. 

Hydrogen was used as the non-condensable gas to open the blocked pores of n-butane 

at room temperature.  Figure 3.9a shows a schematic of the membrane module 

employed for thermal treatment and BDQT. Graphite O-rings were used as seals 

between membrane and at both ends of the module to ensure that the module was gas-

tight (Figure 3.9b) 

 



64 

 

 

Figure 3.9 : Schematic of the membrane module employed for BDQT. 

 

 

Figure 3.10: Picture of (a) graphite O-rings, (b) membrane module used for BDQT. 

 

For the BDQT, the experimental setup depicted in Figure 3.10 was used. It is to be 

noted that results obtained from the BDQT was reproducible. The experiment was 

repeated at least twice for each of the membranes. 
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Figure 3.11: Schematic of the experimental set-up used for the BDQT. 

Amongst the techniques commonly used for zeolite membrane defect characterization 

are mercury porosimetry (Manickam et al., 2014; Jareman et al., 2004) and 

permporometry (Karimi et al., 2016, 2015, Tsuru et al., 2003, 2001), bubble point 

technique (Maghsoudi, 2016; Jakobs and Koros, 1997) and adsorption-desorption 

technique (Pachtova, 2003). These techniques have either been applied directly or 

modified due to their complexity and unsatisfactory results obtained (Karimi et al., 

2016, 2015; Maghsoudi, 2016; Manickam et al., 2014; Peinador et al., 2010).   

However, Pachtova, (2003) reported  a simplified adsorption-desorption technique for 

zeolite membranes characterization. The simplified techniques involves the dynamic 

desorption of adsorbed gas on the zeolite membrane, desorption process is conducted 

under a pressure difference of a non-adsorbed gas.  

Adsorption process involves subjecting the zeolite membrane to partial pressure of an 

adsorbing molecule (water or n-butane). The basic assumption is that zeolite pores are 

filled up and plugged for all sizes, up to a certain diameter known as “critical 

diameter”, with the exception of non-zeolitic pores. However, non-zeolitic pores 
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(inter crystalline zeolite pores) would allow the permeation of non-adsorbing gas (N2 

or H2). According to Daramola et al., (2009), permeation commences via pores larger 

than the critical diameter and the permeation will increase significantly with time. 

Therefore, a relative and absolute low permeance is expected for a high quality 

zeolite membrane while a poor quality membrane should show a higher relative and 

absolute permeance with time.  

In this work, normal butane (n-butane) was used to saturate the membrane and it is 

known to condense into the zeolite pores and block permeation of non-condensable 

gases (e.g. N2, H2) through the pores of the membranes. However, in the presence of 

defect or non-zeolitic pores, non-condensable gases will permeate during the BDQT. 

The permeance of hydrogen through the n-butane saturated membrane was obtained 

with the use of Equation 3.1. 

 

∏𝑖 =
𝑉𝑖

𝐴𝛥𝑃
           3-1  

 

Πi is H2 permeance, Vi volumetric flowrate, A is the membrane effective area and ΔP 

is the transmembrane pressure.  

3.7 Separation performance evaluation 

Separation performance of the nanocomposite sodalite ceramic membranes were 

conducted via single gas permeation using H2 and CO2. The separation set-up 

depicted in Figure 3.4 was used. The membrane separation testing comprised of NI 

LabVIEW DAC interface modules, NI 240VAC relay module, back-pressure 

regulator, mass flow meter, gas mixer unit, digital thermometer etc. The permeation 

experiments were carried out at room temperature and at transmembrane pressure of 

25 kPa. The flow rate of the permeate gas was measured using a soap bubble 

flowmeter. During the gas permeation, plug valve 2 and 4 were closed.  
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Chapter Four 

Nanocomposite Sodalite / Ceramic Membrane: 

Synthesis, Characterization & Quality Test 
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4 Nanocomposite sodalite / ceramic membrane: synthesis, characterization 

and quality test 

4.1 Introduction 

This chapter discusses the results obtained from the synthesis, characterization and 

quality test. Part of the results discussed in this chapter have been published in a peer-

reviewed journal (See Appendix G)  

4.2 Membrane synthesis & characterization 

Nanocomposite hydroxy sodalite / ceramic membrane prepared via pore-plugging 

hydrothermal synthesis was synthesized according to Section 3.5. The membranes 

were synthesized using one-stage PPH and two-stage PPH using the temperature 

programme depicted in Figure 3.8. The morphology of the crystals obtained from the 

bottom of the autoclave and the as-prepared membranes was checked as previously 

described in Chapter 3. In addition the phase identification of the membrane and the 

crystals was done with XRD as previously described in Chapter 3.  

4.3 Membrane quality test 

Quality of the as-synthesized membranes was evaluated using the Basic Desorption 

Quality Test (BDQT) (Pachtova, 2003) described in Section 3.6.2.                      

4.4 Result and discussion 

4.4.1 Zeolite uptake in support of the membrane 

Mass of sodalite grown within the supports was estimated before and after the 

synthesis. Table 4.1 shows the initial weight, the final weight and percentage uptake 

of sodalite crystals within the supports after one-stage PPH synthesis. 

Table 4.1: Sodalite uptake within the α-Al2O3 tubes after one-stage synthesis 

Support Initial weight Final weight Weight uptake (g) Percent weight uptake (%) 

M1 16.25 16.82 0.57 3.39 

M2 16.28 16.97 0.69 4.07 

M3 17.27 17.73 0.46 2.59 

 



69 

 

4.4.2 SEM images 

After the one-stage synthesis, the sodalite crystals obtained from the bottom of the 

autoclave were examined. The SEM micrograph of the sodalite crystals obtained at 

the bottom of the autoclave is presented in Figures 4.1. Figure 4.1 shows crystals with 

cubic and nanorod-like shape. The observed shapes are consistent with literature. 

Urchin, thread-ball, flower-like, coral-like  and cubic-octahedral have been reported 

for hydroxy sodalite crystals (Kalantari et al., 2015; Naskar et al., 2011; Kundu et al., 

2010; Bayati et al., 2008). The cubic and nanorod-like shapes obtained in this study 

could be attributed to the interplay between growth and nucleation processes that both 

proceeded in parallel at high temperature (Chen et al., 2007).   

A small portion of the nanocomposite sodalite / ceramic membrane (Membrane M2) 

was crushed and prepared for SEM micrograph. The inner surface of nanocomposite 

sodalite ceramic membrane (Figure 4.2) seems to be totally plugged with sodalite 

crystals. Figure 4.3 depicts the cross section of nanocomposite sodalite / ceramic 

membrane with three asymmetric layers (top, middle and bottom). However, the 800 

nm and 1200 nm layers (as seen in Figure 3.2) are partially pore-plugged with 

sodalite crystals and it is envisaged that a multi-layer pore-plugging hydrothermal 

synthesis could totally plug these two regions.  
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Figure 4.1: SEM image of hydroxy sodalite crystals obtained from the bottom of the 

Teflon®-lined autoclave during the pore-plugging hydrothermal synthesis. 
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Figure 4.2:  SEM image showing the surface of the innermost layer of the 

nanocomposite sodalite / ceramic membrane obtained after the one-stage PPH 

synthesis. 
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Figure 4.3: SEM image showing the three asymmetric layers with the presence of 

sodalite crystals at 200 nm region after one-stage PPH synthesis. 

4.4.3 SEM image of membrane after 2-stage PPH synthesis 

SEM micrograph of the inner surface (Figure 4.4) and cross-section (Figure 4.5) of 

the nanocomposite membrane obtained after the two-stage PPH synthesis shows that 

the sodalite crystals are fully grown in the 200 nm layer of the support. The SEM 

micrograph of the cross-section of the membrane (Figure 4.5) shows that the 

membrane has been fully pore-plugged in comparison to SEM micrograph of Figure 

4.3 of membrane obtained from one-stage synthesis, which was partly pore-plugged. 

Multi-stage synthesis have been reported to enhance zeolite membrane quality, 

formation of a uniform and inter-grown zeolite phase. Huang et al., (2012) reported 

on synthesis of multi-layer zeolite LTA membranes with enhanced gas separation 

performance.  
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Figure 4.4: SEM image showing the surface of the innermost layer of the 

nanocomposite sodalite / ceramic membrane obtained after the two-stage PPH 

synthesis. 
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Figure 4.5: SEM image showing the cross-sections of the three layers (200 nm, 800 

nm & 1200 nm) with the presence of sodalite crystals at all layers. 

4.4.4 XRD analysis of crystals and membrane  

The XRD pattern of the hydroxy sodalite crystals obtained from the bottom of the 

autoclave confirms that sodalite crystals were indeed obtained from the one-stage 

pore-plugging hydrothermal synthesis. (Figure 4.6)  

The powder XRD pattern of the finely grinded membrane obtained after the two-

stage PPH synthesis is depicted in Figure 4.6. The patterns (Figure 4.6 and 4.7) 

obtained are in agreement with reported XRD patterns for sodalite and it also 

correlate with simulated XRD pattern from the International Zeolite Association 

(IZA) (McCusker et al., 2007). In addition, the pattern reported also agrees with 

reported pattern for hydroxy sodalite  (Daramola et al., 2016; Ding et al., 2010; 

Khajavi et al., 2007b; Xu et al., 2004). 
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Figure 4.6: XRD patterns of synthesized hydroxy sodalite crystals and simulated 

sodalite (IZA)(McCusker et al., 2007) 
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Figure 4.7: XRD patterns showing simulated sodalite pattern (IZA)(McCusker et al., 

2007), synthesized sodalite crystals and sodalite membrane. 

4.4.5 Basic Desorption Quality Test (BDQT) 

Figure 4.8 shows the hydrogen permeance through sodalite membranes during the 

BDQT. The strong adsorption of n-butane in the nanocomposite sodalite / ceramic 

pores blocks the permeation of H2 through the pores. Hydrogen permeation through 

the sodalite/ceramic membranes (M2 & M3) evolved relatively faster in comparison 

with membrane M1 and reached about 90% of the original H2 permeance (ΠH2). 

Enhanced permeance through the nanocomposite sodalite/ceramic membrane M2 & 

M3 could be attributed to fast desorption of n-butane from the membrane pores (inter-

crystalline and intra-crystalline pores).   Membrane (M1) displayed the least H2 

permeance of the three (3) membranes as observed in Figure 4.8. M1 possess the best 

quality and was subsequently used for separation performance evaluation during the 

separation of H2 & CO2. 
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Figure 4.8: Basic Desorption Quality Test (BDQT) for the three as-synthesized 

nanocomposite membranes. 

The membrane M1, which was subjected to two-stage PPH synthesis, showed a 

greater improvement (Figure 4.9). Desorption of condensable gas within the sodalite 

membrane showed a relatively low permeance with time. This is an indication that 

the porous support are sufficiently plugged with sodalite crystals.  
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Figure 4.9: BDQT for membrane M1 after one and two-stage synthesis. 

4.5 Concluding remarks 

In this chapter, nanocomposite sodalite / ceramic membrane was successfully 

synthesized via one-stage PPH and two-stage PPH synthesis. The membranes were 

characterized using SEM and XRD. The quality of the membrane was checked using 

BDQT.  The SEM images confirmed that sodalite crystals were grown within the 

pores of the three (3) layers of the support with the 200 nm layer totally pore-

plugged. In addition, the XRD pattern re-affirms that pure sodalite was synthesized 

via the synthesis route. To evaluate the quality of the as-synthesized membranes, 

basic desorption and quality test was performed. The BDQT confirmed that the 

membrane improved tremendously after the two-stage PPH synthesis.  
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Chapter Five 

Nanocomposite Sodalite / Ceramic Membrane: 

Separation Performance and Effect of Operating 

Variables. 
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5 Nanocomposite sodalite / ceramic membrane: separation performance and 

effects of operating variables. 

5.1 Introduction 

In this chapter, results of separation performance of the membranes are presented. 

Separation of H2 from H2/CO2 mixtures was measured using single gas components 

of H2 and CO2. Membrane M1 obtained from the two-stage PPH synthesis was used 

in the investigation. The gas separation experiments were carried out at room 

temperature and at transmembrane pressure of 25 kPa. During the gas separation 

experiment, plug valve 2 and 4 were closed in Figure 3.10. The measurement was 

obtained using the set-up depicted in Figure 3.4 & Figure 3.5. Flow rate of the 

permeate gas was measured using a soap bubble flowmeter. The permeance of the H2 

and CO2 from the membrane and the H2/CO2 ideal selectivity (𝑆𝐻2/𝐶𝑂2), were 

calculated using Equation (3.1) and Equation (5.2), respectively:                 

𝑆𝐻2/𝐶𝑂2 =
∏𝐻2

∏𝐶𝑂2
        5-1  

∏𝐻2 & ∏𝐶𝑂2 are the H2 and CO2 permeance in mol.s
-1

.m
-2

.Pa
-1

, respectively.  

5.2 Results and discussion 

5.2.1 Membrane separation performance 

Further investigation was conducted on the membrane (M1) to evaluate its separation 

performance during H2/CO2 mixture separation.  H2 and CO2 permeation 

measurements were carried out at ambient temperature and transmembrane pressure 

of 25 kPa over a permeation period of 170 s. Results obtained reveal that H2 has the 

highest permeance through membrane (see Figure 5.1). The observation could be 

attributed to the small kinetic diameter of H2 (0.27 nm) in comparison with CO2 (0.33 

nm).  

In principle, gas permeation through porous media is described by mechanism such 

as Knudsen diffusion, surface diffusion, Poiseuille flow and molecular sieving (Abas 

et al., 2015). Gas separation in sodalite membrane could be described by molecular 

sieving and adsorption-diffusion mechanism.  In such mechanism, the ratio of pore 



81 

 

diameter (sodalite crystal pore diameter) to molecular diameter (for example, 

hydrogen) tends to unity. This is an indication that separation is being effected by the 

molecular structure, as a result of interactions between permeating molecules and 

pore walls.  

In this work, the permeance of H2 and CO2 through the sodalite membrane 

synthesized using the one-stage PPH synthesize reached a value of about 3.9 x 10
-7

 

mol.s
-1

.m
-2

.Pa
-1

 and 8.38 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1

, respectively (Figure 5.1 and Figure 

5.2). In addition, the permeance of H2 and CO2 decreased in the membrane obtained 

from the two-stage PPH synthesis with an increase in ideal selectivity (Figure 5.2 and 

Figure 5.3). The gas permeation measurement shows that the nanocomposite 

membrane displayed H2 permeance and CO2 permeance of 7.37 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1 

and 1.14 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1

, respectively. In addition, the ideal selectivity of the 

membrane improved from 4.6 to 6.5 for the membrane obtained via one-stage to two-

stage PPH synthesis, respectively.  

Table 5.1 presents a comparison of this work and other reported zeolite membranes 

that were evaluated for gas permeation in similar experimental conditions.  

Experimental result obtained in this work is in close agreement with values reported 

for multi-layer LTA membranes evaluated for single gas permeation of H2 and CO2 

by Huang et al., (2012), although LTA has a wider cage dimension in the range of 

0.30 & 0.45 nm in comparison with sodalite cage dimension (0.26 and 0.29 nm). 

Huang et al., (2012) prepared multilayer (three layer) NaA zeolite using α-Al2O3 

support and evaluated it for gas permeation. However, Huang et al., (2012) reported a 

higher ideal selectivity (12.50) in their work, also, the work was conducted at a much 

higher temperature and transmembrane pressure. The average pore dimension of 

LTA, 0.41 nm, and the experimental conditions used in the evaluation of the LTA 

membrane could be responsible for the higher ideal selectivity obtained by Huang et 

al., (2012).  

Also, gas permeation reported by Wang et al., (2015); Huang et al., (2012); Hosseini 

et al., (2008); Guan et al., (2003, 2001) were evaluated at higher transmembrane 
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pressure when compared to this present work. In the work, Gu et al., (2008) prepared 

modified-MFI which was supported on alumina and prepared via direct hydrothermal 

synthesis. The gas permeation was conducted between 296 and 723 K. However, Gu 

et al., (2008) reported a higher ideal selectivity from their modified MDES MFI 

membrane in comparison with this work. The higher temperature and wider average 

pore dimension of MFI, in range of 0.45 & 0.60 nm, could be a factor responsible for 

the higher ideal selectivity (17.50) reported by Gu et al., (2008). However, the higher 

selectivity reported by Gu et al., (2008) was traded for a lower H2 and CO2 flux. In 

this work, sodalite / ceramic membrane possessed a higher flux but low selectivity. 

Nanocomposite membranes have been reported to possess higher flux but low 

selectivity (Daramola et al., 2009) 

In addition, DDR-3 membrane prepared via modified secondary seeded growth by 

Kanezashi et al., (2008) was evaluated at temperatures between 298 K and 773 K for 

single gases (H2 & CO2). The DDR-3 membrane is selective to H2 with a permeance 

of 2.18 14 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1

 and ideal selectivity of 5.59. DDR-3 is highly 

siliceous zeolite with average pore size 0.36 nm, making it a good candidate for 

comparison with the synthesized nanocomposite ceramic/sodalite membrane. 

Kanezashi et al., (2008) conducted single gas permeation experiments using H2, CO 

and CO2 using a stainless steel cell and an experimental setup similar to the one used 

in this work. Kanezashi et al., (2008) reported an ideal selectivity of 5.59 at a 

temperature range of 298 & 773 K. The ideal selectivity obtained in this work shows 

superior membrane quality in comparison with DDR-3 membrane prepared by 

Kanezashi et al., (2008). It should be noted that sodalite has a smaller cage dimension 

of 0.26 nm in comparison with DDR-3 of 0.36 nm and experimental conditions used 

by Kanezashi and co-worker is much wider in terms of temperature ( 298 -773 K). 

Therefore, the nanocomposite sodalite / ceramic membrane reported in this work, 

outperformed the DDR-3 thin-film membrane by Kanezashi et al., (2008).  

Aluminophosphate (AlPO4) mainly composed of AlO2
-
 and PO2

+
 tetrahedra was 

prepared on a porous alumina tube by Guan and his co-workers in the presence of HF 
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and using tetraethylammonium hydroxide (TEAOH) as template. AlPO4 is a 

microporous crystal that is thermally stable up to 873 K with limited ion-exchange 

potentials. The thermal stability of AlPO4 is higher in comparison with sodalite 

thermal stability which is about 450 K. In addition, Guan and his co-worker 

experimental conditions are higher than experimental conditions in this work. Guan 

conducted the gas permeation at 310 K and 101 kPa, whereas, sodalite / ceramic 

membrane was only evaluated at 298 K and 25 kPa in this work. Ideal selectivity 

obtained by Guan and his co-worker indicated that the AlPO4 membrane is highly 

selective towards H2. Moreover, a relatively higher H2 permeance and lower CO2 

permeance was reported by Guan. However, sodalite / ceramic membrane evaluated 

in this work, is selective towards H2 with high H2 permeance but the CO2 permeance 

is slightly high. This CO2 permeance through sodalite / ceramic membrane effect the 

low ideal selectivity.  

Zeolitic Imidaloate Framework, such as ZIF-7, is formed by bridging 

benzimidazolate anions and zinc cations usually resulting in a sodalite topology with 

a pore size of about 0.3 nm. Li et al., (2010) reported on gas permeation properties of 

ZIF-7 supported on alumina and prepared by microwave-assisted secondary growth. 

The gas permeation experiment was conducted at 493 K and transmembrane pressure 

of 101 kPa, the experimental conditions reported by Li et al., (2010) is higher than 

experimental condition used in evaluating sodalite / ceramic membrane in this work. 

H2 and CO2 permeance through the ZIF-7 membrane is relatively low in comparison 

to sodalite / ceramic membrane reported in this work. However, Li et al., (2010) 

reported a higher ideal selectivity of 13.6, which is higher than selectivity reported for 

sodalite / ceramic membrane reported in this work. The higher selectivity reported by 

Li et al., (2010) could be due to relatively low H2 permeance and a much lower CO2 

permeance within the ZIF-7 membrane.  

Conclusively, experimental conditions such as temperature, transmembrane pressure 

and etc. affect the separation performance of zeolitic membranes. In addition, the type 

of zeolitic materials used in the development of the membrane is a key factor to 
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consider towards enhancing the separation performance. Zeolite materials having an 

average pore dimension similar to the molecular size of H2 but smaller than the 

kinetic diameter of CO2 will result in better separation performance in terms of 

selectivity. It is noteworthy to mention that the presence of defects in the membrane 

will dramatically reduce the membrane selectivity.  

 



Table 5.1: Comparison of permeation and selectivity result obtained and literature. 

 

Membrane / 

Support 

Synthesis method Permeation conditions Ideal 

selectivity  

Permeance  

(10
-7

 mols
-1

m
-2

Pa
-1

) 

Reference 

  Temperature 

(K) 

Transmembrane 

pressure (kPa) 

(H2/CO2) H2 CO2  

Hydroxy sodalite 

/ α-Al2O3 

Pore-plugging 

hydrothermal (1-stage 

synthesis) 

298 25 4.63 3.89 0.84 This work 

Hydroxy sodalite 

/  α-Al2O3 

Pore-plugging 

hydrothermal (2-stage 

synthesis) 

298 25 6.46 7.37 1.14 This work  

Multi-Layer LTA 

(3- layers) /  α-

Al2O3 

in-situ hydrothermal (3 

step synthesis) 

373 101 12.50 2.10 0.17 Huang et al., (2012) 

MDES modified 

MFI /  α-Al2O3 

in-situ crystallization 296-723 - 17.50 1.86 0.11 Gu et al., (2008) 

AlPO4 /  α-Al2O3 Two-step hydrothermal  310 101 23.90 3.36 0.14 Guan et al., (2003) 

ZIF-7 /  Al2O3 Microwave-assisted 

secondary growth 

493 101 13.6 0.45 0.03 Li et al., (2010) 

Ni-MOF-74 /  α-

Al2O3 

Two-stage (layer by 

layer seeding and 

secondary solvothermal 

crystallization) 

298 - 9.1 127 0.07 Lee et al., (2012) 

CVD modified 

DDR-3 /  α-Al2O3 

Secondary seeded 

growth 

298-773 - 5.59 2.18 0.39 Kanezashi et al., (2008) 



 

 

Figure 5.1: H2 and CO2 permeance through membrane prepared via one-stage 

synthesis. 

In addition, because of the kinetic diameter of H2 (0.27 nm) which is smaller than that 

of CO2 (0.33 nm), higher permeance of H2 through the defect-free nanocomposite 

sodalite/ceramic membrane is expected. Ideal selectivity of 4.6 was obtained for the 

permeance of H2 and CO2 through the one-stage membrane.  This value is slightly 

lower than the Knudsen separation coefficient 4.7 for H2/CO2. For the two-stage 

membrane, ideal selectivity of 6.5 was obtained. The lower selectivity obtained in 

this work could be attributed to the occluded water present in sodalite cage (see Table 

5.1). 
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Figure 5.2:H2 & CO2 permeance through membrane prepared via two-stage synthesis. 

 

Figure 5.3: CO2/H2 ideal selectivity in the one and two-stage nanocomposite 

membranes. 



88 

 

 

5.3 Effects of temperature on separation performance of sodalite membrane 

The effect of temperature was investigated on the two-stage synthesized membrane 

using H2 and CO2. Figure 5.4 shows membrane flux as a function of temperature on 

the nanocomposite membrane. The plot shows a continuous decrease in molar flux of 

H2 and CO2 with increasing temperature (373 K through 423K, till 473K). Maximum 

molar flux for H2 and CO2 was observed at 1.5 X 10
-3

 mol.s
-1

.m
-2

 and 0.4 X 10
-3

 

mol.s
-1

.m
-2

 at 373K, respectively.  Figure 5.5 depicts permeance as a function of 

temperature on the two-stage synthesized nanocomposite sodalite ceramic membrane 

of 5.8 X 10
-8

 mol.s
-1

.m
-2

.Pa
-1

 and 1.4 X 10
-8

 mol.s
-1

.m
-2

.Pa
-1

, respectively. For 

nanocomposite materials, gas permeance is generally described by adsorption driven 

mechanism after the maximum gas permeance has been reached (Miachon et al., 

2007). At elevated temperature, the flux of gas components (H2 and CO2) are 

decreases monotonically, this could imply that the maximum H2 and CO2 permanence 

has been reached in the sodalite membrane, which is in agreement with literature 

(Daramola et al., 2009a; Miachon et al., 2007). In addition, Miachon and co-workers 

(2007) reported a continuous decrease in flux for gas permeation using H2 in the 

nanocomposite MFI-alumina membranes prepared via pore-plugging hydrothermal 

route. The continuous flux decrease in nanocomposite membranes at higher 

temperature has been attributed to the distinctive nanocomposite structure. In 

addition, the membrane material such as low silicon/aluminum ratio materials which 

give rise to acidic sites, such sites are very strong adsorption sites which maybe 

characterized by adsorption-driven mechanism. It should be noted that H2 permeance 

through the sodalite / ceramic membrane is much higher than CO2 permeance, though 

H2 permeance and CO2 permeance decreased with increasing temperature. Also, the 

presence of intercrystalline pathways such as non-zeolitic pores could be responsible 

for the decrease in membrane selectivity towards a single gas component (H2), as 

seen in this work. Figure 5.6 depicts the ideal selectivity as a function of temperature 

in the nanocomposite membrane at the maximum permeance obtained using H2 and 
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CO2. As can be seen, the ideal selectivity increased with increasing temperature, the 

ideal selectivity increased from 373 K through 423 K until 473 K.   

 

 

 

Figure 5.4: Membrane flux as a function of temperature (2-stage nanocomposite 

membrane). 
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Figure 5.5: Permeance as a function of temperature (2-stage nanocomposite 

membrane). 
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Figure 5.6: CO2/H2 ideal selectivity as a function of temperature (2-stage 

nanocomposite membrane).  

5.4 Effects of pressure on separation performance of sodalite membrane  

The effect of pressure was investigated using single gases and mixture gases (H2 and 

CO2) on the two-stage synthesized nanocomposite membrane. Figure 5.7 and Figure 

5.8 depicts flux as a function of transmembrane pressure and permeance as a function 

of transmembrane pressure, respectively. As can be seen in Figure 5.8, the permeance 

of H2 and CO2 decreases with increases in the transmembrane pressure. The 

maximum permeance of H2 and CO2 obtained are 7.4 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1

 and 3.5 x 

10
-8

 mol.s
-1

.m
-2

.Pa
-1

, respectively. However, H2 permeance decreases steadily from 

the maximum to 2.3 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1

 at 304 kPa transmembrane pressure. This 

result could be attributed to strong adsorption experienced in zeolite membrane at 

higher pressures (Daramola et al., 2009a). In addition, the ideal selectivity was 

evaluated at these pressures and depicted in Figure 5.9. As the transmembrane 

pressure increased during the gas permeation through the sodalite/ceramic membrane, 

the gas flux increased, so also the gas concentration at the membrane surface 
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increased. High concentration of gas at the membrane surface would initiate the 

adsorption-diffusion process, the adsorption of non-adsorbing gas (H2) is expected to 

be rapid and diffuse through the membrane at a relatively short time. However, 

adsorbing gas such as CO2 would be relatively slower than H2, the slow adsorption-

diffusion experienced in CO2 permeation could be responsible for the plateau of 

Figure 5.8 between 2.0 and 3.0 Bar. Figure 5.9 depicts a decreasing permeance and 

Figure 5.10 depicts an increasing ideal selectivity. The permeance of H2 and CO2 

through the sodalite membrane has been normalized by the transmembrane pressure 

(TMP) (i.e. ratio of membrane flux to TMP), so it is expected that the permeance will 

decrease with increasing pressure.  In addition, the ideal selectivity witnessed a sharp 

increase after 2.0 bar transmembrane pressure mark, attributable to the reduced CO2 

permeation around 2.0 bar and 3.0 bar due to slow adsorption-diffusion of CO2 in 

sodalite / ceramic membranes.  
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Figure 5.7: Flux as a function of pressure (2-stage nanocomposite membrane).  
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Figure 5.8: Permeance as a function of feed pressure (2-stage nanocomposite 

membrane). 
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Figure 5.9: Ideal selectivity as a function of pressure (2-stage nanocomposite 

membrane). 

5.5 Effects of feed flow rate on separation performance of sodalite membrane  

The effect of feed flowrate was investigated on the membrane obtained by two-stage 

synthesis using H2 and CO2. Figure 5.11 depicts the flux as a function of feed 

flowrate obtained at 10 x 10
-3 

mol.s
-1

, 25 x 10
-3 

mol.s
-1

and 100 x 10
-3 

mol.s
-1

. 

Corresponding H2 and CO2 permeance for the feed flowrate under mentioned 

condition is plotted on Figure 5.12. The flux of H2 and CO2 increases with increasing 

feed gas flowrate, this translate into increase in permeance of H2 and CO2 and a 

decrease in ideal selectivity of the gases with increasing feed gas flowrate. The ratio 

of H2 (kinetic diameter: 0.27 nm) flux through the sodalite membrane is much higher 

in comparison to CO2 (kinetic diameter: 0.33 nm) flux, thus, the molecular sieving 

effect of sodalite (cage dimension: 0.27 nm) could be responsible for the difference in 

flux ratio between H2 and CO2. In addition, as the feed gas flowrate increases, 

adsorption-diffusion mechanism could sufficiently characterize the gases (H2 and 
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CO2) behavior within the sodalite membrane during the gas permeation experiments. 

However, H2 flux witnessed an anomaly at 10 x 10
-3

 mol.s
-1

, this could be due to 

experimental error / system malfunctioning while obtaining the results (Figure 5.11). 

It is expected that H2 permeance through sodalite / ceramic membrane will be higher 

due to smaller H2 kinetic molecule diameter (0.27 nm) in comparison with 0.33 nm 

kinetic diameter of CO2, also, the molecular sieving effect of sodalite, with a cage 

dimension of 0.26 nm should lead to higher permeance of H2 than CO2 

 

 

 

Figure 5.10: Flux as a function of feed flowrate on membrane obtained by the two-

stage pore-plugging synthesis. 
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Figure 5.11: Permeance as a function of feed flowrate on the membrane obtained by 

two-stage pore-plugging synthesis. 



98 

 

 

Figure 5.12: Ideal selectivity as a function of feed flowrate on the membrane obtained 

by two-stage pore-plugging synthesis. 

5.6 Separation performance 

In the present work, the nanocomposite sodalite / ceramic membranes obtained by 

two-stage synthesis were evaluated for H2 and CO2 gas separation. The membrane 

synthesized via two-stage shows tremendous improvement over one-stage 

synthesized membrane with improved selectivity but low permeance. However the 

two-stage synthesized nanocomposite sodalite / ceramic membrane, which is 

selective to hydrogen with ideal selectivity of 6.5, is not good enough for industrial 

application. Effects of operating variables such as feed flowrate, temperature and 

pressure were conducted. Further research should be conducted to evaluate the 

performance of the sodalite/ceramic membrane using a mixed gas mixture. In 

addition, separation of gas mixture (H2/CO2) should be conducted to evaluate the 

performance of the sodalite / ceramic membrane at pre-combustion carbon dioxide 
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capture conditions. Lastly, the effects of impurities such as H2S and H2O should be 

investigated to evaluate the operational stability of the nanocomposite sodalite 

ceramic membranes.  
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Chapter Six 

Conclusions and Recommendations 
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6 Conclusions 

Globally, energy demand and supply has increased exponentially as a result of 

increasing population and economic growth. Conventionally, fossil fuel (coal) is the 

main feed stock in energy generation and its combustion generate CO2, a major GHG 

responsible for global warming that results in climate change. Recently, there is 

growing concern for the mitigation of anthropogenic CO2 from reaching the 

atmosphere. Among the available technology for mitigating the effects of global 

warming includes absorption of the GHG. Absorption is energy inefficient with high 

operating cost. On this note, this work aimed to develop an alternative CO2 capture 

technology via membrane technology. Membrane technology is a promising 

alternative to absorption system. According to the objective set out in Chapter 1 of 

this dissertation, the following under-listed conclusions could be drawn from this 

study:   

1. Successful synthesis of nanocomposite sodalite supported on α-Al2O3 has 

been achieved with high degree of reproducibility. The membranes were 

successfully synthesized via one and two-stage synthesis. The multi-stage 

synthesis improved the quality of the membranes tremendously, showing a 

fully plugged porous substrate and improved separation performance.  

2. The quality of the synthesized membranes were evaluated using static and 

dynamic characterization techniques such as SEM, XRD and BDQT. The 

SEM images confirmed the growth of sodalite crystals with the porous 

support both in the one and two-stage synthesis. The SEM image taken after 

the two-stage membrane shows that the three regions of the support were fully 

grown with sodalite crystals. XRD patterns obtained confirm that truly 

sodalite were synthesized. Dynamic characterization using the BDQT showed 

that the two-stage synthesized membrane has a better quality with fewer or no 

defects.  

3. Gas separation measurement carried out using H2 and CO2, indicated that the 

membrane is highly selective towards H2. The two-stage synthesized 

membrane with permeance of H2 and CO2 were 7.37 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1 
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and 1.14 x 10
-8

 mol.s
-1

.m
-2

.Pa
-1

, respectively and selectivity of 6.5.  In 

addition, the activation energy of sodalite membrane reported in this work is 

in close agreement with reported activation energies for other zeolite 

membranes (NaA zeolite membrane). Moreover, the experimental results 

obtained from the gas separation experiment were well fitted and described by 

a deduced expression obtained from the Maxwell-Stefan model.   

6.1 Recommendations 

 The membrane synthesis should be optimized to improve on the membrane 

quality. Synthesis optimization could simplify the synthesis procedure, 

enhance the quality of the membrane and also reduce the synthesis time. 

Optimization of the composition of the precursor solution, the support pore 

size and interruption time during pore-plugging hydrothermal synthesis could 

improve the membrane quality.  

 The separation performance of the nanocomposite sodalite membrane should 

be evaluated for gas mixture separation such as CO, CO2, H2 and H2O (main 

gas components in pre-combustion carbon capture) during precombustion 

CO2 capture and at pre-combustion CO2 capture conditions. In addition, 

effects of impurities such as sulphur and particulate matters on the sodalite 

membrane, common impurities in pre-combustion capture, should be 

conducted.  

 The operational long-term stability of nanocomposite sodalite membrane 

should be evaluated under real operating conditions such as pre-combustion 

carbon capture conditions and water-gas shift reaction. Sodalite membrane 

long-term thermal stability and operational stability are required for its 

industrial acceptance and application.  

 It is recommended that the synthesis be carried out using hollow fibre as 

membrane support in order to increase the membrane flux. For example, MFI 

nanocomposite membrane prepared via pore-plugging hydrothermal synthesis 

has improved flux of about 30 % than the conventional thin-film MFI 
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membrane (Daramola et al., 2010). Moreover, the use of hollow fibre would 

enhance the surface-to-volume ratio. In addition, hollow fibres can be made 

into fibre bundles, which would result to reduction both in size and cost when 

implemented in industrial processes.  

 Techno-economic feasibility and scale-up studies should be conducted. The 

studies are essential in other to unravel the competitive advantages of 

nanocomposite sodalite membranes over the conventional technologies. 

Today, most research on sodalite membranes are still within the laboratory 

scale; therefore, there is need for scale-up studies on nanocomposite sodalite 

membrane in gas separation applications in other to evaluate the 

competitiveness of the membrane with existing membrane technology and 

also fast-track commercialization of sodalite membrane in gas separation 

applications.  
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Appendix  

 

Appendix A: Experimental equipment. 

 

 

 

Figure A.0.1: Picture of EcoTherm® oven used for membrane synthesis (Picture not 

to scale). 
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Appendix B: XRD data conversion 

 

For analysis XRD characterization was done using a cobalt XRD radiation with a 

wavelength of 1.78897 angstroms. Results obtained from this characterization had to 

be compared with that from literature. In literature, XRD characterization was done 

using copper radiation with a wavelength of 1.54056 angstroms. For the sake of 

comparison, a ratio was calculated in order to normalize the two different 

wavelengths. Calculations were done as follow: 

Cobalt XRD                                                                     Copper XRD 

Wavelength=1.78897 angstroms                                    Wavelength=1.54056 

angstroms 

Ratio of cobalt wavelength to copper wavelength 

Ratio = 
1.78897 𝑎𝑛𝑔𝑠𝑡𝑟𝑜𝑚𝑠

1.54056 𝑎𝑛𝑔𝑠𝑡𝑟𝑜𝑚𝑠
 =1.16124 

This ratio was then used to normalize the wavelength of XRD cobalt data with copper 

wavelength by dividing cobalt raw XRD data by this ratio. 
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Appendix C: Procedures for operating the membrane gas separation system 

Five stages are involve to successfully operate the membrane gas separation system, 

which are highlighted below. 

Warming up of Mass Flow Meter (MFM) and Mass Flow Controller (MFC) 

1. Close all forward pressure regulator (completely counter clockwise) 

2. Open valves (V5, V6 & V8) connecting lines to the mixer 

3. Set valve V9 to the back pressure regulator line 

4. Set valve V10 to the feed line 

5.  Set valve V11 to the back pressure line  

6. Close valve V12 and V13 

7. Ensure that the two back pressure regulators are open 

8. Turn the power on both 19’’ instrument racks to ON 

9. Set the electro-pneumatic valves control to Manual 

10. Set the electro-pneumatic valve selection switch to OFF.  

11. Switch the power to the MFCs and MFM ON 

12. Allow 10-15 minutes for the instruments to warm up and stabilize. 

Setting the gas lines pressure and flow 

1. Open laboratory main gas supplies and set to desired pressures 

2. Open valves (V1, V2 & V4) 

3. Adjust the individual gas inlet pressures to the desired pressure by adjusting 

the forward pressure regulators.  

4. Adjust the mass flow control by turning carefully the right hand screw of the 

MFC. 

Loading and preparing the membrane module 

1. Carefully place the membrane in the module, ensuring the membrane align 

with the module 

2. Fix the graphite O-ring at both ends of the membrane module 

3. Carefully screw in both end of the membrane to ensure it is gas-tight. 

4. Position the membrane module in the oven and ensure that gas lines are leak 

proof.  

Setting the gas lines back pressures and reactor / furnace temperature 
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1. Set valve V9 to the reactor 

2. Set valve V10 to Retentate 

3. Set valve V11 to Permeate 

4. Adjust the pressure in the feed gas line by turning the GO back pressure 

regulator clockwise 

5. Repeat the above for the sweep gas line. 

Analyzing the gas mixtures by GC, with manual or NI DAC & LabVIEW 

Control 

For the feed gas mixture 

1. Switch valve V9 to the back pressure regulator 

2. Switch valve V10 to the feed position 

3. Switch the gas line selector switch to FEED/RETENTATE 

4. Trap the gas from the GC line and analyze with the GC until statistically 

repeatable results are obtained. 

For the permeate gas 

1. Switch valve V9 to the reactor 

2. Switch valve V10 to the retentate position 

3. Switch the gas line selector switch to FEED/RETENTATE 

4. Trap the gas from the GC line and analyze with the GC until statistically 

repeatable results are obtained. 

5. Repeat the above till the desired results are obtained.  
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Appendix D: Procedures for running JAD X-tract Extreme Version 1.4.5 

Double click JAD X-tract extreme to launch application  

 
 

Figure D1: Login GUI for JAD X-tract extreme version 1.4.5 

 

Select Login and provide the login credentials 

Job information; experimental name and title are insert in next GUI 
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Figure D2: GUI for input of experimental name and title  

 

Experimental number is generated by the system and is set to auto-increment. 
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Figure D3: GUI for inputting of job information (membrane description and 

experimental condition) 

 

Specific information on membrane and membrane gas separation conditions are input 

at this interface.  
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Figure D4: GUI displaying result obtained from National Instrument data 

acquisition  

 

The GUI displayed all data collected via the NI data acquisition protocol. Sensors 

attached to the membrane gas separation system send signals to the NI. The sensors 

detect individual signals, the NI converts the signal to electrical signal which are sent 

to the JAD X-tract extreme via RJ 45 port. To mark data on the JAD X-tract extreme, 

the keyboard spacebar is hit.  
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Figure D5: GUI showing stop and save icons.  

After completion of data acquisition, the stop and save icon is used. The JAD X-tract 

extreme automatically creates a report file which could be converted to most readable 

file processing format.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix E: Data obtained from JAD X-tract Extreme 

Table E1: Hydrogen permeation at 373 K  

Date 20/05/2014 Membrane Description 
2 Layer PPH SOD 
Membrane 

 
? ml/min 

Experament 
Number 3039802 Membrane Conditioning Na 1 bar 
Experamentalist 
Name 

Temperature Variation @ 
100 Feed Gas Mixture 6-7 mL/min 100 °C 

Title 
      

       

       Recorded Values 
      

Time Main feed gas: CO2 
Sweep gas: 
N2 

Make-up gas: 
N2 Feed gas pressure 

Feed Temp 
TC1 

Permeate temp 
TC2 

  ml/min ml/min ml/min kPa °C °C 
9/6/2016 11:36 -1.5 0.8 0.4 2 26.1 24.9 
9/6/2016 11:37 41 1.8 45.8 2 26.1 24.9 
9/6/2016 11:38 -1.5 2.8 0.4 2 26.3 24.9 

9/6/2016 11:39 -1.5 3.8 0.4 2 26.6 24.9 
9/6/2016 11:40 41.2 4.8 46 2 26.8 25 
9/6/2016 11:41 -1.5 5.8 0.1 2 27 25 
9/6/2016 11:42 48.8 6.8 53.9 2 27.2 25.1 
9/6/2016 11:43 -1.7 7.8 0.1 2 27.5 25.1 
9/6/2016 11:44 -1.4 8.8 0.4 2 27.7 25.1 
9/6/2016 11:45 -1.6 9.8 0.3 2 27.8 25.2 

9/6/2016 11:46 46.8 10.8 51.5 2 28 25.1 
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Table E2: Hydrogen permeation at 423 K  

Date 20/05/2014 
Membrane 
Description 

2 Layer 
PPH SOD 
Membrane 

Temp 
Variation 
@ 200 Sweep Gas 

 
? ml/min 

Experament 
Number 3039802 Membrane Conditioning Na Sweep Gas Pressure 1 bar 
Experamentalist 
Name 

Temperature 
Variation @ 150 Feed Gas Mixture 

? 
mL/min Reactor Set Temperature 150 °C 

Title Na 
      

        

        Recorded 
Values 

       

Time 
Main feed gas: 
CO2 

Sweep gas: 
N2 

Make-up 
gas: N2 

Feed gas 
pressure 

Sweep gas 
pressure 

Retentate 
Temp TC1 

Permeate temp 
TC2 

  ml/min ml/min ml/min kPa kPa °C °C 
9/6/2016 13:19 -1.5 0.8 0.7 2 1 31.9 25.9 
9/6/2016 13:20 6.3 1.8 7.7 2 1 32.1 26 

9/6/2016 13:21 -1.3 2.8 0.5 2 1 32.3 26 
9/6/2016 13:22 -1.5 3.8 0.3 2 1 32.7 26 
9/6/2016 13:23 -1.7 4.8 0.4 2 1 33 26 
9/6/2016 13:24 -1.6 5.8 0.2 2 1 33.3 26.1 
9/6/2016 13:24 14 6.8 13.8 2 1 33.4 26.1 
9/6/2016 13:25 15.1 7.8 16.2 2 1 33.7 26.1 
9/6/2016 13:26 -1.6 8.8 0.4 2 1 34 26.1 

9/6/2016 13:27 40.2 9.8 42.8 2 1 34.4 26.1 
9/6/2016 13:28 50.3 10.8 53.8 2 1 34.6 26.2        
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9/6/2016 13:29 -1.7 11.8 0.4 2 1 35 26.2 
9/6/2016 13:30 -1.7 12.8 0.1 2 1 35.2 26.2 
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Table E3: Hydrogen permeation at 473 K  

Date 20/05/2014 
Membrane 
Description 

2 Layer PPH 
SOD 
Membrane 

Temp 
Variation @ 
200 Sweep Gas 

 
? ml/min 

Experament Number 3039802 Membrane Conditioning Na Sweep Gas Pressure ? bar 
Experamentalist 
Name 

Temperature 
Variation @ 200 Feed Gas Mixture ? mL/min Reactor Set Temperature 200 °C 

Title Na 
      

        

        Recorded Values 
       

Time 
Main feed gas: 
CO2 

Sweep gas: 
N2 

Make-up gas: 
N2 

Feed gas 
pressure 

Sweep gas 
pressure 

Retentate Temp 
TC1 

Permeate 
temp TC2 

  ml/min ml/min ml/min kPa kPa °C °C 
9/6/2016 14:07 -1.5 0.8 0.4 2 1 48.6 27.4 
9/6/2016 14:08 47.9 1.8 49.2 2 1 48.8 27.4 
9/6/2016 14:09 -1.6 2.8 0.5 2 1 49.2 27.5 
9/6/2016 14:10 45.5 3.8 48.2 2 1 49.4 27.5 

9/6/2016 14:11 9.7 4.8 9.2 2 1 49.8 27.5 
9/6/2016 14:12 13.4 5.8 11.3 2 1 50 27.5 
9/6/2016 14:13 36.2 6.8 39.9 2 1 50.3 27.5 
9/6/2016 14:14 -1.4 7.8 0.4 2 1 50.6 27.5 
9/6/2016 14:15 -1.5 8.8 0.1 2 1 50.8 27.5 
9/6/2016 14:16 -1 9.8 0.5 2 1 51.2 27.5 
9/6/2016 14:17 -1.2 10.8 0.5 2 1 51.4 27.5 

9/6/2016 14:18 0 11.8 0.6 2 1 51.6 27.5 
9/6/2016 14:19 5.6 12.8 4 2 1 51.9 27.5 
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9/6/2016 14:20 -1.5 0.3 0.4 2 1 52.1 27.5 
9/6/2016 14:21 27.6 28.7 27.8 2 1 52.3 27.5 
9/6/2016 14:22 -1.7 0.2 0 2 1 52.5 27.5 

9/6/2016 14:23 -1.5 0.4 0.5 2 1 52.7 27.5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 

 

Table E4: Carbon Dioxide permeation at 373 K  

Date 20/05/2014 
Membrane 
Description 

2 Layer 
PPH SOD 
Membrane 

Sweep 
Gas 

 
? ml/min 

Experament 
Number 3039802 

Membrane 
Conditioning Na Sweep Gas Pressure ? bar 

Experamentalist 
Name 

CO2 Perm 
100 C Feed Gas Mixture ? mL/min 

Reactor Set 
Temperature 100 °C 

Title Na 
      

        

        Recorded 
Values 

       

Time 
Main feed 
gas: CO2 

Sweep 
gas: 
N2 

Make-
up gas: 
N2 

Feed gas 
pressure 

Sweep 
gas 
pressure 

Retentate 
Temp TC1 

Permeate 
temp TC2 

  ml/min ml/min ml/min kPa kPa °C °C 
9/6/2016 19:24 50.9 0.8 47.7 2 0.8 38.6 27.4 

9/6/2016 19:30 -1.5 1.8 0.4 2 0.8 38.8 27.4 
9/6/2016 19:36 -1.5 2.8 0.5 2 0.8 38.8 27.5 
9/6/2016 19:40 -1.5 3.8 0.3 2 0.8 38.8 27.5 
9/6/2016 19:46 11.5 4.8 0.6 2 0.8 38.9 27.4 
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Table E5: Carbon Dioxide permeation at 423 K  

Date 20/05/2014 
Membrane 
Description 

2 Layer PPH 
SOD 
Membrane Sweep Gas 

 
? ml/min 

Experament 
Number 3039802 

Membrane 
Conditioning Na Sweep Gas Pressure ? bar 

Experamentalist 
Name 

Temperature 
Variation @ 150 Feed Gas Mixture ? mL/min Reactor Set Temperature 150 °C 

Title Na 
      

        

        Recorded Values 
       

Time 
Main feed gas: 
CO2 

Sweep gas: 
N2 

Make-
up gas: 
N2 

Feed gas 
pressure 

Sweep gas 
pressure 

Retentate Temp 
TC1 

Permeate temp 
TC2 

  ml/min ml/min ml/min kPa kPa °C °C 
9/6/2016 19:56 -1.6 0.8 0.2 2.3 0.9 39.1 27.5 
9/6/2016 20:00 6.9 1.8 0.4 2.3 0.9 39.7 27.5 

9/6/2016 20:04 -1.6 2.8 0.2 2.3 0.9 40.2 27.5 
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Table E6: Carbon Dioxide permeation at 473 K  

Date 20/05/2014 
Membrane 
Description 

2 Layer 
PPH SOD 
Membrane 

Sweep 
Gas 

 
? ml/min 

Experament 
Number 3039802 

Membrane 
Conditioning Na Sweep Gas Pressure ? bar 

Experamentalist 
Name 

Temperature 
Variation @ 
200 

Feed Gas 
Mixture ? mL/min 

Reactor Set 
Temperature 200 °C  

Title Na 
      

        

        Recorded 
Values 

       

Time 
Main feed gas: 
CO2 

Sweep 
gas: 
N2 

Make-
up gas: 
N2 

Feed gas 
pressure 

Sweep 
gas 
pressure 

Retentate 
Temp 
TC1 

Permeate 
temp TC2 

  ml/min ml/min ml/min kPa kPa °C °C 

9/6/2016 20:49 -1.5 0.8 0.4 2.3 0.9 50.4 29.1 
9/6/2016 20:55 38.6 1.8 37.1 2.3 0.9 51.1 29.2 
9/6/2016 20:59 46.3 2.8 42.7 2.3 0.9 51.6 29.3 
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Table E7: Carbon dioxide permeation at 1.2 bar 

Date 20/05/2014 
Membrane 
Description 

2 Layer 
PPH SOD 
Membrane 

Sweep 
Gas 

 
? ml/min 

Experament 
Number 3039802 

Membrane 
Conditioning 1 Bar Sweep Gas Pressure ? bar 

Experamentalist 
Name 

Pressure 
Variation @ 
1.2 bar 

Feed Gas 
Mixture ? mL/min 

Reactor Set 
Temperature ? °C 

Title Na 
      

        

        Recorded 
Values 

       

Time 
Main feed gas: 
CO2 

Sweep 
gas: 
N2 

Make-
up gas: 
N2 

Feed gas 
pressure 

Sweep 
gas 
pressure 

Retentate 
Temp TC1 

Permeate 
temp TC2 

  ml/min ml/min ml/min kPa kPa °C °C 

9/6/2016 16:48 36.7 0.8 36.3 2.3 0.7 28.1 26.1 
9/6/2016 16:50 32 1.8 27.1 2.3 0.7 28.1 26.1 
9/6/2016 16:52 46.7 2.8 36.8 2.3 0.7 28.1 26.1 
9/6/2016 16:54 38.3 3.8 33.4 2.3 0.7 28.1 26.1 
9/6/2016 16:56 12.7 4.8 0.5 2.3 0.7 28.1 26.1 
9/6/2016 16:58 39.2 5.8 34.3 2.3 0.7 28.1 26.1 
9/6/2016 17:00 36.6 6.8 42 2.3 0.7 28.1 26.2 
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Table E8: Carbon dioxide permeation at 2 bar 

Date 20/05/2014 
Membrane 
Description 

2 Layer 
PPH SOD 
Membrane 

Sweep 
Gas 

 
? ml/min 

Experament 
Number 3039802 

Membrane 
Conditioning Na Sweep Gas Pressure ? bar 

Experamentalist 
Name 

Pressure 
Variation @ 2 
bar 

Feed Gas 
Mixture ? mL/min 

Reactor Set 
Temperature ? °C 

Title Na 
      

        

        Recorded Values 
      

Time 
Main feed 
gas: CO2 

Sweep 
gas: 
N2 

Make-
up gas: 
N2 

Feed gas 
pressure 

Sweep 
gas 
pressure 

Retentate 
Temp TC1 

Permeate 
temp TC2 

  ml/min ml/min ml/min kPa kPa °C °C 
9/6/2016 17:05 -1.7 0.8 0.3 3.2 0.7 28 26.2 

9/6/2016 17:07 -1.7 1.8 0.3 3.2 0.7 28.1 26.2 
9/6/2016 17:09 34.8 2.8 23.3 3.2 0.7 28 26.2 
9/6/2016 17:11 57.3 3.8 46.5 3.2 0.7 28 26.2 
9/6/2016 17:13 52.8 4.8 42.1 3.2 0.7 28 26.2 
9/6/2016 17:15 -0.9 5.8 0.1 3.2 0.7 27.9 26.2 
9/6/2016 17:16 40.3 6.8 27.6 3.2 0.7 27.9 26.2 
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Table E9: Carbon dioxide permeation at 3 bar 

Date 20/05/2014 
Membrane 
Description 

2 Layer 
PPH 
SOD  

Sweep 
Gas 

 
? ml/min 

Experament 
Number 3039802 

Membrane 
Conditioning Na Sweep Gas Pressure ? bar 

Experamentalist 
Name 

Pressure 
Variation @ 3 
bar 

Feed Gas 
Mixture 

? 
mL/min 

Reactor Set 
Temperature ? °C 

Title Na 
      

        

        Recorded 
Values 

       

Time 
Main feed 
gas: CO2 

Sweep 
gas: 
N2 

Make-
up gas: 
N2 

Feed 
gas 
pressure 

Sweep 
gas 
pressure 

Retentate 
Temp TC1 

Permeate 
temp TC2 

  ml/min ml/min ml/min kPa kPa °C °C 

9/6/2016 17:22 57.8 0.8 48.4 3.9 0.7 27.9 26.2 
9/6/2016 17:24 63.2 1.8 48.4 3.9 0.7 27.9 26.2 
9/6/2016 17:28 37 2.8 17.8 3.9 0.7 27.8 26.2 
9/6/2016 17:29 -1.6 3.8 0.4 3.9 0.7 27.8 26.2 
9/6/2016 17:31 19.9 4.8 0.6 3.9 0.7 27.7 26.2 
9/6/2016 17:33 -1.5 5.8 0.4 3.9 0.7 27.7 26.2 
9/6/2016 17:35 -1.7 6.8 0.2 3.9 0.7 27.7 26.2 

9/6/2016 17:37 22.1 7.8 5 3.9 0.7 27.7 26.2 
  

 



Appendix F: MATLAB Code used for MS model. 
%%Start of Experimental Data Declaration%% 

  
t = [298 375 423 473 523]; 
fluxH2 = [4.25e-6 2.98e-6 2.48e-6 2.2e-6 1.9e-6]; 
fluxCO2 = [2.38e-6 0.82e-6 0.74e-6 0.74e-6 0.74e-6]; 

  
%%End of Experimental Data Declaration%% 

  
%%Start of Variable Declaration for Maxwell Stefan (MS) Model%% 

  
R = 8.314; % Ideal gas constant  in J/molK 
Csat1 = 5.4; % Concentration of Hydrogen in SOD membrane in mol/Kg 
Csat2 = 5.0; % Concentration of Carbon Dioxide in SOD membrane in 

mol/Kg 
rho = 1510;% Density of SOD in Kg/m3 
E = 0.16; % Porosity of the SOD membrane 
Di1 = 0.000000018; % Maxwell Stefan diffusivity @ zero coverage for 

Hydrogen in m2/s 
Di2 = 0.00000007; % Maxwell Stefan diffusivity @ zero coverage for 

Carbon Dioxide in m2/s 
tor = 1.2; % Tortuosity  
l = 0.0095;  %Equivalent SOD thickness in m, fitted parameters ; 
%Pars1 = l ;  
Temp = [298 375 423 473 523]; % Temperature is from 280 to 480K 
Pr = 121590; % Retentate pressure in Pa 
Pp = 101325; % Permeate pressure in Pa 
Po = 101325; % Reference to atmospheric pressure (101325Pa) 
SAE1 = -43; % Standard adsorption entropy for Hydrogen in J/molK 
SAE2 = -58; % Standard adsorption entropy for Carbon Dioxide in 

J/molK 
DAE1 = 2000; % Diffusion activation energy for Hydrogen in J/mol 
DAE2 = 9600; % Diffusion activation energy for Carbon Dioxide in 

J/mol 
SAD1 = -5900; % Standard adsorption enthalpy for Hydrogen in J/mol 
SAD2 = -2410; % Standard adsorption enthalpy for Carbon Dioxide in 

J/mol 

  
%% End of Variable Declaration for MS Model%% 

  
%% Expression for Maxwell Stefan Model for Hydrogen %% 

  
term11 = Csat1*rho*E*Di1; 
term12 = tor*l; 
term1 = term11*term12.^-1; 
term21 = (1 + (Pr*Po.^-1)*exp((SAE1- R)*R.^-1 - (SAD1*(R*Temp).^-

1))); 
term22 = (1 + (Pp*Po.^-1)*exp((SAE1- R)*R.^-1 - (SAD1*(R*Temp).^-

1))); 
term23 = term22.^-1 ; 
term2 = log (term21.*term23); 
term31 = -(DAE1)*(R*Temp).^-1 ; 
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term3 = exp(term31); 
ffluxH2 =  term1.*term2.*term3; 
%end 

  
%% Expression for Maxwell Stefan Model for Carbon Dioxide %% 
termaa = Csat2*rho*E*Di2; 
termab = tor*l; 
terma = termaa*termab.^-1; 
termbb = (1 + (Pr*Po.^-1)*exp((SAE2- R)*R.^-1 - (SAD2*(R*Temp).^-

1))); 
termbc = (1 + (Pp*Po.^-1)*exp((SAE2- R)*R.^-1 - (SAD2*(R*Temp).^-

1))); 
termbd = termbc.^-1 ; 
termb = log (termbb.*termbd); 
termcc = -(DAE2)*(R*Temp).^-1 ; 
termc = exp(termcc); 
ffluxCO2 =  (terma).*termb.*termc; 
%end 

  
%% SECTION TITLE 
% DESCRIPTIVE TEXT 
%% Expression for Output : MS Model %% 
plot (Temp,ffluxH2,'b-*', t,fluxH2,'r*', Temp,ffluxCO2,'g-*', 

t,fluxCO2,'y*'), xlabel('Temperature, (K) '),ylabel('Flux(molm-2s-

1)')  
grid on, 
legend show 

  

  
%plot (Temp,ffluxH2,'b-*', t,fluxH2,'r*'), xlabel('Temperature, (K) 

'),ylabel('Flux(molm-2s-1)')  
%grid on, 
%legend show 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


