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Abstract 

 

NEIL LARIDON, JEAN MOLLETT and VINCENT GRAY 

 

The objectives of this project were to isolate and characterize a Bacillus thuringiensis 

strain from South African soils, determine its cry gene sequence, clone this gene 

sequence and determine its toxicity. Forty four putative Bacillus thuringiensis strains 

were extracted from soil samples taken from the Muldersdrift mountain range, the 

Roodekrans botanical gardens, Southbroom in Kwazulu Natal and Nelspruit in eastern 

Mpumalanga province. The bacterial populations of these soil samples were isolated and 

classified using different microbial, and biochemical techniques including sodium acetate 

tests to isolate putative B. thuringiensis spores.  These spores were cultured and further 

characterized through colony shape and colour as well as the presence of δ-endotoxin 

crystals. Once characterized, DNA was extracted from the isolates using an array of 

techniques to obtain high quality template DNA.  This DNA was then screened via PCR 

using truncated versions of the cry1A specific primers TYIAA (f) and TYIUN12 (r). The 

insecticidal protein CRY1A was selected for this study since it is specific and highly 

toxic to lepidopteron insects. Homology to the cry1a gene was detected in six of the 

Bacillus strains analyzed, namely S4, S9, S10 n1, n3 and n5.  PCR products were cloned 

into the pTZ57R/T cloning vector and transformed into JM109 competent cells. DNA 

from the six isolates was also characterized at the 16S rDNA level with the use of PCR.  

Primers capable of amplifying nearly full-length 16S ribosomal DNA (approximately 

l,500-bp) fragments from many bacterial genera confirmed that the isolates were indeed 

Bacillus thuringiensis, showing evidence of lineage according to the signature sequences 

within the conserved regions. Spore/δ-endotoxin mixtures of the randomly selected 

isolate S10 were used in a bioassay to test their toxicity against the lepidopteron insect 

Galleria mellonella. No significant mortalities were reported, but sensitivity to the S10 δ-

endotoxin was evident when compared to results using known B. thuringiensis δ-

endotoxins at the same concentrations. 
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Chapter 1 

A literature review 

1.1 Bacillus thuringiensis: Nature’s design for an industrial 

powerhouse 

Biopesticides are pest management agents that are based on beneficial micro-organisms 

(bacteria, viruses, fungi and protozoa), beneficial nematodes or other safe, biologically 

based active ingredients. One of the leading biopesticides of the last two decades 

(Lambert & Peferoen, 1992), Bacillus thuringiensis commonly known as Bt, is a 

ubiquitous gram-positive rod shaped bacterium, found most abundantly in soil habitats all 

around the world (Theunis et al, 1998; Martin & Travers, 1989).  Isolates have also been 

found abundantly in plant storage systems, mushrooms, compost (Bernhard et al, 1997) 

as well as deciduous and coniferous leaves.  Bt is an entomopathogenic sporulating 

bacterium that produces a parasporal crystal protein or δ-endotoxin that has been 

documented as largely or completely insecticidal to certain classes of insects (Hofmann et 

al, 1988: Adison, 1993).  

A large part of the insecticidal activity resides in the durable δ-endotoxin inclusions 

formed during sporulation. B. thuringiensis strains are classified into a number of 

subspecies according to serotype and δ-endotoxin produced (Lövgren et al, 1998). The δ-

endotoxin are further divided into 17 groups on the basis of amino acid sequence 

similarity (Sasaki et al, 1997).  The production of these crystalline δ-endotoxins occurs in 
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the stationary phase. In these inclusion bodies, the toxins exist as an inactive protoxin 

(Gutierrez et al, 2001).   

 

 B. thuringiensis was isolated early last century in Japan from diseased silkworms and in 

Germany from the Mediterranean meal-moth (Beegle & Yamamoto, 1992). Its value as a 

control agent for Lepidoptera was realized soon thereafter.  Its insecticidal activity was 

initially discovered in 1911, but its commercial value as a control agent for Lepidoptera 

was only realized in the 1950’s and has only been developed on commercial scales over 

the last 40 years (Capalbo et al, 2001).  The discovery of this endotoxin led to the 

development of bioinsecticides based on Bt in order to control insect pests belonging to 

the Lepidoptera, Diptera, and Coleoptera orders.  More recently Bt insecticidal activity 

has also been reported against other insect orders, mainly Hymenoptera, Homoptera, 

Orthoptera and Mallophaga, as well as nematodes mites and protozoa (Schnepf et al, 

1998; Feitelson et al, 1993).  As a result, Bt endotoxins have thus become the most 

widely used biopesticides in the world as an alternative to synthetic pesticides in 

commercial agriculture (Capalbo et al, 2001).   

Bt pesticides have been used in field trials with marked success in the management of 

pest control programs which may result in a reduction of the use of chemical insecticides 

(Yang & Wang, 1998).  Successful applications have been documented in a variety of 

agriculturally important crops such as cotton, corn, potato, soybean and many vegetables 

(Yang & Wang, 1998).  In addition to field trials, Bt has been sold commercially as a 

biopesticide for over half a century (Jenkins & Dean, 2001).  
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1.2  Bacillus thuringiensis in nature 

 

Bt is a micro-organism that is found worldwide in a variety of habitats including soil 

(Carozzi et al, 1991; Delucca et al, 1979), insects (Carozzi et al, 1991), stored-product 

dust (Burges & Hurst, 1977), and deciduous and coniferous leaves (Kaelin et al 1994). 

Very little is known about the natural ecology of Bt other than that it occurs naturally in 

many soils.  In one study, two varieties of Bt were applied in adjacent plots, both of 

which did not become cross-contaminated, indicating little capacity to move laterally in 

soil (Entwistle, 1993). Other studies found that Bt was not recovered past a depth of 6 

centimetres after irrigation, and that movement beyond the application plot was less than 

10 yards (Entwistle, 1993).  

 

The Bt strains have a genome size ranging from 2.4 to 5.7 million bp (Carlson et al, 

1994). In the past a close similarity has been reported between Bacillus thuringiensis and 

Bacillus cereus. Genetic maps have been constructed for Bacillus thuringiensis and 

Bacillus cereus (Carlson & Kolstø, 1993).  These studies showed very close similarity 

between the two genomes near the replication origin, while greater variability was seen in 

the terminal half of their respective genomes (Schnepf et al, 1998).  

 

 Considerable evidence has been put forward that Bacillus thuringiensis and Bacillus 

cereus should be considered a single species. Classical biochemical and morphological 

methods used for the classification of bacteria have failed in attempts to distinguish B. 

thutingiensis from B. cereus (Gordon et al, 1973: Baumann et al, 1984).  Modern 

molecular methods including chromosomal DNA hybridization (Kaneko et al, 1978), 
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phospholipid and fatty acid analysis (Kämpfer, 1994), 16S rRNA sequence comparison 

(Rössler et al, 1991), amplified fragment length polymorphism analysis (Keim et al, 

1997), and genomic restriction digest analysis (Carlson & Kolstø, 1993) have also 

supported the single-species hypothesis. Additional attempts to distinguish B. 

thuringiensis isolates from B. cereus by analysis of a 16S rRNA variable region largely 

failed, yielding as many false positives and negatives as accurate identifications (Te 

Giffel et al, 1997). The problem arises with the production of the parasporal crystal, the 

only definitive characteristic of Bt, is too narrow a criterion to taxonomically class the 

species.  The large variety of Bt strains and toxin diversity could be due to the high 

degree of genetic plasticity in this bacterium (Carlson et al, 1994).  

 

The δ-endotoxin genes appear to reside on large plasmids (González et al 1982), making 

up composite structures that include transposon elements (Lereclus et al, 1984). The δ-

endotoxin or crystalline proteins are encoded by a family of genes known as the cry 

genes.  Many cry gene-containing plasmids appear to be conjugative in nature (González 

et al, 1982).  Similar gene sequences are commonly found among Bt chromosomes as 

well (Carlson & Kolstø, 1993), however the degree at which these chromosomal ho-

mologs contribute to production of the crystal is unclear. 

 

When conditions for bacterial growth are not optimal Bt forms spores.  Spores are the 

dormant stage of the bacterial life cycle that allows the organism to survive until better 

growing conditions occur.  Unlike many other sporeforming bacteria, when Bt produces 

spores it also creates a protein crystal (δ-endotoxin) through a fascinating array of molec-

ular mechanisms (Agaisse & Lereclus, 1994). It is this crystal which is toxic to insects 
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once ingested. These products accumulate in the mother cell compartment to form a 

crystalline inclusion which comprises 20 to 30% of the dry weight of sporulated cells. 

The cry gene is characteristically expressed at high levels during stationary phase 

(Schnepf et al, 1998), under the control of several mechanisms at the transcriptional, pre-

transcriptional and post-translational levels (Schnepf et al, 1998; Brown, 1993). Certain 

cry genes are not expressed in stationary phase. It is therefore necessary to distinguish 

between the cry genes that are expressed during the stationary phase i.e. those that are 

dependent on sporulation, from those that are not (Schnepf et al, 1998). 

 

A typical example of a sporulation-dependent cry gene is the crylAa gene. This gene 

cry1Aa is solely expressed in the mother cell compartment of Bt. It has two transcription 

start sites mapped at BtI and BtII. BtI activity is evident between about T2 and T6 of 

sporulation, where as BtII is active from about T5 onwards (where Tn is n hours after the 

end of the exponential phase). Work done by Brown and Whiteley (1990)  identified two 

sigma factors σ35   and σ28, which function in direct transcription control of crylAa from 

Btl and BtII (Brown and Whiteley, 1990). Cloning experiments have proved that the gene 

sequences of the sigma factors share an 85 to 88% similarity to Bacillus subtilis (Adams 

et al, 1991). Further work has proven that not only is the transcription of crylAa, cry1Ba, 

and cry2Aa dependent on factors σ35   and σ28, but many other cry genes such as cry4Aa, 

cry4Ba, cryllAa, crylSAa,  are likely to be σ35  and σ28 dependent as well.  These cry 

genes are all generally accepted to be solely expressed upon dependence of sporulation 

(Schnepf et al, 1998). 
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An example of sporulation-independent cry gene expression can be seen with the cry3Aa 

gene. This gene when isolated from the coleopteran-active Bacillus thuringiensis var. 

tenebrionis, was reported to be expressed during vegetative growth, and to a lesser extent 

during the stationary phase (Schnepf et al, 1998). The expression of cry3Aa is not 

dependent on sporulation-specific sigma factors either in Bacillus subtilis (Agaisse et al, 

1994) or in Bacillus thuringiensis (Schnepf et al, 1998). Instead cry3Aa appears to be 

activated in the transition from exponential growth to the stationary phase. 

 

In the post-transcriptional mechanisms it is essential that the mRNA remains stable to 

ensure the high level of δ-endotoxin production in Bt. This is achieved by extending the 

half life of the mRNA to 10 minutes, a time period of at least five fold greater than the 

average half life of bacterium mRNA (Schnepf et al, 1998). Work previously done by 

Wong and Chang (1986) gives evidence that the putative transcriptional terminator of the 

crylAa gene (a stem-loop structure) is an active positive retro-regulator (Wong et al, 

1986). The DNA fragment carrying this terminator has been reported to increase the half-

life of the transcripts two- to threefold, and in turn increases the expression of their gene 

products (Wong & Chang, 1986).  The terminator sequence thus seems to protect the cry 

mRNA stability by protecting it from exonucleolytic degradation from the 3' end. Similar 

terminator sequences can be found downstream from various cry genes where they 

potentially form stable stem-loop structures and in so doing these genes contribute to 

their high-level expression by stabilizing the transcripts (Schnepf et al, 1998). 
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The δ-endotoxins are generally crystalline in nature and show variation in size and shape. 

Variations such as bipyramidal (Cryl), cuboidal (Cry2), flat rectangular (Cry3A), 

irregular (Cry3B), spherical (Cry4A and Cry4B), and rhomboidal (Cry11A), have been 

reported (Schnepf et al, 1998: Arrieta et al, 2004).  Protein crystallization is a 

posttranslational mechanism that aids in protecting the δ-endotoxin from premature 

proteolytic degradation. The crystalline structures however have to be rapidly solubilized 

within the insect larvae midgut in order to expose the toxic core.  It is presumed that this 

is due to the secondary structure of the proteins as well as the energy of the disulfide 

bonds, and the presence of additional Bt-specific components (Schnepf et al, 1998).  

 

 Laboratory experiments have shown that the introduction of cry gene sequences into 

either the E. coli (Ge et al, 1990) or Bacillus subtilis (Shivakumar et al, 1986) genome 

through cloning, resulted in the production of biologically active protoxins (δ-endotoxin).  

The 130- to 140kDa Cryl protoxins in particular have been reported to spontaneously 

form crystals.  This led to the deduction that the cysteine-rich C-terminal half of the Cryl 

protoxins contributes to crystal structure through the formation of disulfide bonds (Bietlot 

et al, 1990). 

 

  Other 130- to 140kDa proteins such as Cry4, Cry5, and Cry7 also display this 

mechanism of crystalline self-assembly (Schnepf et al, 1998).  The 73-kDa Cry3A 

protoxins lack the cysteine-rich C-terminal region and produce a flat, rectangular crystal 

inclusion in which the polypeptides do not appear to be linked by disulfide bridges 
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(Bernhard, 1986). This mechanism of crystal formation is evident in both B. thuringiensis 

and B. subtilis. This indicated that the gene products are not dependent on host specific 

factors. Recent studies have also shown that the mechanism of protein crystallization 

requires the presence of additional proteins.  These accessory proteins appear to play a 

role in stabilizing the nascent protoxin molecule at a posttranslational level and to 

facilitate crystallization (Baum & Malvar, 1995).  

 

1.3  The δ-endotoxin  mode of action  

 

In order for the δ-endotoxin to elicit its insecticidal affect, it has to be ingested.  A 

mixture of spores and δ-endotoxin are ingested by an insect feeding on decaying soil 

matter, or plant storage material. Once in the insect midgut the δ-endotoxin is activated 

by the gut proteases, which for most Lepidopterans, takes place under the alkaline 

conditions of the insect midgut (Hofmann et al, 1988 ). The degree to which the protein is 

solubilized may be attributed to differences in the degree of toxicity among Cry proteins.  

The major proteases implicated in protein solubilization within the Lepidopteran insect 

midgut are either trypsin-like (Lecadet & Dedonder, 1964) or chymotrypsin-like 

(Johnston et al, 1995). The activated δ-endotoxin then binds to specific receptors on the 

cell lining (Hofmann et al, 1988). Interaction with the receptors results in the 

incorporation of the activated toxin components into the membrane (Carrol & Ellar, 

1993). 
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After the toxin binds to the midgut, a conformational change takes place within the toxin 

(Pardo-Lopez et al, 2006). The hydrophobic surfaces then face the exterior of the bundle.  

This initiates the penetration of the cell membrane, and the formation of pores (Siqueira 

et al, 2006).  This produces selective ion channels by oligomerization of toxin monomers 

(Aronson et al, 1999).  Loss of osmotic pressure regulation induces paralysis of the gut, 

halting the insects feeding activity and inevitably leading to the death of the insect 

(Aronson et al, 1999).    

 

 After this the spores may germinate in the gut of the insect leading to propagation (Yang 

& Wang, 1998). Due to their high specificity for these unique receptors on the membrane 

of the pest midgut epithelial cells (Jurat-Fuentes and Adang, 2006), the delta-endotoxins 

are harmless to non-target insects and are compatible with integrated pest management 

programs.  The fact that they are proteins ensures that they are readily biodegraded. Many 

Bacillus thuringiensis strains exhibit a wide spectrum of insecticidal activity which is 

attributed to the expression of several kinds of crystal proteins (Lee et al, 2001). 

 

CryIA protoxins in particular are digested by the midgut proteases in a processive manner 

starting at the C terminus and proceeding toward the 55- to 65-kDa toxic core 

(McPherson et al, 1988; Feng & Becktel, 1994). It can then be seen that the carboxy-

terminal end of the protoxin appears to be wound around the toxin which is possessively 

clipped off in 10-kDa sections (Hofmann et al, 1988). At least two stages of processing 

have been identified for CrylA with trypsin or Ostrinia nubilalis midgut proteases. The 

result is a fully toxic intermediate, with an N terminus at protoxin residue 45 and a C 
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terminus at residue 655 or 659. This intermediate is then is further processed to a partially 

toxic core, with an N terminus clipped to residue 156.  An active toxin is known to 

perform two functions. Firstly it binds to highly specific receptors on the tip of the 

midgut microvillae of susceptible insects (Adams et al, 1989).  This process of binding is 

comprised of reversible and irreversible steps. Irreversible steps require a combination of 

tight binding between the toxin and receptor and the introduction of the toxin into the 

apical membrane (Adams et al, 1989). Once inserted into the apical membrane of the 

columnar epithelial cells, the toxins become insensitive to protease activity and 

monoclonal antibodies thereafter inducing ion channels or nonspecific pores in the target 

membrane (Adams et al, 1989; Grochulski et al, 1995; Maddrell et al, 1988).  

 

 

1.4  The Insecticidal Crystal Proteins (ICP) 

There are two types of proteins present in the ICPs.  These proteins are the Cry (65-160 

kDa δ-endotoxins) and Cyt toxins (Gill et al, 1992). Once subjected to the proteases in 

the insect midgut, the N- and C-termini of the δ-endotoxin are processed exposing a 

protease resistant core that constitutes the active toxin (Gill et al, 1992).   
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Figure 1.1: Schematic diagram depicting the mode of action of the Bacillus thuringiensis ICP (Sayyed et 
al, 2001). (A) a mixture of spores and δ-endotoxins are ingested. (B) The δ-endotoxin is activated in the 
insect midgut upon exposure to proteases. (C) The toxin specifically binds to the midgut membrane 
receptors and creates pores which paralyse the midgut through ionic disruption. (D) Spores germinate and 
incubate within the dead host 
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The crystal structure of the coleopteran specific Cry3A toxin has been resolved at the 

2.5Å level (Li et al, 1991).  Three domains are evident from this analysis as seen in 

Figure 1.2 (A).  Domain I is a 7 α-helix bundle, Domain II is a Greek key β-barrel and 

Domain III consists of two twisted, antiparallel R-sheets forming a β-sandwich (Li et al, 

1991). A three Dimentional layout of the protein is seen in Figure 1.2 (B).  It has been 

proposed that Domain I is the pore-forming domain, Domain II is thought to be involved 

with receptor binding in most toxins, and Domain III stabilises the integrity of the protein 

(Li et al, 1991).  Additionally the structures of crystal proteins-Cry3A, CrylAa and 

Cyt2A have been solved by X-ray crystallography (Schnepf et al, 1998).  

 

 It has been deduced that Cry3A and CrylAa share a 36% amino acid sequence identity 

(Crickmore et al, 1998).  This was attributed to their three-dimensional structures; the 

corresponding domains can virtually be superimposed.  In the case of Cyt2A, it was 

evident that less than 20% amino acid sequence identity is shared with CrylAa and 

Cry3A.  The structure of Cyt2A is drastically different to those of Cry3A and CrylAa 
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Figure 1.2: (A): Crystal structure of the δ-endotoxin, or insecticidal crystal protein, of Bacillus 
thuringiensis illustrating the three protein domains (Gutierrez, 2001). (B) 3D structure through two planes 
indicate the position of the various domains (Schnepf et al, 1998). 

 

A 

B 
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Figure 1.3: A comparison of the 3D protein structures of Cry1A, Cry3A, and Cyt2A. (Schnepf et al, 1998). 

 

 

The three dimensional structures of Cry3A, CrylAa and Cyt2 are compared in Figure 1.3.  

In comparison to the Cry1A and Cry3A proteins which are both made up of three 
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domains, Cyt2A protein only has one domain, surrounded by two outer layers of α-helix 

wrapped around a mixed β-sheet. A similar conformation can be found in Cyt1A. A 

common attribute of Cyt toxins is that unlike the Cry δ-endotoxin, they encompass a wide 

range of intracellular inclusions with regards to their ability to lyse the cells (Hőfte and 

Whiteley, 1989).  When comparing the structural and sequence similarities of the toxic 

proteins, it can be seen that there are the five blocks of amino acids conserved among 

most of the Cry toxins.  These regions of homology were first highlighted by Hőfte and 

Whiteley in 1989.  Further work by Schnepf et al in 1998 proved through sequence 

alignment of the Cry proteins that an additional three conserved regions can be found in 

the carboxyl-terminal halves of sequences outside of the core of the active toxin. 

One group consisting of Cry1, Cry3, Cry4, Cry7 to Cry10, Cry16, Cry17, Cry19, and 

Cry20 proteins contains all five of the core blocks. A second group made up of Cry8, 

Cry12 to Cry14, and Cry21 proteins contains homologs recognizable to blocks 1, 2, 4, 

and 5. Block 1 as seen in the first block varies some what to that seen in group two, 

depicted in Figure 3. Block two is seen to have more variation within each group than 

when compared between the groups. Block 1 contains helix 5 of the domain 1 and is 

believed to play a role in the pore forming mechanism, which would be consistent in 

explaining why this region is so highly conserved across all cry gene sequences. 

Additionally, this helix may have a role in maintaining the structure of the helix bundle. 

Block 2 includes helix 7 of domain I and the first R-strand of domain II, two essential 

structures making up the point of contact between the two domains. Three structurally 

equivalent salt bridges can be found between domain I and domain II in CrylA and 

Cry3A (Grochulski et al, 1995); with all the necessary residues found within block 2.  
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Figure 1.4: An illustration showing the various blocks of homology amongst Cry protein sequences. 
Blocks are shaded as dark gray, light gray, or white to indicate high, moderate, or low degrees of 
homology, respectively. Variant (var) is defined as sequences which conform to the consensus sequence of 
the highly conserved group.  Alternate (alt) is defined as sequence blocks that differ from the corresponding 
highly conserved sequence at more than half of its positions (from Schnepf et al,1998). 
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1 
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2 
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This close contact could be required for maintaining the protein in a globular form during 

digestion in the midgut and activation of the core (Schnepf et al, 1998). The remaining 

blocks 3, 4, and 5 are contained within the three buried strands of domain III. Block 3 

contains the remaining R-strand of domain II, where it engages in interactions between 

domains I and III.  Block 3 is notably absent from the second group, however a block 

unrelated to the first group is seen between blocks 2 and 4 (Schnepf et al, 1998). The 

presence of the C-terminal extension within the protein sequences in either of the groups, 

was consistent with the presence of blocks 6, 7, and 8. A third group consisting of  Cry2, 

Cry1l and Cry 18 (Figure 1.4), possess block 1 and a truncated version resembling the 

core of block 2 however it lacks any resembling homologs of the other conserved blocks 

(Lereclus et al, 1989).   

 

The remaining proteins in the Schnepf et al (1998) data set, mainly Cytl, Cyt2, Cry6, 

Cry15, and Cry22 possess no homologs to the conserved blocks within the above 

mentioned  three groups (Schnepf et al,1998). The fact that blocks 1 through 5 were 

faithfully conserved at least concurs with the notion that the proteins within the first 

subgroup, which includes Cryl and Cry3, may potentially adopt a similar three domain 

tertiary structure. The possibility may also arise that the second subgroup, mainly Cry8, 

Cry12 to Cry14, and Cry2l could incorporate a variation of the same structural theme 

(Schnepf et al,1998). 
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1.5  The Cry gene family 

The family of genes coding for the various δ-endotoxins are the Cry gene family, of 

which, cryI, cryII, cryIII, and cryIV (Shin et al, 1995) are well documented.  These genes 

are known to code lepidopteran-specific (CryI), lepidopteran- and dipteran- specific 

(CryII), coleopteran-specific (CryIII), and dipteran (CryIV) specific proteins respectively 

(Shin et al, 1995). ICP gene sequences have also been isolated that are toxic to 

nematodes, protozoan pathogens, animal-parasitic liver flukes (Trematodes), and mites 

(Sasaki et al, 1997). 

 

 It has been known since the 1980s that the crystal toxins are encoded by genes on 

plasmids of Bacillus thuringiensis. There can be 5 or 6 different plasmids in a single Ba-

cillus thuringiensis strain, ranging in size from 0.5-6.7 Kbp, and these plasmids can 

encode different toxin genes. Most δ -endotoxin genes are found on large plasmids which 

are either self transmissible or can be co-transferred from a donor to a receptor strain in a 

conjugation process, so there are a potentially wide variety of strains with different 

combinations of crystal toxins (Bernhard et al, 1997).   

 

1.6  The cry1 genes 

 

The Cry 1 proteins are amongst the most studied crystal proteins to date. This in 

conjunction with its specificity and highly toxic effects to Lepidopteran insects form the 

basis for its use in our studies.  Since 1989 more than 30 cry1 sequences have been 

reported, with many still uncharacterized. All of the reported cry1 genes produce proteins 
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ranging from 130- to 140-kDa. These proteins amass within the bipyramidal crystal 

bodies (Hőfte & Whiteley, 1989). 

 

All reported cry1 genes can easily be distinguished from each other simply by sequence 

homology in that the protein products they express have >50% amino acid identity (Hőfte 

& Whiteley, 1989).  As a result, the cry genes can be used as markers for identifying 

Bacillus thuringiensis species in a crude bacterial population (Porcar & Juarez-Perez, 

2003). The polymerase chain reaction (PCR) can be used to amplify specific DNA 

fragments and thus to determine the presence or absence of a target gene. The 

identification of B. thuringiensis endotoxin genes by PCR can partially predict the 

insecticidal activity of a given strain. Distinction can be made between the closely related 

Bacillus cereus and Bacillus thuringiensis and Bacillus anthracis by analysing the 16S 

rDNA through similar PCR techniques and in conjunction with the sequence data provide 

strong support in characterising both known and novel cry genes and B. thuringiensis 

species in any given bacterial population (Porcar & Juarez-Perez, 2003). 

 

 

1.7  Commercial Application of Cry Proteins for the control of 

pest insects and crop protection 

 

Bacillus thuringiensis is at present considered to be the prevailing form of biologically 

produced pest control, and is commonly referred to simply as Bt (Smith et al, 1996).  

Back in 1995, worldwide sales of Bt reached $90 million (Smith et al, 1996), prompting 

the motion towards a natural alternative to hazardous synthetic pesticides.  In 1998, the 
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number of registered Bacillus thuringiensis products in the United States alone had 

almost exceeded the 200 mark. Although time consuming, it has become well recognized 

that Cry-based pesticides generally have low costs for development and registration.  

Astoundingly the cost of Bt pesticides is estimated at 1/40th that of a comparable novel 

synthetic chemical pesticide (Becker & Margalit, 1993). 

 

The United States is still leading the way with Bt pesticide programs already implicated 

in areas of forestry. Bt pesticides are used in particular in this field to combat the gypsy 

moth (Machesky, 1989). These pesticides are based primarily on the strain Bacillus 

thuringiensis HD-1 subsp. kurstaki (Dulmage et al, 1970), which produces CrylAa, 

CrylAb, CrylAc, and Cry2Aa toxins. The huge success that was achieved by these 

projects were reflected in results throughout the forestry world, encompassing more than 

one pest species. 

 

Bacillus thuringiensis subsp. israelensis has become one of the most effective and potent 

biological pesticides in attemps to combat mosquitoes and blackflies, insect pests capable 

of spreading fatal human diseases.  Mosquitocidal activity has been identified through 

tests conducted with Cry2Aa, CrylAb and Cry1Ca (Haider et al, 1986).  Many new 

uncharacterized isolates containing uncharacterized cry genes have also been shown to 

display mosquitocidal activity (Ragni et al, 1996). 
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1.8  The development of Cry based pesticides  

 

Due to the fact that Bt produces such a large array of toxins which exhibit different target 

specificity, it is necessary to carefully select the effect which is desired to insure non 

targeted insects are not eradicated.  A cassette of desirable genes can be engineered to 

produce a cocktail of protoxins would by far be more beneficial than making use of 

isolated protoxin with potential damaging results (Wu et al, 1994).  Such gene cocktails 

have been successfully produced through introduction of desired genes into to a host cell 

by means of conjugation-like systems (Gonza´lez et al, 1982) and electroporation 

technology (Belliveau & Trevors, 1989).  Shuttle vectors have also been employed to 

transfer plasmid replicons containing cloned cry genes into host Bt cells to introduce 

additional genes, thus upgrading the cells natural artillery (Gonza´lez et al, 1982). 

Understanding of the nature of cry gene expression has led to the production of many 

beneficial pesticides and with knowledge of transformation and genetic manipulation, a 

foundation has been laid for potentially more effective biopesticides. 

 

 

1.9  The use of cry genes in genetically modified crops 

 

Bt δ-endotoxins are generally safe to vertebrates and beneficial arthropods yet in many 

cases highly toxic to specific insect pests, thus the genes that encode these δ-endotoxins 
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were among the first to be engineered into plants to confer insecticidal activity (Theunis 

et al, 1998).  Introduction into dicotyledonous plants proved successful in affording 

resistance to Lepidopteran species, however the δ-endotoxin genes were expressed at 

extremely low levels (Fujimoto et al, 1993).  

 

 The δ-endotoxin gene can be extensively modified through truncation of the cry gene 

based on the codon region of the transformation vector.  This truncation allows for the 

gene to be highly expressed in transgenic plants and stably inherited for at least two 

generations (Fujimoto et al, 1993). Monocotyledonous plants have higher G+C content in 

comparison to dicotyledonous plants, so these modifications also enhance the 

transformation success of monocotyledonous plants (Fujimoto et al, 1993).   Truncation 

also allows for the transfer of only the sequences required for insecticidal activity. This is 

achieved by the removal of amino acid sequences of the N-terminus (Lambert et al, 

1996).  When the ICP enters the insect gut, it is broken down into three subunits. 

Truncation allows for the expression of only the subunits responsible for the recognition 

of specific binding sites on the insect gut wall (Jenkins & Dean, 2001).  Development of 

multitoxin systems with combinations that recognize different binding sites would prove 

useful in implementing deployment strategies to decrease the rate of pest insect 

adaptation to Bacillus thuringiensis toxins (Lee et al, 1997). 
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Motivation for Research 

 

This project set out to isolate a Bacillus thuringiensis strain from South African soils.  

This isolate will be evaluated for its potential as a biopesticide agent through the 

understanding of its cry gene identity, the nature of the δ-endotoxin it produces and the 

host range to which this agent would best be suited. 

 

Aims and Objectives 

 

 Isolate and characterize Bacillus thuringiensis from South African soils 

 Obtain the gene sequence of the δ-endotoxin 

 Determine the host range of the produced δ-endotoxin 

 Engineer the gene for the δ-endotoxin into the plasmid vector Ptz57r/t containing 

the LacZ operon.  

 Insert the plasmid into the E. coli for bioassay experiments  

 Confirm and evaluate the toxicity of the δ-endotoxin 

 

By fulfilling the above aims and objectives, we will have obtained knowledge of a 

previously unknown Bacillus thuringiensis cry gene sequence isolated from South 

African soils, as well as producing a plasmid vector containing this sequence which can 

then be used in transformation protocols in future research. 
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Chapter 2 

Isolation of Bacillus thuringiensis from South 

African soil 

 

2.1  Introduction 

 

A taxonomist aims to produce an accurate and simple identification system for the 

classification of biological specimens. These systems unambiguously allow identification 

of strains for medical, ecological or biotechnological purposes.  Our objective was to 

investigate various isolation techniques that were known to aid in the accurate isolation 

as well as characterization of Bacillus thuringiensis from various biospheres. In doing so 

the techniques could be identified that when used in combination would provide a simple 

yet accurate protocol for the isolation of Bt from South African soils in an acceptable 

timeframe and cost. 

 

The diversity of the various species found in the Bacillus genus meant that these tests 

would have to identify specific traits in order to narrow down the putative Bt candidates.  

A selection of tests from Bergey's Manual of Systematic Bacteriology (1986) was used as 

indicators.   These tests included the Gram stain test, endospore staining, catalase 

degradation, growth above 45 ºC and the visual identification of crystalline bodies 

(Bergey's Manual of Systematic Bacteriology 1986).   
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The isolation procedure primarily used in our experiments was derived by Travers et al, 

1987, making use of a sodium acetate isolation procedure.  In his work he describes that 

for some unknown reason Bt did not mature past the spore life stage in the presence of 

sodium acetate. This selective inhibition only prevents the germination of Bt spores, and 

not any other (Travers et al, 1987). The benefits of this technique are evident in 

comparison with conventional antibiotic (ampicillin-polymyxin B) selection tests, which 

primarily selected against non-sporeforming bacteria. 

 

This provided a revolutionary technique in the field of Bt isolation as samples could 

easily be separated from other biological contaminants.  In our studies, samples were 

subjected to the sodium acetate selection test as well as a series of classical tests as a 

comparison to aid in the confirmation that our samples were indeed Bt.     

 

It has been established that Bt is a Gram-positive rod shaped bacterium, therefore the 

Gram stain test proved an effective technique to eliminate any Gram-negative organisms 

(Provine & Gardner, 1974). The technique makes use of staining and counterstaining 

techniques which separate Gram-positive and Gram-negative based on the dye taken up 

by their respective peptidoglycan cell walls.    

 

Bt is known to contain endospores, one produced for every bacterium. Once the 

endospore becomes fully formed the vegetative cell degrades releasing the dominant 

endospore.  Staining for these endospores allowed for visual confirmation of 

sporeformers with the aid of light microscopy. The vegetative cell surface is a laminated 

structure that consists of a capsule, a proteinaceous surface layer, several layers of 
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peptidoglycan sheeting making up the cortex, and the proteins on the outer surface of the 

plasma membrane. The spore coat is made up of a keratin like protein which makes the 

spore impervious to many chemicals.  Staining with malachite green allows for effective 

colourization of the endospore capsule if performed over an open flame. Bt is capable of 

catalase degradation, therefore a catalase test was used to determine if the isolates were 

capable of such degradation. The test is performed by exposing the test organism to 

hydrogen peroxide and observing for oxygen production.  Hydrogen peroxide is 

extremely toxic to cells because it attacks unsaturated fatty acid compounds of membrane 

lipids, thus damaging membrane structure. Aerobic cells protect themselves against 

peroxide by the action of catalase, which decomposes hydrogen peroxide (Aronson et al, 

1986).  Catalase utilises hydrogen peroxide both as an electron acceptor and an electron 

donor yielding oxygen and water in the decomposition reaction (2H2O2 --> 2H2O + O2).  

The hydrogen peroxide is oxidised to form oxygen, with the simultaneous reduction of 

second molecule of hydrogen peroxide to water. 

 

The optimal growth temperature for Bt ranges between 30 to 45 ºC, depending on the 

species, therefore isolates grown above 45 ºC were assumed not to be Bacillus 

thuringiensis (Starzak & Bajpai, 1991).  Although these bacteria may fit many of the 

selection criteria, they are more likely to be thermophile species of Bacillus such as 

Bacillus acidocaldarius, Bacillus schlegelii, and Bacillus stearothermophilu, all of which 

have an upper temperature limit of 65o C (Bergey's Manual of Systematic Bacteriology, 

1986).  
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 Visual confirmation of crystalline bodies was done with the aid of phase contrast 

microscopy. Although not conclusive, this simply adds support to confirming the 

identification of Bt (Ammons et al, 2002).  This is mainly due to the fact that variations 

in crystal appearance often lead to false negative characterizations.   

 

Samples that passed the selected tests for characterisation were considered to be positive 

Bt isolates at a morphological level.  These putative Bt specimens were further 

characterised at a DNA level.  In the pilot study, DNA was extracted using a sodium 

dodecyl sulfate (SDS) mediated reaction.  The DNA obtained was then probed for the 

presence of the cry1a gene using the Polymerase Chain Reaction (PCR). The cry1 gene 

family is found in many known Bt strains, thus the probability of obtaining a similar or 

matching sequence would be high within the putative Bt samples (Neil Crickmore, toxin 

database).  

 

 The cry1A specific primers TYIAA (f) and TYIUN12 (r) amplify the first 710 bases of 

the N-terminus of any cry1A gene (Kalman et al, 1993). With this sequence, the base 

composition of the gene can be determined for comparison with known cry1A gene 

sequences.  Known Bt specimens were obtained from Dr Daniel Zeigler of the Bacillus 

Genetic Stock Centre in Ohio, USA, which served as positive controls for the PCR 

reaction.  These specimens included serotype 3a, 3b, 3c—serovar. kurstaki (4D7) and 

serotype 1—serovar. thuringiensis (4A3).  
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The specific objectives for this chapter were: 

• Obtain bacterial populations from soil samples collected at various sites in South Africa 

• Characterize putative Bt isolates using classical microbial, and biochemical techniques 

• Expose the isolates to various concentrations of sodium acetate to obtain putative Bt 

endospores 

• Extract DNA from cultured bacteria for preliminary PCR experiments  

• Identify cry1A gene sequences using specific primers in a PCR reaction 

• Obtain gene sequence data 

 

2.2  Methodology 

 

2.2.1 Bacillus thuringiensis enrichment  

 
Soil samples were collected from various locations in South Africa differing in soil 

fertility and altitude (Chen et al, 2004).  Samples were collected from Muldersdrift 

mountain range, the Roodekrans botanical gardens (plant storage tissue was also 

collected at this site), Southbroom in Kwazulu Natal, eastern Mpumalanga province, and 

several other locations extending from Vosloorus to Heildleburg as shown in Figure 2.1. 

An ethanol-flamed spatula was used to collect approximately 400g samples from the 

upper 2 to 5 cm of soil at each site. All soil samples were transported to the laboratory in 

sterile 200-ml glass bottles. 

 

The soil stock was sampled into 2g soil with 10ml of saline solution in a centrifuge tube 

(Travers et al, 1987).  The samples were heat shocked at 80 ˚C for 10 minutes to 

eliminate all bacteria incapable of producing endospores.   Since it is known that Bacillus 
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thuringiensis produces spores, it was safe to assume that if it was present in the soil, it 

would be in our heat treated sample (Travers et al, 1987).  

 

 

Figure 2.1:  A map of South Africa indicating the collection sites of soil samples ranging from Southbroom 
on the Natal coast, the central regions of Gauteng, and Nelspruit in the Mpumalanga province. 
 
 
The samples were diluted 5 fold to eliminate the amount of humic material within the 

samples and to reduce the overall colony forming units within each sample. The diluted 

sample were cultured on nutrient agar and observed under a dissecting microscope.  

Those colonies resembling the smooth round shape, and earthy colour of Bacillus strains 

were selected for further testing.   

 
 
2.2.2  Culture of bacteria 

 
Once the sporulating bacteria were isolated, they were plated on nutrient agar plates for 

24 hours at 30˚C in order to give the spores chance to germinate on media with adequate 
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nutrients and at optimal temperature (Travers et al, 1987).  This media however offers 

favourable growth conditions for a wide range of bacteria as well as Bacillus 

thuringiensis.  In order to compensate for this a series of selection tests were further 

employed to isolate Bacillus thuringiensis from the range of bacteria present in the crude 

soil sample population (Travers et al, 1987). 

 

2.2.2.1  Sodium acetate selection test 

 

  A sample of each isolate was heat shocked in order to eliminate any vegetative cells.  

The resultant spore mixture was cultured in T3 media made up with varying 

concentrations of sodium acetate (0.5, 0.25, 0.12 and 0.06M) and incubated for 24hrs at 

30ºC. T3 media was derived by Travers et al (1987), as a minimal media specific for 

Bacillus thuringiensis, made up of tryptone, tryptose, yeast extract, sodium phosphate 

and magnesium chloride. This media also partially inhibits the growth cycle as well as 

sporulation of other Bacillus species (Travers et al, 1987).  The spores were not expected 

to germinate at high concentrations of sodium acetate, therefore if any isolates were 

capable of germinating and sustaining growth under these conditions it could not be 

considered to be Bacillus thuringiensis. Samples were heat shocked at 80 ºC in a water 

bath for 10 minutes and then cultured onto T3 agar plates for 24 hours to allow spores to 

germinate. Once colonies had formed they were streaked onto fresh T3 agar plates to 

obtain single colonies.  This test provides strong support that the isolate may be Bacillus 

thuringiensis depending on the result obtained.  
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2.2.3  Biochemical characterization of Bacillus thuringiensis. 

 

2.2.3.1  The Gram stain test 

 

A very small inoculum of bacteria was smeared onto a clean slide using an inoculation 

loop.  The sample was diluted with a drop of sterile water and allowed to air dry. The 

specimen was heat-fixed by passing the slide through an open flame.  The slide was 

stained with crystal violet for 1 minute and rinsed with sterile water. The slides were then 

stained with Gram's iodine (1% iodine, 2% potassium iodide in water) for 1 minute to fix 

the dye and then rinsed with sterile water.   Excess stain was removed with 95% ethanol 

and then rinsed with sterile water.  Specimens were counterstained with Safranin for 1 

minute, rinsed with water and then air dried. Slides were viewed using light microscopy 

under oil immersion (Provine & Gardner, 1974; Bergey's Manual of Systematic 

Bacteriology, 1986).   

 

2.2.3.2 Endospore stain (Schaeffer-Fulton staining method) 

 

A small inoculum of bacteria was smeared onto a clean slide using an inoculation loop 

and diluted with a drop of sterile water. Once dry the slides were flooded with Malachite 

green (made by dissolving 5.0g in distilled water, made up to 100ml) and immediately 

steamed over a water bath for 5 minutes. Once cooled the slides were rinsed with sterile 

water.  The slides were then counterstained with Safranin O (made by dissolving 0.5 



 43

grams Safranin O powder in distilled water, made up to 100ml) for 2 minutes and then 

rinsed with sterile water. Once the slides had dried, the specimens were viewed under a 

compound microscope with oil immersion (Mormak & Casida, 1985; Bergey's Manual of 

Systematic Bacteriology, 1986).   

  

 

2.2.3.3   Catalase test 

 

The test involved adding hydrogen peroxide to each sample of bacteria. A small  sample 

of 48 hour cultures was smeared onto a clean slide. A drop of 10% hydrogen peroxide 

was alloquoted onto the bacterial smear and observed using light microscopy. A slide 

smeared with inoculum free LB media was used as the negative control, and an 

inoculumn of Bacillus thuringiensis serovar. Thuringiensis (4A3) was used as the 

positive control. The slides were analyzed for the formation of oxygen bubbles and 

photographed using a digital camera.  The presence of bubbles indicated the ability to 

break down hydrogen peroxide into water and oxygen (Bergey's Manual of Systematic 

Bacteriology, 1986); (Reagents and Tests, in Bailey & Scott’s Diagnostic Microbiology, 

1978). 

 

2.2.3.4  Growth above 45 ºC 

 
All samples were diluted in order to obtain an optical density (OD) reading of 0.3.  

Spectrophotometer readings where taken with an absorbance of 600nm (A600) for each 

sample prior to incubation, and then once daily for a period of 5 days to determine if 
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growth occurred.  Isolated samples were incubated in nutrient broth at a temperature 

exceeding 45ºC for a 5 day period.  Cultures that showed signs of growth and thus were 

capable of reproducing at such high temperatures were assumed not to be Bacillus 

thuringiensis and were eliminated as putative Bt isolates. 

 

2.2.3.5   Presence of parasporal bodies (δ-endotoxins) 

 

The presence of parasporal bodies was confirmed using phase-contrast microscopy. 

Vegetative cells and parasporal bodies were observed on slides freshly coated with a thin 

layer of 2% water agar (200mg biological grade agar diluted in 100ml sterile water).  A 

drop of culture was placed on the slide and observed using phase-contrast microscopy 

under a 100X oil immersion objective. Parasporal bodies were characterized as either 

bipyramidal, spherical, rectangular (cuboid), irregular spherical, or irregularly pointed. 

 

2.2.3.6  Total DNA extraction using a sodium dodecyl sulfate 

(SDS) mediated reaction 

 

Bacteria cultures were streaked onto agar plates in order to obtain single colonies, thus 

ensuring a homogenous synchronised culture. The colonies inoculated in 2 x YT media  

(5 grams of yeast extract, 5 grams of tryptone, and 2.5 grams of NaCl per liter) and 

grown to an optical density of 0.8 at 600 nm. The cells were harvested by centrifugation, 

washed once in TES (10 mM Tris-HCI [pH 8.0], 1 mM EDTA, 100 mM NaCl), and 
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resuspended in solution 1 (25% sucrose, 25 mM Tris-HCl (pH 8.0), 25 mM EDTA and1 

mg of lysozyme per ml). The cell suspension was incubated at 37°C for 1 hour. The cells 

were solubilized by addition of sodium dodecyl sulfate (SDS) to a final concentration of 

2%, and the solution was incubated at 50°C for 15 min. 

 

 NaCI was added to a final concentration of 1 M, and the solution was incubated at 50°C 

for 5 minutes and then at 4°C overnight. The solution was centrifuged, and DNA in the 

supernatant was precipitated with ethanol. The DNA was resuspended in 10 ml of TE (10 

mM Tris-HCl [pH 8.0], 1 mM EDTA) containing 1 M NaCI, 10 ųg of RNase per ml, and 

0.6 mg of proteinase K per ml and incubated at 37°C for 30 minutes. The mixture was 

extracted with phenol, phenol-chloroform (1:1), and chloroform, and the DNA was 

precipitated with ethanol (Kalman et al, 1995). 

 

 

2.2.4  PCR amplification the cry1A gene sequence  

 

The DNA extracted from the putative Bt isolates was diluted 10-3 fold for each reaction 

and screened via PCR using the cry1A specific primers TYIAA (f) and TYIUN12 (r), the 

sequences of which are listed below. These primers amplify the first 710 bases of the N-

terminus of any cry1A gene (Kalman et al, 1995). 

 

TYIAA (f)         GAGCCAAGCAGCTGGAGCAGTTTACACC           cryIA(a) 

TYIUN12 (r)     ATCACTGAGTCGCTTCGCATGTTTGACTTTCTC   cryI 
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DNA extracted from an inoculum of Bacillus thuringiensis serovar. Thuringiensis (4A3) 

supplied by Dr. Daniel R. Zeigler from The Bacillus genetic stock centre at the Ohio 

State University was used as the positive control. The template DNA was mixed with 2X 

PCR Master Mix containing a 2X concentrated solution of Taq DNA polymerase, 

reaction buffer, MgCl2 and dNTPs. The PCR reaction was performed for 30 cycles with 

denaturation of template DNA at 94°C for 1 minute, annealing templates and 

oligonucleotide primers at 52°C for 2 minutes, and extension of PCR products at 72°C 

for 3 minutes.  

 

 

2.2.5   Gel Electrophoresis 

 

An aliquot (7-10 µl) of each amplification reaction was analysed on 2% w/v agarose gels 

cast and run in TBE buffer (pH 8.3) at about 120 volts until the dye marker was near the 

end of the gel. Gels were stained with ethidium bromide and the DNA bands 

photographed under transmitted UV light.  A 100 base pair marker (Pharmacia, LKB) 

was included on every gel. 

 

 

2.2.6 Automated DNA sequencing 

 

Once positive nucleic acid products were identified through visualization on an agarose 

gel, a sample of the reaction mixture was purified using an agarose gel DNA extraction 

kit (Roche Applied Science) to remove all contaminants that may have been left over 

from the reaction.  The purified product was sent for sequencing by Inqaba Biotechnical 
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Services.  The sequences output for the sample products were viewed with ‘Chromas2’ 

and Bioedit™ software. 

 

2.2.7  Sequence alignment 

 

Once the PCR amplification products for the putative Bt isolates had been sequenced, it 

was aligned with the amplification products obtained from the positive control 4A3 

which is known to contain the cry1Aa gene using the Bioedit™ software..  The sequences 

were also used in NCBI’s (National Centre for Biological Information) Basic Local 

Alignment Search Tool (BLAST) (http://130.14.29.110/BLAST/) and compared to 

known sequences submitted on the NCBI database. 
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2.3  Results 

 

2.3.1 Bacillus thuringiensis enrichment 

 

Soil samples incubated in T3 media produced thick bacterial cultures overnight in all 

samples excluding the control flask.  Each sample had a distinctive colour (Figure 2.2) 

which may have been attributed to humic materials unique to each soil type.  Colonies 

obtained from dilutions were tested for identification as catalase-positive, Gram-positive, 

endospore-forming rods. 

 

 

Figure 2.2:  Bacterial cultures derived from soil samples collected at various locations across South Africa. 
Samples were further diluted in order to reduce the overall crude bacterial population, thus assisting in 
obtaining pure single colonies.  Each culture had a distinct colour. 
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2.3.2 Sodium Acetate selection test 

 

T3 agar plates seeded with isolate samples treated with low concentrations of sodium 

acetate (0.12 and 0.06M) produced a very few colony forming units. 

 

 

Figure 2.3:  A digital photograph of a bacterial isolate grown on T3 agar media treated with 0.25M                       
sodium acetate. Single colonies are distinguishable from each other. 
 
 
 
Similar results were found with the samples treated with 0.5M sodium acetate which 

showed very little to no growth. The samples treated with 0.25M sodium acetate 

produced distinguishable single colonies which were then cultured on nutrient agar for 24 

hours to allow for recovery. 



 50

2.3.3.1 Gram stain 

All samples isolated from morphological characterization and sodium acetate selection 

tested positive as Gram positive rod shaped bacteria as seen in Figure 2.4. 

 

 

Figure 2.4: Digital photographs taken at 100x magnification with oil immersion.  All of the putative Bt 
isolates tested positive for the Gram stain. Bacterial cells appeared dark purple colouring, and were 
confirmed as rod shaped cocci. 
 
 
 

2.3.2.2  Endospore stain 

 

Samples that tested positive for endospores were seen to contain brightly stained green 

elliptical structures.  Slides prepared at time intervals provided additional evidence that 

these were in fact endospores, where small green spores were clearly visible within pink 

vegetative tissue at early stages of spore development.  The presence of the elliptical 

green spheres were present in all samples that successfully passed the sodium acetate 

selection test, but not in all samples that had simply been identified through colony 

morphology alone. 
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Figure 2.5: Digital photographs of isolates obtained from Muldersdrift soil (A, B&D), storage tissue (E), 
Nelspruit soil (F) and stream silt(C). In all photographs (A-F ) Green endospores stained with malachite 
green are distinguishable from the pink safranin O stained  vegetative tissue of  living bacterial cells (taken 
at 100x magnification with oil immersion). 
 
                     
 

 

 
 

A 
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2.3.2.3 Catalase test 

The catalase test was performed on all isolates that tested positive for selection tests 

including the morphological characterization and the sodium acetate selection test.  All of 

the samples tested were positive for catalase degradation.  Upon introduction of hydrogen 

peroxide to the bacterial smears, samples underwent a violent reaction with bubbles 

forming at rapid rates. This can be seen in Figure 2.6 where the three pictures A, B and C 

were taken in succession over a period of approximately 1.5 seconds, showing the 

immediate presence of bubbles which increased in intensity over time. Similar results 

were seen in the positive control, whereas the negative control showed no activity.   

 

 
 
Figure 2.6: Light microscopy photographs of isolate smears in the presence of Hydrogen peroxide, 50 X 
magnifications. The bubble production intensity from the bacterial smear increases with time as can be seen 
in A, B and C. 
 

2.3.2.4 Growth above 45 ºC  

  

After 24 hours of incubation, 7% of the test samples showed evidence of growth with OD 

readings increasing in increments ranging from 0.4 to approximately 0.6. The samples 

did not show any increase in growth over the following four days of incubation, however 

they were excluded from further tests. 

C B A 
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2.3.2.5 Presence of parasporal bodies (δ-endotoxins) 

 

The presence of parasporal bodies was not evident in several samples. Many samples 

showed various shapes that could potentially be crystalline parasporal bodies. Phase 

contrast microscopy was used to assess the overall appearance of the possible crystalline 

structures.  In Figure 2.7 (A) and (B) a smaller colourless structure is visible along side 

the endospore within the bacterial cell.  In Figure 2.7 (B) bipyrimidal structures are 

clearly visible amongst the mass of green spores.  Structures were identified within the 

bacterial cell at early stages of spore development which were distinguishable from the 

endospore Figure 2.7 (F), and remain visible as development progressed. 

 

The overall structure of the crystalline bodies could not conclusively be determined. 

Since the presence of crystalline bodies was only to be used as support for the 

identification, those that had passed all other selection criteria were accepted despite the 

lack of visual crystal confirmation.  In total 44 possible isolates were positively identified 

using both classical identification techniques and sodium acetate selection. 
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Figure 2.7: Light microscopy photographs of (A&B) test isolates taken at 100X magnification with oil                
immersion. With the use of phase contrast microscopy a smaller spherical shape, indicated with black 
arrows, is clearly seen alongside the developing endospore. (C) Light microscopy of samples post 
sporulation. Crystalline shapes are evident amongst green spores. (D) and (E) show evidence of crystalline 
bodies alongside the green stained endospores. (f) Small dark shapes are evident in early stages of spore 
development on the opposite polar end to that of the spore. 
 
 

 

 

 

 

A 

E 

C 
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Table 2.1: 44 bacteria samples isolated from soil (Muldersdrift mountain range), storage tissue, Soil from 
Nelspruit (Mpumulanga province), mushroom tissue and marshlands were identified as putative Bacillus 
thuringiensis isolates 
sample 
name Source 

Gram 
Stain 

Spore 
Stain Catalase 

Growth above 
40 °C 

parasporal 
bodies 

S1 soil + + + + + 
S2 soil + + + + - 
S3 soil + + + + - 
S4 soil + + + + + 
S5 soil + + + + + 
S6 soil + + + + - 
S7 soil + + + + + 
S8 soil + + + + - 
S9 soil + + + + - 
S10 soil + + + + + 
S11 soil + + + + - 
S12 soil + + + + - 
S13 soil + + + + - 
S14 soil + + + + - 
S15 soil + + + + - 
st1 storage tissue + + + + - 
st2 storage tissue + + + + - 
st3 storage tissue + + + + - 
st4 storage tissue + + + + - 
st5 storage tissue + + + + - 
st6 storage tissue + + + + - 
st7 storage tissue + + + + - 
st8 storage tissue + + + + - 
st9 storage tissue + + + + + 

St10 storage tissue + + + + - 
N1 Nelspruit soil + + + + + 
N2 Nelspruit soil + + + + - 
N3 Nelspruit soil + + + + + 
N4 Nelspruit soil + + + + + 
N5 Nelspruit soil + + + + - 
N6 Nelspruit soil + + + + - 
N7 Nelspruit soil + + + + - 
N8 Nelspruit soil + + + + - 
N9 Nelspruit soil + + + + - 
N11 Nelspruit soil + + + + - 
N12 Nelspruit soil + + + + - 
N13 Nelspruit soil + + + + - 
V1 vlei/marsh + + + + - 
V2 vlei/marsh + + + + - 
V3 vlei/marsh + + + + - 
V4 vlei/marsh + + + + - 
V5 vlei/marsh + + + + - 
V6 vlei/marsh + + + + - 
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2.4  Pilot study to obtain the cry1A gene sequence through 

Polymerase Chain Reaction (PCR) amplification  

 

DNA was successfully extracted from the putative Bt isolates listed in Table 2.1 and 

examined for potential cry1A gene sequences.  As seen in Figure 2.8, only 5 of the 

samples displayed PCR products when viewed under UV light. 

1       2       3       4      5       6      7       8      9

Generuler

100bp ladder

 
Figure 2.8: Photograph of a agarose gel exposed to ultraviolet light.  PCR amplification products can                  
be seen in lanes 1 (sample S1), 2 (sample S4), 3 (positive control), 6 (sample S6), 8 (sample S9),                  
and lane 9 (sample S10). 
 

 

Sequencing data obtained from all 5 PCR products appeared to be contaminated with 

additional sequence signals.  Although strong signals are evident in the agarose gel, the 

resultant sequence data showed many peaks of similar sizes. This result had a high 
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possibility of mismatches and thus was not useful at this point for the positive 

confirmation of Bt isolates. 

 

2.5 Discussion 

 

The traditional approaches used in the identification of Bacilli have been: aerobic, gram 

positive, rod shaped bacteria with endospore formation.  Having assigned an isolate to 

these groups, the bacterium was identified to the species level using a panel of 

physiological and biochemical tests. This system was workable, but familiarity with these 

bacteria was often necessary in order to distinguish spore morphologies. Largely because 

of this, later schemes disregarded spore morphology (Claus and Berkley, 1986), but then 

the number of tests to effect identification had to be increased.   

 

In our experiments the sodium acetate test proved to be more successful in eliminating 

most sporeforming and nonsporeforming organisms in the test soil samples.  The 

classical biochemical and microscopy tests provide valuable information in 

understanding the isolated bacterial samples and ultimately aided in their 

characterization.  All of the isolates tested positive for Gram stain, endospore stain and 

catalase test, confirming the necessity to pasteurize samples in the initial bacterial 

enrichment. Without pasteurization the ratio of unwanted bacteria (nonsporeforming) to 

wanted bacteria (sporeforming) would have been too high (Travers et al, 1987).  

 

 The problem still arises that the pasteurized samples still contain many undesirable 

sporeformers, particularly the close relatives of B. thuringiensis namely B.  anthracis, and 
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B. cereus.  Based on their similar morphologies and genetic makeup it has been proposed 

that the three should be considered a single species (Helgason et al, 2000).  This 

highlights the importance of minimal media T3 used to suppress the growth of other 

Bacillus species and thus favouring the growth of B. thuringiensis.  The 44 samples listed 

in Table 2.1 were subjected to both the sodium acetate selection test and classical 

characterization techniques in order to obtain isolates with high probability of being Bt.  

Since only 10 of the 44 isolates showed evidence of crystalline bodies, the next logical 

test was to perform tests at a DNA level to determine whether cry1A gene sequences 

were present within the samples.  This led to the pilot study for determining the methods 

that would be used in PCR experiments to determine the nature of the insecticidal 

proteins that the samples may contain.   

 

 The pilot study was performed to determine the preliminary protocol for identifying 

possible cry1A gene sequences in the putative Bt isolates.  Positive amplification 

products were visible with UV illumination on the agarose gel in Figure 2.8.  The 

resultant sequence that was derived from these products showed several conflicting 

signals making positive identification impossible. This may have been as a result of a 

contaminant or several other similar gene sequences being present within the reaction 

mixture.  B. thuringiensis subsp. Kurstaki HD1 is known to contain at least 5 other cry 

gene sequences (Kalman, et al. 1995) providing evidence to this hypothesis. Other 

possible contaminants may have been attributed to the DNA template or other 

components used in the PCR reaction. 
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Chapter 3 
 

Molecular characterization of unknown Bacillus 

thuringiensis species isolated from South African 

soils 

 

3.1 Introduction 

 

In an initial study, experiments were performed to determine if the cry1A gene sequence 

could be identified in putative Bacillus thuringiensis samples isolated from South African 

soils.   Positive PCR amplification products could be seen on an agarose gel under UV 

illumination.  These products however failed to produce a creditable gene sequence data 

set. The amplification products appeared to be contaminated with either several copies of 

similar signals to the desired ones (Kronstad & Whiteley, 1984), or some other form of 

contamination in the reaction mixture.  

 

 To solve this problem all the components used in the PCR reaction had to be examined 

for possible sources of contamination.  This led to the investigation of several methods 

for DNA extraction to ensure a pure DNA template for each sample was used in the PCR 

reaction. In addition to obtaining pure plasmid DNA as a template for probing for the 

presence of the cry1a gene, extraction protocols were also put into place to provide 

genomic template DNA for characterization at the 16S rDNA level. 
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The main objective of the DNA extractions from the soil isolates was to obtain a 

technique which produced high yield and quality DNA that can be used in sensitive 

molecular techniques. These techniques were to produce high molecular weight DNA 

free of inhibitors. All the selected DNA extraction methods were investigated and 

assessed for quality, cost, speed and simplicity for subsequent molecular biological 

manipulations and their ability to fulfil these requirements.  These techniques are 

discussed below. 

  

3.1.1    Extraction of Genomic and Plasmid DNA 

 

3.1.1.1  Genomic DNA Extraction using Caesium Chloride 

(CsCl) -Ethidium Bromide density gradient centrifugation. 

 

Equilibrium density gradient centrifugation using caesium chloride (CsCl) was used to 

obtain very pure nucleic acids from crude homogenates. The procedure separates 

supercoiled plasmid DNA from nicked plasmid DNA, RNA, proteins and carbohydrates. 

Cells are lysed and then centrifuged at low speeds to separate most of the chromosomal 

DNA and debris from the lysate.  This is then followed by high speed centrifugation in 

the presence of CsCl and ethidium bromide. Caesium chloride sets up a density gradient 

when centrifuged at very high speeds. Ethidium bromide intercalates between the bases 

of DNA. 
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 Since supercoiled plasmids are negatively charged, the introduction of ethidium bromide 

induces a relaxed state within the superhelix. This then shifts towards a positive charge as 

additional ethidium bromide molecules intercalate with the plasmid DNA.  This process 

requires Gibbs free energy which provides the positive enthalpy required for formation of 

superhelical turns (Seidl & Hinz, 1984), and in its absence, supercoiled plasmid DNA 

subsequently takes up less ethidium bromide in comparison to linear or open circular 

DNA (Clendenning & Schurr, 1994). Ethidium is less dense than DNA, thus the density 

of the linear DNA-ethidium complex would be much less than the supercoiled plasmid 

DNA-ethidium complex.  The differences in density allow for separation of the different 

DNA species within a density gradient. 

 

 

3.1.1.2  Total DNA extraction using a Sodium Dodecyl Sulfate 

(SDS) mediated reaction 

 

Detergents inhibit nucleases and assist in the separation of proteins from nucleic acids. 

One of the most common detergents used for this purpose is sodium dodecyl sulfate 

(SDS).  Sodium dodecyl sulfate is an anionic detergent which denatures proteins by 

enveloping the polypeptide backbone. This induces a negative charge within the 

polypeptide in proportion to its length. The cell membrane phospholipids and protein 

components become solubilised which results in lysis.  

 

The technique is very similar to the standard alkaline lysis apart from a few exceptions. 
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SDS is used as the lysing agent as apposed to lysozyme or NaOH. Genomic DNA is 

however not precipitated out of the lysate in the neutralization stage and is precipitated 

using ethanol along with plasmid. 

 

 

3.1.1.3  A modified alkaline lysis for large plasmid DNA 

extraction 

 

Standard alkaline lysis or boiling protocols are very efficient at isolating the smaller 

plasmids but they have a tendency to recover low or negligent yields of the larger ones 

(Birnboim and Doly, 1979).  The standard alkaline method makes use of pH to denature 

non-supercoilded DNA but not plasmids. Increasing the pH to 12.0 -12.5 with the 

addition of a mild alkali results in breakage of the hydrogen bonds within the non-

supercoiled DNA backbone. The double helix subsequently unwinds and the 

polynucleotide chains separate.  The addition of acid traps the denatured DNA in an 

insoluble mass which can be pelleted out by centrifugation (Birnboim and Doly, 1979). 

 

 

Since literature suggests that the cry genes are located on the larger size plasmids (Kuo & 

Chak, 1996), this method was investigated as to its suitability for extracting high 

molecular weight plasmids as well as the lower ones.  This method differs from the 

standard alkaline lysis as well as the above SDS method, in that the salt concentration in 

the neutralization phase is significantly lower.  The denatured proteins and cell debris do 
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not form an insoluble salt complex, thus preventing the bulkier large plasmids from being 

trapped. 

3.1.1.4  Boiling Lysis 

 

This protocol yields plasmid DNA that is suitable for restriction digests and cloning 

purposes.  Cells are lysed through exposure to latent heat from either a waterbath or a 

heating block (100° Celsius). Cells burst due to rapid expansion, and the cell contents are 

expelled.  The extreme temperatures inactivate most enzymes such as DNases or RNases 

that could potentially degrade the DNA in sensitive molecular techniques. 

 

Once good quality plasmid DNA template has been extracted, it can be used in the 

construction of a genetic library to determine if additional genes with high sequence 

similarity were contributing to the contamination of the PCR products (please refer to 

chapter 4).  Genomic DNA was extracted from the 44 putative Bt samples as well as the 

known B.  thuringiensis strain 4A3, and was probed with universal ribosomal primers in a 

PCR reaction. 

 

 

3.1.2    PCR Amplification of 16S rDNA 

 

The polymerase chain reaction (PCR) offers a powerful tool for characterizing Bacillus 

thuringiensis particularly at the 16S rDNA level (Brunel et al, 1997).   The sequence of 

16S rDNA is made up of highly conserved regions among all organisms.  Thus ribosomal 

DNA is ideal for discerning evolutionary relationships of prokaryotic organisms (Brunel 
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et al, 1997). Ribosomal RNAs are ancient molecules essential for cellular growth, 

function and survival.  Consequently, the primary, secondary and tertiary structures of 

rRNA molecules have been conserved during evolution.  They are functionally constant, 

universally distributed, and moderately well conserved across broad phylogenetic 

distances  (Brunel et al, 1997). 

 

Various regions within the rRNA genes evolve at slightly different rates due to the fact 

that 16S rRNA is functionally involved in the protein biosynthesis process and involved 

in different interactions in the ribosome. As a result, alternating regions form in the 

rDNA sequences of nucleotide conservation and variability. The 16S rDNA of most 

major phylogenetic groups has one or more characteristic nucleotide sequences called 

oligonucleotide signatures. These signature sequences are highly specific and occur in 

most or all members of a particular phylogenetic group. The number of different possible 

sequences is so large that similarity in two sequences always indicates some phylogenetic 

relationship. However, it is the degree of similarity in the sequences between two 

organisms that indicates to what proximity they are related. Using the sequence 

comparison data, sequence signatures can then be used to assign microorganisms to the 

proper group (Weisburg et al, 1991). 

 

The two oligonucleotide sequences used as primers in our study were 59-GGA GAG 

TTA GAT CTT GGC TC-39(sense) and 59-AAG GAG GTG ATC CAG CCG CA-39 

(antisense) (Brunel et al, 1997)  characterized as described by Weisburg et al (1991).   

These primers are capable of amplifying nearly full-length 16S ribosomal DNA 

(approximately l,500-bp) fragments from many bacterial genera. By doing so we were 
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able to confirm that our samples were indeed Bacillus thuringiensis, and establish its 

closest relatives according to the signature sequences within the conserved regions. 

 

The specific objectives for this chapter were: 

• Obtain high quality template DNA free of any contaminants 

• Determine the 16S rDNA identity of  putative Bt isolates via PCR using 16S rDNA 

specific primers 

• Obtain sequence data from the amplification products and compare the data to that of 

known Bt 16S rDNA sequences 

• Construct phylogenetic trees to determine evolutionary lineage 

 

3.2  Methodology 

 

3.2.1 Genomic DNA extraction using caesium chloride (CsCl) -

ethidium bromide density gradient centrifugation 

 

Bacterial cultures were streaked onto agar plates in order to obtain single colonies, thus 

ensuring a homogenous synchronised culture. The colonies were then grown up in LB 

media containing 2% glycine over a period of 3-4 days in order to prepare cell walls for 

lysis.  Cultures were pelleted at 6000 rpm in a J10 centrifuge.  Pellets were resuspended 

in 4ml of solution 1 (20 mg/ml lysozyme in TE buffer).  The samples were incubated at 

37°C for 30 minutes.  The cells were once again pelleted and then resuspended in 

solution 2 ( TE buffer supplemented with 0.5 mg Proteinase K).  This was left to incubate 
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at room temperature for 2 minutes and then one tenth volume of solution 3 (TE buffer 

supplemented with 10% SDS) was added.  These samples were incubated at 37°C for 30 

minutes to induce lysis of cells.  The viscous solution was transferred to a V-50 Ti tube 

and ultra-centrifuged at 6000rpm for 30 minutes in a L5-50 centrifuge.  

 

The supernatant was transferred to a J20 tube and supplemented with 4.4 g CsCl2.  The 

mixture was centrifuged at 15000 rpm for 15 minutes.  The lower level containing the 

DNA was then removed using a Pasteur pipette.  EtBr (400 µl) was added to each sample 

and the refractive index (density of a substance in double distilled H20) adjusted to 

between 1.391 and 1.392.  Samples were then transferred to a Beckman quick seal tube 

and centrifuged at 45000 rpm overnight in a L7 – 55 Beckman ultra-centrifuge using a 

VTi 65.2 vertical rotor.  DNA was extracted by placing the tube in a UV light clamp, and 

extracting the nucleic acid band using a 1ml syringe with a wide aperture. DNA was then 

precipitated several times by the addition of butanol in order to remove the EtBr from the 

DNA sample. 

 

 

3.2.2 Total DNA extraction using a sodium dodecyl sulphate 

(SDS) mediated reaction 

 

Bacterial cultures were streaked onto agar plates in order to obtain single colonies, 

ensuring a homogenous synchronised culture. The colonies were then grown up in 2 x 

YT media (5 g of yeast extract, 5 g of tryptone, and 2.5 g of NaCl per liter) to an optical 

density at 600 nm of 0.8. The cells were harvested by centrifugation, washed once in TES 
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(10 mM Tris-HCI [pH 8.0], 1 mM EDTA, 100 mM NaCl), and resuspended in a solution 

made up of 25% sucrose, 25 mM Tris-HCl (pH 8.0), 25 mM EDTA and 1 mg of 

lysozyme per ml. The cell suspension was incubated at 37°C for 1 h. The cells were 

solubilized by addition of sodium dodecyl sulfate (SDS) to a final concentration of 2%, 

and the solution was incubated at 50°C for 15 minutes. 

 

 NaCl was added to give a final concentration of 1 M, and the solution was incubated at 

50°C for 5 minutes and then at 4°C overnight. The solution was centrifuged, and DNA in 

the supernatant was precipitated with ethanol. The DNA was resuspended in 10 ml of TE 

(10 mM Tris-HCl [pH 8.0], 1 mM EDTA) containing 1 M NaCl, 10 ųg of RNase per ml, 

and 0.6 mg of proteinase K per ml and incubated at 37°C for 30 minutes. The mixture 

was extracted with phenol, phenol-chloroform (1:1), and chloroform, and the DNA was 

precipitated with ethanol (Kalman, et al. 1995). 

 

 

3.2.3  A Modified alkaline lysis for large plasmid DNA 

extraction 

 

Bacterial cultures were streaked onto agar plates in order to obtain single colonies, thus 

ensuring a homogenous synchronised culture. The colonies were then grown up overnight 

at 30°C in 2 ml LB with a final OD600 between 1.1- 1.5. The cultures were transferred to 

a 1.5ml microcentrifuge tube and pelleted at maximum speed for 5 seconds. The cells 

were suspended in 100 ml E buffer (15% w/v sucrose, 40 mM Tris-HCl, 2 mM EDTA, 

pH 7.9) by pipetting them up and down and  then adding 200 ml lysing solution (3% 
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SDS, 50 mM Tris-HCl, pH 12.5). The lysate was heated at 60°C for 30 minutes.  5 Units 

proteinase K were added and the tube inverted 20 times. Samples were incubated at 37°C 

for 90 minutes followed by the addition of 1 ml phenol-chloroform-isoamyl alcohol and 

inverted 40 times. Samples were centrifuged at high speed for 15 minutes. followed by 

analysis of the aqueous supernatant by electrophoresis on a horizontal 0.5% agarose gel. 

 

3.2.4 Boiling lysis 

 

Bacterial cultures were streaked onto agar plates in order to obtain single colonies, thus 

ensuring a homogenous synchronised culture. The colonies were collected using a metal 

loop and resuspended in 1 ml sterile water. The microcentrifuge tubes were vortexed until 

a homogenous cell paste was obtained. The tubes were boiled at 100°C in a heat block for 

time intervals of 5 and 7 minutes. The samples were centrifuged for 10 minutes at 

maximum speed (10K) in a microcentrifuge. The supernatant was transferred to 1.5ml 

microcentrifuge tubes containing 750ųl phenol-chloroform isoamyl alcohol. The tubes 

were vortexed and then centrifuged in a microcentrifuge for 10 minutes at maximum 

speed (10K) in a microcentrifuge. The upper phase was transferred to a new tube and 

washed with 70% ethanol.  The tubes were centrifuged and the pellet resuspended in 

200ųl sterile water.  
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3.2.5 Measurement of DNA concentration and purity 

 
 
 In order to ensure that the yields of pure DNA obtained from the various extraction 

techniques were high enough to be used in further manipulation experiments, the end 

products of each procedure was measured using UV absorbance spectrophotometry.  The 

amount of DNA in the sample is directly proportional to the amount of UV radiation 

absorbed.  The absorbance was measured at 260nm (A260) for DNA and at 280nm (A280) 

for proteins. The nitrogenous bases in nucleotides have an absorption maximum at about 

260 nm. In contrast to nucleic acids, proteins have a UV absorption maximum of 280 nm, 

due mostly to the tryptophan residues. The absorbance of a DNA sample at 280 nm gives 

an estimate of the protein contamination of the sample. The ratio of A260 to A280 was 

determined to establish purity of the DNA (Brown, 1998). 

 
 
3.2.6  Gel electrophoresis 

 

An aliquot (7-10 µl) of each amplification reaction was analysed on 2% w/v agarose gels 

cast and run in TBE buffer (pH 8.3) at about 120 volts until the dye marker was near the 

end of the gel. Gels were stained with ethidium bromide and the DNA bands 

photographed under transmitted UV light.  A 100 base pair marker (Pharmacia, LKB) 

was included on every gel. 
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3.2.7 PCR amplification of 16S rDNA 

 

 

For PCR amplification, template DNA of the 44 putative isolates (Table 2.1) obtained 

from various extraction methods was diluted with sterile water 10-3 fold for each reaction. 

For DNA extracted using the boiling lysis method, 5ųl of the boiled suspension was used 

for each reaction. The template DNA was mixed with 2X PCR Master Mix (Fermantas 

Life Sciences) containing a 2X concentrated solution of Taq DNA polymerase, reaction 

buffer, MgCl2 and dNTPs. The PCR reaction was performed for 30 cycles with 

denaturation of template DNA at 94°C for 1 minute, annealing templates and 

oligonucleotide primers at 63°C for 2 minutes, and extension of PCR products at 72°C 

for 3 minutes. The PCR products were separated and analyzed on a 2% agarose gel. DNA 

obtained from B. thuringiensis Serovar. Thuringiensis (4A3) and B. thuringiensis 

Serovar. Brasilensis (4AY1)  supplied by Dr. Daniel R. Zeigler from The Bacillus genetic 

stock centre at the Ohio State University were used as positive controls 

 

 

3.2.8 Automated DNA sequencing 

 

Once positive PCR products were identified through visualization on an agarose gel, a 

sample of the reaction mixture was purified and then sequenced by Inqaba Biotechnical 

Services.  The sequences obtained were viewed with ‘Chromas2’ and Bioedit™ software. 
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3.2.9 Alignment of 16S rDNA sequence data with known 16S 

rDNA sequences 

 

Once the nucleotide sequence of the PCR product had been derived, it was compared 

with sequences of strains known to contain the cry1Aa gene.  Sequence alignment was 

performed using the NCBI’s (National Centre for Biological Information) Basic Local 

Alignment Search Tool (BLAST)(http://130.14.29.110/BLAST/) to compare the 

sequence data with known sequences submitted on the NCBI database. The sequences 

obtained were analysed using the multiple sequence alignment program ClustalX 1.81 

(Higgins, 1994) in order to determine homology within the sequences as well as to 

determine their evolutionary lineage. Phylogenetic trees were constructed using the 

Neighbour Joining (NJ) and Bootstrap Tree methods of the Clustal X program (Higgins, 

1994). 

 

 3.3  Results 

 
 
3.3.1 DNA extraction 

 
 
From the initial A260/280 ratio obtained in Table 3.1, along with the intensity and molecular 

weight of DNA bands seen on the agarose gel in Figure 3.1, it can be seen that all four 

techniques used produced good quality DNA.  The purity of the extracted DNA is seen in 

Table 3.1 where the OD readings obtained were converted into an A260/280 ratio which is a 
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direct reflection of amount of DNA compared to protein.  The CsCl-EtBr density gradient 

centrifugation method produced high purity plasmid DNA, however it produced 

negligable amounts of genomic DNA. The CsCl-EtBr density gradient centrifugation is 

seen to extract the highest purity DNA and boiling lysis the lowest.   

 
 
Table 3.1:  A comparison of A260/280 Ratios of DNA obtained by four DNA extraction procedures. 

 
 
 
The modified alkaline lysis recovered higher purity DNA as compared to the similar SDS 

mediated reaction which had a higher salt content. The plasmid DNA recovered from the 

various techniques was run on a 1.2% agarose gel to assess the size of plasmids that had 

been extracted. 

 

Extraction Method No. of Samples A260/280  Ratio 
CsCl-EtBr density gradient 
centrifugation 

44 1.82 ± 0.02 

Total DNA, SDS mediated 
reaction 

44 1.35 ± 0.05 

Modified Alkaline lysis for large 
plasmid extraction 

44 1.47 ± 0.05 

Boiling lysis 
 

44 1.3 ± 0.07 



 73

1       2      3      4       5      6      7      8

Generuler

1kb ladder

 
Figure 3.1:  A Photograph of an agarose gel loaded with DNA extracted from sample S10 using four DNA 
extraction procedures (lane 1) Boiling lysis for 7 minutes, (lanes 2 & 3) boiling lysis for 5 minutes, (lane 
4), Generuler 1 kb Marker, (lanes 5 & 7) SDS mediated reaction, (lanes 6 & 8) Modified                       
alkaline lysis for extraction of larger plasmids 
 
 
 

From the agarose gel (Figure 3.1) it can be seen that the 7 minute boiling time lysis 

recovered more DNA of high molecular weight than the 5 minute boiling time.  The array 

of plasmids attained was low in comparison to the modified alkaline lysis procedure 

which was seen to recover a larger array of plasmids than any other technique.  The SDS 

mediated reaction is seen to have low recovery success of the higher molecular weight 

plasmids. 
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3.3.2 Obtaining the 16S rDNA identity of the isolates through 

polymerase chain reaction (PCR) amplification 

 

From the agarose gel in Figure 3.2, it can be seen that positive PCR amplification 

products were visualised for samples S4, S9 and S10.  Additional positives were obtained 

for S6, n1, n3 and n5 (not seen here). 

 

1       2       3        4        5       6

Generuler

100bp ladder

 
Figure 3.2:  A Photograph of an agarose gel loaded showing PCR amplification products for positive 
control 4A3 (lane 1), sample S4 (lane 2) negative control (lane 3) 100bp marker (lane 4) sample S9 (lane 5) 
and sample S10 (lane 6) 
 

The following Automated sequencing results shown in Figure 3.3 were provided by 

Inqaba Biotechnical Services.  
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Figure 3.3:  BLAST alignment of the nucleic acid sequence derived from sample S10 and that of known                      
B.thuringiensis 16S rRNA gene sequences found on the NCBI database.  Identities = 673/709                      
(94%), Gaps = 19/709(2%). 
 
 

The sequence data was compared to those of known 16S rDNA sequences on the NCBI 

database with the use of the Mega BLAST alignment tool.  The alignment shown in 

Figure 3.3 shows a 94% match between sample S10 and that of known Bt16S rRNA gene 

sequences, with 56 hits in 3 organisms, 14 hits for Bacillus thuringiensis serovar 

konkukian str. 97-27  and 1 hit for  Bacillus thuringiensis serovar aizawai. 

 

 
Query  67    ACAAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGC  126 
Sbjct  1437  ............................................................  1378 
 
Query  127   ATGCTGATCCGCGATTACTAGCGATTCCGGCTTCATGTAGGCGAGTTGCAGCCTACAATC  186 
Sbjct  1377  ............................A...............................  1318 
 
Query  187   CGAACTGAGAACGGTTTTATGAGATTAGCTCCCCCTCGCGGTCTTGCAGCTCTTTGTACC  246 
Sbjct  1317  ................................A...........................  1258 
 
Query  247   GTCCATTGTAGCACGTGTGTAGCCCAGGTCATAAGGGGCTTGATGATTTGACGTCATCCC  306 
Sbjct  1257  .......................................A....................  1198 
 
Query  307   CACCTTCCTCCGGTTTGTCACCGGCAGTCACTTTAGAGTGCCCAACTAAATGATGGCAAC  366 
Sbjct  1197  ...............................C............................  1138 
 
Query  367   TAAGATCAGGGGTTGCGCTCGTTGCGGGACTTAACCCCAACATCTCACGACACGAGCTGA  426 
Sbjct  1137  ........A.........................-.........................  1079 
 
Query  427   CGACAACCATGCACCACCTGTCACTCTGCTTCCCGAAGGAGAAGCCCTATCTCTTAGGGT  486 
Sbjct  1078  .............................-.......................-......  1021 
 
Query  487   TTTTAGAGGTATGTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCCGAATTAAACCACAT  546 
Sbjct  1020  .G.C.....-..................................-...............  963 
 
Query  547   GCTCCACCGCTTGTGCGGGCCCCCGTTCAATTCCCTTTGAGTTTTCAGCCTTGAGGCCAA  606 
Sbjct  962   ..........................-.......-.........-........C....GT  906 
 
Query  607   ACCTCCCCAGGCGGAGGGCTTAATGCGTTAACTTCAGCACTAAAGGGCGGAAACCCTCTC  666 
Sbjct  905   ..-.............T..........................................A  847 
 
Query  667   A-ACTTAGCACTCTTCGTT-ACGGGGTGGACTACC-GGGTATCTAATCCTGTTTGA-CCC  722 
Sbjct  846   .C...........A.....T....C..........A...................CT...  787 
 
Query  723   CACACTTTC-CGCCTC-GTGT-AGT-ACAGAC-AAAAAGA-GCCTTCGC  765 
Sbjct  786   ...G.....G......A....C...T......C......TC........  738 
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Query  65   GTAACCTGCCTATAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACTAGGATAACCT  124 
Sbjct  64   ..........C......................................-C.......A.  122 
 
Query  125  ATTGAACTGCATGGTTCAAAAATTGAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCC  184 
Sbjct  123  T................-G.........................................  181 
 
Query  185  CCGTCACATTAGCTAGTTGGTGAGGTAACCGCTCCCCGAGGCAACGATGCGTAGCCGACC  244 
Sbjct  182  G....G.......................G....A..A......................  241 
 
Query  245  TGAGAGGGTGATCTGGCCACACTGGGACTGAAACACGGGCCCCA-ACTCCCTACTGGAGG  303 
Sbjct  242  .............-.................G....-..-....G...-.....G.....  297 
 
Query  304  CAGCAGTTGGGAATCTTCCACAATGGACGAAAGTCTGACGGAGCAACGCCGCGCGAGTGG  363 
Sbjct  298  .......A...........G.................................T....-.  356 
 
Query  364  A-GAAGGCTTTCGGGACGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTTTGTTGAACA  422 
Sbjct  357  .T.............T.................................-.A......T.  415 
 
Query  423  AGCTGGCCCCTTGACGGTACCTACTCCGGAATGCC-CTGGTTAATTACGTGCCAGCAGCC  481 
Sbjct  416  .......A...............-A..A...A...A.-..C...C...............  473 
 
Query  482  CCGGTATTACATAGGGGGCAAGCGATATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGG  541 
Sbjct  474  G.....A...G....T........T..................................T  533 
 
Query  542  GGTTCTCTTTAAGTCTAGAAGTGAAACCCCCCGGCCTCAACCGGGGAGGGCACATGGGCA  601 
Sbjct  534  ....-....-......-..T......G...A....-.......T......T-...T..-.  587 
 
Query  602  AACGGGGGGACTT-ATCTCCCCTAAGATGATATGTGGATTTTCCTTGTGTACCGTTTCAA  660 
Sbjct  588  ...T...A.....G.G-.G.AG-....G..A.-.....A..-..A......G..G.GA..  643 
 
Query  661  TTGCGAAAAGATATGGAGAGAACCCCCCGTGGCAAAGGCGACTTTCGGGCCTGAAACTGA  720 
Sbjct  644  .-...T.G..........-....A..A-.....G............T..T...T......  700 
 
Query  721  CCTCTAGAGGCGCCGAAATCCCGCGGAGCACAACCGG-TTATGGATACCCGGGTAGTCCA  779 
Sbjct  701  .A-..-.......-....G.GT.G......-...A..A...-.-......T.........  754 
 
Query  780  CCCCCAAAACCATGAGTGCTAGG-GTTAGGGGGTTCCCGCCCTTTAGTGC  828 
Sbjct  755  .G..GT....G..........A.T.....A.....T..............  804 
 
 
 

Figure 3.4:  BLAST alignment of the nucleic acid sequence derived from sample S9 and that of known                      
B.thuringiensis 16S rRNA gene sequences found on the NCBI database.  Identities = 663/770                      
(86%), Gaps = 35/770 (4%). 
 
 
 
 
The alignment for sample S9 seen in Figure 3.4 gave an 88% match with known 

B.thuringiensis 16S rRNA gene sequences, with 34 hits in two organisms, and 1 hit for 

Bacillus thuringiensis serovar colmeri. 
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Query  28   TCTC-AGAAATTAGTGACGCGA-GGGTGAACAAACACGTGTAGTAACCTGCCCATAAGAC  85 
Sbjct  25   ....A....G....C.G..-..C.....-.GT........-G..................  81 
 
Query  86   TGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAACATTTTGAACTGCATGGTTCGA  145 
Sbjct  82   ............................................................  141 
 
Query  146  AATTGAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGG  205 
Sbjct  142  ............................................................  201 
 
Query  206  TGAGGTAACGGCTCACCAAGGCATCGTATGCGTAGCCAACCTGAGAGGGCGACCGGCCAC  265 
Sbjct  202  .......................A..-..........G...........T..T.......  260 
 
Query  266  ACTGGCACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTATGGAATCTTCCGCAA  325 
Sbjct  261  .....G.......................................G..............  320 
 
Query  326  TGGACGTAAAGTCTGACGGAGCATTCGCCGCGGGAGTAGATGCAAGGCTTTCGGGCCCTA  385 
Sbjct  321  ......-................-A.......T....-....-............T.G..  376 
 
Query  386  TAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCGCCTTGACGGTAC  445 
Sbjct  377  -..............................................A............  435 
 
Query  446  CTAACCAGAATGTCTTTTGTTTAACTACGTGCTCATCAACCGCGGTAATACGAAGGGGGC  505 
Sbjct  436  ..........A.C.ACG-.C.-..........-..G..G.............T...T...  492 
 
Query  506  ACGCGTTATCGGGAATTGTTGGGCGTAAAGCGCGCGCAAGTGGTTTCTTAAGTCTGATGG  565 
Sbjct  493  .A........C......A....................G....................T  552 
 
Query  566  GGAAGCCCACCGCTCAACCGGGGAGGGTCGTTGGTAACCGGGAGACTTGAGTGCAGATGA  625 
Sbjct  553  .A........G.........T........A....A...T..................A..  612 
 
Query  626  GGAAAGAGGTAATTCCTATGTGAAGCGGGGAATTGCG-ATAG-TATTGGAGGAACTACGG  683 
Sbjct  613  ......T..-......-.....T.....T...A....T.G..A...-........-..CA  668 
 
Query  684  GTGGCGAGAG-CGACTTTCTGGTCTGTAA-TGACAC-GAGGC-CGTTAGC-TGGGGAGTC  738 
Sbjct  669  .......-..G..................C......T.....G..AA...G.......-.  726 
 
Query  739  AG-C-GCATTAGA-ACCCTGGTAGTCCTCGCCG-AAACAATGAGTGC-AAGAGTG-GAGG  792 
Sbjct  727  .AA.A.G......T.............A.....T....G........T...T..TA....  786 
 
Query  793  CTT-CCGCC-TGTAGTG  807 
Sbjct  787  G..T.....C.T.....  803 
 

Figure 3.5:  BLAST alignment of the nucleic acid sequence derived from sample 4 and that of known                     
B.thuringiensis 16S rRNA gene sequences found on the NCBI database.  Identities = 706/797                      
(88%), Gaps = 35/797 (4%). 
 
 
 
 
The alignment for sample S4 seen in Figure 3.5 gave an 86% match with known 

B.thuringiensis 16S rRNA gene sequences, with 34 hits in two organisms, and 1 hit for 

Bacillus thuringiensis serovar colmeri. 
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Query  70    ACAAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGTAACGTATTCACCGCGGC  129 
Sbjct  1427  ..........................................G.................  1368 
 
Query  130   ATGCTGATCCGCGATTACTAGCGATTCCAGCTTCATGTAGGCGAGTTGCAGCCTACAATC  189 
Sbjct  1367  ............................................................  1308 
 
Query  190   CGAACTGAGAACGGTTTTATGAGATTAGCTCCACCTCGCGGTCTTGCAGCTCTTTGTACC  249 
Sbjct  1307  ............................................................  1248 
 
Query  250   GTCCATTGTAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCC  309 
Sbjct  1247  ............................................................  1188 
 
Query  310   CACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGTGCCCAACTTAATGATGGCAAC  369 
Sbjct  1187  ............................................................  1128 
 
Query  370   TAAGATCAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGAC  429 
Sbjct  1127  ............................................................  1068 
 
Query  430   GACAACCATGCACCACCTGTCACTCTGCTCCCGAAGGAGAAGCCCTATCTCTAGGGTTTT  489 
Sbjct  1067  ............................................................  1008 
 
Query  490   CAGAGGATGTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCC  549 
Sbjct  1007  ............................................................  948 
 
Query  550   ACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCAGCCTTGCGGCCGTACTCCCCA  609 
Sbjct  947   ............................................................  888 
 
Query  610   GGCGGAGTGCTTAATGCGTTAACTTCAGTACTAAAGGGCGGAAACCCTCTAACACTTAGC  669 
Sbjct  887   ............................C...............................  828 
 
Query  670   ACTCATCGGTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTC  729 
Sbjct  827   ........T...................................................  768 
 
Query  730   GCGCCTCAGTGTCAGTTACAGACCAGAGAGCCGCCTTCGCCAC-GGTGTTCCTCCATATC  788 
Sbjct  767   ...........................A..T............T................  708 
 
Query  789   TCTACG-ATT-C-CCGCT-CAC-TGGAATTC-ACTT  818 
Sbjct  707   ......C...T.A.....A...A........C....  672 
 
 

 
Figure 3.6:  BLAST alignment of the nucleic acid sequence derived from control (4A3) and that of known                      
B.thuringiensis 16S rRNA gene sequences found on the NCBI database.  Identities = 744/756                      
(98%), Gaps = 7/756 (0%). 
 
 
 
The alignment for control (4A3) seen in Figure 3.6 gave a 98% match with known 

B.thuringiensis 16S rRNA gene sequences, with 34 hits in one organism. 
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Query  73    ACAAACTCTCGTGGTGCAGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGG  132 
Sbjct  1374  ................-T..........................................  1316 
 
Query  133   CATGCTGATCCGCGATTACTAGCGATTCCAGCTTCATGTAGGCGAGTTGCAGCCTACAAT  192 
Sbjct  1315  ............................................................  1256 
 
Query  193   CCGAACTGAGAACGGTTTTATGAGATTAGCTCCACCTCGCGGTCTTGCAGCTCTTTGTAC  252 
Sbjct  1255  ............................................................  1196 
 
Query  253   CGTCCATTGTAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCC  312 
Sbjct  1195  ............................................................  1136 
 
Query  313   CCACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAAAGTGCCCAACTAAATGATGGCAA  372 
Sbjct  1135  ....................................G.......................  1076 
 
Query  373   CTAAGATCAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGA  432 
Sbjct  1075  ............................................................  1016 
 
Query  433   CGACAACCATGCACCACCTGTCACTCTGCTCCCGAAGGAGAAGCCCTATCTCTAGGGTTG  492 
Sbjct  1015  ............................................................  956 
 
Query  493   TCAGAGGATGTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTC  552 
Sbjct  955   ............................................................  896 
 
Query  553   CACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTTCAGCCTTGCGGCCGTACTCCC  612 
Sbjct  895   ...................................-........................  837 
 
Query  613   CAGGCGGAGTGCTTAATGCGTTAACTTCAGCACTAAAGGGCGGAAACCCTCTAACACTTA  672 
Sbjct  836   ............................................................  777 
 
Query  673   GCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTT  732 
Sbjct  776   ............................................................  717 
 
Query  733   TCGCGCCTCAGTGTCAGTTACAAACAAAAAAG-CGCCTTCGCCACTGGTGTTCCTCCATA  791 
Sbjct  716   ......................G..C.G....T...........................  657 
 
Query  792   TCTCTCC-CATTTAACCGCTACA-AGGGAATTC-ACTTTCCT  830 
Sbjct  656   .....A.G.....C.........C.T.......C........  615 
 
 
 

 
Figure 3.7:  BLAST alignment of the nucleic acid sequence derived from sample n1 and that of known                      
B.thuringiensis 16S rRNA gene sequences found on the NCBI database.  Identities = 748/762                      
(98%), Gaps = 6/762 (0%). 
 
 
 

The alignment for sample n1 gave a 98 % match with known B.thuringiensis 16S rRNA 

gene sequences, as seen in Figure 3.7, with 21 hits in two organisms, and 14 hits for 

Bacillus thuringiensis serovar konkukian str. 97-27. 
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Query  68    ACAAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGTAACGTATTCACCGCGGC  127 
Sbjct  1423  ..........................................G.................  1364 
 
Query  128   ATGCTGATCCGCGATTACTAGCGATTCCAGCTTCATGTAGGCGAGTTGCAGCCTACAATC  187 
Sbjct  1363  ............................................................  1304 
 
Query  188   CGAACTGAGAACGGTTTTATGAGATTAGCTCCCCCTCGCGGTCTTGCAGCTCTTTGTACC  247 
Sbjct  1303  ................................A...........................  1244 
 
Query  248   GTCCATTGTAGCAAGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCC  307 
Sbjct  1243  .............C..............................................  1184 
 
Query  308   CACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGTGCCCAACTTAATGATGGCAAC  367 
Sbjct  1183  ............................................................  1124 
 
Query  368   TAAGATCAAGGGTTGCGCTCGCTGCGGGACTTATTCCCATTATCTTCACGACACGAGCTG  427 
Sbjct  1123  .....................T...........-A....AC...-...............  1066 
 
Query  428   ACGACAACCATGCACCACGGGTTCACTCTGCTCCCGAAGGAGAAGCCCTATCTCTAGGGT  487 
Sbjct  1065  ..................CT.-......................................  1007 
 
Query  488   TGTCAGAGGATGTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGT  547 
Sbjct  1006  ...........................................................-  948 
 
Query  548   CTCCACCGGTGGAGCAGGGCCCCCGAAAATTTCCTTTGAGTTTCAGCCTTGCGGCCGAAC  607 
Sbjct  947   ........C.T.T..-.........TC....-.........................T..  890 
 
Query  608   TCCCCAAGG-GGAGTGCTTAATGCGTTAAACT-CAGCACTAAAAGGCGGAAACCCTTCTA  665 
Sbjct  889   ......-..C...................-..T..........G............-...  833 
 
Query  666   A-ACTTAAGAACTCATCGTTTATGGTGTGTGACTATCTGGGTTTCTAATTTTGTTTGCTC  724 
Sbjct  832   .C.....-.C............C..C...-.....C.A....A......CC.........  775 
 
Query  725   CC-ACGCTTTTCGCGCCTCAG-GCC-GTTTGCA-ACCAGAAAG-CGACTT  769 
Sbjct  774   ..C.......-..........T.T.A...A-..G.........T..C...  727 
 
 

 
Figure 3.8:  BLAST alignment of the nucleic acid sequence derived from sample n3 and that of known                      
B.thuringiensis 16S rRNA gene sequences found on the NCBI database.  Identities = 662/710                      
(93%), Gaps = 21/710 (2%) 
 
 

 

The alignment for sample n3 gave a 93 % match with known B.thuringiensis 16S rRNA 

gene sequences, as seen in Figure 3.7, with 17 hits in two organisms, and 14 hits for 

Bacillus thuringiensis serovar konkukian str. 97-27. 
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Query  16     TAACAGCTTGCATCTTATCAAGTTAGCGGCGGCACGGGTGAATACACACGTGTAGTAACC  75 
Sbjct  9385   ...G.......-......G.............-........G..-.......-G......  9440 
 
Query  76     TGCCCATAATAACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAACATTTTGAA  135 
Sbjct  9441   .........-G.................................................  9499 
 
Query  136    CCGCATGGTTCGAAATTGAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGC  195 
Sbjct  9500   ............................................................  9559 
 
Query  196    ATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGG  255 
Sbjct  9560   ............................................................  9619 
 
Query  256    GTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGG  315 
Sbjct  9620   ............................................................  9679 
 
Query  316    AATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTC  375 
Sbjct  9680   ............................................................  9739 
 
Query  376    GGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCACCTTG  435 
Sbjct  9740   ............................................................  9799 
 
Query  436    ACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG  495 
Sbjct  9800   ............................................................  9859 
 
Query  496    TGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTG  555 
Sbjct  9860   ............................................................  9919 
 
Query  556    ATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAG  615 
Sbjct  9920   ............................................................  9979 
 
Query  616    AAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCA  675 
Sbjct  9980   ............................................................  10039 
 
Query  676    GTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAG-CGCGAAAGCGTGGG-AGCAA  733 
Sbjct  10040  .......................................G..............G.....  10099 
 
Query  734    ACAGGATTAGATACC-TGGTAGTC-ACGC-GTAA-CGATGAGTGCTAAGTGT-AGAGG-T  787 
Sbjct  10100  ...............C........C....C....A.................T.....G.  10159 
 
Query  788    --CCGCC-TT-AGTGCTGAA  803 
Sbjct  10160  TT.....C..T.........  10179 
 
 

 
Figure 3.9:  BLAST alignment of the nucleic acid sequence derived from sample n5 and that of known                      
B.thuringiensis 16S rRNA gene sequences found on the NCBI database.  Identities = 778/800                         
(97%), Gaps = 17/800 (2%). 
 
 

The alignment for sample n5 gave a 97 % match with known B.thuringiensis 16S rRNA 

gene sequences, as seen in Figure 3.7, with 15 hits in two organisms, and 14 hits for 

Bacillus thuringiensis serovar konkukian str. 97-27. 
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The multiple sequence alignment seen in Figure 3.10 shows a 26% similarity across all 6 

sequences.  Areas of high homology are however seen between the control sample and 

samples 10, n1 and n3 

 

 

Continued on next page 
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Figure 3.10: Clustal X multiple sequence alignment of the 16s rRNA gene sequences obtained from                       
isolates n1, n3 n5, S10, S9, S4  as well as the control (4A3). A 26% homology is evident within all 7 
sequences. 
 

 

In Figure 3.10 a high homology is evident between samples 4, 9 and n5.  Since this does 

not have any indication how the sequences were related to each other, a neighbour 

joining (N-J) tree was constructed for the seven sequences in order to understand the 

relationships to each other.  In Figure 3.11 it is evident that branches of the phylogenetic 

dendrograms are similar in length for samples 10, n1, n3 and the control strain.  The same 

observation is evident for distances calculated for samples 4, 9 and n5. 
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Figure 3.11:  Phylogenetic dendrogram for samples S4, S9, S10 n1, n3, n5 and the control (4A3) 
reconstructed according to the Neighbour  Joining (NJ) analysis function of CLUSTAL X. 
 
 

These distances however only represent the distances calculated after corrections and 

could not give an accurate indication of the relationship between the seven sequences.  

To further understand the real number of differences between the sequences themselves, 

the Bootstrap Tree method was used to calculate the confidence values for each of the  

groupings. 
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Figure 3.12:  Phylogenetic dendrograms for samples S4, S9, S10 n1, n3, n5 and the control (4A3) 
reconstructed according to the Bootstrap Neighbour Joining (NJ) analysis function of CLUSTAL X. 
Bootstraps were done using 1000 replications. 
 

 

As can be seen in Figure 3.12, the numbers on the lower branches of each main branch of 

the tree represent strong Bootstrap Proportions (BP). These high BPs represent a strong 

bootstrap confidence and adds support that the branches for this tree are correct.           
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3.4  Discussion 

 

In chapter 2 it was evident that the various samples showed distinctive colours depending 

on their sampling site.  Thus the initial step of dilution was performed to minimize 

possible contaminants brought about by humic materials co-extracted with bacterial 

cultures.  In this chapter we tested a number of DNA extraction methods to ensure that 

the DNA yield was indeed of high quality and inhibitor free.   

 

The CsCl-EtBr density gradient extraction produced high purity plasmid DNA but did not 

extract any significant genomic DNA, contrary to what we expected. In addition to this 

the method is very costly and time consuming.  This protocol thus would not be suited for 

a rapid analysis of DNA extracted from a large sample size.  The SDS mediated reaction 

as well as the modified alkaline lysis method produced high purity DNA,  however it is 

seen in Figure 3.1 that the modified alkaline lysis method was more efficient at extracting 

plasmids ranging from 500-1500bp in sample 10.  It is also seen that the modified 

alkaline lysis method proved more efficient at extracting plasmids ranging from 1500- 

3000bp.  Similar plasmids are evident in the 7 minute boiling lysis products but at lower 

yields.   Each of the methods used have their advantages and disadvantages depending on 

what is required of them.  For the purpose of this study, the modified alkaline lysis 

method proved most effective in extracting a wide range of plasmids in a short amount of 

time.  The boiling lysis produced more DNA over a 7 minute incubation time period than 

the 5 minute incubation period.  This extraction method uses significantly less time to 

obtain a DNA product in comparison to the other methods used, however the purity of the 

DNA is compromised.   The lower purity DNA template did however prove to be 
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sufficient for obtaining positive PCR products when used in determining the 16S rDNA 

identity of the isolates. 

 

Nucleotide sequences obtained from the positive amplification products revealed that 5 of 

the samples showed highly significant similarity with B. thuringiensis when compared to 

known 16S rDNA sequences in the NCBI database.  These provide strong support that 

the samples are indeed B. thuringiensis.  Although the sequences share high homology 

with known strains, Figure 3.10 shows that this homology is not consistent across the 

seven sequences obtained.  Groupings are evident where samples S10, n1 and n3 and the 

control show high homology to each other, and the same is evident in a second grouping 

containing samples S4, S9 and n5.  The NJ tree derived from the alignment supports the 

grouping observation where samples 4, 9 and n5 have a phylogenetic distance of 

approximately 0.5 in comparison with samples S10, n1 and n3 which have a calculated 

phylogenetic distance of approximately 0.1 or below.  When considering the data from 

this tree it must be taken into account that these distances are calculated after corrections 

where transversions are accounted for more than transitions and distances increase with 

respect to each other as genetic differences accumulate.  The data thus does not represent 

the real number of differences between the sequences themselves (Berry & Gascuel, 

1997).  For this reason the Bootstrap tree is a better option making assessments of 

evolutionary lineage.  The frequency with which any given branch is found is recorded as 

the Bootstrap Proportion (BP). These proportions can be used as a measure of the 

reliability (within limitations) of individual branches in the optimal tree (Creevey et al., 

2004).   
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The high values on the Bootstrap tree in Figure 3.12 confirm the initial observation that 

samples S10, n1 and n3 as well as the control are closely related all originating from a 

single branch with a reliability measure of 1000.  The same observation is also seen for 

samples S4, S9 and n5.   

 

The data obtained from the 16s rRNA nucleotide sequences provides strong support that 

the samples that were isolated were indeed B. thuringiensis.  The next logical step was to 

optimize the characterization of the cry1A through PCR to determine if the gene was 

indeed present within the isolates. 
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Chapter 4 

 

Cloning the Bacillus thuringiensis isolate cry1A 

gene sequence 

4.1  Introduction 

 

In the pilot study discussed in chapter 1, it became evident that PCR products amplified 

from putative Bacillus thuringiensis (Bt) may have contained additional sequences of 

similarity to the ones desired. Repeated attempts at PCR amplification of cry1a gene 

sequence produced similar mixed signals.  A closer examination of the primer base 

composition indicated that the original primers TYIUN12 and TYIAA contained sections 

that had the potential to form hairpin loop structures.  These sections were removed and 

the PCR reaction was again performed using the new truncated primer pair.  The resultant 

PCR products had a much higher yield and quality.  These PCR products were sequenced 

by Inqaba Biotechnical Services and proved to be more suited to our transformation 

experiments than the previously sequenced products. 

 

These products were purified and prepared for use in transformation using the pTZ57R/T 

cloning vector.  It provided us with a convenient method whereby our PCR products 

could be directly cloned into the vector without digestion or manipulation to the flanking 

region.  The pTZ57R/T cloning vector is from the Fermentas InsT/Aclone™ PCR 

Product Cloning Kit. The kit was used to reliably clone cry1A gene products into the  
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pTZ57R/T cloning vector. The vector precleaved with Eco32I and treated with 

deoxynucleotidyl transferase to create 3’-ddT at both ends allows for PCR fragments with 

3’-dA overhangs to be  ligated forming a circular molecule. 

 

 

Figure 4.1:  The pTZ57R/T cloning vector used to directly clone cry1A amplification products. 
 

 

The ligation procedure inserts the PCR product into the Lac Z operon within the vector. 

Ligation products were then used in the transformation experiment with the aid of 

Fermentas TransformAIDTM Bacterial Transformation Kit.  Competent cells were 

prepared by treating JM109 cells with CaCl2 at low temperature.  A suspension of cells 

was added to the transformation solution and put through a series of incubation steps. 

Successful transformants were isolated using LB-Ampicillin plates supplemented with X-

gal and IPTG.  DNA was extracted from the transformants using the boiling lysis method. 

The DNA was probed for the presence of the cry1a gene sequence with PCR 

amplification in order to confirm transformation. 
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The specific objectives for this chapter were: 

• Identify cry1A gene sequences from the putative isolates using truncated PCR primers 

• Prepare chemically competent cells for transformation 

• Clone amplification products into plasmid vector pTZ57R/T and transform it into 

chemically competent E. coli 

• Extract DNA from transformants and confirm the presence of cry1A gene sequences 

using PCR 

• Compare the sequence data obtained from both the isolate DNA and the Clone DNA 

 

4.2 Methodology 

 

4.2.1 PCR amplification of the cry1A gene sequence 

 

 The DNA was extracted from the putative Bt isolates and screened via PCR using the 

truncated cry1A specific primers TYIUN12 (r):  5’-ATC ACT GAG TCG CTT CGC AT-

3’ and TYIAA (f):5’- CAG CTG GAG CAG TTT ACA CC-3’.  The original primer 

sequence as seen below had the potential hairpin formation in the positions highlighted in 

red. 

TYIUN12 (r) 
5' ATCACTG(AGTC)GCTTCGCATGTTT(GACT)TTCTC 3' 
 
 
 
TYIAA (f) 
5'          GAGCCA(AGCAGCT)GGAGCAGTTTACACC 3' 
 
3' CCACATTTGACGAGG(TCGACGA)ACCGAG          5' 
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For PCR amplification, the template DNA obtained from various lysis methods was 

diluted with sterile water to obtain 10-3 fold for each reaction. For DNA extracted using 

the boiling lysis method, 5ųl of the boiled suspension was used for each reaction. The 

template DNA was mixed with 2X PCR Master Mix containing a 2X concentrated 

solution of Taq DNA polymerase, reaction buffer, MgCl2 and dNTPs. The PCR reaction 

was performed for 30 cycles with denaturation of template DNA at 94°C for 1 minute, 

annealing templates and oligonucleotide primers at 52°C for 2 minutes, and extension of 

PCR products at 72°C for 3 minutes. The PCR products were separated and analyzed on 

a 2% agarose gel. DNA extracted from an inoculum of Bacillus thuringiensis serovar. 

thuringiensis (4A3) supplied by Dr. Daniel R. Zeigler from The Bacillus genetic stock 

centre at the Ohio State University was used as the positive control. 

 

4.2.2 Gel electrophoresis 

 

An aliquot (7-10 µl) of each amplification reaction was analysed on 2% w/v agarose gels 

cast and run in TBE buffer (pH 8.3) at about 120 volts until the dye marker was near the 

end of the gel. Gels were stained with ethidium bromide and the DNA bands 

photographed under transmitted UV light.  A 100 base pair marker (Pharmacia, LKB) 

was included on every gel. 

 

4.2.3 Preparation of chemically competent cells 

 

Bacterial culture (5ml) was grown up overnight at 37°C.  The samples were diluted 1:100 

and further incubated at 37°C for 2 hours upon reaching optimal density (0.5-0.6 at 
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600nm). Cells were then centrifuged at 5000rpm in a J10 rotor for 10 minutes.  The 

supernatant was discarded and the cells stored on ice.  The cells were resuspended in 

100ml of 100mM MgCl2 and incubated on ice for 20-30 minutes.  Cells were spun down 

at 4000 rpm and the supernatant discarded and the pellet resuspended in 100mM CaCl2 

supplemented with 15% glycerol.  Samples were aliquoted into 1.5ml microcentrifuge 

tubes and stored at -20°C 

 

4.2.4  Cloning of Taq amplified cry1A gene products 

 

A 1.5 ml microcentrifuge tube containing 3µl of plasmid vector pTZ57R/T, 4µl of PCR 

fragment template, 3µl of  10X ligation buffer, 3µl of PEG 4000 solution, 25µl of 

nuclease free water and 5U (1µl) of T4 DNA ligase was incubated at 22°C overnight. 

 

 

4.2.5  Transformation 

 

An overnight culture of competent cells (1.5 ml) was added to a microcentrifuge tube and 

spun down at maximum speed at 4°C for 1 minute.  The pelleted cells were resuspended 

in 300µl of TransformAid™ T-solution (Fermentas Life Sciences) and incubated on ice 

for 5 minutes. The cells were spun down at maximum speed at 4°C for 1 minute and the 

supernatant discarded.  The pelleted cells were resuspended in 120µl of TranformAid T-

solution and incubated on ice for 5 minutes. The resuspended cells (50 µl) were added to 

2.5 µl of the ligation mixture and incubated on ice for 5 minutes.  The mixture was plated 

on pre-warmed LB-Ampicillin plates and incubated at 37°C overnight. Control 
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experiments were performed using the control PCR fragments provided (Fermentas Life 

Sciences). 

 

4.2.6  Colony selection 

 

The transformation mixture was plated on pre-warmed LB-Ampicillin plates 

supplemented with X-gal and IPTG. Successful ligation of the DNA insert into the 

pTZ57R/T plasmid construct was determined by growth of bacterial colonies with a Lac- 

phenotype.  All colonies displaying the Lac- phenotype were randomly picked and their 

DNA extracted using boiling lysis method.  

 

 

4.2.7 Boiling lysis 

 

Bacterial cultures were streaked onto agar plates in order to obtain single colonies, thus 

ensuring a homogenous synchronised culture. The colonies were then collected using a 

metal loop and resuspended in 1 ml sterile water. The microcentrifuge tubes were 

vortexed until a homogenous cell paste was obtained.  The tubes were then boiled in a 

heat block (100°C) for time intervals of 5 and 7 minutes. The samples were then spun 

down for 10 min maximum speed in a microcentrifuge. The supernatant was transferred 

to fresh microcentrifuge tubes containing 750ųl phenol-chloroform isoamyl alcohol. The 

tubes were vortexed and then centrifuged in a microfuge for 10 min at maximum speed.  

The upper phase was transferred to a fresh 1.5 ml microcentrifuge tube and washed with 
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70% ethanol.  The tubes were centrifuged and the pellet resuspended in 200ųl sterile 

water.  

 

4.2.8 PCR amplification the cry1A gene sequence  

 

The polymerase chain reaction (PCR) offers a powerful tool for detecting, characterizing, 

and isolating cry genes in Bt. The alternating blocks of conserved and variable 

nucleotides among cry genes make it possible to select primers to amplify entire gene 

subfamilies on the one hand or specific gene types on the other.  The process has been 

widely exploited over the last decade to determine the content of cry genes and to a lesser 

degree the cyt genes of Bt.   

 

The information obtained has added to our understanding of the natural occurrence of the 

genes among strains as well as their geographic locations (Porcar et al, 2002).  By 

selecting primers specific to regions or blocks that have been highly conserved within the 

cry genes, one can target a specific host range from different families of genes, and in 

theory, novel cry genes may be identified. The uses of PCR for the identification of cry 

genes vary in literature and are thus performed under different conditions.  The DNA 

used as a template for the reaction is typically obtained through lysis and purification 

methods such as the SDS and CsCl methods, or through time saving techniques such as 

boiling lysis (Cerón et al, 1995; Gleave et al, 1993).   
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4.2.9  Automated DNA sequencing 

 

Once positive PCR products were identified through visualization on an agarose gel, a 

sample of the reaction mixture was purified and then sequenced by Inqaba Biotechnical 

Services.  The sequences obtained were viewed with ‘Chromas2’ and Bioedit™ software. 

 

4.2.10  Sequence Alignment of cry genes with known sequences 

 

Once the nucleotide sequence of the PCR product had been derived, it was compared 

with sequences of strains known to contain the cry1Aa gene.  The sequences were entered 

into the NCBI’s (National Centre for Biological Information) Basic Local Alignment 

Search Tool (BLAST) and compared to known sequences submitted on the NCBI 

database. The sequences obtained were analyzed using the multiple sequence alignment 

program ClustalW (The ClustalX windows interface designed by TJ Gibson) (Higgins, 

1994) in order to determine homology within the sequences as well as to determine their 

evolutionary lineage. 
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4.3 Results 

 

Transformation of the competent cells produced low numbers of positive transformants 

(3-5 Cfu/ml) (Figure 4.2 B) in comparison with the control experiments (Figure 4.2 A).  

All positive samples were streaked onto fresh LB-ampicillin plates.  The positive 

transformants were subsequently probed for the presence of cry1A genes in a PCR 

reaction. 

 

  

 

Figure 4.2:  Digital photographs (A) The positive transformation control showed a high degree of growth                       
after transformation, (B) The Cloned cry1A PCR fragment transformant only produced 3 colony                     
forming units (C) Competent cells without PCR fragment appeared blue in colour indicating                     
that transformation had not occurred.  All the transformation cultures grown on LB- ampicillin plates 
supplemented with X-gal and IPTG. 

A B 

C 
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1       2        3        4       5       

Generuler

100bp ladder

 
Figure 4.3:  A Photograph of an agarose gel loaded showing PCR amplification   Products for positive 
sample S10 (lane 1 &2), control 4A3 (lane 3), clone (lane 4) and 100bp marker (lane 5). 
 
 
 
The PCR reaction produced positive amplification results for the cry1a gene from the cry 

gene clone, seen in lane 4 of the agarose gel shown in Figure 4.3, and was subsequently 

renamed CLONEA1A.  The amplification products were of the same molecular weight as 

those obtained from both the control (lane 3) and sample S10 (lanes 1 & 2).   

The PCR products were sequenced by Inqaba Biotechnical Services, and the resultant 

nucleic acid sequences were compared to those of known cry1a gene sequences on the 

NCBI database with the use of the Mega BLAST alignment tool.   

 



 99

 
 
Query  24    CCTTACATCACAAATTACAGCAGAATACCTTTAACAAAATCTACTAATCGTTGGCTCTGG         83 
Sbjct  1423  . . . . - . . . . . . . . . . . . . . - . . - . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . .    1478 
 
Query  84    AACTTCTGTCGTTAAAGGACCAGGATTTACAGGAGGAGATATTCTTCGAAGAACTTCACC      143 
Sbjct  1479   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1538 
 
Query  144   TGGCCAGATTTCAACCTTAAGAGTAAATATTACTGCACCATTATCACAAAGATATCGGGT      203 
Sbjct  1539    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1598 
 
Query  204   AAGAATTCGCTACGCTTCTACTACAAATTTACAATTCCATACATCAATTGACGGAAGACC      263 
Sbjct  1599    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1658 
 
Query  264   TATTAATCAGGGTAATTTTTCAGCAACTATGAGTAGTGGGAGTAATTTACAGTCCGGAAG      323 
Sbjct  1659  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1718 
 
Query  324   CTTTAGGACTGTAGGTTTTACTACTCCGTTTAACTTTTCAAATGGATCAAGTGTATTTAC         383 
Sbjct  1719   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        1778 
 
Query  384   GTTAAGTGCTCATGTCTTCAATTCAGGCAATGAAGTTTATATAGATCGAATTGAATTTGT       443 
Sbjct  1779  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      1838 
 
Query  444   TCCGGCAGAAGTAACCTTTGAGGCAGAATATGATTTAGAAAGAGCACAAAAGGCGGTGAA  503 
Sbjct  1839  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     1898 
 
Query  504   TGAGCTGTTTACTTCTTCCAATCAAATCGGGTTAAAAACAGATGTGACGGATTATCATAT      563 
Sbjct  1899  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       1958 
 
Query  564   TGATCAAGTATCCAATTTAGTTGAGTGTTTATCAGATGAATTTTGTCTGGATGAAAAACA       623 
Sbjct  1959    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     2018 
 
Query  624   AGAATTGTCCGAGAAAGTCAAACATGCGAAGCGA  657 
Sbjct  2019  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   2052 
 
 
 

 
Figure 4.4:  BLAST alignment of the nucleic acid sequence derived from CLONEA1A and that of known                      
B.thuringiensis cry1A gene sequences found on the NCBI database.  Identities = 630/634                     
(99%), Gaps = 4/634 (0%). 
 
 
The alignment for CLONEA1A gave a 99 % match with known B.thuringiensis cry gene 

sequences, as seen in Figure 3.7, with 97 hits in twelve organisms, including  Bacillus 

thuringiensis serovars sotto, aizawai, kurstaki, kunthalaRX28, kunthalanags3, kenyae, 

kunthalaRX27, kunthalaRX24, wuhanensis, morrisoni and alesti. 
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Query  20    TGAATGTTAATAATATAATGTCCTTCATCACAAATTACAGCGAATACCTTTAACAAAATC  79 
Sbjct  1457  . . . . . - . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . - . A . . . . . . . . . . . . . . . . . .   1513 
 
Query  80    TACTAATCGTGTGGCTCTGGAACTTCTGTCGTTAAAGGACCAGGATTTACAGGAGGAGAT  139 
Sbjct  1514  . . . . . . . . - . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1571 
 
Query  140   ATTCTTCGAAGAACTTCACCTGGCCAGATTTCAACCTTAAGAGTAAATATTACTGCACCA  199 
Sbjct  1572  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1631 
 
Query  200   TTATCACAAAGATATCGGGTAAGAATTCGCTACGCTTCTACTACAAATTTACAATTCCAT  259 
Sbjct  1632  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1691 
 
Query  260   ACATCAATTGACGGAAGACCTATTAATCAGGGTAATTTTTCAGCAACTATGAGTAGTGGG  319 
Sbjct  1692  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1751 
 
Query  320   AGTAATTTACAGTCCGGAAGCTTTAGGACTGTAGGTTTTACTACTCCGTTTAACTTTTCA  379 
Sbjct  1752  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1811 
 
Query  380   AATGGATCAAGTGTATTTACGTTAAGTGCTCATGTCTTCAATTCAGGCAATGAAGTTTAT  439 
Sbjct  1812  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1871 
 
Query  440   ATAGATCGAATTGAATTTGTTCCGGCAGAAGTAACCTTTGAGGCAGAATATGATTTAGAA  499 
Sbjct  1872  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1931 
 
Query  500   AGAGCACAAAAGGCGGTGAATGAGCTGTTTACTTCTTCCAATCAAATCGGGTTAAAAACA  559 
Sbjct  1932  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1991 
 
Query  560   GATGTGACGGATTATCATATTGATCAAGTATCCAATTTACGTTGAGTGTTTATCAGATGA  619 
Sbjct  1992  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . .   2050 
 
Query  620   ATTTTTGTCCGAATGAAAAACAAGAATTGTCCGAGAAAGTCAAACATGCGGTGCGAC  676 
Sbjct  2051  . . . . . - . . . T . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A A . . . . .   2106 

 

Figure 4.5:  BLAST alignment of the nucleic acid sequence derived from sample 10 and that of known                      
B.thuringiensis cry1A gene sequences found on the NCBI database.  Identities = 645/657                      
(98%), Gaps = 7/657 (1%). 
 
The alignment for sample 10 gave a 98 % match with known B. thuringiensis cry gene 

sequences, as seen in Figure 4.5, with 97 hits in twelve organisms, including  Bacillus 

thuringiensis serovars sotto, aizawai, kurstaki, kunthalaRX28, kunthalanags3, kenyae, 

kunthalaRX27, kunthalaRX24, wuhanensis, morrisoni and alesti. 
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Figure 4.6: Clustal X multiple sequence alignment of the cry1a gene sequences obtained from                     
sample 10 and CLONEA1A. A 90% homology is evident within the two sequences. 
 

The aligment obtained using Clustal X v1.81 seen in Figure 4.6 shows a 90 % homology 

within between the two sequences. The variation between the sequences is evident at the 

5’ and 3’ ends. 
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4.4  Discussion 

 

In this chapter we have reported two techniques for accurately identifying the cry gene 

sequence from known and unknown isolates.  In a continuation from the pilot study in 

chapter two, the various DNA templates were tested for their ability to produce positive 

PCR products.  The modified alkaline lysis for large plasmid extraction produced positive 

PCR amplification products.  More significantly though, the rapid boiling lysis protocol 

produced positive PCR amplification products at a more consistent rate than that of the 

DNA template obtained from the modified alkaline lysis protocol.  This observation 

induced more confidence in the boiling lysis protocol which was subsequently used as the 

primary source for DNA templates in all experimental repetitions.  

 

 The original PCR primers TYIUN12 and TYIAA were revised due to the detection of 

areas within the primer sequence which had the potential to form hairpin loop structures.  

With the revised primers in conjunction with the DNA template we were able to obtain 

positive PCR amplification products for sample 10.  The resultant nucleotide sequence 

data obtained confirmed that sample 10 did indeed contain the cry1A gene thus ultimately 

confirming that this sample was Bt.   Pairwise alignment with the BLAST alignment tool 

produced a 98 % match with known Bt cry1A gene sequences. 

 

The initial pilot study highlighted the potential that several similar copies of the desired 

cry1A gene may have been present in the PCR amplification products.  The gene cloning 

experiment designed for this test was performed using the PCR products obtained for the 

cry1A gene sequence of the known Bt strain 4A3.  We have reported successfully cloning 
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the cry1A gene PCR amplification product into the pTZ57R/T cloning vector.  PCR 

analysis of the CLONEA1A produced positive cry1A gene products confirming that 

transformation was successful.  In this study it was noted that the transformants did not 

show any variation in sequence identity as hypothesized in the pilot study.  The resultant 

nucleotide sequence was compared to known cry1A gene sequences on the NCBI 

database using the BLAST pairwise alignment tool.  A 99 % match was obtained for 

CLONEA1A compared with known Bt cry gene sequences. 

 

The sequences obtained from the two methods were aligned with each other using Clustal 

X v1.81.  The alignment showed a 90% homology within the two sequences.  Following 

the characterization of the cry1A gene, a bioassay was designed in order to determine the 

toxicity of the δ-endotoxin produced by this isolate.  

 

 

 

 

 

 

 

 

 

 

 

 



 104

Chapter 5 

 

Toxicity of Bacillus thuringiensis isolated from 

South African soils towards the greater wax moth 

Galleria mellonella (Lepidoptera: Pyralidae) 

 

5.1 Introduction 

 

Six Bacillus thuringiensis samples isolated from South African soils have been shown to 

have significant homology with known Bacillus thuringiensis species.  In particular the 

gene sequence for the endotoxin produced by B. thuringiensis isolate S10 obtained 

through PCR showed significant homology to Cry1A. Cry1A is a δ-endotoxin known to 

induce mortality in lepidopteran insects (Bietlot et al, 1993; Dubois & Dean 1995; Bravo 

et al, 1996; Clairmont et al, 1998; Chen et al, 2005). In order to understand the potential 

of the isolate’s toxin, a bioassay was performed to compare the basic efficacy of the toxin 

in comparison to the known Cry1A toxin of B. thuringiensis Serovar. Thuringiensis 

(4A3) and B. thuringiensis Serovar. Brasilensis (4AY1) kindly supplied by Dr. Daniel R. 

Zeigler from The Bacillus genetic stock centre at the Ohio State University.  The greater 

wax moth caterpillar Galleria mellonella (Lepidoptera: Pyralidae), was used as the 

lepidopteran model host for evaluating the capacity of endotoxins produced by the B. 

thuringiensis isolates. 
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Galleria mellonella falls into the order Lepidoptera and is a major pest of the beekeeping 

industry (Shimanuki et al., 1992).  The larvae cause considerable damage to the hive 

comb and honey by tunneling into the wax and leaving behind a mass of silk web (Swan 

& Papp, 1972). The G. mellonella life cycle is made up of four stages: eggs, larvae 

consisting of several instars, pupa, and the adult moth (Shimanuki et al, 1992).  The eggs 

are laid in crevices of the honey comb, and larvae hatch within seven days. The larvae 

feed on the honey, pollen, and wax produced by honeybees (Lebedeva et al, 2002). 

Stronger bee colonies manage to control the infestation but the weaker colonies such as 

those that have lost their queen are forced to abandon the hive. With no resistance, the 

larvae can destroy the hive within a month (Shimanuki et al., 1992).   

 

The specific objectives for this chapter were: 

• Obtain spore-endotoxin mixtures from Bt isolates as well as the control cultures 

• Rear G. mellonella larvae to be used in bioassay experiments 

• Expose G. mellonella larvae to various concentrations of the spore-endotoxin mixtures 

• Assess the larvae for evidence of sensitivity to the endotoxin 

• Evaluate the data obtained 

 

 

 

 

 

 



 106

5.2 Methodology 

5.2.1 Bacterial Cultures 

 

Known B. thuringiensis cultures 4AY1 and 4A3 as well as the South African B. 

thuringiensis isolate (10) were grown from spore collections and frozen stocks. Cultures 

were maintained in LB media at 30°C until needed. 

 

5.2.2 Galleria mellonella larvae rearing 

 

G. mellonella larvae obtained from Dr Vince Gray’s Wits university laboratory collection 

were reared on an artificial diet made up of 22% corn meal, 22% wheat germ, 11% dried 

milk, 5.5% dried yeast, 17.5% beeswax, 11% honey and 11% glycerol (Frőbius et al, 

2000).  The medium was made up with 100ml sterile water and cooked in a microwave 

for 5 minutes. Larvae were kept at room temperature in dark growth boxes.   

 

 

5.2.3 Crude spore-endotoxin preparation 

 

B. thuringiensis cultures 4AY1, 4A3 and isolate S10 were grown in LB media for 7 days 

to ensure complete lysis of living cells.  The crude samples containing a mixture of 

spores and toxic crystals were centrifuged at 10 000 rpm for 10 minutes. The pellet was 

resuspended in 1ml sterile H2O. The spore-endotoxin solution was diluted with sterile 

water to obtain an optical density of 1(OD=1) at 280nm.  The spore-endotoxin solution 

was serially diluted for the bioassay experiments by adding 10µl of the solution to 10µl of 
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sterile water in a sterile microfuge tube. This was repeated for the five fold dilution.  

Each dilution made up the spore-endotoxin treatments. 

 

5.2.4 Galleria mellonella bioassay 

 
Bioassay plates were prepared by placing a small amount of artificial diet (22% corn 

meal, 22% wheat germ, 11% dried milk, 5.5% dried yeast, 17.5% beeswax, 11% honey 

and 11% glycerol) (Frőbius et al, 2000) in the centre of a 40 mm Petri dish. The artificial 

diet was inoculated with the spore-toxin mixture by alloquoting 1ml of the solution to the 

food surface. Third to fourth instar G. mellonella larvae approximately 0.2g in weight 

were randomly selected for each inoculation.  There were 5 larvae per Petri dish. Known 

B. thuringiensis strains 4AY1 and 4A3 were used in the positive control experiments and 

samples containing no spore toxin mixture were used as negative controls. Larvae were 

characterized according to health in terms of mass gain or loss after a period of 7 days. 

 

5.2.3 Bioassay data processing 

 

The larvae were inspected for any mortality or visible signs of physiological distress. The 

average weights of the larvae were recorded for assessing concentration affects of the 

spore-endotoxin treatments. The data was processed using an ANOVA single factor 

statistical test to determine if there was any significant variation between the recorded 

larvae weights of the test bioassay compared to the reference bacteria and controls. 
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5.3 Results 

5.3.1 Crude toxin preparation 

 
The endotoxin-spore solutions were diluted to obtain an OD reading of 1, which was used 

as the treatment with the highest concentration (1).  Serial dilutions of the spore-

endotoxin solutions were made in order to make up the bioassay treatments (2) to (6) for 

each bacterium. 

 

Table 5.1: Optical density of the endotoxin-spore solution of the known Bacillus thuringiensis strains 
4AY1 and 4A3, and test isolate S10 as used for the primary inoculum.  
 

Sample OD at A280nm OD at A320nm Concentration 
(g/ml) 

4AY1 1.047 0.962 0.738 

4A3 0.992 0.594 0.584 

Isolate S10 1.088 1.057 0.704 

 

5.3.2 Bioassay 

After seven days of feeding on an artificial diet supplemented with different 

concentrations of spore-endotoxin solutions, only two larvae mortalities were recorded in 

the endotoxin bioassay for isolate S10 (at a concentration of 1 (0.704 g/ml)). One 

mortality was recorded in the bioassay containing endotoxins of 4A3 concentration of 1 

(0.584 g/ml).  
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Table 5.2: The average weights of the Galleria mellonella larvae after 7 days of exposure to the endotoxin-
spore treatments of 4AY1 and 4A3, and test isolate S10 

Dilution factor 4AY1 4A3 S10' 

Treatment 1 1 0.18 0.45 0.07 

Treatment 2 1/10  0.45 0.75 0.5 

Treatment 3 1/100 0.65 0.67 0.6 

Treatment 4 1/1000 0.63 0.55 0.68 

Treatment 5 1/10 000 0.65 0.5 0.58 

Treatment 6 1/100 000 0.72 0.94 1.08 

 Control 1.17 0.78 1.17 
 

The Values in table 5.2 are the average weight of the Larvae per treatment, the numbers 

1-6 being the spore-endotoxin treatment concentration with 1 being OD=1 at 280nm and 

then 6 being the lowest serial dilution. It can be seen that the S10’ (1) reading is very low 

as a result of two larvae mortalities for this treatment. The average weights of the test 

larvae are much lower at the highest concentration (1) than those reported for the control 

experiments. This weight appears to increase in a linear fashion in the assays for both 

isolate S10 and the known isolate 4AY1.  Known isolate 4A3 follows a similar linear 

progression, however some outlying data is evident in the control experiment for this 

bioassay. 

From the graph in Figure 5.1 it can be seen that the linear progression of the average 

larvae weight in the bioassay using spore-endotoxin treatments of isolate S10 shows 

distinct similarity to that of the 4AY1 bioassay.  A similar trend is also evident in the 4A3 

bioassay with regards to the exponential increase in mass from treatment 1 to treatment 2, 

however the average mass of the larvae at these concentrations is approximately 0.3g 

more than those recorded for isolate S10. 
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Figure 5.1: A graph showing the linear progression of the average weights of test Galleria mellonella 
larvae after 7 days of exposure to the endotoxin-spore treatments of 4AY1 and 4A3, and isolate S10 

 
 
 
 

In Figure 5.2 (A) it is evident that the test larvae of the isolate S10 assay are significantly 

smaller in size when compared the control larvae fed on artificial diet without endotoxin-

spore supplementation. The test larvae show signs of poor health and lack of vigor in 

comparison to the control Larvae. In Figure 5.2 (B) the average size of the larvae are seen 

to significantly increase as the concentration of toxin decreases from 1 to 6 in both the 

bioassays of isolate 10 and 4A3 

Control 
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Figure 5.2: (A) A digital photograph showing the difference in size between G. mellonella larvae feeding 
on artificial diet supplemented with a spore-endotoxin mixture of B. thuringiensis isolate S10 over 7 days 
(on the right) in comparison to control G. mellonella larvae feeding artificial diet without spore-endotoxin 
supplementation. (B) A digital photograph showing a comparison in the size of G. mellonella larvae fed on 
artificial diet containing treatments 1 to 6 for bioassays using spore-endotoxin mixtures for Isolate 10 and 
4A3. 
. 
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5.3.3 ANOVA single factor data 

 

                  
  Anova: Single Factor        
           
  SUMMARY        
  Groups Count Sum Average Variance     
  4AY1 6 3.28 0.546667 0.040427     
  4A3 6 3.86 0.643333 0.033347     
  S10' 6 3.51 0.585 0.10535     
           
           
  ANOVA         

  
Source of 
Variation SS df MS F P-value F crit   

  
Between 
Groups 0.028433 2 0.014217 0.238104 0.791043 3.68232   

  
Within 
Groups 0.895617 15 0.059708     

        
  Total 0.92405 17         
           
                  
 
Figure 5.3: Statistical data obtained from the ANOVA single factor test performed on the average weights 
of G. mellonella feeding on artificial diet supplemented with concentrations 1 to 6 in bioassays using a 
spore-endotoxin mixture of B. thuringiensis isolate 10, 4A3 and 4AY1. 
 

 

Statistical data obtained from the ANOVA single factor produces an F value indicating 

that at p=0.05 the biomass weights do not significantly deviate from the average mass of 

the insect larvae throughout the bioassay replicates (F= 0.238104; df=17 ; P=0.791043). 
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5.3 Discussion  

 

The South African Bacillus thuringiensis isolate 10 was tested for its toxicity towards 

larvae of the lepidopteran Galleria mellonella.  In this study only two mortalities were 

recorded for the bioassay using the endotoxin-spore mixture of isolate S10 at a 

concentration of 1 (0.704 g/ml). Although no significant mortalities are recorded at lower 

endotoxin-spore concentrations, when compared to the known Bt endotoxins of 4AY1 

and 4A3,  only one mortality is recorded for the bioassay using the endotoxin of 4A3 at a 

concentration of 1 (0.584 g/ml).  

 

In both the bioassays for isolate 10 and 4A3 concentration of 1, the living larvae showed 

signs of poor health, including limited motility and an overall reduction in mass when 

compared to the control larvae as seen in figure 5.2.  This reduction in weight indicates 

that the endotoxin causes either a drastic reduction in the amount of diet consumed or 

interference with movement of food through the gut wall (Schesser et al, 1977).  The 

average weight of the test larvae recorded in table 5.1 indicates that there is similarity 

between the average weight of the larvae in the test bioassay and those of the bioassay 

larvae using the known endotoxins.  This similarity is more evident in figure 5.1 where 

the average weights are plotted on a graph.  The linear progression of the average weight 

is inversely proportional to the concentration of the endotoxin-spore mixture for the test 

isolate 10 and the known samples 4AY1 and 4A3. 

 

From the statistical data obtained in figure 5.3 the F value indicates that at p=0.05 the 

biomass weights do not significantly deviate from the average mass of the insect larvae 
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throughout the bioassay replicates (F= 0.238104; df=17 ; P=0.791043). This supports the 

graphic data in figure 5.1 that the test bioassay average masses were similar to those of 

the known endotoxin bioassays.  It has been reported that endotoxins of Bacillus 

thuringiensis are effective on G. mellonella larvae at concentrations of 0.5 to 3.0g/ml 

(Bosgelmez et al, 1983).  The treatments from isolate S10 and 4A3 which resulted in 

mortality were 0.704 g/ml and 0.584 g/ml respectively (Table 5.1).  These concentrations 

fall within the range reported by Bosgelmez et al, 1983, however it must be taken into 

account that the treatments contained both spores and endotoxins, thus the actual 

concentration of endotoxin may have been much lower.  This is evident in treatments 2-3 

for all three bioassays were no mortality is recorded, however there is evidence for a 

reduction in average weight at higher endotoxin-spore concentrations. In conclusion the 7 

day bioassay using endotoxin-spore treatments 2 to 6 for all three B. thuringiensis 

cultures proved to be ineffective at killing G. mellonella larvae at these lower 

concentrations. 
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Chapter 6 

 

Conclusion 

 

6.1 Isolation of Bacillus thuringiensis 

 

This study set out to isolate and characterise a Bacillus thuringiensis strain from South 

African soils. This was done using a combination of traditional characterisation 

techniques based on morphology, inhibition experiments with the use of sodium acetate 

and characterisation at the DNA level using PCR and the sequencing of PCR 

amplification products.  Traditional techniques initially set out to identify bacteria of the 

class Bacilli by identifying isolates as aerobic Gram-positive rod shaped bacteria with 

endospore formation.  Having assigned an isolate to these groups, we attempted to 

identify the bacterium to species level using a panel of physiological and biochemical 

tests. This system was workable, but familiarity with these bacteria was often necessary 

in order to distinguish spore morphologies. Largely because of this, later schemes 

disregarded spore morphology (Claus and Berkley, 1986). 

 

In our experiments the sodium acetate test proved more successful in eliminating most 

sporeforming and non-sporeforming organisms in the test soil samples.  The classical 

biochemical and microscopy tests provided valuable information in understanding 

bacterial samples that were isolated and ultimately facilitated their characterization.  All 

of the isolates tested positive for Gram stain, endospore stain and catalase test, 
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confirming the necessity to pasteurize samples in the initial bacterial enrichment. Without 

pasteurization the ratio of unwanted bacteria (non-sporeforming) to wanted bacteria 

(sporeforming) would have been to too high (Travers et al, 1987).  

 

 Some concern arose that the pasteurized samples could potentially contain many 

undesirable sporeformers, particularly the close relatives of B. thuringiensis namely B.  

anthracis, and B. cereus.  Reported similarities in morphology and genetic makeup have 

led to the proposal that the three should be considered a single species (Helgason et al, 

2000).  Since the sodium acetate selection could not guarantee that these bacteria 

wouldn’t be co-cultured along with B. thuringiensis, the necessity arose to employ                      

the minimal media T3.  T3 was used to suppress the growth of other Bacillus species and 

thus favour the growth of B. thuringiensis.  In order to obtain isolates with high 

probability of being B. thuringiensis, the 44 samples listed in Table 2.1 were subjected to 

both the sodium acetate selection test and classical characterization techniques.  

Confirmation of crystalline bodies (endotoxins) was positive for only 10 of the 44 

isolates, thus the next logical test was to perform tests at a DNA level to determine 

whether cry1A gene sequences were indeed present within the isolate genetic 

composition.  This led to the pilot study for determining the methods that would be used 

in PCR experiments to determine the nature of the insecticidal proteins that the samples 

may contain.   

 

 The pilot study set out to establish a preliminary protocol for identifying possible cry1A 

gene sequences in the putative B. thuringiensis isolates.  Positive amplification products 

were visualised with UV illumination on the agarose gel, however the resultant nucleic 
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acid sequence data that was derived from these products showed several conflicting 

signals making positive identification impossible. It was postulated that this may have 

been as a result of some sort of contaminant attributed to the DNA template or other 

components used in the PCR reaction, or the possibility that several other similar gene 

sequences may have been present within the reaction mixture.  Evidence for the latter has 

been reported where B. thuringiensis subsp. Kurstaki HD1 is known to contain at least 5 

other cry gene sequences (Kalman, et al. 1995).  Analysis of the components later led to 

the identification of a sequence within the PCR primers which had the potential to form 

hairpin loops.  This region of the primer was removed for the remaining cry1A PCR 

experiments. 

 
 
 

6.2 Characterization of putative Bacillus thuringiensis isolates 

at a DNA level 

6.2.1 DNA extraction from putative Bacillus thuringiensis 

isolates 

 

 In the enrichment experiments performed, it was noted that the isolated cultures 

possessed distinctive colours depending on their sampling site.  The samples were thus 

subjected to an initial dilution to minimize any possible contaminants brought about by 

humic materials co-extracted with bacterial cultures.  In the interest of identifying a DNA 

extraction protocol that would ensure a DNA yield of high quality and inhibitor free, 

several extraction techniques were employed.   
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The CsCl-EtBr density gradient extraction produced high purity plasmid DNA but did not 

extract any significant genomic DNA, contrary to what we expected. In addition to this 

the method is very costly and time consuming.  This protocol thus would not be suited for 

a rapid analysis of DNA extracted from a large sample size.  The SDS mediated reaction 

as well as the modified alkaline lysis method produced high purity DNA,  however it is 

seen in Figure 3.1 that the modified alkaline lysis method was more efficient at extracting 

plasmids ranging from 500-1500bp in sample 10.  It is also seen that the modified 

alkaline lysis method proved more efficient at extracting plasmids ranging from 1500- 

3000bp.   

 

Similar plasmids are evident in the 7 minute boiling lysis products but at lower yields.   

Each of the methods used have their advantages and disadvantages depending on what is 

required of them.  For the purpose of this study, the modified alkaline lysis method 

proved most effective in extracting a wide range of plasmids in a short amount of time.  It 

was also noted that the boiling lysis protocol produced more DNA over a 7 minute 

incubation time period than the 5 minute incubation period.  This extraction method uses 

significantly less time to obtain a DNA product in comparison to the other methods used, 

however the purity of the DNA is compromised.   The lower purity DNA template did 

however prove to be sufficient for obtaining positive PCR products when used in 

determining the 16S rDNA identity of the isolates. 
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6.2.2 16S rDNA characterisation Bacillus thuringiensis isolates 

 

Nucleotide sequence data obtained from the positive amplification products revealed that 

5 of the samples showed highly significant similarity with B. thuringiensis when 

compared to known 16S rDNA sequences in the NCBI database.  This provided strong 

support that the samples were indeed B. thuringiensis.  Although the sequences share 

high homology with known strains, it was noted that homology was not consistent across 

the seven sequences obtained.  Groupings are evident in which samples 10, n1 and n3 and 

the control show high homology to each other, and the same is evident in a second 

grouping containing samples 4, 9 and n5.  

 

 

6.2.3 Phylogenetic analysis of the Bacillus thuringiensis isolates 

 

 The NJ tree derived from the alignment supports the grouping observation where 

samples 4, 9 and n5 have a phylogenetic distance of approximately 0.5 in comparison 

with samples 10, n1 and n3 which have a calculated phylogenetic distance of 

approximately 0.1 or below.  When considering the data from this tree it must be taken 

into account that these distances are calculated after correction where transversions are 

accounted for more than transitions and distances increasing with respect to each other as 

genetic differences accumulate.  The data thus does not represent the real number of 

differences between the sequences themselves (Berry & Gascuel, 1997).  For this reason 

the Bootstrap tree proved to be a better option for making assessments of evolutionary 

lineage.  The frequency with which any given branch is found is recorded as the 
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Bootstrap Proportion (BP). These proportions can be used as a measure of the reliability 

(within limitations) of individual branches in the optimal tree (Creevey et al., 2004).   

 

The high values on the Bootstrap tree in Figure 3.12 confirm the initial observation that 

samples 10, n1 and n3 as well as the control are closely related all originating from a 

single branch with a reliability measure of 1000.  The same observation is also seen for 

samples 4, 9 and n5.  The data obtained from the 16s rRNA nucleotide sequences and the 

phylogenetic analysis provided strong support that the samples isolated were indeed B. 

thuringiensis.  The next logical step was to optimize the characterization of the cry1A 

through PCR to determine if the gene was indeed present within the isolates. 

 

6.2.4 Characterization of the cry1A gene sequence from the 

putative Bacillus thuringiensis isolates 

 

We have reported two techniques for accurately identifying the cry gene sequence from 

known and unknown isolates.  In a continuation from the pilot study in chapter two, the 

various DNA templates were tested for their ability to produce positive PCR products.  

The modified alkaline lysis for large plasmid extraction produced positive PCR 

amplification products.  More significantly though, the rapid boiling lysis protocol 

produced positive PCR amplification products at a more consistent rate than that of the 

DNA template obtained from the modified alkaline lysis protocol.  This observation 

induced more confidence in the boiling lysis protocol which was subsequently used as the 

primary source for DNA templates in all experimental repetitions.  
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 The original PCR primers TYIUN12 and TYIAA were revised due to the detection of 

areas within the primer sequence which had the potential to form hairpin loop structures.  

With these revised primers we were able to obtain positive PCR amplification products 

for sample 10.  The resultant nucleotide sequence data obtained confirmed that sample 10 

did indeed contain the cry1A gene thus ultimately confirming that this sample was B. 

thuringiensis.  Pairwise alignment with the BLAST alignment tool produced a 98 % 

match with known B. thuringiensis cry1A gene sequences. 

 

 

6.2.5 Cloning the cry1A gene sequence into the pTZ57R/T 

cloning vector 

 

The initial pilot study highlighted the potential that several similar copies of the desired 

cry1A gene may have been present in the PCR amplification products.  The gene cloning 

experiment designed for this test was performed using the PCR amplification products 

derived using the revised primers. We have reported successfully cloning the cry1A gene 

PCR amplification product into the pTZ57R/T cloning vector.  PCR analysis of the 

CLONEA1A produced positive cry1A gene products confirming that transformation was 

successful.  In this study it was noted that the transformants did not show any variation in 

sequence identity as hypothesized in the pilot study.  The resultant nucleotide sequence 

was compared to known cry1A gene sequences on the NCBI database using the BLAST 

pairwise alignment tool.  A 99 % match was obtained for CLONEA1A compared with 

known B. thuringiensis cry gene sequences. 
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The sequences obtained from the two methods were aligned with each other using Clustal 

X v1.81.  The alignment showed a 90% homology within the two sequences.  Following 

the characterization of the cry1A gene, a bioassay was designed in order to determine the 

toxicity of the δ-endotoxin produced by this isolate.  

 

 

6.3 Galleria mellonella (Lepidoptera: Pyralidae) Bioassay 

 

Based on the 16S rDNA analysis and the cry1A sequence data, the South African B. 

thuringiensis isolate 10 was employed in a bioassay to test for toxicity towards the larvae 

of the lepidopteran Galleria mellonella.  We report two larvae mortalities for the bioassay 

using the endotoxin-spore mixture of isolate 10 at a concentration of 1 (0.704 g/ml). 

Although no significant mortalities are recorded at lower endotoxin-spore concentrations, 

when compared to the known Bt endotoxins of 4AY1 and 4A3 only one mortality is 

reported for the bioassay using the endotoxin of 4A3 at a concentration of 1 (0.584 g/ml).  

The animate larvae in the bioassays for isolate S10 and 4A3 at a concentration of 1 

showed signs of poor health, including limited motility and an overall reduction in mass 

in comparison with the control larvae. This reduction in weight indicates that the crystal 

causes either a drastic reduction in the amount of diet consumed or interference with 

movement of food through the gut wall (Schesser et al, 1977).  A comparison of the 

average weights of the larvae show some correlation between the average weight of the 

larvae in the test bioassay and those of the bioassay larvae using the known endotoxins.  

A linear progression of the average weight is inversely proportional to the concentration 
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of the endotoxin-spore mixture for the test isolate S10 and the known samples 4AY1 and 

4A3 (Herbert et al, 2006).   

 

Statistical data supports the initial observation where the F value obtained at p=0.05 

indicates that the biomass weights do not significantly deviate from the average mass of 

the insect larvae throughout the Bioassay replicates (F= 0.025246; df=20; P=0.975104).  

It has been reported that endotoxins of B. thuringiensis are effective on G. mellonella 

larvae at concentrations of 0.5 to 3.0g/ml (Bosgelmez et al, 1983).  The treatments from 

isolate S10 and 4A3 which resulted in mortality were 0.704 g/ml and 0.584 g/ml 

respectively.  These concentrations fall within the range reported by Bosgelmez et al, 

1983, however it must be taken into account that the inoculum contained both spores and 

endotoxins, thus the actual concentration of endotoxin may have been much lower.  This 

is evident in treatments 2-3 for all three bioassays were no mortality is recorded, however 

there is evidence for a reduction in average weight at higher endotoxin-spore 

concentrations. In conclusion the 7 day bioassay using endotoxin-spore treatments 2 to 6 

for all three B. thuringiensis cultures proved to be ineffective at killing G. mellonella 

larvae at these lower concentrations. 

 
 

6.4 Future work 

 

In this study we have fulfilled the set aims and objectives by isolating a B. thuringiensis 

strain in ‘Isolate 10’ from South African soils.  Isolate S10 has been shown to have 

significant homology with known B. thuringiensis isolates with a 94% match between 

16S rRNA gene sequence data for isolate S10 and that of known B. thuringiensis 16S 
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rRNA gene sequences.  Isolate S10 possesses the δ-endotoxin Cry1A known to be toxic 

to Lepidopteran insects. The Cry1A gene sequence has been successfully cloned into the 

pTZ57R/T cloning vector.  The Cry1A toxin has been shown to induce sensitivity to the 

larvae of the lepidopteran G. mellonella, a well known pest of the bee hive industry. We 

have also reported the successful characterisation of four other B. thuringiensis isolates at 

a 16S rDNA level.  Future work is proposed that similar bioassay experiments be 

performed to determine the toxic potential of these isolates.  It is also proposed that the δ-

endotoxins produced by all five isolates be purified and characterised at a biochemical 

level.  Once an understanding of the protein composition is determined, bioassays can be 

performed using a purified toxin to test for lethal concentrations of endotoxin required to 

effectively manage pests such as G. mellonella on an industrial level. 
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