Weighted Approximation For Erdoss Weights.

STEVEN BENJAMIN DAMELIN

A Thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in fulfilment of the requirements of the degree of Doctor of Philosophy.

Johannesburg, 1995.

ABSTRACT

We investigate Mean Convergence of Lagrange Interpolation and Rates of Approximation for Erdós Weights on the Real line.

An Erd\% Weight is of the form, $W:=\exp [-Q]$, where typically Q is even, continuous and is of faster than polynomial growth at infinity.

Conceming Lagrange Interpolation, we obtain necessary and sufficient conditions for convergence in $X_{p}(1 \leq p<\infty)$ and in particular, shatp results for $p>4$ and $1 \leq p<4$.

On Rates of Approximation, we first investigate the problem of formulating and proving the correct Jackson Theorems for Erdós Weights. This is accomplished in $L_{p}(0<p \leq \infty)$ with endpoint effects in $\left[-a_{n}, a_{n}\right]$, the Mhaskar-Rahmanov-Saff interval.

We next obtain a netural Realisation Functional for our class of weights and prove its fundamental equivalence to our modulus of continuity.

Finally, we prove the correct converse or Bernstein Theorems in $L_{p}(0<p \leq \infty)$ and deduce a Marchaud Inequality for our modulus.

DECLARATION

I declare that this dissertation is my own unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university.

SB Damelin

Sud day of Camber 1995

To my wonderful family who made this all possible, Sara, Dad, Mom and Len.

Acknowledgements

1 am indebted to my supervisor, Professor Doron Lubinsky for his expert guidance and for introducing me to the subjects dealt with in this thesis, I thank him for his patience, enthusiasm, support and for all that he has taught ne since I have known him.

My thanks also go to:
Professor Michael Sears, Head of the Department of Mathematics at Wits anc' Professor James Ridley for their friendly encouragement, to The Foundation of Research and Developement for their funding during 1993 and 1994, to my colleagues in the Wits Mathematics Department who enabled me to hold a Wits Senior Bursary during 1993 and 1994 - d finally to my wonderful family: my wife Sara, my parents; Dad and Mom and my brother Len for making this all possible.

PRESACE

(1) The results of Part A of this thesis, will appear in the Canadian Journal of Mathematics, in the form of two joint papers with Professor D.S Lubinsky.
(2) The results of Section 5.1, have been submitted to the Jourala of Approximation Theory, in the form of a joint paper with Professor D.S Lubinsky.
(3) The results of Section 5.2 , have been submitted to the Journal of Approximation in the form of a paper.
(4) The result of Section 5.3, will appear as a paper in the Eighth Texas Symposium on Approximation Theory.
Table of Contents Pg
Abstact (ii)
Declaration (iii)
Dedication (iv)
Acknowledgements (v)
Preface (vi)
Chapter 1: A General Introduction (1)
1.1 Bernstein's Approximation Problem (1)
1.2 The Freud Class (2)
1.3 The Erdôs Class (3)
1.4 Infinite-finite Range Inequalities (4)
1.5 Entire Functions (6)
1.6 Towards Lagrange Interpolation and Rates of Approximation for Erdós Weights (7)
1.7 General Information (8)
Part A: Lagrange Interpolation for Erdơs Weights (10)
Chapter 2: Introduction and statement of results (11)
2.1 Some Historical background (11)
2.2 Mean convergence for $p \neq 2$ for Freud Weights (13)
2.3 Necessary and sufficient conditions for mean convergence of Lagrange Interpolation for Freud Weights (14)
2.4 Necessary and sufficient conditions for mean convergence of Lagrange Interpolation for Erdठ́s Weights (15)
2.5 Statement of Results (15)
2.6 Some more notation (20)
Chapter 3: Technical estimates, Hilbert Transforms and Quadrature (23)
3.1 Technics! lemmas (23)
3.2 The Hilbert Transform (29)
3.3 Some Quadrature sum estimates (33)
3.4 A converse Quadrature sum estimate (41)
Chapter 4: Necessary and sufficient conditions for $1<p<\infty$ (48)
4.1 Sufficiency for Theorem 2.5.2 (48)
4.2 Sufficiency for Theorem 2.5.4 (59)
4 3 Sufficiency for Theorem 2.5.5 (59)
4.4 Necessity for Theorem 2.5.2 (60)
4.5 Proof of Theorem 2.5.3 (62)
4.6 Necessity of Theorems 2.5.4 and 2.5.5 (63)
4.7 Proof of Theorem 2.5.6 (67)
Part B: Rates of Approximation for Erdós Weights (70)
Chapter 5: Introduction and statement of results (71)
5.1 Moduli of continuity and Jackson Theorems (71)
5.2 K -functionals and converse theorems (77)
5.3 A Marchaud Inequality(81)
Chapter 6: Technical estimates and some inequalities (82)
6.1 Technical estimates (82)
6.2 Some inequalities (102)
Chapter 7; Jackson Theorems (108)
7.1 Polynomial approximation of W^{-1} (103)
7.2 Polynomials approximating characteristic functions (113)
7.3 The proof of Theorems 5.1.3 and 5.1.4 (12)
7.4 The proof of Theorem 5.1.5 (13)
7.5 The proof of Theorem 5.1 .6 (137)
Chapter 8: The Equivalence Theorem (140)
8.1 A crucial inequality (14)
8.2 Equivalence of modulus and realisation-functional (151)
Chapter 9: Applications of Theorem 5.2.1 (16)
9.1 Converse theorems (163)
9.2 The proons of Corollaries 5.25 and 5.26 (165)
9.3 A Marchaud inequality (17)
Bibliography (173)

Chapter 1

A General Introduction

1.1 Bernstein's Approximation Problem

The subject of weighted polynomial approximation on the real line has its origins in the problem of the famous mathematician, S.N Bernstein, who in the 1910's made the foliowing important observation. As polynomials are unbounded on unbounded sets, he realised the need to weight them. What resulted was the following:

Let $W: \mathbb{R} \longrightarrow(0,1]$ be a weight function satisfying

$$
W(x) \geq 0, \forall x \in \mathbb{R},
$$

with

$$
\lim _{|x| \rightarrow \infty} x^{n} W(x) d x=0, \quad n=0,1,2 \ldots
$$

If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a given continuous function, is it true that there exist polynomials P making

$$
\sup _{x \in \mathbb{R}}|f(x)-P(x)| W(x)
$$

arbitrary small? Alternatively, under what conditions on W, are the polynomials dense in the weighted space of continuous functions generated by $W[28,29]$? Naturally, this question generalises the well known theorem of Weierstrass, which 3tates that each continuous function
can be uniformly approximated by polynomials.
Berustein's problem was solved in the 1950's by Mergelyan, Achieser and Pollard in various forms but we choose to state the following version due to Dzrbasjan and Carleson.

Theorem 1.1.1, (Tbe possibility of approximation by weighted polynomials). Let $W(x)=$ $\exp (-Q(x)), Q \not Q \mathbb{R} \rightarrow \mathbb{R}, Q$ even and $Q\left(e^{x}\right)$ convex in $(0, \infty)$, The following are equivalent:
(i) \forall continuots $f: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
\lim _{x \mid \rightarrow \infty} f W(x)=0
$$

and $\forall \varepsilon>0, \exists$ a polynomial P such that

$$
\|(f-P) W\|_{L_{\infty}(\mathbb{R})}<\varepsilon_{;}
$$

(ii)

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{Q(x)}{1+x^{2}} d x=\infty . \tag{1.1}
\end{equation*}
$$

We remark that (1.1) although quite simple to absorb, has had far reaching consequences on weighted approximation up to this day. This is borne out in the following:

Corollary 1.1.2. Let $\gamma>0$ and set

$$
\begin{equation*}
W_{\gamma}(x):=\exp \left(-\frac{|x|^{\gamma}}{2}\right) . \tag{1:2}
\end{equation*}
$$

Then the polynomials are dense for W_{γ} iff $\gamma \geq 1$.
This corollary essentially tells us that at least for polynomial approximation on \mathbb{R}; our weight must decay at least as fast as $\exp (-|x|)$. Quite naturally, we are lead by the reasons above and others, for example the determancy of the moment problem [28], to two important classes of weights on \mathbb{R}.

1.2 The Freud Class

A weight $W(x):=\exp (-Q(x))$ is said to be a Freud weight if Q is of smooth polynomial growth at infinity. They ate named after the Hungarian mathematician, Geza Freud, who, while working on problems related to weighted approximation, Orthogonal Fourier Series, and Lagrange interpolation, discovered that there had been a complete lack of results regarding general orthogonal polynomials on infinite intervals[42]. For example; it is well known, that the theory of rates of approximation on finite intervals depeni heavily on trigonometric approximation. Here, heavy pise is made of the orthogonal trigonometric polynomials,

$$
(\cos (n \theta),(\sin (n \theta)))_{n=0}^{\infty}
$$

Freud realised that for many questions of weighted approximation on the real line, one needed a proper understanding of the weighted orthonormal polynomials $\left(P_{j}(x)\right)_{j=0}^{\infty}$, satisfying

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) W^{2}(x) d x=\delta_{m, n}
$$

A classical example of a Freud Weight is (1.2) of which the Hermite Weight,

$$
\begin{equation*}
W_{2}(x):=\exp \left(\frac{-x^{2}}{2}\right) \tag{1.3}
\end{equation*}
$$

is a special example.

1.3 The Erdós Class

A Weight $W(x):=\exp (-Q(x))$ is said to be an Erdớs Weight if Q is of faster than polynomial growth at infinity. They were narned by D.S Lubinsky, after the Hungari: Mathematician, Paul Erdos, who was the first to consider them, obtaining the contracted zero distribution of their orthogonal polynomials, as well as investigating the asymptotic behavior of the largest zeros of their orthogoral polynomials. Some classical examples of Erdors Weights are

$$
\begin{equation*}
W_{k, \alpha}(x):=\exp \left(-\exp _{k}\left(|x|^{\alpha}\right)\right) k \geq 1, \alpha>1 \tag{1,4}
\end{equation*}
$$

where $\exp _{k}(x)=\exp (\exp (\ldots(\exp (x))))$ denotes the k th iterated exponential, and

$$
\begin{equation*}
W_{A, B}(x):=\exp \left(-\exp \left(\log \left(A+x^{2}\right)\right)^{B}\right) B>1, A \text { large enough: } \tag{1.5}
\end{equation*}
$$

We see that to some extent, the Freud and Erdôs classes are analogues to entire functions of finite and infinite order.

We mention that there is of course, a third iaturally occurring class of weights, the class of Q, where Q is of slower than polynomial growth at infinty. The canonical example is the Stieltjies-Wigert weight or log-normal distribution,

$$
W^{2}(x):=\exp \left(-k(\log x)^{2}\right), k>0
$$

We observe, however, that for most questions of weighted approximation on the real line, Theorem 1.1.I forces us to work with the former two classes of weights, although the latter class has been investigated for other related problems.

It, is then not suprising that the theory of orthogonal polynomials for both Freud and Erdốs Weights and the theory of weiglted approximation on \mathbb{R} have developed in parallel over the last twenty years. The idea, of course, is to obtain a complete understanding of tise orthogonal polynomials generated by these two classes of weights. For example, the asymptutics of their zeros, their bounds and so on. Although Freud initiated this study, his results have been surpassed in utw uot every respect in both sharpness and generality by many including Bauldry, Bonan, Levin, Lubinsky, Magnus, Mate, Mthembu, Mhaskar, Nevai, Rahmanov, Saff, Sheen, Totik and Ulman. See $[13,24,26,28,29,42]$ and later chapters.

1.4 Infinite finite Range Inequalities

When dealing with weights on \mathbb{R}, one realises immediately that unlike weights on finite intervals, these weights are of unbounded support. It took a Freud and Nevai inspiration [42] to allow us effectively to work on finite intervals when dealing with weighted polynomials ($P_{n} W$) on \mathbb{R}. They developed the so called Infinite-Finite Range Inequality. The idea was to consider a
given expression of the form,

$$
g(x)=x^{n} \exp [-Q(x)]
$$

and to determine its maximuin at

$$
\begin{equation*}
q_{n}, n \geq 1 \tag{1.6}
\end{equation*}
$$

the so called Freud Number given by

$$
\begin{equation*}
n=q_{n} Q^{\prime}\left(q_{n}\right) . \tag{1.7}
\end{equation*}
$$

They effectively showed that most of the time, the quantity (PW) "lives" in an interval like $\left[-q_{n}, q_{n}\right]$, so that the interval depends on the degree of the polynomial, n and not on the polynoraial in question. The sharp form of (1.6) was obtained independently by Rahmanov and then Mhaskar and Saff $\{37,38]$. We have:

Definition 1.4.1 (Mhaskar-Rahmanov-Saff number). Let $W:=\exp (-Q)$. where $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, contintuous and $x Q^{\prime}(x)$ is positive and increasing in $(0, \infty)$ with limits 0 and $\infty 0$ at 0 and ss For $u>0$, the Mhaskar-Rahmanov-Saff number a_{u} is the positive root of the equation

$$
\begin{equation*}
u=\frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \tag{1.8}
\end{equation*}
$$

Under the conditions on Q above, which guarantee that $Q(s)$ and $Q^{\prime}(s)$ increase strictly in $(0 ; \infty), a_{u}$ is uniquely defined, increases wita u and grows roughly like $Q^{-1}(n)$, where Q^{-1} is the inverse of Q on $(0, \infty)$.

We remark that it is often possible to use something other than a_{u} that would require less of $x Q^{\prime}(x)$, namely, that it be quasi-increasing for large x, for example $Q^{-1}(u)$. However, this often complicates formulations and so is omitted. Here, a function

$$
f:(a, b) \longrightarrow(0, \infty)
$$

is quasi-increasing if $\exists C>0$ such that

$$
a<x<y<b \Longrightarrow f(x)<C f(y)
$$

Mhaskar and Saff then used a_{u} to prove the infinite-finite inequality [38]

$$
\begin{equation*}
\left\|P_{n} W\right\|_{L_{\infty}(\mathbb{R})}=\left\|P_{n} W\right\|_{L_{\infty}\left[-a_{n} a_{n}\right]}, \tag{1.9}
\end{equation*}
$$

holding for all polynomials P_{n} of degree $\leq n, n \geq 1$ and where Q is as in Definition 1.4.1, is convex or is of the form $|m|^{\alpha}, \alpha \geq 1$.

These inequalities have been improved and generalised since then for example to $L_{p}(0<p \leq \infty)$. See $[24,26,39]$ and later chapters.

It is instructive to see some concrete representations of a_{u}. For example, for $W_{\gamma}(x)$ defined by (1,2), $a_{\mu} \sim u^{\frac{1}{\gamma}}$, whereas, for $W_{k, \alpha}(x)$ defined by $(1.4), a_{u} \sim\left(\log _{k} u\right)^{\frac{1}{\alpha}}$ where $\log (\log (\log \ldots(0))$ denotes the kth iterated logarithim. Also, $Q_{k, \alpha}\left(a_{u}\right) \sim u\left\{\prod_{j=1}^{k} \log _{j} u_{u}\right\}^{-\frac{1}{2}}$. See [26] and later chapters.

1.5 Entire Functions

Let $W=\exp (-Q)$ be a Freud or Erdös Weight. By Carlemano Theorem, if Q is continuous, we know that there exist two entire functions G_{1} and G_{2} such that for a given $\varepsilon>0$

$$
\begin{aligned}
& 1-\varepsilon<\frac{W(x)}{G_{1}(x)}<1+\varepsilon, \forall x \in \mathbb{R} \\
& 1-\varepsilon<\frac{W^{-1}(x)}{G_{2}(x)}<1+\varepsilon, \forall x \in \mathbb{R}
\end{aligned}
$$

It was D.S Lubinsky, who initiated the study of approximating Freud or Erdös Weight type weighted polynomials of the form $P_{n}(x) V^{\prime}\left(a_{x} x_{1}\right)$ by entire functions, whose representation could be explicitly written down $[2 \mathrm{~s}, 42]$. For many of our main results, it will be important to consider theorems on polynomial approximation of W^{-1}. The following theorem of Clunie and Kovari will be frequently used.

Theorem 1.5.1. (Clunie and Kovari). Let $\phi: \mathbb{R} \longrightarrow$ 路 be andincreasing function and
suppose that it has the representations

$$
\begin{equation*}
\phi(r)=\phi(1) \exp \left(\int_{1}^{r} \frac{\psi(p)}{p} d p\right) r \geq 1 \tag{1.10}
\end{equation*}
$$

for some positive increasing function $\psi: \mathbb{R} \rightarrow \mathbb{R}$. Assume further that for some $C>1$ and every $r \geq 1$,

$$
\begin{equation*}
\psi(C r)-\psi(r) \geq 1 \tag{1.11}
\end{equation*}
$$

Ther there exists an entire function G with positive coeficients

$$
\begin{equation*}
G(r)=\sum_{j=0}^{\infty} g_{2 j} r^{j} \tag{1,12}
\end{equation*}
$$

such that

$$
\begin{equation*}
C_{2} \leq \frac{G(r)}{\phi(r)} \leq C_{1} \tag{1.13}
\end{equation*}
$$

where C_{1} and C_{2} depend only on C and not r.

1.6 Towards Lagrange Interpolation and Rates of Approximation for Erdós Weights

The primary aim of this thesis concerns the approximation of functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ by weighted polynomials of Erdós type. Several problems were considered.

1.6.1 Lagrange Interpolation for Erdós Weights

Following from earlier work of Nevai, Bonan, Lubinsky, Knopmacher, Mthembu and Matjila, we investigated mean convergence of Lagrange Interpolation for Erdös Weights, We obtained Necessary and Sufficient conditions for $L_{p}(1 \leq p<\infty)$ and in particular, sharp results for $p>4$ and $1 \leq p<4$.

1.6.2 Rates of Approximation for Erdós Weights

Jackson Theorems

Following from from earlier work of Ditzian, Lubinsky and Totik; we investigated the problem of formulating and proving the correct Jackson Theorems for Erdors Weights. This was accomplished in $L_{p}(0<p \leq \infty)$. An interesting feature here is that the degree of the approximation improves towards the endpoints of the Mhaskar-Rahmanov-Saff interval $\left[-a_{n} a_{n}\right]$. This is in contrast to the Freud case,

K-Functionals

Following from earlier work of Ditzian, Lubinsky and Totik, we investigated the problem of formulating the correct Realisation Functional for our modulus of continuity and prove its equivalence. We deduce classical properties of our modulus, including Marchaud Inequalities.

Converse Theoren's

Following from earlier work of Ditzian, Lubinsky and Totik, we investigated the problem of formulating and proving the correct Converse Bernstein tyle Theorems for Erdơs Weights. This was accomplished ir $L_{p}(0<p \leq \infty)$ with endpoint effects in $\left[-a_{n} a_{n}\right]$.

1.7 General Information

This thesis consists of two parts. Part 1 deals with the quantitative theory of Lagrange Interpolation for Erdôs Weights, while Part 2 considers the question of rates of approximation for Erdós Weights. Both parts contain in turn, their own chapters, historical background, definitions and theorems and are thus self contained and can be read independently of each other. To encourage "reader" friendliness, we have in many places, resorted to stating well known results with references.

Throughout, \mathcal{P}_{n} denotes the class of polynomials of degree $\leq n, C, C_{1}, C_{2} \ldots$ denote positive constants independent of n, x and $P_{n} \in \mathcal{P}_{n}$. The same symbol does not necessary denote the same constant in different occurrences. We write $C \neq C(L)$ to indicate that C is independent of L. Finally we introduce some more notation.
(1) $c_{n} \sim d_{n}$ means that $C_{1} \leq \frac{c_{n}}{d_{n}} \leq C_{2}$ for some $C_{j}>0, j=1$, 2 and the relevant range of n.
(2) $a_{n}=O\left(b_{n}\right)$ means that $a_{n} \leq C_{3} b_{n}$ for some $C_{3}>0$.
(3) $a_{n}=o\left(b_{n}\right)$ means that $\lim _{n-\infty}\left|\frac{a_{n}}{b_{n}}\right|=0$.

Similar notation is used for functions and sequences of functions.

Part I

Lagrange Interpolation for Erdơs Weights

Chapter 2

Introduction and Statement of

Results

One of the most quantritative and explicit methods of approximating a given function f is that of polynomial interpolation, In this first part, we consider the problem of weighted Lagrange interpolation for Erdós Weights.

2.1 Some Historical Backround

Let us be given a Freud or Erdós Weight, $W ; \mathbb{R} \longrightarrow \mathbb{R}$. We can then define, for this weight, a unique set of orthonormal polynomials

$$
\begin{equation*}
p_{n}(x):=p_{n}\left(W^{2}, x\right)=\gamma_{n} x^{n}+\ldots \tag{2.1}
\end{equation*}
$$

with $\gamma_{n}=\gamma\left(W^{2}\right)>0$
and satisfying

$$
\begin{equation*}
\int_{\mathbb{R}} p_{n}\left(W^{2}, x\right) p_{n}\left(W^{3}, x\right) W^{2}(x) d x=\delta_{m, n} \tag{2.2}
\end{equation*}
$$

See $[13,42]$.
We write W^{2} not W as we weight each $p_{n}=p_{n}\left(W^{2} ; x\right)$ by W. It is well known that p_{n} has
n real zeros $\left(x_{j n}\right)_{j=1}^{n}$ and we order them as follows

$$
\begin{equation*}
-\infty<x_{n, n}<x_{n-1, n}<\ldots x_{2, n}<x_{1, n}<\infty . \tag{2.3}
\end{equation*}
$$

Now for each $1 \leq j \leq n$, let us define the fundamental polynomials of Lagrange Interpolation by

$$
\begin{equation*}
l_{j, n}(x)=\prod_{j=1}^{n} \frac{x-x_{j n}}{x_{j, n}-x_{k, n}}=\frac{p_{n}(x)}{p_{n}^{\prime}\left(x_{j, n}\right)\left(x-x_{k, n}\right)} \in \mathcal{P}_{n-1} \tag{2,4}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
l_{j, n}\left(x_{k, n}\right)=\delta_{j, k} \tag{2.5}
\end{equation*}
$$

Then for a given $f: \mathbb{R} \longrightarrow$, we define the Lagrange tnterpolation Polynomial of degree $\leq n-1$ to f by

$$
\begin{equation*}
L_{n}[f](x)=\sum_{j=1}^{n} f\left(x_{j, n}\right) l_{j, n}(x) \tag{2.6}
\end{equation*}
$$

For large classes of Freud and Erdốs Weights, mean convergence of Lagrange Interpolation is an extensively researched and widely studied subject. We survey some of the literature but refer the reader to $[33,35,41,44]$ for more on this subject, and its corresponding analogue on finite intervals.

We begin with the following form of the Erdös-Turan Theorem as extended by Shohat. See[13, chapter 2, pg 97].

Theorem 2.1.1.(Erdồs-Turán). If $f: \mathbb{R} \rightarrow$ is Riemann integrable in each finite interval and there exists an even entire function G with all non-negative Maclaurin series coefficients such that

$$
\lim _{|x| \rightarrow \infty} \frac{f^{2}(x)}{G(x)}=0
$$

and

$$
\int_{\mathbb{R}} G(x) W^{2}(x) d x<\infty
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}[f]\right) W\right\|_{L_{2}(\mathbb{L})}=0 \tag{2.7}
\end{equation*}
$$

Remark

For "nice" weights W like $W_{k, \alpha}$ and $W_{A, \beta}$, Theorem 1.5 .1 allows us to choose G with

$$
G(x) \sim W^{-2}(x)(1+|x|)^{-1-\kappa}, \forall x \in \mathbb{R} \text { and } \kappa>0
$$

So that we can ensure (2.7) holds if

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}(f W)(x)(1+|x|)^{\frac{1}{2}+\frac{x}{2}}=0 \tag{2,8}
\end{equation*}
$$

2.2 Mean Convergence for $p \neq 2$ for Freud Weights

P. Nevai and his Phole student, SBonan, essentially completed the study for the Hermite Weight defined in (1.3) . Nevai [45] proved:

Theorem 2.2.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous with

$$
\lim _{|x| \rightarrow \infty} f(x)(1+|x|) W_{2}^{2}(x)=0
$$

Then for every $p>1$, if $L_{n}[f]$ denotes the Lagrange interpolation polynomial of degree \leq $n-1$ to f at the zeros of $p_{n}=p_{01}\left(W^{2}, x\right)$,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|\left(f-L_{n}[f]\right) W\right\|_{L_{p}(\mathbb{R})}=0 \tag{2.9}
\end{equation*}
$$

Moreover, if (2.9) holds for some weight W and for every continuous f with compact support, then W satisfies

$$
\int_{\mathbb{R}}\left[\frac{\frac{W(x)}{W_{2}^{2}(x)}}{1+|x|}\right]^{p} d x<\infty
$$

so that W is quite close to W_{2}.
S.Bonan in his Ph.D thesis, obtained precise necessary and sufficient conditions for the Hermite weight, as well as obtaining resulta for the generolised Hermite weight

$$
W_{2}^{\gamma}(x):=|x|^{\gamma} \exp \left(-\frac{x^{2}}{2}\right) x \in \mathbb{R}, \gamma>1
$$

Here is one of his results for $\gamma=0[1]$.
Theorem 2.2.2. Let $W_{2}(x)=\exp \left(-\frac{|x|^{2}}{2}\right)$. Let $f \mathbb{R} \rightarrow$ be continuous and let $L_{n}[f]$ be the Lagrange Interpolation polynomial of degree $\leq n-1$ at the zeros of $p_{n}=$ $p_{n}\left(W_{2}^{0}, s\right), T h e n$ if

$$
f(x) W(x)=O\left(|x|^{-2}\right),|x| \rightarrow \infty
$$

we have for $0<p<\infty$, and

$$
\begin{gathered}
\delta<\left\{\begin{array}{l}
1-\frac{1}{p} 0<p<4 \\
\frac{2}{3}+\frac{1}{3 p} p>4
\end{array}\right. \\
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}[f]\right) W_{0}^{2}(1+|x|)^{\delta}\right\|_{L_{p}(\mathbb{X})}=0
\end{gathered}
$$

A. Knopmacher and D.S Lubinsky, an the other hand, deduced sufficient conditions for mean corvergence for a large class of Freud weights including $W(x):=\exp \left(\frac{-x^{m}}{2}\right), m=2,4,6 . .[19]$.

2.3 Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Freud Weights.

The possibility of obtaining identical, necessary and sufficient conditions for mean convergence of Lagrange Interpolation for large classes of Freud and Erdós Weights, arises from the correct bounds for the orthonormal polynomials, together with the asymptotics and distribution of their zeros, abtained recently by E,Levin, D.S Lubinsky and T. Mthembu[24, 26].D.Matjila and D.S Lubinsky tackled the Freud case[33]. For notational simplicity, we recall their main result for $W_{\gamma}(x), \gamma>1$ given by (1.2).

Theorem 2.3.1. Let $W(x)=W_{\gamma}(x)=\exp \left(\frac{-|x|}{2}\right), \gamma>1$. Given $f: \mathbb{R} \rightarrow \mathbb{R}$; let $L_{n}[f]$ denote the Lagrange Interpolation polynomial to f at the zeros of $p_{n}\left(W^{2}, x\right)$. Let
$1<p<\infty, \Delta \in \mathbb{R}, \alpha>0$ and

$$
\tau=\frac{1}{p}-\min (1 ; \alpha)+\max \left(0, \frac{\gamma}{6}\left(1-\frac{4}{p}\right)\right)
$$

Then for

$$
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}[f]\right) W_{0}^{2}(1+|n|)^{\Delta}\right\|_{L_{p}(\mathbb{R})}=0
$$

to hold for every continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ satiojing

$$
\lim _{|x| \rightarrow \infty}(f W)(x)(1+|x|)^{\alpha}=0
$$

it is necessary and sufficient that
(1) $\Delta>\tau$ if $1<p \leq 4$
(2) $\Delta>\tau$ if $p>4$ and $\alpha=1$
(3) $\Delta \geq \tau$ if $p>4$ and $\alpha \neq 1$.

2.4 Necessary and Sufficient conditions for Mean Convergence of Lagrange Interpolation for Erdos Weights

In describing analogous results for Erdós Weights, we need a class of weights W^{2}, for which suitable bounds are available for $p_{n}\left(W_{q}^{2}\right)$. These were found in [26] and L_{p} analogues in [31].

2.5 Statement of results

For our purposes, the following subclass of weights from [26] is suitable:
Defnition 2.5.1. Let $W:=\exp [-Q]$, where $Q: \mathbb{R} \longrightarrow \mathbb{R}$ is even, continuous, $Q^{(2)}$ exists in $(0, \infty)$ and the function,

$$
\begin{equation*}
T^{*}(x):=1+\frac{x Q^{(2)}(x)}{Q^{(1)}(x)} \tag{2.10}
\end{equation*}
$$

is increasing in $(0, \infty)$, with

$$
\begin{equation*}
\lim _{x \rightarrow \infty} T^{*}(x)=\infty, T^{*}(0+):=\lim _{x \rightarrow 0+} T^{*}(x)>1 \tag{2.11}
\end{equation*}
$$

Moreover, we assume for some $C_{1}, C_{2}, C_{3}>0$

$$
\begin{equation*}
C_{1} \leq \frac{T^{*}(x)}{\frac{x Q^{(1)}(x)}{Q(x)}} \leq C_{2}, x \geq C_{3}^{\prime} \tag{2.12}
\end{equation*}
$$

and for every $\varepsilon>0$

$$
\begin{equation*}
T^{*}(x)=O\left(Q(x)^{\varepsilon}\right), x \rightarrow \infty . \tag{2.13}
\end{equation*}
$$

Then we write $W \in \mathcal{E}_{1}^{*}$.
The new restrictions over those in [26] are (2.13) and $Q \geq 0$. The latter is easily achieved by replacing Q by $Q+|Q(0)|$. The former is needed in simplifying the formulation of our theorems. We note that the restriction ts a weak one, since one has typically for each $\varepsilon>0_{1}$

$$
T^{*}(x)=O\left(\log Q^{\prime}(x)\right)^{1+\varepsilon} \quad x \rightarrow \infty
$$

In fact, one can show that for any weight W satisfying our conditions except possibly for (2.13) we have,

$$
\text { meas } \mathcal{E}_{r}=\operatorname{meas}\left\{x \geq r ; T^{*}(x) \geq \varepsilon\left(\log Q^{\prime}(x)\right)^{1+e}\right\}
$$

satisfies

$$
\int_{E_{r}} \frac{d x}{x} \rightarrow 0, \quad r \rightarrow \infty \text { [32], }
$$

Here mens denotes Lebegue measure.
The principal example of $W=\exp [-Q] \in \mathcal{E}_{1}^{*}$, is $W_{k, a}=\exp \left(-Q_{k, a}\right)$ given by (1.4) with $\alpha>1$. For this W_{1}

$$
\begin{equation*}
T^{*}(x)=T_{k, \alpha}^{*}(x)=\alpha\left[1+x^{\alpha} \sum_{l=1}^{k} \prod_{j=1}^{l-1} \exp _{j}\left(x^{\alpha}\right)\right], x \geq 0 \tag{2.14}
\end{equation*}
$$

Here (2.12) holds in the stronger form;

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{T^{*}(x)}{\frac{x Q^{(1)}(x)}{Q(x)}}=1 \tag{2:15}
\end{equation*}
$$

and (2.13) holds in the stronger form

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{T^{\prime \prime}(x)}{\left[\prod_{j=1}^{\left.\frac{1}{\log _{j}} Q(x)\right]}=\alpha ~ . ~ . ~\right.} \tag{2.16}
\end{equation*}
$$

We remark that here,

$$
\begin{equation*}
T^{*}\left(a_{u}\right) \sim \prod_{j=1}^{k} \log _{j}(u) \tag{2.17}
\end{equation*}
$$

For $\alpha \leq 1$, the second part of (2.11) falls, but this can be circumvented by considering $W_{k, \frac{\alpha}{2}}\left(A+x^{2}\right)$, with A large enough to guarantee $T^{*}(0+)>1$.

Another more slowly decaying example of $W=\exp [-Q] \in \mathcal{E}_{1}^{*}$ is given by $W_{A, B}(x)$ for which

$$
\begin{equation*}
T^{*}(x)=\frac{2 x^{2}}{A+x^{2}}\left[\frac{\beta-1}{\log \left(A+x^{2}\right)}+\beta\left\{\log \left(A+x^{2}\right)\right\}^{\beta-1}\right]+\frac{2 A}{A+x^{2}} \tag{2.18}
\end{equation*}
$$

Again (2.12) holds in the stronger form, (2.15), while (2.13) holds in the stronger form

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{T^{*}(x) \log x}{\log Q(x)}=\beta \tag{2.19}
\end{equation*}
$$

We begin with our first result for $1<p<\infty$.
Theorem 2.5.2. Let $W:=\exp [-Q] \in \mathcal{E}_{1}^{*}$ Let $L_{n}[\cdot]$ denote the Lagrange Interpolation to f at the zeros of $p_{n}\left(W^{2}{ }_{t}\right)$. Let $1<p<\infty, \Delta \in \mathbb{R}, k>0$. Then for

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}[f]\right) W(1+Q)^{-\Delta}\right\|_{L_{P}(\mathbf{R})}=0 \tag{2.20}
\end{equation*}
$$

to hold for every contintous function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|f W|(x)(\log |x|)^{1+\kappa}=0 \tag{2.21}
\end{equation*}
$$

it is necessary and sufficient that

$$
\begin{equation*}
\Delta>\max \left\{0, \frac{2}{3}\left(\frac{1}{4}-\frac{1}{p}\right)\right\} . \tag{2.22}
\end{equation*}
$$

At first, the choice of the extra weighting factor $(1+Q)$ in (2.20) may seem rather severe. After all, Q grows faster than any polynomial. However, even if f vanishes outside a fixed
finite interval, we need such a factor if $p>4$.
Theorem 2.5.3. Let W, L_{n} be as above and $p>4$. Suppose that measurable $U: \mathbb{R} \longrightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\lim _{\inf _{\rightarrow \infty}} U(x) x^{-\left(\frac{3}{2}-\frac{1}{p}\right)} Q(x)^{\frac{2}{3}\left(\frac{1}{4}-\frac{1}{p}\right)}>0 \tag{2.23}
\end{equation*}
$$

Then there exists continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ vanishing outside $[-2,2]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}[f] W U\right\|_{L_{p}(\mathbb{R})}=\infty \tag{2.24}
\end{equation*}
$$

So for $p>4$, no growth restriction on f, however severe, allows us a weighting factor weaker than a power of $1+Q$. One can formulate versions of Theoren 2.5 .2 for $p>4$ that involve $\Delta=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{p}\right)$, and then one has to introduce extra factors in (2.20), such as negative powers of $1+|x|$ and negative powers of T^{*} or $\log (2+Q)$. Unfortunately, one then needs extra hypotheses on T^{*} to avoid very complicated formulations. One of the complicating features here, is that T^{*} may grow faster than any power of $|x|$ (as in (2.14) for $k \geq 2$), like a power of x (as in (2.14) for $k=1$), or slower than any power of $|x|$ (as in (2.18)). Moreover, one has to compare T^{*} to $\log Q$. We spare the reader the details.

For $p \leq 4$, the weighting factor $1+Q$ is unnessesarily strong. Indeed, Theorem 2.5 .2 does not extend the classical Erd,-Turán theorem, i.e. Theorem 2.1.1 for $p=2$. Following is our extension.

Theorem 2.5.4. Let $W:=\exp [-Q] \in \mathcal{E}_{1}^{*}$. Let $1<p<4$, and $\alpha \in \mathbb{R} ;$ Let $L_{n}[f]$ denote the Lagrange interpolating polynomial to f at the zeros of $p_{n}\left(W^{2},{ }_{1}\right)$. Then the following aye equivalent,
(a) For every continuous $f: \mathbb{R} \longrightarrow \mathbb{R}$ with

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}|f(x)| W(x)(1+|x|)^{\alpha}=0 \tag{2.25}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}[f]\right) W\right\|_{L_{P}(\mathbb{R})}=0 \tag{2.26}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\alpha>\frac{1}{p} \tag{2.27}
\end{equation*}
$$

Thus our result extends Theorem 2.1.1 for $\alpha>\frac{1}{p}$.
We next show that Theorem 2.5 .4 is sharp in the sense, that we cannot insert any positive power of $1+|x|$ inside the L_{p} norm in (2.20), at least when $\alpha>\frac{1}{p}$.

Theorem 2.5.5. Let $W:=\exp [-Q] \in \mathcal{E}_{1}^{*}$. Let $1<p<4$ and $\Delta \in \mathbb{R}$. Then the following are equivalent:
(a) For every $\alpha>\frac{1}{p}$ and every continuaus function $f: \mathbb{R} \longrightarrow \nrightarrow \mathbb{R}$ satisfying (2,25), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}[f]\right)(x) W(x)(1+|x|)^{\Delta}\right\|_{L_{p}(\mathbb{R})}=0 \tag{2.28}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\Delta \leq 0 \tag{2.29}
\end{equation*}
$$

What about a sharp form for $p=4$? The following points the way.
Theorem 2.5.6. Let $W:=\exp [-Q] \in \mathcal{E}_{1}^{*}$. suppose that a measurable function $V: \mathbb{R}$ $\rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} U(x) x^{\frac{-3}{3}}(\log Q(x))^{\frac{1}{4}}=\infty \tag{2.30}
\end{equation*}
$$

Then there extists a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ vaniahing outside $[-2,2]$, such that

$$
\begin{equation*}
\lim \sup _{n \xrightarrow{\prime}}\left\|L_{n}[f] W U\right\|_{L_{4}(\mathbb{R})}=\infty \tag{2.31}
\end{equation*}
$$

If, for example, $Q(x)$ grows faster than $\exp \left(x^{3+\varepsilon}\right)$, some $\varepsilon>0$, then Theorem 2.5 .6 shows that we cannot choose $U \cong 1$ and hope for convergence. So there is no andilogue of Theorem 2.5.4 for $p=4$. However, it seems that a negative power of $\log Q$, rather than the $1+Q$ required for $p>4$, will allow some analogue of Theorem 2.5 .2 for $p=4$.

We note that with more work, we can replace continuity of f in Theorems 2.5.2, 2,5.4 and 2.5.5 by Riemann integrability and we can replace, in Thenrems 2.5.4 and 2.5.5 $\left.(1+|x|)^{\alpha}, \alpha\right\rangle$ $\frac{1}{p}$, by $(1+|x|)^{\frac{1}{p}}(\log (2+|x|))^{\frac{1}{p}+\varepsilon}$, some $\varepsilon>0$, (and so on).

Furthermore, the methods of proof of Theorem 2.5 .2 and 2.5 .3 raty heavily on estimates and results of $[26,31]$, whereas those of Theorems $2,5.4-2.5 .6$ rely on $[20,21,26,31]$.

2.6 Some more notation

The nth Christof fel function for a weight W^{2} is

$$
\begin{align*}
& \lambda_{n}(x) \quad=\lambda_{n}\left(W^{2}, n\right)=\inf _{p_{n-1} \in P_{n-t}} \int_{D_{k}} \frac{\left(P_{n-1} W^{\prime}\right)^{2} d t}{P_{n}^{2}-1}(x) \tag{2,32}\\
& \\
& =\frac{1}{\sum_{j=0}^{n-1} p_{j}^{2}(n)}
\end{align*}
$$

The Christof fel or Cotes numbers are

$$
\begin{equation*}
\lambda_{j n}=\lambda_{12}\left(W^{2} x_{j n}\right) \quad 1 \leq g \leq n . \tag{2.33}
\end{equation*}
$$

The fundamental polynomials $l_{j n}$ of (2.4) admit the representation

$$
\begin{equation*}
l_{j n}(x)=\lambda_{j n} \frac{\gamma_{n-1}}{\gamma_{n}} p_{n-1}\left(x_{j_{n}}\right) \frac{p_{n}(x)}{x-x_{j n}} \tag{2.34}
\end{equation*}
$$

The reproducing kernel for W^{2} is

$$
\begin{align*}
K_{n}(x, t) \quad & =K_{n}\left(W^{2}, x, t\right)=\sum_{j=0}^{n-1} p_{j}(x) p_{j}(t) \tag{2,35}\\
& =\frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(x) p_{n-1}(t)-p_{n}(t) p_{n-1}(x)}{(x-t)}
\end{align*}
$$

(the Christoffel-Darboux formula),
Given measurable $f ; \mathbb{R} \rightarrow \mathbb{R}$ with $f(x) x^{j} W^{2} \in L_{1}(\mathbb{R}) \forall j \geq 0$, the rith partial sum of its orthonormal expansion with respect to W^{2}, is denoted by $S_{n}[f](x)$, and admits the representation

$$
\begin{equation*}
S_{n}[f](x)=\int_{\mathbb{R}} K_{n}(x, t) f(t) W^{2}(t) d t \tag{2.36}
\end{equation*}
$$

We introduce the Hibert Transform of $g \in L_{1}$ (低) by

$$
\begin{equation*}
H[g](x):=\lim _{\varepsilon \rightarrow+} \int_{\mid x-4 \geq e} \frac{g(t)}{x-t} d t \tag{2.37}
\end{equation*}
$$

which exists ace: [40].
We may then use the Christoffel-Darboux formula for $K_{n}\left(a_{i}, t\right)$ to rewrite (2.36) as

$$
\begin{equation*}
S_{n}[f]=\frac{\gamma_{n-1}}{\gamma_{n}}\left\{p_{n} H\left[f p_{n-1} W^{2}\right]-p_{n-1} H\left[f p_{n} W^{2}\right]\right\} \tag{2.38}
\end{equation*}
$$

Finally, we define an auxillary quantity

$$
\begin{equation*}
\delta_{n}:=\left(n T^{*}\left(a_{n}\right)\right)^{-\frac{2}{3}}, n \geq 1 \tag{2.39}
\end{equation*}
$$

This quantity is useful in describing the behaviour of $p_{n}(\exp (-2 Q])$ near $x_{1, n}$. For example

$$
\begin{equation*}
\left|\frac{x_{1, n}}{a_{n}(Q)}-1\right| \leq \frac{L \delta_{n}}{2} \tag{2.40}
\end{equation*}
$$

Here L is independent of n.
We often use the fact that δ_{n} is much smaller than any pcwer of $\frac{1}{T^{n}\left(a_{n}\right)}$ (see Chapter 3). We also use the function

$$
\begin{equation*}
\Psi_{n}(x):=\max \left\{\sqrt{1-\frac{|x|}{a_{n}}+L \delta_{n}}\left[T^{*}\left(a_{n}\right) \sqrt{1-\frac{|x|}{a_{n}}+L \delta_{n}}\right]^{-1}\right\},|x| \leq a_{n} \tag{2,41}
\end{equation*}
$$

and set

$$
\begin{equation*}
\Psi_{n}(x):=\Psi_{n}\left(a_{n}\right),|x|>a_{n} . \tag{2,42}
\end{equation*}
$$

This function is used in describing the spacing of zexos of p_{n}, the behaviour of Christoffel functions and so on. Finally, we adopt the following conventions: Set

$$
\begin{equation*}
x_{0, n}:=x_{1, n}\left(1+L \delta_{n}\right) ; x_{n+1, n}:=x_{n, n}\left(1+L \delta_{n}\right), \tag{2.43}
\end{equation*}
$$

$$
\begin{equation*}
I_{j, n}:=\left(x_{j, n}, x_{j-1, n}\right) ; 1 \leq j \leq n \tag{2,44}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{j, n}\right|=x_{j-1, n}-n_{j, m}, 1 \leq j \leq n . \tag{2.45}
\end{equation*}
$$

Also, in proving our quadrature estimates we use

$$
\begin{equation*}
f_{j m}(x):=\min \left\{\frac{1}{\left|I_{j n}\right|} \frac{\left|I_{j a l}\right|}{\left(x-x_{j, n}\right)^{2}}\right\}\left[\left|1-\frac{|x|}{a_{p}}\right|+L \delta_{\delta_{n}}\right]^{-\frac{1}{4}} \tag{2,46}
\end{equation*}
$$

and the characteristic function of $j_{j_{n}}$

$$
\chi_{j_{j} n}(x)=\chi_{x_{j, n}}(x)=\left\{\begin{array}{l}
1, x \in I_{j}, \tag{2.47}\\
n, x \notin I_{j, n}
\end{array}\right.
$$

Chapter 3

Technical estimates, Hilbert
 Transforms and Quadrature

Throughout this chapte', let $W \in \mathcal{E}_{1}^{*}$.

3.1 Technical Hemmas

In this section, we gather technical estimates from various sources. We begin by recalling a number of estimates from [26].

Lemma 3,1.1. (a) Uniformly for $n \geq 1$ and $|x| \leq a_{n}$

$$
\begin{equation*}
\lambda_{n}\left(W^{2}, x\right) \sim \frac{a_{n}}{n} W^{2}(x) \Psi_{n}(x) \tag{3.1}
\end{equation*}
$$

(b) For $n \geq 1$

$$
\begin{equation*}
\left|\frac{x_{1, n}}{a_{n}}-1\right| \leq C \delta_{n} \tag{3.2}
\end{equation*}
$$

and uniformly for $n \geq 2$ and $1 \leq j \leq n-1$

$$
\begin{equation*}
x_{j, n}-x_{j+1, n} \sim \frac{a_{n}}{n} \Psi_{n}\left(x_{j, n}\right) \tag{3.3}
\end{equation*}
$$

(c) For $n \geq 1$

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|p_{n} W\right|(x)\left|x-\frac{|x|}{a_{n}}\right|^{\frac{2}{4}} \sim a_{n}^{-\frac{1}{2}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|p_{n} W\right|(x) \sim a_{n}^{-\frac{1}{2}}\left(n T^{*}\left(a_{n}\right)\right)^{\frac{1}{6}} \tag{3.5}
\end{equation*}
$$

(d) Let $0<p \leq \infty, K>0$. There exists $C>0$ such that for $n \geq n_{0}$ and $P_{n} \in P_{n}$

$$
\begin{equation*}
\left\|P_{n} W\right\|_{L_{p}(R)} \leq C\left\|P_{n} W\right\|_{L_{p}\left[-a_{n}\left(1-K \delta_{n}\right), a_{n}\left(1-K \delta_{n}\right)\right]} \tag{3.6}
\end{equation*}
$$

Moreover, given $r>1$, there exists $C_{1}>0$ such that for $n \geq n_{0}$ and $P_{n} \in \mathcal{P}_{n}$

$$
\begin{equation*}
\left\|P_{n} W\right\|_{L_{p}\left(|x|>a_{r n}\right)} \leq \exp \left[-C_{1} \frac{n}{T^{*}\left(a_{n}\right)^{\frac{1}{2}}}\right]\left\|P_{n} W\right\| \|_{L_{p}\left[-a_{n} a_{n}\right]} \tag{3.7}
\end{equation*}
$$

(c) For $n \geq 1$

$$
\begin{equation*}
\frac{\gamma_{n-1}}{\gamma_{n}} \sim a_{n} . \tag{3.8}
\end{equation*}
$$

(f) Uniformly for $n \geq 2$ and $1 \leq j \leq n-1$

$$
\begin{equation*}
1-\frac{\left|a_{j, n}\right|}{a_{n}}+L \delta_{n} \sim 1-\frac{\left|x_{j+1, n}\right|}{a_{n}}+L \delta_{n} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{n}\left(x_{j n}\right) \sim \Psi_{n}\left(x_{j+1, n}\right) . \tag{3:10}
\end{equation*}
$$

Here, L is chosen so large enough that (2.40) is true,
(g) Uniformly for $n \geq 2$ and $2 \leq j \leq n-1$

$$
\begin{align*}
& \frac{a_{n}^{\frac{3}{2}}}{n} \Psi_{n}\left(x_{j, n}\right)\left(1-\frac{\left|p_{j, n}\right|}{a_{n}}+L \delta_{n}\right)^{\frac{1}{2}}\left|p_{n}^{1} W\right|\left(x_{j, n}\right) \tag{3.11}\\
& \sim a_{n}^{\frac{1}{2}}\left|p_{n-1} W\right|\left(x_{j, n}\right) \sim\left(1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n}\right)^{\frac{1}{4}}
\end{align*}
$$

Proof. (a) This is part of Theorem 1.2 in [26, p204].
(b) (3.2) is part of Corollary 1.3 in $\left[26,{ }^{\prime} p, 205\right]$. We note loweyer that the proof there actually establishes

$$
1-\frac{x_{1, n}}{a_{n}} \leq C \delta_{n}
$$

which is the more difficult part of (3.2).The easier converse inequa ity

$$
1-\frac{x_{1, n}}{a_{n}} \geq-C \delta_{n}
$$

is not discussed in [26], but requires only a little extra effort. Next, (3.3) is Corollary 1.3 in [31] (A weaker form of (3.3) appears in Corollary 1.3 in [26]).
(c) This is Corollary $1.4(a)$ in [26].
(d) This is Theorem 1.5 in $[26, p 206]$, We note there is a minoroversight in the proof of Theorem 1.5 in [26], for $0<p<\infty$. The proof in $[26, p p 231-236]$ correctly shows that

$$
\|P W\|_{L_{p}\left[-a_{A_{n}}, a_{4_{n}}\right]} \leq C\|P W\|_{L_{\rho}\left[-a_{n}\left(1-K \delta_{n}\right), a_{n}\left(1+K \delta_{n}\right)\right]}
$$

with C independent of n and P. To estimate $\|P W\|_{\mathbb{R}} \mid\left[-a_{4 n}, a_{4}\right\}$, an appeal is made to Lemma 2.5 in $[26, p, 215]$, and unfortunately that lemma is incorrect. It should actually read as follows: For $r>0$ and $s>1, n \geq 1$ and $P \in \mathcal{P}_{n}$

$$
\left\|P W \mid Q^{\prime}\right\|_{L_{p}\left(\left(x \mid \geq a_{m n}\right)\right.} \leq \exp \left[\frac{-C n}{T^{1}\left(a_{n}\right)^{\frac{1}{2}}}\right]\|P W\|_{L_{p}\left[-a_{m n}+a_{s n}\right]}
$$

The assertion is easily proved using the method of $[26, p, 231]$. The case $r=0$ gives (3.7).
(e) This is (10.33) in [26].
(f) (3.9) is (9,9) in [26] and (3.10) follows immediately from (3.9).
(g) This is Corollary 1.4(b) in [26] .0

We include a full proof of (3.2) and (3.6).

The proof of (3.2)

Note that we already have

$$
1-\frac{x_{1, n}}{a_{n}} \leq C \delta_{n}
$$

For the converse inequality one needs the following;

If $K>0$ is large enough, then for n large enough and $R \in \mathcal{P}_{2 n}$,

$$
\because \int_{|x| \geq a_{n}\left(1+K \delta_{n}\right)}|R| W^{2}(x) d x \leq \frac{1}{2} \int_{|x| \leq a_{n}\left(1+K \delta_{n}\right)}|R| W^{2}(x) d x
$$

This follows by using (4.18) of [26] and the method of Theorem 1.5 in [26]. Then,

$$
\left.\begin{array}{rl}
a_{n}\left(1+K \delta_{n}\right)-x_{1, n} \\
& =\inf _{P \in \mathcal{P}_{P \geq 0}}\left(\frac{\int_{\mathbb{R}}\left(a_{n}\left(1+K \delta_{n}\right)-x\right) P(x) W^{2}(x) d x}{\int_{\mathbb{R}} P(x) W^{2}(x) d x}\right) \\
& \geq \frac{1}{2} \operatorname{iinf}_{P \in \mathcal{P}_{2 n-2}}\left(\frac { \int _ { P \geq 0 } } { } \left(\frac{|x| \leq a_{n}\left(1+K \delta_{n}\right)}{}\left(a_{n}\left(1+K \delta_{n}\right)-x\right) P(x) W^{2}(x) d x\right.\right. \\
\int_{\mathbb{R}} P(x) W^{2}(x) d x
\end{array}\right) \geq 0 . \text { 回 }
$$

The proof of (3.6)

First note that under more general conditions on W (see part II), we have $\forall P \in \mathcal{P}_{n}$ and $s>1$,

$$
\|P W\|_{L p}\left(|x| \geq a_{a n}\right) \leq e^{-C_{n} n / T\left(a_{n}\right)^{1 / 2}}\|P W\|_{L_{p}\left(|x| \leq a_{n n}\right)}
$$

Then as in the proof of Lemma 2.5 in [26], we deduce that

$$
\left\|P W\left|Q^{\prime}\right|^{r}\right\|_{L_{p}\left(|x| \geq a_{\mathrm{an}}\right)} \leq \exp \left[-C_{1} n / T\left(a_{n}\right)^{1 / 2}\right]\|P W\|_{L_{p}\left(|x| \leq a_{i n}\right)}
$$

Next, we recall some results from $[30,31]$, involving mostly the fundamental polynomials of Lagrange Interpolation.

Lemma 3.1.2. (a) Let $0<p<\infty$. Then for $n \geq 2$

$$
\left\|p_{n} W\right\|_{L_{P}(\mathbb{R})} \sim
$$

(b) Uniformly for $n \geq 1,1 \leq j \leq n, x \in \mathbb{R}$

$$
\begin{equation*}
\left|l_{j, n}(x)\right| \sim \frac{a_{n}^{\frac{3}{2}}}{n}\left(\Psi_{n} W\right)\left(a_{j, n}\right)\left(\left(1-\frac{\left|x_{j, n}\right|}{a_{n}}+L \delta_{n}\right)^{\left.\frac{1}{4}\left|\frac{p_{n}(x)}{a-x_{j, n}}\right| \cdot\right) .}\right. \tag{3.13}
\end{equation*}
$$

(c) Uniformly for $n \geq 1,1 \leq j \leq n, x \in \mathbb{R}$

$$
\begin{equation*}
\left|l_{j, n}(x)\right| W(x) W^{-1}\left(x_{j, n}\right) \leq C \tag{3.14}
\end{equation*}
$$

(d) For $n \geq 2,1 \leq j \leq n-1, x \in\left[x_{j, n} x_{j+1, n}\right]$

$$
\begin{equation*}
l_{j, n}(x) W(x) W^{-1}\left(x_{j, n}\right)+l_{j+1, n}(x) W(x) W^{-1}\left(x_{j+1, n}\right) \geq 1 . \tag{3.15}
\end{equation*}
$$

Proof. (a) This is Theorem 1.1 in [31].
(b) and (c). These are Thenrem 1.2 in [31].
(d) is a special case of the main result in [30]

Next, some technical estimates on the growth of $a_{u}, Q\left(a_{u}\right), T^{*}\left(a_{u}\right)$ ect.
Lemma 3.1.3. (a) Given $r>0$, there exists x_{0} such that, for $x \geq x_{0}$ and $j=$ $0,1,2, \frac{Q^{(j)}(x)}{x^{(x)}}$ is increasing in $\left(x_{o}, \infty\right)$.
(b) Un"ormly for $u \geq C$ and $j=0,1,2$,

$$
\begin{equation*}
a_{u}^{j} Q^{(j)}\left(a_{u}\right) \sim u T^{T}\left(a_{i i}\right)^{j-\frac{1}{2}} . \tag{3.16}
\end{equation*}
$$

(c) Let $0<\alpha<\beta$. Thien, uniformly for $u \geq C, j=0,1,2$,

$$
\begin{equation*}
T^{*}\left(a_{\alpha u}\right) \sim T^{*}\left(a_{\beta u}\right), Q^{(j)}\left(a_{\alpha u}\right) \sim Q^{(j)}\left(a_{\beta u}\right) \tag{3.17}
\end{equation*}
$$

(d) Given fixed $r>1$

$$
\begin{equation*}
\frac{a_{r u}}{a_{u}} \geq 1+\frac{\log r}{T^{*}\left(a_{r u}\right)}, u \in(0, \infty) \tag{3.18}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
a_{r u} \sim a_{u} u \in(1, \infty), \tag{3.19}
\end{equation*}
$$

(e) Uniformly for $t \in(C, \infty)$

$$
\begin{equation*}
\frac{a_{t}^{\prime}}{u_{t}} \sim \frac{1}{t T^{*}\left(a_{t}\right)} \tag{3.20}
\end{equation*}
$$

(f) Uniformly for $u \in(C, \infty)$, and $v \in\left[\frac{u}{2}, 2 u\right]$, we have

$$
\begin{equation*}
\left|\frac{a_{u}}{a_{v}}-1\right| \sim\left|\frac{u}{v}-1\right| \frac{1}{T^{*}\left(a_{u}\right)} \tag{3.21}
\end{equation*}
$$

Proof. (a) This is lemma $2.1 i v i$ in $[26, p 207]$.
(b) $-(f)$ are part of Lemma 2.2 in [26, p208-209].

Our final lemma in this section concerns estimates that specfically follow from (2.13). Recall that δ_{n} was defined by (2.39).

Lemma 3.1.4. (a) Let $\varepsilon>0$. Then

$$
\begin{equation*}
a_{n} \leq C n^{E}, T^{\prime \prime}\left(a_{n}\right) \leq C n^{E}, n \geq 1 \tag{3.22}
\end{equation*}
$$

(b) Given $A>0$, we have

$$
\begin{equation*}
\delta_{n} \leq C T^{* \prime}\left(a_{n}\right)^{-A}, n \geq 1 \tag{3.23}
\end{equation*}
$$

(c) Let $0<\eta<1$. Uniformily for $n \geq 1,0<|x| \leq a_{m n}|x|=a_{9}$, we have

$$
\begin{equation*}
C_{1} \leq T^{*}(x)\left(1-\frac{|x|}{a_{n}}\right) \leq C_{2} \log \frac{n}{s} \tag{3.24}
\end{equation*}
$$

Proof. (a) From (3.16) for $j=0$, we have

$$
Q\left(a_{n}\right) \sim n T^{*}\left(a_{n}\right)^{-\frac{1}{2}} \leq n T^{\prime}\left(a_{1}\right)^{-\frac{1}{2}}
$$

Since Q grows faster than any power of x (Lemma 3.1.3(a)), we deduce

$$
a_{n} \leq n^{e}
$$

for n large enough.
Also (2.13) then shows that

$$
T^{*}\left(a_{n}\right)=O\left(Q\left(a_{n}\right)^{E}\right) \leq C n^{e}
$$

(b) This follows as

$$
\delta_{n} \leq n^{-\frac{2}{3}} T^{* *}\left(a_{n}\right)^{-\frac{2}{3}},
$$

that is δ_{n} decays faster than a power of n_{1} while $T^{*}\left(a_{n}\right)$ grows slower than any power of n.
(c) Firstly if $\frac{|x|}{a_{n}} \leq \frac{1}{2}$, then

$$
T^{*}(x)\left(1-\frac{|x|}{a_{n}}\right) \geq T^{*}(0+) \frac{1}{2}>\frac{1}{2}
$$

If $\frac{|x|}{a_{n}} \geq \frac{1}{2}$, write $|x|=a_{s}, s o$ that $s \leq \eta n$. Then

$$
T^{*}(x)\left(1-\frac{|x|}{a_{n}}\right) \geq T^{m}\left(a_{g}\right)\left(1-\frac{a_{g}}{a_{i}^{s}}\right) \geq C_{1},
$$

by Lemma 3.1.3(d).
So we have the lower bound in (3.24). We proceed to the upper bound. We can assume that $x=a_{s}, s \geq 1$, and $n \geq n_{0}$. Then using the inequality

$$
1-u \leq|\log u|, u \in(0,1)
$$

we obtain

$$
\begin{aligned}
\left(1-\frac{|x|}{a_{n}}\right) & \leq\left|\log \frac{a_{s}}{a_{n}}\right|=\int_{s}^{n} \frac{a_{t}^{\prime}}{a_{t}} d t \\
& \leq C \int_{s}^{n} \frac{d t}{t T^{*}\left(a_{t}\right)} \leq \frac{C}{T^{*}\left(a_{s}\right)} \log \frac{n}{s}=\frac{C}{T^{*}(x)} \log \frac{n}{s} . \square
\end{aligned}
$$

3.2 The Hilbert Transform

We begin by recalling the definition of the Hilbert transform of a $g \in L_{1}(\mathbb{R})$ given by (2.37),

$$
H[g](x)=\lim _{e \rightarrow 0+} \int_{|x-t| \geq e} \frac{g(t)}{x-t} d t
$$

It is well known that H is a bounded operator from $L_{p}(\mathbb{R}) \rightarrow L_{p}(\mathbb{R}), 1<p<\infty[49]$.

In the $1970^{\prime} s$, B.Muckenhoupt; while investigating mean convergence of orthogonal polynomial expansions for the Hermite Weight given by (1.3), initiated the the study of the boundedness of the Hilbert transform between weighted L_{p} spaces. This lead ultimately to his A_{p} condition which we will state without proof as it will be important in what follows.

Theorem 3.2.1. (Muckenhoupt's A_{p} condition)Let $U: \mathbb{R} \rightarrow[0, \infty)$ be measurable, $1<$ $p<\infty$ and $g=\frac{q}{p-1}$. Then

$$
\|H(f) U\|_{L_{P}(\mathbb{R})} \leq C_{,}\|f U\|_{L_{P}(\mathbb{R})}
$$

iff $\exists C_{2}$ such that for every interval $[a, b]$,

$$
\begin{equation*}
\frac{1}{b-a}\left\|V^{r}\right\|_{L_{p}[a, b]}\left\|U^{-1}\right\|_{L_{p}[a, b]} \leq C_{2} \tag{3.26}
\end{equation*}
$$

Here $C_{1}, C_{2} \neq C_{1}, C_{2}(f)$.
We now present two lemmas on bounded operators. The first is adapted from a result in König [21] and the second, essentially appears in 1970 papers of Muckenhoupt [41, p449-451] and later in König's paper[21]; but is of course implied by results on the weighted L_{p} boundedness of Hilbert Transforms such as Theorem 3,2.1.

Throughout we adopt the notation

$$
\|g\|_{L_{p}(d \mu)}:=\left(\int_{\Omega}|g|^{\prime} d \mu\right)^{\frac{1}{p}}
$$

for μ measurable functions g on \approx measure space (Ω, μ).
Lemma 3.2.2. Let $1<p<\infty$ and $q:=\frac{p}{p-1}$. Let (Ω, μ) be a measure space, $k_{1} r: \Omega^{2} \rightarrow \mathbb{R}$ and

$$
\begin{equation*}
S_{k}[f](v):=\int_{\Omega} k(u, v) f(v) d \mu(v) \tag{3.26}
\end{equation*}
$$

for μ measurable $f: \Omega \rightarrow \mathbb{R}$.
Assume that

$$
\begin{gather*}
\sup _{u} \int_{\Omega}|k(u, v)||r(u, v)|^{q} d \mu(v) \leq M . \tag{3.27}\\
\sup _{v} \int_{\Omega}|k(u, v)||r(u, v)|^{-p} d \mu(u) \leq M . \tag{3.28}
\end{gather*}
$$

Then S_{k} is a bounded operator from $L_{p}(d \mu)$ to $L_{p}(d \mu)$.
More precisely,

$$
\begin{equation*}
\left\|S_{k}\right\|_{L_{P}(d \mu) \rightarrow L_{P}(d \mu)} \leq M \tag{3.29}
\end{equation*}
$$

Proof, We sketch this, as no proof is given in [21], though such lemmas are standard. First use the dual expression for the L_{p} norm of $T_{k}[f]$, then Fubini's theorem and finally Holder's inequality to show that

$$
\left\|S_{k}[f]\right\|_{L_{P}(d \mu)} \leq\|f\|_{L_{P}(d \mu)} \sup _{g}\left[\int_{\Omega}\left|\int_{\Omega} k(u, v) g(u) d \mu(u)\right|^{\psi} d \mu(v)\right]^{\frac{1}{9}},
$$

where the sup is taken over all g with $\|g\|_{L_{q}(d \mu)}=1$.
Let us call the $\sup J$. So we must show that. J is bounded by M. Using Hölder's inequality on the inner integral in J gives

$$
\begin{aligned}
& \left|\int_{\Omega} k(u, v) g(u) d \mu(u)\right|^{q} \\
\leq & {\left[\int_{\Omega}|k(u, v)||r(u, v)|^{-p} d \mu(u)\right]^{\frac{g}{p}} \int_{\Omega}|k(u, v)||r(u, v)|^{q}|g(u)|^{q} d \mu(u) }
\end{aligned}
$$

$$
\leq M^{q} \int_{\Omega}|k(u, v)||r(u, v)|^{\varphi}|g(u)|^{q} d \mu(u)
$$

Substituting this into J and using Fubin's Theorem gives,

$$
\begin{gathered}
J \leq M_{g}^{\frac{1}{p}} \sup _{g}\left[\int_{\Omega}|g(u)|^{q} \int_{\Omega}|k(u, v)||r(u, v)|^{q} d \mu(v) d \mu(u)\right]^{\frac{1}{q}} \\
\because \leq M^{\frac{1}{n}} M^{\frac{1}{q}}=M
\end{gathered}
$$

Lemma 3.2.3. Let $1<p<4$. Then

$$
\begin{equation*}
\left\|H[g](x)\left|1-\frac{|x|}{a_{n}}\right|^{-\frac{1}{4}}\right\|_{L_{p}(\mathrm{R})} \leq\left\|g(x)\left|1-\frac{|x|}{a_{n}}\right|^{-\frac{1}{4}}\right\|_{L_{p}(\mathrm{Ni})} \tag{3.30}
\end{equation*}
$$

Here C is independent of n and $g \in L_{p}$ (代),
Proof. The proof appears with $a_{n}=\sqrt{2 n+2}$ in [21], but we sketch the ideas of the proof here. Consider the operator S_{k} given by (3.26) with

$$
k(u, v):=\frac{\left[\left.\frac{v}{u}\right|^{\frac{1}{1}}-1\right]}{(u-v)}
$$

Using $r(u, n):=\left|\frac{u}{v}\right|^{\frac{1}{p 7}} ;$ where $q:=\frac{p}{p-1}$, Lemina 3.2 .2 can be used to show that S_{k} is bounded from $L_{p}(\mathbb{R})$ to $L_{p}(\mathbb{R})$. Comparison of T_{k} and the bounded operator H spow that

$$
H_{1}[g](u):=\lim _{e \rightarrow 0+} \int_{|u-v| \geq e} \frac{g(v)}{v-u}\left|\frac{v}{u}\right|^{\frac{1}{4}} d v
$$

is bounded from $L_{p}(\mathbb{R})$ to $L_{p}(\mathbb{R})$,
Replacing u by $a_{n} \pm u$, and v by $a_{n} \pm v$, easily gives the result, \square
Our final lemma in this section concerns bounds on the difference between $\frac{1}{\left(x-x_{j, n}\right)}$ and this Hilbert transform of a weighted characteristic function. Recall the notation (2.45-2.47) for $I_{j, n}, f_{j, n}$ and $\chi_{j, n}$. In particular, recall that

$$
f_{j, n}(x):=\min \left\{\frac{1}{\left|I_{j, n}\right|}, \frac{\left|\left.\right|_{j, i n}\right|}{\left(x-\left.x\right|_{j, n}\right)^{2}}\right\}\left[1-\frac{|x|}{a_{n}}+L \delta_{n}\right]^{\frac{-1}{1}}
$$

Lemma 3.2.4. Uniformly for $n \geq 1$ and $1 \leq j \leq n$ and $x \in\left[x_{n, n}, x_{1, n}\right]$

$$
\begin{equation*}
\tau_{j, n}(x):=a_{n}^{\frac{1}{2}}\left|p_{n}\left(W^{2}, x\right) W(x)\right|\left|\frac{1}{x-x_{j, n}}-\frac{1}{\left|I_{j, n}\right|} H\left[\chi_{j, n}\right](x)\right| \leq C f_{j, n}(x) \tag{3.31}
\end{equation*}
$$

Proof. The idea already appears in [21]. Note first that

$$
\begin{equation*}
H\left[X_{j, n}\right](x)=\log \left|\frac{n-x_{j, n}}{x_{j-1, n}-x}\right|=-\log \left|1-\frac{\left|I_{j, n}\right|}{x-x_{j, n}}\right| . \tag{3.32}
\end{equation*}
$$

We consider two ranges:
Case 1: $\left|x-a_{j, 9}\right| \geq 2\left|I_{j, n}\right|$. Using the inequality $|t+\log (1-t)| \leq t^{2},|t| \leq \frac{1}{2}$, we see that

$$
\begin{aligned}
\left|\frac{1}{x-x_{j, n}}-\frac{1}{\left|Y_{j, n}\right|} H\left[\chi_{j, n}\right](x)\right| & =\frac{1}{\left|I_{j, n}\right|}\left|\frac{\left|I_{j, n}\right|}{x-x_{j, n}}+\log \left[1-\frac{\left|I_{j, n}\right|}{x-x_{j, n}}\right]\right| \\
& \leq \frac{\left|I_{j, n}\right|}{\left(x-x_{j, n}\right)^{2}}
\end{aligned}
$$

Next, the bounds (3.4), (3.5) show that uniformly in n and x,

$$
\begin{equation*}
a_{n}^{\frac{1}{2}}\left|p_{n} W\right|(x) \leq C\left[\left|1-\frac{x}{a_{n}}\right|+L \delta_{n}\right]^{\frac{-1}{4}} \tag{3.33}
\end{equation*}
$$

So, we obtain the result for this range of x.
Case 2: $\left|x-x_{j, n}\right| \leq 2\left|I_{j, n}\right|$. From the identity

$$
a_{n}^{\frac{1}{2}}\left(p_{n} W\right)(x)=\left(l_{j, n} W\right)(x) W^{-1}\left(x_{j, n}\right)\left(x-x_{j, n}\right) a_{n}^{\frac{1}{2}}\left(p_{n}^{\prime} W\right)\left(x_{j, n}\right)_{3}
$$

(for both j and $j-1$)
and from (3.3), (3.9), (3.11), (3.14), we obtain for $\left|x_{j, n}\right| \leq 2\left|f_{j, n}\right|, 2 \leq j \leq n$

$$
\begin{equation*}
\left.a_{n}^{\frac{1}{2}}\left|p_{n} W\right|(x) \leq C_{1} f_{j, n}(x) \min \left\{\mid x-x_{j, n}\right\},\left|x-x_{j-1, n}\right|\right\} \tag{3.34}
\end{equation*}
$$

For $j=1$, this holds with the minimum replaced by $\left|x-x_{j, n}\right|$. Then for $2 \leq j \leq n$

$$
\begin{equation*}
\tau_{j, n}(x) \leq C_{2} f_{j, n}(x)\left[\left.1+\min \left\{\left|x-x_{j, n}\right|,\left|x-x_{j-1, n}\right|\right\} \frac{1}{\left|I_{j, n}\right|}|\log | \frac{x-x_{j, n}}{x_{j-1, n}-x}| | \right\rvert\,\right] \tag{3.35}
\end{equation*}
$$

Since $\left|I_{j, n}\right| \geq C_{3} \max \left\{\left|x-x_{j, n}\right|,\left|x-x_{j-1, n}\right|\right\}$, we see that with

$$
u:=\left|\frac{x-x_{j, n}}{x_{j-1, n}-x}\right|
$$

we obtain for both signs of the exponent

$$
\tau_{j, m}(x) \leq C_{4} f_{j, n}(x)\left[1+2 u^{ \pm 1}\left|\log u^{ \pm 1}\right|\right]
$$

As either u or u^{-1} lies in $[0,1]$ and $t|\log t|$ is bounded for $t \in[0,1]$, we have (3.31). It remains to handle the case $j=1$. Note that for

$$
x \in\left[x_{n, n}, x_{1, n}\right]
$$

(it is only here that we ueed this restriction) with $\left|x-x_{1, n}\right| \leq 2\left|I_{1, n}\right|$, we have

$$
\left|x_{1}-x_{0, n}\right| \sim a_{n} \delta_{13} .
$$

(See (3.2), (3.3), (2.44), (2.45)).
Then instead of (3.35), we obtain

$$
\tau_{1, n}(x) \leq C f_{1, n}(x)\left[1+C_{1} \frac{\left|x-x_{1, n}\right|}{a_{n} \delta_{n}}\left|\log \sigma \frac{\left|x-x_{1, n}\right|}{a_{n} \delta_{n}}\right|\right]
$$

where $\sigma \sim 1$ independently of x, j and n. As $\left|x-z_{1, n}\right| \leq C_{2} a_{n} \delta_{n}$, the boundedness of $u|\log u|$ in any finite interval in ($0, \infty$) again gives our result.

3.3 Some Quadrature Estimates

Estimating certain sums by means of integrals is very crucial in the study of mean convergence of Lagrange Interpolation. These sums involve the product of the Christoffel functions, pth powers of polynomials, $(1<p<\infty)$ and certain functions taken at the zeros of the orthonormal polynomials. The simplest form of a quadrature sum is the well known Gauss-Jacobi quadrature
formula,

$$
\begin{equation*}
\sum_{j=1}^{3} P_{2 n-1}\left(x_{j, n}\right) \lambda_{j n}=\int_{R} P_{2 n-1}(t) W^{2}(t) d t, \forall P_{2 n-1} \in \mathcal{P}_{2 n-1} \tag{3.36}
\end{equation*}
$$

Of course, the measure $d \alpha=W^{2}$ (t) dt can be replaced by more general measures [13],
For applications in the study of mean convergence of Lagrange Interpolation, the most useful quadratire sum estimates are those of the form

$$
\left.\sum_{j=1}^{n}\left|P_{n}\left(x_{j, n}\right) \lambda_{j n} \leq G \int_{\mathbb{R}}\right| P_{m}(t)\right]^{p} W^{2}(t) d t
$$

$0<p<\infty$ and $P_{m} \in \mathcal{P}_{m+}$ where $C=C(\alpha, p)$ often depends on some function of m and n. These types of inequalities have been investigated by many including: Nevaly Lubinsky, Mate for the generalised Jacobi weights, Shi, for weights on finite intervals and Lubinsky and Matjila; for. Freud weights.

We present two quadrature sum estimates, the first of whith is 1 eally part of a Lebesgue function type estimate. The second involves quadrature sums for nol nomials.

Lemma 3,3,1. Let $\beta \in\left(0, \frac{1}{4}\right)$ and

$$
\begin{equation*}
\Sigma_{n}(x):=\sum_{\left|\alpha_{k, n}\right| \geq \alpha_{\beta n}}\left|\|_{k, n}(x)\right| W^{-1}\left(x_{k_{1} n}\right) \tag{3.37}
\end{equation*}
$$

We have for $\left\{x \left\lvert\, \leq a_{\frac{\beta_{n}}{2}}\right.\right.$ and $\left|a_{x}\right| \geq a_{2 n}$

$$
\begin{equation*}
\left(\Sigma_{n} W\right)(x) \leq C \tag{3.38}
\end{equation*}
$$

Moreover, for $a_{\frac{p_{n}}{2}} \leq|x| \leq a_{2 n}$

$$
\begin{equation*}
\left(\Sigma_{n} W\right)(x) \leq C\left(\log n+a_{n}^{\frac{1}{2}}\left|p_{n} W\right|(x) T^{*}\left(a_{n}\right)^{\frac{-2}{4}}\right) \tag{3.39}
\end{equation*}
$$

Proof. Let $\Sigma_{n}^{*}(x)$ denote the sum $\Sigma_{n}(x)$ omitting those terins $x_{k, n}$ for which $r \in$ $\left[v_{k+2, n}, x_{k-2, n}\right]$, (if there are any such k) . Here and the sequel; we set for $l \geq 1$

$$
\begin{equation*}
x_{1-l, n}:=x_{1, n}+l \delta_{n} ; x_{n+1, n} ;=x_{n, n}-l \delta_{n} \tag{3.40}
\end{equation*}
$$

Of course the sum $\Sigma_{n}-\Sigma_{n}^{*}$ consists of at most 4 terms. Each of these 4 terms admits thie bound in Lemma 3.1.2(c). So

$$
\begin{equation*}
\left|\left(\Sigma_{n}-\Sigma_{n}^{*}\right) W(x)\right| \leq C_{1} \tag{3.41}
\end{equation*}
$$

Next, by (3,3) and (3,13)

$$
\begin{equation*}
\left(\Sigma_{n}^{*} W\right)(x) \sim a_{n}^{\frac{1}{2}}\left|p_{n} W\right|(x) \Sigma_{\left|x_{k, n}\right| \geq \alpha_{\beta_{n}}} \frac{\left(x_{k, n} x_{k+1, n}\right)}{\left|n-x_{k_{n} n}\right|}\left(1-\frac{\left|x_{k, n}\right|}{a_{n}}+L \delta_{n}\right)^{\frac{1}{4}} \tag{3.42}
\end{equation*}
$$

Now (cf. (3.9))

$$
\begin{equation*}
1-\frac{|t|}{a_{n}}+L \delta_{n} \sim 1-\frac{\left|x_{k_{n}}\right|}{a_{n}}+L \delta_{n}, t \in\left[x_{k+1, n} x_{k, n}\right] \tag{3.43}
\end{equation*}
$$

uniformly in k and n. Next, if $x \notin\left[x_{k+2, n} x_{k-2, n}\right]$, and $t \in\left[x_{k+1, n} x_{k, n}\right]$

$$
\left|\frac{x-t}{x-x_{k, n}}-1\right|=\left|\frac{t-x_{k, n}}{x-x_{k, n}}\right| \leq \frac{m_{k, n}-x_{k+1 ; n}}{\left|x_{k \pm 2, n}-x_{k, n}\right|} \leq C
$$

Similarly we bound $\frac{\left(x-w_{k, n}\right)}{\widetilde{\pi} t}$, So

$$
\begin{equation*}
|x-t| \sim\left|x-x_{k, n}\right|_{,} t \in\left[x i+2, n x_{k, n}\right], x \notin\left[x_{k+2, n} x_{k-2, n}\right] \tag{3.44}
\end{equation*}
$$

In view of the spacing of the zeros (Lemna 3.1.1(b)), we deduce that

Note that since δ_{n} is much smaller than $\frac{1}{T^{n}\left(a_{n}\right)}$,

$$
1-s+L \delta_{n} \leq C_{2}\left(1-\frac{a_{\beta_{n}}}{a_{n}}\right) \leq C_{3} \frac{1}{T^{*}\left(a_{n}\right)}
$$

(See Lemma 3.: .1. ${ }^{\text {r }}$),

Then we obtain the bound

Now if $0 \leq x \leq a_{\frac{g_{n}}{2}}$ or $x \geq a_{2 n}$, then for $n \geq n_{a}$, we can bound the integral by

$$
\begin{aligned}
& \int_{\frac{a_{n}}{a n}}^{1} \frac{d s}{s-\frac{z}{a_{n}}} \\
& \leq\left(1-\frac{a_{\beta n}}{a_{n}}\right) \max \left(1-\left.\frac{a_{2 n}}{a_{n}}\right|^{-1},\left|\frac{a_{\beta_{n}}}{a_{n}}-\frac{a_{\frac{\beta n}{}}^{2}}{a_{n}}\right|^{-1}\right) \leq C_{4}
\end{aligned}
$$

by Lemma 3.1.3(f). In this case the bound (3.4) gives

$$
\left(\Sigma_{n}^{*} W\right)(x) \leq C_{5}\left(1+\left|1-\frac{|x|}{a_{n}}\right|^{\frac{-1}{4}} \cdot T^{*}\left(a_{n}\right)^{-\frac{1}{4}}\right) \leq C_{6}
$$

So we have (3.38). Now let us turn to to the more difficult case where $a_{\beta_{2}} \leq t \leq a_{2 n}$. We bound the integral in (3.45) as follows:

$$
\begin{aligned}
& \left.\int_{\left\lvert\,\left\{-\frac{a_{\beta n}}{\frac{a_{n}}{n}} \leq||s| \leq 1\right.\right.}^{a_{n} \left\lvert\, \geq C \frac{1}{n} \Psi_{n}(x)\right.} \right\rvert\, \frac{\left(1-|s|+L \delta_{n}\right)^{\frac{1}{s}}}{\left|s-\frac{z}{a_{n}}\right|} d s
\end{aligned}
$$

$$
\begin{aligned}
& =: C_{7}\left[I_{1}+I_{2}\right] \text {. }
\end{aligned}
$$

Now since $\frac{1}{n} \Psi_{n}(x)$ is bounded below by a power of n, we see that

$$
I_{2} \leq C_{8} \delta_{n}^{\frac{1}{4}} \log n
$$

If $x \geq a_{n}$, we estimate

$$
I_{1} \leq \int_{\frac{a_{\beta_{n}}}{a_{n}}}^{1} \frac{(1-s)^{\frac{1}{4}}}{|s-1|} d s \leq C_{g} T^{*}\left(a_{n}\right)^{-\frac{1}{4}}
$$

If $x<a_{n}$, we make the substitution $1-s=\left(1-\frac{a}{a_{n}}\right) v$ to get

$$
\begin{aligned}
& I_{1}=\left(1-\frac{n}{a_{n}}\right)^{\frac{1}{4}} \int_{v \in\left[\frac{\left(1-\frac{a_{n}}{a_{n}}\right.}{\left(1-\frac{\sigma_{n}}{a_{n}}\right)}\right]}^{|v-1|^{\frac{1}{2}}} d v \\
& |y-1| \geq 0 \frac{\ln (x)}{n\left(1-\frac{x}{a} \frac{\pi}{n}\right)} \\
& \leq C_{10}\left(1-\frac{x}{a_{n}}\right)^{\frac{1}{4}}\left\{\int_{|v-1| \geq C \frac{x_{n}}{n\left(1-\frac{1}{n}\right)}}^{\substack{v \in[0,0]}} \frac{1}{|v-1|} d v+\right. \\
& \left.\int_{2}^{\left(1-\frac{\kappa_{n n}}{a_{n}}\right) /\left(1-\frac{x}{a_{n}}\right)} v^{-\frac{3}{4}} d v\right\} \\
& \leq C_{11}\left\{\left(1-\frac{x}{a_{n}}\right)^{\left.\frac{1}{4} \log n+T^{*}\left(a_{n}\right)^{-\frac{1}{4}}\right\}}\right.
\end{aligned}
$$

Combining our estimates for I_{1}, I_{2} and using the bound,

$$
a_{n}^{\frac{1}{2}}\left|p_{n} W(x)\right| \delta_{n}^{\frac{1}{4}} \leq C_{5}
$$

which follows from (3.5), we deduce (3.39) from (3.45):0
In our second quadrature sum estimate, we need the kernel function for the Chebyshey weight

$$
\begin{equation*}
v(t):=\left(1-t^{2}\right)^{-\frac{1}{2}}, t \in(-1,1) \tag{3.46}
\end{equation*}
$$

If $p_{j}(v ; x)=\sqrt{\frac{2}{\pi}} T_{j}(x)$ is the j th orthonormal polynomial for v (at least for $j \geq 1$), then

$$
\begin{equation*}
K_{n}(v, x, t):=\sum_{j=0}^{n-1} p_{j}(v, x) p_{j}(v, t) \tag{3.47}
\end{equation*}
$$

admits the following estimates $[[46], p .36],[44], p .108]$.

$$
\begin{equation*}
K_{n}(v, x, x) \sim n,|x| \leq 1 \tag{3.48}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|K_{n}(v, x, t)\right| \leq C \min \left\{n \frac{\sqrt{1-x^{2}}+\sqrt{1-t^{2}}}{|x-t|}\right\}, \quad n, t \in[-1,1] \tag{3.49}
\end{equation*}
$$

Lemma 3.3.2. Let $0<n<1$. Let $\phi: \mathbb{R} \rightarrow(0, \infty)$ be a continuous function with the following property: For $n \geq 1$, there exist polynomials R_{n} of degree $\leq n$ such that

$$
\begin{equation*}
C_{1} \leq \frac{\phi(t)}{R_{n}(t)} \leq C_{2},|t| \leq a_{4 n} \tag{3.50}
\end{equation*}
$$

Then for $n \geq n_{0}$ and $P_{n} \in P_{n}$,

$$
\begin{equation*}
\sum_{\left|x_{j, n}\right| \leq n_{n n}} \lambda_{j_{n} n}\left|P_{n} W^{-1}\right|\left(x_{j n}\right) \phi\left(x_{j_{n}}\right) \leq C \int_{-a_{4 n}}^{\alpha_{4 n}}\left|P_{n} W\right| \phi \tag{3.51}
\end{equation*}
$$

Proof Essentially the proof is the same as in [35], and the ideas appeared much earlier [44], [45] but we include the details.

Step 1: An L_{1} Christoffel function type estimate.
We first note that for $P_{4 n} \in \mathcal{P}_{d n-1}$

$$
\begin{aligned}
\left(P_{4 n} W\right)^{2}(x) & \leq \lambda_{4 n}^{-1}\left(W^{2}, x\right) W^{2}(x) \int_{\mathbb{R}^{2}}\left(P_{4 n} W\right)^{2}(t) d t \\
& \leq C_{2} \frac{n}{a_{n}}\left(\Psi_{4 n}(x)\right)^{-1} \int_{-a_{4 n}}^{a_{4 n}}\left(P_{4 n} W\right)^{2}(t) d t
\end{aligned}
$$

by Lermma 3.1.1(a), (d).
We deduce that

$$
\left\|P_{4 n} W \Psi_{4 n}^{\frac{1}{2}}\right\|_{L_{\infty}\left[-a_{4 n} a_{4 n}\right]}^{2} \leq C_{1} \frac{n}{a_{n}} \int_{-a_{4 n}}^{a_{4 n}}\left|P_{4 n} \Psi_{4 n}^{-\frac{1}{2}} W(t) d t\right|\left\|P_{4 n} W \Psi_{4 n}^{\frac{1}{2}}\right\|_{L_{\infty}\left[-a_{4 n} a_{4 n}\right]}
$$

and hence that for $|x| \leq a_{4 n}$,

$$
\left|P_{4 n} \Psi_{4 n}^{\frac{1}{2}} W\right|(x) \leq C_{1} \frac{n}{a_{n}} \int_{-a_{4 n}}^{a_{4 n}}\left|P_{4 n} \Psi_{4 n}^{-\frac{1}{2}} W\right|(t) d t
$$

Now we apply this for fixed $|x| \leq a_{4 n}$ to

$$
P_{4 n}(t):=P_{2 n}(t) K_{n}^{2}\left(v_{1} \frac{x}{a_{4 n}}, \frac{t}{a_{4 n}}\right)
$$

where $P_{2 n} \in \mathcal{P}_{2 n}$
We obtain, using (3.48) that

$$
\left|P_{2 n} \Psi_{4 n}^{\frac{1}{2}} W\right|(x) \leq C_{2} \frac{1}{n a_{n}} \int_{-a_{4 n}}^{a_{4 n}}\left|P_{2 n} \Psi_{4 n}^{-\frac{1}{2}} W(t)\right| K_{n}^{2}\left(v, \frac{t}{a_{4 n}}, \frac{t}{a_{4 n}}\right) d t .
$$

In particular applying this to $P_{2 n}:=P_{n} R_{n}$, where $P_{n} \in \mathcal{P}_{n}$, and using (3.50), we obtain

$$
\begin{equation*}
\left|P_{n} \Psi_{4 n}^{\frac{1}{2}} W \phi\right|(x) \leq C_{3} \frac{1}{n a_{n}} \int_{-a_{4 n}}^{n}\left|P_{n} \phi \Psi_{4 n}^{-\frac{1}{2}} W\right|(t) K_{n}^{2}\left(v_{1} \frac{x}{a_{4 n}}, \frac{t}{a_{4 n}}\right) d t \tag{3.52}
\end{equation*}
$$

Step 2: The general quadrature sum bounded in terms of a special quadrature sum.
We take (3.52) for $x=x_{j, n}$ multiply by $\lambda_{j, n} W^{-2}\left(x_{j, n}\right) \Psi_{4 n}^{-\frac{1}{2}}\left(x_{j, n}\right)$, and sum over all $\left|x_{j, n}\right| \leq$ $a_{\eta n}$. Using our estimate for Christoffel function $\lambda_{n}\left(W_{2}{ }_{2}\right)$ in Lemma 3.1.1(a), we obtain

$$
\begin{align*}
& \sum_{\left|x_{j, n}\right| \leq a_{\eta n}} \lambda_{j, n}\left|P_{n} W^{-1}\right|\left(x_{j, n}\right) \Phi\left(x_{j, n}\right) \tag{3.53}\\
\leq & C_{4} \int_{-a_{4 n}}^{a_{n n}}\left|P_{n} W \Phi\right|(t) \Sigma_{n}(t) d t_{1}
\end{align*}
$$

where

$$
\begin{equation*}
\Sigma_{n}(t):=n^{-2} \sum_{\left|x_{j, n}\right| \leq a_{\eta n}} \Psi_{n}\left(x_{j, n}\right) \Psi_{4 n}^{-\frac{1}{2}}\left(x_{j, n}\right) K_{n}^{2}\left(v_{1} \frac{x_{j, n}}{a_{4 n}}, \frac{t}{a_{4 n}}\right) \Psi_{4 n}^{-\frac{1}{2}}(t) \tag{3.54}
\end{equation*}
$$

Then the result will follow if we can show

$$
\begin{equation*}
\Sigma_{n}(t) \leq C_{5},|t| \leq a_{4 n} . \tag{3.55}
\end{equation*}
$$

Step 3: Estimation of (3.55).

First note that for $|x| \leq a_{n n}$

$$
\Psi_{n}(x) \sim \Psi_{4 n}(x) \sim\left(1-\frac{|x|}{a_{n}}\right)^{\frac{1}{2}}
$$

This follows easily from the fact that $1-\frac{\left|a_{1}\right|}{a_{n}} \geq 1-\frac{|x|}{a_{n}} \geq C_{6} / T^{w}\left(a_{n}\right)$ for this range. Moreover,

$$
\Psi_{4 n}(t) \geq\left(1-\frac{|t|}{a_{4 n}}+L \delta_{n}\right)^{\frac{1}{2}}
$$

for $|t| \leq a_{4 n}$
Let us set

$$
y_{i_{n}, n}=\frac{x_{j, n}}{a_{4 n}} T=\frac{t}{a_{4 n}}
$$

Then we have, using also (3.49) and the spacing in Lemma 3.1.1(b), that

$$
\begin{align*}
& \Sigma_{n}(t)\left(1-\frac{|t|}{a_{n}}+L \delta_{n}\right)^{\frac{1}{4}} \leq \\
& \leq \frac{C_{7}}{n a_{n}} \sum_{\left|x_{j, n}\right| \leq a_{n n}}\left(x_{j, n}-x_{j+1, n}\right)\left(1-\frac{\left|x_{j, n}\right|}{a_{4 n}}\right)^{-\frac{1}{4}} K_{n}^{2}\left(v, \frac{a_{j, n}}{a_{4 n}}, \frac{t}{a_{A n}}\right) \\
& \leq C_{8} n^{-1} \sum_{|y j, n| \leq a_{n n} / a_{n}}\left(y_{j, n}-y_{j+1, n}\right)\left(1-\left|y_{j, n}\right|\right)^{-\frac{1}{4}} \\
& \times \min \left\{n, \frac{\sqrt{1-y_{j, n}{ }^{2}}+\sqrt{1-T^{2}}}{\left|y_{j, n}-T\right|}\right\}^{2} \\
& \leq C_{9} n^{-1} \int_{-1}^{1}(1-|y|)^{-\frac{1}{4}} \min \left\{n, \frac{\sqrt{1-y^{2}}+\sqrt{1-T^{2}}}{|y-T|}\right\}^{2} d y . \tag{3.56}
\end{align*}
$$

In bounding the sum in terms of the integral, we have used (3.9). Let us assume that $1-n^{-2} \geq T \geq 0$. Then we can continue the above as

$$
\begin{aligned}
\Sigma_{n}(t)(1-T)^{\frac{1}{4}} \leq C_{10} n^{-1} & \left\{n^{2} \int_{y \in[0,1):|y-T| \leq \frac{1}{n}(1-T)^{\frac{1}{2}}}(1-y)^{-\frac{1}{4}} d y\right. \\
+ & \left.\int_{y \in[0,1)|y-T| \geq \frac{1}{n}(1-T)^{\frac{1}{2}}(1-y)^{-\frac{1}{4}} \frac{1-y+1-T}{\mid y-T]^{2}} d y}\right\} \\
& =C_{10} n^{-1}\left\{\left.n^{2}(1-T)^{\frac{3}{4}} \int_{w w|1-w| \leq \frac{1}{n}(1-T)^{-\frac{1}{2}} w^{-\frac{1}{4}} d w}+(1-T)^{-\frac{1}{4}} \int_{w:|1-w| \geq \frac{1}{n}(1-T)^{-\frac{1}{2}}} w^{-\frac{1}{4}} \right\rvert\, \frac{|1+w|^{2}}{|1-w|^{2}} d w\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (substitution } 1-y=(1-x) w) \\
& \leq C_{11}(1-T)^{\frac{1}{4}}
\end{aligned}
$$

Here we have used the fact that

$$
\frac{1}{n}(1-T)^{-\frac{1}{2}} \leq 1
$$

So in this case, we have (3.55). In the remaining case where $1-n^{-2} \leq T<1$, we continue (3.56) as

$$
\begin{aligned}
\Sigma_{n}(t)\left(L \delta_{n}\right)^{\frac{1}{4}} & \leq C_{12} n^{-1}\left\{n^{2} \int_{y \in[0,1]|y-T| \leq 4 n^{-2}(1-y)^{-\frac{1}{4}} d y}+\int_{0}^{1-2 n^{-2}}(1-y)^{-\frac{1}{4}} \frac{1-y+n^{-2}}{\mid y-T)^{2}} d y\right\} \\
& \leq C_{13} n^{-\frac{1}{2}}
\end{aligned}
$$

Since $\delta_{n}^{\frac{1}{4}}$ decays scarcely faster than $n^{-\frac{1}{2}}$ we again have (3.55).

3.4 A Converse Quadrature Sum Estimate

In this section, we prove a converse Quadrature type estimate that will be needed in proving Theorems 2.5.4-2.5.6. The proof follows that of H.König in [21]. We prove:

Theorem 3.11, Let $1<p<4$. There exists $C>0$ such that for $n \geq 1$ and $P_{n} \in \mathcal{P}_{n+1}$

$$
\begin{equation*}
\left\|P_{n} W\right\|_{L_{p}(\mathbb{R})} \leq C\left\{\sum_{j=1}^{n} \lambda_{j, n} W^{-2}\left(x_{j, n}\right)\left|P_{n} W\right|^{p}\left(x_{j, n}\right)\right\}^{\frac{1}{p}} \tag{3.57}
\end{equation*}
$$

Our proof of Theorem 3.4.1 follows that of H.König. We shall divide the proof into several steps: In the sequel, we shall use the abbreviation

$$
\begin{equation*}
\mu_{j, n}:=\lambda_{j, n} W^{-2}\left(x_{j, n}\right) \sim\left|I_{j, n}\right|=x_{j-1, n}-x_{j, n} \tag{3.58}
\end{equation*}
$$

(See (3.1) and (3.3)).
Step 1; Express $P_{n} W$ as a sum of two terms.

Let $P_{n} \in \mathcal{P}_{n-1}$. We write (recall (2.47))

$$
\begin{align*}
\left(P_{n} W\right)(x) & =\left(L_{n}\left[P_{n}\right] W\right)(x)=\sum_{j=1}^{n} P_{n}\left(x_{j, n}\right)\left(l_{j, n} W\right)(x) \tag{3.59}\\
& =a_{n}^{\frac{2}{2}}\left(p_{n} W\right)(x) \sum_{j=1}^{n} y_{j, n}\left\{\frac{1}{x-x_{j, n}}-\frac{1}{\left.\mid I_{j, n}\right]} H\left[\chi_{j, n}\right](x)\right\} \\
& =+a_{n}^{2}\left(p_{n} W\right)(x) H\left[\sum_{j=1}^{n} y_{j, n} \mid \chi_{j, n}\right](x)
\end{align*}
$$

Here

$$
\begin{equation*}
y_{j, n}:=a_{n}^{\frac{-1}{2}} \frac{\left(P_{n} W\right)\left(x_{j, n}\right)}{\left(p_{n}^{\prime} W\right)\left(x_{j, n}\right)} \tag{3.60}
\end{equation*}
$$

Note that in view of the behaviour of the smallest and largest zeros (see (3.2)) and in view of the infinite-finite range inequality (3.6); it suffices to estimate $\left.\left\|P_{n} W\right\|_{L_{p}\left[m_{n}, n\right.}, x_{1, n}\right]$ in terms of the right -hand side of (3.57).

Step 2: Estimate $\left\|J_{2}\right\|$

We begin with J_{2} as it is easier to handle. Using our bound (3.4) for p_{n}, and then the weighted boundedness of the Hilbert transform in Lemma 3.2 .3 gives:

$$
\begin{aligned}
\left\|J_{2}\right\|_{L_{P}\left(x_{n, n}, x_{1, n}\right]} & \leq C\left\|\sum_{j=1}^{n} y_{j_{n}, n} \frac{\chi_{j_{j n}}(x)}{\left|I_{j, n}\right|}\left|1-\frac{|x|}{a_{n} \mid}\right|^{\frac{-1}{q}}\right\|_{L_{p}(\mathbb{R})} \\
& =C_{1}\left[\sum_{j=1}^{n}\left\{\frac{\left|y_{j, n}\right|}{\left|I_{j, n}\right|}\right\}^{p} \int_{I_{j, n}}\left|x-\frac{|x|}{a_{n}}\right|^{\frac{-p}{4}} d x\right]^{\frac{1}{p}}
\end{aligned}
$$

Using the spacing (3.3) and also (3.9), one deduces that

$$
\int_{I_{j, n}}\left|1-\frac{|x|}{a_{n} \mid}\right|^{\frac{-p}{4}} d x \sim\left|I_{j, n}\right|\left|1-\frac{\left|4_{j, n}\right|}{a_{n}}+\delta_{n}\right|^{\frac{-n}{4}}
$$

Next, from (3.60) and (3.11), we see that

$$
\begin{equation*}
\left|y_{j, n}\right| \sim\left|P_{n} W\right|\left(x_{j_{n}, n}\right)\left|I_{j, n}\right|\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}+\delta_{n}\right|^{\frac{41}{4}} \tag{3.61}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\left\|J_{2}\right\|_{L_{p}\left[\left(x_{n, n}, x_{1, n}\right]\right.} \leq C_{2}\left[\sum_{j=1}^{n}\left|I_{j, n}\right|\left|P_{n} W\right|^{p}\left(x_{j, n}\right)\right]^{\frac{1}{2}} \\
\leq C_{3}\left[\sum_{j=1}^{m} \lambda_{j, n} W^{-2}\left(\alpha_{j, n}\right)\left|P_{n} W\right|^{p}\left(x_{j, n}\right)\right]^{\frac{1}{p}}
\end{aligned}
$$

by (3.58).

Step 3: Estimate J_{1}.

By Lemma 3.2.4,

$$
\left|J_{1}(x)\right| \leq C_{4} \sum_{j=1}^{n}\left|y_{j, n}\right| f_{j, 2}(x), z \in\left[x_{n, n}, x_{1, n}\right]
$$

Then

$$
\left\|J_{1}\right\|_{L_{p}\left[x_{n, n}, x_{1, n}\right]} \leq<\left\{\sum_{k=1}^{n} \int_{l_{k, n}}\left[\sum_{j=1}^{n}\left|y_{j, n}\right| f_{j, n}(x)\right]^{p} d x\right\}^{\frac{1}{p}}
$$

Now using the spacing (3.3), (3.9) and the definition (2.46) of $f_{j, n}$, we see that

$$
f_{j, n}(x) \sim \frac{\left|I_{j, n}\right|}{\left(x_{k, n t}-x_{j, n}\right)^{2}}\left[\left[\left.1-\frac{\left|x_{k, n}\right|}{a_{n}} \right\rvert\,+\delta_{n}\right]^{\frac{-1}{4}}, x \in I_{k, n},\right.
$$

uniformly in n and $j \neq k$.
We deduce that

$$
\begin{equation*}
\left\|J_{1}\right\|_{L_{P}\left[x_{n, n}, x_{1, n}\right]} \leq C_{5}\left(S_{1}+S_{2}\right) \tag{3.62}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{1}:=\left\{\sum_{k=2}^{n}\left|r_{k, n}\right|\left[\sum_{j=1}^{n}\left|y_{j, n}\right| \frac{\left|I_{j, n}\right|}{\left(x_{k, n}-x_{j, n}\right)^{2}}\left[\left|1-\frac{\left|x_{k, n}\right|}{a_{n}}\right|+\delta_{n}\right]^{\frac{-1}{1}}\right]^{p}\right\}^{\frac{1}{p}} \tag{3.63}
\end{equation*}
$$

and by (2.46)

$$
S_{2}:=\left\{\sum_{k=2}^{n}\left|y_{k, n}\right|^{p}\left|I_{k, n}\right|^{1-p}\left[\left|1-\frac{\left|x_{k, n}\right|}{a_{n}}\right|+\left.\delta_{n}\right|^{\frac{-1}{4} p} d x\right\}^{\frac{1}{p}}\right.
$$

Exactly as in the last part of Step 2, we see that (3.61) gives

$$
S_{2} \leq C_{6}\left[\sum_{j=1}^{n} \lambda_{j, n} W^{-2}\left(x_{j, n}\right)\left|P_{n} W\right|^{p}\left(x_{j, n}\right)\right]^{\frac{1}{p}}
$$

To deal with S_{1}, we use Lemma 3.2 .2 with a discrete measure space. Using (3.61) and (3.58), we see that

$$
S_{1} \leq C_{7}\left\{\sum_{k=1}^{n}\left[\sum_{j=1}^{n} b_{k, j}\left\{\mu_{j, n}^{p} P W\left(m_{j, n}\right)\right\}\right]^{n}\right\}^{\frac{1}{p}}
$$

where

$$
\begin{gathered}
b_{k, k}:=0=b_{1, k} \forall k \text { and for } j \neq k \\
b_{k, j}:=\left|I_{j, n t}\right|^{2-\frac{1}{p}}\left|I_{k, n}\right|^{\frac{1}{p}}\left(x_{j_{n}, n}-x_{k, n}-2\left[\left|1-\frac{\left|x_{j, n}\right|}{a_{n}}\right|+\delta_{n}\right]^{\frac{1}{4}}\left[\left|1-\frac{\left|x_{k, n}\right|}{a_{n}}\right|+\delta_{n}\right]^{\frac{-1}{4}}\right.
\end{gathered}
$$

Note the order: $b_{k_{1}, j}$ rather than $b_{j, k}$. Defining $B:=\left(b_{k, j}\right)_{k, j=1}^{n}$, we see that if j_{p}^{n} denotes the usual (little) l_{p} space on \mathbb{R}^{n}, then

$$
S_{1} \leq C_{8}\|B\|_{i p} \rightarrow\left[r_{p}\left[\sum_{j=1}^{n} \mu_{j, n}\left|P_{n} W\right|^{p}\left(x_{j, n}\right)\right]^{\frac{1}{p}}\right.
$$

So the result follows if we can show that independently of n,

$$
\begin{equation*}
\|B\|_{p \rightarrow 0} \leq C_{9} \tag{3,64}
\end{equation*}
$$

Step 4: We prove (3.64).
This is far more complicated than the analogous proof for the Hermite weight [21], because of the more complicated behaviour of the spacing of the teros of the orthogonal polynomials. We apply Lemma 3.2 .2 with the discrete measure space $\Omega:=\{1,2, . . n\}$ and $\mu(\{j\})=1, j=$ $1,2, \ldots n$. Moreover, we set there

$$
k(k, j):=b_{k, j} ; r_{k, j}:=\left(\frac{\left|I_{j, n}\right|}{\left|I_{k, n}\right|}\right)^{\frac{1}{p q}} .
$$

Note that because of the way we order the variables ($b_{k, j}$ rather than $b_{j, k}$), the variable u in
$(3.27)-(3.28)$ is k and the variable v in $(3.27)-(3.28)$ is j. So $(3.27-3.28)$ become

$$
\begin{equation*}
\sup _{k} \sum_{\substack{j=1 \\ j \neq k}}^{n}\left|I_{j, n}\right|^{2}\left(x_{j n}-x_{k, n}\right)^{-2}\left\{\left|I-\frac{\left|x_{j, n}\right|}{a_{n} \mid}\right|+\delta_{n}\right]^{\frac{1}{4}}\left[\left|1-\frac{\left|k_{k, n}\right|}{a_{n}}\right|+\delta_{n}\right]^{\frac{7}{4}} \leq M \tag{3.65}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{j} \sum_{k_{n=1}^{n}}^{n}\left|I_{j, n}\right|\left|I_{k, n}\right|\left(x_{j, n}-x_{k, n}\right)^{-2}\left[\left|1-\frac{\left|m_{j, n}\right|}{a_{n}}\right|+\delta_{n}\right]^{\frac{1}{4}}| | 1-\frac{\left|x_{k, n}\right|}{a_{n}}\left|+\delta_{n}\right|^{\frac{-1}{4}} \leq M \tag{3.06}
\end{equation*}
$$

Recall that given fixed $\beta \in(0,1)$, we have uniformly in l and n

$$
\begin{equation*}
\left|I_{l, n}\right| \sim \frac{a_{n}}{n}\left(1-\frac{\left|x_{l n}\right|}{a_{n}}\right)^{\frac{1}{2}},\left|x_{i n n}\right| \leq a_{k n} \tag{3.67}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{1, n}\right| \sim \frac{a_{n}}{n} T^{*}\left(a_{n}\right)^{-1}\left(1-\frac{\left|x_{1, n}\right|}{a_{n}}+\delta_{n}\right)^{-\frac{1}{2}},\left|a_{1, n}\right| \geq a a_{n n} \tag{3.68}
\end{equation*}
$$

(See (3.3) and 2.41).
To take account of this dual behaviour of $\left|I_{i, n}\right|$, we consider three ranges of $x_{j, n}, x_{k, r}$. It ia not difficult to see that we may consider only $x_{j, n}, x_{k, n} \geq 0$.

Range 1: $0<x_{j, n}, x_{k_{m} m}<a_{\frac{m_{n}}{4}}$.
Using (3.67), we see that if we restrict summation in the sum in (3.65) to $j:\left|a_{j_{j, n}}\right| \leq$ $a_{\frac{\text { sf }}{4}}$, then, the resulting w, m is bounded by a constant times

$$
I_{11}:=\frac{a_{n}}{n}\left(1-\frac{x_{k, n}}{a_{n}}\right)^{\frac{-1}{4}} \int_{\left|t-a_{k, n}\right| \geq C_{i 0} \mid}^{0 \leq t \leq a_{k, n} \mid} \frac{\left|1-\frac{t}{a_{n}}\right|^{\frac{3}{4}}}{\left(t-x_{k, n}\right)^{2}} d t
$$

We make the substitution

$$
1-\frac{t}{a_{n}}=\left(\left(1-\frac{x_{k, n}}{a_{n}}\right) u\right)
$$

In this integral, and use (3.67) again to give

$$
\begin{aligned}
A_{11} & \leq \frac{1}{n}\left(1-\frac{x_{k, n}}{a_{n}}\right)^{\frac{-1}{2}} \int \frac{0 \leq u \leq\left(1-\frac{F_{n, n}}{a_{n}}\right)^{-1}}{} \frac{\left\lvert\, u u^{\frac{3}{4}}\right.}{(1-u)^{2}} d u \\
& \leq C_{12} \frac{1}{n}\left(1-\frac{x_{k, n}}{a_{n}}\right)^{\frac{-1}{2}}\left[n\left(1-\frac{x_{k, n}}{a_{n}}\right)^{\frac{1}{2}}+1\right] \\
& \leq C_{13}\left[1+\frac{1}{n} T\left(a_{n}\right)^{\frac{1}{2}}\right] \leq C_{14}
\end{aligned}
$$

by (3.21) and (3,22).
Next, if we restrict simmation in (3.66) to $k:\left|w_{k, n}\right| \leq a_{\frac{3 n}{4}}$, and we use (3.67), we see that the resulting sum is bounded above by a constant times

$$
I_{12}:=\frac{a_{n}}{n}\left(1-\frac{x_{j, n}}{a_{n}}\right)^{\frac{3}{4}} \int_{\left|t-a j_{j, n}\right| \geq C_{1 b}\left|I_{n, n}\right|}^{0 \leq i \leq a_{n}} \frac{\left|1-\frac{t}{a_{n}}\right|^{\frac{3}{4}}}{\left(t-x_{j, n}\right)^{2}} d t
$$

The same substitution as before shows that $I_{1,2}$ has a similar upper bound th hat for $I_{2,1}$ and hence, is bounded independently of j, n.

Range 2: $x_{j, n}, x_{k, n} \geq a_{\frac{n}{2}}$.
Using (3.68), we see that after restricting summation in the sum in (3.65) to $j:\left|x_{j_{n} n}\right| \geqq$ $a_{\frac{n}{2}}$, then the resulting sum is bounded by a constant times,

$$
\begin{aligned}
& \sum_{\substack{j:\left|x_{j, n}\right| \geq a n \\
j \neq k}} \frac{\left.\left.\left|I_{j ; n}\right| \frac{n^{2}}{4} \right\rvert\, I_{k ; n}\right]^{\frac{1}{2}}}{\left(x_{j, n}-x_{k, n}\right)^{2}} \\
& \leq C_{16}\left|I_{k, n}\right|^{\frac{1}{2}} \sum_{\substack{j:\left|x_{j, n} n\right| \geq a n \\
j \neq k}} \frac{\left|I_{j, n}\right|}{\left|x_{j, n}-x_{k, n}\right|^{\frac{3}{2}}} \\
& \leq C_{17}\left|I_{k, n}\right|^{\frac{1}{2}} \int_{t| | l-x_{k, n}\left|\geq C_{18}\right| I_{k, n} \mid} \frac{d t}{\left|t-x_{k, n}\right|^{\frac{3}{2}}} \leq C_{18}
\end{aligned}
$$

Similarly, after restricting summation in the sum in (3.66) to $k:\left|x_{k, n}\right| \geq a \frac{n}{2}$, then the
resulting sum is bounded by a constant, times,

After swopping the indices, j and k, we see that this is the same as the sum just estimated,
Range $a^{2} x_{j, n}<a_{\frac{n}{2}}$ and $x_{k, n}>a_{\frac{3 n}{4}} ;$ or $x_{j n}>a_{\frac{3 n}{4}}$ and $x_{k, n}<a_{\frac{n}{2}}$.
Here,

$$
\left|x_{i, n}-x_{k, n}\right| \geq a_{\frac{3 n}{}}-a_{\frac{n}{2}} \geq C_{19} \frac{a_{n}}{T^{m}\left(a_{n}\right)}
$$

(See (3.21)). Also, given fixed smail $\varepsilon>0$, we see that

$$
\left|\mu_{l n}\right| \leq C_{2 c^{n}}-\frac{2}{3}+\varepsilon, \text { uniformly in } l \text { and } n
$$

(See $(3.67),(3.68),(3.22),(2.39))$. Finally,

$$
\left[\left.1-\frac{\left|x_{k, n}\right|}{a_{n}} \right\rvert\,+\delta_{n}\right]^{-\frac{1}{4}} \leq C_{21} n^{\frac{1}{6}+\varepsilon}
$$

Then we see after suitably restricting the range of summation in (3.65), we obtain a sum bounded by

$$
C_{22} n^{-1}+2 \varepsilon a_{n}^{-2} T^{m}\left(a_{n}\right)^{2} \sum_{j}\left|I_{j n}\right| \leq C_{23} n^{\frac{-2}{2}+2 s} T^{*}\left(a_{n}\right)^{2} a_{n}^{-1}=0(1)
$$

Similarly the sum arising from (3.66) is $o(1)$. So we have completed the proof of (3.64),

Chapter 4

Necessary and Sufficient Conditions

for $1<p<\infty$

4.1 Sufficiency for Theorem 2.5.2

In proving the sufficiency conditions, we split our functions into pieces that vanish inside or outside $\left[-a \frac{n}{\theta_{1}}, a \frac{n}{6}\right]$, Throughout, we let χs denote the characteristic function of a set S Also, we set for some fixer $\kappa>0$,

$$
\begin{equation*}
\phi(x):=\left(\log \left(2+x^{2}\right)\right)^{-1-\kappa} \tag{0,2}
\end{equation*}
$$

Throughout, we assume that $W=\exp [-Q] \in \mathcal{E}_{1}^{*}$, that $\}<p<\infty$ and

$$
\begin{equation*}
\Delta>\max \left\{0_{1} \frac{2}{3}\left(\frac{1}{4}-\frac{1}{p}\right)\right\} \tag{4.2}
\end{equation*}
$$

Lemma 4.1.1. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions from $\longrightarrow \mathbb{R}$ such that for $n \geq 1$,

$$
\begin{equation*}
f_{n}(x)=0,|x|<a_{n} ; \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|f_{n} W\right|(x) \leq \phi(x), x \in \mathbb{R} . \tag{4.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}\left[f_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}(\mathbb{R})}=0 \tag{4,5}
\end{equation*}
$$

Proof. Firstly for $|x| \leq a_{\frac{n}{18}}$ or $|x| \geq a_{2 n}$ Lemma 3.3 .1 (with $\beta=\frac{1}{9}$) and (4.3), (4.4) show that

$$
\begin{aligned}
\left|L_{n}\left[f_{n}\right] W\right|(x) & \leq \phi\left(a_{n}\right) \sum_{\left|w_{k, n}\right| \geq a_{n}}\left|L_{k, n}(x)\right| W^{-1}\left(a_{k, n}\right) W(x) \\
& \leq G_{1} \phi\left(a_{\frac{n}{1}}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
& \left.\left.\left\|L_{n}\left[f_{n}\right] W(1+Q)^{\Delta}\right\|_{L_{P}\left(\left(|x| \leq a_{n}\right)\right.}\right) \cup\left(|x| \geq a_{2 n}\right)\right) \\
& \leq C_{1} \phi\left(a_{n}\right)\left\|(I+Q)^{-\Delta}\right\|_{L_{P}(\mathbb{R})} \leq C_{2} \phi\left(a \frac{n}{8}\right)
\end{aligned}
$$

Here we have used the fact that Q grows faster than any power of x (Lemma 3.1.3(a)). Next, for $a_{\frac{n}{18}} \leq|x| \leq a_{2 n}$, Lemma 3.3.1 gives

$$
\left|L_{n}\left[f_{n}\right] W\right|(x) \leq C_{3} \phi\left(a_{\frac{n}{1}}\right)\left\{\log n+a_{n}^{\frac{1}{2}}\left|P_{n} W\right|(x) T^{*}\left(a_{n}\right)^{-\frac{1}{4}}\right\}
$$

Also for this range of x,

$$
Q(x) \sim Q\left(a_{n}\right) \sim n T^{*}\left(a_{n}\right)^{-\frac{1}{2}}
$$

So

$$
\begin{aligned}
& \left\|L_{n}\left[f_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}}\left[a_{n} \leq|x| \leq a_{2 n}\right] \\
\leq & C_{4} \phi\left(a_{n}\right)\left(n T^{*}\left(a_{n}\right)^{-\frac{1}{2}}\right)^{-\Delta}\left\{\log n\left(a_{2 n}-a_{\frac{n}{16}}\right)^{\frac{1}{p}}+a_{n}^{\frac{1}{2}} T^{*}\left(a_{n}-\frac{1}{2}\left\|p_{n} W\right\|_{L_{p}(\mathbb{R})}\right\}\right. \\
\leq & C_{6} \phi\left(a_{\frac{n}{1}}\right)\left(n T^{*}\left(a_{n}\right)^{-\frac{1}{2}}\right)^{-\Delta}(\log n)\left(\frac{a_{n}}{T^{*}\left(a_{n}\right)}\right)^{\frac{1}{p}}
\end{aligned}
$$

$$
+C_{\phi} \phi\left(a_{\frac{n}{8}}\right)\left(n T^{*}\left(a_{n}\right)^{-\frac{1}{2}}\right)^{-\Delta} T^{*}\left(a_{n}\right)^{-1} a_{n}^{\frac{2}{k}}\left\{\begin{array}{ll}
1 & \cdots \\
(\log n)^{\frac{1}{4}} & \\
\left(n T^{v}\left(a_{n}\right)\right)^{\frac{2}{3}\left(\frac{1}{8}-\frac{1}{p}\right)} & , p>4
\end{array}\right)
$$

by Lemma $3.1 .2(a)$ and Lemma $3.1 .3(f)$.
Since $T^{*}\left(a_{n}\right)$ and a_{n} grow slower than any por tive power of n (Lemma 3.1.4 (a)), we see that the right hand side is $o\left(\phi\left(a_{n}\right)\right)=0(1)$, because of $(4,2)$, ©

Next, we deal with functions that v_{1} h outside $\left[-a_{\frac{n}{2}}, a_{n}\right]$. We separately estinate the weighted L_{p} norms of their Lagrange interpolants over $\left[-a_{\frac{n}{B}}, a_{\frac{n}{B}}\right]$ and $\mathbb{R} \backslash\left[\sim a_{\frac{n}{B}}, a_{\frac{n}{B}}\right]$.

Lemma 4.1.2. Let $\left\{g_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions from $\mathbb{R} \rightarrow \mathbb{R}$ such that for $n \geq 1$

$$
\begin{gather*}
\left.g_{n}(x)=0,|x| \geq a_{n}\right\} \tag{4,6}\\
\left|g_{n} W\right| \quad . \phi(x), x \in \mathbb{R} . \tag{4.7}
\end{gather*}
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}\left[g_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}}\left[|x| \geq a_{\frac{n}{8}}\right]=0 . \tag{4.8}
\end{equation*}
$$

Proof. For $t \geq a_{\frac{\pi}{5}}$,

$$
\begin{aligned}
\left|L_{n}\left[g_{n}\right](x)\right| \leq & \sum_{\left|w_{k, n}\right| \leq a_{n}}\left|l_{k, n}(x)\right| W^{-1}\left(x_{k, n}\right) \phi\left(x_{k, n}\right) \\
\leq & C_{1} a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right| \sum_{\left|x_{k, n}\right| \leq a_{n}}\left(x_{k, n}-x_{k+1, n}\right) \frac{\left(1-\frac{\left|a_{k, n}\right|}{a_{n}}+L \delta_{n}\right)^{\frac{1}{4}}}{\left|x-x_{k, n}\right|} \phi\left(x_{k, n}\right) \\
\therefore & (\text { by Lemma } 3.1 .2(b) \text { and }(3.3)) \\
\leq & C_{2} a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right| \int_{-a_{1}}^{a_{n} \frac{n}{8}} \frac{\left(1-\frac{|k|}{a_{n}}+L \delta_{n}\right)^{\frac{1}{4}}}{|x-t|} \phi(t) d t .
\end{aligned}
$$

Here we have used the monotonicity of ϕ and (3.44) Next, for $t \in\left[0, a_{\frac{n}{}}\right]$ and $x \geq a \frac{n}{6}$

$$
0 \leq \frac{a_{n}-t}{x-t}=1+\frac{\frac{a_{n}}{x}-1}{1-\frac{t}{x}} \leq 1+\frac{\frac{a_{n}}{a_{n}}-1}{1-\frac{a_{n}}{a_{2}}} \leq C_{3}
$$

by Lemma 3,13(f).
Moreover,

$$
1-\frac{|t|}{a_{n}} \geq C_{4} \frac{1}{T^{m}\left(a_{n}\right)} \gg \delta_{n}
$$

So

$$
\begin{aligned}
\left|L_{n}\left[g_{n}\right](x)\right| & \leq G_{5} a_{n}^{\frac{1}{4}}\left|p_{n}(x)\right| \int_{0}^{a_{0}} \frac{\left(a_{n}-t\right)^{\frac{1}{4}}}{x-t} \phi(t) d t \\
& \leq C_{6} a_{n}^{\frac{1}{4}}\left[p_{n}(x) \left\lvert\, \int_{0}^{a_{n}} \frac{(x-t)^{-\frac{s}{4}} \phi(t) d t}{}\right.\right.
\end{aligned}
$$

Here if $t=a_{s i}, \frac{\pi}{g} \geq s \geq 1$, we have for $x \geq a_{\frac{1}{}}$

$$
x-t=x\left(1-\frac{t}{x}\right) \geq a_{\frac{1}{a}}\left(1-\frac{a_{s}}{a_{\frac{0}{a}}}\right) \geq C_{7} \frac{a_{n}}{T^{*}\left(a_{s}\right)}
$$

So

$$
\left|L_{n}\left[g_{n}\right](x)\right| \leq C_{5} a_{n}^{-\frac{1}{2}}\left|p_{n}(x)\right| \int_{0}^{a_{n}} T^{*}(t)^{\frac{3}{4}} \phi(t) d t
$$

Thus

$$
\begin{aligned}
& \left\|L_{n}\left[g_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}}\left[| | n \mid \geq a_{n}\right] \\
\leq & C_{9} a_{n}^{-\frac{1}{2}}\left[\int_{0}^{a^{\frac{n}{8}}} T(t)^{\frac{3}{4}} \phi(t) d t\right] Q\left(a_{\frac{n}{}}\right)^{-\Delta}\left\|p_{n} W\right\|_{L_{P}(\mathbb{R})}
\end{aligned}
$$

It is easy to see that the integral involving ϕ in the last right hand side grows slower that any power of n. Then using (4.2) and the estimate on $\left\|p_{n} W\right\|_{L_{P}(\mathbb{R})}$ provided by Lemma 3.1.2(a), we obtain (4.8) , ■

We now turn to the most difficult part of the sufficiency proof, namely the estimation of $\left\|L_{n}\left[g_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}\left[|x| \leq \Lambda_{n}\right]}$.

We present the most technical part of this as a separate lemma. Recall the notation $(2.35-2.38) f_{1}$ the partial sums $S_{n}[$.$] of the orthonormal expansions with respect to W^{2}$.

Lemma 4.1.3. Let $\sigma ; \mathbb{R} \longrightarrow \mathbb{R}$ be a bounded measurable function. Then, for $n \geq 1$

$$
\begin{equation*}
\left\|S_{n}\left[\sigma \phi W^{-1}\right] W(1+Q)^{-\Delta \|_{L_{P}}\left[|x| \leq \omega_{0}\right.} \mid \leq C\right\| \sigma \|_{L_{0 \infty}}(\mathbb{A}) \tag{4.9}
\end{equation*}
$$

Here C is independent of σ and n.
Proof. We split this into several steps. Part of the difficulty lies in that we cannot simply estimate Hilbert Transforms in L_{p} with the weight $(1+Q)^{-\Delta}$, as it does not satisfy Muckeir houpt's A_{p} condition(see Theorem 3.2.1). We may assume that $\|\sigma\|_{L_{\infty}(\mathbb{R})}=1$.

Step 1: Split $S_{n}[](x)$ into several terms depending on the location of x.
First note that by (2.38) and by our estimates for $\frac{\gamma_{n}-1}{\gamma_{n}}$ and p_{n} (see Lemma $3.1 .1(c)$, (e)),

$$
\begin{equation*}
\left|S_{n}\left[\sigma \phi W^{-1}\right]\right| W(x) \leq C_{1} a_{n}^{\frac{1}{2}}\left(1-\frac{|x|}{a_{n}}\right)^{-\frac{1}{4}} \sum_{j=n-1}^{n}\left|H\left[\sigma \phi p_{i} W\right]\right|(x) \tag{4;10}
\end{equation*}
$$

Now let us choose $l:=l(n)$ such that

$$
\begin{equation*}
2^{i} \leq \frac{n}{8} \leq 2^{l+1} \tag{4.11}
\end{equation*}
$$

Note that our choise of $l=l(n)$ guarantees that

$$
\begin{equation*}
2^{1+3} \leq i . \tag{4,12}
\end{equation*}
$$

Define

$$
\Im_{k}:=\left[\begin{array}{ll}
a_{2 k}, & a_{2} k+1 \tag{4.13}
\end{array}\right], k \geq 1
$$

The reason for this choice of intervals is that

$$
\begin{equation*}
Q(x) \sim Q\left(a_{2^{k}}\right) \sim 2^{k} T^{*}\left(a_{2^{k}}\right)^{\frac{-1}{2}}, x \in \Im_{k}, \tag{4.14}
\end{equation*}
$$

uniformly in k. For $j=n-1, n$ and $x \in \Im_{k}$, we split

$$
\begin{align*}
H\left[\sigma \phi p_{j} W\right](x) & =\left[\int_{-\infty}^{0}+\int_{0}^{a_{2} k-1}+P V \int_{d_{2} k+1}^{a_{2} k+2}+\int_{a_{2} k+2}^{\infty} j \frac{\sigma \phi p_{j} W(t)}{x-t} d t\right. \tag{4.15}\\
& =I_{1}(x)+I_{2}(x)+I_{3}(x)+I_{4}(x)
\end{align*}
$$

Here P.V stands for principle value.
Step 2a Estimation of I_{1} and I_{2} for $x \in 刃_{k}$.
We see that (recall $x \geq a_{2}$)

$$
\begin{aligned}
\left|I_{1}(x)\right| & \leq \int_{0}^{\infty} \frac{\left|p_{j} W \phi\right|(-t)}{t+x} d t \\
& \leq C_{2} a_{n}^{-\frac{1}{2}} \int_{0}^{\frac{a_{n}}{2}} \frac{\phi(t)}{t+a_{2}} d t+C_{2} a_{n}^{-1} \int_{\frac{a_{n}}{2}}^{\infty}\left|p_{j} W\right|(t) d t
\end{aligned}
$$

Here we have used the bound (3.4), the bound for $\left\|p_{n} W\right\|_{L_{1}(\mathbb{R})}$ in Lemms 3.12(a) and also the form of ϕ (recall (4.1)), which guarantees that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\phi(t)}{1+t} d t<\infty \tag{4.16}
\end{equation*}
$$

Next the bound (3.4) gives

$$
\begin{aligned}
I_{2}(x) \mid & \leq \int_{0}^{a_{2} k-1} \frac{\left|p_{j} W \phi\right|(t)}{x-t} d t \\
& \leq C_{4} a_{n}^{-\frac{1}{2}}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \int_{0}^{a_{2} k-1} \frac{d t}{x-t} \\
& =C_{4} a_{n}^{-\frac{1}{2}}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log \left(1-\frac{a_{2 k-1}}{x}\right)^{-1}
\end{aligned}
$$

Now

$$
1-\frac{a_{2^{k}-1}}{x} \geq 1-\frac{a_{2^{k}-1}}{a_{2^{k}}} \geq C_{5} \frac{1}{T^{*}\left(a_{2^{k}}\right)} \geq C_{6} \frac{1}{T^{*}(x)}
$$

Thus

$$
\left|I_{2}(x)\right| \leq C_{7} a_{n}^{-\frac{1}{2}}\left(1-\frac{x}{a_{n h}}\right)^{-\frac{1}{4}} \log \left(C_{8} T^{*}(x)\right)
$$

Step 3: Estimation of I_{4} for $x \in \Im_{k}$.
Now using our bound (3.4) again gives

$$
\begin{aligned}
\left|I_{4}(x)\right| & \leq \int_{a_{2} k+2}^{\infty} \frac{\left|p_{j} W \phi\right|(t)}{t-\infty} d t \\
& \leq C_{0}\left[a_{n}^{-\frac{1}{2}} \int_{a_{2} k+2}^{2 a_{2} k+2}\left|1-\frac{t}{a_{n}}\right|^{-\frac{1}{4}} \frac{d t}{t-x}+a_{n}^{-\frac{1}{2}} \int_{2 a_{2} k+2}^{\max \left\{2 a_{2} k+2\right.} \frac{a_{n}}{2}\right\} \\
& \left.+\int_{\frac{a_{n}}{2}}^{\infty} \frac{\left|p_{j} W\right|(t)}{t} d t\right] \\
\quad & \leq C_{10} a_{n}^{-\frac{1}{2}}[1+J]
\end{aligned}
$$

where

$$
J:=\int_{a_{2} k+2}^{2 a_{2} k+2}\left|1-\frac{t}{a_{n}}\right|^{-\frac{1}{4}} \frac{d t}{t-x}
$$

(We have used (4.16) and the bound on the L_{1} norm of $p_{n} W$).
Here if $\left|1-\frac{t}{a_{n}}\right| \leq \frac{1}{2}\left(1-\frac{x}{a_{n}}\right)$, then

$$
|t-x|=a_{N}\left|\left(1-\frac{x}{a_{n}}\right)-\left(1-\frac{t}{a_{n}}\right)\right| \geq \frac{1}{2} a_{n}\left(1-\frac{x}{a_{n}}\right) .
$$

Thus

$$
\begin{aligned}
& J \leq C_{11}\left[(1 - \frac { x } { a _ { n } }) ^ { - \frac { 1 } { 4 } } \int \left(\left|1-\frac{t}{a_{n}}\right| \geq \frac{1}{2}\left(1-\frac{x}{n_{n}}\right) \frac{d t}{t-x}\right.\right. \\
& +a_{n}^{-1}\left(1-\frac{x}{a_{n}}\right)^{-1} \iint\left(1-\frac{t}{n}\left|\leq \frac{1}{2}\left(1-\frac{x}{a_{n}}\right)\right| 1-\left.\frac{t}{a_{n}}\right|^{-\frac{1}{4}} d t\right] \\
& \leq C_{12}\left[\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log \left(1+\frac{a_{2^{k+2}}}{a_{2 k+2}-2}\right)\right. \\
& \left.+\left(1-\frac{x}{a_{n}}\right)^{-1} \int_{|1-s| \leq \frac{1}{2}\left(1-\frac{x}{a_{n}}\right)}|1-s|^{-\frac{1}{4}} d s\right] \\
& \leq C_{13}\left(1-\frac{x}{a_{n}}\right)^{-\frac{1}{4}} \log \left(C_{14} T^{*}(x)\right) \text {. }
\end{aligned}
$$

Step 4: Estimation of $\left\|S_{n}[\cdot]\right\|_{L_{P}\left[S_{k}\right]}$

Combining our estimates for $I_{j} j=1,2,4$ gives,

$$
\left.\mid I_{1}+I_{2}+I_{4}\right\}(x) \leq C_{14} a_{n}^{-\frac{1}{2}}\left(1-\frac{n}{a_{n}}\right)^{-\frac{1}{4}} \log \left(C_{15} I *(x)\right)
$$

Together with $(4.10),(4.14)$ and (4.15), this gives

$$
\begin{aligned}
& \left\|S_{n}\left[\sigma \phi W^{-1}\right] W(1+Q)^{-\Delta}\right\|_{L \sim\left[\mathfrak{W}_{k}\right]} \\
& \leq Q\left(a_{3 k}\right)^{-\Delta}\left(1-\frac{a_{2} k+1}{a_{n}}\right)^{-\frac{1}{4}} \\
& x\left\{\left(1-\frac{a_{2 k+1}}{a_{n}}\right)^{-\frac{1}{4}} \log \left(C_{15} T^{*}\left(u_{2^{k+1}}\right)\right)\left(a_{2^{k+1}}-a_{2^{k}}\right)^{\frac{1}{p}}\right. \\
& \left.+a_{n}^{\frac{1}{2}} \sum_{j=n-1}^{n}\left\|P V \cdot \int_{a_{2 n-1}}^{a_{2} k+2} \frac{\sigma \phi p_{j} W(t)}{T-t} d t\right\|_{\left.L_{p} \mid \mathcal{S}_{k}\right]}\right\}
\end{aligned}
$$

We use M.Riesz's theorem on the boundedness of the Hilbert transform from L_{p} (庼) to $L_{p}(\mathbb{R})$, (see section 3.2) to dectuce that

$$
\begin{aligned}
& \left\|P V \int_{a_{2^{k-1}}}^{a_{2^{k}+2}^{2}} \frac{\sigma \phi p_{j} W(t)}{\nmid-t} d t\right\|_{L_{P}\left[\Im_{k}\right]}^{p} \\
& \leq C_{17} \int_{a_{2^{k-1}}}^{a_{2^{k+2}}}\left|\sigma \phi p_{j} W\right|^{p}(t) d t \\
& \leq C_{17} a_{n}^{-\frac{p}{2}}\left(1-\frac{a_{2^{k+2}}}{a_{n}}\right)^{-\frac{p}{4}}\left(a_{2^{k+2}}-a_{2^{k-1}}\right) .
\end{aligned}
$$

Next, note that, in view of $(4.12), n \geq 2^{k+3}$ for $k \leq l$, so

$$
\left(1-\frac{a_{2^{k+1}}}{a_{n}}\right) \geq\left(1-\frac{a_{2^{k}+2}}{a_{n}}\right) \geq\left(1-\frac{a_{2^{k+2}}}{a_{2^{k+3}}}\right) \geq C_{18} \frac{1}{T^{k}\left(a_{\left.2^{k}\right)}\right.}
$$

Moreover,

$$
a_{2^{k+1}}-a_{2^{k}} \leq a_{2^{k+2}}-a_{2^{k-1}} \leq C_{19} \frac{a_{2^{k}}}{T^{*}\left(a_{2^{k}}\right)}
$$

Hence,

$$
\begin{align*}
& \left\|S_{n}\left[\sigma \phi W^{-1}\right] W(1+Q)^{-\Delta}\right\| L_{P} \mathfrak{\mathfrak { \xi } _ { k }]} \tag{4.17}\\
\leq & C_{20} Q\left(a_{2^{k}}\right)^{-\Delta} T^{*}\left(a_{2^{k}}\right)^{\frac{1}{2}} \log \left(C_{15} T^{*}\left(a_{2 k+1}\right)\right)\left(\frac{a_{2^{k}}}{T^{*}\left(a_{2^{k}}\right)}\right)^{\frac{1}{p}}
\end{align*}
$$

Step 5: Completion of the proof

The estimation of $S_{n}\left[J(x)\right.$ for $x \in-\Im_{k}=\left[-a_{2 k+1}-a_{2^{k}}\right]$ is exactly the same as for $x \in$ \Im_{k}. Since we have (4,14), and since $a_{2^{k}}, T^{*}\left(a_{2^{k}}\right)$ grow much slower than $Q\left(a_{2^{k}}\right)$ (Lemma 3.1 .4 (a)), we obtain

$$
\begin{aligned}
& \left.\left\|S_{n}\left[\sigma \phi W^{-1}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}\left[a_{2} \leq|\sigma| \leq a_{n}\right.}^{p}\right] \\
& \leq \sum_{k=1}^{1}\left\|S_{n}\left[\sigma \phi W^{-1}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}\left[\Im_{k}\right]}^{p} \\
& \leq C_{21} \sum_{k=1}^{l} 2^{-k_{n} \Delta} \leq C_{22} .
\end{aligned}
$$

The estimation of $\left\|S_{n}\left[\sigma \phi W^{-1}\right] W(1+Q)^{-\Delta}\right\|_{\left.L_{P^{\prime}}|x| \leq a_{2}\right]}$ is similar but easier We split

$$
H\left[\sigma \phi p_{j} W\right](\pi)=\left[\int_{-\infty}^{-2 a_{2}}+P \cdot V \cdot \int_{-2 a_{2}}^{2 a_{2}}+\int_{2 a_{2}}^{\infty}\right] \frac{\sigma \phi p_{j} W(t)}{a-t} d t .
$$

The first and third integrals m be estimated as we did before, and the second is estimated as we did I_{3}. \square

Armed with this lemma, we can completc , he estimation of $L_{n}\left[g_{n}\right]$ over $\left[-a_{\beta_{n}}, a_{a_{n}}\right]$..
Lemma 4.1.4. Let $\varepsilon \in(0,1)$. Let $\left\{g_{n}^{\prime}\right\}$ be as in Lemma 4.1.2, except that rather then (4.7), we assume that

$$
\begin{equation*}
\left|g_{n} W\right|(x) \leq \varepsilon \phi(x), x \in \mathbb{R}, n \geq 1 \tag{4,18}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\lim \sup _{n \rightarrow \infty}\left\|L_{n}\left[g_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{p}}\left[|x| \leq a_{n}\right] \leq C \delta \tag{4.19}
\end{equation*}
$$

where C is independent of $n,\left\{g_{n}\right\}$ and ε.
Proof, Let

$$
\begin{gathered}
\left.\chi_{n}:=\chi_{\left[-a_{n}, a n\right.}\right] \\
h_{n}:=\operatorname{sign}\left(L_{n}\left[g_{n}\right]\right) \mid L_{n}\left[g_{n, d},-1 \chi_{n} W^{p-2}(1+Q)^{-\Delta p}\right.
\end{gathered}
$$

and

$$
\sigma_{n}:=\operatorname{sign} S_{n}\left[h_{n}\right] .
$$

We shall show that

$$
\begin{equation*}
\left.\left.\left\|L_{n}\left[g_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}\left[|x| \leq a_{n}\right.}\right] \leq C \varepsilon\left\|_{n}\left[\sigma \phi W^{-1}\right] W(1+Q)^{-\Delta}\right\|_{L_{p}\left[|x| \leq a_{y}\right]}\right] \tag{4.20}
\end{equation*}
$$

Then Lemma 4.1.3 gives the result.
Now using the orthogonality of $f-S_{n}[f]$ to \mathcal{P}_{n-1} and the Gauss quadrature formula (3.36), we see that ${ }^{\circ}$

$$
\begin{aligned}
& \left\|L_{n}\left[L_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{p}\left[|n| \leq a_{n}\right]}^{p}=\int_{\mathbb{R}} L_{n}\left[g_{n}\right] h_{n} W^{2} \\
& =\int_{\mathbf{R}} L_{n}\left[g_{n}\right] S_{n}\left[h_{n}\right] W^{2}=\sum_{j=1}^{n} \lambda_{j_{n}, n} g_{n}\left(x_{j, n}\right) S_{n}\left[h_{n}\right]\left(x_{j, n}\right) \\
& =\sum_{\left|x_{k, n}\right| \ll_{i n}} \lambda_{j_{j, n}} g_{n}\left(x_{j, n}\right) S_{n}\left[h_{i n}\right]\left(x_{j, n}\right) \\
& \leq \varepsilon \sum_{\left|x_{k, n}\right|<a_{n}} \lambda_{j, n} \phi\left(x_{j_{j}, n}\right) W^{-1}\left(x_{j, n}\right)\left|S_{n}\left[h_{n}\right]\left(x_{j, n}\right)\right| \\
& \leq C \varepsilon \int_{\mathbb{R}} \phi W\left|S_{n}\left[h_{n}\right]\right|
\end{aligned}
$$

by Lemma 3.3.2.
Note that it is easy to verify the approximation property in Lemma 3.3 .2 for ϕ (in fact Jackson's Theorem gives polynomials of degree $o(n)$ satidifying (3.50)).

We can continue this is

$$
\begin{aligned}
& =C \varepsilon \int_{\mathbb{R}} \phi \sigma_{n} W^{-1} W^{2} S_{n}\left[h_{n}\right] \\
& =C \varepsilon \int_{\mathbb{R}} h_{n} S_{n}\left[\phi \sigma_{n} W^{-1}\right] W^{2} \\
& =C \varepsilon \int_{-a_{n}}^{a_{n}} h_{n} S_{n}\left[\phi \sigma_{n} W^{-1}\right] W^{2}
\end{aligned}
$$

for h_{n} has its suppart inside $\left[-a_{\frac{n}{B}} a_{\frac{n}{B}}\right]$.

Using Holder's Inequality with $q=\frac{p}{p-1}$, we continue this as

$$
\begin{aligned}
& \leq C \varepsilon\left(\int_{-a \frac{n}{8}}^{a n}\left|\hbar_{n} W(1+Q)^{\Delta}\right|^{q}\right)^{\frac{1}{q}}\left(\int_{-a \frac{y}{6}}^{a_{\frac{4}{4}}}\left|S_{n}\left[\phi \sigma_{n} W^{-1}\right] W(1+Q)^{-\Delta}\right|^{p}\right)^{\frac{1}{p}} \\
& \left.\left.=C \varepsilon\left\|L_{n}\left[g_{n}\right] W(1+Q)^{-\Delta}\right\|\left\|_{p}^{p-1}\left[x \mid \leq n, \frac{1}{6}\right]\right\| S_{n}\left[\phi \sigma_{n} W^{-1}\right] W(1+Q)^{-\Delta} \|_{L_{P}[\{x \mid \leq a y}\right]\right]
\end{aligned}
$$

Cancelling the $(p-1)$ th power of $\| L_{n}$.ngives (4.20).
We can now turn to:
The Proof of the Sufficiency Part of Theorem 2.5.2. Let $f . \mathbb{R} \rightarrow \mathbb{R}$ be continuous and satisfy (2.21). Let $\varepsilon>0$. By Corollary 1.1.2, we can choose a polynomial P such that,

$$
\left\|(f-P) W \phi^{-1}\right\|_{L_{\infty}(\mathbb{R})} \leq E
$$

Then, for n large enough,

$$
\begin{align*}
& \left\|\left(f-L_{n}[f]\right) W(1+Q)^{-\Delta}\right\|_{L_{p}(\mathbb{R})} \tag{4.21}\\
& \leq\left\|(f-P) W(1+Q)^{-\Delta}\right\|_{L_{P}(\mathbb{R})}+\left\|\left(P-L_{n}[f]\right) W(1+Q)^{-\Delta}\right\|_{L_{p}(\mathbb{R})} \\
& \leq \varepsilon\left\|\phi(1+Q)^{-\Delta}\right\|_{L_{P}(\mathbb{R})}+\left\|\left(L_{n}[P-f]\right) W(1+Q)^{-\Delta}\right\| L_{p}(\mathbb{R})
\end{align*}
$$

The first norm in (4.21) is finite as $\Delta>0$ and as Q grows faster than any power of x.
Next, let

$$
x_{n}:=x\left[-a_{\frac{n}{9}}, b_{n}\right]
$$

and write

$$
P-f=(P-f) \chi_{n}+(P-f)\left(1-\chi_{n}\right)=g_{n}+f_{n}
$$

By Lemma 4.1.1,

$$
\lim _{n \rightarrow+\infty}\left\|L_{n}\left[f_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{p}(\mathbb{R})}=0
$$

Also Lemmas 4.1.2 and 4.1.4 together give

$$
\lim \sup _{n \rightarrow \infty}\left\|L_{n}\left[g_{n}\right] W(1+Q)^{-\Delta}\right\|_{L_{P}(\mathbb{R})} \leq C \varepsilon
$$

with C independent of ε.
Substituting the estimates for $L_{n}\left[f_{n}\right]$; and $L_{n}\left[g_{n}\right]$ into (4.21) and then letting $\varepsilon \longrightarrow 0$, gives (2.20)

4.2 Sufficiency for Theorem 2.5.4

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and satisfy (2.25) with $\alpha>\frac{1}{p}$. We must show (2.26), Let $\varepsilon \in(0,1)$.We can choose a polynomial P such that

$$
\left\|(f-P)(x) W(x)(1+|x|)^{\alpha}\right\|_{L_{\infty}(k)} \leq \varepsilon .
$$

(See Corollary 1.1.2). Then for n large enough

$$
\begin{align*}
& \left\|\left(f-L_{n}[f]\right) W\right\|_{L_{p}(\mathbb{R})} \tag{4.22}\\
\leq & \|(f-P) W\|_{L_{p}(\mathbb{R})}+\left\|L_{n}[P-f] W\right\|_{L_{p}(\mathbb{R})} \\
\leq & \varepsilon\left\|(1+|x|)^{-\alpha}\right\|_{L_{p}(\mathbf{R})}+\left\|L_{n}[P-f] W\right\|_{L_{p}(\mathbb{R})}
\end{align*}
$$

The first norm in the right-hand side of (4.22) is, of course, finitu as an >1. Next, Theorem 3.4.1 shows that for large enough n,

$$
\begin{aligned}
\left\|L_{n}[P-f] W\right\|_{L_{P}(\mathbb{K})} & \leq C_{1}\left\{\sum_{j=1}^{n} \lambda_{j, n} W^{-2}\left(x_{j, n}\right)|(P-f) W|^{p}\left(x_{j, n}\right)\right\}^{\frac{1}{p}} \\
& \leq C_{2} \varepsilon\left\{\sum_{j=1}^{n}\left|I_{j, n}\right|\left(1+\left|x_{j, n}\right|\right)^{-\alpha p}\right\}^{\frac{1}{y}} \\
& \leq C_{3} \varepsilon\left\|(1+|n|)^{-\alpha}\right\|_{L_{p}(\mathbb{R})}
\end{aligned}
$$

Substituting into (4.22) and noting that the various constants are independent of ε, gives the result.

4.3 Sufficiency for Theorem 2.5.5

As $(1+|x|)^{\Delta} \leq 1$ if $\Delta \leq 0$, the limit (2.28) follows from (2.26).

4.4 Necessity for Theorem 2.5.2

Proof. Fix $1<\rho<\infty, \Delta \in \mathbb{R}, \kappa>0, \delta>1+\kappa$ and assume the conclusion of Theorem 2.5.2 is true; i.e. (2.20) holds for every continuous function satisfying (2.21). Let X be the space of all continuous functions $f: \mathbb{R} \rightarrow$ with

$$
\|f\| x:=\sup _{x \in \mathbb{R}}|f W|(x)(\log (2+|x|))^{\delta}<\infty
$$

Moreover, let Y be the space of all measurable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
\|f\|_{Y}=\left\|f W(1+Q)^{-\Delta}\right\|_{L_{p}(\mathbb{R})}<\infty
$$

Each $f \in X$ satisfies (2.20), so the conclusion of Theorem 2.5.2 ensutes that

$$
\lim _{n \rightarrow \infty}\left\|f-L_{n}[f]\right\| y=0
$$

Since X is a Banach space, the uniform boundedness principle gives

$$
\begin{equation*}
\| f-L_{n}\left[f\left\|_{y} \leq C\right\| f \|_{x}\right. \tag{4.23}
\end{equation*}
$$

with C independent of n and f In particular as $L_{1}[f]=f(0)$ (recall that $\left.p_{1}(x)=\gamma_{1}(x)\right)$. we deduce that for $f \in X$ with $f(0)=0$,

$$
\|f\|_{Y} \leq C\|f\|_{X}
$$

So for such f,

$$
\begin{equation*}
\left\|L_{n}[f]\right\|_{Y} \leq 2 C\|f\|_{X} \tag{4.24}
\end{equation*}
$$

Choose g_{n} continuous in \mathbb{R}; with $g_{n}=0$ in $[0, \infty) \cup\left(-\infty, \frac{-1}{2} a_{n}\right]$; with

$$
\left\|g_{n}\right\|_{X}=\sup _{x \in \mathbb{E}}\left|g_{n} W\right|(x)(\log (2+|x|))^{\delta}=1
$$

and for $x_{j, n} \in\left(-\frac{1}{2} a_{n}, 0\right)$,

$$
g_{n} W\left(x_{j, n}\right)\left(\log \left(2+\left|x_{j, n}\right|\right)^{\delta} \operatorname{sig} n p_{n}^{\prime}\left(x_{j, n}\right)=1\right.
$$

For example, $\left(g_{n} W(x)(\log (2+|x|))^{\delta}\right)$ cun be chosen to be plecewise linear Then for $x \in$ $\left[1, a_{n}\right]$;

$$
\begin{aligned}
& =\left|p_{n}(x)\right| \sum_{x_{j, n} \in\left(-\frac{1}{2} a_{n} ; 0\right)} \frac{\left(\log \left(2+\left|m_{j, n}\right|\right)\right)^{-\delta}}{\left|p_{\pi}^{\prime} D\right|\left(x_{j, n}\right)\left(x+\left|x_{j, n}\right|\right)} \\
& \geq C_{1} a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right|\left(\log a_{n}\right)^{-\delta} a_{n}^{-1} \sum_{z_{j, n} \in\left[-\frac{1}{2} a_{n}, 0\right)}\left(x_{j, n}-x_{j+1, n}\right)
\end{aligned}
$$

(by Lemma 3.1.1(g) and (b))

$$
\geq C_{2} a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right|\left(\log a_{n}\right)^{-\delta}
$$

Theri by (4. 44),

$$
\begin{aligned}
& 2 C=2 C\left\|g_{n}\right\|_{X} \geq\left\|L_{n}\left[g_{n}\right]\right\|_{Y} \\
& \geq C_{3} a_{n}^{\frac{1}{2}}\left(\log a_{n}\right)^{-\delta}\left\|p_{n} W(1+Q)^{-\Delta}\right\|_{L_{F}\left[1, a_{n}\right]} \\
& \geq C_{4} a_{n}^{\frac{1}{p}}\left(\log a_{n}\right)^{-\delta} Q\left(a_{n}\right)^{-\max \{\Delta, 0\}}\left\{\begin{array}{lll}
& \cdots \\
1 & \ddots & , p<4 \\
(\log n)^{\frac{1}{4}} & & , p=4 \\
\left(n T^{*}\left(a_{n}\right)\right)^{\frac{2}{3}\left(\frac{1}{f}-\frac{1}{p}\right)} & , p>4
\end{array}\right.
\end{aligned}
$$

Here we used the monotonicity of Q, Lemma 3.1.2(a) and Lemma 3.1.1 (d). Note that $[-i, 1]$ does not give a big contribution to the L_{p} norm of $p_{\pi} W$. We obtain a contradiction if $\Delta \leq 0$, for all p. So, $\Delta>0$. Alsc, for $p>4$, we obtain from Lemma 3.1.3(b),

$$
2 C \geq C_{5} a_{n}^{\frac{1}{p}}\left(\log a_{n}\right)^{-\delta} p^{*}\left(\alpha_{n}\right)^{\frac{4}{2}+\frac{2}{8}\left(\frac{1}{4}-\frac{1}{p}\right)} n^{-\Delta+\frac{y}{3}\left(\frac{1}{4}-\frac{1}{p}\right)}
$$

Since the terms invoving a_{n} and $T^{m}\left(a_{n}\right)$ grow to oo with n, we see that necessarily

$$
\Delta>\frac{2}{3}\left(\frac{1}{4}-\frac{1}{p}\right)
$$

4.5 Proof of Theorem 2.5.3

This is similar to the previous proof: We let X be the Banach space of continuous functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ vanishing outside $[-2,2]$, with norm

$$
\|f\|_{x}:=\|f\|_{Y_{-2,2]}} .
$$

We let Y be the space of all measurable $f: \mathbb{R} \rightarrow \mathbb{R}$ with,

$$
\|f\|_{Y}:=\|f W U\|_{L_{P}} \quad<\infty
$$

Assume that we cannot find f satisfying (2.24). Then the uniform boundedness principle gives (4.23) for all $f \in X$. Again, when $f(0)=0$, we obtain (4.24). We now choose $g_{n} \in X$, with

$$
\begin{gathered}
\left\|g_{n}\right\|_{x}=1 \\
\left(g_{n} W\right)\left(x_{j, n}\right) \operatorname{sign}\left(p_{n}^{\prime}\left(x_{j, n}\right)\right)=1, x_{j, n} \in\left[-1,-\frac{1}{2}\right] \\
g_{n}=0 \operatorname{in}(-\infty,-2] \cup[0, \infty)
\end{gathered}
$$

and

$$
g_{n} W\left(x_{j, n}\right) \operatorname{sign}\left(p_{n}^{\prime}\left(x_{j_{n}}\right)\right) \geq 0, x_{j, n} \in[-2,2] .
$$

Much as before, we deduce that for $x \geq 1$,

$$
\left|L_{n}\left[g_{n}\right](x)\right| \geq C a_{n}^{\frac{1}{2}} \frac{\left|p_{n}(x)\right|}{x}
$$

Also by hypothesis, there exists C_{1} and C_{2} such that,

$$
U(x) \geq C_{1} x^{\frac{3}{2}-\frac{1}{p}} Q(x)^{-\frac{2}{3}\left(\frac{1}{4}-\frac{1}{p}\right)}, x \geq C_{2} .
$$

Hence by (4.24)

$$
\begin{aligned}
2 C & =2 C\left\|_{n}\right\|_{X} \geq\left\|L_{n}\left[g_{n}\right]\right\| Y \\
& \geq C_{1}\left\|L_{n}\left[g_{n}\right](x) W(x) x^{\frac{3}{2}-\frac{1}{p}} Q(x)^{-\frac{2}{2}\left(\frac{1}{4}-\frac{1}{p}\right)}\right\|_{L_{P}\left[C_{2} ; a_{n}\right]} \\
& \geq C_{2} a_{n}^{\frac{1}{2}-\frac{1}{p}} Q\left(a_{n}\right)^{-\frac{3}{3}\left(\frac{1}{4}-\frac{1}{p}\right)}\left\|p_{n} W\right\|_{L_{P}\left[a_{n}, a_{n}\right]} \\
& \geq C_{3} T^{*}\left(a_{n}\right)^{\frac{1}{4}-\frac{1}{P}}
\end{aligned}
$$

much as before, by Lemma 3.1.2(a) and (3.4). Of course this is impossible for large n and we have a contradiction 0

4.6 Proof of Necessity of Theorems 2.5 .4 and 2.5 .5

We begin with,
Lemma 4.6.1. Let $0<p<\infty$ Let $0<A<B<\infty$ ard $\xi: \mathbb{R} \rightarrow(0, \infty)$ be a continuous function such that for $1 \leq s, t<\infty$ with $\frac{1}{2} \leq \frac{s}{t} \leq 2$, we lave,

$$
\begin{equation*}
A \leq \frac{\xi\left(a_{s}\right)}{\xi\left(a_{t}\right)} \leq B . \tag{4,25}
\end{equation*}
$$

For $n \geq 1$, let $\Im_{n} \subset\left[-a_{n} a_{n}\right]$ be an interval containing at least two zeros of $p_{n}\left(W^{2},\right)$. Then for $n \geq 1$,

$$
\begin{equation*}
\left\|p_{n} W \xi\right\|_{L_{p}\left[\xi_{n}\right]} \geq C_{1} a_{n}^{\frac{-1}{2}}\left\|\xi(t)\left(\left|1-\frac{|t|}{a_{n}}\right|+\delta_{n}\right)^{\frac{-1}{4}}\right\|_{L_{p}\left[\xi_{n}\right]} \tag{4.26}
\end{equation*}
$$

Here C_{1} depends only on A, B (and not on ξ or n or \Im_{n}).
Proof. From (3.15), for $x \in\left[x_{i+1}, x_{j, n}\right]_{1}$

$$
\max \left\{l_{j, n}(x) W^{-1}\left(x_{j, n}\right) W(x), l_{j+1, n}(x) W^{-1}\left(x_{j+1, n}\right) W(x)\right\} \geq \frac{1}{2}
$$

and hence for such x,

$$
\left|p_{n} W\right|(x) \geq \frac{1}{2} \min \left\{\left|x-x_{j, n}\right|\left|p_{n}^{\prime} W\right|\left(x_{j, n}\right),\left|x-x_{j+1, n}\right|\left|p_{n}^{\prime} W\right|\left(x_{j+1, n}\right)\right\}
$$

$$
\geq C_{2} \frac{n^{\frac{3}{2}}}{a_{n}^{2}} u_{n}^{-1}\left(x_{j, n}\right)\left(\left.1-\frac{\left|x_{j n}\right|}{a_{n}} \right\rvert\,+\delta_{n}\right) \quad \min \left\{\left|x-x_{j, n}\right|,\left|x-x_{j+1, n}\right|\right\}
$$

by (3.11), (3.10) and (3.9).
Let

$$
\Im_{j_{2} n}=\left[x_{j+1, n}+\frac{1}{4}\left(x_{j, n}-x_{j+1, n}\right), x_{i n}+\frac{1}{4}\left(x_{j, n}-x_{j+1, n}\right)\right]
$$

so that $\xi_{j, n}$ has length $\frac{1}{2}\left(x_{j, n}-4+1, n\right)$. By (3.3);

$$
\left|p_{n} W\right|(x) \geq C_{3} a_{n}^{2}\left(\left|1-\frac{\left|x_{n} n\right|}{a_{n}}\right|+o_{n}\right) \quad x \in \mathcal{F}_{\sqrt{n}}
$$

Then using also (3.9),

$$
\begin{aligned}
& \int_{x_{j+1, n}}^{x_{j, n}}\left|p_{n} W\right|^{p}(t) \xi^{p}(t) d t \\
\geq & C_{4} a_{n n}^{-\frac{p}{2}}\left(\left|\frac{1}{}-\frac{\left|m_{j, n}\right|}{a_{n}}\right|+\delta_{n}\right)^{\frac{p}{4}} \int_{S_{j, n}} \xi^{p}(t) d t
\end{aligned}
$$

The result follows if we can show that

$$
\int_{\Im_{j, n}} \xi^{p}(t) d t \geq C_{5} \int_{x_{j+1, m}}^{\alpha_{j, n}} \xi^{p}(t) d t
$$

(The L_{p} norm of $\xi(t)\left(\left|1-\frac{|t|}{a_{n}}\right|+\delta_{n}\right)^{\frac{-1}{4}}$ over that part of $\Im_{j, n}$ near the endpoints of this interval, is easily estimated in terms of the rest).
To do this if suffices to show that

$$
\xi(t) \sim \xi\left(x_{j, n}\right), t \in\left[x_{j+1, n} x_{i, n}\right]
$$

Now in view of $(4,25)$, it suffices to show that if $x_{j+1, n}=a_{s}$ and $x_{j, n}=a_{t ;}$ where $s \geq s_{0}>$ 0 (Here we use the continuity of the map $u: \longrightarrow a_{\mu}$) then,

$$
\begin{equation*}
1 \leq \frac{s}{t} \leq 2 \tag{4,27}
\end{equation*}
$$

But if $t \geq 2 s$, then (3.17) and (3.18) give

$$
\frac{x_{j, n}}{x_{j+1, n}}-1 \geq \frac{a_{2 s}}{a_{s}}-1 \geq C_{6} \frac{1}{T^{*}\left(a_{s}\right)} \geq C_{7} \frac{1}{T^{*}\left(a_{n}\right)}
$$

while our spacing (3.3) gives

$$
\frac{x_{j, n}}{x_{j+1, n}}-1 \leq G_{8} \frac{a_{n}}{n} \frac{\Psi_{n}\left(x_{j, n}\right)}{w_{j+1, n}} \leq C_{0} \frac{a_{n}}{n} \Psi_{n}\left(a_{n}\right) \leq C_{10} a_{n}\left(n T^{*}\left(a_{n}\right)\right)^{-\frac{2}{3}}
$$

Our hypothesis shows that $T^{*}\left(a_{n}\right)^{-1}$ is much larger than any negative power of n, for n large, and we have a contradicton. So (4.27) and the result follow.

We can now proceed with:
The Pxoof of the necessity parts of Theorem 2.5.4 and 2.5.5. Fix $\alpha, \Delta \in R$ and $1<$ $p<4$. Assume moreover that we have the convergence (2.28) for every continuous f satisfying (2.25). Let $\eta: \mathbb{R} \longrightarrow(0, \infty)$ be a positive even continuous function, decreasing in $(0, \infty)$, with limit 0 at ∞. We shall assume it decays very slowly later on. Let

$$
X:=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \text { continuous with }\|f\|_{X}: \sup _{x \in \mathbb{P}}|f W|(x)(1+|x|)^{\alpha} \eta(x)^{-1}<\infty\right\}
$$

Morecve", let Y be the space of all measurable functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ with

$$
\|f\|_{Y}:=\left\|(f W)(x)(1+|x|)^{\Delta}\right\|_{L_{p}(\mathbb{R})}<\infty
$$

Each $f \in X$ satisfies (2.25), so the conclusion of Thm 2.5 .5 ensures that

$$
\lim _{n \rightarrow \infty}\left\|\left(f-L_{n}[f]\right)\right\|_{Y}=0
$$

Since X is a Banach space, the uniform boundedness principle gives

$$
\begin{equation*}
\left\|\left(f-L_{n}[f]\right)\right\|_{\mathrm{r}} \leq C\|f\|_{X} \tag{4.28}
\end{equation*}
$$

with C independent of n and f. In particular as $L_{1}[f]=f(0)$ (Recall that $p_{1}(x)=\gamma_{1}(x)$;)
we deduce that for $f \in X$ with $f(0)=0$,

$$
\|f\|_{Y} \leq C\|f\|_{X}
$$

So for such f,

$$
\begin{equation*}
\left\|L_{n}[f]\right\|_{X} \leq 2 C\|f\|_{X} \tag{4.29}
\end{equation*}
$$

Those g_{n} continuous in \mathbb{R}, with $g_{n}=0$ in $[0, \infty) \cup\left(-\infty, \frac{-1}{2} a_{n}\right]_{1}$ with

$$
\left\|g_{n}\right\|_{X}=\operatorname{sip}_{x \in \mathbb{R}}\left|g_{n} W\right|(x)(1+|x|)^{\alpha} \eta(x)^{-1}=1
$$

and for $x_{j, n} \in\left(-\frac{1}{2} a_{n y} 0\right)$,

$$
\left(g_{n} W\right)\left(x_{j n}\right)\left(1+\left|x_{j, n}\right|^{\alpha} \eta\left(x_{j n}\right)^{-1} \operatorname{sign}\left(p_{n i}^{\prime}\left(x_{j ; n}\right)\right)=1\right.
$$

For example, $\left(g_{n} W(x)(1+|x|)^{\alpha} \eta(x)^{-1}\right)$ can be chosen to be piecewise linear. Then for $x \in$ $\left[1, \frac{a_{n}}{4}\right]$,

$$
\begin{aligned}
& \left\lvert\, L_{n}\left[g_{n}\right]\left(0, i=\left|\sum_{j_{j, n} \in\left[-\frac{1}{2} a_{n}, 0\right)} g_{n}\left(x_{j, n}\right) \frac{p_{n}(x)}{p_{n}^{\prime}\left(x_{j ; n}\right)\left(x-x_{j, n}\right)}\right|\right.\right. \\
& =\left|p_{n}(x)\right| \sum_{\left.x_{j, n \in} \in-\frac{1}{2} a_{n, 0}\right)} \frac{\left(1+\mid j_{j, n}\right)^{-\alpha} \eta\left(x_{j, n}\right)}{\left|p_{n}^{\prime} W\right|\left(x_{j, n}\right)\left(x+\left|x_{j, n}\right|\right)} \\
& \geq C_{1} a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right| \eta\left(a_{n}\right) \quad \sum_{z_{j, n} \in\left[-2 a_{1}-x\right)}\left|I_{j, n}\right| \frac{\left(1+\left|x_{j, n}\right|\right)^{-\alpha}}{\left(x+\left|x_{j, n}\right|\right)} \\
& \text { (by (3.11)) } \\
& \geq C_{2} a_{n}^{\frac{1}{2}}\left|p_{n}(x)\right| \eta\left(a_{n}\right) \int_{a}^{2 x} t^{-1-\alpha} d t \\
& \text { (by (3.3)) } \\
& \geq C_{3} a_{n}^{\frac{2}{2}}\left|p_{n}(x)\right| \eta\left(a_{n}\right) x^{-a}
\end{aligned}
$$

Then by (4.29),

$$
2 C=2 C\left\|g_{n}\right\|_{X} \geq\left\|L_{n}\left[g_{n}\right]\right\|_{Y}
$$

$$
\begin{aligned}
& \geq C_{4} a_{h}^{\frac{1}{2}} \eta\left(a_{n}\right)\left\|p_{5} W(x) x^{\Delta-\alpha}\right\|_{L_{P}\left[1, \frac{a_{n}}{4}\right]} \\
& \geq C_{5} \eta\left(a_{n}\right)\left\|x^{\Delta-\alpha}\right\|_{L_{P}\left[1, \frac{a_{n}}{4}\right]}
\end{aligned}
$$

by Lemma 4.6.1.
We may assume that η decays so slowly to 0 that,

$$
\eta\left(a_{n}\right) \geq\left(\log \log a_{n}\right)^{-1}
$$

(Note that we could have imposed this condition on η at the start but, delayed this for clarity).
Suppose now that $\Delta-\alpha \geq \frac{-1}{p}$. Then we obtain,

$$
2 C \geq C_{6}\left(\log \log \left(a_{n}\right)\right)^{-1} \log a_{n}
$$

Then for large n, we obtain a contradiction. So we deduce $\Delta-\alpha<\frac{-1}{p}$ is necessary. Consequently if for a given $\Delta \in \mathbb{R}_{1}$, we have the convergence (2.28) for every continuous f satisfying (2.25) and for every $\alpha>\frac{1}{p}$ then, we must have $\Delta \leq 0$. The necessity part of Theorem 2.5 .5 is proved.

Finally, for the necessity part of Theorem 2.5.4, we take $\Delta=0$ in the above and deduce that $\alpha>\frac{1}{p}$.

4.7. Proof of Theorem 2.5.6

This is similar to the previous proof. We let X Le the Banach space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ vanishing outside $[-2,2]$, with norm

$$
\|f\|_{X}:=\|f\|_{L_{\infty}[-2,2]}
$$

We let Y be the space of all measurable $f: \mathbb{R} \longrightarrow \mathbb{R}$ witn

$$
\|f\|_{Y}:=\|f W U\|_{L_{P}[\mathbb{R}]}<\infty .
$$

Assume that we cannot find f satisfying (2.31). Then the uniform boundedness principle gives (4.28) for all $f \in X$. Again, when $f(0)=0$, we obtain (4,29). We now choose $g_{n} \in$
X, with

$$
\begin{gathered}
\left\|g_{n}\right\|_{X}=1 \\
\left(g_{n} W\right)\left(x_{j, n}\right) \operatorname{sign}\left(p_{n}^{\prime}\left(x_{j n}\right)\right)-1 x \in\left[-1,-\frac{1}{2}\right]
\end{gathered}
$$

$g_{n}=0 \operatorname{in}(-\infty,-2] \cup[0, \infty)$ and

$$
g_{n} W\left(x_{j, n}\right) \operatorname{sign}\left(p_{n}^{\prime}\left(x_{j, n}\right)\right) \geq 0 x_{i, n} \in[-2,2]
$$

Much as before we deduce that for $x \geq 1$,

$$
\left|L_{n}\left[g_{n}\right](x)\right| \geq C a_{n}^{\frac{1}{2}} \frac{\left|p_{n}(x)\right|}{x}
$$

Also by hypothesis, given $A>0$, there exists C_{2} such that

$$
U(x) \geq A x^{\frac{3}{4}}[\log Q(x)]^{-\frac{1}{4}}, x \geq C_{2}
$$

Hence by (4.29),

$$
\begin{align*}
2 C & =2 C\left\|g_{n}\right\|_{X} \geq\left\|L_{n}\left[g_{n}\right]\right\|_{Y} \tag{4.30}\\
& \geq C_{1} A a_{n}^{\frac{1}{2}}\left\|p_{n}(x) W(x) x^{\frac{-1}{4}}[\log Q(x)]^{\frac{-1}{4}}\right\|_{L_{4}\left[C_{2}, a_{n}\right]} \\
& \geq C_{3} A a_{n}^{\frac{1}{4}}[\log n]^{\frac{-1}{4}}\left\|p_{n} W\right\|_{L_{4}}\left[a_{n}, a_{n}\right]
\end{align*}
$$

by(3.16) and (3.22).
Now by Lemma 4.6.1,

$$
\begin{aligned}
\left\|P_{n} W\right\|_{L_{4}}\left[a_{n}, a_{n}\right] & \geq C_{4} a_{n}^{\frac{-1}{2}}\left\|\left(1-\frac{t}{a_{n}}+\delta_{n}\right)^{\frac{-1}{4}}\right\| \|_{L_{4}}\left[a_{n}, a_{n}\right] \\
& =C_{4} a_{n}^{\frac{-1}{4}}\left[\int_{0 \leq s \leq\left(1-\frac{a_{n}}{a_{n}}\right) / \alpha_{n}}(1+s)^{-1} d s\right]^{\frac{1}{4}} \\
& \geq C_{5} a_{n}^{-\frac{1}{4}}\left[\log \left\{1+C_{6} \delta_{n}^{-1}\left(T^{*}\left(a_{n}\right)^{-1}\right)^{j}\right]^{\frac{1}{4}}\right.
\end{aligned}
$$

$$
\geq C_{\mathrm{C}} a_{n}^{\frac{1}{4}}(\log n)^{\frac{1}{4}}
$$

Here we make the substitution $1-\frac{t}{a_{n}}=\delta_{n} s$, and also used (3.21) and (3.22), Finally using (4.30), we obtain

$$
2 C \geq C_{7} A
$$

It is clear that C_{7} is independent of A. Of course this is impossible for large A. So there must exist continuous f vanishing outside $[-2,2]$ satisfying (2.31).

Part II

Rates of Approximation for Erdós

Weights

Chapter 5

Introduction and Statement of

Reswilts

In chapter 1 , it. was pointed out that each continuous function f, could be uniformly approximated by weighted polynomials of Erdơs type. In this second part, we consider the question of how fast we can approximate our given f in our weighted sense, i.e we are interested in the degree of our approximation, or more precisely, we estimate how fast

$$
\begin{equation*}
E_{n}[f]_{W, p}:=\inf _{P_{\in} \mathcal{P}_{n}}\|(f-P) W\|_{L_{P}(\mathbb{R})} \rightarrow 0 \text { as } n \rightarrow \infty \tag{5.1}
\end{equation*}
$$

Here $0<p \leq \infty$.
Direct and converse results in this field are commonly known as Jackson and Bernstein Theorems and are closely related to the smoothness properties of the approximated function.

5.1 Moduli of Continuity and Jackson Theorems

One of the classical tools used in describing the degree of smoothness of a function, is the modulus of continuity defined by:

$$
\begin{equation*}
w_{r}^{r}(f, t):=\sup _{0<L \leq t}\left\|\Delta_{h}^{r}\left(f_{1} x, \mathbb{R}\right)\right\|_{L_{\infty}(\mathbb{R})} t>0 \tag{5.2}
\end{equation*}
$$

where for an interval $J, r \geq 1$ and $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$
\Delta_{h}^{r}(f, x, J):- \begin{cases}\sum_{n=0}^{, ~(r)}(-1)^{i} f\left(\frac{x}{x}+\frac{r h}{2}-i h\right) & , x \pm \frac{r h}{2} \in J \tag{5:3}\\ 0 & , \text { otherwise }\end{cases}
$$

is the nth order symmetric difference of f. If J is not specified, it can be taken as \mathbb{R}.
Essentially, $w_{r, p}(f$,$) measures how "continuous a function is". For weights on \mathbb{R}_{\text {, }}$, analogues of Jackson Bernstein theorems were initiated by Darbasjan but, more intensively studied by Freud in the $1960^{\prime} s-1970^{\prime} s[42]$. Freud's principle tools for proving Jackson type theorems was orthogonal polynomials and de la Vallee Poussin sums. Recently, Ditzian and Lubinsky have formulated and proved Jackson Theorems for Frreud weights by a different method. Their technique does not use orthogonal polynomials but relies on an approach which goes back to Freud/Brudnyi and more recently, to DeVore, Leviatan and $\mathrm{Yu}[9,23]$. The approach involves approximating f by a spline (or piecewise polynomial), representing the piecewise polynomial in terms of certain characteristic functions and then, approximating the characteristic functions (in a suitable sense) by polynomials. Their increasing modulus is:

$$
\begin{gather*}
w_{r, p}\left(f_{1} W_{1} t\right):=\sup _{0<h \leq t}\left\|W\left(\Delta_{h}^{r} f\right)\right\|_{L_{p}(| | \mid \leq \sigma(h))} \tag{5.4}\\
+_{R \text { of } \inf _{\mathrm{des} \leq r-1}}\|(f-R) W\|_{L_{p}(|x| \geq \sigma(t))}
\end{gather*}
$$

Here,

$$
\begin{equation*}
\sigma(t):=\inf \left\{a_{u}: \frac{a_{u}}{u} \leq t\right\} ; t>0 . \tag{5.5}
\end{equation*}
$$

We remark that their modulus is different, but equivalent to others used in the monograph of Ditzian and Totik[12]. Ditzian and Lubinsky then proved [11] :

Theorem 5.1.1. Let $0<p \leq \infty, r \geq 1$. Let $W:=\exp (-Q)$ where $Q:$ 䟡 $\rightarrow \mathbb{R}$ is even, Q^{\prime} exists in $(0, \infty), x Q^{\prime}(x)$ is positive and increasing there and for some $A, B, \lambda>1$,

$$
\begin{equation*}
A \leq \frac{Q^{\prime}(\lambda x)}{Q^{\prime}(x)} \leq B, x \geq C \tag{5.6}
\end{equation*}
$$

Then

$$
E_{n}[f]_{W, p} \leq C_{1} w_{r, p}\left(f, W_{1} C_{2} \frac{a_{n}}{n}\right)
$$

Note here that (5.6) holds in particular for W_{γ} given by (1.2).
For the corresponding Erdös weight problem, we adopted the method of Ditzian and Lubinsky $[11,12,27]$. This method had the advantage of involving only hypotheses on Q^{\prime} in contrast, with the more complicated approach via orthogonal polynomials, that typically involved hypotheses on $Q^{\prime \prime} \cdot[12,18,36,42]$. In the Erdós weight context, some new features arise: The degree of approximation improves toward the endpoints of the Mhaskar-Saff interval, and to reflect this Nikolski-Timan-Brudnyi effect, we need a more complicated modulus of continuity and the proofs become more involved.

We need a suitable class of weights.
Definition 5.1.2. Let $W:=e^{-Q}$, where
(a) $Q: \mathbb{R} \rightarrow \mathbb{R}$ is even, continuous, and Q^{\prime} is positive in $(0, \infty)$.
(b) $x Q^{\prime}(a)$ is strictly increasing in $(0, \infty)$ with right limit 0 at 0 .
(c) The function

$$
\begin{equation*}
T(x):=\frac{x Q^{\prime}(x)}{Q(x)} \tag{5.7}
\end{equation*}
$$

is quasi-increasing in (C, ∞) for some $C>0$, and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} T(x)=\infty \tag{5.8}
\end{equation*}
$$

(d) $\exists G_{1}, C_{2}, C_{3}>0$ such that

$$
\begin{equation*}
\frac{y Q^{\prime}(y)}{x Q^{\prime}(x)} \leq C_{1}\left(\frac{Q(y)}{Q(x)}\right)^{\prime}, y \geq x \geq C_{3} \tag{5.9}
\end{equation*}
$$

Then we write $W=e^{-Q} \in \mathcal{E}_{1}$.

Some Remarks

(a) We notic tr at \mathcal{E}_{1} is a much larger class of weights than \mathcal{E}_{1}^{*} defined in Definition 2.5.1. The main reason for this, is that here, we are not dependent on the correct bounds of the orthogonal polynomials, as we were in Part A.
(b) Much as in Part A, we need (b) to ensure the existence of the Mhaskar-Rahmanov-Saff number, a_{i}, defined by $(1,8)$.
(c) The function $T(x)$ plays much the same role as $T^{*}(x)$ in Part A, i.e, it serves as a measure of the regularity of growth of $Q(x)$. For example for "nice" weights like $W_{k, \alpha}$ given by (1.4)

$$
T(x)=\alpha x^{\alpha}\left[\prod_{j=1}^{k-1} \exp _{j}\left(x^{\alpha}\right)\right]
$$

so that $T(x) \sim T^{*}(x)$ in this case.
(d) As in Part A, (5.9) is a weak regularity condition on T. See (2.13).

We next proceed to define our weighted modulus of continuity/smoothness.
Define for $t>0, \sigma(t)$ given by (5.5). Recall that it has the form

$$
\sigma(t)=\inf \left\{a_{u}: \frac{a_{u}}{u} \leq t\right\} .
$$

Further, to reflect endpoint effects, we need our our increment, h, in (5.3) to depend on x, in particular on the function

$$
\begin{equation*}
\Phi_{t}(x)=\left|1-\frac{|x|}{\sigma(t)}\right|^{\frac{1}{2}}+T(\sigma(t))^{-\frac{1}{2}}, x \in \mathbb{R} . \tag{5.10}
\end{equation*}
$$

The function $\Phi_{t}(x)$ describes the improvement in the degree of approximation near $\pm a_{\frac{n}{2}}$ in much the same way that $\sqrt{1-x^{2}}$ does for weights on $[-1,1]$.

Set, for $t>0,0<p \leq \infty$ and $r \geq 1$

$$
\begin{align*}
& w_{r, p}(f, W, t):=\sup _{0<h \leq t}\left\|W\left(\Delta_{h \Phi_{1}(m)}^{r}(f)\right)\right\| L_{L_{P}(|x| \leq \sigma(z t))} \tag{a}\\
& \left.\quad+_{R} \inf _{\inf _{\mathcal{B} g \leq r-1}}\|(f-R) W\|_{L_{P}(\mid x} \mid \geq \sigma(4 t)\right)
\end{align*}
$$

Further, we define its averaged cousin,

$$
\begin{equation*}
\bar{w}_{r, p}(f, W, t):=\left(\frac{1}{t} \int_{0}^{t}\left\|W\left(\Delta_{h \Psi \Psi_{1}(x)}^{r}(f)\right)\right\|_{L_{p}(|x| \leq \sigma(2 t))}^{v} d h\right)^{\frac{1}{p}} \tag{b}
\end{equation*}
$$

$$
+_{R} \inf _{d \operatorname{deg} \leq r-1}\|(f-R) W\|_{L_{F}(|x| \geq o(4 t))} .
$$

If $p=\infty$, we set: $w_{r, p}=\bar{w}_{r, p}$. Clearly,

$$
\bar{w}_{r, p}(f, W, t) \leq w_{r, p}(f, W, t)
$$

Our modulus consists of a main part and a tail. The main part involves sth symmetric differences over a suitable interval whilst the tail involves an error of weighted polynomial approximation over the remainder of the real line. One can think of the 'main' part of the modulus being controller by the decreasing function, σ_{2} which is essentially the inverse function of the function

$$
u \rightarrow \frac{a_{u}}{u}
$$

W. decays to 0 as $u \rightarrow \infty$. A good way to view the function $\sigma(t)$, is that for purposes of approximation by polynomials of degree at most n, essentially $t=\frac{a_{n}}{n}$, the main part of the modulus is taken over the range $\left[-a_{\frac{n}{2}}, a_{\frac{n}{2}}\right]$ and the tail over $\mathbb{R} \backslash\left[-a_{\frac{n}{3}}, a_{\frac{n}{2}}\right]$, The tail is riecessary because of the inability of $\left(P_{n} V^{\prime}\right), P_{n} \in \mathcal{P}_{n}$ to approximate beyond $\left[-a_{n} a_{n}\right]$. The inf is also taken over polynomials of degree $\leq r-1$ to ensure that at least for $f \in \mathcal{P}_{r-1}, w_{r, p}(f, W, t) \equiv$ $0[28,29]$. It is possible to replace $\sigma(2 t)$ by a somewhat larger term $\sigma(t)-A t$ and $\sigma(4 t)$ by a somewhat smaller term $\sigma(t)-B t$, for suitable A, B in our modulus, under additional conditions on Q^{\prime}. However, it hardly seems worth the effort, as the resuiting modulus is almost certainly equivalent to the above one. As evidence of this, see Theorem 5.2.1.

We are ready to state our Jackson Theorems.
Theorem 5.1.3. Let $W:=e^{-Q} \in \mathcal{E}_{1}$. Let $r \geq 1$ and $0<p \leq \infty$. Then for $f: \mathbb{R} \rightarrow \mathbb{R}$ for which $f W \in L_{p}(\mathbb{R})$, (and for $p=\infty$, we require f to be continuous, and $f W$ to vanish at $\pm \infty$), we have for $n \geq C_{3}$,

$$
\begin{equation*}
E_{n}[f]_{W_{1} p} \leq C_{1 W_{r, p}}\left(f, W_{1} C_{2} \frac{a_{n}}{n}\right) \leq C_{1} w_{r, p}\left(f, W_{2} C_{2} \frac{a_{n}}{n}\right) \tag{5.12}
\end{equation*}
$$

where $C_{j}, j=1,2,3$ do not depend on f or n.
Further, we need for later use the following:

Theorem 5.1.4. For $n \geq 1$, let $\lambda(n) \in\left[\frac{4}{5}, 1\right]$. Then for $n \geq C_{3}$

$$
\begin{equation*}
E_{n}[f]_{W, p} \leq C_{1} \bar{w}_{r, p}\left(f, W, C_{2} \lambda(n) \frac{a_{n}}{n}\right) \tag{6.13}
\end{equation*}
$$

where C_{1}, C_{2} do not depend on n or f or $\{\lambda(n)\}$.
Moreover;

$$
\begin{equation*}
E_{n}[f]_{W, p} \leq C_{1} \inf _{\lambda \in\left[\frac{1}{5}, 1\right]} \bar{w}_{r}\left(f, W, C_{2} \lambda \frac{a_{n}}{n}\right) \tag{6,14}
\end{equation*}
$$

As out moduli are not monotone increasing in t, we also present a result involving the increasing modulus:

$$
\begin{align*}
& w_{r, p}^{*}\left(f_{2} W_{1} t\right):=\left.\sup _{\substack{0<h<t \\
0<\tau \leq L}}\left\|W \Delta_{\tau h \Phi_{h}(x)}^{r}(f, x ; \mathbb{R})\right\|\right|_{L_{p}}(|x| \leq \sigma(2 h)) \\
& +\inf _{P \in \mathcal{P}_{r-1}}\|(f-P) W\| L_{L_{P}(|x| \geq o(4 t))} . \tag{5,15}
\end{align*}
$$

Here L is a fixed (large enough) number independent of $f ; t$.
Theorem 5.1,5. Under the hypotheses of Theorem 5.1.3,

$$
\begin{equation*}
E_{\pi}[f]_{W, p} \leq C_{3} w_{r, p}^{*}\left(f_{1} W_{1} C_{4} \frac{a_{n}}{n}\right) \tag{5.16}
\end{equation*}
$$

where $C_{j} j=3,4$ do not dept ad on f or n.
It seems likely that one should only really need $\tau=L$ in the definition of $w_{r, p}^{*}$ but, we have only been able to prove this under additional conditions.

Set:

$$
\begin{gather*}
w_{r, p}^{\#}\left(f_{i} W_{1} t\right):=\sup _{0<h \leq t} \| W \Delta_{L_{h}}^{r} \Phi_{h}(x) \\
\quad\left(f_{1} x, W\right) \|_{L_{p}(|x| \leq \sigma(2 h))} \tag{5.17}\\
\quad+\inf _{\mathcal{P}_{r-1}}\|(f-P) W\|_{L_{P}(|x| \geq a(4 t))}
\end{gather*}
$$

Then we have:
Theorem 5.1.6. Assume the hypotheses of Theorem 5.1.3 and further assume that $Q^{\prime \prime}$
exists and is non-negative in $(0, \infty)$, and

$$
\begin{equation*}
\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)} \sim \frac{Q^{\prime}(x)}{Q(x)}, x \in(0, \infty) \tag{5,18}
\end{equation*}
$$

Moreover, we assume that

$$
\begin{equation*}
T^{\prime}(x) \leq C_{1} \frac{T^{2}(x)}{x}, x \geq C_{1} \tag{5.19}
\end{equation*}
$$

Then

$$
\begin{equation*}
E_{n}[f]_{W, p} \leq C_{6} w_{r_{1}, p}^{\#}\left(f, W, C_{5} \frac{a_{n}}{n}\right) \tag{5.20}
\end{equation*}
$$

where $C_{j}, j=5,6$ do not depend on f or n.
We note that the additional conditions (5.18) and (5.19) are certainly satisfied for $W_{k, \alpha}$ and $W_{A, B}$.

5.2 K-Functionals and Converse Theorems

While K-functionals were introduced in the context of interpolation of spaces, one of their most important applications has been in the analysis of moduli of continuity, and in converse theorems in approxination theory. J.Peetre first made the connection between his K-functional and the modulus of continuity in 1958.

The Ditzian-Totik rth order K-functional has the form

$$
\begin{equation*}
K_{r, p}^{\sim}\left(f, W, t^{r}\right):=\inf _{g^{(r-1)}}^{\substack{\text { localy absolutely } \\ \text { continuous }}} \mid\left\{\|(f-g) W\|_{\left.L_{P(\mathbb{R}}\right)}+t^{r}\left\|g^{(r) W}\right\|_{L_{P(}(\mathbb{R})}\right\} \tag{5.21}
\end{equation*}
$$

Here, $t>0, r \geq 1$ and $p \geq 1$.
We may think of the second term measuring the smooth part of f and the first part measuring tire distance of f to that smooth part[12]. The idee is to prove inequalities of the form,

$$
\begin{equation*}
\underline{w}_{r, p}(f, W, \alpha t) \leq C_{2} K_{r, p}^{*}\left(f, W, t^{r}\right) \leq C_{s} \underline{w}_{r, p}(f, W, t) \tag{5.22}
\end{equation*}
$$

for a suitable modulus, $\underline{w}_{r, p}$. Here, $\alpha>0$ is fixed in advance, $C_{1}, C_{2}>0$, and t is small enough.

Under mild conditions on W, Ditzian and Totik established the fundamental equivalence of their modulus of continuity and the K-functional[12]. All they assumed was that Q is even, continuous, Q^{\prime} is continuous and increasing in $(0, \infty)$ and

$$
\frac{Q^{\prime}(x+1)}{Q^{\prime}(x)} \leq C_{4}, x>0
$$

In particular, this holds for $W_{\gamma}(x), \gamma>1$ and $W_{1, \alpha}(x)$,
Unfortunately, $K^{*} \equiv 0$ in $L_{p}(0<p<1)[10]$, so many others have introduced the concept of realisation for $0<p<1$ [17]. Set:

$$
\begin{equation*}
\widetilde{K}_{r, p}\left(f, W, t^{r}\right)=\inf _{P \in \mathcal{P}_{r}}\left\{\|(f-P) W\|_{L \rho(\mathbb{R})}+t^{r}\left\|P^{(r)} W\right\|_{L \mathcal{P}}\right\} \tag{5.23}
\end{equation*}
$$

where the degree n is determined in terms of t by

$$
n:=\inf \left\{k: \frac{a_{k}}{k} \leq t\right\}
$$

Note that here, (compare [5.22]), the inf is taken over polynomials of suitable degree. Z.Ditzian and D.S Lubinsky then proved [11] that if W satisfies the hypotheses of Theorem 5.1 .1 (which are of course weaker than those of Ditzian/Totik) and omits a Markov-Bernstein Inequality, then (5.22) holds for $p \geq 1$ with w replaced by wand further for $0<p<1,(5.23)$ holds with \tilde{K}^{*} replaced by \bar{K} and with \underline{w} replaced by w^{*}. This yielded converse theorems,

For our purposes, the formulations become more complicated.
We define a suitably modified realisation furctional by

$$
\begin{equation*}
K_{r, p}\left(f, W, t^{\mu}\right):=\inf _{P \in \mathcal{P}_{n}}\left\{\|(f-P) W\|_{L_{P}(\mathbb{R})}+t^{r}\left\|P^{(r)} \Phi_{t}^{r} W\right\|_{L_{P}(\mathbb{E})}\right\}, \tag{5.24}
\end{equation*}
$$

where $t>0,0<p \leq \infty$; and $r \geq 1$ are chosen in advance and

$$
\begin{equation*}
n=n(t):=\inf \left\{k: \frac{a_{k}}{k} \leq t\right\} . \tag{5.25}
\end{equation*}
$$

Further we define the ordinary K -functional by

We begin with our equivalence result:
Theorem 5,2.1. Let $W \in f_{i}, L, \alpha>0, r \geq 1$ and $0<p \leq \infty$. Assume that there is a Markov-Bernstein inequality of the form

$$
\begin{equation*}
\left\|R_{n}^{\prime} \rho_{\frac{a n}{}}^{n} W\right\|_{L_{p}(\mathbb{R})} \leq C \frac{n_{1}}{\|}\left\|R_{n} W\right\|_{L_{p}(\mathbb{R})} 0<p \leq \infty, R_{n} \in P_{n}, \tag{5,27}
\end{equation*}
$$

where $C \neq C\left(n, R_{n}\right)$. Then $\exists C_{1}, C_{2}, C_{3}>0$ independent of f and t such that for $t \in$ $\left(0, t_{0}\right)$,

$$
\begin{equation*}
\text { (a) } w_{r_{, p}}(f, W, L t) \leq C_{1} K_{r, p}(f, W, t) \leq C_{2} w_{r, p}\left(f, W, C_{3} t\right) \tag{5.28}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\text { (b) } w_{r, p}(f, W, t) \sim \bar{w}_{r, p}(f ; W, t) \sim K_{r, p}\left(f, W_{s} t^{r}\right) \tag{5.29}
\end{equation*}
$$

uniformly in t and f.

$$
\begin{equation*}
(c) w_{r, p}\left(f, W_{1} \alpha t\right) \leq C_{4} w_{r, p}(f, W, t) \tag{5.30}
\end{equation*}
$$

Here, C d depends on α but not on f and s.

Remark.

The Markov inequality (5.27) was proved for $p=\infty$ in [32], and for $0<p<\infty$ in [17] for $W \in \mathcal{E}_{1}^{*}$ (see Definition 2.5.1).

Theorem 5.2.1 allows us to deduce a simpler Jackson thecrem to Theorem 5.1.3:
Corollary 5.2.2. Assume the hypotheses of Theorem 5.2.1. Then we have for $n \geq C_{1}$,

$$
\begin{equation*}
E_{n}[f]_{W, p} \leq C_{2} \bar{w}_{r, p}\left(f, W, \frac{a_{n}}{n}\right) \leq C_{2} w_{r, p}\left(f_{1} W_{1} \frac{a_{n}}{n}\right) \tag{5.31}
\end{equation*}
$$

Here, C_{2} is independent of f and n.

We note that the point of this Corollary is that we have removed the constant from inside the moduti in (5.12),

We have the following converse theorems:
Theorem 5.2.3. Assume the hypotheses of Theorem 5.2.1. Let $q=\min \{1, p\}$. For $0<$ $t<C$, determine $n=n(t)$ by (5.25) and let $l=\left[\log _{2} n\right]=$ the langest intgger $\leq \log _{2} n$. Then toe have,

$$
\begin{align*}
& \leq C_{1} t^{r}\left[\sum_{k=-1}^{1}(b-k+1)^{\frac{\sigma_{q}}{2}}\left(\frac{2^{k}}{n_{2 k}^{k}}\right)^{r q} E_{2^{k}}[f]_{W, p}^{q}\right]^{\frac{1}{q}}
\end{align*}
$$

where $C_{1} \neq C_{1}(f, t)$ and where we set $E_{2}-=E_{20}$.

We deduce

Corollary 5.2.4. Assume the hypotheses of Theorem 5.2.1. Then for every $0<\alpha<r$ the following are equivalent:
(a)

$$
\begin{equation*}
w_{r, p}(f, W, t)=O\left(e^{\phi}\right), t \rightarrow 0 \tag{5.33}
\end{equation*}
$$

(b)

$$
\begin{equation*}
E_{n}[f]_{W, p}=O\left(\frac{a_{n}}{n}\right)^{\alpha}, n \rightarrow \infty \tag{5.34}
\end{equation*}
$$

Finally, we obtain estimates of our modulus in terms of $f^{(r)}$ and deduce the equivalence of the K-functional with the realisation functional for $p \geq 1$.

We need first:
Corollary 5.2.5. Let $W \in \mathcal{E}_{1}, r \geq 1,0<p \leq \infty$ and assume (5.27). Then \forall nlarge enough and $\forall P_{n} \in P_{n}$ satisfying

$$
\begin{equation*}
\left\|\left(f-P_{n}\right) W\right\|_{L_{\mathrm{p}}(\mathbb{R})} \leq L E_{n}[f]_{W, p} \tag{5.35}
\end{equation*}
$$

for some $L \geq 1$, we have

$$
\begin{equation*}
\left\|\left(f-P_{n}\right) W\right\|_{L_{P}(\mathbb{R})}+\left(\frac{a_{n}}{n}\right)^{r}\left\|P_{n} \Phi_{{a_{n}}_{n}}^{r_{n}}\right\|_{L_{p}(\mathbb{R})} \sim K_{r_{1}, \vec{p}}\left(f, W,\left(\frac{a_{n}}{n}\right)^{r}\right) . \tag{5.36}
\end{equation*}
$$

Here, the constants in the \sim relation depend on L but, are independent of n and f. We remark that in particular (5.36) holds for P_{n}^{*} the best approximation to f.

We deducs:
Corollary 5.2.6. Let $1<p \leq \infty$ and assume the hypotheses of Theorem 5.2.1.
(a) If $f(r) W \in L_{p}(\mathbb{R})$, we have for $t \in\left(O_{1} C_{2}\right)$,

$$
\begin{equation*}
w_{r, p}(f, W, t) \leq C_{1} t^{r}\left\|f^{(r)} \Phi_{t} W\right\|_{D_{P}(\mathbb{R})}, \tag{5.37}
\end{equation*}
$$

Here $C_{j} \neq C_{j}(f, t), j=1,2$.
(b) We have for $t \in\left(0, C_{3}\right)$,

$$
\begin{equation*}
1 \leq K_{r, p}^{*}(f, W, t) / K_{r, p}(f, W, t) \leq C_{4} \tag{5.38}
\end{equation*}
$$

Here $C_{j} \neq C_{j}(f, t), j=3,4$.

5.3 A Marchaud Inequality

Finally, we present a classical property of our modulus, namely a Marchaud Inequality.
Theorem 5.2.7 (Marchaud Inequality).
Let $W \in \mathcal{E}_{1+} q=\min \{1, p\}, 0<p \leq \infty, r \geq 1$ and assume (5.27). Then $\forall t>0$ small enough

$$
\begin{equation*}
w_{r, p}(f, W, t) \leq C_{1} r^{r}\left[\int_{t}^{C_{2}} \frac{w_{r+1, p}(f, W, u)^{q}\left(\log _{2}\left(\frac{1}{1}\right)\right)^{\frac{q_{q}}{2}}}{u^{r q}} d u+\left(\log _{2}\left(\frac{1}{t r}\right)\right)^{\frac{m_{q}}{2}}\|f W\|_{L_{p}(\mathbb{R})}^{q}\right]^{\frac{q}{q}} . \tag{5.39}
\end{equation*}
$$

Here the $C_{j}, j=1,2$ are independent of f and t.

Chapter 6

Technical Estimates and some
 Inequalities

6.1 Technical Estimates

We present a series of technical estimates which we will need for later chapters.
Lemima 6.1.1. Let $W \in \mathcal{E}_{1}$. (a) For some $C_{4}, j=1,2,3$, and $s \geq r \geq C_{3}$

$$
\begin{equation*}
\left(\frac{s}{r}\right)^{C_{2} T^{\prime}(r)} \leq \frac{Q(s)}{Q(r)} \leq\left(\frac{s}{r}\right)^{C_{1} T(s)} \tag{6.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left(\frac{s}{r}\right)^{C_{2} T(r)} \frac{T(s)}{T(r)} \leq \frac{s Q^{\prime}(s)}{r Q^{\prime}(r)} \leq \frac{T(s)}{T(r)}\left(\frac{s}{r}\right)^{C_{1} T(s)} \tag{6.2}
\end{equation*}
$$

(b) Give' $\delta>0$, there exists C such that

$$
\begin{equation*}
T(y) \sim T\left(y\left(1-\frac{\delta}{T(y)}\right)\right), y \geq C \tag{6.3}
\end{equation*}
$$

(c) Given $A>0$, the functions $Q^{\prime}(u) u^{-A}$ and $Q(u) u^{-A}$ are quasi- increasing and increasing respectively for large enough u,

Proof. (a) Firstly, (6.1) follows from the identity

$$
\log \frac{Q(s)}{Q(r)}=\int_{r}^{s} \frac{T(t)}{t} d t
$$

and the fact that T is quasi-increasing, Then, the definition (5,7) of T gives (6,2),
(b) We can reformulate (5.9) as

$$
\frac{T(y)}{T(x)} \leq C_{1}\left(\frac{Q(y)}{Q(x)}\right)^{\sigma_{2}-1}
$$

Hence, for $x=y\left(1-\frac{f}{T(y)}\right)$, the quasi-mincreasing nature of T gives

$$
\begin{aligned}
C_{4} \leq & \frac{T(y)}{T(x)} \leq C_{1} \exp \left(\left(C_{2}-1\right) \int_{1}^{y} \frac{T(t)}{t} d t\right) \\
& \leq C_{1} \exp \left(C_{5} T(y) \log \frac{y}{x}\right) \leq C_{6}
\end{aligned}
$$

Recall here that $T(y)$ is large for large y.
(c) From (6.2) if $s \geq r \geq C$,

$$
\frac{Q^{\prime}(s) s^{-A}}{Q^{\prime}(r) r^{-A}} \geq \frac{T(s)}{T(r)}\left(\frac{s}{r}\right)^{C_{2} T(r)-1-A} \geq C_{7}
$$

Here we have used the quasi-monotonicity of T, and also that if C ig large enough, then $C_{2} T^{\prime}(r)-1-A \geq 0$. Similarly for $Q(s) s^{-A} . \square$

Next some properties of a_{u} :
Lemmt . 6.1.2. Let $W \in \mathcal{E}_{1}$, (a) a_{1} is uniquely defined and continuous for $u \in(0, \infty)$, and is a strictly increasing function of u.
(b) For $u \geq C$,

$$
\begin{align*}
& \text { (i) } a_{u} Q^{\prime}\left(a_{u}\right) \sim u T\left(a_{u}\right)^{1 / 2} \tag{6,4}\\
& \text { (ii) } Q\left(a_{u}\right) \sim u T\left(a_{u}\right)^{-1 / 2} \tag{6.5}
\end{align*}
$$

(c) Given fixed $\beta>0$, we have for large \mathfrak{u},

$$
\begin{align*}
& \text { (i) } \quad T\left(a_{\beta u}\right) \sim T\left(a_{u}\right) \tag{6,6}\\
& \text { (ii) } \quad Q\left(a_{\beta u}\right) \sim Q\left(a_{u}\right) \\
& \text { (iii) } \quad Q^{\prime}\left(a_{\beta u}\right) \sim Q^{\prime}\left(a_{u}\right)
\end{align*}
$$

(d) Given fixed $a>1$.

$$
\begin{equation*}
\left|\frac{a_{a+1}}{a_{u}}-1\right| \sim \frac{1}{T\left(a_{u}\right)} \tag{6.7}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\frac{a_{\beta u}}{a_{u}} \rightarrow 1, u \rightarrow \infty \forall \beta>0 \tag{6.8}
\end{equation*}
$$

(e) If C_{2} is as in (5.9), then for some $\delta>0$,

$$
\begin{equation*}
T\left(a_{u}\right) \leq C_{1} u^{2\left(\frac{C_{2}-1}{6_{2}+1}\right)}=C_{1} u^{2(1-\delta)} \tag{6.9}
\end{equation*}
$$

Moreover, $\forall \varepsilon>0$

$$
\begin{equation*}
a_{u}=o\left(u^{e}\right), u \rightarrow \infty . \tag{6,10}
\end{equation*}
$$

(f) If $\alpha>1$, then for large enough u_{1}

$$
\begin{equation*}
\frac{Q\left(a_{\alpha_{u}}\right)}{Q\left(a_{u}\right)} \geq C_{1}>1 \tag{6.11}
\end{equation*}
$$

(g) For some $C_{2}, C_{3}, C_{4}, C_{6}, C_{6}, 4 \geq C_{3}$ and $L \geq 1$;

$$
\begin{equation*}
\exp \left(C_{4} \frac{\log \left(C_{2} L\right)}{T\left(a_{u}\right)}\right) \geq \frac{a_{L u}}{a_{4}} \geq 1+C_{5} \frac{\log \left(L C_{6}\right)}{T\left(a_{L u}\right)} \tag{6,12}
\end{equation*}
$$

(h) $\exists C_{j}, j=6,7,8$ such that for $v \geq u \geq C_{6}$

$$
\begin{equation*}
\left(\frac{a_{v}}{a_{u}}\right) \leq C_{6}\left(\frac{v}{u}\right)^{\frac{a_{7}}{T_{7}\left(a_{n}\right)}} \tag{6.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{a_{v}}{v}\right) /\left(\frac{a_{u}}{u}\right) \leq C_{6}\left(\frac{v}{v}\right)^{\frac{a_{7}}{\left(\sigma_{v}\right)}-\mathrm{i}} \tag{6.14}
\end{equation*}
$$

In particular, given $\varepsilon>0$, we have for $v \geq u \geq C_{6}$

$$
\begin{align*}
& \left(\frac{a_{v}}{a_{u}}\right) \leq C_{6}\left(\frac{v}{u}\right)^{c} \tag{6;15}\\
& \left(\frac{a_{v}}{v}\right) /\left(\frac{a_{u}}{u}\right) \leq C_{6}\left(\frac{v}{u}\right)^{-1} \tag{6.16}
\end{align*}
$$

Proof. (a) The function $u \rightarrow a_{u}$ is the inverse of the strictly increasing continuous function

$$
a \rightarrow \frac{2}{\pi} \int_{0}^{1} a t Q^{\prime}(a t) \frac{d t}{\sqrt{1-t^{2}}}, a \in(0, \infty),
$$

which has right limit 0 at 0 and limit ∞ at ∞. (Note that this fonction is continuous even if Q^{\prime} is not). So the assertion follows.
(b) For u so large that $T\left(a_{u}\right)>2$, we have

$$
\begin{aligned}
& \frac{u}{a_{u} Q^{\prime}\left(a_{u}\right)}=\frac{2}{\pi}\left[\int_{0}^{1-1 / T\left(a_{u}\right)}+\int_{1-1 / T\left(a_{u}\right)}^{1} \frac{a_{u} t Q^{\prime}\left(a_{u} t\right)}{a_{u} Q^{\prime}\left(a_{u}\right)} \frac{d t}{\sqrt{1-t^{2}}}\right. \\
& \leq \frac{2}{\pi} T\left(a_{u}\right)^{1 / 2} \int_{0}^{1-1 / a_{u}\left(a_{u}\right)} \frac{a_{u} Q^{\prime}\left(a_{u} t\right)}{a_{u} Q^{\prime}\left(a_{u}\right)} d t+\frac{2}{\pi} \int_{1-1 / T\left(a_{u}\right)}^{1} \frac{d t}{\sqrt{1-t^{2}}} \\
& \quad \leq \frac{2}{\pi} T\left(a_{u}\right)^{1 / 2} \frac{Q\left(a_{u}\right)-Q(0)}{a_{u} Q^{\prime}\left(a_{u}\right)}+\frac{4}{\pi} T\left(a_{u}\right)^{-1 / 2} \\
& \therefore \quad \leq \frac{4}{\pi} T\left(a_{u}\right)^{1 / 2} \frac{Q\left(a_{u}\right)}{a_{u} Q^{\prime}\left(a_{u}\right)}+\frac{4}{\pi} T\left(a_{u}\right)^{-1 / 2}=\frac{8}{\pi} T\left(a_{u}\right)^{-1 / 2}
\end{aligned}
$$

Here we also need u so large that $Q\left(a_{u}\right) \geq|Q(0)|$. So we have

$$
a_{u} Q^{\prime}\left(a_{u}\right) \geq \frac{\pi}{8} u T\left(a_{u}\right)^{1 / 2}
$$

In the other direction, (6.2) gives for large u_{1}

$$
\frac{u}{a_{u} Q^{\prime}\left(a_{u}\right)}=\frac{2}{\pi} \int_{0}^{1} \frac{a_{u} t Q^{\prime}\left(a_{u} t\right)}{a_{u} Q^{\prime}\left(a_{u}\right)} \frac{d t}{\sqrt{1-t^{2}}}
$$

$$
\begin{aligned}
& \geq C_{1} \int_{1 / 2}^{1} \frac{T\left(a_{u} t\right)}{T\left(a_{u}\right)} t_{1} o_{1}\left(a_{u}\right) \frac{d t}{\sqrt{1-t^{2}}} \\
& \geq C_{2} \frac{T\left(a_{u}\left(1-\frac{1}{T\left(a_{u}\right)}\right)\right)}{T\left(a_{u}\right)}\left(1-\frac{1}{T\left(a_{u}\right)}\right)^{C_{1} T\left(a_{u}\right)} \int_{1-1 / T\left(a_{u}\right)}^{1} \frac{d t}{\sqrt{1-t^{2}}} \\
& \therefore C_{A} T\left(a_{u}\right)^{-1 / 2}
\end{aligned}
$$

Here we have used (6.3) and the quasi-monotonicity of T. So we have (6.4)(i). Then (6.5) follows from the definition of T.
(c) We can assume $\beta>1$. Then by (6.5), and quasi-monotonicity of T;

$$
C_{1} \leq \frac{T\left(a_{\beta u}\right)}{T\left(a_{u}\right)} \sim\left[\frac{\beta u}{Q\left(a_{\beta_{u}}\right)}\right]^{3} /\left[\frac{a}{Q\left(a_{u}\right)}\right]^{2} \leq \beta^{2}
$$

The rest of (6.6) follows from (6.4) and (6.5).
(d) Now

$$
\begin{aligned}
& \alpha c u=\frac{2}{\pi} \int_{0}^{1} a_{\alpha u} t Q^{\prime}\left(a_{\alpha u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \\
& \geq \frac{2}{\pi} \int_{a_{u} / a_{\alpha u}}^{1} a_{4} Q^{\prime}\left(a_{u}\right) \frac{d t}{\sqrt{1-t^{2}}} \\
& \therefore \geq C_{2} u T\left(a_{u}\right)^{1 / 2}\left(1-\frac{a_{u}}{a_{\alpha \alpha u}}\right)^{1 / 2}
\end{aligned}
$$

by (6.4). Hence,

$$
1-\frac{a_{u}}{a_{\alpha u}} \leq C_{3} / T\left(a_{u}\right)
$$

In the other direction,

$$
\begin{gathered}
\alpha u t=\frac{2}{\pi}\left[\int_{0}^{a_{u} / a_{\alpha u}}+\int_{a_{u} / a_{\alpha u}}^{1}\right] a_{\alpha u} t Q^{\prime}\left(a_{\alpha u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \\
\leq \frac{2}{\pi} \int_{0}^{a_{u} / a_{\alpha u}} a_{\alpha u} t Q^{\prime}\left(a_{\alpha u} t\right) \frac{d t}{\sqrt{1-\left(\frac{\left(a_{u u} t\right.}{a_{u}}\right)^{2}}}+\frac{2}{\pi} a_{\alpha u} Q^{\prime}\left(a_{\alpha u}\right) \int_{a_{u} / \alpha_{\alpha u}}^{1} \frac{d t}{\sqrt{1-t}} \\
\leq \frac{a_{u}}{a_{\alpha \alpha u}}\left[\frac{2}{\pi} \int_{0}^{1} a_{u} s Q^{\prime}\left(a_{u u} s\right) \frac{d s}{\sqrt{1-s^{2}}}\right]+\frac{4}{\pi} a_{\alpha u} Q^{\prime}\left(a_{\alpha u}\right)\left(1-\frac{a_{u}}{a_{\alpha u}}\right)^{1 / 2} \\
\leq u+C u T\left(a_{u}\right)^{1 / 2}\left(1-\frac{a_{u}}{a_{\alpha u}}\right)^{1 / 2}
\end{gathered}
$$

by (6.4) and (6.6)(i). Then

$$
1-\frac{a_{u}}{a_{\alpha u}} \geq\left(\frac{a-1}{C}\right)^{2} \frac{1}{T\left(a_{u}\right)}
$$

(e) We apply (5,9) with $y=a_{4}$ and $x=C_{3}$, so that

$$
\begin{gathered}
a_{u} Q^{\prime}\left(a_{u}\right) \leq C_{4} Q\left(a_{u}\right)^{C_{2}} \\
\Rightarrow u T\left(a_{u}\right)^{1 / 2} \leq C_{5}\left(u T\left(a_{u}\right)^{-1 / 2}\right)^{C_{2}}
\end{gathered}
$$

Rearranging this gives (6.9). Finally, using (6.4) gives for any $A>0$,

$$
C a_{u}^{A} \leq Q\left(a_{u}\right) \sim u T\left(a_{u}\right)^{-\frac{1}{2}} \Rightarrow \frac{\left(a_{u}\right)^{A}}{u} \rightarrow 0, u \rightarrow \infty
$$

So (6.10) follows.
(f) For large enough u,

$$
\begin{gathered}
\frac{Q\left(a_{\alpha u}\right)}{Q\left(a_{u}\right)}=\exp \left(\int_{a_{u}}^{a_{\alpha u}} \frac{T(t)}{t} d t\right) \\
\geq \exp \left(C_{6} T\left(a_{u}\right) \log \left(\frac{a_{\alpha u}}{a_{u}}\right)\right) \geq \exp \left(C_{7}\right)>1
\end{gathered}
$$

by (d) of this lemma,
(g) From (5.9) with $y=a_{L a}$ and $x=a_{u}$,

$$
\frac{T\left(a_{L u}\right)}{T\left(a_{u}\right)} \leq C\left(\frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)}\right)^{O_{2-1}}
$$

This forces $C_{2}>1$, as the left-hand side $\rightarrow \omega$ as $l \rightarrow \infty$. Then, with the constants in \sim independent of $L,(6.5)$ gives

$$
\begin{aligned}
& \frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)} \sim \frac{L u T\left(a_{L u}\right)^{-1 / 2}}{u T\left(a_{u}\right)^{-1 / 2}} \\
& \geq C L\left(\frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)}\right)^{-\left(C_{2}-1\right) / 2} \\
& \Rightarrow \frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)} \geq C L^{\frac{2}{1+C_{2}}}
\end{aligned}
$$

Then using (6.1),

$$
\left(\frac{a_{L u}}{a_{\mu}}\right)^{C_{1} T\left(a_{L u}\right)} \geq C L^{\frac{2}{1+C_{2}}}
$$

and the right inequality in (6.12) follows. In the other direction, (6.1) and then (6.5) give

$$
\begin{gathered}
\frac{a_{L u}}{a_{u}} \leq\left(\frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)}\right)^{\frac{d_{2} T\left(a_{u}\right)}{}} \\
\left.\leq\left(C_{1}^{L u T\left(a_{L u}\right)^{\frac{1}{2}}}\right)^{u T\left(a_{u}\right)^{\frac{-1}{2}}}\right)^{\frac{\sigma_{2} T\left(a_{u}\right.}{}} \leq\left(C_{3 L} L\right)^{c_{2} \frac{1}{\left(a_{u}\right)}}
\end{gathered}
$$

Here the constants are independent of L and u. Then the left inequality in (6.12) follows. It remains to show (h) Now by (6.5) and then (6.1)

$$
C_{1} \frac{v}{u} \geq \frac{v T\left(a_{v}\right)^{\frac{a_{1}}{2}}}{u T\left(a_{u}\right)^{\frac{-1}{2}}} \sim \frac{Q\left(a_{v}\right)}{Q\left(a_{u}\right)} \geq\left(\frac{a_{v}}{a_{u}}\right)^{C_{2} T\left(a_{u}\right)}
$$

which implies

$$
\left(\frac{a_{v}}{a_{u}}\right) \leq C_{3}\left(\frac{v}{u}\right)^{\frac{a_{4}}{\left(a_{u}\right)}}
$$

So we have (6.13) and then (6.14 - 6.16) also follow.
Lemma 6.1.3 (Infinite-Finite-Range inequality): Let $W \in \mathcal{E}_{1}, 0<p \leq \infty$ and $s>1$. Then for some $L, C_{1}, C_{2}>\mathcal{V}, n \geq 1$, and $P \in \mathcal{P}_{n}$,

$$
\begin{equation*}
\|P W\|_{L_{p}(\mathbb{K})} \leq C_{1}\|P W\| L_{p_{p}\left(-a_{A_{n}}, a_{s n}\right)} . \tag{6.17}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\|P W\|_{L_{p}\left(|x| \geq a_{s n}\right)} \leq C_{1} e^{-C_{2} n T\left(a_{n}\right)^{-1 / 2}}\|P W\|_{L_{p}\left(-a_{a n} a_{a n}\right)} \tag{6.18}
\end{equation*}
$$

Remark: Note that (6.9) shows that for some $C_{3}>0$, and large enough n_{1}

$$
n T\left(a_{n}\right)^{-1 / 2} \geq n^{C_{3}}
$$

We provide a proof as those in the literature $[26],[37],[39]$, ...don't quite match our needs/ hypotheses.

Proof.

We may change Q in a finite interval without affecting (6.17), (6.18) apart from increasing
the constants. Note too, that the affect on a_{4} is marginal, and is absorbed into the fact that $s>1$. Thus, we may assume that Q^{γ} is continuous in $[-1,1]$. This, and the strict monotonicity of $t Q^{\prime}(t)$ in $(0, \infty)$, allow us to apply existing sup-norm inequalities to deduce that for $P \in \mathcal{P}_{n}$

$$
\|P W\|_{L_{\infty}(\mathbb{R})}=\|P W\|_{L_{\infty}\left[-n_{s n}, n_{s n}\right]} .
$$

For a precise reference, see [48] and [16, Theorem 4.5]. Moreover, the proof of Lemma 5.1 in $[26, \mathrm{pp}, 231-232]$ gives without change

$$
\begin{equation*}
|P W|^{p}\left(a_{n} x\right) \leq \frac{1}{\pi} \frac{2 x}{x-1} \int_{-1}^{1}|P W|^{p}\left(a_{n \epsilon} t\right) d t, x>1 \tag{6.19}
\end{equation*}
$$

Let $\langle x\rangle$ denote the greatest integer $\leq x$. Let δ be small and positive, let $l:=\langle\delta\rangle$ and let $T_{l}(x)$ denote the Chebyshev polynomial of degree l. Using the identity

$$
\begin{equation*}
T_{3}(x)=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)+\left(x-\sqrt{x^{2}-1}\right)^{l}\right], x>1 \tag{6.20}
\end{equation*}
$$

it is not difficult to see that

$$
T(x) \geq\left\{\begin{array}{c}
\frac{1}{2} \exp \left(\frac{1}{\sqrt{2}} \sqrt{x-1}\right), x \in\left(1, \frac{9}{8}\right) \tag{6.21}\\
\frac{1}{2} x^{l}, x \geq 1
\end{array}\right\}
$$

We now let $m:=n+l=n+\langle\delta n\rangle, m^{\prime}:=n+2 l=n+2<\delta n>$ and apply (6a19) to $P(x) T_{1}\left(\frac{m}{a_{m}}\right) \in \mathcal{P}_{m}$. We obtain for $x>1$,

$$
|P W|^{p}\left(a_{m} x\right) \leq T_{1}(x)^{-p} \frac{1}{\pi} \frac{2 x}{x-1} \int_{-1}^{1}|P W|^{p}\left(a_{m} t\right) d t
$$

Replacing $a_{m} x$ by y_{1} and integrating from $a_{m^{\prime}}$ to ∞ gives

$$
\int_{a_{m^{\prime}}}^{\infty}|P W|^{p}(y) d y \leq\left(\int_{-a_{m}}^{a_{m}}|P W|^{p}(s) d s\right)\left(\frac{2}{\pi} \int_{a_{m},}^{\infty} \frac{y}{y-a_{m}} T\left(\frac{y}{a_{m}}\right)^{p} \frac{d y}{a_{m}}\right)
$$

Here using (6.21),

$$
\int_{a_{m^{\prime}}}^{\infty} \frac{y}{y-a_{m}} T\left(\frac{y}{a_{m}}\right)^{-p} \frac{d y}{a_{m}}=\int_{a_{m^{\prime}} / a_{m}}^{\infty} \frac{x}{a-1} T_{l}(x)^{-p} d x
$$

$$
\begin{aligned}
& \leq C\left(\int_{a_{m} / a_{m}}^{9 / 8} \frac{1}{x-1} \exp \left(-\frac{l p}{\sqrt{2}} \sqrt{x-1}\right) d x+\int_{9 / 8}^{\infty} a^{-l p} d x\right) \\
& \leq C_{1}\left(\log \left(\frac{8}{a_{m} l}-1\right) \exp \left(-C_{2} l p\left(\frac{a_{m}}{a_{m}}-1\right)^{1 / 2}\right)+\left(\frac{9}{8}\right)^{-l p}\right) \\
& \leq C_{m} \exp \left(-C_{4} n T\left(a_{n}\right)^{-1 / 2}\right)
\end{aligned}
$$

Here we have used (6.7) and our choice of l. Now if δ is small enough, $m^{t} \leq s n$. Then (6.18) follows easily, and in turn yields (6.17).

Lemma 6.1.4. Let $W \in \mathcal{E}_{1}, t>0$ be small enough and $\beta>0$. Put for ularge enough

$$
t=\frac{\beta a_{1}}{u}
$$

Set

$$
\begin{equation*}
n:=n(t)=\inf \left\{k \frac{a_{k}}{k} \leq \frac{\beta a_{1}}{u}\right\} \tag{6.22}
\end{equation*}
$$

Then
(a)

$$
\begin{equation*}
\frac{a_{n}}{n} \leq \frac{\beta a_{u}}{u}<\frac{a_{n-1}}{n-1} . \tag{6.23}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\frac{a_{n}}{n} \leq \frac{\beta a_{n}}{u}<2 \frac{a_{n}}{n} \tag{6.24}
\end{equation*}
$$

(c)

$$
\begin{equation*}
u \sim n . \tag{6,25}
\end{equation*}
$$

Proof. (6.23) follows from the definition of n. (6.24) follows from (6.23) as

$$
a_{n-1}<a_{n} .
$$

To show (6.25), we first show that $\exists \alpha>0$ such that

$$
\begin{equation*}
u \leq \alpha n \tag{6.26}
\end{equation*}
$$

Suppose first that $u \geq n$. Using (6.23) and Lemma $6.12(h)$, there exists $C>0$ such that

$$
\frac{1}{\beta} \leq \frac{a_{n}}{u}+\frac{a_{n}}{n} \leq C\left(\frac{u}{n}\right)^{\frac{-1}{2}}
$$

which implies (6.26). Suppose $u \leq n$. Then (6.26) follows with $\alpha=1$. So it suffices to show that $\exists C_{1}>0$ such that

$$
u \geq C_{1} n .
$$

Well, if $n-1 \geq u$ by (6.23) and Lemma $6,12(h)$, there exists $C_{2}>0$ such that

$$
\beta \leq \frac{a_{n-1}}{n-1} / \frac{a_{u}}{u} \leq C_{2}\left(\frac{n-1}{u}\right)^{-\frac{1}{2}}
$$

which implies

$$
u \geq C_{3} n
$$

for some $C_{3}>0$. Further, if $u \geq n-1$ were done. $(1$
We next present various estimates involving the functions $\sigma_{1} \boldsymbol{\Phi}_{t}$, and differences. Throughout; we assume that $W=e^{-Q} \in \mathcal{E}_{1}$.

Recall that:

$$
\sigma(t):=\inf \left\{a_{u}: \frac{a_{u}}{u} \leq t\right\}, t>0
$$

and

$$
\Phi_{t}(x)=\sqrt{\left.11-\frac{|x|}{\sigma(t)} \right\rvert\,}+T(\sigma(t))^{-\frac{1}{2}}, x>0
$$

Lemma 6.1.5. (a) There exists s_{0}, v_{0} such that for $s \in\left(0, s_{0}\right)$ and $v \geq v_{0}$, we can write $s=\frac{a_{n}}{y_{1}}$, where $v \geq v_{0}$. Moreover, we can write

$$
\begin{equation*}
\sigma(s)=\sigma\left(\frac{a_{v}}{v}\right)=a_{\beta(v)} \tag{6.27}
\end{equation*}
$$

where

$$
\begin{equation*}
1 \geq \sigma\left(\frac{a_{v}}{v}\right) / a_{v}=a_{\beta(v)} / a_{v} \geq 1-C / T\left(a_{v}\right) . \tag{6.28}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \frac{\beta(v)}{v}=1 \tag{6.29}
\end{equation*}
$$

(b) There exist $C_{1}, C_{2}>0$ such that for $\frac{s}{2} \leq t \leq s_{1}$ and $s \leq C_{1}$,

$$
\begin{equation*}
1 \leq \frac{\sigma(t)}{\sigma(s)} \leq 1+\frac{C_{2}}{T(\sigma(t))} \tag{6.30}
\end{equation*}
$$

Further, for t small enough, we have for some $\varepsilon>0$,

$$
\begin{equation*}
T(\sigma(t))=O\left(\frac{\sigma(t)}{t}\right)^{2-e} \tag{6.31}
\end{equation*}
$$

(c) There exist C_{3}, C_{4} independent of $s_{1} t, x$, such that for $0<t<s \leq C_{3}$,

$$
\begin{equation*}
\boldsymbol{\Phi}_{s}(x) \leq C_{4} \Phi_{t}(x),|x| \leq \sigma(s), \tag{6.32}
\end{equation*}
$$

(d) There exists C_{5}, such that for $0<s \leq C_{5}$, and $\frac{y}{2} \leq t \leq s$,

$$
\begin{equation*}
\Phi_{s}(x) \sim \Phi_{t}(x), x \in \mathbb{R} . \tag{6,33}
\end{equation*}
$$

(e) Uniformly for $x \in \mathbb{R}$ and $n \geq 1$,

$$
\begin{equation*}
\Phi_{\frac{a_{n}}{n}}(x) \sim \sqrt{\left\lvert\, 1-\frac{|x|}{a_{n}}\right.}+T\left(a_{n}\right)^{-1 / 2} \tag{6.34}
\end{equation*}
$$

Further given $\beta>0$ and $t>0$, we have for some $C_{6}, C_{7}>0$ and for all $x \in \mathbb{R}$,

$$
\begin{equation*}
\Phi_{\frac{a_{n}}{\beta}}^{\beta}(x) \geq C_{6} T\left(a_{n}\right)^{-\frac{\beta}{2}} \tag{6.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{i}^{\beta}(x) \geq C_{7} T^{t}(\sigma(t))^{-\frac{g}{2}} \tag{6.36}
\end{equation*}
$$

Proof. (a) The existence of v for the given s, follows from the fact that $u \rightarrow a_{u}$ is continuous
and

$$
\frac{a_{u}}{u} \rightarrow 0, u \rightarrow \infty
$$

See (6.10).
The continuity of a_{u} allows us to write $\sigma(s)=a_{\beta(v) 1}$ some $\beta(v)$. Since

$$
\sigma\left(\frac{a_{v}}{v}\right) \leq a_{y_{1}}
$$

the left inequality in (6.28) follows. For the other direction, we note that by definition of $\sigma\left(\frac{a_{v}}{v}\right)$ and $\beta(v)$, we have $\beta(v) \leq v$ and

$$
\frac{a_{\beta(v)}}{\beta(v)} \leq \frac{a_{2}}{v}
$$

so,

$$
1 \leq \frac{v}{\beta(v)} \leq \frac{a_{\nu}}{a_{\beta(v)}} \leq\left(\frac{Q\left(a_{v}\right)}{Q\left(a_{\beta(v)}\right)}\right)^{\frac{1}{2}}
$$

for large enough v, by (6.1). Using (6.5), we obtain

$$
1 \leq \frac{v}{\beta(v)} \leq C\left(\frac{v T\left(a_{v}\right)^{\frac{-1}{2}}}{\beta(v) T\left(a_{\beta(v)}\right)^{\frac{-1}{2}}}\right)^{\frac{1}{2}} \leq C_{1}\left(\frac{v}{\beta(v)}\right)^{\frac{1}{2}}
$$

It follows that $v \leq G_{2} \beta(v)$ and so $v \sim \beta(v)$. Then

$$
1 \leq \frac{v}{\beta(v)} \leq \frac{a_{v}}{a_{\beta(v)}} \rightarrow 1, v \rightarrow \infty
$$

by (6.7), so we have (6.29). Then (6.7) also gives the right inequality in (6.28).
(b) Write $s=\frac{a_{u}}{u}$ and $t=\frac{x_{\nu}}{\nu}$. Then as c is decreasing,

$$
1 \geq \frac{\sigma(s)}{\sigma(t)}=\frac{a_{\beta(u)}}{a_{\beta(v)}}
$$

If we can show that

$$
\begin{equation*}
u \sim v \tag{6.37}
\end{equation*}
$$

then (6.7) gives

$$
1 \geq \frac{\sigma(s)}{\sigma(t)} \geq 1-\frac{C_{3}}{T\left(a_{v}\right)}
$$

which together with (6.6) (i) gives (6.30). We proceed to establish (6.37). Suppose that it is not true, say, for example, we can have

$$
\frac{u}{v} \rightarrow \infty .
$$

For the corresponding s, t, our hypothesis is

$$
\frac{1}{2} \leq \frac{t}{s}=\frac{a_{u}}{a_{u}} \frac{u}{v} \leq 1
$$

Then

$$
\begin{equation*}
\frac{a_{u}}{a_{u}} \rightarrow 0 \tag{6.38}
\end{equation*}
$$

and (6.1) gives

$$
\frac{Q\left(a_{u}\right)}{Q\left(a_{v}\right)} \geq\left(\frac{a_{u}}{a_{v}}\right)^{C_{4} T\left(a_{v}\right)} \geq\left(\frac{a_{u}}{a_{v}}\right)^{2}
$$

for large u, v. But from (6.5),

$$
\begin{aligned}
\left(\frac{a_{u}}{a_{v}}\right)^{2} & \leq \frac{Q\left(a_{u}\right)}{Q\left(a_{v}\right)} \sim \frac{u T\left(a_{u}\right)^{-1 / 2}}{v T\left(a_{v}\right)^{-1 / 2}} \\
& \leq C_{5} \frac{u}{v} \leq C_{6} \frac{a_{u}}{a_{v}}
\end{aligned}
$$

again by our hypotheses on s, t. This contradicts (6.38). So we have (6.37) and hence (6.30),
Finally $(6.9),(6.27)$ and (6.28) gives for some $\varepsilon>0$,

$$
T(\sigma(t)) \leq T\left(a_{u}\right)=O\left(u^{2-\varepsilon}\right)=O\left(\frac{\sigma(t)}{t}\right)^{n-z}
$$

so that we have (6.31).
(s) Let $\delta>0$ ee fixed. Firstly for $1-|x| / \sigma(s) \geq \delta / T(\sigma(s))$,

$$
\Phi_{s}(x) \sim \sqrt{1-\frac{|x|}{\sigma(s)}} \leq \sqrt{1-\frac{|x|}{\sigma(t)}} \leq \Phi_{t}(x) .
$$

Next, for $|1-|x| / \sigma(s)| \leq \delta / T(\sigma(s))$,

$$
\Phi_{s}(x) \sim T(\sigma(s))^{-1 / 2}
$$

This is bounded by $C_{1} \Phi_{t}(x)$ if $|1-|x| / \sigma(t)| \geq \delta / T(\sigma(s))$, for a fixed $\delta>0$. Otherwise, we have $|1-|x| / \sigma(s)| \leq \delta / T(\sigma(s))$ and $|1-|a| / \sigma(t)| \leq \delta / T(\sigma(s))$, so

$$
\left|1-\frac{\sigma(t)}{\sigma(s)}\right|=\left|\left(1-\frac{|x|}{\sigma(s)}\right)-\frac{|x|}{\sigma(s)}\left(\frac{\sigma(t)}{|x|}-1\right)\right|
$$

$$
\leq C_{2} \delta / T(\sigma(s))
$$

If δ is small enough, we deduce from (6.7) and (6.9) that

$$
T(\sigma(t)) \sim T(\sigma(s))
$$

and again (6,32) follows.
(d) Write $s=\frac{a_{u}}{u}$ and $t=\frac{a_{1}}{v}$. Then we have (6.37), so

$$
\begin{aligned}
& \left|1-\frac{|x|}{\sigma(t)}\right|=\left|1-\frac{|x|}{\sigma(s)}+\left[\frac{|x|}{r(s)}-1+1\right]\left(1-\frac{\sigma(s)}{\sigma(t)}\right)\right| \\
& \quad \leq \left\lvert\, 1-\frac{|x|}{\sigma(s) \mid}\left[1+O\left(\frac{1}{T(\sigma(s))}\right]+O\left(\frac{1}{\Gamma(\sigma(s))}\right)\right.\right.
\end{aligned}
$$

Then we obtain for $x \in \mathbf{R}$,

$$
\left|1-\frac{|x|}{\sigma(t)}\right|^{\frac{1}{2}} \leq C \Phi_{s}(x)
$$

Also $T(\sigma(t)) \sim T(\sigma(s))$, so

$$
\Phi_{t}(x) \leq C_{1} \Phi_{s}(x) .
$$

The converse inequality follows similarly.
(e) By (a) of this lemma, we can write

$$
\sigma\left(\frac{a_{n}}{n}\right)=a_{\beta(n)}=a_{n(1+o(1))}
$$

Recall that

$$
\Phi_{\frac{\omega_{n}}{n}(\alpha)}=\sqrt{1-\frac{|x|}{\sigma\left(\frac{a_{n}}{n}\right)}}+T\left(\sigma\left(\frac{a_{n}}{n}\right)\right)^{-1 / 2}
$$

Hers by $(6.6)(i)$ and (a) of this lemma,

$$
T\left(\sigma\left(\frac{a_{n}}{n}\right)\right) \sim T\left(a_{n}\right)
$$

and much as in (d),

$$
1-\frac{|x|}{\sigma\left(\frac{a_{n}}{n}\right)} \sim 1-\frac{|x|}{a_{n}}
$$

for large n and $|x| \leq a_{n / 2}$ or $|x| \geq a_{n}$. In the range $a_{n / 2} \leq 1 a \mid \leq a_{n}$ both the left atid tight-hand side of (6.34) are $\sim T\left(a_{n}\right)^{+1 / 2}$.

Finally, tote that (6.35) and (6.36) follow from the definition of Φ_{t} and (6.34). 0
Lemma 6.1.6. (a) For $0<s<t \leq C_{1}$

$$
\begin{equation*}
T(\sigma(t))\left(1-\frac{\sigma(t)}{\sigma(s)}\right) \leq C_{1} \log \left(2+\frac{t}{s}\right) \tag{6.39}
\end{equation*}
$$

(b) For $0<s<t \leq C$,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} \frac{\Phi_{s}(x)}{\Phi_{t}(x)} \leq C_{z} \sqrt{\log \left(2+\frac{t}{s}\right)} \tag{6.40}
\end{equation*}
$$

Hence, given $\gamma>0$.

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left(\frac{s}{t}\right)^{\gamma} \frac{\Phi_{3}(x)}{\Phi_{t}(x)} \leq C_{3} . \tag{6.41}
\end{equation*}
$$

Further if $m \leq n$ and $n, m \geq C_{4}$, then

$$
\begin{equation*}
\sup _{a \in \mathbb{R}} \frac{\Phi_{a_{n}}(x)}{\Phi_{\frac{m}{m}}^{m}} \leq C_{5} \sqrt{\log \left(2+\frac{n}{m}\right)} \tag{6.42}
\end{equation*}
$$

Proof

(a) We write $s=\frac{m_{i}}{\psi}$ and $t=\frac{a_{4}}{u}$. Note (with the notation of Lemma 6.1.5) that

$$
a_{\beta(u)}=\sigma(s) \geq \sigma(t)=a_{\beta(v)},
$$

so $\beta(u) \geq \beta(v)$. Using the inequality

$$
I-u \leq \log \frac{1}{u}, t \in(0,1]
$$

we obtain

$$
\left.\begin{array}{l}
1-\frac{\sigma(t)}{\sigma(s)} \leq \log \frac{\sigma(\beta)}{\sigma(t)}=\log \frac{a_{\beta(t)}}{a_{\beta(v)}} \\
\left.\leq C_{1} \frac{\log \left(C^{\beta(u)}\right.}{\beta(v)}\right) \tag{6.43}\\
T\left(a_{\beta(v)}\right)
\end{array} C_{1} \frac{\log \left(C^{\beta(u)}\right)}{T(\sigma(v))}\right)
$$

by (6.12). Next; $\beta(u)=u(1+o(1))$ and similarly for $\beta(v)$, so ft suffices to show that

$$
\begin{equation*}
\log \frac{u}{v} \leq C_{2} \log \left(2+\frac{t}{s}\right) \tag{6.44}
\end{equation*}
$$

But from (6.1) for $s<t$ and small t and then from (6.5),

$$
\begin{gathered}
\frac{u}{v} / \frac{t}{s}=\frac{a_{u}}{a_{v}} \leq\left(\frac{Q\left(a_{u}\right)}{Q\left(a_{v}\right)}\right)^{\frac{1}{2}} \\
\leq C_{1}\left(\frac{u T\left(a_{u}\right)^{\frac{-1}{2}}}{v T\left(a_{v}\right)^{\frac{-1}{2}}}\right)^{\frac{t}{2}} \leq C_{2}\left(\frac{u T\left(a_{\beta(u)}\right)^{\frac{-1}{2}}}{v T\left(a_{\beta(v)}\right)^{\frac{-1}{2}}}\right)^{\frac{1}{2}} \leq C_{3}\left(\frac{u}{v}\right)^{\frac{1}{2}}
\end{gathered}
$$

as $\beta(u) \geq \beta(v)$. So

$$
\left(\frac{u}{v}\right)^{\frac{1}{2}} \leq C_{4} \frac{\frac{1}{t}}{s}
$$

and we have (6.44),
(b) Now if $x \geq 0$,

$$
\left|1-\frac{x}{\sigma(s)}\right| \leq\left|1-\frac{x}{\sigma(t)}\right|+\frac{x}{\sigma(t)}\left|1-\frac{\sigma(t)}{\sigma(s)}\right|
$$

$$
\leq\left|1-\frac{x}{\sigma(t)}\right|+\left(\left.1-\frac{x}{\sigma(t)} \right\rvert\,+1\right)\left|1-\frac{\sigma(t)}{\sigma(s)}\right|
$$

Using part (a), we obtain

$$
1-\left.\frac{x}{\sigma(s)}\right|^{\frac{2}{2}} \leq C_{12} \Phi_{t}(x) \sqrt{\log \left(2+\frac{t}{s}\right)}
$$

Since $\sigma(s) \geq \sigma(t)$ also

$$
T(\sigma(s))^{\frac{-1}{2}} \leq T(\sigma(t))^{\frac{-1}{2}}
$$

So (6.40) holds. Then (6.41) and (6.42) follow.口
Lemma 6.1.7. (a) Let $L,>0$. Uniformly for $n \geq 1$, and $|x|,|y| \leq a_{i n}$, such that

$$
\begin{equation*}
|x-y| \leq L \frac{a_{u}}{u} \sqrt{\left|1-\frac{|y|}{a_{u}}\right|} \tag{6.45}
\end{equation*}
$$

we have

$$
\begin{equation*}
W(x) \sim W(y) \tag{6.46}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\frac{|x|}{a_{2 u}} \sim 1-\frac{|y|}{a_{2 u}} \tag{6.47}
\end{equation*}
$$

(b) Furthermore, if $s>0$ then uniformly for $u \geq 1$ and $|x|,|y| \leq a_{u s}$ such that

$$
|x-y| \leq L \frac{a_{u}}{u} T\left(a_{u}\right)^{\frac{-1}{3}}
$$

we have

$$
W(x) \sim W(y) .
$$

(c) Let $L, M>0$. For $t \in\left(0, t_{0}\right),|x|,|y| \leq \sigma(M t)$ such that

$$
\begin{equation*}
|x-y| \leq L t \Phi_{t}(x), \tag{6,48}
\end{equation*}
$$

we have (6.46) and

$$
\begin{equation*}
\Phi_{t}(x) \sim \Phi_{t}(y) \tag{6.49}
\end{equation*}
$$

(d) Recall the difference operator Δ_{h}^{r} defined by (5,3). Then we have $\forall x \in \mathbb{R} ; \forall P \in$ $\mathcal{P}_{\mathrm{r}-1,} r \geq 1, \beta \in \mathbb{R}$ and $t>0$

$$
\begin{align*}
& \text { (i) } \Delta_{h \phi_{i}^{s}(u)}^{r} P(x) \equiv 0 \text {. } \tag{6.50}\\
& \text { (ii) r! }\left(h \Phi_{t}^{\beta}(x)\right)^{r}=\Delta_{h \Phi_{t}^{\mathrm{m}}(x)^{\pi^{r}}}
\end{align*}
$$

Proof

(a) It suffices to prove (6.46), (6.47) for large u. Moreover, (6.46) and (6.47) are inmediate for $|x| \leq C$, and large un Let us suppose that $C \leq x \leq y \leq x+L \frac{a}{u} \sqrt{11-\frac{1 g}{a_{u}} 1 .}$ Then as $Q^{\prime}(s)$ is quasi-increasing for large s,

$$
0 \leq Q(y)-Q(x) \leq C_{1} Q^{\prime}(y)(y-x)
$$

We have then (6.46) for

$$
\begin{equation*}
y-x=O\left(\frac{1}{Q^{\prime}(y)}\right) \tag{6.51}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
\left.a_{u} Q^{\prime}(y) \sqrt{1-\frac{y}{a_{u}}} \right\rvert\, \leq C_{2} u_{1} \tag{6,52}
\end{equation*}
$$

so that (6.45) implies (6.51) and hence (6.46). If firstly, $0<y \leq \frac{a_{11}}{2}$, then

$$
\begin{gathered}
a_{u} Q^{\prime}(y) \sqrt{1-\frac{y}{a_{u}}} \leq C_{3} a_{u} Q^{\prime}(y) \int_{1 / 2}^{1} \frac{d t}{\sqrt{1-t^{2}}} \\
\leq C_{4} \int_{1 / 2}^{1} a_{4} t Q^{\prime}\left(a_{u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \leq C_{5} u
\end{gathered}
$$

If on the other hand, $\frac{a_{u}}{2} \leq y \leq a_{u}$,

$$
a_{u} Q^{\prime}(y) \sqrt{\left|1-\frac{g}{a_{u}}\right|} \leq C_{6} \int_{y / a_{u}}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \leq C_{7} u .
$$

So we have (6.52) in all cases. Next from (6.45) and as $y \leq a_{u 1}$

$$
1 \leq \frac{1-\frac{x}{a_{2 u}}}{1-\frac{y}{a_{2 u}}}=1+\frac{y-x}{a_{2 u}\left(1-\frac{y}{a_{2 u}}\right)}=1+O\left(\frac{1}{\left.u \sqrt{1-\frac{y u}{a_{2 u}}}\right)}\right.
$$

$$
=1+O\left(\frac{1}{u \sqrt{1-\frac{a_{1}}{\alpha_{2 u}}}}\right)=1+O\left(\frac{T\left(a_{i v}\right)^{1 / 2}}{u}\right)=1+o(1)
$$

by (6.7) and (6.9).
(b) This follows much as in (6.46) using Lemma 6.1.2(b), (c) and (6.8).
(c) Write $M t=\frac{u_{u}}{u}$, so that $|x||y| \leq \sigma(M t) \leq a_{u}$, and we can recast (6.48) as

$$
|x-y| \leq C_{1} \frac{a_{u}}{u}\left[\sqrt{1-\frac{|x|}{a_{u}}+T\left(a_{u}\right)^{-1 / 2}}\right] \leq C_{2} \frac{a_{2 u}}{2 u} \sqrt{1-\frac{|x|}{a_{2 u}}}
$$

by (6.7), (6.33) and (6.34). Then (a) gives (6.46), and (6.49) follows easily from (6.47).
(d) This follows from the definition of Δ_{h}.a

Lemma 6.1.8. Let $W \in \mathcal{E}_{1}, 0<\delta<1 ; L, M>0$ and $0<p \leq \infty$,
(a) Let $s \in(0,1)$ and $[a, b]$ be contained in one of the ranges

$$
\begin{equation*}
|x| \leq \sigma(t)\left[1-\left(\frac{s}{2 \delta \sigma(t)}\right)^{2}\right] \tag{0.53}
\end{equation*}
$$

or

$$
\begin{equation*}
|x| \geq \sigma(t)\left[1+\left(\frac{s}{2 \delta \sigma(t)}\right)^{2}\right] \tag{6,54}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{a}^{b}\left|f\left(x \pm s \Phi_{t}(x)\right)\right| d x \leq \frac{2}{1-8} \int_{\bar{a}}^{\boxed{L}}|f(x)| d x \tag{6.55}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\bar{a} \tag{6.56}\\
\bar{b}
\end{array}\right\}:=\left\{\begin{array}{c}
\inf \\
\sup
\end{array}\right\}\left\{x \pm s \Phi_{1}(x): x \in[a, b]\right\}
$$

(b) Let $r \geq 1, t \in\left(0, \frac{1}{M}\right), h \in(0, M t)$ and $[a, b]$ be as above with $s=M r t$. Define a and \bar{b} by (6.56) with $s=M r t$. Assume moreover that

$$
\begin{equation*}
[a, b] \subseteq[-\sigma(L t), \sigma(L t)] . \tag{6.57}
\end{equation*}
$$

Then for some $C \neq C(a, b, t, g)$

$$
\begin{align*}
\left\|\Delta_{h \Phi_{l}(x)}\left(g_{1} x_{1} \mathbb{R}\right) W(x)\right\|_{L_{P}\left[a_{;} b\right]} & \left.\leq \inf _{P \in P_{r-1}}\|W(g-P)\|_{L_{P}\left[a_{r}\right.} b\right] \tag{6.58}\\
& \leq C\|W g\|_{L_{P}\left[a_{b} b\right]}
\end{align*}
$$

Proof. (a) Define $\kappa= \pm 1$ and $u(x):=x+k s \Phi_{t}(x)$.
We shall assume that $[a, b]$ is contained in the range (6.63) and also $a \geq 0$. The case where $a<0$ is similar, as is the case when $\left[a_{i} b\right]$ is contained in the range (6.54). Then for $x \in\left[a_{3} b\right]$,

$$
u^{\prime}(x)=1+\frac{\kappa s}{2 \sqrt{1-\frac{x}{\sigma(t)}}}\left(-\frac{1}{\sigma(t)}\right) \geq 1-\delta_{s}
$$

by (6,53). Hence u is increasing in $[a, b]$ and writing $v: u(x)$ gives

$$
\begin{gathered}
\int_{a}^{b}\left|f\left(x \pm s \Phi_{t}(x)\right)\right| d x=\int_{a}^{b}|f(u(x))| d x \\
\quad=\int_{u(a)}^{u(b)}|f(v)| \frac{d x}{d u} d v, \quad v=u(x) \\
\quad \leq \frac{1}{1-\delta} \int_{u(a)}^{u(b)}|f(v)| d v \\
\therefore \\
\quad=\frac{1}{1-\delta} \int_{\bar{u}}^{b}|f(x)| d x
\end{gathered}
$$

in this case. The extra 2 in (6.55) takes care of having to split [a,b] into two intervals if $a<0<b$.
(b) Now recall that we have

$$
\begin{gathered}
W(x) \Delta_{h \Phi_{t}(x)}^{r}(g(x)) \\
=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} W(x) g\left(x+\left(\frac{r}{2}-i\right) h \Phi_{t}(x)\right)
\end{gathered}
$$

Also (6.46) gives

$$
W(x) \sim W\left(x+\left(\frac{r}{2}-i\right) h \Phi_{t}(x)\right)
$$

uniformly in i and for $|x| \leq \sigma(L t)$ and $h \leq M t$. Thus we obtain from part (a)

$$
\begin{aligned}
& \therefore \|_{W(x) \Delta_{h \Phi_{r}(x)}^{r}(g(x)) \| L_{p p}\left[a_{i}\right]} \\
& \leq C \sup _{0 \leq i \leq r} \int_{a}^{b}|g W|^{p}\left(x+\left(\frac{r}{2}-i\right) h \Phi_{t}(x)\right) d x \\
& \therefore \leq \frac{2 C^{\prime}}{1-\delta} \int_{\bar{a}}^{b}|g W|^{p}(x) d x .
\end{aligned}
$$

Note that for $0 \leq i \leq r,(6.53)$ with $s=$ Mrt gives

$$
\begin{aligned}
& |x| \leq \sigma(t)\left(1-\left[\frac{M r t}{2 \delta \sigma(t)}\right]^{2}\right) \\
& \leq \sigma(t)\left(1-\left[\frac{i \hbar}{\Delta \delta \sigma(t)}\right]^{2}\right)
\end{aligned}
$$

so the range restrictions of (a) are satisfied,
Finally recall that by (6.50) for $P \in \mathcal{P}_{r-1}$,

$$
\Delta_{h \phi_{t}(\omega)}^{r}(P, x, \mathbb{R}) \equiv 0
$$

Hence

$$
\begin{gathered}
\left\|\Delta_{h \phi_{t}(x)}^{r}(g, x, \mathbb{R}) W(x)\right\|_{L_{P}[a, b]} \\
=\left\|\Delta_{h \phi_{t}(x)}^{r}(g-P ; x, \mathbb{R}) W(x)\right\|_{L_{P}[a, b]} \\
\leq C\|(g-P) W\|_{L_{P}[\bar{a}, \bar{b}]}
\end{gathered}
$$

It remains to take inf's over P. \square

6.2 Some Inequalities

In this section, we prove an extension of the Markov-Bernstein inequality (5.27).

Theorem 6.2.1. Let $W \in \mathcal{E}_{1}$ and assume (5.27). Let $0<p \leq \infty$ and define for $n \geq 1$,

$$
\begin{equation*}
\Psi_{n}(x):=\left(1-\left(\frac{x}{a_{n}}\right)^{2}\right)^{2}+T\left(a_{n}\right)^{-2}, x \in \mathbb{R} \tag{6.59}
\end{equation*}
$$

Then for $n \geq C_{1}, 0 \leq l \leq n$ and $\forall P \in \mathcal{P}_{n}$ we have,

$$
\begin{gather*}
\left\|p^{(l+1)} \Psi_{n}^{(l+1) / 4} W\right\|_{L_{P}(\mathbb{R})} \leq C_{2}\left\{\frac{n}{a_{n}}+\frac{l}{u_{n}} T\left(a_{n}\right)^{\frac{1}{2}}\right\}\left\|P^{(l)} \Psi_{n}^{l / 4} W\right\|_{L_{P}(\mathbb{R})} \tag{6.60}\\
\leq C_{3} \frac{n}{a_{n}}[l+1]\left\|P^{(l)} \Psi_{n}^{1 / 4} W\right\|_{L_{P}(\mathbb{R})} \tag{6.61}
\end{gather*}
$$

Here $C_{j} \neq C_{j}\left(n_{1} l ; P\right) j=2,3$.
We remark that (6.60) and (6.61) will hold with constants depending on l if we replace $\Psi^{1 / 4}$ by $\Phi_{\frac{n_{n}}{n}}$.

More precisely,

$$
\begin{align*}
& \leq C_{\frac{1}{d}}^{\frac{n}{a_{n}}[l+1]\left\|P^{(l)} \Phi_{\frac{a n}{n}}^{l W}\right\|_{L_{P}(\mathbf{R})}} \tag{6.63}
\end{align*}
$$

where $C_{i} \neq C_{j}(n, P) j=4,5$.
We need several lemmas.
Lemma 6.2.2. Let $s>1$ and $n \geq C_{1}$. Then there exist polynomials R of degree o (n) such that uniformly for $|x| \leq a_{s n}$

$$
\begin{equation*}
R(x) \sim \Phi_{\frac{a_{n}}{n}}(x) \sim \Psi_{n}^{\lambda}(x) \tag{0.64}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R^{\prime}(x) / R(x)\right| \leq \frac{C_{1}}{a_{n}} \Psi_{n}^{\frac{-1}{2}}(x) \tag{6.65}
\end{equation*}
$$

Prous, Let

$$
u(x):=\left(1-x^{2}\right)^{-\frac{3}{4}}, x \in[-1,1]
$$

be the ultraspherical weight on $(-1,1)$ and let $\lambda_{n}(u, x)$ be the Christoffel function corresponding
to u satisfying

$$
\lambda_{n}^{-1}(u, x) \in \mathcal{P}_{2 n-2}
$$

Then is is known $[46, p \cdot 36]$, that given $A>0$ we have uniformly in n and $|x| \leq 1-\frac{A}{n^{2}}$

$$
\begin{equation*}
\lambda_{n}(u, x) \sim \frac{1}{n}\left(1-x^{2}\right)^{-\frac{1}{4}} \tag{6.66}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\lambda_{n}^{\prime}(u ; x)\right| \leq \frac{C_{1}}{n}\left(1-x^{2}\right)^{-\frac{5}{3}} \tag{6.67}
\end{equation*}
$$

Now choose $m: m(n)=$ the largest integer $\leq T\left(a_{n}\right)^{-\frac{1}{2}}$ and put

$$
R(x):=\frac{1}{m^{2}} \lambda_{m}^{-2}\left(u, \frac{x}{a_{2 s n}}\right), \pi \in\left[-a_{s n}, a_{s n}\right]
$$

Then by (6.9), R has degree $o(n)$ and by $(6.7),(6.9),(6.34),(6.59)$ and (6.66) we have uniformly for $|x| \leq a_{s n}$,

$$
R(x) \sim \Phi_{\frac{a_{n}}{n}}(x) \sim \Psi^{\frac{1}{4}}(x)
$$

To prove (6.65), we observe much as in $[40, p .228]$ that

$$
\begin{align*}
& \left|\lambda_{n}^{-1}\left(u, \frac{x}{a_{2 s n}}\right)\right| \\
& =\frac{\left|\lambda_{n}^{\prime}\left(u, \frac{x}{a_{2 n}}\right)\right|}{a_{2 s n} \lambda_{n}^{2}\left(u, \frac{z}{a_{2 n n}}\right)}, \tag{6.68}
\end{align*}
$$

so that by (6.66), (6.67) and the definition of R we liave uniformly for $|x| \leq a_{s n}$,

$$
\begin{gathered}
\left|R^{\prime}(x) / R(x)\right| \leq \frac{C_{2}}{a_{n}}\left(1-\left(\frac{x}{a_{2 n n}}\right)^{2}\right)^{-1} \\
\quad \leq \frac{C_{3}}{a_{n}} \Psi_{n}(x)^{\frac{-1}{2}} .
\end{gathered}
$$

Our next lemma is an infinite-finite range inequality:
Lemma 6.2.3. Let $W=\mathcal{E}_{1}$. Let $0<p \leq \infty, s>I$ and Ψ_{n} be as in (6.59). Then for
$n \geq C_{1}, \forall P \in \mathcal{P}_{n}$ and $0 \leq l \leq n$ we have,

$$
\begin{equation*}
\left\|P W \Psi_{n}^{l / 4}\right\|_{L_{P}(\mathbb{R})} \leq C_{1}\left\|P W \Psi_{n}^{1 / 4}\right\|_{L_{P}\left(|x| \leq n_{3} n\right)} \tag{6.69}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left\|P W \Psi_{n}^{/ / 4}\right\|_{L_{P}\left(|x| \geq a_{3 s n}\right.} \leq C_{2} \exp \left[-C_{3} n_{1}\right]\left\|P W \Psi_{n}^{l / 4}\right\|_{L_{P}\left(|x| \leq a_{3} n\right.} \tag{6,70}
\end{equation*}
$$

Here, $C_{j} \neq C_{j}(n, P, l), j=1,2$.
We remark that (6.9) shows that for large n,

$$
\begin{equation*}
n T\left(a_{n}\right)^{\frac{1}{2}} \geq n^{C_{3}} \tag{6.71}
\end{equation*}
$$

Proof. First note that by (6.35) and the definition of Ψ_{n}, given $\beta>0$ we have,

$$
\begin{equation*}
\Phi^{\frac{\theta}{4}}(x) \geq T\left(a_{n}\right)^{-\frac{0}{2}}, x \in \mathbb{R} . \tag{6.72}
\end{equation*}
$$

Now write $l=4 j+k, 0 \leq k<3$. Then for some $0<\alpha \leq 3$ and C_{1} depending on k we have,

$$
\begin{align*}
& \left\|P W \Psi_{n}^{l / 4}\right\|_{L_{P}\left(|x| \geq a_{3, n}\right)}=\left\|P W \Psi_{n}^{j} \Psi_{n}^{k / 4}\right\|_{L_{p}\left(|x| \geq a_{3, n}\right)} \\
& \quad \leq C_{1}\left\|P W \Psi_{n}^{j} x^{\alpha}\right\|_{L_{P}\left(|x| \geq a_{s s n}\right)} \tag{6.73}
\end{align*}
$$

Now $P_{z^{\alpha}} \Psi_{n}^{j}$ is a polynomial of degree $\leq n+l+3 \leq 3 n$ so by (1.18), we may continue (6.73) as

$$
\begin{gathered}
\leq C_{2} \exp \left[-C_{3} n T\left(a_{n}\right)^{-\frac{1}{2}}\right]\left\|P W x^{\alpha} \Psi_{n}^{j}\right\|_{L_{P}\left(|x| \leq a_{3, n}\right)} \\
\leq C_{4} \exp \left[-C_{3} n T\left(a_{n}\right)^{-\frac{1}{2}}\right] a_{n}^{\alpha} T\left(a_{n}\right)^{\frac{k}{2}}\left\|P W \Psi_{n}^{j+k / 4}\right\|_{L_{P}\left(|x| \leq a_{s, n}\right)}(\text { by }(6.72)) \\
\leq C_{5} \exp \left[-C_{B} n T\left(a_{n}\right)^{-\frac{1}{2}}\right]\left\|P W \Psi_{n}^{1 / 4}\right\|_{L_{P}\left(|x| \leq a_{s, n}\right)}
\end{gathered}
$$

by (6.9) and (6.71).
We can now give the
Proof of Theorem 6.2.1. We prove (6.60). Then (6.61) will follow by (6.9) . (6.62) ald
(6.63) will follow as

$$
\Psi_{n}^{1 / 4}(x) \sim \Phi{\frac{a_{n}}{n}}^{n_{1}}(x)_{1} \quad x \in \mathbb{R}
$$

Put $s>1$ and write $l=4 j+k, 0 \leq k \leq 3$. Put $Q:=P(l)$. Then

$$
\begin{aligned}
& J=\left\|P^{(1+1)} W \Psi_{n}^{(i+1) / 4}\right\|_{L_{P}\left(|x| \leq a_{a w n}\right)}=\left\|Q^{\prime} W_{n}^{(1+1) / 4}\right\|_{L_{P}\left(|x| \leq a_{3 n n}\right)} \\
& =\left\|Q^{\prime} W \Psi_{n}^{j+\frac{k+1}{4}}\right\| \|_{\rho p}\left(\mid x_{1} \leq a_{9} s_{s}\right)
\end{aligned}
$$

Choose by Lemma 6.2.2, R of degree $o(n)$ such that

$$
R(x) \sim \Psi^{\frac{1}{4}}(x)
$$

and

$$
\left|R^{\prime}(x) / R(x)\right| \leq \frac{C_{1}}{a_{n}} \Psi^{\frac{-1}{2}}(x)
$$

uniformly for $|x| \leq a_{3 \mathrm{mn}}$.
Then continue the above estimate for I as

$$
J \leq C_{2}\left\|^{\prime} W W_{n}^{j} R^{k} \Psi_{n}^{\frac{1}{4}}\right\|_{L_{P}\left(|x| \leq a_{s o n}\right)}
$$

where C_{2} depends only on k. This is in turn can be can continued as

$$
\begin{aligned}
& \leq C_{2}\left\|\left(Q \Psi_{n}^{j} R^{k}\right)^{\prime} \varphi_{n}^{\frac{1}{n}} W\right\|_{L_{P}\left(|x| \leq \alpha_{3 s n}\right)} \\
& +C_{2}\left\|\left(\Psi_{n}^{j}\right)^{\prime} R^{k} Q \Psi_{n}^{\frac{1}{1}} W\right\|_{L_{P}\left(|x| \leq \alpha_{s s n}\right)} \\
& +C_{2}\left\|\Psi_{n}^{j}\left(R^{k}\right)^{\prime} Q \Psi_{n}^{\frac{1}{2}} W\right\|_{L_{P}\left(|x| \leq \alpha_{s s n}\right)}
\end{aligned}
$$

$=T_{1}+T_{2}+T_{3}$.
We begin with the estimation of T_{1} :

Note that $Q \Psi_{n}^{s} R^{k}$ is a polynomial of degree $\leq n+l+o(n) \leq 3 n$. Thus, we can write

$$
T_{I} \leq C_{3} \frac{n}{a_{n}}\left\|Q \Psi_{n}^{j} R^{k} W\right\|_{L_{P}(\mathbb{R})}
$$

(by (5.27))

$$
\leq G_{4} \frac{n}{a_{n}}\left\|Q \Psi_{n}^{j} R^{k} W\right\|_{L_{P}\left(|v| \leq n_{3 i n}\right)}
$$

(by (6,17))

$$
\begin{align*}
& \leq C_{6} \frac{n}{a_{n}}\left\|Q \Psi_{n}^{j+\frac{K}{6}} W\right\|_{L P}\left(\mid x \leq a_{3, n}\right) \\
& \quad \leq C_{5} \frac{n}{a_{n}}\left\|P^{\left(l_{1} \frac{1}{4} W\right.}\right\|_{L_{p(\mathbb{R})}} \tag{6.74}
\end{align*}
$$

Next we estimate T_{2} :
Note that for $|x| \leq a_{a n}$ and by straightforward differentiation, (6.7) gives

$$
\left|\left(\Phi_{n}^{j}\right)^{j}\right|(x) \leq C_{6} \Psi_{n}(n)^{j-\frac{1}{2}} \frac{j}{a_{a}}
$$

Thus

$$
\begin{align*}
T_{2} & \leq C_{7} \frac{j}{a_{n}}\left\|P_{n}^{(l)} \Psi_{n}^{j-\frac{1}{2}} \Psi_{n}^{\frac{k}{4}+\frac{1}{4}} W\right\|_{L_{P}\left(|x| \leq a_{q+n}\right)} \\
& \leq C_{7} \frac{j}{a_{n}}\left\|P_{n}^{(l)} \Psi_{n}^{\frac{1}{2}-\frac{1}{4}} W\right\|_{L_{P}\left(|x| \leq a_{2 n}\right)} \\
& \leq C_{8} \frac{l x\left(a_{n n}\right)^{\frac{1}{2}}}{a_{n}}\left\|P_{n}^{(l)} \Psi_{n}^{\frac{1}{4}} W\right\|_{L_{P}(\mathbb{R})} \tag{6.75}
\end{align*}
$$

by (6.72).
It remains to estimate T_{3} :
Write

$$
\begin{aligned}
T_{3} & \leq C_{0} k\left\|\Psi_{n}^{j} R^{k-1} R^{\prime} Q \Psi_{n}^{\frac{1}{4} W}\right\|_{L_{P}\left(|x| \leq a_{3 s n}\right)} \\
& \leq \frac{C_{10} k}{a_{n 1}}\left\|\Psi_{n}^{j} \Psi_{n}^{\frac{h-1}{4}} Q W\right\|_{L_{P}\left(|x| \leq a_{s, n}\right)}
\end{aligned}
$$

(by (6.65))

$$
\begin{equation*}
\leq C_{10} \frac{l T}{\left.a_{n}\right)^{\frac{1}{2}}} a_{n}\left\|P_{n}^{(l)} \Psi_{n}^{\frac{1}{4}} W\right\|_{L_{p}(\mathbb{R})} \tag{6.76}
\end{equation*}
$$

as in the estimation of T_{2}.
Combining (6.74), (6.75) and (6.76) gives

$$
\begin{equation*}
J \leq C_{11}\left\{\frac{n}{a_{n}}+\frac{1}{a_{n}} T\left(a_{n}\right)^{\frac{1}{2}}\right\}\left\|P^{(n)} W \Psi_{n}^{4}\right\|_{L_{p}(\mathbb{Z})} \tag{6,77}
\end{equation*}
$$

where $C_{11} \neq C_{11}(n, P, l)$.
Finally by (6.69), (6.77) becomes

$$
P^{(l+1)} W \Psi_{n}^{\frac{41}{4}} \|_{L_{p}(\mathbb{R})} \leq C_{12}\left\{\frac{n}{a_{n}}+\frac{l}{a_{n}} T\left(a_{n}\right)^{\frac{1}{2}}\right\} P^{(0) W \Psi^{\frac{1}{4}} \|_{L_{p}(\mathbb{R})}}
$$

as required where $C_{12} \neq C_{12}\left(n, P_{1} l\right)$,

Chapter 7

Jackson Theorems

In this chapter we prove Theorems 5.1.3-5.1.6.

7.1 Polynomial Approximation of W^{-1}

The result of this section is:

Theorem 7.1.1. For $n \geq 1$, there exist polynomials G_{n} of degree at most $C n$, such that

$$
0 \leq G_{n}(x) \leq W^{-1}(x), x \in \mathbb{R}_{i}
$$

and

$$
\begin{equation*}
G_{n}(x) \sim W^{-1}(x)_{t}|x| \leq a_{n} \tag{7,2}
\end{equation*}
$$

We remark that this does not follow from existing results in the literature on approximation by weighted polynomials of the form $P_{n}(x) W\left(a_{n} x\right)$ [28], [51] as our weights do not satisfy their hypotheses. The methods of Totik [51] can be applied to give sharper results but we base our proof on:

Lemma 7.1.2 There exists an even entire function;

$$
\begin{equation*}
G(x)=\sum_{j=0}^{\infty} g_{j} x^{2 j}, g_{j} \geq 0 \quad \forall j \tag{7.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
G(x) \sim W^{-1}(x), x \in \mathbb{R} . \tag{7.4}
\end{equation*}
$$

Proof. Set

$$
\begin{gathered}
Q_{1}(r):=Q(\sqrt{r}) \\
\psi(r):=r Q_{1}^{\prime}(r)=\frac{1}{2} \sqrt{r} Q^{\prime}(\sqrt{r})
\end{gathered}
$$

Then ψ is increasing in $(0, \infty)$, and if $\lambda>1, r \geq r_{0}$, the quasi-increasing nature of Q^{\prime} gives for some $C \neq C(\lambda)$,

$$
\psi(\lambda r)-\psi(r) \geq \frac{1}{2} \sqrt{r} Q^{\prime}(\sqrt{r})(\sqrt{\lambda} C-1) \geq 1
$$

if λ is large enough. Moreover, $\phi(r):=e^{Q_{1}(r)}$ admits the representation

$$
\phi(r)=\phi(1) \exp \left(\int_{1}^{r} \frac{\psi(s)}{s} d s\right), r \geq 1
$$

By Theorem 1.5.1, there exists entire

$$
G_{1}(r)=\sum_{j=0}^{\infty} g_{j} r^{j}, g_{j} \geq 0 \forall j
$$

such that

$$
G_{1}(r) \sim \phi(r):=\exp (Q(\sqrt{r})), r \geq r_{0} .
$$

Then, assuming $g_{0}>0$ as we can, we see that

$$
G(r):=G_{1}\left(r^{2}\right)
$$

satisfies (7.4). 0

In the analogous construction for Freud weights, D.S Lubinsky and Z. Ditzian used as the
polynonials G_{n} the partial sums of G. However, in the Erdös case, for partial sums of degree $O(n)$, we only bave

$$
G_{n}(x) \sim W^{-1}(x)
$$

for $|x| \leq q_{n}$, where q_{n} was given by (1.7),
Although, $a_{n} / q_{n} \rightarrow 1, n \rightarrow \infty$ for Erdös weights, in effect, q_{n} is significantly smaller than a_{n}. So, we use a more sophisticated interpolant:

Proof of Theorem 7.1.1. Let I be a positive even integer (to be chosen large enough later) and let $T_{n}(a)$ donote the classical Chebyshev polynomial on $[-1,1]$. Let G_{n} denote the Lagrange interpolant to G at the zeros of $T_{n}\left(x / a_{n}\right)^{J}$ so that G_{n} has degree at mosti $J_{n}-I_{1}$ and admits the error representation

$$
\left(G-G_{n}\right)(x)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{G(t)}{t-x}\left(\frac{T_{n}\left(t / a a_{n}\right)}{P_{n}\left(t / a_{n}\right)}\right)^{J} d t
$$

for x inside Γ. We shall choose Γ to be the allipse with foct at $\pm a_{n}$, intersecting the real and imaginary axes at $\frac{a_{n}}{2}\left(\rho+\rho^{-i}\right)$ and $\frac{\underline{a}_{n}}{2}\left(\rho-\rho^{-1}\right)$ respectively. Here we shall choose for some fixed small $\varepsilon>0$,

$$
\rho:=1+\left(\frac{\varepsilon}{T\left(a_{n}\right)}\right)^{1 / 2}
$$

Since G has non-negative Maclaurin series coefficients, and satisfies (7.4), we deduce that:

$$
\delta_{n}:=\left\|G_{n} / G-1\right\| L_{\infty}\left[-a_{n}, a_{n}\right] \leq G_{1} \frac{W^{-1}\left(\frac{a_{n}}{2}\left(\rho+p^{-1}\right)\right)}{(\rho-1)^{2}} \frac{1}{\min _{t \in \Gamma}\left|T_{n}\left(t / a_{n}\right)\right|^{j}}
$$

Now for $t \in \Gamma$, we can write $t=\frac{a_{n}}{2}\left(z+z^{-1}\right)$ where $|z|=\rho_{1}$ so that

$$
\begin{aligned}
& \left|T_{n}\left(t / a_{n}\right)\right|=\left|T_{n}\left(\frac{1}{2}\left(z+z^{-1}\right)\right)\right|=\left|\frac{1}{2}\left(z^{n}+z^{-n}\right)\right| \\
& \quad \geq \frac{1}{2}\left(\rho^{n}-\rho^{-n}\right) \geq \exp \left(C_{2} n T\left(a_{n}\right)^{-1 / 2}\right)
\end{aligned}
$$

(Recall that $n T\left(a_{n}\right)^{-1 / 2} \rightarrow \infty$ as $n \rightarrow \infty$ and in fact grow s faster than a power of n). It is

Important here that C_{2} is independent of J. Next

$$
\frac{a_{n}}{2}\left(\rho+\rho^{-1}\right) \leq a_{n}\left(1+C_{3} \frac{\varepsilon}{T\left(a_{n}\right)}\right) \leq a_{2 n}
$$

if ε is small enough, and n is large enough, by (6.7). Then,

$$
W^{-1}\left(\frac{a_{n}}{2}\left(\rho+p^{-1}\right)\right) \leq \exp \left(C_{4} n T\left(a_{n}\right)^{-1 / 2}\right)
$$

where again it is important that C_{n} is independent of J. Since $(p-1)^{-2} \sim T\left(a_{n}\right)$ grows no faster than a power of n_{1}, we see that choosing J large enough, gives

```
0
\[
\delta_{n} \rightarrow 0, n \rightarrow \infty
\]
```

Then (7.4) gives (7.2),
We now turn to proving (7,1), It suffices to prove

$$
0 \leq G_{n} \leq C W^{-1}
$$

for then (7.1) follows on multiplying G_{n} by a suitable constant. Firstly, we can assume n is even (for odd n, we can tise $\left.G_{n+1}\right)$ so that $H_{n}(x):=G_{n}(\sqrt{x})$ is a polynomial of degree at most $\frac{J_{n}}{2}-1$ (recall T_{n} and J are even) that interpolates to the entire function $H(x):=G(\sqrt{x})$ at the $\frac{y_{n}}{2}$ zeros of $T_{n}\left(\frac{y}{a_{n}}\right)^{x}$ that lie in $\left(0, a_{n}^{2}\right)$, Thus, $H_{n}(x)$ is determined entirely by interpolation conditions: Lets γ_{n} denote the leading coefficient of $T_{n}\left(\pi / \sqrt{a_{n}}\right)$. Then, the usual derivativeerror formula for Hermite interpolation gives for $x \in(0, \infty)$ and some $\xi \in(0, \infty)$,

$$
\left(H-H_{n}\right)(x)=\gamma_{n}^{-J} T_{n}\left(\frac{\sqrt{x}}{a_{n}}\right) \frac{H^{\left(\frac{S_{n}}{2}\right)}(\xi)}{\left(\frac{J_{n}}{2}\right)!} \geq 0
$$

(Recall that H is entire and has non-negative Maclaurin series coefficients). So in \mathbb{R}

$$
G_{n} \leq G \leq C W^{-1} .
$$

To show that $G_{n} \geq 0$ in \mathbb{R}, we note that it is true in $\left[-a_{n}, a_{n 2}\right]$ and we must establish
it elsewhere. We use an idea employed in proving the Posse-Markov-Stieltjes inequalities $[13, \mathrm{p}, 30, \mathrm{Lemma5} .3]$ (There the proof is for $(-\infty, \infty)$, but the proof goes through for $(0, \infty)$ with trivial changes). Now H is absolutely monotone in $(0, \infty)$ and $H-H_{n}$ has $\frac{y_{n}}{2}$ zeros in $\left(0, a_{n}^{2}\right]$, If m is the number of zeros of $H_{n}(x)$ in $\left[a_{n}^{2}, \infty\right)$, Lermana 5.3 in [13,p.30] gives

$$
\frac{J_{n}}{2}+m \leq \operatorname{deg}\left(H_{n}\right)+1 \leq \frac{J_{n}}{2}
$$

So $m=0$, that is H_{n} has no zeros in $\left(a_{n}^{2} \infty\right)$. Thus $H_{n} \geq 0$ there ${ }_{1}$ so $G_{n} \geq 0$ in Re.

7.2 Polynomials approximating charactexistic functions

Our Jackson theorem is based on polynomial approximations to the characteristic function $x_{[a, b}$ of an interval $[a, b]$. We believe the following result is of independent interest:

Theorem 7.1.3. Let l be a positive integer. There exist $C_{1} C_{2}, n_{0}$ such that for $n \geq n_{0}$ and $r \in\left[-a_{n}, a_{n}\right]$, there exist polynomials $R_{n, r}$ of degree at most $C_{1} n$ such that for $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|x_{\left[\tau, a_{n}\right]}-R_{n, r}\right|(x) W(x) / W(\tau) \leq C_{1}\left(1+\frac{n|x-T|}{\left.a_{n} \sqrt{1-\frac{|T|}{a_{a n}}}\right)^{-1}}\right. \tag{7.5}
\end{equation*}
$$

We emphasise that the constants are independent of n, τ, x. Our proof will use polynomials from [24] built on the Chebyshey polynomials:

Lemma 7.1.4. There exist C_{1}, B, n_{1} such that for $n \geq n_{1}$ and $|S| \leq \cos \frac{\pi}{2 n}$, there exists a polynomial $V_{n, \zeta}$ of degree at most $n-1$ wîth

$$
\begin{gather*}
\text { i| } V_{n, \zeta} \|_{L_{\infty}[-1,1]}=V_{n, \zeta}(\zeta)=1 \tag{7,6}\\
\left|V_{n, \zeta}(t)\right| \leq \frac{B \sqrt{1-|\zeta|}}{n|t-\zeta|}, t \in(-1,1) \backslash(\zeta\} \tag{7.7}
\end{gather*}
$$

Moreover,

$$
\begin{equation*}
v_{n, \zeta}(t) \geq \frac{1}{2},|t-\zeta| \leq C_{1} \frac{\sqrt{1-|\zeta|}}{n} \tag{1,8}
\end{equation*}
$$

The constants are independent of n, ζ, t.
Proof tie assertions (7.6), (7.7) are Proposition 13.1 in [24]. The estimate (7.8) follows from the classical Bernstein inequality, 0

The polynomials $R_{n, t}$ are determined as follows: Let us suppose that, say,

$$
a_{1} \leq \tau \leq a_{n}
$$

Later on, we shall suppose chat τ exceeds a fixed positive constant. We define

$$
\begin{equation*}
\zeta:=\frac{r}{a_{2 L} L_{y y}} \tag{7.9}
\end{equation*}
$$

and $1 f G_{n}$ are the polynomials of Theorem 7.1.1,

$$
\begin{equation*}
R_{n, r}(x):=\frac{\int_{0}^{x} G_{n}(s) V_{n, \zeta}\left(\frac{a}{n 21 J_{n}}\right)^{l / j} d s}{\int_{0}^{T a} G_{n}(s) V_{n, 6}\left(\frac{n}{a_{21} \mid J_{n}}\right)^{1 / J} d s} . \tag{7.10}
\end{equation*}
$$

The parameters $\tau^{m}>r$ and J are defined as follows: Let $A \in(0,1]$ denote the constant in the quasi-monotonicity of Q^{\prime}, so that

$$
\begin{equation*}
Q^{\prime}(y) \geq A Q^{\prime}(x), y \geq x \tag{7.11}
\end{equation*}
$$

Let M denote a positive constint such that for say, $u \geq t_{0}$,

$$
\begin{equation*}
Q^{\prime}(x) \leq M Q^{\prime}\left(a_{u}\right), 1 \leq x \leq a_{2 u} \tag{7.12}
\end{equation*}
$$

The existence of such an M follows from (6.4) and (6.6)(i)
We set

$$
\begin{equation*}
H:=H(n, r, l):=\frac{2 l n}{A a_{n} Q^{\prime}(r) \sqrt{1-\zeta}} \tag{7.13}
\end{equation*}
$$

and if $r=a_{r}$,

$$
\begin{equation*}
\tau^{2}+\tau^{*}\left(n_{1} \tau\right)=\min \left(a_{2 r}, a_{n} \tau+2 \frac{a_{n}}{n} \sqrt{1-\zeta H} \log H T\right\} \tag{7.14}
\end{equation*}
$$

The reason for this (complicated) choice will become clearer late. We assume that $J \geq 4$ is so large that G_{n} has degree at most $J_{n}-1_{1}$ an also

$$
\begin{equation*}
L \geq 16 M / A \tag{7.15}
\end{equation*}
$$

where A, M are as above. Note that then $R_{n, \%}$ has degree at most $J n+1 J n$. We fitst record / 4 ome estimates of the terut: 461710).

Lemma 7.1,5. (a) For $n \geq n_{1}$, and $C_{1} \leq r \leq a_{n}$, we have

$$
\begin{equation*}
W(\tau) \int_{0}^{\tau} G_{n}(s) V_{n, \zeta} \zeta\left(\frac{s}{a_{2 l J n}}\right)^{I J} d s \geq C_{2} \frac{a_{n}}{n} \sqrt{1-\zeta} \tag{7.16}
\end{equation*}
$$

where $C_{2} \neq C_{3}(n, r)$.
(b) For $x \in\left(\dot{\tau}_{r} a_{21} J_{n}\right)$

$$
\begin{equation*}
\int_{x}^{a_{21}, j_{n}} V_{n, \zeta}\left(\frac{s}{a_{2 l / n}}\right)^{\frac{1}{2}} d s \leq C_{1} \frac{a_{n}}{n} \sqrt{1-\zeta}\left(1+\frac{n|x-\tau|}{a_{n} \sqrt{1-\zeta}}\right)^{-l} \tag{7.17}
\end{equation*}
$$

and for $x \in\left(-a_{2 L} n, \tau\right)$,

$$
\begin{equation*}
\int_{-a_{2 i J n}}^{x} V_{n, \zeta}\left(\frac{s}{a_{2 l \cdot J_{n}}}\right)^{\frac{i J}{2}} d s \leq C_{1} \frac{a_{n}}{n} \sqrt{1-\zeta}\left(1+\frac{n|x-r|}{a_{n} \sqrt{T}-\zeta}\right)^{-1} \tag{7.18}
\end{equation*}
$$

Here $C_{1} \neq C_{1}\left(n_{5} \tau\right)$.
Proof. (a) Let us denote the left-hand side of (7.16) by Γ. By (7.2) and (7.8),

$$
\Gamma \geq C_{2} W(r) \int_{\tau-C_{3} \frac{a_{n}}{n} \sqrt{1-\zeta}}^{T} W^{-1}(s) d s \geq C_{4} \frac{a_{n}}{n} \sqrt{1-\zeta_{1}}
$$

where we have used (6.46).
(b) These follow in a straightforward fashion from the estimates (7.6), (7.7) and the fact that $J \geq 4$ so $\frac{l J}{2}>l+1 . \square$

Now we begin the proof of Theorem 7.1.3. We first show that it suffices to consider τ in the tange $\left[S, a_{n}\right]$, for some fixed S.

Proof of Theorem 7,1.3 for $|\tau| \leq S$, where S is fixed. Note first, that since for such τ

$$
W(x) / W(r) \leq W(0) / W(S), x \in \mathbb{R}_{i}
$$

we must only prove there exists $R_{n, T}$ of degree at most n such that

$$
\left|\chi_{\left[\tau, a_{n}\right]}-R_{n, \tau}\right|(x) \leq C_{1}\left(1+\frac{n|x-\tau|}{a_{n} \sqrt{1-\frac{\left|a_{1}\right|}{a_{2}}}}\right)^{-l}
$$

for $\int x \leq a_{2 n}$ and then our infinite finite range inequality Lernma 6.1 .3 gives the rest. Setting here $\xi=\tau / a_{n} s:=x / a_{n 1}$ and $U_{n, \xi}(s):=R_{n_{r} r}(x)=R_{n, r}\left(a_{n} s\right)$, we see that it suffices to show

$$
\left|x_{[5,1]}(s)-U_{n, k}(s)\right| \leq C_{2}(1+n|s-\xi|)^{-1}, s \in[-2,2]
$$

We have used here that $|\xi| \leq \frac{1}{2}$, for large n. The existence of such polynomials is classical. See for example [9]. One could also base them on the $V_{n, \zeta}$ above.

It suffces to consider $\tau \in\left[S, a_{n}\right]$, where S is fixed
For once this is done, we have the result for all $\tau \in\left[0, a_{n}\right]$. With the result for $\tau \geq 0$, we set

$$
R_{n_{i}-T}(x):=1-R_{n ; T}(-x), x \in \mathbb{R},
$$

It is not difficult to check the result for $-\tau$ from the corresponding result for τ, using the identity

$$
\text { . } \chi_{\left[-\tau, a_{n}\right]}(x)=1-\chi_{\left(\tau, a_{n}\right]}(-x)
$$

In the sequel, we define $R_{n, r}$ by (7,10)-(7,14).
It suffices to prove (7.5) for $\tau \in\left[S, a_{n}\right]$ and $|x| \leq a_{21} J_{n}$

For then (7.5) for this restricted range implies

$$
\|\left(1+\left[\frac{n(x-\tau)}{a_{n} \sqrt{1-\frac{r}{n_{2 n}}}}\right\}^{2} R_{n, r}(x) W(x) \| \sum_{\left.n_{0}-a_{21 j_{n}}, n_{21 J}\right]} \leq C_{9} n^{C_{4}}\right.
$$

where $C_{4} \neq C_{4}(n, \tau)$. Since the polynomial in the left-hand side has degree at most $2 l+J n+$ $I J n \leq \eta 2 l J n$, Bome fixed $\eta<1$, if $l \geq 2$ and n is large enough (as we can assume), then the infinite-finte range mequality Lemma 6.1.3 gives

Then (7.5) follows for $\mid \geq a_{2 L I}, \square$
We can now begin the proof of (7.5) proper. We consider 5 different ranges of $24,[0, \tau)$, $\left[r, \tau^{*}\right],\left(\tau^{*}, a_{n}\right\},\left(a_{n}, a_{2 t} J_{n}\right],\left[-a_{21, J_{n}} 0\right]$. Moreover, we set

$$
\Delta(x):=\left|\chi\left\{r, a_{n}\right\}-R_{n, \tau}\right|(x) W(x) / W(x) .
$$

Proof of (7.5) for $x \in[0,7)$. Here using (7.1), and then (7.16),

$$
\begin{aligned}
& \leq C \frac{W(x) \int_{0}^{n} W^{-1}(s) V_{n, \zeta}\left(-\frac{s}{n_{21 J} J_{n}}\right)}{\frac{\operatorname{an}}{n} \sqrt{1-\zeta} d s} \\
& \leq C \frac{\int_{0}^{x} V_{n, \zeta}\left(\frac{s}{a_{2 l / J_{n}}}\right)^{l s} d s}{\frac{a_{n}}{n} \sqrt{1-\zeta}}
\end{aligned}
$$

by the monotonicity of W. Then (7.18) gives the result.

Proof of (7.5) for $x \in\left[r, \tau^{*}\right.$). Here

$$
\Delta(x)=\frac{W(x) \int_{x}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(\frac{s}{a_{2 l /}}\right)^{l /} d s}{W(\tau) \int_{0}^{\tau *} G_{n}(s) V_{n, \zeta}\left(\frac{b}{a_{2} l J_{n}}\right)^{l /} d s}
$$

$$
\leq C \frac{\left.f^{x} \exp (Q(s)-Q(x)) V_{n, \zeta}\left(\frac{s}{n_{2}+J_{n}}\right)\right)^{h} d s}{\frac{\operatorname{m}_{n}}{n} \sqrt{1-\zeta}}
$$

by (7.1) and (7.16). Now for $s \in\left(x_{i} \tau^{*}\right)$, the property (7.12) of Q^{\prime} gives (recall $\tau^{*} \leq a_{2 r}$)

$$
Q(s)-Q(x) \leq M Q^{\prime}\left(o_{r}\right)(s-x) \leq M Q^{\prime}(r)(s-r) .
$$

Then using our bounds on $V_{n, S}$ in (7.6) and (7.7), we have

$$
\begin{aligned}
& \Delta(x) \leq C_{1} \frac{\int_{\infty}^{r} \exp \left(M Q^{\prime}(r)(s-r)\right) \min \left(1, \frac{B a_{21 / 5} \sqrt{1-\zeta}}{n(s-\tau)}\right\}}{\frac{m_{22} / \sqrt{n}}{n} \sqrt{1-\zeta}} d s
\end{aligned}
$$

for say $n \geq n_{1}=n_{1}(J, l)$ by $(7,14)$, and where

$$
g(u):=\exp \left(\frac{4 l M B u}{A H}\right) \min \left\{1, \frac{1}{u}\right\}^{1 / 2}
$$

We claim that if J is large enough,

$$
g(u) \leq C_{3}, u \in\left[0, \frac{2}{B} H \log H\right]
$$

with C_{3} independent of τ, n. Firstly we claim that if l is large enough,

$$
\begin{equation*}
H \geq e_{;} H \geq e^{B / 2} \tag{7.19}
\end{equation*}
$$

uniformly for $r \in\left[S, a_{n}\right]$ and $n \geq n_{0}(J, l)$.
Firstly recall that B, M, J, A are independent of l (see (7.7), (7.11), (7.12), (7.15)) Then also from (6.52) for $\tau \in\left[S, a_{n i}\right]$

$$
a_{n} Q^{\prime}(\tau) \sqrt{1-\frac{\tau}{a_{2 n}}} \leq C n_{y}
$$

with $C \neq C(n, r, t)$ Then from (7.13),

$$
H \geq \frac{2 l}{A C}\left(\frac{1-\frac{\tau}{a_{2 i}}}{\left.1-\frac{T}{a_{2 l}}\right)^{\frac{1}{2}}}\right)^{\frac{1}{2}}
$$

Here for $n \geq n_{0}(J, l)$, using $1-u \leq \log \frac{1}{u}, u \in(0,1]$, we obtain

$$
\begin{aligned}
& \frac{1-\frac{\tau}{a_{21} l_{n}}}{1-\frac{\tau}{a_{2 n}}}=1+\frac{1-\frac{a_{2 n}}{a_{2 n}} \frac{T}{1-\frac{T}{a_{n}}}}{a_{2 n}} \\
& \leq 1+\frac{\log \frac{a_{2} \omega_{n}}{a_{2 n}}}{1-\frac{a_{n}}{a_{2 n}}} \leq 1+C_{1}^{n} \log (l J)
\end{aligned}
$$

by (6.7) and the left inequality in (6.12). Thus for $n \geq n_{0}\left(J_{1} l\right)$, uniformly for $\tau \in\left[S, a_{n}\right]$,

$$
H \geq \frac{C_{2} l}{\sqrt{\log l J}}
$$

So (7.19) follo : if we choose l enough. Then

$$
g(u) \leq \exp \left(\frac{4 l M B}{A e^{Y}}\right), u \in(0,1] .
$$

Next, by elementary calculus, g has at most one local extremum in $[1, \infty)$, and this is ai minimum. Thus in any subinterval of $(1, \infty), g$ attains its maximum at the endpoints of that interval. In particular, we must only check that $g\left(\frac{2}{B} H \log H\right)$ is bounded. Note that by (7.19),

$$
\frac{2}{B} H \log H \geq e>1
$$

So

$$
g\left(\frac{2}{B} H \log H\right)=\exp \left(l \log H\left\{\frac{8 M}{A}-\frac{J}{2}\right\}-\frac{J l}{2} \log \left[\frac{2}{B} \log H\right]\right) \leq 1
$$

as $J \geq 16 M / A$ and $H \geq e^{B / 2}$ (See (7.15)). So we have

$$
\Delta(x) \leq C_{4} \int_{\frac{n\{(x-\tau)}{B a_{2!J} J_{n}-\zeta}}^{\infty} \min \left\{1, \frac{1}{u}\right\}^{l J / 2} d u
$$

and then (7.5) iollows as $J \geq 4.0$

Proof of (7.5) for $a \in\left(r^{*}, a_{n}\right]$

Here

$$
\begin{align*}
& \leq C_{\frac{\int^{*} *}{\operatorname{ex}} \exp (Q(s)-Q(p)) V_{n, s}\left(\frac{s}{a_{2 i} J_{n}}\right)}^{\frac{\alpha_{n}}{n} \sqrt{1-\zeta} d s} \\
& \leq C_{n} \frac{n}{a_{n} \sqrt{1-\zeta}}\left(e^{Q\left(\frac{n t}{2}\right)-\phi(x)} \int_{T_{0}}^{\frac{t}{2}} V_{n,}\left(\frac{s}{a_{2 l J_{n}}}\right)^{i J} d s+\int_{\frac{x+z}{x}}^{x} V_{n, t}\left(\frac{s}{a_{2 L J}}\right)^{i J} d s\right) \\
& \leq C_{3}\left\{Q\left(\frac{t+2}{2}\right)-Q(x)\left[1+\frac{n\left(\tau^{*}-\tau\right)}{a_{n} \sqrt{1-\zeta}}\right]^{-1}\left[1+\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}\right\}^{-1}\right\} \tag{7.20}
\end{align*}
$$

by (7.7) and (7.17). Here $/ \tau^{*}>\frac{\tau+m}{2}$, the first term in the last two lines can be dropped and we alredy have the desired (himate, In the contrary case, we must estimate the first term. We note that we can assume that $T^{*}<a_{n}$, for otherwise the current range of π is empty. We consider two subcases (recall the definition (7.14) of τ^{*}):
(1) $T^{\prime N}=T+2 \frac{n_{n}}{n-C H} \log H$

We shall show that

$$
\begin{equation*}
\Gamma=\frac{Q(x)-Q\left(\frac{x+x}{2}\right)}{l \log \left(1+\frac{n(x-\gamma)}{n_{n} \sqrt{1-\zeta}}\right)} \geq 1 \tag{7.21}
\end{equation*}
$$

Then, the first part of the first term in the right-hand side of (7.20) already gives the desired estimate, the second part of that first term can be bounded by 1. By quasi-monotonicity (7.11) of Q^{\prime} ?

$$
Q(x)-Q\left(\frac{\tau+x}{2}\right) \geq A Q^{\prime}(\tau)\left(\frac{x-T}{2}\right)
$$

Setting

$$
u:=\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}
$$

we have

$$
\Gamma \geq \frac{A Q^{\prime}(\tau) \frac{a_{n}}{n} \sqrt{I-\zeta} u}{2 l \log (1+u)}=\frac{u}{H \log (1+u)}
$$

But

$$
u \geq \frac{n\left(r^{*}-\tau\right)}{a_{n} \sqrt{1-\zeta}}=2 H \log H
$$

Recall from $(7,19)$ that $H \geq$ e. Then since the function $\frac{u}{\log (1+u)}$ is increasing for $u \geq$ $2 H \log H \geq$ e, we obtain

$$
\Gamma \geq \frac{2 H \log H}{H \log (1+2 H \log H)}
$$

Usiog the inequality $1+2 t \log t \leq t^{2}, t \geq 2$, we have

$$
r \geq \frac{2 \log H}{\log A^{2}}=1
$$

So we have (7.21) and the result.

$$
(I I) T_{0}^{*}=a_{2 r}
$$

In this case, from (6.7),
0 .

$$
\tau^{*}-\tau=a_{2 r}-a_{r} \sim \frac{a_{r}}{T\left(a_{r}\right)}=\frac{T}{T(T)}
$$

Now if $\tau^{*} \leq n \leq \tau_{1}+\frac{1}{\pi(\tau)}$, then

$$
z-\tau \sim T^{*}-T
$$

${ }^{\circ}$
and the second part of the first term in the right-hand side of (7.20) already gives the desired estimate (the first part of the first term can be estimated by 1). If $x>\tau\left(1+\frac{1}{x^{(t)}}\right)$, then

$$
\frac{x}{\left(\frac{x+\tau}{2}\right)} \geq 1+\frac{1}{2 T(\tau)+1} \geq 1+\frac{1}{3 T(\tau)}
$$

for large τ, of from (6.1),

$$
\frac{Q(x)}{Q\left(\frac{x+r}{2}\right)} \geq\left(1+\frac{1}{3 T(r)}\right)^{C_{2} T\left(\frac{\pi+r}{2}\right)} \geq C_{3}>1
$$

(Recall that $\frac{x+\tau}{2}>r$). Then

$$
\mathrm{e}^{Q\left(\frac{\tau t x}{2}\right)-Q(x)}\left[1+\frac{n\left(\tau^{*}-\tau\right)}{a_{n} \cdot \overline{T-\zeta}}\right]^{-1} \leq e^{-C_{4} \&(x)}\left[1+\frac{C_{5} n \tau}{a_{n} T(\tau) \sqrt{1-\zeta}}\right]^{-1}
$$

This will admit the desired estimate; namely

$$
C_{6}\left[1+\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}\right]^{-1}
$$

provided

$$
e^{O_{4} Q(x) /(q)} \frac{\tau}{T(\tau)} \geq C_{7}(x-\tau)
$$

But,

$$
e_{4} Q(x) /(t) \frac{\tau}{T(\tau)} \geq C_{8} \frac{e^{G_{4} Q(x) /(l)}}{T(x)} \geq C_{8} Q(x) \geq C_{10}>C_{10}(x-\tau)
$$

कy (6.5), (6.9) and the faster than polynomial grow th of Q, so we have the desired estimate.0
Proof of (75) for $x \in\left[a_{\pi} a_{2 l J_{n}}\right]$
Here, much as in the previous range,

$$
\begin{aligned}
& \leq C_{3}\left\{Q^{Q\left(\frac{q+f}{2}\right)-Q(x)}+\left[1+\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}\right]^{-l}\right\} .
\end{aligned}
$$

We must show that the first term on the last right-hand side admits a bound that is a conatant multiple of the second term on the last right-hand side. Let us write $x=a_{v}$ (sov $\geq n$) and $\frac{x+z}{2}=a_{u}$ (so that $u<v$). If firstly $u \geq \frac{n}{2}$, then

$$
\begin{aligned}
& Q(x)-Q\left(\frac{\tau+x}{2}\right) \geq C_{4} Q^{\prime}\left(a_{n / 2}\right)(\tau-x) \\
& \geq C_{5} \frac{n}{a_{n}} T\left(\operatorname{Lon}_{n}\right)^{1 / 2}(\tau-x) \geq C_{6} \frac{n(\tau-x)}{a_{n} \sqrt{1-\zeta}}
\end{aligned}
$$

by (6.4) and (6.7). (Recall that $\xi=\frac{\tau}{a_{2 i J n}}$.) In this case the result follows. If $u<\frac{n}{2}$,

$$
\begin{aligned}
& Q(x)-Q\left(\frac{\tau+x}{2}\right) \geq Q\left(a_{n}\right)-Q\left(a_{n / 2}\right) \\
& \geq C_{7} Q\left(a_{n}\right) \geq C_{8} n T\left(a_{n}\right)^{-1 / 2} \geq C_{9} n^{G_{10}}
\end{aligned}
$$

by (6.5) and (6.9). Since

$$
\left[1+\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}\right]^{-1} \geq n^{-a_{11}}
$$

the result again follows

Proof of (7.5) for $x \in\left[-a_{\left.21 / J_{n}, 0\right]}\right.$
Here using the evenness of W and (7.1), (7.16) as before gives

$$
\begin{aligned}
& \Delta(x)=\frac{W(x) \int_{0}^{U} G_{n}(s) V_{n, t}\left(\frac{s}{u_{2} i J_{n}}\right)^{1 J} d s}{W(r) \int_{0}^{+\pi} G_{n}(s) V_{n, 5}\left(\frac{s}{a_{21 J}}\right)^{W} d s} \\
& \leq C_{2} \frac{n}{a_{n} \sqrt{1-\zeta}}\left(\int_{x}^{\frac{\pi}{2}} V_{n, \zeta}\left(\frac{s}{a_{2 l J_{n}}}\right) d s+e^{Q\left(\frac{x}{2}\right)-Q(x)} \int_{\frac{\pi}{2}}^{0} V_{n, \zeta}\left(\frac{s}{a_{2}+J_{n}}\right)^{l j} d s\right) \\
& \leq C_{3}\left\{\left[1+\frac{\left.n \int \frac{\pi}{2}-\tau \right\rvert\,}{a_{n} \sqrt{T-\zeta}}\right]^{-1}+e^{Q\left(\frac{\pi}{2}\right)-Q(x)}\left[1+\frac{n \tau}{a_{n} \sqrt{1-\zeta}}\right]^{-1}\right\} .
\end{aligned}
$$

Here $\left|\frac{\pi}{2}-\tau\right|=\frac{|x|}{2}+\tau \sim|x-\tau|$. Also, if $|x| \leq \tau$, then $\tau \sim \tau+|x|=|x-\tau|$. Otherwise (recall $\tau \geq S$), we have

$$
e^{Q\left(\frac{x}{2}\right)-Q(x)} \leq \mathrm{e}^{-C_{4} Q(x)} \leq \mathrm{e}^{-C_{5}|x|} \leq\left(C_{6}|x|\right)^{-1} .
$$

Again as $|x| \tau \geq C_{8}(\tau+|x|)=C_{8}|x-\tau|$, the result follows.

7.3 The Proofs of Theorems 5.1.3 and 5.1.4

In this section, we prove Theorems 5.1.3 and 5.1.4. Recall that our moduli of continuity ane

$$
\begin{gathered}
\omega_{r, p}(f, W, t):=\sup _{0<h \leq t}\left\|W \Delta_{h \phi_{t}(())}^{r}\left(f_{1} t, \mathbb{R}\right)\right\|_{L_{p}(|x| \leq \sigma(2 t))} \\
\quad+\inf _{P \in \mathcal{P}_{r-1}}\|(f-P) W\|_{L(|x| \geq \sigma(4 t))}
\end{gathered}
$$

and

$$
\begin{aligned}
\bar{\omega}_{r_{i} p}(f, W, t): & =\left(\frac{1}{t} \int_{0}^{t}\left\|W \Delta_{h \phi_{t}(x)}^{r}(f, x, \mathbb{R})\right\|_{L_{p}(|x| \leq \sigma(2 t))}^{p} d h\right)^{\frac{1}{p}} \\
& +\inf _{\Gamma \in \mathcal{P}_{r-1}}\|(f-P) W\|_{L_{L}(|x| \geq \sigma(4 t))}
\end{aligned}
$$

Here,

$$
\sigma(t)=\inf \left\{a_{u}+\frac{a_{u}}{u} \leq t\right\}
$$

We need further moduli of continuity, If I is an interval, and $f: I \rightarrow \mathbb{R}$, we define for $t>0$,

$$
\begin{equation*}
\Lambda_{r, p}(f, t, I):=\sup _{0<h \leq 1}\left(\int_{I}\left|\Delta_{h}^{r}\left(f_{1} x, l\right)\right|^{p} d x\right)^{1 / p} \tag{7.22}
\end{equation*}
$$

and its averaged cousin

$$
\begin{equation*}
\Omega_{r, p}(f, t, I)=\left(\frac{1}{t} \int_{0}^{t} \int_{J}\left|\Delta_{s}^{r}(f, x, I)\right|^{p} d x d s\right)^{1 / p} \tag{7.23}
\end{equation*}
$$

Note that for some C_{1}, C_{2} depending only on r and p (notion $\left.f, I, t\right)$ [8], [47, p.191],

$$
\begin{equation*}
C_{1} \leq \Lambda_{r, p}\left(f, t_{1} I\right) / \Omega_{r, p}(f, t, I) \leq C_{2} \tag{7.24}
\end{equation*}
$$

For large enough n, we choose a partition

$$
\begin{equation*}
-a_{n}=\tau_{0 n}<\tau_{1 n}<\ldots<\tau_{n n}=a_{n} \tag{7.25}
\end{equation*}
$$

such that if

$$
\begin{equation*}
I_{k n}:=\left[\tau_{k n} \tau_{k+1, n}\right], 0 \leq k \leq n-1, \tag{7,26}
\end{equation*}
$$

then uniformly in k and n,

$$
\begin{equation*}
\left|I_{k n}\right| \sim \frac{a_{n}}{n} \sqrt{1-\frac{\left|\tau_{k n}\right|}{a_{2 n}}} \tag{7.27}
\end{equation*}
$$

($|I|$ denotes the length of the interval n). We also set $I_{n n}:=$. There are many ways to do this. For example, one can start with the classical Chebyshev points scaled to $\left[-a_{n}, a_{n}\right]$, and then drop an appropriate number near $\pm a_{n}$. Let us set

$$
\begin{equation*}
I_{n}:=\left[-a_{n}, a_{n}\right]=U_{k=0}^{n-1} I_{k n} \tag{7.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{m_{m}}(x):=\chi_{\left[\tau_{k n}, a_{n}\right]}(n)=\chi_{U_{i=k}^{n-1}} r_{i n}(n) . \tag{7.29}
\end{equation*}
$$

We set

$$
\begin{equation*}
I_{k n}^{*}:=I_{k n} \cup I_{k+1, n}, 0 \leq k \leq n-1 . \tag{7.30}
\end{equation*}
$$

By Whitney's theorem $[47, p 195]$, we can find a polynomial p_{k} of degree at most r, such that

$$
\begin{equation*}
\left\|f-p_{k}\right\|_{L_{p}\left(I_{k n}^{*}\right)} \leq C_{2} \Lambda_{r ; p}\left(f, \mid I_{k n}^{*} I_{2} I_{k n}^{*}\right) \tag{7.31}
\end{equation*}
$$

with $C_{2} \neq C_{2}\left(f, n, k, l_{k n}^{*}\right)$.
Now define an approximating piecewise polynomial/spline by

$$
\begin{equation*}
L_{n}[f](x)=p_{0}(x) \theta_{0 n}(x)+\sum_{k=1}^{n-1}\left(p_{k}-p_{k-1}\right)(x) \theta_{k n}(x) . \tag{7.32}
\end{equation*}
$$

We first show that $L_{n}[f]$ is a good approximation to f.

Lemma 7.1.6. Let $\Psi_{n}:\left[-a_{n}, a_{n}\right] \rightarrow \mathbb{R}$ be such that uniformly in n, and $x \in\left[-a_{n}, a_{n}\right]$,

$$
\begin{equation*}
\Psi_{n}(x) \sim \sqrt{1-\frac{|n|}{a_{2 n}}} \tag{7.33}
\end{equation*}
$$

Then for $0<p<\infty$,

$$
\leq C_{1}\left\{\left[\frac{n}{a_{n}} \int_{0}^{C_{2} \frac{a_{n}}{n}}\left\|W \Delta_{h W_{n}(x)}^{r}\left(f, L_{n}[f]\right) W\right\|_{L_{r}(\mathbb{R})} \|_{L_{p}\left(a_{n}, a_{n}\right]}^{p} d h\right]^{\frac{1}{p}}+\|f W\|_{L_{p}\left(|x| \geq a_{n}\right.}\right\}
$$

and for $p=\infty$, we replace the pth root and integral by sup $0<h \leq C_{2} \frac{a_{n}}{4}$.
Here, $C_{j} \neq C_{j}(f, n), j=1,2$. Moreover, the constants are independent of $\left\{\Psi_{n}\right\}$, depending only on the constants in \sim in (7.33), For $p=\infty_{1}$ (7.34) holds if we remove the exponents p.

Proof. We first deal with $p<\infty$. Now

$$
\begin{equation*}
\left\|\left(f-L_{n}[f]\right) W\right\|_{L_{p}(\mathbb{R})}^{p}=\sum_{j=0}^{n-1} \Delta_{j_{n}}+\|f W\|_{L_{p}\left(x \mid \geq a_{n}\right)}^{p}, \tag{7.35}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{j n}:=\int_{I_{j n}}\left|f-L_{n}[f]\right|^{p} W^{p} \tag{7.36}
\end{equation*}
$$

Note that in $\left(\tau_{j n}, \tau_{j+1, n}\right) ; L_{n}[f]=p_{j}$, so that

$$
\begin{align*}
& \Delta_{j n}=\int_{I_{j n}}\left|f-p_{j}\right|^{p} W^{p} \\
& \leq\|W\|_{L_{\infty}\left(I_{m n}\right)} C_{2}^{p} \Lambda_{r, p}^{p}\left(f,\left|I_{j n}^{*}\right|_{1} I_{j n}^{*}\right)(\text { by }(7.31)) \\
& \leq\|W\|_{L_{\infty 0}\left(Y_{j n}^{*}\right)}^{p_{i}}\left\|W^{-1}\right\|_{L_{\infty 0}\left(X_{j n}^{*}\right)}^{\left|C_{j n}^{*}\right|} \int_{0}^{\left|T_{j n}^{*}\right|} \int_{r_{j n}}\left|W \Delta_{b}^{r}\left(f_{1} x, I_{j n}^{*}\right)\right|^{p} d x d s_{;} \tag{7.37}
\end{align*}
$$

by (7.23), (7.24). Now from (6.46),

$$
\begin{equation*}
\|W\|_{L_{\infty}\left(I_{3 n}^{*}\right)}^{p}\left\|W^{-1}\right\|_{L_{\infty 0}\left(I_{j n}^{*}\right)}^{p} \sim 1 \tag{7.38}
\end{equation*}
$$

uniformly in j and n. Moreover, uniformily in j, n, and $x \in I_{j n}^{*}$,

$$
\left|I_{j n}^{*}\right| \sim \frac{a_{n}}{n} \sqrt{1-\frac{|x|}{a_{2 n}}} \sim \frac{a_{n}}{n} \Psi_{n}(x) .
$$

Then we can continue (7.37) as

$$
\begin{align*}
& \therefore \quad \Delta_{j n} \leq \frac{C_{4}}{\left|I_{j n}^{*}\right|} \int_{I_{j n}^{*}} \int_{0}^{\left|I_{j n}^{*}\right|}\left|W \Delta_{s}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d s d x \\
& =\frac{C_{4}}{\left|I_{j n}^{*}\right|} \int_{I_{j n}^{*}} \Psi_{n}(x) \int_{0}^{\left|I_{j n}^{o}\right| \Psi_{n}(x)}\left|W \Delta_{t \Psi_{n}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d t d x \\
& \quad \leq C_{5} \frac{n}{a_{n}} \int_{0}^{C_{6} \frac{u_{n}}{n}} \int_{I_{j n}^{*}}\left|W \Delta_{t \Psi_{n}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d x d t . \tag{7.39}
\end{align*}
$$

Adding over j gives

$$
\sum_{j=0}^{n-1} \Delta_{j n} \leq C_{5} \frac{n}{a_{n}} \int_{0}^{C_{6} \frac{a_{n}}{n}} \int_{I_{n}}\left|W \Delta_{t \mathbb{W}_{n}(x)}^{r}\left(f_{v} x, \mathbb{R}\right)\right| p d x d t .
$$

This and (7.35) give the result. Note that we have also effectively shown that

$$
\begin{equation*}
\sum_{j=0}^{n-1} \Omega_{r, p}^{p}\left(f_{1}\left|I_{3 n}^{*}\right|, I_{j n}^{*}\right) W^{p}\left(\tau_{j n}\right) \leq\left. C_{5} \frac{n}{a_{n}} \int_{0}^{o_{6} \frac{a_{n}}{n}} \int_{D_{n}} W^{1} A_{i \mathbb{L}}^{r}(x)(f, x, \mathbb{R})\right|^{p} d n d t \tag{7.40}
\end{equation*}
$$

For $p=\infty$, the proof is similar, but easier: We see that

$$
\left\|\left(f-L_{n}[f]\right) W\right\|_{L_{\infty}(\mathbb{R})}^{p} \leq \max \left\{\max _{0 \leq j \leq n-1}\left\|\left(f-p_{j}\right) W\right\|_{L_{\infty}\left(I_{j n}\right)}\|f W\|_{L_{\infty}\left(\| x \geq a_{n}\right)}\right\} .
$$

The rest of the proof is as before

Now we can define our polynomial approximation to f :

$$
\begin{equation*}
P_{n}[f]:=p_{0}(x) R_{n, T_{0 n}}(x)+\sum_{k=1}^{n-1}\left(p_{k}-p_{k-1}\right)(x) R_{n_{2} \tau_{k n}}(x) \tag{7,41}
\end{equation*}
$$

Note, that this has been formed from $L_{n}[f]$ of (7.32) by replacing the characteristic function $\theta_{k n t}(x)=\chi_{\left[\tau_{k n}, a_{n}\right]}(x)$ by its polynomial approximation $R_{n, \tau_{k n}}(x)$ formed in the previous section.

Lemma 7,1.7. Let $\left\{\Psi_{n}\right\}_{n}$ be as in the previous lemma. Then

$$
\left\|\left(L_{n}[f]-P_{n}[f]\right) W\right\|_{L_{p}(\mathbb{R})}
$$

$$
\begin{equation*}
\leq C_{1}\left\{\left[\frac{n}{a_{n}} \int_{0}^{C_{2} \frac{a_{n}}{n}}\left\|W \Delta_{h \Psi_{n}(x)}^{r}(f, x, \mathbb{R})\right\|_{L_{p}\left[-a_{n}, a_{n}\right]}^{p_{n}} d h\right]^{\frac{1}{7}}+\|f W\|_{L_{p}\left(I_{0, n}^{*}\right)}\right\} \tag{7.42}
\end{equation*}
$$

Proof. We see that if we define $p_{-1}(x) \equiv 0$,

$$
\left(L_{n}[f]-P_{n}[f]\right)(x)
$$

$$
\begin{equation*}
\text { / } 4 \text {, }=\int_{k=0}^{n-1}\left(p_{k}-p_{k-1}\right)(x)\left(\theta_{k n}(x)-R_{n, \tau_{k n}}(x)\right) \tag{7.43}
\end{equation*}
$$

We shall make substay tial use of the following inequality: Let S be a polynomial of degree at most r and $[a, b]$ be a thal interval. Thien for all $x \in \mathbb{R}_{\text {, }}$

$$
\begin{equation*}
S(x) \left\lvert\, \leq C(b-a)^{-1 / p}\left(1+\frac{\min \{x-a|1| x-b \mid\}}{b-a}\right)\|S\| x_{p}[a, b]\right. \tag{7.44}
\end{equation*}
$$

Here $C \neq C(a, b, x, S)$ bit $C-C(p, r)$.
This follows frbm standand Nikolskif irequalities and the Bernstein-Walsh inequality. See for egample [47, 103$]$.

學ence for $\in \mathbb{R}$, and $1 \leq k \leq n-1$,

$$
\operatorname{so}^{+}+p_{k}-\left.p_{k-1}|(x) \leq C| I_{k n}\right|^{-1 / p}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{r}\left\|p_{k}-p_{k-1}\right\|_{\nu_{p}\left(I_{k n}\right)}
$$

This is still true for $k=0$ if we recall that $p_{-1} \equiv 0$. Now for $1 \leq k \leq n-1,(7.31)$ gives $\%$

$$
\left\|p_{k}-p_{k-1}\right\| L_{p}\left(l_{k n}\right) \leq C_{1} \sum_{i=k-1}^{k} \Lambda_{r, p}\left(f,\left|I_{i n}^{*}\right|, I_{i n}^{*}\right)
$$

where $C_{1} \neq C_{1}(f, k, q 7)$.
This remains true for $k=0$ if we set

$$
\left|I_{-1, n}\right|:=\left|I_{0, n}\right| ;\left|I_{-1, n}^{*}\right|:=\left|I_{0, n}^{*}\right| ; \tau_{-1, n}:=\tau_{0, n}
$$

and

$$
\Lambda_{r, p}\left(f_{1}\left|I_{-1, n}^{*}\right|, I_{-1, n}^{*}\right):=\|f\|_{L_{p}\left(I_{a n}^{*}\right)}=\Omega_{r, p}\left(f_{1}\left|I_{-1, n}^{*}\right|, I_{-1, n}^{*}\right)
$$

Since (see (6,33), (6.34), (7.27)) uniformly in k, n, and $x \in \mathbb{R}$,

$$
1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|} \sim 1+\frac{\left|x-\tau_{k-1, n}\right|}{\left|I_{k-1, n}\right|}
$$

we obtain from (7.44) and Theorem 7.1.3, unfformly for $0 \leq k \leq n-1$ and $x \in \mathbb{R}_{2}$

$$
\begin{align*}
& \left|\left(p_{k}-p_{k-1}\right)(x)\left(\theta_{k n}(x)-R_{n_{n} \tau_{k n}}(x)\right)\right| \frac{W(x)}{W\left(\tau_{k n}\right)} \\
& \leq C_{2} \sum_{i=k-1}^{k}\left|I_{n n}\right|^{-1 / p}\left(1+\frac{\left|x-\tau_{i n}\right|}{\left|I_{i n}\right|}\right)^{r i} \Omega_{r, p}\left(f_{1}\left|I_{i n}^{*}\right| I_{n n}^{*}\right) \tag{7.45}
\end{align*}
$$

We consider three different ranges of p :
(1) $0<p<1$

Here from (7.43) and then (7.45),

$$
\begin{align*}
& \therefore \int_{\mathbb{R}}\left(\left|L_{n}[f]-P_{n}[f]\right| W\right)^{p} \\
& \leq \sum_{k=-1}^{n-1}\left|I_{k n}\right|^{-1} \Omega_{r, p}^{p}\left(f_{1}\left|I_{k n}^{*}\right|, I_{k n}^{k}\right) W^{p}\left(\tau_{k n}\right) \int_{R}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{(r-l) p} d n .
\end{align*}
$$

Here if $(r-l) p<-1$,

$$
\left|I_{k n}\right|^{-1} \int_{\mathbb{R}}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{(r-l) p} d x=\int_{\mathbb{R}}(1+|u|)^{(r-l) p} d u=C_{3}<\infty
$$

So

$$
\begin{gathered}
\int_{\mathbf{R}}\left(\left|L_{n}[f]-P_{n}[f]\right| W\right)^{p} \\
\leq C_{4} \sum_{k=-1}^{n-1} \Omega_{r, p}^{p}\left(f_{\mathrm{r}}\left|I_{k n}^{*}\right|, I_{k n}^{*}\right) W^{p}\left(\tau_{k n}\right)
\end{gathered}
$$

This is the same as our sum in (7.40) except for the term for $k=-1$. So the est . ate (7.40) gives the estimate (7.42), keeping in mind our choice of $\Omega_{r ; p}\left(f,\left|I_{-1, n}^{*}\right|, I_{-1, n}^{*}\right)$.
(II) $1 \leq p<\infty$

From (7.43), (7.45) and then Hölder's inequality,

$$
\left\{\mid L_{n}[f]-P_{n}[f| |(x) W(x)\}^{p}\right.
$$

$$
\begin{align*}
& \leq C\left\{\sum_{k=-1}^{n-1}\left|I_{k n}\right|^{-1 / p}\left(1+\frac{\left|-T_{k n}\right|}{\left[I_{k n}\right]}\right)^{r-1} \Omega_{r p}\left(f_{1}\left|X_{k n}^{*}\right|, I_{k n n}^{n}\right) W\left(\tau_{k n}\right)\right\}^{p} \\
& \leq C \sum_{k=-1}^{n} \left\lvert\, I_{k n}\left(1+\frac{1 x^{-1}-T_{k n}}{1 I_{k n}}\right)^{(r-l) p / 2} \Omega_{q, p}^{p}\left(f,\left.\right|_{k n} ^{*} \mid, I_{k n}^{*}\right) W^{p}\left(T_{k n}\right) \cdot S_{n}(s)^{p / q}\right. \tag{7.47}
\end{align*}
$$

where $q=p /(p-1)$ and

$$
S_{n}(x)=\sum_{k=1}^{n}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}(r-1) q / 2 .\right.
$$

We shall show that if $(r-l) q / 2<-1$, then

$$
\begin{equation*}
\sup _{n \geq 1} \sup _{x \in \mathbb{R}} S_{n}(x) \leq C_{1}<\infty \tag{7.48}
\end{equation*}
$$

Note tirat $S_{n}(x)$ is a decreasing function of x for $x \geq a_{n}=\tau_{n n}$, so it suffices to consider $a \in[0, a n$, Recall that

$$
\left|I_{k n}\right| \sim\left|I_{k+1, n}\right| \sim \frac{a_{n}}{n} \sqrt{1-\frac{\left|\tau_{k n}\right|}{a_{2 n}}}
$$

It is then not diffictlt to see that

$$
\begin{aligned}
& S_{n}(x) \leq C_{2} \frac{n}{a_{n}} \int_{-a_{n}}^{a_{n}}\left(1+\frac{n}{a_{n}} \frac{|x-u|}{\sqrt{1-\frac{|u|}{a_{2 n}}}}\right)^{(r-1) q / 2} \frac{d u}{\sqrt{1-\frac{|u|}{a_{2 n}}}} \\
& \therefore \quad \leq C_{3} n \int_{-1}^{1}\left(1+n \frac{|\bar{x}-s|}{\sqrt{1}-s}\right)^{(r-l) q / 2} \frac{d s}{\sqrt{1-s}}
\end{aligned}
$$

where $\bar{z}:=x / a_{2 n}$, so that

$$
1-\bar{x} \geq 1-a_{n} / a_{2 n} \geq C_{4} T\left(a_{n}\right)^{-1} \geq C_{5} n^{-2}
$$

We make the substitution $(1-s)=(1-\bar{x}) w$ to obtain

$$
\begin{aligned}
S_{n}(x) \leq & C_{3} n \sqrt{1-\bar{x}} \int_{0}^{\frac{3}{1-\overline{\bar{x}}}}\left(1+n \sqrt{1-\bar{x}} \frac{|w-1|}{\sqrt{w}}\right)^{(r-l) q / 2} \frac{d w}{\sqrt{w}} \\
& \leq C_{4} n \sqrt{1-\bar{x}} \iint_{0}^{1 / 2}\left[1+\frac{n \sqrt{1-\overline{\bar{x}}}}{\sqrt{w}}\right]^{(r-l) q / 2} \frac{d w}{\sqrt{w}}
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{1 / 2}^{3 / 2}\left[1+n \sqrt{1-\pi}|w-1|\left(\frac{1}{(r-n) q / 2} d w\right.\right. \\
& \left.+\int_{3 / 2}^{2 /(1-x)}[1+n \sqrt{(1-\bar{x}) w}]^{(r-l / g / 2} \frac{d w}{\sqrt{w}}\right\}
\end{aligned}
$$

(We can omit the third integral if $2 /(1-\bar{x}) \leq 3 / 2$)
We now make the substitutions $w=n^{2}(1-\bar{x}) v$ in the first integral, $v=n \sqrt{1-\bar{x}}(w-1)$ in the second integra, and $v=n^{2}(1-x) w$ in the third integral. It is then not difficult to see that the resulting terms are bounded independent of n and x if l is large enough, So we have (7.48). Then, fintegrating (7.47) and using (7.40) gives our result.
(III) $p=\infty$

Now

$$
\begin{aligned}
& \left|L_{n}\left[f,-P_{n} \mid f\right]\right|(x) \leq C \sum_{k=0}^{n-1}\left|p_{k}-p_{k-1}\right|(x)\left|\theta_{k n}-R_{n, \tau_{k n}}\right|(x) W(a) \\
& \leq C \operatorname{maxi}_{-k \leq n-1} \Omega_{r, p}\left(f,\left|I_{k n}^{*}\right|, I_{k n}^{*}\right) W\left(\tau_{k n}\right) \cdot \sum_{k=0}^{n-1}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{(r-l)}
\end{aligned}
$$

As before, the sum is bounded if l is large enough. Then we can continue this as

$$
\begin{aligned}
& \leq C_{1}\left\{\sup _{0 \leq k \leq \imath-1} \sup _{0<h \leq\left|I_{k n}\right|}\left\|\Delta_{h}^{r}\left(f, x, I_{k n}^{*}\right) W\right\|_{L_{\infty}\left(I_{k n}^{*}\right)}+\|f W\|_{L_{\infty}\left(I_{0 n}\right)}\right\} \\
& \leq C_{2}\left\{\sup _{0 \leq k \leq n-1} \sup _{0<h \leq C_{n} / n}\left\|\Delta_{h \Phi_{n}(x)}^{r}\left(f_{1} x, I_{k n}^{*}\right) W\right\|_{L_{\infty}\left(I_{k n}^{*}\right)}+\|f W\|_{X_{\infty}\left(I_{0 n}^{*}\right)}\right\} \\
& \left.\leq C_{3} \sup _{0<h \leq \mathrm{Ca}_{n} / n}\left\|\Delta_{h \Psi_{n}(x)}^{r}(f, x, \mathrm{R}) W\right\|_{L_{\infty}\left(-a_{a_{1}} a_{n}\right)}+\|f W\|_{L_{o n}\left(I_{0_{n}}^{*}\right)}\right) .
\end{aligned}
$$

We can now turn to:

The Proof of Theorem 5.1.3. Now recall that $R_{n, \tau}$ has degree at most $21 J n$, where J is as in the proof of Theorem 7.1.3. So $P_{n}[f]$ has degree at most $2 l J n+r$. So, if $M: 3 l J$, we have for large n,

$$
E_{M_{n}}[f] w_{w, p} \leq\left\|\left(f-P_{n}[f]\right) W \cdot\right\| L_{p}(\mathbb{R})
$$

$$
\begin{align*}
& \leq\left\{\left\|\left(f-L_{n}[f]\right) W\right\| L_{p}(\mathbb{R})+\|\left(L_{n}[f]-P_{n}[f]\right) W \mid L_{p}(\mathbb{R})\right\} \\
& \leq C_{1}\left\{\left[\frac{n}{a_{n}} \int_{0}^{C_{2} \frac{a_{n}}{n}}\left\|W \Delta_{n \mathbb{U}_{n}(x)}^{r}(f, x, \mathbb{R})\right\|_{L_{p}\left[-a_{n} ; a_{n}\right]}^{p_{n}} d h\right]^{\frac{p}{P}}\right. \\
& \therefore \quad+\|f W\|_{\left.\left.L_{p}\left(|n| \geq a_{n}\left(1-O_{2}\left[n T\left(a_{n}\right)\right)^{1 / 2}-1\right)\right)\right\}\right\}} \tag{7.49}
\end{align*}
$$

Here we have used Lemmas 7.1.6 and 7.1.7, and also (7.27), which implies that

$$
\left|I_{0 n}^{n}\right| \sim \frac{a_{n}}{n} \sqrt{1-\frac{a_{n}}{a_{2 n}}} \sim \frac{a_{n}}{n} T\left(a_{n}\right)^{-1 / 2}
$$

Next for

$$
\begin{equation*}
M n \leq j \leq M(n+1) \tag{7.50}
\end{equation*}
$$

we write

$$
n=\kappa j,
$$

where $\kappa=k(j, n)$. Note that

$$
\begin{equation*}
\kappa=\frac{n}{j} \rightarrow \frac{1}{M}, j \rightarrow \infty \tag{7.51}
\end{equation*}
$$

We set

$$
t:=t(j):=\frac{M a_{j}}{3 j}
$$

Note that then

$$
\begin{equation*}
\frac{t}{a_{n} / n}=\frac{1}{3} \frac{\dot{M n}}{j} \frac{a_{j}}{a_{n}}=\frac{1}{3}(1+o(1)), n \rightarrow \infty \tag{7.52}
\end{equation*}
$$

Let $\beta>3$. We claim that for large enough n,

$$
\begin{equation*}
a_{n}\left(1-C_{2}\left[n T\left(a_{n}\right)^{1 / 2}\right]^{-1}\right) \geq \sigma(\beta t) \tag{7.53}
\end{equation*}
$$

To see this, note from (6.9) that

$$
\left[n T\left(a_{n}\right)^{1 / 2}\right]^{-1}=o\left(T\left(a_{n}\right)^{-1}\right)
$$

so that by (6.7), if $1>\alpha>3 / \beta_{1}$

$$
\begin{aligned}
& a_{n}\left(1-C_{2}\left[n T\left(a_{n}\right)^{1 / 2}\right]^{-1}\right) \geq a_{n i}\left(1-o\left(\frac{1}{T\left(a_{n}\right)}\right) \geq a_{\alpha n}\right. \\
& \quad \geq \sigma\left(\frac{a_{\alpha n}}{\alpha n}\right)=\sigma\left(\frac{3 t}{\alpha}[1+o(1)]\right) \geq \sigma(\beta t)
\end{aligned}
$$

for large enough j, by first (6.28) and then (7.52). Next, we claim that if $0<\gamma<3$, then for n large enough,

$$
\begin{equation*}
a_{n} \leq \sigma(\gamma t) \tag{7.54}
\end{equation*}
$$

To see this, note that by $(7,52)$ if $1<\delta<3 / \gamma$

$$
\sigma(\gamma t)=\sigma\left(\frac{\gamma a_{n}}{3 n}[1+o(1)]\right) \geq \sigma\left(\frac{a_{\delta n}}{\delta n}\right)=a_{\delta n(1+o(1))} \geq a_{n}
$$

Here we also used the fact that σ is decreasing, and also (6.28), (6.29) with n large enough. Since also $2 t \leq a_{n} / n \leq 4 t$ for large enough n, (see (7.52)) we can recast (7.49) as

$$
E_{j}[f]_{W_{*} p} \leq E_{M n}[f] W_{i p}
$$

$$
\begin{align*}
& \leq C_{1}\left\{\left[\frac{1}{2 t} \int_{0}^{C A t}\left\|W \Delta_{h \Psi_{n}(n)}^{r}\left(f_{1} x, \mathbb{R}\right)\right\|_{\left.L_{p}| || | \leq \sigma(2 k)\right]} d h^{\frac{1}{p}}\right.\right. \\
& +\|f W\|_{\left.L_{p}(|x| \geq \sigma(4 t))\right\}} \tag{7.55}
\end{align*}
$$

Now we choose $b_{1}:=h /(4 C)$ and $\Psi_{n}:=\Phi_{t} /(4 C)$ so that $h \Psi_{n}=h_{1} \Phi_{t}$. We must show that (7.33) holds with constants independent of j and n, that is

$$
(4 C)^{-1} \Phi_{t}(x) \sim \sqrt{1-\frac{|x|}{a_{2 n}}}|x| \leq a_{n}
$$

But for this range of x,

$$
\sqrt{1-\frac{|x|}{a_{2 n}}} \sim \sqrt{1-\frac{|x|}{a_{2 n}}}+T\left(a_{2 n}\right)^{-1 / 2} \sim \Phi_{\frac{a_{2 n}}{2 n}}(x) \sim \dot{\Phi}_{t}(x)
$$

by (6.33) and (6.34). Then, with a suitable choice of $P_{0} \in \mathcal{P}_{r-1}$, we have using

$$
\Delta_{h_{1}} C(x)(P, x, \mathbb{R})=0
$$

that

$$
\begin{aligned}
& E_{j}[f] W_{p}=E_{j}\left[f-P_{0}\right]_{W_{j}} \\
& \leq C_{3}\left[\frac{1}{t} \int_{0}^{t}\left\|W \Delta_{h_{1} \Phi_{1}(x)}^{r}\left(f-P_{0}, x, \mathbb{R}\right)\right\|_{\left.L_{p}|x| \leq \sigma(2 t)\right]}^{p} d h_{1}\right]^{\frac{1}{p}} \\
& \left.+\left\|\left(f-P_{0}\right) W\right\| L_{y}(|x| \geq o(4))\right\} \\
& \leq 2 C_{8}\left[\frac{1}{t} \int_{0}^{t}\left\|W \Delta_{L_{1} \Phi_{t}(x)}^{T}(f, x, R)\right\|_{L_{p}[(x) \leq 0(2 t)]}^{p} d h_{1}\right]^{\frac{1}{p}} . \\
& \left.+\inf _{\inf _{r-1}}\|(f-P) W\|_{L_{f}(|x| \geq \sigma(4))}\right\} \\
& =2 C_{3} \omega_{r, p}(f, W, t)=2 C_{3} \bar{\omega}_{r, p}\left(f, W, \frac{M a_{j}}{3 j}\right) \square
\end{aligned}
$$

The Proof of Theorem 5.1.4,
Obviously (5.14) implies (5.13). The only difference to the above proof is that we choose

$$
t_{1}:=\rho t:=\rho \frac{M a_{j}}{3 j}
$$

to replace t above. Then from (7.52),

$$
-\frac{t_{1}}{a_{n} / n}=\frac{\rho}{3}(1+o(1))
$$

and here $\frac{\rho}{3} \in\left[\frac{4}{15}, \frac{1}{3}\right]$. Then as $4 \rho>3,(7.53)$ above shows that

$$
a_{n}\left(1-C_{2}\left[n T\left(a_{n}\right)^{1 / 2}\right]^{-1}\right) \geq \sigma(4 \rho t)=\sigma\left(4 t_{1}\right)
$$

and as $\rho \leq 1,(7,54)$ above shows that

$$
a_{n} \leq \sigma(2 p t)=\sigma\left(2 t_{1}\right)
$$

Moreover, $a_{n} / n \leq 3 t \leq 4 t_{1}$ and $\frac{a_{n}}{n} \geq 2 t=\frac{2 t_{1}}{\rho} \geq 2 t_{1}$. Choosing $h_{1}:=h /(4 C)$ and $\Psi_{n}(x)=$ $\Phi_{t_{1}}(x) /(4 C)$, we note that $(7,33)$ holds uniformly in ρ. We proceed as before to obtain

$$
E_{j}[f] W_{p} \leq C_{1} \bar{W}_{r, p}\left(f, W, C_{2} \frac{\rho a_{j}}{j}\right)
$$

with constants Independent of ρ, f, j,

7.4. The Proof of Theorem 5.1.5

We tury to the proof of Theorem 5.1,5. We provide full proofs only where the details are significantly different; and otherwise refer back. We begin with an analogue of Lemma 7.1.6 for $I_{n}[f]$ of (7.32).

Lemma 7.1.8

$$
\begin{aligned}
& \left\|\left(f-L_{n}[f]\right) W\right\|_{L_{p}(\mathbb{R})} \leq
\end{aligned}
$$

Here L is independent of f, n.
Proof
We do this for $p<\infty$. Recall that the crux of Lemma 7.1.6 is estimation of

$$
\Delta_{j n}:=\int_{I_{j n}}\left|f-p_{j}\right|^{p} W^{p} \leq C_{1} \Omega_{r, p}\left(f,\left|I_{j n}^{*}\right|, I_{j n}^{*}\right)^{p} W^{p}\left(r_{j n}\right)
$$

We now choose $L>0$ such that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} \frac{h_{L} \Phi_{h}(x)}{h \Phi_{h}(x)} \leq \frac{1}{2} \tag{7.58}
\end{equation*}
$$

This is possible by (6.40). Now we choose

$$
\delta_{n, k}(x)=L^{1-k} \frac{a_{3 n}}{3 n} \Phi_{L i-k a_{3 n}}(x), k \geq 1
$$

Note that by (7.58),

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} \frac{\delta_{n, k+1}(x)}{\delta_{n, k}(x)} \leq \frac{1}{2} \tag{7.59}
\end{equation*}
$$

In view of $(7.27),(6.33)$ and (6.34), we may assume that L is so large that uniformly in n, $y, x \in I$

$$
\left|I_{j n}^{*}\right| \leq L \frac{a_{3 n}}{3 n} \Phi \varphi_{\frac{a n}{3 n}}(x)=L \delta_{n_{1} 1}(x) ;\left|I_{j n}^{*}\right| \sim \delta_{n_{1}, 1}(x) .
$$

Then from (7.57),

$$
\begin{aligned}
& \Delta_{j n} \leq C_{4} \int_{r_{j n}^{*}} \int_{0}^{L \delta_{n, 1}(x)} \frac{1}{\delta_{n, 1}(x)}\left|W \Delta_{s}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d s d x \\
& =C_{4} \int_{y_{j n}} \sum_{k=1}^{\infty} \int_{L \delta_{n, k+1}(2)}^{L \delta_{n, k}(())} \frac{1}{\delta_{n,!}(x)}\left|W \Delta_{s}^{r}\left(f, x_{1} I_{j n}^{m}\right)\right|^{p} d s d x \\
& =C_{4} \int_{I_{j n}^{\prime}} \sum_{k=1}^{\infty} \int_{L \delta_{n, k+1}(x) / \delta_{n, k}(x)}^{L} \frac{\delta_{n, k}(x)}{\delta_{n, 1}(x)}\left|W \Delta_{\tau \delta_{n+k}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d r d x \\
& \leq C_{4} \int_{r_{j n}^{r}} \sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k-1} \int_{0}^{L}\left|W \Delta_{r \delta_{n, k}(w)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d \tau d x .
\end{aligned}
$$

Then

$$
\begin{gathered}
\sum_{j=0}^{n-1} \Delta_{j n} \leq C_{4} \int_{-a_{n}}^{a_{n}} \sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k-1} \int_{0}^{L}\left|W \Delta_{t \delta_{n, h}(x)}^{r}(f, x, \mathbb{R})\right|^{p} d \tau d x \\
\quad \leq 2 C C_{4} \sup _{\substack{0<h_{3} \leq a_{3 n} /(3 n) \\
0 \ll \leq L}} \int_{-a_{n}}^{a_{n}}\left|W \Delta_{\tau h \Phi_{h}(x)}^{r}(f, x, \mathbb{R})\right|^{p} d x
\end{gathered}
$$

The rest of the proof is as before.

The andlogue of Lemma 7.1 .7 is

Lemma 7.1.0

$$
\bigcirc
$$

Rroof
This is exactly the same as the proof of Lemma 7.1.7, except that we substitute for (7.40) the estimate of Lemma $71,8.0$

Proof of Theorem 5.1.5.

This follows from Lemma 7.1.8 and 7.1.9 exactly as Theorem 5.1 .3 followed from Lemma 7.1.6 and 7.1.7.

7.5 The Proof of Theorem 5.1.6

Using (5.18) and the methods of proof of Lemma 2.2 in [26,p.209], we obtain

$$
\begin{equation*}
\frac{a_{u}^{\prime}}{a_{u}} \sim \frac{1}{u T\left(a_{u}\right)}, u \geq C_{2} \tag{7.60}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{d}{d u}\left(\frac{a_{u}}{u}\right) \sim-\frac{a_{u}}{u^{2}}, u \geq C_{2} . \tag{7.61}
\end{equation*}
$$

Since $u \rightarrow \frac{n_{u}}{u}$ is then strictly decreasing for large u, we obtain the identity

$$
\begin{equation*}
\sigma\left(\frac{a_{u}}{u}\right)=a_{u}, u \geq C_{3} \tag{7.62}
\end{equation*}
$$

$$
\begin{aligned}
& \left\|\left(U_{n}[f]-P_{n}[f]\right) W\right\|_{L_{p}(\mathbb{R})}
\end{aligned}
$$

Differentiating this, and using (7.60); (7.61) leads to

$$
\begin{equation*}
\sigma^{\prime}(t) \quad-\quad \frac{1}{\sigma(t)}, 0<t \leq C_{4} \tag{7.63}
\end{equation*}
$$

and then using (5,19), we obitain

$$
\begin{equation*}
\left\lvert\, \frac{d}{d t} T(\sigma(t)) \leq C_{5} T(a(t))\right., 0<t \leq C_{4} \tag{7,64}
\end{equation*}
$$

These last two bounds easily give

$$
\begin{equation*}
\left|\frac{d}{d t}\left[t \Phi_{t}(x)\right]\right| \leq C_{5} \Phi_{t}(x) \tag{7.65}
\end{equation*}
$$

for

$$
\begin{equation*}
0<t \leq C_{5}\left|1-\frac{|x|}{\sigma(t)}\right| \geq \frac{\varepsilon}{T(\sigma(t))} \tag{7.66}
\end{equation*}
$$

Here $\&$ is any fixed positive number. We now estimate $\Delta_{j n}$ a little differently from the way We proceeded after (7:57). Let us make the substitution $s=L t \Phi_{t}(x)$ in the right-hand side of (257) and keep our choice of $L, \delta_{n, 1}(x)$ to deduce that

$$
\begin{aligned}
& \Delta_{i n} \leq C_{6} \int_{I_{j n}^{*}} \int_{0}^{a_{3 n} /(3 n)} \frac{1}{\delta_{n, 1}(x)}\left|W \Delta_{L t \Phi_{t}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p}\left|\frac{d}{d t}\left[t \Phi_{t}(x)\right]\right| d t d x \\
& \because \leq \frac{C_{7} 3 n}{a_{3 n}} \int_{r_{j n}^{*}} \int_{0}^{a_{3 n} /(3 n)} \sqrt{\log \left(2+\frac{a_{3 n}}{3 n t}\right)}\left|W \Delta_{t \Phi_{t}(x)}^{r}\left(f, x, Y_{j n}^{*}\right)\right|^{p} d t d x
\end{aligned}
$$

by (7.65) and (6.40). In applying (7.65), we must ensure that the range conditions in (7.66) must hold for $x \in I_{j n}^{*}$ and $t \leq a_{3 n} /(3 n)$. In fact if $|x| \leq a_{n}$, then

$$
\begin{aligned}
& 1-\frac{|x|}{\sigma(t)} \geq 1-\frac{a_{n}}{\sigma\left(a_{3 n} /(3 n)\right)} \geq 1-\frac{a_{n}}{a_{3 n(1+o(1))}} \\
& \geq C_{8} T\left(a_{n}\right)^{-1} \geq C_{8} T(\sigma(t))^{-1}
\end{aligned}
$$

by (6.28), (6.29), then (6.7) and then (6.6)(i), Thus,

$$
\sum_{j=0}^{n-1} \Delta_{j n}
$$

$$
\begin{aligned}
& \leq \frac{C_{8} 3 n}{a_{3 n}} \int_{-a_{n}}^{a_{n}} \int_{0}^{a_{n} /(o n)} \sqrt{\log \left(2+\frac{a_{3 n}}{3 n t}\right)}\left|W \Delta_{L\left(\phi_{t}(x)\right.}^{r}(f, x, \mathbb{R})\right| p d t d x \\
& \leq\left. C_{8} \sup _{0<\leq \operatorname{sum}_{3} /(3 n)} \int_{-a_{n}}^{a_{n}} W \Delta_{t \mid \phi_{1}((x)}^{r}(f, x, \mathbb{R})\right|^{p} d x \int_{0}^{1} \sqrt{\log \left(2+\frac{1}{s}\right) d s .}
\end{aligned}
$$

So under the additional conditions on Q we obtain

$$
\begin{equation*}
E_{n}[f] w_{p} \leq C_{q} w_{p p}^{H}\left(f_{1}, W_{1} C_{10} \frac{a_{n}}{n}\right) . \square \tag{7.67}
\end{equation*}
$$

Chapter 8

The Equivalence Theorem

\& 1 A Crucial Inequality

In this section, we obtain a crucial inequality introduced in a similar context in [11], in order to obtain an upper bound for our modulus in terms of our realisation-functional. The main idea is to approximate polynomials of degree $\leq n$ by polynomials of degree $\leq r-1$. Here $n \geq n_{0}$ and $r \geq 1$.

We prove:
Theorem 8.1.1. Let $W \in \mathcal{E}_{1}$ and assume (5.27), Let $r \geq 1, L>0,0<p \leq \infty ; P_{n} \in$ \mathcal{P}_{n} and $n \geq$ G. Set

$$
\begin{equation*}
P(x):=P_{n}(x)-\int_{a_{L n}}^{x} \int_{a_{L n}}^{u_{r-1}} \cdots \int_{a_{L n}}^{u_{1}} P_{n}^{(r)}\left(u_{o}\right) d u_{o} \ldots d u_{r-1} \in \mathcal{P}_{r-1} \tag{8.1}
\end{equation*}
$$

Then, $\exists G_{1}>0, C_{1} \neq C_{1}\left(n_{1}, P_{n}, P\right)$ such that

$$
\begin{equation*}
\left\|W\left(P_{n}-P\right)\right\|_{L_{P}\left[a_{L n}, \infty\right)} \leq C_{1}\left(\frac{a_{n}}{n}\right)^{r}\left\|W P_{n}^{(r)} \Phi_{\frac{a_{n}}{n}}^{n}\right\|_{\left.L_{P(\mathbb{R}}\right)} \tag{8.2}
\end{equation*}
$$

We break the proof down into several steps. We begin with:
Lemma 8.1.2. Let $W \in \mathcal{E}_{1}, 1 \leq \mu \leq \infty$. Then for $n \geq C$ and $\forall g \in \dot{L}_{p}\left[a_{L n}, \infty\right), \exists C_{1}>$
$0 \subset \neq C_{1}(0, n)$ such that

$$
\begin{equation*}
\left.\left\|(x) \int_{a_{L n}}^{\infty} g(v) d u\right\|_{L_{p}(0, n, \infty)} \leq \frac{a_{n}}{n T\left(n_{n}\right)^{\frac{1}{2}}}\|g W\|_{L_{p}\left[a a_{n}, \infty\right)}\right) \tag{8.3}
\end{equation*}
$$

Proof. We notice that

$$
\begin{align*}
& W(x)^{\frac{1}{2}} \int_{t} W(u)^{-\frac{1}{2}} Q^{\prime}(u) d u \tag{8.4}\\
& =\left[1-\left[\frac{W(x)}{W(t)}\right]^{\frac{1}{2}}\right] \leq 2
\end{align*}
$$

as $t \leq$?
Next, notice that for $u \geq \operatorname{Limy}_{n}$ and n large enough, we have by Lemma 6.1.2

$$
\begin{equation*}
Q^{\prime}(u) \geq C Q^{\prime}\left(a_{m n}\right) \sim \frac{n T\left(a_{n}\right)^{\frac{1}{2}}}{a_{n}} \tag{8.5}
\end{equation*}
$$

so that for $\mathrm{t} \geq a_{L n}$

$$
\begin{align*}
& \therefore \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}} W(x)^{\frac{1}{2}} \int_{a_{L n}}^{T}|g W(u)| Q^{\prime}(u) W^{-\frac{1}{2}}(u) d u \tag{8.6}\\
& \geq C_{1} W(x)^{\frac{1}{2}} \int_{a_{L n}}^{x}\left|g W(u)^{\frac{1}{2}}\right| d u \geq W(x)\left|\int_{a_{L_{n}}}^{x} g(u) d u\right| .
\end{align*}
$$

Now recalling Jensen's. Inequality for integrals

$$
\left|\int f d \mu\right|^{p} \leq\left(\int|f|^{p} d \mu\right)\left(\int d \mu\right)^{p-1}
$$

valid for μ measurable functions f and non negative measures μ, gives:
Case 1. $p=\infty$. Here (8.6) gives for $x \geq a_{L_{n}}$

$$
\begin{aligned}
W(x)\left|\int_{a_{L_{n}}}^{x} g(u) d u\right| & \leq \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}} W(x)^{\frac{1}{2}}\|g W\|_{L_{\infty}\left[a_{L n}, \infty\right)} \int_{a_{L n}}^{x} Q^{\prime}(u) W^{-\frac{1}{2}}(u) d u \\
& \leq C_{2} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\|g W\|_{L_{\infty}\left[a_{L_{n}, \infty}, \infty\right.} \text { (by (8.4)). }
\end{aligned}
$$

Case $2.1 \leq p<\infty$. Here

$$
\begin{aligned}
& \left\|W(u) \int_{a_{L n}}^{x} g(u) d u\right\| \|_{L_{p}\left(a L_{n}, \infty\right)} \\
& \leq \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left[\int_{L_{n}}^{\infty}\left[W(x)^{\frac{1}{2}} \int_{n L_{n}}^{x}|g W(u)| Q^{\prime}(u) W^{-\frac{1}{2}}(u) d u\right]^{p} d x\right]^{\frac{1}{p}} \\
& \leq C_{3} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left[\int_{a_{L n}}^{\infty} 2^{p-1} W(x)^{\frac{1}{2}} \int_{a_{L n}}^{n}|g W(u)|^{p} Q^{\prime}(u) W^{-\frac{1}{2}}(u) d u d x\right]^{\frac{1}{p}}
\end{aligned}
$$

by Jensens Inequality, with $d \mu=W(x)^{\frac{1}{2}} Q^{\prime}(u)^{\prime}(u)^{-\frac{1}{2}}$ on $\left[a_{L n}, x\right]$ and $\int d \mu \leq 2$ (see (8.4)).
Then

$$
\begin{aligned}
& \quad \int_{a_{L n}}^{\infty} W(x)^{\frac{1}{2}} \int_{u_{\text {Ln }}}^{x}|g W(u)|^{p} Q^{\prime}(u) W^{\frac{1}{2}}(u) d u d x \\
& =\int_{a_{L}}^{\infty}|g W(u)|^{p}\left[\int_{u}^{\infty} W(x)^{\frac{1}{2}} Q^{\prime}(u) d x\right] W^{-\frac{1}{2}}(u) d u \\
& \leq C_{4} \int_{n_{L_{n}}}^{\infty}|g W(u)|^{p}\left[\int_{u}^{\infty} W(x)^{\frac{1}{2}} Q^{\prime}(x) d x\right] W^{-\frac{1}{2}}(u) d u(\text { as } x>u) \\
& \leq C_{5}\|g W \mid\|_{L_{p}\left[a_{L n}, \infty\right)}^{p}
\end{aligned}
$$

We are now in the position to give

The Proof of Theorem 8.1.1 for $I \leq p \leq \infty$.
We will repeatedly make use of (6,35) :

$$
\begin{equation*}
\Phi_{\frac{a_{n}}{n}}(x) \geq C T\left(a_{n}\right)^{-\frac{1}{2}}, \quad \forall x \in \mathbb{R} . \tag{8.7}
\end{equation*}
$$

Firstly if $r=1_{1}$ Lemma 8.1.2 with $g=P_{n}^{\prime}$ gives

$$
\begin{aligned}
\left\|W(x) \int_{a_{L_{n}}}^{x} P_{n}^{\prime}\left(u_{a}\right) d u_{o}\right\|_{L_{p}\left[a_{L_{n}, \infty}\right)} & \leq C_{1} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left\|P_{n}^{\prime} W\right\|_{L_{p}(\mathbb{R})} \\
& \leq C_{2} \frac{a_{n}}{n}\left\|P_{n}^{\prime} \Phi_{\frac{a_{n}}{n}}(x) W\right\|_{L_{p}(\mathbb{R})}(\text { by }(8.7))
\end{aligned}
$$

Now apply (8.1), If $r=2$, we apply Łemma 8.1.2 with

$$
g\left(u_{1}\right)=\int_{a_{n L}}^{u_{1}} P^{(2)}\left(u_{o}\right) d u_{o}
$$

to give

$$
\begin{aligned}
& \left\|W(a) \int_{u_{L \mathrm{~m}}}^{x} \int_{a_{L \mathrm{~m}}}^{u_{1}} P_{n}^{(2)}\left(u_{o}\right) d u_{0} d u_{\mathrm{L}}\right\|_{L_{p}\left(a_{L n}, \infty\right)} \\
& =\left\|W(v) \int_{a_{L n}}^{\infty} g\left(u_{1}\right) d u_{1}\right\|_{L_{p}\left(a_{n}, \infty\right)} \leq C_{3} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\|g W\|_{L_{p}\left[L_{L n, \infty}\right)} \\
& =C_{3} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left\|W \int_{a_{n 2}}^{u_{1}} P_{n}^{(2)}\left(u_{o}\right) d u_{o}\right\|_{L_{p}\left(a_{L n}, \infty\right)} \\
& \leq C_{4}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{2}\left\|P_{n}^{(2)} W\right\|_{L_{p}(\mathbb{R})} \leq C_{5}\left(\frac{a_{n}}{n}\right)^{2}\left\|P_{n}^{(2)} \Phi_{\frac{a_{n}}{n}}(n) W\right\|_{L_{p}(\mathbb{R})}
\end{aligned}
$$

Applying now (8,1), and an induction argument on r gives the result.
We now tackle the more complicated case, $0<p<1$. For this case we need two lemmas.
Lemma 8.1.3. Let $W \in \mathcal{E}_{1}$ and assume (5.27), Let $0<p<1, r \geq 1, R_{n} \in \mathcal{P}_{\pi}, R \in$ P_{r-1} and $n \geq C_{6}$ Set for $\pi \in R_{\text {, }}$ and $L>0$

$$
\begin{gather*}
g_{n}(x):=\left(R_{n}-R\right)(x) \\
J_{n}(x)=\left\|\left|g_{n}^{\prime} W(u)\right|^{1-p}\left(\frac{W(x)}{W(u)}\right)^{\frac{1}{2}}\right\|_{L_{\infty}[n, n, x]}^{\frac{p}{1-p}} . \tag{S.8}
\end{gather*}
$$

and

Then

$$
\begin{align*}
& \int_{a_{L n}}^{\infty} J_{n}(x) d x \leq C_{1}\left[\sum_{j=1}^{r-1}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(j-1) p}\left\|W\left(R_{n}^{(j)}-R^{(j)}\right)\right\|_{L_{\infty}\left[a_{\left.L_{n}, \infty\right)}\right.}^{p}\right. \tag{8.9}\\
& \left.\therefore \quad+\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(r-1) p}\left\|W R_{n}^{(r)}\right\|_{L_{\infty}(\mathbb{R})}^{p}\right] .
\end{align*}
$$

Here $C_{1} \neq C_{1}\left(n, R_{4}, R\right)$.
Proof. Write

$$
J_{n}(x)=\left\|\left|g_{n}^{\prime} W(u)\right|^{p}\left(\frac{W(x)}{W(u)}\right)^{\frac{s}{2(I-p)}}\right\|_{L_{\infty}\left[a L_{n}, x\right]}
$$

and set

$$
\tau=\frac{\delta a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}
$$

where $\delta>0$ Is chosen small enough so that for $n \geq 1$ and $\forall S \in \mathcal{P}_{n}$

$$
\begin{equation*}
\left\|S^{\prime} W\right\|_{L_{P}(\mathbb{R})} \leq\left(2 \delta^{-1}\right) \frac{n T\left(a_{n}\right)^{\frac{1}{2}}}{a_{n}}\|S W\| \|_{\chi_{P}(\mathbb{R})} \tag{8.10}
\end{equation*}
$$

(See (5.27) and (6.35))
Now given $x \geq a_{L n}$, we set

$$
\left.k_{o}=k_{\sigma}, r\right)=\max \left\{k_{0} x-(k+1) \tau \geq a_{L n}\right\}
$$

and w
α_{8}

$$
\begin{align*}
& \quad d_{n}(x) \leq I_{1}+I_{2}, \\
& I_{1}=\max _{0 \leq \leq k_{o}}\left\|\left|g_{n}^{\prime} W\right|^{p}(u)\left(\frac{W(x)}{W(u)}\right)^{\frac{p}{(p-p)}}\right\|_{L_{\infty}[(\tau-(k+1) \tau, x-k \tau]} \tag{8.11}
\end{align*}
$$

where
and

$$
\begin{equation*}
I_{2}=\left\|\left|g_{n}^{t} W(u)\right|^{p}\left(\frac{W(x)}{W^{\prime}(u)}\right)^{\frac{p}{3(1-p)}}\right\|_{L_{\infty}\left[a_{L n}, z-\left(k_{0}+1\right) \tau\right]} \tag{8.12}
\end{equation*}
$$

First we observe that for $u \in[x-(k+1) \tau, x-k \tau]$

$$
\frac{W(x)}{W(u)} \leq \exp (Q(x-k \tau)-Q(x))
$$

Further, as $x-k \tau \geq a_{L m}>0$

$$
\begin{aligned}
Q(x)-Q(x-k r) & \geq C_{1} k \tau Q^{\prime}(x-k \tau) \geq C_{2} k \tau Q^{\prime}\left(a_{L n}\right) \geq C_{3}-\frac{v T(2}{a_{3} T} \frac{)^{\frac{1}{2}} \delta a_{n} k}{\left(a_{n}\right)^{\frac{1}{2}}} \\
& =C_{3} k \delta
\end{aligned}
$$

by (6.4). So

$$
\left(\frac{W(x)}{W(u)}\right)^{\frac{p}{2 t}} \quad \leq \alpha^{k}, u \in\left[x-(k+1) \tau_{1} x-k \tau\right]
$$

where $\alpha \in(0,1)$ is independent of $4, u, k$. Thus we may write

$$
\begin{aligned}
& I_{1}+I_{2} \leq \max _{\leq x_{0}} \alpha^{k}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}(m-(k+1) \tau, x-k \tau]}^{p} \\
& +\alpha^{k_{0}}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}\left[\alpha_{L_{n}}, x-\left(k_{o}+1\right)_{\pi}\right]}^{p} \\
& \leq \sum_{k=0}^{k_{o}(x)} \alpha^{k}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}[x-(k+1) \tau, x-k \tau]}^{p_{n}} \\
& { }^{\circ} \\
& +\alpha^{k_{0}}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}\left[\left[L_{n}+\pi-\left(k_{0}+1\right)+1\right]\right.}^{p}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \int_{\alpha_{1}}^{\infty} J_{n}(n) d x= \sum_{m=0}^{\infty} \int_{a_{L n}+m \tau}^{a_{L n}+(m+1) r} J_{n}(x) d x \\
& \leq \sum_{m=0}^{\infty} \int_{a_{L n}+m r}^{a_{L n}+(m+1) \tau}\left[\sum_{k=0}^{k_{o}(x)} \alpha^{k}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}[x-(k+1) \tau, x-k \tau]}^{p}\right. \\
&\left.+\alpha^{k_{0}}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}\left[a_{L n}, x-\left(k_{0}+1\right) \tau\right]}^{p} d x\right] .
\end{aligned}
$$

We observe that

$$
\int_{a_{L n}+m \tau}^{a a_{L n}+(m+1) \tau}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}[q-(k+1) \tau, x-k+]}^{p} d x=\int_{a_{L_{n}+}+(m-k-1) \tau}^{a_{L n}+(m-k) \tau}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}[x, x+\tau]}^{p} d x
$$

and since

$$
x \in\left[a_{L_{n}}+(m-k-1) \tau, a_{L_{m}}+(m-k) \tau\right] \Longrightarrow m \geq k_{o} \geq m-1,
$$

we have

$$
\begin{aligned}
& \int_{a_{L n}}^{\infty} J_{n}(x) d x \leq \\
& \sum_{m=0}^{\infty}\left[\sum_{k=0}^{m-1} \int_{a_{L n}+(m-k-1) \tau}^{a_{L n}+(m-k) \tau} \alpha^{k}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}[x, x+\tau]}^{p} d x\right. \\
&\left.+2 \alpha^{m-1} \int_{a_{L n}}^{a_{L n}+\tau}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}\left[a_{L n}, x\right]}^{p} d x\right]
\end{aligned}
$$

$$
\begin{aligned}
& +2 \int_{a L_{n}}^{a L_{n}+\tau}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}\left[a_{L n} \times 1\right.}^{p} \frac{1}{\alpha(1-\alpha)} d x \\
& \leq C_{4}\left[I_{3}+I_{4}\right] \text {. }
\end{aligned}
$$

Here

$$
\begin{equation*}
I_{3}:=\sum_{s=0}^{\infty} \int_{L_{L_{n}}+s \tau}^{a_{L_{n}}+(s+1) \tau}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}[x, \alpha+\tau]}^{p} d x \tag{8,13}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{4}=\int_{a_{L n}}^{a L_{n}+\tau}\left\|g_{n}^{\prime} W\right\|_{L_{\infty}\left[a_{L_{n}}, x\right]}^{p} d x \tag{8.14}
\end{equation*}
$$

We begin by estimating l_{3}. Observe that g_{n}^{\prime} is a polynomial of degree $\leq n-1$ in $u \in$ $[x, x+\varepsilon]$, so expanding it in a Tayor series about x gives

$$
\begin{aligned}
\left|g_{n}^{\prime}(u)\right|^{p} & =\left|\sum_{j=1}^{n} \frac{g_{n}^{(j)}(x)(u-x)^{j-1}}{(j-1)!}\right|^{p} \\
& \leq \sum_{j=1}^{n}\left|g_{n}^{(j)}(x)\right|^{p} \tau^{(j-1) p} \\
& \left.\quad \text { (by the inequality, }(a+b)^{\alpha} \leq a^{\alpha}+b^{\alpha}, 0<\alpha<1, a, b \in \mathbb{R}\right) \\
& \leq \sum_{j=1}^{r-1}\left|R_{n}^{(j)}(x)-R^{(j)}(x)\right|^{p} \tau^{(j-1) p}+\sum_{j=r}^{n}\left|R_{n}^{(j)}(x)\right|^{p} \tau^{(j-1) p} .
\end{aligned}
$$

Thus using

$$
\begin{equation*}
W(u) \leq W(x), u \in[x, x+\tau] \tag{8.15}
\end{equation*}
$$

the definition of τ and (8.10) gives

$$
\begin{aligned}
I_{s \leq} & C_{5}\left[\sum_{j=1}^{r-1}\left\|\left(R_{n}^{(j)}-R^{(j)}\right) W\right\|_{L_{p}\left[a_{L n}, \infty\right)}^{p} \tau^{(j-1) p}\right. \\
& \left.+\tau^{(r-1) p} \sum_{j=r}^{n}\left\|R_{n}^{(j)} W\right\|_{L_{p}\left[a_{L_{n}, \infty}\right)}^{p} \tau^{(j-r) p}\right]
\end{aligned}
$$

$$
\begin{align*}
& \leq C_{8}\left[\sum_{j=1}^{r-1}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(j-1) p}\left\|\left(R_{n}^{(j)}-R^{(j)}\right) W\right\|_{L_{p}\left[a_{L n}, \infty\right)}^{p}\right. \\
& \left.+r^{(r-1)_{p} p} \sum_{j=r}^{n}\left(\frac{\tau n T\left(a_{n}\right)^{\frac{1}{2}}}{2 \delta a_{n}}\right)^{(f-r) p}\left\|R_{n}^{(r)} W\right\|_{L_{p}(\mathbb{R})}^{p}\right] \\
& \leq C_{7}\left[\sum_{j=1}^{r-1}\left(\frac{a_{n}}{n T\left(n_{1}\right)^{\frac{1}{2}}}\right)^{(j-1) p}\left\|\left(R_{n}^{(j)}-R^{(j)}\right) W\right\|_{L_{p}\left[a_{L n}, \infty\right)}^{p}\right. \tag{8.16}\\
& \left.+\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(r-1) p}\left\|R_{n}^{(r)} W\right\|_{L_{p}\left(\mathbb{R}^{2}\right)}^{p}\right] .
\end{align*}
$$

To estimate I_{4} we proceed in a similar way to that of I_{3}, except that we use Jemma $6.1,7(b)$ instead of (8,15), which we may in view of the definition of $\tau,(6.7)$ and (6.9) , Combining our estimates for I_{3} and I_{4} give the lemma,

Lemma 8.1.4. Let $W \in \mathcal{E}_{1}$ and assume (5.27). Let $0<p<1, r \geq 1, L>0, R_{n} \in$ $\mathcal{P}_{n \mathrm{i}} R \in \mathcal{P}_{r-1}$ satisfying;

$$
\left(R_{n}-R\right)\left(a_{L n}\right)=0
$$

Then for $n \geq C$ there exists $C_{1} \neq C_{1}\left(n, R_{n}, R\right)$ such that

$$
\begin{align*}
& \left\|W\left(R_{n}-R\right)\right\|_{L_{p}}\left[a_{L n}, \infty\right) \\
\leq & C_{1}\left[\left[\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)\left\|W\left(R_{n}^{\prime}-R^{\prime}\right)\right\|_{L_{p}\left[a_{L n}, \infty\right)}^{p}\right]\right. \\
& \times\left[\sum_{j=1}^{r-1}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(j-1)(1-p)}\left\|\left(R_{n}^{(j)}-R^{(j)}\right) W\right\|_{L_{p}\left[a_{L n} \infty\right)}^{1-p}\right] \\
& \left.+\left(\frac{a_{\pi}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(r-1)(1-p)}\left\|R_{n}^{(r)} W\right\|_{L_{p}(R)}^{1-p}\right] \tag{3.17}
\end{align*}
$$

Proof. Set

$$
g_{n}(x):=\left(R_{n}-R\right)(x)
$$

satisfying $g_{n}\left(a_{L n}\right)=0$ and write

$$
g_{n}(x)=\int_{a_{L n}}^{2} g_{n}^{\prime}(u) d u
$$

Then

$$
\begin{align*}
\Delta= & \left\|W\left(R_{n}-R\right)\right\|_{L_{p}\left[a_{L n}, \infty\right)}=\left\|W g_{n}\right\| L_{L_{p}}\left\{a L_{n, \infty}\right\} \tag{8;18}\\
= & {\left[\int_{a_{L n}}^{\infty}\left|\int_{a_{L n}}^{x} \underline{g}_{n}^{\prime} W(u) \frac{W(x)}{W(u)} d u\right|^{p} d x\right]^{\frac{1}{p}} } \\
\leq & {\left[\int_{a_{L n}}^{\infty} \|\left.\left|g_{n}^{\prime} W(u)\right|^{1+p}\left(\frac{W(x)}{W(u)}\right)^{\frac{1}{2}}\right|_{\left.L_{\infty} \mid a_{L n}, \infty\right)} ^{p}\right.} \\
& \left.\left(\int_{a_{L n}}^{x}\left|g_{n}^{\prime} W(u)\right|^{p}\left(\frac{W(x)}{W(u)}\right)^{\frac{1}{2}} d u\right)^{p} d x\right]^{\frac{1}{p}} .
\end{align*}
$$

No: apply Hölders Inequality with $\gamma=\frac{1}{1-p}, \sigma=\frac{1}{p}$ satisfying $r^{-1}+\sigma^{-1}=1$ to give

$$
\Delta \leq I_{1} J_{2}
$$

where

$$
\begin{equation*}
I_{1}:=\left(\int_{a_{L n}}^{\infty}\left\|\left|g_{n}^{\prime} W(u)\right|^{1-p}\left(\frac{W(x)}{W(u)}\right)^{\frac{1}{2}} d x\right\|_{L_{\infty x}\left[a_{L n, \infty}\right)}^{\frac{p}{1-p}}\right)^{\frac{(1-\mu)}{p}} \tag{8.14}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}:=\left(\int_{u_{L n}}^{\infty} \int_{a_{L n}}^{a}\left|g_{n}^{\prime} W(u)\right|^{p}\left(\frac{W(x)}{W(u)}\right)^{\frac{1}{2}} d u d x\right) \tag{1}
\end{equation*}
$$

Now by (8.8) we may write

$$
\begin{gathered}
I_{1}=\left(\int_{a_{L n}}^{\infty} J_{n}(x) d x\right)^{\frac{1-p}{p}} \leq C\left[\sum_{j=1}^{r-1}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(j-1)(1-p)}\right. \\
\times\left\|W\left(R_{n}^{(j)}-R^{(j)}\right)\right\|_{\left.L_{p l} \mid a_{L_{n}, \infty}\right)}^{1-p}
\end{gathered}
$$

$$
\begin{equation*}
\left.+\left(\frac{a_{n 2}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(r-1)(1-p)}\left\|W R_{n}^{(r)}\right\|_{L_{p}(\mathbb{R})}^{1-p}\right] \tag{8.21}
\end{equation*}
$$

(by Lemma 8,1.3).
Also

$$
I_{2}=\int_{u_{L H}}^{\infty}\left|g_{n}^{\prime} W(u)\right|^{p} \int_{u}^{\infty}\left(\frac{W(x)}{W(u)}\right)^{\frac{2}{2}} d x d u
$$

Now if $n \geq u \geq a \mathrm{Ln}$, Lemma 6,2 gives

$$
Q^{\prime}(x) \geq C_{1} Q^{\prime}\left(a_{L n}\right) \geq C_{2} \frac{n T\left(a_{n}\right)^{\frac{1}{2}}}{a_{n}}
$$

so that

$$
\begin{aligned}
& I_{2} \leq C_{3} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}} \int_{a_{L_{n}}}^{\infty} \left\lvert\, g_{n}^{\prime} W(u)^{p}\left[W(u)^{-\frac{1}{2}} \int_{u}^{\infty} W(x)^{\frac{1}{2}} Q^{\prime}(x) d x\right] d u\right. \\
& \quad<\frac{C_{4} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}} \int_{a_{L n}}^{\infty}\left|g_{n}^{\prime} W(u)\right|^{p} d u}{} \quad .
\end{aligned}
$$

This glves

$$
\begin{equation*}
I_{2} \leq C_{4} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left\|\left(R_{n}^{\prime}-R^{\prime}\right) W\right\|_{L_{p}\left[a_{L_{n}}, \infty\right)}^{p} \tag{8.22}
\end{equation*}
$$

Combining our estimates for I_{1} and J_{2} give the result. \square
We are now in the position to give the
Froof of Theorem 8.1.1 for $0<p<1$. Let $P_{n} \in \mathcal{P}_{n}$ and $P \in \mathcal{P}_{r-1}$ be given by (8,1), We frrst note that if $0 \leq l<r_{1}$

$$
\left(P_{n}^{(l)}-P^{(l)}\right)\left(a_{L n}\right)=0
$$

Thus applying (8.17) to $P_{r}^{(l)}$ with r in (8.17) replaced by $r-l$ gives

$$
\begin{align*}
& \left\|W\left(P_{n}^{(l)}-P^{(l)}\right)\right\|_{L_{p}\left[a_{L n}, \infty\right)} \tag{8.23}\\
\leq & C_{1}\left[\left[\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left\|W\left(P_{n}^{(l+1)}-P^{(l+1)}\right)\right\|_{L_{p}\left[a_{L n}, \infty\right)}^{p}\right]\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.\times\left[\sum_{j=1+1}^{r-1}\left(\frac{a_{n}}{n T}\right)^{(j-l-1)(1-p)} \| W\left(a_{n}\right)^{\frac{1}{2}}\right)-P^{(j)}\right) \|_{L_{p}\left(a_{L n}, \infty\right)}^{1-n}\right] \\
& \left.+\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(r-l-1)(1-p)} \quad\left\|W\left(P_{n}^{(r)}\right)\right\|_{L_{p}(\mathbb{R})}^{1-p}\right]
\end{aligned}
$$

We show that for $k=r-1, r-2, \ldots, 0$

$$
\begin{equation*}
\left.\left\|W\left(P_{n}^{(k)}-P^{(k)}\right)\right\|_{L_{p}\left(a_{n} ;\right.} \infty\right) \leq C_{3}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{r-k}\left\|W P_{n}^{(r)}\right\|_{L_{p}(k)} \tag{8.24}
\end{equation*}
$$

Firstly if $k=r-1 ;(8.23)$ with $l=r-1$ gives

$$
\left\|W\left(P_{n}^{(r-1)}-P^{(r-1)}\right)\right\|_{L_{p}\left[a_{L n}, \infty\right)} \leq C_{4}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)\left\|W P_{n}^{(r)}\right\|_{L_{P}(R)}
$$

Assume now that (8.24) holds for $r-1, \ldots, k+1$. We prove (8.24) for k,
Substituting (8.24) with $r-1_{4} . . k+1$ into (8.23) with $l=k$ gives

$$
\begin{gathered}
\left\|W\left(P_{n}^{(k)}-P^{(k)}\right)\right\| L_{n_{p}\left(a_{L n}, \infty\right)} \leq C_{5}\left[\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(r-k-1) n}\left\|W P_{n}^{(r)}\right\|_{L_{p}(\mathbb{K})}^{p}\right. \\
\times\left[\sum_{j=k+1}^{r-1}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(j-k-1)(1-p)}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(r-j)(1-p)}\right] \times\left\|W P_{n}^{(r)}\right\|_{L_{p}(\mathbb{R})}^{1-p} \\
\left.+\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{(r-k-1)(1-p)}\left\|W P_{n}^{(r)}\right\|_{L_{p}(\mathbb{R})}^{1-p}\right] \\
\therefore \\
\therefore C_{6}\left(-\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{r-k}\left\|W P_{n}^{(r)}\right\|_{L_{p}(\mathbb{R})}^{1-p}
\end{gathered}
$$

Thus (8.24) holds for all k. In particular, we have

$$
\begin{gathered}
\left\|W\left(P_{n}-P\right)\right\|_{L_{p}\left[a_{L n}, \infty\right)} \leq C_{7}\left(\frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\right)^{r}\left\|W P_{n}^{(r)}\right\|_{L_{p}(\mathrm{R})} \\
\leq C_{8}\left(\frac{a_{n}}{n}\right)^{r}\left\|W P_{n}^{(r)} \Phi_{\frac{a_{n}}{n}}^{r_{n}}(x)\right\|_{L_{p}(\mathbb{R})} .
\end{gathered}
$$

8.2 Equivalence of Modulus and Realisation Functional

In this section we prove Theorem 5.2.1 which establishes the fundamental equivalence of our modulus of continuity and its corresponding realisation-functional. We also deduce Corollary 5.2.2. Throughout fr: $0<p \leq \infty$ we set

$$
q:=\min \{1, p\} .
$$

We begin by quickly recalling the definitions of our moduli and realisation functional. See ($5.11(a)$), ($5: 11(b)$) and (5:24). Let̀ $r \geq 1,0<t \leq C$ and let $n=n(t)$ be determined by (5.25). Then we have

$$
\begin{align*}
& \text { (1) } w_{r, p}\left(f, W_{,} t\right):=\sup _{0<h \leq t}\left\|W^{W}\left(\Delta_{h \phi_{t}(x)}^{r}(f)\right)\right\|_{L_{P}(|x| \leq \sigma(2 t))} \\
& +_{R} \inf _{\operatorname{dog} \leq r=1}\|\{f-R) W\|_{L_{\rho}\left(|x| \geq a^{\prime}(4)\right)} \tag{8.25}\\
& \text { (2) } \Psi_{w_{1, p}}(f, W, t)=\left[\frac{1}{t} \int_{0}^{t}\left\|W\left(\Delta_{h \Phi_{t}(x)}^{r}(f)\right)\right\|_{L_{p}(|x| \leq \sigma(2 t))}^{p} d h\right]^{\frac{1}{p}} \\
& +_{R} \inf _{\text {of } \operatorname{deg} \leq r-1}\|(f-R) W\|_{L_{P}(|x| \geq \sigma(4 t))} \tag{8.26}
\end{align*}
$$

where we set $\ddot{w} w$ for $p=\infty$ and

$$
\begin{equation*}
\text { (3) } K_{r, p}\left(f, W, t^{r}\right):=\inf _{P \in \mathcal{P}_{n}}\left\{\|(f-P) W\|_{L_{P}(\mathbf{R})}+t^{r}\left\|P^{(r)} \Phi_{i}^{r}(x) W\right\|_{L_{p}(\mathbf{R})}\right\} \tag{8,27}
\end{equation*}
$$

We begin with our lower bound.
Lemma 8.2.1. Let $W \in \mathcal{E}_{1}$, assume (5.27) and let $L>0$ be fixed. Let $r \geq 1,0<p \leq$ ∞ and $0<t<C$. Then there exists $C_{1} \neq C_{1}(f, t)$ such that

$$
\begin{equation*}
w_{r, p}(f, W, L t) \leq C_{1} K_{r, p}\left(f, W, t^{r}\right) \tag{8.28}
\end{equation*}
$$

Proof Let $q=\min \{1, p\}$. Then by Lemma $6.1,5(a)$, there exists u such that $4 L t=$
$\frac{a_{u}}{u}$. Now let $n=n(t)$ be determined by $(5,25)$ and recall it has the form

$$
n=\inf \left\{k: \frac{a_{k}}{k} \leq t\right\}
$$

Thus by (6.24) and (6.33) we have

$$
\begin{equation*}
\frac{a_{n}}{2 \dot{n}} \leq \frac{t}{2}<\frac{a_{n}}{n} \tag{8.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{t}(x) \sim \Phi_{\operatorname{m}}(x) \sim \Phi_{L}(x) \quad \forall x \in \mathbb{R} \tag{8.30}
\end{equation*}
$$

where the constants in the \sim relation are independent of t and 2. Also by (6.27) and (6.25), \exists $\beta>0$ such that

$$
\begin{equation*}
\sigma(4 L t)=\sigma\left(\frac{a_{y}}{u}\right) \geq a_{\frac{u}{2}} \geq a_{\beta n} \tag{8.31}
\end{equation*}
$$

Choose $P \in \mathcal{P}_{n}$ such that

$$
\begin{gather*}
\|(f-P) W\|_{L_{p}(\mathbb{R})}+t^{r}\left\|P^{(r)} \Phi_{t} W\right\|_{L_{p}(\mathbb{R})} \\
\leq 2 K_{r, p}\left(f_{1} W, t^{r}\right) \tag{8,32}
\end{gather*}
$$

We show that

$$
\begin{equation*}
\sup _{0<h \leq L L}\left\|W\left(\Delta_{h \Phi_{t L}(x)}^{r}(f)\right)\right\|_{L_{P}(\| \mid \leq \sigma(2 L t))} \leq C_{6} K_{r, p}\left(f, W, t^{r}\right) \tag{8.33}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{R \text { of }} \|(f-R \leq r-1) W\left(W \|_{L_{P}(|x| \geq \sigma(4 L t))} \leq C_{2} K_{r, p}\left(f, W, t^{r}\right)\right. \tag{8.34}
\end{equation*}
$$

This then gives $(8,28)$ using the definition (8.25). We begin with (8.34).
We appeal to Theorem 8.1.1 and choose for our given $P_{;} S \in \mathcal{P}_{r-1}$ as in (8.1) so that (8.2) holds. Using Lemma 3.1 in [11], we may assume that $x \geq 0$. Then

$$
\begin{gathered}
R \quad \inf _{d \in g \leq r-1}\|(f-R) W\|_{L_{P}(x \geq \sigma(4 L t))}^{q} \leq\|(f-S) W\|_{L_{P}(x \geq \sigma(4 L t))}^{q} \\
\therefore \quad \leq\|(f-P) W\|_{L_{P}(a \geq \sigma(4 L t))}^{q}+\|(P-S) W\|_{L_{p}(x \geq \sigma(4 L t))}^{q}
\end{gathered}
$$

$$
\leq C_{3}\left(K_{r, p}\left(f, W_{n} t^{r}\right)\right)^{q}+\|(P-S) W\|_{L_{P}\left(x \geq a \theta_{n}\right)}^{q}
$$

(by (8.31) and (8.32))

$$
\leq C_{3}\left(K_{r, p}\left(f, W, t^{r}\right)\right)^{q}+C_{4} t^{r}\left\|P^{(r)} \Phi_{t}^{r} W\right\|_{\mathcal{L}_{p}(\mathbb{R})}^{q}
$$

(by (8.2) , (8.29) and (8.30))

$$
\leq C_{5}\left(K_{r, p}\left(f, W, t^{r}\right)\right)^{q}
$$

Hence (8.34)
Next we proceed with (8.33).
Let $0<h \leq L t$ and write

$$
\begin{aligned}
& \quad\left\|W\left(\Delta_{h \Phi_{L L}(x)}^{r}(f)\right)\right\|_{L_{P}(|x| \leq \sigma(2 L t))}^{q} \\
& \leq \\
& =\left\|W\left(\Delta_{h \Phi_{L L}(x)}^{r}(f-P)\right)\right\|_{L_{P}(|x| \leq \sigma(2 L t))}^{q}+\left\|W\left(\Delta_{h \Phi_{L t}(x)}^{r}(P)\right)\right\|_{L_{P}(|x| \leq \sigma(2 L t))}^{q}+I_{2} .
\end{aligned}
$$

We first deal with the estimation of I_{1}. Note that given $A>0$,

$$
\begin{gathered}
|x| \leq \sigma(2 L t) \\
\Longrightarrow 1-\frac{|x|}{\sigma(t L)} \geq 1-\frac{\sigma(2 L t)}{\sigma(t L)} \\
\geq \frac{C_{7}}{T(\sigma(L t))} \geq\left(\frac{A t}{\sigma(t L)}\right)^{2}
\end{gathered}
$$

by (6.30) and (6.31), provided t is small enough. Thus (6.53) and (6.57) are satisfied so that by (6.58),

$$
\begin{equation*}
I_{1} \leq C_{6}\|W(f-P)\|_{L_{P}(\mathbb{R})}^{q} \leq C_{7} K_{r, p}\left(f, W, t^{r}\right)^{q} \tag{8.35}
\end{equation*}
$$

by (8.32).

To deal with the estimation of I_{2} we observe first much as in [11] that for

$$
S(w)=\sum_{l=0}^{r-1} \frac{P^{(l)}(x)(w-x)}{l!} \in \mathcal{P}_{r-1}
$$

we have by (6.50) that $\Delta_{h \Phi_{L t}(x)}^{r} S \equiv 0$.
Thus expanding $P\left(x+\left(\frac{r}{2}-k\right) h \Phi_{t}(x)\right), 0 \leq k \leq r$, in a power series about 2 gives

$$
\begin{aligned}
\Delta_{h \Phi_{L L}(x)}^{r} P(x) & =\sum_{k=0}^{r}\binom{r}{k}(-1)^{k} P\left(x+\left(\frac{r}{2}-h\right) h \Phi_{t L}(x)\right) \\
& \left.=\sum_{k=0}^{r}\binom{r}{k}(-1)^{k} \sum_{l=0}^{r-1}+\sum_{l=r}^{n}\right] \frac{\left[\left(\frac{r}{2}-k\right) h \Phi_{t L}(x)\right]^{l} P^{(l)}(x)}{n!} \\
& =\sum_{k=0}^{r}\binom{r}{k}(-1)^{k} \sum_{l=r}^{n} \frac{\left[\left(\frac{r}{2}-k\right) h \Phi_{t L}(x)\right]^{l} P^{(l)}(x)}{l!}
\end{aligned}
$$

so that

$$
\begin{align*}
& I_{2} \leq C_{8} \sum_{k=0}^{r}\binom{r}{k}^{q} \sum_{l=r}^{n}\left[\frac{\left(\frac{r}{2} h\right)^{l q}}{l!q}\right]\left\|P^{(l)} \Phi_{t L}^{l} W\right\|_{L_{P}(| | 1 \leq \sigma(2 L))}^{q} \\
& \leq C_{9} 2^{r q} h^{r q} \sum_{l=r}^{n}\left[\frac{\left(\frac{1}{2} h\right)^{(l-r) q}}{l!q}\right]\left\|P^{(l)} \Phi_{t L}^{l} W\right\|_{\left.L_{p(l|x| \leq \sigma(2 L t)}^{q}\right)} \tag{8.36}
\end{align*}
$$

Now by repeated applications of Theorem 6.2.1, we have by using (8.29) and (8.30),

$$
\begin{gather*}
\| P^{()_{\Phi_{l L}^{l}} W \|_{L_{p}(\mathbb{R})}} \\
\leq C_{10}^{r}\left\|P^{(r)} \Phi_{t L}^{r} W\right\|_{L_{P}(\mathbb{R})} C_{I L}^{\prime-r} \prod_{j=r}^{1-1}\left(\frac{n}{a_{n}}+\frac{j}{a_{n}} T\left(a_{n}\right)^{\frac{1}{2}}\right) \tag{8.37}
\end{gather*}
$$

where $C_{j}, j=10,11$ are independent of n, z, l, L and h. Now we observe using (6.9) that given $\varepsilon>0$, we have for n large enough and $r \leq l \leq n$

$$
\begin{align*}
& \prod_{j=r}^{1-1}\left(\frac{n}{a_{n}}+\frac{j}{a_{n}} T\left(a_{n}\right)^{\frac{1}{2}}\right) \\
& \leq C_{12} \varepsilon^{l-r}\left(\frac{n}{a_{n}}\right)^{l-r} \eta \tag{8.38}
\end{align*}
$$

Here it is important that C_{12} does not depend on l, n, h or L and that C_{10} and C_{11} above are independent of ε.
\therefore We may now substitute (8.38) into (8.37) so that (8.36) becomes

$$
\begin{aligned}
& 1_{2} \leq C_{13} h^{r q}\left\|P^{(r)} \Phi_{t}^{r} W\right\|_{L_{p}\left(\mathbb{E}^{q}\right)}^{q} \sum_{l=r}^{n}\left[\frac{\left(\frac{\pi}{2} h C_{10} C_{11} \varepsilon^{n}\right)^{(1-r) q}!^{q}}{l l^{q}}\right] \\
& \quad \leq C_{14} t^{r q}\left\|P^{(r)} \Phi_{i}^{r} W\right\|_{k=0}^{q}\left[\frac{1}{2}\right]^{k}
\end{aligned}
$$

(if ε is small enough),

$$
\begin{equation*}
\leq C_{15} t^{r q}\left\|p^{(r)} \Phi_{t}^{r} W\right\|^{q} \leq C_{16} K_{r p}\left(f, W_{r} t^{r}\right)^{q} \tag{8,39}
\end{equation*}
$$

Thus combining (8.35) and (8.39) and taking sup s over $0 \leq h \leq L t$ gives (8.33), \square
We proceed with the upper bound. This is more difficult than the lower bound and does not follow as easily using for example the methods of [11]. The crux is establishing the following quasi monotonicity type property of \bar{w}.

Lemma 8.2.2. There existis $C_{j}, j=1,2$ and $0<\varepsilon_{0}<1$ such that if $0<\lambda<\varepsilon_{0}$ and $0<s, t<C_{1}$ with

$$
\begin{equation*}
\lambda \leq \frac{s}{t} \leq \varepsilon_{0} \tag{8.40}
\end{equation*}
$$

we have

$$
\begin{equation*}
\bar{w}_{r, p}(f, W, s) \leq C_{2} \bar{w}_{r, p}(f, W, t) . \tag{8.41}
\end{equation*}
$$

Remark We remark that the above property is by no means obvious as recall our modulus is not necessarily monotone increasing : We prove it for $p<\infty$ as the case $p=\infty$ is much easier.

Proof. Let us write

$$
\begin{gathered}
\dot{\bar{w}}_{r, p}(f, W, s) \\
=\left[\frac{1}{s} \int_{0}^{s}\left\|W\left(\Delta_{h \Phi_{o}(x)}^{r}(f)\right)\right\|_{L_{P}(|x| \leq \sigma(3 t))}^{p} d h\right.
\end{gathered}
$$

$$
\begin{align*}
& \left.+\frac{1}{s} \int_{0}^{s}\left\|W\left(\Delta_{h L_{b}(x)}(f)\right)\right\|_{L_{P}(\sigma(3 t) \leq|x| \leq \sigma(2 a))}^{p} d h\right]^{\frac{1}{2}} \\
& \quad+_{R \text { of deg } \leq r-1}\|(f-R) W\|_{L P(|n| \geq \sigma(4 s))} \\
& =I_{1}+I_{2} \tag{8.42}
\end{align*}
$$

Firstly, by cholee of s and $t, \frac{x}{t} \leq 1$ so that

$$
\sigma(4 s) \geq \sigma(4 t)
$$

(recall σ is decreasing). Thus

$$
\begin{align*}
& l_{2} \leq \inf _{R \text { of } \operatorname{deg} \leq r-1}\|(f-R) W\|_{L_{P}(|x| \geq o(4 t))} \\
& \therefore \leq w_{r, p}(f, W, t) \tag{8.43}
\end{align*}
$$

Next we estimate I_{1} :
Write $\left(I_{1}\right)^{p} \leq I_{3}+I_{4}$ where

$$
I_{3}:=\frac{1}{s} \int_{0}^{s}\left\|W\left(\Delta_{h \phi_{s}(x)}^{r}(f)\right)\right\|_{L_{R}(|x| \leq \sigma(3 i))}^{p} d h
$$

and

$$
I_{4}:=\frac{1}{s} \int_{0}^{s}\left\|W\left(\Delta_{h \Phi_{s}(m)}^{r}(f)\right)\right\|_{L_{P}(\sigma(3 t) \leq|x| \leq \sigma(2 s))}^{P} d h
$$

We begin with the estimation of I_{4}. To this end we malke use of Lemma 6.1.8. Much as in the proof of Lemma 8.2.1, we have

$$
\begin{equation*}
I_{4} \leq C_{R} \inf _{\text {of } \operatorname{deg} \leq r-1}\|(f-R) W\|_{L_{P}(|x| \geq \sigma(4 t))}^{p} \leq C_{1} \bar{w}_{r, p}\left(f, W_{1} t\right)^{p} \tag{8.44}
\end{equation*}
$$

Here we used that

$$
\begin{gathered}
\inf \left\{x-M r s \Phi_{s}(x): \sigma(3 t) \leq x \leq \sigma(2 s)\right\} \\
\geq \sigma(3 t)-\operatorname{CtT}(\sigma(t))^{\frac{-1}{2}} \\
\geq \sigma(3 t)+\sigma(1 / T(\sigma(t))) \geq \sigma(4 t)
\end{gathered}
$$

for small t_{1} see (6.7) ; (6.9) and (6.30).
It remains to estimate I_{3} :
As s and t are small enough, we can use Lemma 6.1.5(a) to obtain a large enough positive integer n such that $\frac{a_{n}}{n} \sim s$ and then much as in chapter 7_{1} construct a partition of $J=$ $[-\sigma(3 t), \sigma(3 t)]$

$$
-\sigma(3 t)=\tau_{0}<\tau_{1}, \ldots<\tau_{n}=\sigma(3 t)
$$

rvith the following properties: If $J_{k}=\left[r_{k} r_{k+1}\right]$ and $\left|J_{k}\right|$ denotes the lengh of \mathcal{J}_{k} then,
(1) $\left|J_{k}\right| \leq s \Phi_{1}(x) ; \quad x \in J_{k}$
(2) $\Phi_{s}(x) \sim \Phi_{s}(y) \quad x, y \in J_{k}$
(3) $W(x) \sim W(y), \quad x, y \in J_{k}$

Here the constants in the \sim relation are independent of x, y, s, k.
Then

$$
\begin{gathered}
\quad I_{3}=\frac{1}{s} \int_{0}^{s}\left\|W\left(\Delta_{h \Phi_{s}(x)}^{r}(f)\right)\right\|_{L_{P}\{(|x| \leq \sigma(3))}^{p} d h \\
\quad \leq C_{2} \sum_{k} W^{p}\left(\tau_{k}\right) \int_{J_{k}} \frac{1}{s} \int_{0}^{s}\left|\Delta_{h \Phi_{s}(x)}^{r}(f)\right|^{p} d h d x \\
=C_{2} \sum_{k} W^{p}\left(\tau_{k}\right) \int_{J_{k}} \frac{1}{s} \int_{0}^{\frac{a \Phi_{s}(x)}{\phi_{t} t(x)}}\left|\Delta_{u \Phi_{t}(x)}^{r}(f)\right|^{p} \frac{\Phi_{t}(x)}{\Phi_{s}(x)} d u d x .
\end{gathered}
$$

Now by (6.40) for some $C \neq C(s, t)$

$$
\sup _{x \in \mathbb{R}} \frac{s \Phi_{s}(x)}{t \Phi_{t}(x)} \leq C \frac{s}{t} \sqrt{\log \left(2+\frac{t}{s}\right)}
$$

$$
\leq 1
$$

if $\frac{s}{t} \leq \varepsilon_{0}$, where ε_{0} is independent of s, t. Then if $\lambda<\varepsilon_{0}$, we have for

$$
\lambda \leq \frac{s}{t} \leq \varepsilon_{0}
$$

$$
C_{3} \leq \frac{\Phi_{s}(x)}{\Phi_{t}(x)} \leq C_{4}
$$

Then

$$
\begin{gather*}
I_{3} \leq C_{5} \sum_{k} W^{p}\left(\tau_{k}\right) \int_{y_{k}} \frac{1}{b} \int_{0}^{t}\left|\Delta_{u \Phi_{t}(x)}^{r}(f)\right|^{p} d u d x \\
\leq C_{6} \frac{1}{t} \int_{0}^{t}\left\|W\left(\Delta_{h \Phi_{l}(x)}^{r}(f)\right)\right\|_{L_{P}(\| x \mid \leq \sigma(2 t))}^{p d h} \\
\leq C_{6} \overline{\bar{w}}_{r, p}\left(f, W_{1} t\right)^{p} \tag{8.46}
\end{gather*}
$$

Combining our estimates (8.43), (8.44) and (8.46) give the lemma.
Lemma 8.2.3. Let $W \in \mathcal{E}_{1}$ and assume (5.27). Let $r \geq 1$ and $0<p \leq \infty$. Then for $0<t<C_{1}$, there exists $C_{2}, C_{3} \neq C_{2}, C_{3}(f, t)$ such that

$$
\begin{equation*}
K_{r, p}\left(f, W, t^{r}\right) \leq C_{2} \bar{w}_{r, p}\left(f, W, C_{3} t\right) \tag{8.47}
\end{equation*}
$$

Proof . Put $\frac{t}{2}=\frac{n_{u}}{u}$ for some $u \geq u_{0}$ and let $n=n(t)$ be determined by (5.25), so that

$$
n=\inf \left\{k: \frac{a_{k}}{k} \leq \frac{2 a_{u}}{u}\right\}
$$

and

$$
\begin{equation*}
\frac{1}{2} \frac{a_{n}}{n} \leq \frac{a_{u}}{u}<\frac{a_{n}}{n} \tag{8.48}
\end{equation*}
$$

Now it is easy to see that for large enough u and the given n,

$$
t=2 \frac{a_{u}}{u}=\frac{a_{n}}{n} \lambda(n) C
$$

for some $\lambda(n) \in\left[\frac{4}{5}, 1\right]$ and $C>0$ independent of n. We then apply (5.13), and choose $P \in$ \mathcal{P}_{n} such that

$$
\begin{equation*}
\|(f-P) W\|_{L_{P}(\mathbb{R})} \leq C_{1} \bar{w}_{r, p}\left(f, W, C_{2} t\right) \tag{8.49}
\end{equation*}
$$

for some $C_{1}, C_{2} \neq C_{1}, C_{2}(f, t)$.

We thow that for some $C_{3} \neq C_{3}(f, t)$,

$$
\begin{equation*}
t^{r}\left\|P^{(r)} \boldsymbol{\Phi}_{t}^{r} W\right\|_{\mathcal{L}_{P}(\mathbb{B})} \leq C_{3} \bar{w}_{r, p}\left(f, W, C_{2} t\right) \tag{8.50}
\end{equation*}
$$

for then by (8.49),

$$
\begin{aligned}
K_{r, p}\left(f, W, t^{r}\right) & =\inf _{R \in \mathcal{P}_{n}}\left\{\|(f-R) W\|_{L_{P}(\mathbb{R})}+t^{r}\left\|R^{(r)} \Phi_{t}^{r W}\right\|_{L_{F}}\right. \\
& \leq\|(f-P) W\|_{L_{P}(\mathbb{R})}+t^{r}\left\|P(r) \Phi_{t} W\right\|_{\nu_{F}(\mathbb{R})} \\
& \leq\left(C_{1}+C_{3}\right) w_{r, p}\left(f_{1} W_{1} C_{2} t\right)
\end{aligned}
$$

Thus we show (8.50),
Now let $\delta>0$ be a small enough positive number and put $s:=\delta t$. It da sufficient at this point of the proof to choose δ small enough so that by Lemma 8.2.2.

$$
\begin{equation*}
{\overline{w_{r, p}}}\left(f_{1} W_{1} s\right) \leq C_{4} \bar{W}_{r, p}\left(f, W_{1} C_{2} t\right) \tag{8.51}
\end{equation*}
$$

Later, we will need to choose δ snialler still.
Let us recall much as in emma 8.2.1 that we have for $0<h \leq s$

$$
\begin{equation*}
\Delta_{h \phi_{s}(x)}^{r} P(x)=\sum_{k=0}^{r}\binom{r}{k}(-1)^{k} \sum_{l=r}^{n} \frac{\left[\left(\frac{r}{2}-k\right) h \Phi_{s}(x)\right]^{l} P^{(l)}(x)}{l!} \tag{8.52}
\end{equation*}
$$

Applying (8.52) to $x^{r} \in \mathcal{F}_{r}$ and using (6.50) gives

$$
\begin{equation*}
(r!)^{-1} \Delta_{h \Phi_{s}(x)^{x^{r}}}^{r}=\left(h \Phi_{s}(x)\right)^{r}=\sum_{k=0}^{r}\binom{r}{k}(-1)^{k} \frac{\left[\left(\frac{r}{2}-k\right) \hbar_{s}(x)\right]^{r}}{r!} \tag{8.53}
\end{equation*}
$$

We now combine (8.52) and (8.53) together with (6.63) to give much as in (8.39),

$$
\left\|W \Delta_{h \Phi_{s}(x)}^{r} P(x)-W\left(h \Phi_{s}(x)\right)^{r} P^{(r)}(x)\right\|_{L_{p}(|x| \leq \sigma(2 s))}^{q}
$$

$$
\begin{equation*}
\leq C_{5} h^{r g}\left\|^{r} e^{(r)} \Phi_{s}^{r}(x)\right\|_{L_{p}(\mathbb{R})}^{q} \sum_{t=r+1}^{n} \frac{\left(C_{6} \frac{n}{a_{n}} h\right)^{(1 \cdots r) q} l!q}{l!q} \tag{8.54}
\end{equation*}
$$

where C_{6} is independent of t, n, h, P_{n} and l.
Now by $(6.8),(6.25)$ and (8.48) we can choose $\alpha>3$ independent of $t, 1, h_{1} P_{n}, l$ and C_{2}^{4} such that $a_{\mu}<a_{\text {an }}$. Further (if necessary) we make δ in the definition of s inaller still so that

$$
\begin{equation*}
\delta<\min \left(\frac{1}{8 \alpha}, \frac{1}{2}\right) \tag{8.55}
\end{equation*}
$$

so that

$$
2 s \leq \frac{t}{4 \alpha} \leq \frac{a_{\alpha n}}{a n}
$$

This gives

$$
\begin{equation*}
\sigma(2 n) \geq \sigma\left(\frac{t}{4 \alpha}\right) \geq \sigma\left(\frac{a_{a n}}{\alpha n}\right) \geq a_{\xi n} \tag{8,56}
\end{equation*}
$$

for some fixed $3<\xi<\alpha$.
It follows that we obtain using $(8,56),(6.33)$ and (6.70),

$$
\begin{align*}
& \left\|W \Delta_{h \Phi_{n}(x)}^{r} P(x)-W\left(h \Phi_{s}(x)\right)^{r} P^{(r)}(x)\right\|_{\left.L_{p}(|x| \leq \sigma(3 s))\right\}}^{q} \\
& \therefore \quad \leq \frac{1}{2} h^{r g}\left\|W P^{(r)} \Phi_{s}^{r}(x)\right\|_{L p(|x| \leq \alpha(2 s))}^{q} \tag{8.57}
\end{align*}
$$

provided $\frac{n}{u_{n}} h \leq \Delta$, where Δ is a fixed fusitive small number independent of t, h, n, P_{n} and l.
Now by $(8,55)$ and (8.48), it is easy to see that $\Delta s \leq \Delta \frac{a_{n}}{n}$ so that $\forall 0<h \leq \Delta s$ we have

$$
\begin{gathered}
\left\|W \Delta_{h \Phi_{s}(x)}^{r} P(x)\right\|_{L_{p}(|x| \leq \sigma(2 s))}^{q} \\
\geq h^{r q}\left\|W\left(\Phi_{s}(x)\right)^{r} P^{(r)}(x)\right\|_{L_{p}(|x| \leq \sigma(2 s))}^{q} \\
\left.-\left\|W \Delta_{h \Phi_{s}(x)}^{r} P(x)-W\left(h \Phi_{s}(x)\right)^{r} P^{(r)}(x)\right\|_{L_{r}(|x| \leq \sigma(2 s))}^{q}\right) \\
\quad \geq \frac{1}{2} h^{r q}\left\|W^{(r)} \Phi_{s}^{r}(x)\right\|_{L_{P}(|x| \leq \sigma(2 s))}^{q}
\end{gathered}
$$

(by (8.57))

$$
\begin{equation*}
\geq C_{7} h^{\operatorname{rq} q}\left\|W P^{(r)} \tilde{\Phi}_{s}^{F}(x)\right\|_{\mu_{P}(\mathbb{R})}^{q} \tag{8.58}
\end{equation*}
$$

by (6.70). Now raising (8.58) to the p / q th powers; integrating for h from 0 to Δs using the fact that $\Phi_{s}(x) \sim \Phi_{t}(x), x \in \mathbb{R}$ (see (6.33)) and assuming that $\Delta<1$ as we can, gives

$$
\begin{aligned}
& t^{r p}\left\|W P^{(r)} \Phi_{t}^{r}(x)\right\|_{L_{p}(\mathbb{R})}^{p} \leq \frac{C_{8}}{s} \int_{0}^{\Delta s}\left\|W \Delta_{h \Phi_{\theta}(x)}^{r} P(x)\right\|_{L_{p}(|x| \leq \sigma(2 s))}^{p} d h \\
& \quad \leq \frac{C_{3}}{s} \int_{0}^{s}\left\|W \Delta_{h \Phi_{d}(x)}^{r} P(x)\right\|_{L_{p}(|x| \leq \sigma(2 s))}^{p} d h \\
& \quad \leq \frac{C_{8}}{s} \int_{0}^{s}\left\|W \Delta_{h \Phi_{s}(x)}^{r}(P-f)(x)\right\|_{L_{p}(|x| \leq \sigma(2 s))}^{p} d h \\
&+\frac{C_{8}}{s} \int_{0}^{s}\left\|W \Delta_{h \Phi_{\theta}(x)}^{r} f(x)\right\|_{L_{p}(|x| \leq n(2 s))}^{p} d h \\
& \leq C_{8}\left\{\|W(P-f)\|_{L_{p}(\mathbb{R})}^{p}+\bar{w}_{r_{r p} p}\left(f, W_{1} s\right)\right\}
\end{aligned}
$$

(by (6.58))

$$
\leq C_{10} \bar{w}_{r, p}\left(f, W^{\prime}, C_{2} t\right)
$$

by (8.51) and (8.49). Thus we have (8.50) and the lemma. \square
We now combine Lemmas 8,2,1 and 8.2.3 to give
The proofs of Theorem 5.2.1 and Corollary 5.2.2. We have for any $L>0$ and $0<t<t_{0}$,

$$
\begin{gather*}
\bar{w}_{r, p}\left(f_{1} W, L t\right) \leq w_{r, p}\left(f_{1} W, L t\right) \leq C_{1} K_{r, p}\left(f, W, t^{r}\right) \\
\leq C_{2} \bar{w}_{r, p}\left(f, W, C_{3} t\right) \leq C_{2} w_{r ; p}\left(f_{1} W, C_{3} t\right) \tag{8.59}
\end{gather*}
$$

where C_{3} is independent of L, f and t while C_{1} and C_{2} are independent of f and t but depend on L.

Fix $M>0$ and choose $L=M C_{3}$ and $s=C_{3}$ to deduce that

$$
\begin{align*}
& w_{r_{i} p}\left(f_{1} W_{1} M s\right) \\
\leq & C_{2} w_{r, p}\left(f_{1} W, s\right) \tag{8.60}
\end{align*}
$$

and similarly

$$
\begin{gather*}
\bar{w}_{r, p}(f, W, M s) \\
\leq C_{2} \bar{w}_{r, p}(f, W, s) . \tag{8.61}
\end{gather*}
$$

Then (5.30) holds and (5.31) follows from (5.12), (8.60) and (8.61).
Finally (8.59) then gives

$$
w_{r, p}\left(f_{1} W_{1} s\right) \sim \bar{w}_{r, p}\left(f_{1} W, s\right) \sim K_{r, p}\left(f_{y} W, s^{r}\right)
$$

with constants independent of f and s. C

Chapter 9

Applications of Theorem 5.2.1

9.1 Converse Theorems

In this section, we present the proofs for our converse results of polynomial approximation.
We begin with
The proof of Theorem 5.2.3. For each $n \geq 0$, choose P_{n}^{*} to be the best approximant to f satisfying

$$
\left\|\left(f-P_{n}^{*}\right) W\right\|_{L \rho(\mathbb{R})}=E_{n}[f]_{\mathbb{L}, p} .
$$

Here, we set $P_{2-1}^{*}=P_{0}^{*}$. Now let $t>0$ be small enough and define n by (5,25). Put $l=$ $\left[\log _{2} n\right]$ the largest integer $\leq \log _{2} n$ so that $2^{l} \leq n<2^{l+1}$ *

Then by Theorem 5.2.1 and Corollary 5.2.2

$$
\begin{aligned}
& w_{r, p}\left(f, W_{1} \frac{a_{n}}{n}\right)^{q} \\
& \leq C_{1} K_{r, p}\left(f_{1} W_{1}\left(\frac{a_{n}}{n}\right)^{r}\right)^{q} \\
& \leq C_{2}\left[\left\|\left(f-P_{2^{*}}^{*}\right) W\right\|_{L_{P}(\mathbb{R}\}}^{q}+\left(\frac{a_{n t}}{n}\right)^{r q}\left\|P_{2!}^{*(r)} \Phi_{a_{n}}^{r_{n}} W\right\|_{L_{\mu}(\mathbb{R})}^{q}\right] \\
& \leq G_{3}\left[E_{2^{!}}[f]_{W, p}^{q}+\left(\frac{a_{n}}{n}\right)^{r q} \sum_{k=-1}^{l-1}\left\|\left[P_{2^{k+1}}^{*}-P_{2^{k}}^{*}\right]^{(r)} \Phi_{\frac{n_{n}}{n}}^{n} W\right\|_{L_{P}(\mathbb{R})}^{q}\right] \\
& \leq G_{4}\left[E_{2^{!}}[f]\right]_{W_{k} p}^{q}+\left(\frac{a_{n}}{n}\right)^{r q} \sum_{k=-1}^{l-1} \|\left[P_{2^{k+1}}^{*}-P_{2^{k}}^{k}{ }^{(r)} \Phi_{{\frac{a_{2} k+1}{}}_{2^{k+1}}}\left(\log \left(2^{i-k}\right)\right)^{\frac{r}{2}} W \|_{\left.\nu_{\mu(\mathbb{R}}\right)}^{q}\right]
\end{aligned}
$$

as $r \geq 1$ and by (6:42). This can be continued as

$$
\begin{gathered}
\leq C_{5}\left[E_{2^{l}}[f]_{W_{1 p}^{q}}\right. \\
\left.+\left(\frac{a_{n}}{n}\right)^{r q} \sum_{k=-1}^{l-1}(l-k+1)^{\frac{r a}{2}}\left(\frac{2^{k}}{a_{2^{k}}}\right)^{r q}\left\|\left[P_{2^{k+1}}^{*}-P_{2^{k}}^{k}\right] W\right\|_{L_{P}(\mathbb{R})}^{q}\right]
\end{gathered}
$$

by (5.27) .
We can continue this as

$$
\begin{align*}
& \leq C_{6}\left[E_{2_{1}}[f]_{W_{1} p}^{q}+\left(\frac{a_{n}}{n}\right)^{r q} \sum_{k=-1}^{1-1}(l-k+1)^{\frac{r q}{2}}\left(\frac{2^{k}}{a_{2^{k}}}\right)^{r q} E_{2^{k}}[f]_{W_{1 p}}^{q}\right] \\
& \leq C_{7}\left(\frac{a_{n}}{n}\right)^{r q}\left[\sum_{k=-1}^{1}(l-k+1)^{\frac{r q}{2}}\left(\frac{2^{k}}{a_{2^{k}}}\right)^{r q} E_{2^{k}}[f]_{W_{1, p}}^{q}\right] \tag{9.1}
\end{align*}
$$

Now by (6.24) we have that $t \sim \sim_{n}$. Also by (6.33),

$$
\Phi_{t}(x) \sim \Phi_{\frac{a_{n}}{n}}(x), x \in \mathbb{R}
$$

so that

$$
K_{r, p}\left(f, W, t^{r}\right) \sim K_{r, p}\left(f_{i} W,\left(\frac{a_{n}}{n}\right)^{r}\right)
$$

so that by Theorem 5.2.1

$$
\begin{equation*}
w_{r, p}(f, W, t) \sim w_{r, p}\left(f, W, \frac{a_{n}}{n}\right) . \tag{9.2}
\end{equation*}
$$

Thus (9.2) becomes

$$
\begin{gathered}
w_{r, p}(f, W, t)^{q} \\
\leq C_{8} t^{r q}\left[\sum_{k=-1}^{i}(l-k+1)^{\frac{r q}{2}}\left(\frac{2^{k}}{a_{2^{k}}}\right)^{r q} E_{2^{k}}[f]_{W, p}^{q}\right]
\end{gathered}
$$

where $C_{8} \neq C_{8}(f, t) . \square$
We deduce

The Proof of Corollary 5.2.4. Suppose first that

$$
w_{r, p}(f, W, t)=O\left(t^{\alpha}\right) .
$$

Then in particular

$$
w_{r, p}\left(f, W_{y} \frac{a_{n}}{n}\right)=O\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right), n \rightarrow \infty,
$$

so that by Corollary 5.2.2

$$
E_{n}[f]_{W_{1} p}=O\left(\left(\frac{a_{n}}{n}\right)^{\alpha}\right)
$$

Next suppose $E_{n}[f]_{w_{j} p}=O\left(\left(\frac{a_{n}}{n}\right)^{a}\right)$. Let $0<\varepsilon<1$. Then, by (5.32)

$$
\begin{gather*}
w_{r_{1}, p}\left(f, W, \frac{a_{n}}{n}\right) \leq C_{1}\left(\frac{a_{n}}{n}\right)^{r}\left[\sum_{k=-1}^{1}(l-k+1)^{\frac{\sigma_{n}}{2}}\left(\frac{2^{k}}{a_{2^{k}}}\right)^{(r-\alpha) q}\right]^{\frac{1}{q}} \\
\leq C_{1}\left(\frac{a_{n}}{n}\right)^{\alpha}\left[\sum_{k=-1}^{1}(l-k+1)^{\frac{n d}{2}}\left(\frac{a_{n} / n}{a_{2} k} 2^{k}\right)^{(r-\alpha) q}\right]^{\frac{1}{q}} \\
\leq C_{2}\left(\frac{a_{n}}{n}\right)^{\alpha}\left[\sum_{k=-1}^{1}(l-k+1)^{\frac{k q}{2}}\left(\frac{2^{l+1}}{2^{k}}\right)^{(r-\alpha) q(-1+s)}\right]^{\frac{1}{q}}(\text { by }(6.16)) \\
\leq C_{3}\left(\frac{a_{n}}{n}\right)^{\alpha}\left[\sum_{j=0}^{\infty} j^{\frac{\Gamma}{2} q} a^{j q}\right]^{\frac{1}{q}}(\text { for some } 0<a<1) \\
\leq C_{4}\left(\frac{a_{n}}{n}\right)^{\alpha} . \tag{9.3}
\end{gather*}
$$

Now for $t>0$ small enough, we may determine n by (5.25) and using (6.24) and (9.2) deduce the result for t

9.2 The proofs of Corollaries 5.2.5 and 5.2.6

We begin with
The proof of Corollary 5.2.5. Let $P_{n}^{\#}$ satisfy the required hypotheses. Then by the
definition of $K_{r, p}\left(f_{1} W,\left(\frac{a_{n}}{n_{n}}\right)^{r}\right)$, we have

$$
\begin{align*}
& \left\{\left\|\left(f-P_{n}^{\prime \prime}\right) W\right\|_{\left.L_{p(\mathbb{R}}\right)}+\left(\frac{a_{n}}{n}\right)^{r}\left\|P_{n}^{\#(r)} \Phi_{a_{n}} W\right\|_{L_{p}(\mathbb{R})}\right\} \tag{9.4}\\
& \geq K_{r, p}\left(f_{1} W_{1}\left(\frac{a_{n}}{r}\right)^{r}\right)
\end{align*}
$$

Next choose P_{n} such that

$$
\begin{align*}
& \left\{\left\|\left(f-P_{n}\right) W\right\|_{L P(\mathbb{R})}+\left(\frac{a_{n}}{n}\right)^{r}\left\|P_{n}^{(r)} \Phi_{\frac{a_{n}}{n}} W\right\|_{L_{p}(\mathbb{R})}\right\} \tag{9.5}\\
& \quad \leq 2 K_{r, p}\left(f, W_{1}\left(\frac{a_{n}}{n}\right)^{r}\right)
\end{align*}
$$

Then

$$
\begin{align*}
\left\|\left(P_{n}-P_{n}^{\#}\right) W\right\|_{L_{p}(\mathbb{R})}^{q} & \leq\left\|\left(P_{n}-f\right) W\right\|_{L_{p}(\mathbb{R})}+\left\|\left(f-P_{n}^{\#}\right) W\right\|_{L_{p}(\mathbb{R})}^{q} \tag{9.6}\\
& \leq G_{1} K_{r, p}\left(f_{i} W_{s}\left(\frac{a_{n}}{n}\right)^{r}\right)^{q}
\end{align*}
$$

(by (9.5)).
Further using (5.27), we can write using (9.6)

$$
\begin{align*}
\left\|\left(P_{n}-P_{n}^{\#}\right)^{(r)}{ }^{\left(a_{n}\right.} W\right\|_{L_{P}(\mathbb{R})} & \leq C_{2}\left(\frac{n}{a_{n}}\right)^{r q}\left\|\left(P_{n}-P_{n}^{\#}\right) W\right\|_{L_{P}(\mathbb{R})}^{q} \tag{9.7}\\
& \leq C_{3}\left(\frac{n}{a_{n}}\right)^{r g} K_{r, p}\left(f, W\left(\frac{a_{n}}{n}\right)^{r}\right)^{q} .
\end{align*}
$$

Thus by (9.5) and (9.7)

$$
\begin{align*}
&\left(\frac{a_{n}}{n}\right)^{r q}\left\|P_{n}^{\#(r)} \Phi_{\frac{a_{n}}{n} W}\right\|_{L_{p}(\mathbb{R})}^{q} \\
& \leq C_{4}\left[\left(\frac{a_{n}}{n}\right)^{r q}\left\|P_{n}^{(r)} \Phi_{\frac{a_{n}}{n}}^{r_{i}}\right\|_{L_{p}(\mathbb{R})}^{q}+\left(\frac{a_{n}}{n}\right)^{r q}\left\|\left(P_{n}-P_{n}^{\#}\right)^{(r)} \Phi_{\frac{a_{n}}{n} W}^{r}\right\|_{L_{p}(\mathbb{R})}^{q}\right] \\
& \leq C_{5} K_{r, p}\left(f, W\left(\frac{a_{n}}{n}\right)^{r}\right)^{q} \tag{9.8}
\end{align*}
$$

ω that (9.4) and (9.8) give the result.

We can now give
The proof of Corollary 5.2.6(a) We shall show that

$$
\begin{equation*}
\left\|W \Delta_{h \phi}^{r}(x)(f, x, \mathbb{R})\right\|_{L_{P}[|x| \leq \sigma(2 t)]} \leq C_{1} t^{r}\left\|f^{(r)} \Phi_{t}^{r} W\right\|_{L_{P}(\mathbb{R})} \tag{9.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{P \in P_{r-1}}\|W(f-P)\|_{\left.L_{p}\| \| \geq \geq(4 t)\right)} \leq C_{2} t^{r}\left\|f^{(r)} \Phi_{t}^{r W}\right\|_{L_{P}(\mathbf{M})} \tag{9.10}
\end{equation*}
$$

We begin with
The Proof of (9.9). We begin with an observation.
If $h>0$ we may write

$$
\begin{align*}
\mid \Delta_{h}^{r}\left(f, x_{1} \mathbb{R}\right) & =\left|\int_{\frac{-h}{2}}^{\frac{h}{2}} \int_{\frac{-h}{2}}^{\frac{h}{2}} \cdots \int_{\frac{-h}{2}}^{\frac{h}{2}} f^{(r)}\left(x+t_{1}+\ldots+t_{r}\right) d t_{1} d t_{2} \cdot d t_{r}\right| \tag{9.11}\\
& \leq h^{r-1} \int_{\frac{-h}{2}}^{\frac{h r}{2}}\left|f^{(r)}(x+s)\right| d s
\end{align*}
$$

Now note that for $s \in\left[-\frac{r h \Phi_{t}(\tilde{m})}{2}, \frac{r h \Phi_{t}(x)}{2}\right]$ and $x \in[-\sigma(2 t), \sigma(2 t)]$ we have by (6.49)

$$
\Phi_{t}(x) \sim \Phi_{t}(x+s) .
$$

Thus we may deduce from (9.11) that for $|x| \leq \sigma(2 t)$ as

$$
\begin{equation*}
\left|W \Delta_{h \phi_{t}(x)}^{r}(f, x, R)\right| \leq C_{3} h^{r} \frac{1}{\frac{r h \phi_{i}(x)}{2}} \int_{\frac{-r \phi_{\phi}(x)}{2}}^{\frac{r h_{p}(x)}{2}}\left|W f^{(r)} \Phi_{z}^{r}(x+s)\right| d s . \tag{9.12}
\end{equation*}
$$

Case 1. $p>1$. We recall the definition of the maximal function operator

$$
M[g](x):=\sup _{u>0} \frac{1}{2 u} \int_{-u}^{u}|g(x+s)| d s
$$

which is bounded from L_{p} to $L_{p}, I<p<\infty$. It follows that (9.12) can be rewritten as

$$
\left\|W \Delta_{h \Phi_{t}(x)}^{r}(f, x ; \mathbb{R})\right\|_{L_{p}[|x| \leq \sigma(2 t)]} \leq C_{4} h^{r}\left\|M\left[W \Phi_{t}^{r} f^{(r)}\right]\right\|_{L_{p}(\mathbb{R})}
$$

$$
\leq C_{6 t^{t}} \| f\left(f^{(r)} \Phi_{t}^{r} W \|_{L_{p}(\mathbb{k})}\right.
$$

Case 2. $p=1$. Integrating (9.12), and noting that if $u=x+s_{1}$ then for the range of x and s abova,

$$
\Phi_{t}(x) \sim \Phi_{t}(x+s)
$$

so we obtain

$$
\begin{aligned}
& \int_{|x| \leq \sigma(2 t)}\left|W \Delta_{h \Phi_{t}(x)}^{r}(f, x, \mathbb{R})\right| d x \\
& \leq C_{6} h^{r-1} \int_{|x| \leq \sigma(2 t)} \frac{1}{\Phi_{t}(x)} \int_{|\Delta| \leq \frac{r e}{2} \Phi_{t}(x)}\left|W f^{(r)} \Phi_{t}^{r \mid}\right|(x+s) d s d x \\
& \leq C_{7} h^{r-1} \int_{u=x+x+s,|x| \leq(2 t)}^{|s| \leq \frac{1}{2} h \Phi_{t}(x)} \frac{1}{\Phi_{t}(u)}\left|W f^{(r)} \Phi_{t}^{r}\right|(u) \int_{|\Omega| \leq \frac{r h}{2} \Phi_{t}(u)} d s d u \\
& \leq C_{8} h^{r} \int_{\mathbf{R}}\left|f^{(r)} W \Phi_{i}^{r}\right|(u) d u
\end{aligned}
$$

Next we give
The Proof of (9.10). We mimic the proof of (8.2) for $p>1$. For the given $t>0$, write $4 t=\frac{a_{n}}{u}$. Determine $n=n(t)$ by (5.25) and recall $u \sim n$ (see (6.25)) so that
(a) $\sigma(4 t) \leq a_{u} \leq a_{\alpha n}$
(b) $\sigma(4 t) \geq a_{\frac{4}{2}} \geq a_{\beta_{n}}$
for some $\alpha>1$ and $\beta>0$.
As in Lemma 3.1 in [11], we may withiput loss of generclity suppose that $a>0$. Suppose first that $r=1$. We have

$$
\begin{gathered}
\inf _{P \in \mathcal{P}_{r-1}}\|W(f-P)\|_{L_{p}[p v \geq a(4 t)]} \\
\leq\left\|W\left(f-f\left(a_{\beta_{n}}\right)\right)\right\|_{L_{p}\left[n \geq a_{\beta_{n}}\right]}=\left\|W(x) \int_{a_{a_{n}}}^{m} f^{\prime}(u) d u\right\|_{L_{p}\left[x \geq a_{\beta_{n}}\right]} \\
\leq C_{4} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left\|W f^{\prime}\right\|_{L_{p}\left[x \geq a_{\beta_{n}}\right]} \leq C_{5} \frac{a_{n}}{T\left(a_{\alpha_{n}}\right)^{\frac{1}{2}} n}\left\|W f^{\prime}\right\|_{L_{p}\left[m \geq a_{a_{n}}\right]}
\end{gathered}
$$

$$
\begin{equation*}
\leq C_{8} \frac{a_{n}}{T(\sigma(t))^{\frac{1}{2}} n}\left\|W f^{\prime}\right\|_{L_{p}\left[n \geq a_{\beta_{n}}\right.} \leq C_{7} \frac{a_{n}}{n}\left\|W f^{\prime} \Phi_{t}\right\|_{L p}\left[n \geq \alpha_{\beta n}\right] \tag{0,14}
\end{equation*}
$$

by Lemma $8.1,2,(6.6)$ and (6.36).
Assume (9.14) holds for $1,2,, r-1$. Choose $S \in \mathcal{P}_{r \rightarrow 2}$ such that

$$
\left\|W\left(f^{\prime}-S\right)\right\|_{L_{p}[x \mid \geq \sigma(t)]} \leq C_{6}\left(\frac{a_{n}}{n}\right)^{r-1}\left\|f^{(r)} \Phi_{i^{r-1}} W\right\|_{L_{P}(\mathbb{R})}
$$

Set

$$
P(x):=f\left(a_{p_{n}}\right)+\int_{a_{d_{n}}}^{x} S(u) d u
$$

Then we can bound the left hand side of (9.10) by

$$
\begin{align*}
& \|W(f-P)\|_{L_{p}}\left[x \geq a_{Q_{n}}\right] \tag{9.15}\\
\leq & C_{7}\left\|W(x) \int_{a_{\rho_{n}}}^{z}\left(f^{\prime}-S\right)(u) d u\right\|_{L_{p}\left[x \geq a_{\rho_{n}}\right]} \\
\leq & C_{8} \frac{a_{n}}{n T\left(a_{n}\right)^{\frac{1}{2}}}\left\|f^{(r) W \Phi_{t}^{r-1}}\right\|_{L_{p}\left[x \geq a_{\beta_{n}}\right]} \leq C_{9} t^{r}\left\|f^{(r) \Phi_{t}^{r} W}\right\|_{\mathcal{L}_{p}(\mathbb{R})}
\end{align*}
$$

and we have our result.
We deduce
The proof of Corollary 5.2.6(b). Write $t=\frac{\hat{m}_{u}}{4}$ and let $n=n(t)$ be determined by (5.25). Firstly

$$
\begin{gather*}
K_{r, p}\left(f, W, t^{r}\right)=\inf _{P \in \mathcal{P}_{n}}\left\{\|(f-P) W\|_{L_{P}(\mathbb{R})}+t^{r}\left\|W P_{n}^{(r)} \Phi_{t}^{r}\right\|_{L_{p}(\mathbb{R})}\right\} \\
\quad \geq \inf _{g}\left\{\|(f-g) W\|_{L_{P}(\mathbb{R})}+t^{r}\left\|W g^{(r)} \Phi_{t}^{r}\right\|_{L_{p}(\mathbb{R})}\right\} \\
=K_{r, p}^{*}\left(f, W, t^{r}\right) . \tag{9.16}
\end{gather*}
$$

Next, we may choose g such that

$$
\begin{equation*}
\|(f-g) W\|_{L_{P}(\mathbb{R})}+t^{r}\left\|W g^{(r)} \Phi_{t}^{r}\right\|_{L_{P}(\mathbb{R})} \leq 2 K_{r, p}^{r}\left(f, W, t^{r}\right) \tag{9.17}
\end{equation*}
$$

Also by Corollary 5.2.5, Theorem 5.2.1 and Corollary 5.2.2 wee may choose P_{n} such that

$$
\begin{equation*}
\left\|\left(P_{n}-g\right) W\right\|_{L_{P}(\mathbb{K})} \leq C_{2} w_{r, p}\left(g_{2} W, \frac{a_{n}}{n}\right) \tag{9,18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{a_{n}}{n}\right)^{r}\left\|W P_{n}^{(r)} \Phi_{i}^{r}\right\|_{L_{P}(\mathbb{R})} \leq C_{3} w_{r, p}\left(g, W, \frac{a_{n}}{n}\right) \tag{9.19}
\end{equation*}
$$

Thus by $(9.17-9.19)$ we have

$$
\begin{align*}
& K_{r, p}\left(f_{s} W, t^{r}\right) \\
& \leq\left\|\left(f-P_{n}\right) W\right\|_{L_{p}(\mathbb{R})}+t\left\|W P_{n}^{(r)} \Phi_{t}^{r}\right\|_{L_{p}(\mathbb{R})} \\
& \leq C_{4}\left[\|(f-g) W\|_{L_{P}(\mathbb{R})}+\left\|\left(g-P_{n}\right) W\right\|_{L_{P}(\mathbb{R})}+t^{r}\left\|W P_{n}^{(r)} \Phi_{i}^{r}\right\|_{L_{P}(\mathbb{R})}\right] \\
& \leq C_{5}\left[\|(f-g) W\|_{L_{P}(\mathbb{R})}+w_{r, p}\left(g, W, \frac{a_{n}}{n}\right)\right] \\
& \leq C_{6}\left[\|(f-g) W\|_{L_{P}(\mathbb{R})}+w_{r_{r}, p}\left(g, W_{,} t\right)\right] \text { (by (9.2)) } \\
& \left.\leq C_{7}\left[\|(f-g) W\|_{L_{P}(\mathbb{R})}+t^{r}\left\|g^{(r)} \Phi_{7}^{r} W\right\|_{L_{P}(\mathbb{R})}\right] \text { (by Corollary } 5,2.6(a)\right) \\
& \leq C_{8} K_{r, p}^{*}\left(f, W, t^{r}\right) . \tag{9.20}
\end{align*}
$$

Then (9.16) and (9.20) give the result,

9.3 A Marchaud Inequality

In this section we give:
The fruof of Theorem 5.2.7.
Proof. First let n be large enough and let P_{n}^{*} be the best approximant to f which exists and satisfies,

$$
\begin{equation*}
E_{n}[f]_{W_{i} p}:=\|(f-P) W\|_{L_{P}(\mathbb{K})} \tag{9,21}
\end{equation*}
$$

By Theorem 5.2.1 and Corollary 5.2.2, we may thus write using (9.21);

$$
\begin{equation*}
w_{r, p}\left(f, W, \frac{a_{n}}{n}\right)^{q} \tag{9.22}
\end{equation*}
$$

$$
\begin{aligned}
& \leq G_{9}\left[\left\|\left(f-P_{n}^{*}\right) W\right\|_{L_{P}(R)}+\left(\frac{a_{n}}{n}\right)^{r g}\left\|P_{n}^{*(r)} \Phi_{a_{n}}^{r} W\right\|_{L_{P}(\mathbb{R})}\right] \\
& \leq G_{10} W_{r+1, p}\left(f_{1} W, \frac{a_{n}}{n}\right)^{q}+\left(\frac{a_{n}}{n}\right)^{r g}\left\|P_{n}^{*(r)} \Phi_{a_{n}}^{n} W\right\|_{L_{P}(\mathbb{R})}
\end{aligned}
$$

for some $C_{91} C_{10}>0$. Here we use the inequality $(a+b)^{\alpha} \leq a^{\alpha}+b^{\alpha} a, b>0,0<\alpha<1$. Now choose $l=l(n)$ such that,

$$
\begin{equation*}
r 2^{l+2} \geq n \geq r 2^{l+1} \tag{9.23}
\end{equation*}
$$

where $n \geq 2 r$, and write,

$$
\begin{equation*}
\left.P_{n}^{+}(x)=\sum_{k=0}^{l-1}\left(P_{\left[\frac{n}{2 k}\right]}(x)-P_{\left[\frac{n}{k+1}\right.}^{x}(x)\right)+P_{\left[\frac{n}{2^{n+1}}\right]}^{k}\right] \tag{9:24}
\end{equation*}
$$

where $[x]=$ the largest integer $\leq x$.
Using Corollary 5.2 .2 and (9.21) gives for $0 \leq k \leq l$,

$$
\begin{align*}
& \left\|\left(P_{\left[\frac{n}{2}\right]}^{\left.(x)-P_{\left[\left[\frac{n}{2}\right.\right.}^{*}\right]}(x)\right) W\right\|_{L_{P}(\mathbb{E})}^{q} \tag{9.25}\\
& \leq\left\|\left(f-P_{\left[\frac{n}{z^{k+1}}\right]}(x)\right) W\right\|_{L_{P}(\mathbb{R})}^{q}+\left\|\left(P_{\left[\frac{n}{2}\right]}^{q}(x)-f\right) W\right\|_{L_{P P}(\mathbb{R})}^{q} \\
& \leq C_{11} w_{r+1, p}\left(f, W, \frac{a\left[\frac{n}{2^{k}+1}\right]}{\left[\frac{n}{\left.2^{k+1}\right]}\right]}\right)^{q}
\end{align*}
$$

for some $C_{11}>0$. Keeping in mind (9.22), we can now combine (5.27), (6.42), (9.24) and (9,25) to give,

$$
\begin{align*}
& \left\|P_{n}^{*(r)} \Phi_{\frac{u_{n}}{n}}^{u_{n}}\right\|_{L_{p}(\mathbb{R})}^{q} \leq C_{12}\left\|\sum_{k=0}^{l-1}\left(P_{\left[\frac{n}{2 k}\right]}^{*(r)}(x)-P_{\left[2^{*} k\right]}^{*(r)}(x)\right) \Phi_{\frac{a_{n}}{n}}^{r_{n}^{r}} W\right\|_{L_{p}(\mathbb{R})}^{q} \tag{9.26}\\
& +\left\|P_{\frac{n}{2}}^{*(r)}(x) \Phi_{\frac{a_{n}}{n}} W\right\|_{L_{P(x)}}
\end{align*}
$$

$$
\begin{align*}
& \left.+\| \|^{\frac{r a}{2} P_{\left[\frac{n}{2}\right]}^{*(r)}(x) \Phi^{q^{n}}\left[\frac{n / 2 l}{n / 2}\right]}\right]^{W} \|_{L_{P}(\mathbb{R})}^{q} \\
& \left.\leq C_{14} \sum_{k=0}^{l-1}\left(\frac{n}{\left[\frac{n}{\left.2^{k+1}\right]}\right.}\left[\frac{n}{2^{k+1}}\right]\right)^{-q}(k+2)^{r q} \|\left(P_{\left[\frac{n}{k}\right]}(x)-P_{\left[\frac{1}{2}\right.}^{k+1}\right]\right) \|_{L_{P}(\mathbb{R})}^{q} \tag{9.28}\\
& +\left(\frac{a\left[\frac{n}{2}\right]}{\left[\frac{n}{2}\right]}\right)^{-r q} l^{\frac{r q}{2}\|f W\|_{L_{p}(\mathbb{R})}}
\end{align*}
$$

some C_{12}, C_{13} and $C_{14}>0$.
We can now combine (0.32) with $(9,29)$ and $(9,26)$ and ex press this as an integral as,

$$
\left.\begin{array}{rl}
w_{r, p}\left(f_{i} W \frac{a_{n}}{n}\right)^{q} \leq & C_{15}\left(\frac{a_{n}}{n}\right)^{r q}\left[\int_{\frac{a_{n}}{n}}^{C_{\mathrm{Ib}}} w_{r+1, p}\left(f_{1} W_{1} u\right)^{q}\left(\log _{2}(n u)\right)^{\frac{+\pi}{2}} d u\right. \tag{9,29}\\
u^{\tau q}
\end{array}\right] .
$$

whereby following the proof carefully, it can be easily seen that C_{15} and C_{16} are independent of f and t.

Now let $t>0$, small enough and determine n by (5.25). First; observe that using Lemma $6.5(a),(6.24)$ and (6.10), we obtain constants C_{17} and $C_{18}>0$ independent of t and n such that,

$$
\begin{equation*}
C_{18} \leq \frac{\log n}{\log \left(\frac{1}{t}\right)} \leq C_{17} \tag{9:30}
\end{equation*}
$$

so that using (9.2) and (9.30), (9.29) becomes,

$$
\begin{aligned}
w_{r, p}(f, W, t)^{q} \leq & C_{19}(t)^{r q}\left[\int_{t}^{C_{20}} \frac{w_{r+1, p}(f, W, u)^{q}\left(\log _{2}\left(\frac{1}{t}\right)\right)^{\frac{r v}{2}}}{u^{r q}} d u\right. \\
& \left.+\left(\log _{2}\left(\frac{1}{t r}\right)\right)^{\frac{r q}{2}}\|f W\|_{L_{P}(\mathbb{R})}^{q}\right]
\end{aligned}
$$

Taking $\frac{1}{g}$ th roots gives the result:

BIBLIOGRAPHY

[1] S.S Bonan, Weighted Mean Convergence of Lagrange lnterpolation, Ph.D Thesis, Ohio State University, Columbus, Ohio, 1982.
[2] J. Clunie, T. Kövari, On Integral Functions having prescribed asymptotic growth II, Canad. J. Math., 20(1968), 7-20.
[3] S.B Damelin, Converse and Smoothness Theorenis for Erlós Weights in $L_{p}(0<p \leq \infty)$, Submitted to J.Approx Theory.
[4] S.B Damelin, Marchaud Inequalities for a class of Erdos Weights, to appear in the Proceedings of the Eighth Texas Symposium on Approximation Theory.
[5] S.B Damelin and D.S Lubinsky, Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Erdös Weights, to appear in Cagadian J.Math.
[6] S.B Damelin and D.S Lubinsky, Necessary and Sufficient Conditions for Mean C'n irerge: se of achange interpolation for Erdös Weights II, to appear in Canadian J.Math.
.] S. ${ }^{〔}$ Dimelin and D.S Lubinsky, Jackson Theorems for Erdos Weights in $L_{p}(0<p \leq \infty)$, submitted to J.Approx Theory.
[8] R.A.DeVore and V.A.Popov, Interpolation of Besov Spaces, Trans.Amet.Math.Soc, 305(1988), 397-414.
[9] R.A Devore, D.Leviatan, X.M.Yu, Polynomial Approximation in $L_{p}(0<p<1)$, Constructive Approximation, 8 (1992), 187-201.
[10] Z.Ditzian, V.H.Hristov, K.G.Ivanov, Moduii of Smoothness and K-functionals in? $L_{p}, 0<p<1$, Constructive Approximation, 11(1095), $67-83$.
[11] Z.Ditzian and D.S Lubinsky, Jackson and Smoothness Thecremis for Freud Weights in $L_{p}(0<p \leq \infty)$, submitted to Constructive Approximation.
[12] Z.Ditzian and V.Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol 9, Springer, Berlin, 1987.
[13] G. Freud, Orthogonal Polynumials, Pergamon Press/ Akademiai Kiado, Budapest, 1971.
[14] G.Freud, Weighted Approximation and K-functionals, in Theory of Approximation with Applications, A.C.L.Law etal.(eds.), Academic Press, New York, 1976, 9-23.
[15] G.Freud, and H.N Mhaskar, K-functionals and Moduli of Continuity in Weighted Polynomial Approximation, Arkiv for Matematik, 21 (1983), 145-161.
[16] M. von Golitschek, G.G. Lorentz and Y. Makovoz, Asymptotics of Weighted Polynomials, in Progress in Approximation Theory, A.A. Gonchar and E.B., Saff (eds.), Springer Series in Computational Mathematics, Vol. 19, Springer, New York 1992_{i} 431-451.
[17] V.H Hristov and K.G Ivanov, Realisation of K-functionals on subsets and Constrained Approximation, Math.Balkanica, 4 (New Series) (1990); 236-257,
[18] S. Jansche and R.L. Stens; Best weighted polynomial approximation on the real line: a functional analytic approach, J. Comp. Appl. Math., 40(1992), 199-213.
[19] A. Knopmacher and D.S Lubinsky, Mean Convergence of Lagrange Interpolation for Freud Weights with Application to Product. Integration Rules, J. Gomp. Appl. Math., 17 (1987), $79-133$.
[20] H.König and N.J. Nielson, Vector Valued L_{p} Convergence of Orthogonal Series and Lagrange Interpolation, Forum Mathematicum, 6 (1994), 183-207.
[21] H.König, Vector Valued Lagrange Interpolation and Mean Convergence of Hermite Series, to appear in Proc.Essen Conference on Functional Analysis, North Holland,
[22] P.Koosis, The Logarithmic Integral I, Cambridge University Press,Cambridge, 1988.
[23] D.Leviatan and X.M.Yu, Shape Preserving Approximation by Polynomials in L_{p}; manuscript:
[24] A.L. Levin and D.S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, Constructive Approximation, 8(1992), 463- -535.
[25] A.L Levin and D.S Lubinsky, L_{∞} Markov and Bernstein Inequalities for Errös Weights, SIAM J. Math.Anal, 21 (1990), 1065-1082.
[26] A.L. Levin, D.S. Lubinsky and T.Z. Mthembu, Christoffel functions and orthogonal polynomials for Erdols weights on ($-\infty, \infty$), Rendiconti di Matematica e delle sue Applicazioni (di Roma), 14(1994), 199- - 289.
[27] D.S Lubinsky, Converse Theorems of Polynomial Approximation for Exponential Weights on $[-1,1]$, subinitted J.Approx.Theory
[28] D.S Lubinsky, An Update on Orthogonal Polynomials and Weighted Approximation on tthe Real line, Acta Appic. Math, 33 (1993), 121 - 164.
[29] D.S Lubinsky, Idleas of Weighted Polynomial Approximation on ($-\infty, \infty$), to appear in The Proceedings of the Eighth Texas Symposium on Approximation Theory.

[30] D.S Lubinsky, An Extension of the Erdös- Turan Inequality for the sum of Successive Fundamental Polynomials, Annals Of Numerical Mathematics, 2(1995), 305-309.
[31] D.S Lubinsky, The Weighted L_{p} Norms of Orthogonal Polynomials for Erdös Weights, to appear.
[32] D.S Lubinsky:1990, L_{∞} Markov and Bernstein Inequalities for Erdäs Weights. J.Approx.Theory, Vol.no,60, pp.188-230.
[23] D.S Lubinsky and D.M Matjila, Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Freud Weights, SIAM J.Math,Anal, 26(1905);238-262.
[34] D.S Lubinsky antd T.Z Mthembu, L_{p} Markov Bernstein Inequalities for Erdös Weights, J.Approx. Theory, 65 (1991); 301-321.
[35] D.S Lubinsky and T. 2 Mthembu, Mean Convergence of Lagrange Interpolation for Erdös Weights,d.Comp.Appl,Math.,1993.
[36] D.S. Lubinsky and T.Z.Mthembu, Orthogonai expansions and the error of weighted polynomial approximation for Erdös weights, Numer. Funct. Anal. and Optimiz., 13(1992), 327- 347 .
[37] H.N. Mhaskar and E.B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc., 285(1984), 203- 284.
[38] H.N. Mhaskar and E.B. Saff, Where does the sup-norm of a weighted polynomial live?, Constructive Approximation, 7 (1985), 71- 91.
[39] .H,N. Mhaskar and E.B. Saff, Where does the L_{p} norm of a weighted polynomial live?, Trans. Amer. Math. Soc., 303(1987), 109- -124.
[40] T.Z Mthembu, Bernstein and Nikolskii inequalities for Erdös Weights, J.Approx Theory. 75(1993),214-235.
[41] B.Muckenhoupt, Mean Convergence of Hermite and LagurreSeries II, Tr. ns.Amer.Math.Soc, 147 (1970) , 433-460.
[42] P.Nevas, Geza. Freud, Orthogonal Polynomials and Chris ${ }^{\wedge}$ ffel Functions: A case study, J.Approx. Theory, 48 (1986) 3-167.
[48] P.Nevai (ed), Orthogonal Polynomials, Theory and Practice, Nato ASI Series, Vol.294, Kluwer. Dordrecht, 1990.
[44] P.Nevai, Orthogonal Polynomials, "Memoirs. Amer. Math.Soc.", Vol 213, Amer.Math.Soc,

Providence, R.I, 1979.
[45] PeNevai, Mean Convergence of Lagrange Interpolation J.Approx. Theory, II, 30 (1980), 263-276.
[46] P. Nevai and P.Vértesi, Mean Convergence of Hermite-Fejer Interpolation, J.Math.Anal. Applns, $105(1985), 26-58$.
[47] P.P. Petrushev and V. Popov, Rational Approximation of Real Functions, Cambridge University Press, Cambridge, 1987.
[48] E.B. Saff and V. Totik, Logarithmic Potentials with External Fhelds, Springer, to appear.
[49] E.M Stein, Harmonic Analygis:Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press; Princeton, 1993.
[50] J.Szabados and P.Vertesi, Interpolation of Functions, World Scientific, Singapore, 1991.
[51] V. Totik, Weighted Approximation with Varying Weight, Springer Lecture Nores in Mathematics, Vol, 1569, Springer, Berlin, 1994,

Author: Damelin Steven Benjamin.
Name of thesis: Weighted approximation for Erdos weights.

PUBLISHER:

University of the Witwatersrand, Jchannesburg
©2015

LEGALNOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page)for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

