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Abstract 

The development of prediction tools for production performance and the lifespan of 

shale gas reservoirs has been a focus for petroleum engineers. Several decline curve 

models have been developed and compared with data from shale gas production. 

Initially in this study, the current or existing decline curve models were evaluated using 

the goodness of fit as a measure of accuracy with field data.  

The evaluation found that there are advantages in using the current decline curve 

models; however, they also have limitations associated with them, which have to be 

addressed. A new hybrid model, which incorporates the Autoregressive Integrated 

Moving Average (ARIMA), and the Artificial Neural Network (ANN), was examined and 

reasoned from literature to provide a higher level of accuracy. Based on the accuracy 

assessment conducted on the different models, the Stretched Exponential Decline 

Model (SEDM) and Logistic Growth Model (LGM), followed by the Exponential Decline 

Model (EDM), the Power Law Exponential Model (PLE), the Duong Model and, lastly, 

the Arps Hyperbolic Decline Model provide the best fit with production data. The 

coefficient of variance (R2) values were, 0.9672, 0.9627, 0.9528, 0.9512, 0.9382 and 

0.8849, respectively. 

Secondly, the study used the hybrid model philosophy to develop, predict and validate 

shale gas decline. The results indicated that the PLE and Duong model provided the 

best-fit and R2 with the estimated data. The use of hybrid models provides a more 

precise predicting model for forecasting time series data, as compared to an individual 

model. 

The forecasting performance of decline curve hybrid models and ANN-ARIMA hybrid 

models are evaluated and compared with Arps, Duong, PLE, ARIMA and ANN models, 

respectively. The variable used to assess the models was the respective flow rate, q(t) 

monitored over a period of time (t). The results have shown that the Arps-PLE hybrid 

decline model had the lowest root mean square (RMSE) and good R2 followed by the 

ANN and ARIMA models. The result provided a significant contribution to the 

prediction of shale gas production. The Arps-PLE hybrid decline model is a good 

model predictor for shale gas production. The contributing factor is the dominance of 

the PLE parameters i.e., Di changes at early stages and D∞ become constant at late 
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time in the model. This caters for the transient flow regime (TFR) which the Arps 

decline model did not consider.  

Thirdly and lastly, the study evaluated the EUR, and it was found that different values 

are obtained from the various models. The EUR is either over or underestimated. The 

Arps-PLE hybrid decline and ANN models, which were found to be the best models in 

predicting values closest to the actuals, were used to calculate the EUR and to 

compare with other decline curve models. The results clearly show the overestimation 

of the EUR values for the different shale plays using the Arps, Duong and PLE decline 

models, compared to the Arps-PLE hybrid decline and ANN models. Evaluating the 

EUR accurately would then allow for the accurate estimation of the total net revenue 

generated from a shale play.  
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Chapter 1  

Background and Motivations 

1.1. Introduction 

In recent years, shale gas reservoirs have gradually become the major sources of 

natural gas production around the world (Zhang et al., 2017). Shales and silts are the 

most abundant sedimentary rocks in the earth’s crust and from recent years’ activities 

shale gas will constitute the largest component in gas production globally, as 

conventional reservoirs continually decline (Wang, 2017). According to Wang (2017), 

unlike conventional reservoirs, the shale gas reservoirs tend to be more expensive to 

develop and require special technologies to enable the gas to be produced at an 

economical rate, due to its extremely low matrix permeability and porosity. Thus, 

modelling the shale gas production and its declines is essential to predict how fast the 

gas can be produced and be turned into revenue from each well, and the economic 

viability of producing natural gas from the operated shale plays (Wang, 2017). 

Rate-time decline curve extrapolation is one of the oldest and most commonly used 

tools used by a petroleum engineer (Fetkovich, 1980). Results obtained for a well are 

subject to a wide range of alternate interpretations, mostly as a function of the 

experience and objectives of the evaluator. Recent efforts in the area of decline curve 

analysis (DCA) have been directed toward a purely computerized statistical approach, 

its basic objective being to arrive at a unique "unbiased" interpretation (Fetkovich, 

1980). In the past few decades, several DCA models have been proposed and 

benchmarked with commercial reservoir simulators or shale gas production data 

before being applied to more shale gas reservoirs (Tan et al., 2018). 

For these reasons, this research is intended to assist the petroleum industry worldwide 

and particularly in South Africa in understanding the decline behavior and 

characteristics of shale gas reservoirs by:  

 Analyzing field production data using a developed decline curve model.  

 Validating the model against existing models, and  

 Determining which model should receive more focus and attention.   
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Secondly, this research is to determine the financial impact of decline curve analysis 

on the present and future value of shale gas reservoirs. 

1.2. Problem Statement 

Numerous studies have highlighted the importance of DCA models. However, there 

are limitations. Analysis conducted using these techniques for the prediction and 

estimation of reservoirs in shale well production with the decline exponent, b ˃ 1 have 

highlighted shortcomings in the models (Paryani et al., 2018). There can be an under-

estimation, or an overestimation of the estimated ultimate recovery (EUR) of reserves. 

Considering these facts, there is scope for developing an improved model, which 

addresses these shortcomings. The shortcomings are listed below for the different 

DCA models. 

 Arps Hyperbolic Decline: post-production overestimation. 

 Modified Hyperbolic Curve: is still unable to determine 𝐷𝑙𝑖𝑚 for production 

data. 

 Power Law Exponential Decline: there are four unknown variables to solve. 

 Stretched Exponential Decline: requires sufficiently long production times. 

 The Extended Exponential Model: the parameter 𝛽𝑙 has an incomplete 

influence on the curve fitting and is therefore fixed. 

 Duong’s Decline: for extended periods, a proper rate initialization against 

pressure is required, and in the event of water breakthrough, a and m 

increases. 

 Logistic Growth: growth is only possible up to a certain size. 

1.2.1. Main Focus 

The purpose of this study is to develop a decline curve model, which can accurately 

forecast or predict shale gas production when exploration begins in South Africa. The 

reason for conducting this investigation is to determine whether improved hybrid 

models can assist in guiding petroleum companies to recover from loss of revenue. 

1.2.2.  Sub-Focus  

The research is broken down into two separate sub-foci: 
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 The first sub-problem is to develop a decline curve model which can accurately 

predict or forecast future production from field production data. 

 The second sub-problem is to determine how decline curve analysis can assist in 

future revenue estimation.  

1.3.  Research Aim (s) and Objective (s) 

The main aim of this study is to model the decline of shale gas reservoirs 

mathematically, and determine its financial impact. The developed model will be 

validated against three DCA models, in order to assess the level of accuracy in the 

prediction results.  

 To meet the aims of this research five main objectives will be investigated:  

 Analyse the accuracy and sensitivity of Decline Curve Models. 

 Develop hybrid decline curve models. 

 Validate the developed model against other DCA models i.e. the three models 

that have been identified for this study. 

 Determine which of the decline models accurately forecasts the production 

decline of shale gas reservoirs (estimate the quantity of gas available), and  

 Lastly, determine the present and future value of the reservoir. 

1.4. Delimitation (s) and Limitation (s) of the Study 

1.4.1. Delimitation (s) 

The research was subject to the following delimitation; while the results and 

recommendations of this research study could be applicable to most shale wells, the 

research data used was primarily from United States shale wells. 

1.4.2. Limitation (s) 

 Production data from previous studies was extrapolated and used in the study. 

Data inputs such as volume, temperature and pressure were not available. 

 Due to the limitation on input data, a univariant ANN model was developed and 

tested. 

http://www.revistaespacios.com/a17v38n49/a17v38n49p33.pdf
http://www.revistaespacios.com/a17v38n49/a17v38n49p33.pdf
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 Lastly, for the purposes of this study, due to the limited information available 

regarding the equity investment, depletion allowance, total net operating 

expenses and severance and ad valorem expenses, these parameters will be 

excluded from the study and the financial model will only consider the estimated 

total net revenue. 

1.5. Thesis Organisation 

The thesis is organised into nine chapters. The first chapter covers the introduction to 

this study and highlights the background to the study, the problem statement, the 

objectives and the organisation. Chapter 2 deals with the review of literature and 

focuses on previous research. Chapter 3 discusses the research methodology. 

Chapter 4 discusses the evaluation and sensitivity analysis of decline curve models. 

Chapters 5, 6 and 7 examines model development, simulations and validations, 

respectively. Chapter 8 of the thesis briefly discusses the financial modelling analysis. 

Lastly, Chapter 9 covers the conclusions and recommendations. 
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Chapter 2 

The Literature Review 

2.1. Introduction 

In recent years, shale gases from reservoirs have gradually become the major sources 

of natural gas production around the world (Zhang et al., 2017). Shale gas as an 

energy resource is growing rapidly and currently constitutes more than 20% of the 

drilled gas production in the United States (US) (Knudsen et al., 2012). Exploitation of 

shale gas is land-based, and normally requires a very large number of wells to achieve 

profitable recovery rates (Knudsen et al., 2012). Unlike conventional reservoirs, the 

shale gas reservoirs tend to be more expensive to develop and require special 

technologies to enable the gas to be produced at an economical rate, due to its 

extremely low matrix permeability and porosity (Wang et al., 2017).  

Shale gas reservoirs have been analysed around the world, however, development 

has been stalled due to a variety of issues one of which is an accurate production 

forecast (Nwaobi and Anandarajah, 2018). Estimated ultimate recovery (EUR) 

approximates the quantity of oil or gas that is potentially recoverable or has already 

been recovered from a reserve or well. EUR is similar in concept to recoverable 

reserves (Nwaobi and Anandarajah, 2018). The EUR is an essential factor for both 

investors and policy makers in appraising petroleum resources (Nwaobi and 

Anandarajah, 2018). 

Thus, modelling the shale gas production and its declines correctly is essential to 

predict how fast the gas can be produced and turned into revenue from each well, and 

the economic viability of producing natural gas from the operated shale plays (Wang 

et al., 2017).  

2.2. Unconventional Reservoirs: Overview of Shale Gas Production  

According to Moridis et al. (2013), unconventional gas resources (UGRs) is a term 

used to describe accumulations that are currently hard to characterize and 

commercially produce using traditional exploration and production technologies 

(Moridis et al., 2013). They include: 
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 Natural gas from shale formations (shale gas). 

 Natural gas from coal seams (coal-bed methane). 

 Crude oil from shale formations or other formations with low permeability (tight 

or shale oil). 

Due to the growing demand for energy and the declining of conventional oil and gas 

production, shale gas has received increasing attention worldwide. Compared with 

other fossil fuels, shale gas is a clean-burning and efficient energy resource. Figure 

2.1 provides a list of the 10 countries holding the largest resources of shale gas (Yuan 

et al., 2015).  

 

 

Figure 2.1: Top 10 countries holding the largest shale gas resources (Yuan et 

al., 2015) 

The influence of shale gas usually needs a sizeable quantity of wells to achieve 

favourable recovery rates (Knudsen et al., 2012). Nwaobi and Anandarajah (2018) 

explained that shale gas reservoir production and viability have been investigated 

globally but progress has been slow due to a number of concerns, one of which is a 

precise production forecast. Nwaobi and Anandarajah (2018) went on to define that 

the quantity of shale gas reserve that can be recovered is the EUR for the petroleum 

industry. The EUR is a key factor for stakeholders and policymakers in evaluating 

petroleum resources (Nwaobi and Anandarajah, 2018).  
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Shale gas has played a key role in giving the US, formerly a natural gas importer, the 

ability to export natural gas. This development has helped the US to successfully 

ensure its energy security and significantly reduce carbon emissions. Canada has 

become the second country to achieve the commercial exploitation of shale gas. The 

successful development of shale gas in Canada, has injected new vitality into the 

nation’s natural gas production, which had previously experienced a rapid decline 

(Yuan et al., 2015). A new report from the International Energy Agency says that a 

remarkable ability to unlock new resources cost-effectively will push US oil and gas 

output to a level of 50 percent higher than any country has ever managed before. That 

is expected to have a considerable impact on both North America and the world, with 

the expansion set to reorder international trade flows as well as fuelling investment in 

energy-intensive industries such as petrochemicals (McCarthy, 2017). 

 

Figure 2.2: Shale gas production growth in the US from 1980 and projected to 

2010 (McCarthy, 2017) 

2.3. Characteristics and Production Behaviour of Shale Gas 

Shale gas reservoirs possesses characteristics such as ultra-low permeability, a no 

trap mechanism, and the gas is tightly absorbed to the rock particle, which is the 

opposite of a conventional reservoir (Adekoya, 2009). Hydraulic fracturing is often 

used in reservoirs with low permeability that are not able to reach economic production 

rates (Adekoya, 2009). This is very different in character to the naturally fractured 
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reservoirs that are classified as having dual porosity (Adekoya, 2009). There are four 

different flow regimes that can occur in a hydraulically fractured reservoir and several 

flow periods can exist during the life cycle of a shale gas well (Adekoya, 2009; Nelson, 

2009). These comprise fracture linear flow, fracture boundary flow, matrix linear flow, 

and lastly matrix boundary flow (Joshi, 2012). Joshi (2012) explained the different flow 

regimes for shale gas reservoirs as follows:  

 Fracture/Early Linear Flow: Is a transient flow regime (TFR) that occurs when 

the production flow is linear to the single fractures. This flow regime governs 

the known life of most shale wells. A negative half slope on a log-log plot of rate 

versus time can be used to differentiate this linear flow.  

 Fracture Boundary Flow: Follows after a certain period of production when an 

interference occurs i.e., from linear to simulated reservoir volume (SRV). Many 

of the existing horizontal shale wells have not experienced this regime, but 

some of the newer wells with huge fracture treatments have been observing 

this regime early. This can be observed on a log-log plot by deviation from a –

1/2 slope line on a log-log plot of rate versus time.  

 Matrix Linear Flow: When production from the matrix, beyond the SRV, starts 

to govern the production, a linear type of flow will be seen. This regime will 

probably not be observed in the economic life of the well. Comparable to 

fracture linear flow, this regime can be observed using a negative half slope line 

on a log-log plot of rate versus time.  

 Matrix Boundary Flow: After the outer matrix transient has reached the 

drainage boundaries of the well, a deviation from the negative half slope, 

corresponding to matrix linear flow, will be observed. This deviation is 

equivalent to matrix boundary flow. Similarly, to the matrix, a linear flow will 

probably not be observed.  

Figure 2.3 depicts the different flow regimes which has been explained in a typical 

multistage fractured horizontal well in the Marcellus Shale Well (Joshi, 2012). The 

figure was created using the Fekete Well Test Software and using input properties 

obtained from literature (Joshi, 2012).  
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Figure 2.3: Flow regimes in a multistage fractured horizontal well (Joshi, 2012) 

2.4. Characteristics and Production Behaviour of Shale Gas 

2.4.1. Shale Gas in the United States 

The US has abundant natural gas resources within the Barnett Shale Well, 

Haynesville/Bossier Shale, Antrim Shale, Fayetteville Shale, New Albany Shale, and 

Marcellus Shale Well (Kargbo et al., 2010). At the annual production rate of about 19.3 

Tcf, there is enough natural gas to supply the US for the next 90 years, with some 

estimates extending the supply to 116 years. The total number of natural gas and 

condensate wells in the U.S. increased by 5.7% in 2008 to a record of 478,562 with 

some of the produced natural gas lost via flaring. The Barnett Shale Well is located in 

the Forth-Worth basin of Texas and was the first modern commercial shale play in the 

US, having been discovered in 1981 (Kenomore et al., 2018). Until 2012, it was the 

largest shale gas basin (Newark East Field) in the world, before been replaced by 

Marcellus. Natural gas extraction in the Marcellus Shale Well is currently an expensive 

endeavour. A typical horizontal drilled well, using multistage fracturing techniques, 

costs roughly $3-5 million to complete. The large amount of water used, and 

management of the wastewater are also very costly factors. According to the Global 

Shale Gas Initiative (GSGI), there are more than 688 shale deposits worldwide in 142 
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basins and 48 major shale basins which are located in 32 countries (Wang, 2017). 

Figure 2.4 shows the shale basin across the United States (Kargbo et al., 2010). 

 

Figure 2.4: Shale basins across the US (Kargbo et al., 2010) 

2.4.2. Hydraulic Fracturing 

To simulate gas production in shale, complex gas transport mechanisms and the 

presence of natural and hydraulic fractures need to be considered, which makes the 

simulation of shale gas reservoirs a challenging task (Tan et al., 2018). Hydraulic 

fracturing was developed in the US in the late 1940s to assist in the stimulation of oil 

and natural gas wells (Steyl et al., 2012). The technique itself is mechanically related 

to three other phenomena, which have previously been well documented. These are:  

 pressure parting in water injection wells in secondary-recovery operations,  

 lost circulation during drilling, and  

 the breakdown of formations during squeeze-cementing operations, all of which 

appear to involve the formation of open fractures by pressure applied in a 

wellbore (Hubbert and Wallis, 1972). 

The fracking process (Figure 2.5) is very technical and intensive. During the drilling 

process, each well can require up to 6 million gallons of water to reach the desired 

output. Drilling companies typically pipe the water they use from nearby rivers and 

streams.  
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Figure 2.5: The hydraulic fracturing process (Kendon, 2019) 

The following explains the different processes - as seen in the figure above: 

1. A mixture of water, sand and chemicals is shot down the well at high pressure. 

2. The pressurized mix causes fissures to develop. The sand in the mixture helps 

keep the fissures open, allowing oil to seep into the well. 

3. The seeping oil is then pumped back up the well. 

2.5. Shale Gas Reservoirs in South Africa 

The announcement that gas exploration will take place in the Karoo has raised both 

concern and elation. The excitement is partly due to the creation of employment 

prospects while the concern is driven by a fear that the pristine way of life in the Karoo 

area might be destroyed (Steyl et al., 2012). One major concern that has been raised 

is the influence of hydraulic fracturing on groundwater resources and the top 

geological strata in the Karoo. Due to the present energy shortfall in South Africa, the 

requirement for new energy sources has gained new momentum and part of this new 

focus is on shale gas in Karoo type formations. A number of companies are planning 
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to explore and exploit the shale gas reserves of the Karoo of South Africa and 

elsewhere, with shale gas projects, have encountered substantial local opposition 

(Wait and Rossouw, 2014). The most interesting aspect of this is that the area 

available for natural gas development is substantially larger than just the Karoo, with 

exploration areas covering six of the nine provinces in South Africa. A five-spot 

pumping test in the Waterberg has been operated since 2004 by Anglo Operations 

and 20 boreholes have been drilled in the main Karoo since the beginning of 2008 to 

test for coal-bed methane production potential (Steyl et al., 2012). 

2.6. Shale Gas Extraction: Environmental Impact 

Shale gas exploration and exploitation require proper guidelines in view of the 

environment (Dayal, 2017). Shale gas exploration includes the shallow seismic study 

of the basin, either explosives or Vibroseis are used for obtaining the seismic data 

(Dayal, 2017). According to Soomro et al. (2017), the following aspects affect the 

environment, due to shale gas extraction: 

1. Surface and Ground Water Contamination  

In the high risk of water contamination at different steps of the well site preparation, 

fracking process, fluids flow toward the surface, and contamination during well 

abandonment on the surface at ground level has been observed. Soomro et al’s (2017) 

study considered the water contamination risks as being caused by the following: 

 Poor well design or poor casing structure. 

 Well, kick or mechanical equipment failure. 

 Movement of combustible natural gas towards the water storage/supplies. 

 Geological conditions are inadequate. 

 Inadequate planning and site preparation and management. 

2. Air emissions  

According to Theodori (2013), the natural gas produced during the fracking operations 

can be bad for the atmosphere which can be compared with the effects of coal usage. 

This is due to the discharge into the atmosphere. Loh and Loh (2016) suggested that 

the emissions from shale gas are between 20-100% more than that of coal during the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/natural-gas-exploration
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/vibroseis
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/seismic-data


13 
 

life cycle of greenhouse gas on a 20-year timeframe basis. The emissions produced 

from this fracking operation are harmful for the environment. 

3. Land and Take 

Certain aspects of Soomro et al’s (2017) study showed that the land used in shale gas 

extraction has a significant risk of impact because of the small size of land required 

for production stage of coal, compared to the large size of the land required for the 

fracking process. 

4. Noise Pollution 

There are many sources of noise in shale gas extraction i.e., during excavation, 

installation and drilling, running generators, processing and transport and the level 

varies from stage to stage i.e., during the preparation and production cycle (Soomro 

et al., 2017). 

5. Seismicity 

The seismic effect associated with the fracking process is negligible up to  a magnitude 

of 3 on the earthquake magnitude scale which is undetectable. Therefore, the risk 

attached to this hazard is low (Howarth et al., 2011). The summary of risk level at 

various stages of field development to individual site can be seen in Table 2.1. 
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2 Not Applicable (N/A) - Impact not relevant to this stage of development  
3 Not classifiable (N/C): Insufficient information available for the significance of this impact to be assessed  
 

Table 2.1: Level of risk at various stages of field development (Soomro et al., 2017) 

Aspects of environmental 
hazards 

Site start-
ups 

Well 
Design 

Fracturing 
Operations 

Well 
Completion 

Production Well 
Abandonment 
(Pre and Post) 

Overall Rating 

Water Contamination Ground N/A2 Low Moderate - High High Moderate - 
High 

N/C3 High 

Surface Low Moderate Moderate - High High Low N/A High 

Resources of water  N/A N/A Moderate N/A Moderate N/A Moderate 

Air Impact  Low Moderate Moderate Moderate Moderate Low Moderate 

Land and take 
impact 

 Moderate N/A N/A N/A Moderate N/C Moderate 

Seismicity Impact  N/A N/A Low Low N/A N/A Low 
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2.7. Modelling Shale Gas Reservoirs 

Reliably predicting the long-term production performance of shale (unconventional) 

reservoirs has been challenging. The petroleum industry needs simple, easily applied 

and rapid methods of forecasting production and estimating reserves. Therefore, an 

empirical technique such as DCA is an appealing alternative compared to reservoir 

simulation and applied analytical methods (Makinde and Lee, 2017). Due to the 

relative simplicity of DCA, it is considered the most common method used in the 

industry. 

DCA is a technique where production data from a well or reservoir is used to predict 

the well/reservoir’s future production (Paryani et al., 2018). Two important goals of 

DCA are to estimate the remaining reserves and their remaining life, down to a 

specified economic limit, both of which are important for determining the economic 

viability of a shale resource play (Chen et al., 1992). In addition, no rate decline model 

can be expected to provide a unique forecast of future performance or EUR (Leblanc 

and Okouma, 2018). 

Production data from unconventional reservoirs exhibits extensive periods of transient 

(linear and bilinear) flow behaviour, due to low/ultra-low permeability. This often leads 

to an over-estimate of gas-in-place/reserves when using the conventional rate-time 

relations (exponential and hyperbolic rate-time relations). A common practice for 

reserves estimation in unconventional reservoirs is to use the hyperbolic relation and 

constrain the ultimate extrapolation by including a terminal exponential decline value, 

or a “modified hyperbolic” designation. In an attempt to better represent the general 

character of production data for multi-stage, fractured horizontal well in an ultra-low 

permeability reservoir, numerous authors have developed rate-time models using 

specific assumptions to best represent a particular scenario (Leblanc and Okouma, 

2018). 

2.7.1. Arps Decline Curve and the Modified Hyperbolic Decline Model (MHD) 

Arps decline curve analysis is the most commonly used method of estimating ultimate 

recoverable reserves and future performance (Boah et al., 2018). Paryani et al. (2018) 

reasons this to be a reliable history match (even with b > 1) and its simplicity. The 
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modelling process is based on vital assumptions: that past operating conditions will 

remain unaffected, a well is produced at or near capacity, and the well’s drainage 

remains constant and is produced at a constant bottom-hole pressure (Ali and Sheng, 

2015).  

Notably, the Arps model is only applicable in pseudo-steady flows when the flow 

regime transfers from linear flows to boundary-dominated flows (BDF) (Yuhu et al., 

2016). This indicates that the Arps Equations are not applicable to the production 

forecasting of the entire decline process of horizontal wells in low-permeability 

reservoirs (Li et al., 2018). The Arps DCA can be divided into three types: exponential 

Equation (2.1), hyperbolic Equation (2.2), and harmonic Equation (2.3) (Arps, 1945; 

Qu and Lin, 2018) (Figure 2.6). 

Figure 2.6: Arps three decline models and formulas on a semi-log plot (Kanfar, 

2013) 

𝑞 = 𝑞𝑖𝑒−𝐷𝑡 (2.1) 

𝑞 =
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 (2.2) 

𝑞 =
𝑞𝑖

1 + 𝐷𝑖
 (2.3) 
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where q is the flow rate in STB/day or Mscf/day, qi is the initial flow rate in STB/day or 

Mscf/day, D is the decline constant while Di is the initial decline constant, both of which 

are measured in days − 1, and b is the decline exponent.  

The most commonly employed hyperbolic form of Arps decline Equation (2.2) is used 

for shale reservoirs (Figure 2.7). 

 

 

 

 

 

 

 

Figure 2.7: Production data for a gas well fit with the Arps hyperbolic model 

(Clark, 2011a) 

The hyperbolic decline Equation is suitable to use due to the “best fit” that it provides 

for the long transient linear-flow regime observed in shale gas wells with b values 

greater than unity (Qu and Lin, 2018). The model results in post-production 

overestimation due to the decrease in the decline rate with production time. Due to the 

overestimation. Robertson (1988) suggested a revised version of the hyperbolic 

decline model for shale gas production decline. The equation is given as: 

 

𝑞 =
𝑞𝑖

(1 + 𝑛𝐷𝑖𝑡)1/𝑛 
  (𝐷 > 𝐷𝑙𝑖𝑚) (2.4) 

𝑞 = 𝑞𝑖 𝑒𝑥𝑝(−𝐷𝑙𝑖𝑚𝑡)  (𝐷 ≤ 𝐷𝑙𝑖𝑚) (2.5) 
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where q is the production rate in m3/d or STB/day, 𝐷𝑙𝑖𝑚 is the decline rate in d−1, and 

n is the time exponent. They suggested that the hyperbolic decline model sometimes 

yields unrealistically high reserve estimates. They made an assumption that the rate 

of decline starts at 30% of flow and usually declines in a hyperbolic way (Robertson, 

1988). This modified model considers when the hyperbolic decline in the early life of 

a well transfers to exponential decline in its later life (Robertson, 1988). The switching 

process can be determined by applying computer programs. The switching point is 

when the decline rate is smaller than a certain limit (usually 5%) (Robertson, 1988). 

The Modified Hyperbolic Decline (MHD) model addresses the overestimation limitation 

of EUR. However, it is still unable to determine 𝐷𝑙𝑖𝑚 for production data (Yuhu et al., 

2016). 

2.7.2. Power Law Exponential Model (PLE) 

Ilk et al. (2008) presented the PLE, which is an extension of the exponential Arps 

formula for the decline degree in shale reservoirs. This model was developed precisely 

for shale gas reservoirs (SGR) and approximates the rate of decline with a power law 

decline. The PLE model matches production data in both the transient and boundary-

dominated regions, without being hypersensitive to remaining reserve estimates 

(McNeil et al., 2009). Seshadri and Mattar (2010) presented that the PLE model can 

model transient radial and linear flows, while Kanfar and Wattenbarger (2012) proved 

that the model is reliable for linear flow, bilinear flow and linear flow, followed by BDF, 

or bilinear flow followed by linear flow and finished with BDF flow. Vanorsdale (2013) 

deduced that when the flow regime changes throughout the initial 10 years of the well, 

the PLE model would yield a very optimistic recovery. The model characterizes the 

decline rate by infinite time, D∞ which is defined as a “loss ratio” (which is assumed to 

be constant from Arp) (Li et al., 2018). The production rate is derived as follows: 

𝑞

  𝑑𝑞/𝑑𝑡
= −𝑏 (2.6) 

𝑏 = 𝐷∞ + 
𝐷𝑖𝑡

−(1−�̂�) (2.7) 

where 𝑑𝑞/𝑑𝑡 is the slope, D∞ is the decline rate over a long-term period, and �̂� is the 

time exponent. By substituting the above equations, the production rate is obtained: 
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𝑞(𝑡) = �̂�𝑖𝑒[−𝐷∞𝑡−�̂�𝑖𝑡�̂�] (2.8) 

In this model, there are four unknown variables: �̂�𝑖 , �̂�𝑖, 𝐷∞ 𝑎𝑛𝑑 �̂�, which result in several 

degrees of freedom and may be clumsy to use or solve (Hu et al., 2018). According to 

Johnson et al. (2009), the D∞ parameter is difficult to determine. However, there are 

advantages to this model in that the extra variables allow for both transient and 

boundary flow, and the equation for production rate seems comparable to the Arps 

exponential equation (Paryani et al., 2018). 

2.7.3. Stretched Exponential Decline Model (SEDM) 

Valkó (2009), Valkó, and Lee (2010) applied the SEDM in shale wells, which is an 

empirical method that differs from the Arps Equations, as it describes the decline trend 

of production data obtained from unconventional reservoirs. It was developed to fit 

transient flow regimes (Joshi, 2012; Kanfar and Wattenbarger, 2012).  

The significant advantages of the model are the bounded nature of EUR without limits 

on time or rate, and the straight-line behavior of a recovery potential expression 

Figure 2.8: PLE schematic developed by IIk et al. (2008) (Kanfar, 2013) 
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(Valkó, 2009). The model differs from other models, since it does have a basis in 

physics and is directed by a major differential equation (Ali and Sheng, 2015). It is 

used to model aftershock decay rates (Valkó, and Lee, 2010). The production rate 

declines with time, according to the following equations: 

𝑑𝑞

𝑑𝑡
=  −𝑛 (

𝑡

τ

𝑛

)
𝑞

𝑡
 

  (2.9) 

𝑞 = 𝑞𝑖 ex p [− (
𝑡

τ
)

𝑛

] 
 (2.10) 

Ǫ =
𝑞𝑖

𝑛

𝑛

{ɼ [
1

𝑛
] − ɼ [

1

𝑛
. (

𝑡

τ
)

𝑛

]} 
 (2.11) 

EUR =
𝑞𝑖

 𝑛

τ

τ [
1

𝑛
] 

 (2.12) 

This method defines a characteristic number of periods, 𝜏 and a dimensionless 

exponent, n, of the ratio of time, t. It also uses observed cumulative production along 

with theoretical cumulative production, derived from the integral of the rate-time 

equation to estimate remaining technically recoverable volumes. Equation (2.10) 

appears similar to the PLE model; however, it differs, as it does not rely on a single 

interpretation of parameters. Instead, it uses two-parameter gamma functions 

(Johnson et al., 2009).  

In addition, there are no single 𝜏 and n parameters, but instead, a sum of multiple 

exponential declines, which follows the fat tail distribution (Valkó, 2009). SEDM 

requires an iterative process to determine the value of the parameter, n. The model 

can only estimate the recoverable volumes with an abandonment rate of zero, as 

opposed to commercial volumes with economic cut-off rates and it has not been widely 

used (Can and Kabir, 2011). However, Can and Kabir (2011) showed that in tight 

formations where transient flow period is extremely long, the SEDM has been 

successful in modeling the rate-time behavior and provides more realistic reserve 

estimates compared to Arps decline relations. 
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2.7.4. The Extended Exponential Model (EEDM) 

Zhang et al. (2016a and 2016b) presented a renewed experimental method, the 

EEDM, as a simple formula to forecast shale oil and gas well performance. They 

proposed a mechanism of “growing drainage volume” to conceptualize and model the 

performance of shale wells. This model combines the exponential decline equation 

proposed by Fetkovich (1980) Equation (2.13) with the derived empirical Equation 

(2.14). The EEDM includes both transient and BDF flow in a single equation, and it 

can match the historical data with a smooth curve throughout the transition period from 

transient to BDF flow regimes. Furthermore, the model is simple and can easily be 

applied (Zhang et al., 2016). It is also able to project the future production by fitting all 

of the historical production data from the beginning of the production decline. 

Paryani et al. (2018) stated that the model contains two decline constants and a 

decline exponent. Particularly noteworthy is the fact that the production data fits using 

a smooth curve through the whole flow systems (Li et al., 2018). The advantage of the 

model is that both early and late production profiles can be captured once 

𝛽𝑒 𝑎𝑛𝑑 𝛽𝑙 have been calibrated, using the production data (Zhang et al., 2016a and 

2016b). However, as parameter 𝛽𝑙 has an incomplete influence on the curve fitting, it 

is therefore fixed: 

𝑞 = 𝑞𝑖𝑒
−𝑎𝑡  (2.13) 

𝑎 = 𝛽𝑖 + 𝛽𝑒  (2.14) 

where a is the nominal decline rate, βi is the late-life period constant, and βe is the 

early period constant. Combining Equations (2.13) and (2.14) and taking the logarithm 

of each side, the equation below (the exponential decline equation) is obtained: 

𝐼𝑛
𝑞
𝑞𝑜

𝑡
= 𝛽𝑙 + 𝛽𝑒𝑒−𝑡𝑛

 
(2.15) 

where qo is the initial production rate in m3/s. Figure 2.9 shows decline curves which 

are controlled by Zhang’s constants e and i..  
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2.7.5. Duong’s Decline Model 

Duong (2011) presented an unconventional rate decline method to evaluate the 

performance of shale gas wells that does not depend on the fracture types. Figure 

2.10 summarizes the computation of the Duong’s Model.  

The model assumes linear or near-linear flow, as indicated by a log–log plot of rate 

over cumulative production versus time, which yielded a straight-line tendency (Lee 

and Kim, 2016). The rate is calculated in the model using the following Equation (2.16): 

(𝑡) = 𝑞𝑖𝑡(𝑎, 𝑚) + 𝑞∞ (2.16) 

where t (a,m) is the time constant in 1/s, and q∞ is the production rate at infinite time 

in m3/s. The cumulative production and time constant are calculated as: 

𝐺𝑝 =
𝑞𝑡(𝑎, 𝑚)

𝑎𝑡−𝑚
  (2.17) 

𝑡(𝑎, 𝑚) = 𝑡−𝑚exp(
𝑎

1 − 𝑚
(𝑡1−𝑚 − 1)) ( 2.18) 

where Gp is the cumulative gas production in bcf and m is the slope. 

Paryani et al. (2018) indicated the key restrictions of the model are:  

 Firstly, if a well is closed for extended periods, a proper rate initialization against 

pressure is required to obtain precise values of parameters a and m and,  

Figure 2.9: Zhang's decline curves controlled by βe and βi 
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 Secondly, that in the event of water breakthrough, there is a sudden decrease 

in the decline rate, which then causes an increase in the values of the a and m 

parameters.  

Vanorsdale (2013), found like in the case of the PLE model, the Duong’s model also 

yielded a very optimistic recovery when the flow regime changes throughout the initial 

10 years. The author went on to indicate that the model might provide conservative 

recovery estimates in vertical, non-hydraulic fractured classical shale wells 

(Vanorsdale, 2013). However, Lee et al. (2016) indicated that the Duong’s model 

appeared to fit field data from various shale plays quite well and provided an effective 

alternative to Arps hyperbolic model.  

2.7.6. Logistic Growth Model (LGM) 

Logistic Growth Models developed belong to a group of mathematical models used to 

forecast growth in numerous applications (Lee and Kim, 2016) and were previously 

Figure 2.60: Four steps of computing the Duong's model (Hu et al., 2018) 
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used to model population growth (Clark, 2011a; Clark et al., 2011b). They were 

developed to forecast reservoirs with extremely low permeability (Hu et al., 2018). 

LGM is very flexible and confident in modelling long transient boundary-dominated 

performances of unconventional reservoirs (Li et al., 2018). The model incorporates 

known physical volumetric quantities of oil and gas into the forecast, to constrain the 

reserve estimate to a reasonable quantity. LGM is capable of trending existing 

production data and providing reasonable forecasts of future production. The logistic 

growth model does not extrapolate to non-physical values (Clark, 2011a).  

Tsoularis and Wallace (2002) discussed a development in this regard by Bacaër and 

Verhulst (1838), who considered that for the population model, a steady population 

would consequently possess a saturation level characteristic, typically called the 

carrying capacity, K, which forms a numerical upper bound on the growth size. In order 

to include this limiting characteristic, they introduced the logistic growth equation as 

an extension to the exponential model (Clark et al., 2011b). Zhang et al. (2017) 

adopted this model for SGR with very low permeability and developed the LGM as an 

empirical method to forecast gas production. The LGM can be represented as follows: 

𝑞(𝑡) =
𝑑𝑄

𝑑𝑡
=

𝐾𝑛𝑏𝑡𝑛−1

(𝑎 + 𝑡𝑛 )2
 (2.19) 

where K is the carrying capacity. 

The main benefit of LGM is that the reserve estimate is inhibited by the parameter K 

as well as the production rate, which terminates at infinite time (Zhang et al., 2017). 

The main assumption in this model is that the whole reservoir can be drained by a 

single well over a suitably long period and requires the approximation of at least two 

parameters, or parameters, as per the available well information (Tan et al., 2018; 

Nwaobi and Anandarajah, 2018). 

2.7.7. Fractional Decline Curve Model (FDC) 

Zuo et al. (2016) developed a new FDC model with three fitting parameters using the 

general solution of the fractional diffusion equations, which is a special case of the so-

called Mittag-Leffler function (Zuo et al., 2016). The model is based on the anomalous 
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diffusion phenomena that also exhibits long-tail behaviour. The FDC can be 

represented as follows (Yuan et al., 2020): 

                                   𝑞 = 𝑚𝐸∝,1(−𝜆𝑡𝛼) = 𝑚 ∑
(−𝜆𝑡𝛼

Γ(𝛼𝑘+1).
𝛼
𝑘=𝑜   (2.20) 

where 𝑚 is a coefficient corresponding to well index; 𝐸∝,1(−𝜆𝑡𝛼) is the Mittag-Leffler 

function proposed by Mittag-Leffler (1903) and α, λ are fitting parameters. 

In addition, they proposed a four-step scheme according to the asymptotic 

properties of the Mittag-Leffler function, to quantify the three parameters. The steps 

are as follows (Yuan et al., 2020): 

1. Data Preconditioning. 

2. 𝛼, 𝜆 and 𝑚 Determinations. 

3. Validation of these parameters with the actual data, and 

4. EUR forecast comparison. 

After validating the model and comparing it to the Arps model, Zuo et al. (2016), found 

that it produced a much smaller error compared to the Arps model. Wang et al. (2017) 

found that the FDC model requires iterative programming to optimize the original 

parameters obtained by production, and the EUR is calculated by daily production 

accumulation, which makes the FDC rather complicated and inconvenient. 

2.7.8. Auto Regressive Integrated Model (ARIMA) 

The ARIMA processes follow a stochastic behaviour used to analyse time series 

(Contreras et al., 2003) and is mostly used to predict demand. The ARIMA models 

have also proved to be excellent short-term forecasting models for a wide variety of 

time series because short-term factors are expected to change slowly (Raymond, 

1997). A mixed autoregressive and moving average model with both components is 

known as an ARIMA model.  

Raymond (1997) suggested that the following two questions must be answered to 

identify the data series in a time series analysis:  

 whether the data are random; and  

 have any trends. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/asymptotic-property
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/asymptotic-property
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If a series is random, the correlation between successive values in a time series is 

close to zero and if the observations of time series are statistically dependent on each 

another, then the ARIMA is appropriate for the time series analysis (Raymond, 1997). 

Box and Jenkins (Contreras et al., 2003) developed the application of the ARIMA 

methodology for this study of time series analysis. The Box–Jenkins methodology 

includes three iterative steps of model identification, parameter estimation and 

diagnostic checking (Zhang, 2003). This three-step model building process is typically 

repeated several times until a satisfactory model is finally selected and can then be 

used for prediction purposes (Zhang, 2003). The steps for the ARIMA model building 

methodology is represented in a flow-chart in Figure 2.11. 

Contreras et al. (2003) described the steps to the ARIMA Model as follows: 

 A model is identified for the observed data. 

 The model parameters are estimated. 

 If the hypotheses of the model are validated, go to Step 4, otherwise go to Step 

1 to refine the model, and 

 The model is ready for forecasting. 

In an ARIMA model, the future value of a variable is assumed to be a linear function 

of several past observations and random errors (Contreras et al., 2003). During the 

Figure 2.11: The steps for the ARIMA computation (Shukla and Jharkharia, 2011) 
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past decades, researchers have been focusing more on linear models due to their 

simplicity in comprehension and application (Fattah et al., 2018). A disadvantage of 

the classical ARIMA methodology is that it requires a large number of observations to 

determine the best fit model for a data series (Fattah et al., 2018). An ARIMA model 

is labelled as an ARIMA model (p, d, q), where:  

1. p is the number of autoregressive terms  

2. d is the number of differences; and,  

3. q is the number of moving averages. 

2.7.8.1. The Autoregressive Process 

This process assumes that 𝑌𝑡 is a linear function of the preceding values and is given 

by Equation (2.21). 

                                                                𝑌𝑡 =∝1 𝑌𝑡−1 + 𝜀𝑡                                                  (2.21) 

Generally, each observation consists of a random component i.e., a random shock, ε 

and a linear combination of the previous observations. ∝1 in the equation is the self- 

regression coefficient.  

2.7.8.2. The Integrated Process 

The integrated processes are the archetype of non-stationary series. A differentiation 

of order 1 assumes that the difference between two successive values of Y is constant. 

An integrated process is defined by Equation (2.22): 

                                                                  𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡                                                     (2.22)  

where the random perturbation 𝜀𝑡 is a white noise.  

2.7.8.3. The Moving Average Process 

The moving averaging process is a linear combination of the current disturbance with 

one or more previous perturbations. The moving average order indicates the number 

of previous periods embedded in the current value. Thus, a moving average is defined 

by Equation (2.23): 

                                                                  𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1                                                 (2.23)     
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2.7.9. Artificial Neutral Network (ANN) 

Recent research activities in ANN have shown its powerful pattern classification and 

pattern recognition capabilities (Zhang et al., 1998). Stimulated by biological systems, 

particularly when made functional by research into the human brain, ANN is able to 

learn from and generalize from experience (Zhang et al., 1998). ANN has found 

increasing consideration in forecasting theory, leading to successful applications in 

various forecasting domains including economic, business financial and many more 

(Shamsuddin et al., 2008). One advantage of neural networks compared to other non-

linear models is its universal model, which is capable of predicting fairly extensive 

functions with a high degree of accuracy. No assumptions are required for neural 

networks, thus neural networks conform to the characteristics of the data (Dhini et al., 

2015). However, there are disadvantages, namely; in the constructing forecasting 

model the selection of network architecture, learning parameters and data pre-

processing techniques that apply to the time series data are some of the modelling 

issues (Bacha and Meyer, 1992; Kaastra and Boyd, 1996).  

2.7.9.1. Overview of ANN 

ANN was originally developed to mimic the basic biological neural system i.e., the 

human brain, which is composed of a number of interconnected simple processing 

elements called neutrons or nodes (Zhang et al., 1998). Each node accepts an input 

signal which is the total “information” from other nodes, processes it locally through an 

activation or transfer function and produces a transformed output signal to other nodes 

(Zhang et al., 1998). According to Reilly and Cooper (1995), although each individual 

neuron implements its function rather slowly and imperfectly. Collectively, a network 

can perform a surprising number of tasks efficiently (Reilly and Cooper, 1995). This 

processing function makes ANN a dominant computational tool that is able to learn 

from examples and then simplify it to examples encountered before. There have been 

many different ANN models recommended since the 1980s. However, the most 

common models are the multilayer perceptions (MLP), Hopfield networks and 

Kohonen’s self-organising networks. For this study, the MPL will be used because it 

can be used in a variety of problems, especially in forecasting, because of their 

inherent capability random input-output mapping (Zhang et al., 1997). The MLP model 

consists of three interconnected layers, the input layer, the hidden layer, and the 
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output layer. The basic unit of any ANN is the neuron or node (processor). Each node 

is able to sum many inputs x1, x2 ... x3 whether these inputs are from a database or 

from other nodes, with each input modified by an adjustable connection weight (Figure 

2.12).  

 

 

 

 

 

 

 
 

Figure 2.72: Schematic representation of the MLP ANN model (Shamsuddin et 

al., 2008) 

The relationships that occur in the output and input layers follow Equation (2.24):  

                  𝑌𝑡 =∝0+ ∑ ∝𝑗
𝑞
𝑗−1 𝑔 (𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡

𝑝
𝐼=1 − 𝑖) +  𝜀𝑡                                        (2.24)  

where ∝𝑗 (j = 1,2,3, ..., q) and 𝛽𝑖𝑗 (i = 1,2,3, ..., p; j = 1,2,3, ..., q) are the parameters of 

the model (often called the weights), p is the number of input points (input nodes), and 

q is the number of hidden nodes. The activation function used in the hidden layer is 

the logistic sigmoid function and the linear function is the output layer.  

2.7.9.2. ANN Modelling Forecasting Challenges 

There have been many characteristics and issues highlighted regarding the ANN 

model, which have to be considered. One of the key issues is the determination of the 

applicable architecture, as highlighted by Zhang et al. (1998), i.e., the number of 

layers, the number of nodes in each layer and lastly the number of arcs, which 

interconnect the nodes. Table 2.2 which has been sourced from the work done by 

Zhang et al. (1998) summarises the literature on the modelling challenges associated 

with ANN.
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Table 2.2: Summary of the modelling challenges associated with the ANN model taken from varies literature (Zhang et al., 

1998) 
Researchers Data Type Training/Test 

Size 

Number input 

nodes 

Number 

hidden layer: 

nodes 

Number 

output nodes 

Transfer fun. 

hidden output 

Training 

Algorithm 

Performance 

Measure 

Chakraborty 

et al. (1992) 

Monthly price 

series 

90/10 8 1:8 1 Sigmoid:sigmoi

d 

BP4 MSE 

Cottrell et al. 

(1995) 

Yearly 

sunspots 

220/? 4 1:2-5 1 Sigmoid: linear Second order Residual 

variance and 

BIC 

De Groot and 

Wurtz (1991) 

Yearly 

sunspots 

221/35.55 4 1:0-4 1 Tanh: Tanh BP:BFGS 

LM5 etc. 

Residual 

variance 

Foster et al. 

(1992) 

Yearly and 

monthly data 

N-k/k6 5,8 1:3,10 1 N/A N/A MdAPE and 

GMARE 

Ginzburg et al. 

(1994) 

Yearly 

sunspots 

220/35 12 1:3 1 Sigmoid: linear BP RMSE 

Gorr et al. 

(1994) 

Student GDP 90%/10% 8 1:3 1 Sigmoid: linear BP ME and MAD 

Grudnitski 

and Osburn 

(1993) 

Monthly S, P 

and gold  

N/A7 24 2:(24)(8) 1 N/A BP % prediction 

accuracy 

Kang (1991) Simulated and 

real series 

70/24 or 

40/24 

4,8,2 1,2:varied 1 Sigmoid: 

sigmoid 

GR:GR2 MSE, MAPE 

MAD, U-coeff. 

Kohzadi et al. 

(1996) 

Monthly cattle 

and wheat 

prices 

240/25 6 1:5 1 N/A BP MSE, AME, 

MAPE 

                                                      
4 Back-propagation 
5 Levenberg-Marquardt 
6 N is the number of training sample size; k is 6, 8, and 18 for yearly, monthly and quarterly data respectively 
7 Not available 
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Kuan and Liu 

(1995) 

Daily exchange 

rates 

1245/varied varied 1:varied 1 Sigmoid: linear Newton RMSE 

Lachtermache

r and Fuller 

(1995) 

Annual river 

flow and load 

100%/synthetic n/a 1:n/a 1 Sigmoid: 

sigmoid 

BP RMSE and 

Rank Sum 

Nam and 

Schaefer 

(1995) 

Monthly airline 

traffic 

3,6,9 yrs./ 

1 yr. 

12 1:12,15,17 1 Sigmoid: 

sigmoid 

BP MAD 

Nelson et al. 

(1994) 

M-competition 

monthly 

N-18/18 varied 1:varied 1 N/A BP MAPE 

Schoneburg 

(1990) 

Daily stock 

price 

42/56 10 2(10)(10) 1 Sigmoid: 

sigmoid 

BP % prediction 

accuracy 

Sharda and 

Patil (1992) 

M-competition 

monthly 

N-k/k 12 for monthly 1:12 for 

monthly 

1,8 Sigmoid: 

sigmoid 

BP MAPE 

Srinivasan et 

al. (1994) 

Daily load and 

relevant data 

84/21 14 2:(19)(6) 1 Sigmoid: linear BP MAPE 

Tang et al. 

(1991) 

Monthly airline 

and car sales 

N-24/24 1,6,12,24 1:=input node 

# 

1,6,12,24 Sigmoid:sigmoi

d 

BP SSE 

Tang and 

Fishwick 

(1993) 

M-competition N-k/k 12 month 4: 

quarter 

1:=input node 

# 

1,6,12 Sigmoid:sigmoi

d 

BP MAPE 

Vishwakarma 

(1994) 

Monthly 

economic data 

300/24 6 2:(2)(2) 1 N/A N/A MAPE 

Weigend 

(1992) 

Sunspots 

exchange rate 

daily 

221/59 

501/215 

12 

61 

1:8,3 

1:5 

1 

2 

Sigmoid: linear 

Tanh: linear 

BP ARV 

ARV 

Zhang (1994) Chaotic time 

series 

100 000/500 21 2:(20)(20) 1-5 Sigmoid:sigmoi

d 

BP RMSE 
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2.7.10.  ANN-ARIMA Hybrid Model  

The accuracy of time series forecasting is challenging for scientists (Taskaya-Temizel 

and Ahmad, 2005). Time series data often comprises linear as well as non-linear 

components (Faruk, 2010). In some cases, linear-based approaches might be more 

suitable than non-linear ones, due to the data characteristics. The hybrid method is a 

combination of ARIMA and the neural network method. According to Faruk (2010), 

hybrid methods have a higher degree of accuracy than neural networks. ARIMA can 

recognize time-series patterns well but not non-linear data patterns. On the other 

hand, neural networks only handle non-linear data. Therefore, hybrid models combine 

the advantages of ARIMA with respect to linear modelling and neural networks in 

terms of non-linear edge modelling (Cybenko, 1989). Notwithstanding, in some 

circumstances, the single model approach can outperform hybrid models ((Taskaya-

Temizel and Ahmad, 2005). Mathematically, time-series data can be expressed as a 

combination of linear and non-linear components: 

𝑌𝑡 = 𝐿𝑡 + 𝑁𝑡 (2.25) 

where Yt shows the time-series data, Lt indicates the linear components, and the non-

linear components are represented by Nt. Mathematically, the neural network model 

for residual of n input nodes can be expressed as the following: 

𝑒𝑡 = 𝑓(𝑒𝑡−1 + 𝑒𝑡−2, … , 𝑒𝑡−𝑛) (2.26) 

where f is a non-linear function that is specified by the neural network. With regard to 

the results of the prediction error of Nt, the combination forecast using the hybrid 

method can be expressed as: 

�̂�𝑡 = �̂�𝑡  + �̂�𝑡. (2.27) 

According to Taskaya-Temizel and Ahmad (2005), two factors prevent the hybrid 

ARIMA–ANN method from providing good results. Firstly, the assumption of the 

existence of a relationship between the components of the linear and non-linear 

components in the data can cause performance degradation, as other model 

relationships (e.g., multiplicative) may exist within the data instead of linear/non-linear 

relationships. Secondly, no one can guarantee that the residual of the linear 

components will have valid non-linear patterns. Their results showed that hybrids are 
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not always better and hence that the model selection process remains an important 

step, despite the popularity of hybrid models (Taskaya-Temizel and Ahmad, 2005).  

Dhini et al. (2015), concurred that the hybrid method does not always give better 

results than the single method as the neural network method outperformed the hybrid 

method. Some of the possible causes for this are the basic assumptions used in the 

method, as well as the possibility that the residual from the linear components may not 

be non-linear (Dhini et al., 2015). Zhang et al. (2001) found in his work that the hybrid 

model was able to outperform each component model used in isolation (Figure 2.13).  

Granger (1989) has highlighted that for a hybrid model to produce higher forecasts, the 

component model should be suboptimal. In general, it has been observed that it is 

more effective to combine individual forecasts that are based on different information 

sets (Granger, 1989; Perrone and Cooper, 1992). There has been limited work 

conducted using the hybrid model approach for shale gas prediction. Hence, it is not 

decisive whether this model would concur with the literature, indicating that this model 

would predict better results than the single models for shale gas production.  

 

Figure 2.83: Comparison of ARIMA, ANN and Hybrid models (Zhang, 2001) 
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2.8. Recently Developed Decline Curve Models 

2.8.1. Analytical Flow-Cell Model 

Recent work by Weijermars and Nandlal (2020), has paved the way for accurate pre-

drilling DCA-based well performance forecasts based on an analytical flow-cell model. 

The flow-cell based 2-segment DCA uses a type well to scale the production 

performance of newly planned wells, with the distinctive capacity to fully factor in the 

effects of changes in well length, fracture spacing, fracture height, fracture half-length, 

and variable well spacing (Weijermars and Nandlal, 2020). In summary, the 2-segment 

DCA can be claimed to provide the same accuracy, but is much faster and easier to 

use, than a gridded reservoir model (Weijermars and Nandlal, 2020). 

The analytical expressions and key equations and parameters used are based on 

Complex Analysis Methods (CAM) that can provide solutions for fluid flow paths, 

velocity distribution, time-of-flight contours, and reservoir depletion patterns 

(Weijermars and Nandlal, 2020). The flow cell model based on CAM solves for flow 

interaction between multiple fractures based on material based principles (Weijermars 

and Nandlal, 2020). CAM-based models are gridless, have high resolution, allow fast 

computation of streamlines and time-of-flight contours, and have revealed the 

occurrence of stagnation points and flow separation surfaces between individual 

fractures and between adjacent well pairs (Weijermars et al., 2017a,b, 2018). The 

model assumes single-phase flow. The onset of well interference is determined from 

computing when the pressure transient of the well has reached the interwell drainage 

boundary (IDB) using the theoretical depth of investigation formula (2.28): 

                                             𝑟𝑖(𝑡) = √
𝑘(𝑧)𝑡

1688.7𝜙(𝑧)𝑢𝑐𝑡
                                                (2.28)                                                                 

where 𝑟𝑖 is the advances of the pressure drawdown front in ft, 𝑡 is time, 𝜙(𝑧) is the 

porosity, 𝑘(𝑧) is the permeability, 𝑢 is the viscosity and  𝑐𝑡 compressibility. 

The t in sec corresponding to the ‘discovery’ of a nearby well, marking the advent of 

True Boundary Dominated Flow (BDF), is given by (equating 𝑟𝑖 = distance to IDB) 

(2.29): 

                                                   𝑡 =
𝑟𝑖

2(𝑡)1688.7𝜙(𝑧)𝑢𝑐𝑡

𝑘(𝑧)
                                          (2.29) 
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The timing of the onset of True BDF will vary with well spacing (distance to IDB) and 

the onset of BDF affects the decline of type curve wells. 

2.8.2. Long short-term memory neural network (LSTM) 

The LSTM neural network model is a type of RNN structure, which is widely used to 

solve sequence problems (Tadjer et al., 2021). The model tends to study long-term 

dependencies and solve the vanishing gradient problems an issue observed with the 

ANN model (Tadjer et al., 2021). The structure of the LSTM shown in Figure 2.14 

consists of the long term state (𝑐𝑡) and three multiplicative units N with 𝑖𝑡, output gate 

(𝑂𝑡) , and forget gate (𝑓𝑡) and equivalently write, read, and reset information within the 

model’s cells (Tadjer et al., 2021). 

 

The LSTM functions as follows (Sagheer and Kotb, 2019): 

1. The first step in LSTM is to decide what information is going to be thrown away 

from the cell state. This decision is made by the following forget gate(𝑓𝑡): 

                          𝑓𝑡 = 𝜎(𝑋𝑡𝑈𝑓 + 𝑆𝑡−1𝑊𝑓 + 𝑏𝑓                                       (2.30)                                     

2. The following step is to decide which new information is going to be stored in the 

cell state. This step has two folds: First, the input gate (𝑖𝑡) layer decides which 

values to be updated. Second, a tanh layer that creates a vector of new candidate 

values 𝐶�̃�. These two folds can be described as follows: 

                          𝑖𝑡 = 𝜎(𝑋𝑡𝑈𝑖 + 𝑆𝑡−1𝑊𝑖 + 𝑏𝑖                                       (2.31)      

𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑈𝑐 + 𝑆𝑡−1𝑊𝑐 + 𝑏𝑐                                  (2.32) 

Figure 2.14: Architecture of an LSTM cell (Sagheer and Kotb, 2019) 
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3. Then, update the old cell state, 𝐶𝑡−1 into the new cell state 𝐶𝑡 , which can be given 

as: 

                                                 𝐶𝑡 = 𝐶𝑡−1 ⊗ 𝑓𝑡 ⊕ 𝑖𝑡 ⊗ 𝐶�̃�                                      (2.33)                                                 

4. Finally, decide what is going to be produced as output. This output will be based 

on the cell state, but will be a filtered version. In this step, the output gate 𝑜𝑡 

decides what parts of the cell state are going to be produced as output. Then, the 

cell state goes through tanh layer (to push the values to be between -1 and 1) 

and multiply it by the output gate as follows: 

 

                                𝑜𝑡 = 𝜎(𝑋𝑡𝑈𝑜 + 𝑆𝑡−1𝑊𝑜 + 𝑏𝑜                                       (2.34)   

                                𝑆𝑡 = 𝑜𝑡 ⊕ 𝑡𝑎𝑛ℎ (𝐶𝑡)                                                    (2.35)      

From the previous six equations, the LSTM presents the following three groups of 

parameters: 

1. Input weights: 𝑼𝒇, 𝑼𝒊, 𝑼𝒐, 𝑼𝑪 

2. Recurrent weights: 𝑾𝒇, 𝑾𝒊, 𝑾𝒐, 𝑾𝑪 

3. Bias: 𝒃𝑓, 𝒃𝒊, 𝒃𝒐, 𝒃𝑪 

2.9. Economic Analysis of Decline Curve Models 

Shale gas production is a profitable business for oil and gas operators, provided there 

is assurance that gas can be produced commercially and in a sustainable way 

(Guarnone et al., 2012). Historically, gas was generally only extracted from shallow 

wells, but recent developments in drilling technology have allowed for the lucrative 

extraction of natural gas from deep underground shale rock formations (Kinnaman, 

2011). The present practice of shale gas economic valuation commonly uses a mean 

EUR and a single production decline model for the whole lease or play (Penner et al., 

2013). Nevertheless, shale gas production remains economically risky because the 

EUR remains poorly constrained during the early stages of field development 

(Weijermars, 2013). 

Guarnone et al. (2012) pointed out that cost estimate plays a key role because 

it supports the economic evaluation and support process for buying an exploration 

permit or not. The cost structure of a shale gas project is unlike conventional 
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production, which makes cost estimation problematic. Guarnone et al. (2012) also 

mentioned appraising noteworthy OPEX-like investments involves an accurate 

prediction of the time when they will be required, which in turn depends on the 

prediction of DCA to model single wells and overall field performance. Since EUR 

calculated from DCA models plays a significant role in the economic analysis of shale 

gas development, the accuracy thereof is crucial for exploration.  

Lake et al. (2013), has highlighted the difference in economics of conventional natural 

gas production from unconventional shale gas: 

 Total production volumes - a conventional gas well might produce 30 to 40 

billion cubic feet of gas over its life whereas a shale well would produce a 

fraction of this amount. 

 Rate of decline in production volumes - shale gas wells have a very steep 

rate of decline compared to conventional wells, especially in the initial 

production period. 

 Production methods - shale gas is trapped in rock formations that must be 

fractured before the gas can flow. Fracturing, which involves injecting water and 

sand at high pressure into the formation, is expensive and may entail 

environmental risks. 

 Horizontal wells - shale gas production typically uses horizontal drilling 

whereas conventional gas wells are drilled using vertical wells. 

 Completion after drilling - these wells must be fractured before the viability of 

producing the well can be determined. This means that the decision to drill the 

well is tantamount to a commitment to complete the well. This is different than 

a conventional gas well in which a drilling log and pressure measurements can 

be used to estimate the volume of recoverable reserves before the well is 

completed. If the well is deemed uneconomic, it can be plugged and abandoned 

thereby avoiding completion expenses. 

 Follow on investments - since shale formations are typically very large, the 

probability of success of follow on wells (in what is commonly referred to as the 

resource play) is much higher than in conventional wells that seek out smaller 

reservoirs. This means that the opportunity to make add-on investments is 

greater for shale gas wells than conventional wells. 
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 Exploration costs - the vastness of shale formations means that there is 

little discovery risk, and few wells are unproductive. These differences 

indicate that the economics of extracting shale gas can be quite different 

from that of extracting conventional gas deposits. The first five differences 

tend to decrease the value of shale gas in comparison with conventional 

formations but the last two-favour shale very much. 

They indicated that the cash flow for a gas well could be calculated from the following 

Equation (Lake et al., 2013): 

⌈(Net Gas Production (Mcf) × Price of Natural gas per Mcf) − Total Net Operating Expenses −

Severance and ad Valorem − Depletion Allownance⌉ ×  (1 − Corporate income Tax Rate) +

Depletion Allow.                                                                                                      (2.31) 

The net gas production is equal to the owner’s proportionate working interest in the 

well revenues multiplied by the estimated gross annual gas production. Total net 

operating expenses include the owner’s share of the cash expenses required to 

extract, transport and sell the gas production from the well. Severance and ad Valorem 

expenses are taxes imposed on gas producers and the depletion allowance is a non-

cash expense available to gas producers to reflect the depletion of the asset 

represented by the well (Lake et al., 2013). The history of shale gas development is 

not very extensive; consequently, there are a limited number of studies on the 

economic evaluation of shale gas development projects (Yuan et al., 2015). 

2.9.1. Conclusion 

Table 2.2 provides a summary of all ten models discussed in the chapter. The table 

lists the name of each model, its equation, the characteristics, strength and weakness 

and lastly the related references. The information collated during the literature review 

will be used as a premise for this study.  
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Table 2.3: Summary of the models 

Model Equation Production Behaviour Strength Weakness Reference 

Arps Hyperbolic 

Decline 
𝑞 =

𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 linear to BDF flow reliable and 

simple to use 

post-production 

overestimation 

Arps (1945) 

Ali and Sheng, (2015) 

Yuhu et al. (2016) 

Boah et al. (2018) 

Paryani et al. (2018) 

Modified Hyperbolic 

Curve (MHD) 
𝑞 =

𝑞𝑖

(1 + 𝑛𝐷𝑖𝑡)1/𝑛 
  (𝐷 > 𝐷𝑙𝑖𝑚) 

𝑞 = 𝑞𝑖  𝑒𝑥𝑝(−𝐷𝑙𝑖𝑚𝑡)  (𝐷 ≤ 𝐷𝑙𝑖𝑚) 

transient and BDF flow addresses the 

overestimation 

limitation of EUR 

still unable to 

determine 𝐷𝑙𝑖𝑚  for 

production data 

Robertson (1988) 

Yuan et al. (2016) 

 

Power Law 

Exponential Decline 

(PLE) 

𝑞(𝑡) = �̂�𝑖𝑒
[−𝐷∞𝑡−�̂�𝑖𝑡�̂�] transient and BDF flow developed 

precisely for SGR 

four unknown 

variables to solve 

IIk et al. (2008) 

Kanfar et al. (2012) 

McNeil et al. (2009) 

Seshadri and Mattar 

(2010) 

Vanorsdale (2013) 

Hu et al. (2018) 

Li et al. (2018) 

Paryani et al. (2018) 

Stretched 

Exponential Decline 

(SEDM) 

𝑞 = 𝑞𝑖 𝑒𝑥 𝑝 [− (
𝑡

𝜏
)

𝑛

] 
transient flow bounded nature of 

EUR and straight-

line behaviours of 

recovery potential 

expression 

requires sufficiently 

long production 

times 

Kisslinger (1993) 

Johnson et al. (2009) 

Kanfar and 

Wattenbarger (2009) 

Valkó (2009) 

Valkó et al. (2010) 

Can and Kabir (2011) 

Joshi (2012) 

Ali and Sheng (2015) 
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The Extended 

Exponential Model 

(EEDM) 

In
𝑞
𝑞𝑜

𝑡
= 𝛽i + 𝛽𝑒𝑒−𝑡𝑛

 

transient and BDF flow both early and 

late production 

profiles can be 

captured 

parameter 𝛽𝑙  has 

an incomplete 

influence on the 

curve fitting and is 

therefore fixed 

Zhou and Selim 

(2003) 

Zhang et al. (2016) 

Li et al. (2018) 

Paryani et al. (2018) 

Duong’s Decline 𝑡(𝑎, 𝑚) = 𝑡−𝑚𝑒𝑥𝑝(
𝑎

1 − 𝑚
(𝑡1−𝑚 − 1)) linear or near-linear flow appears to fit field 

data from various 

shale plays  

extended periods, a 

proper rate 

initialization against 

pressure is 

required, and in the 

event of water 

breakthrough, a 

and m increases 

Fetkovich (1980) 

Duong (2011) 

Vanorsdale (2013) 

Hu et al. (2018)) 

Paryani et al. (2018) 

Logistic Growth 

(LGM) 
𝑞(𝑡) =

𝑑𝑄

𝑑𝑡
=

𝐾𝑛𝑏𝑡𝑛−1

(𝑎 + 𝑡𝑛 )2
 

long transient boundary-

dominated 

reserve estimate 

is inhibited by K 

as well as the 

production rate, 

which terminates 

at infinite time 

growth is only 

possible up to a 

certain size 

Clark (2011a) 

Clark et al. (2011b) 

Duong (2011) 

Tsoularis and 

Wallace (2002) 

Zhang et al. (2017) 

Hu et al. (2018) 

Lee and Kim (2016) 

Li et al. (2018) 

Fractional Decline 

Curve Model (FDC) 𝑞 = 𝑚𝐸∝,1(−𝜆𝑡𝛼) = 𝑚 ∑
(−𝜆𝑡𝛼

Γ(𝛼𝑘 + 1).

𝛼

𝑘=𝑜

 
anomalous diffusion 

phenomena 

smaller error 

when compared 

to the Arps model 

complicated and 

inconvenient 

Zuo et al. (2016) 

Wang et al. (2017) 

Tan et al. (2018) 

Yuan et al. (2020) 

Auto Regressive 

Integrated Model 

(ARIMA) 

 

𝑌𝑡 =∝1 𝑌𝑡−1 + 𝜀𝑡 

𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 

𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 

linear  simplicity in 

comprehension 

and application 

it requires a large 

number of 

observations to 

determine the best 

fit model for a data 

series 

Cybenko (1989) 

Taskaya-Temizel and 

Ahmad (2005) 

Faruk (2010) 

Dhini et al. (2015) 
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Artificial Neutral 

Network (ANN) 

 

𝑌𝑡 =∝0+ ∑ ∝𝑗

𝑞

𝑗−1

𝑔 (𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡

𝑝

𝐼=1

− 𝑖)

+  𝜀𝑡 

linear and non-linear its universal 

model, which is 

capable of 

predicting fairly 

extensive 

functions with a 

high degree of 

accuracy 

the selection of 

network 

architecture, 

learning 

parameters and 

data pre-processing 

techniques apply to 

the time series data 

are some of the 

modelling issues 

(Refer to Table 2.1) 

Cybenko (1989) 

Faruk (2010) 

Taskaya-Temizel and 

Ahmad, (2005) 

Dhini et al. (2015) 

 

ANN-ARIMA Hybrid 

Model 

∅ (𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡 linear and non-linear high degree of 

accuracy 

approach can be 

found to not be fit 

for all types of data 

Cybenko (1989) 

Taskaya-Temizel and 

Ahmad (2005) 

Faruk (2010) 

Dhini et al. (2015) 

Analytical Cell Flow 

Model 𝑟𝑖(𝑡) = √
𝑘(𝑧)𝑡

1688.7𝜙(𝑧)𝑢𝑐𝑡

 

𝑡 =
𝑟𝑖

2(𝑡)1688.7𝜙(𝑧)𝑢𝑐𝑡

𝑘(𝑧)
                                           

BDF flow speed, 

affordability, 

simplicity, and 

ease of use 

the flow cell model 

does not accurately 

match the actual 

production in 

certain instances 

Weijermars (2017a,b, 

2018) 

Weijermars and 

Nandlal (2020) 

Long short-term 

memory neural 

network (LSTM) 

𝑓𝑡 = 𝜎(𝑋𝑡𝑈𝑓 + 𝑆𝑡−1𝑊𝑓 + 𝑏𝑓 

𝑖𝑡 = 𝜎(𝑋𝑡𝑈𝑖 + 𝑆𝑡−1𝑊𝑖 + 𝑏𝑖                                        

𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑈𝑐 + 𝑆𝑡−1𝑊𝑐 + 𝑏𝑐  

𝐶𝑡 = 𝐶𝑡−1 ⊗ 𝑓𝑡 ⊕ 𝑖𝑡 ⊗ 𝐶�̃�   

𝑜𝑡 = 𝜎(𝑋𝑡𝑈𝑜 + 𝑆𝑡−1𝑊𝑜 + 𝑏𝑜                                        

𝑆𝑡 = 𝑜𝑡 ⊕ 𝑡𝑎𝑛ℎ (𝐶𝑡)                                                     

major flow regimes–

transient 

and semi-steady state 

flow regimes 

speed up manual 

DCA to perform 

long term forecast 

may suffer 

significant errors 

when used for long-

term 

forecasts and  

limited 

interpretability 

Sagheer and Kotb 

(2019|) 

Tadjer et al. (2021) 
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Chapter 3 

Research Methodology 

3.1. Introduction 

The following chapter will discuss the methodology used in this research. Figure 3.1 

summarises the research methodology used, and each element will be discussed 

separately in this section. 

 

 

Figure 3.1: The framework for the research methodology 

3.2. Preparatory Stage  

The preparatory stage involved an extensive understanding of decline models through 

deep review of the literature on shale gas and the various published decline curve 

Preparatary 
Stage 

• Research Study and Literature Review

• Software investigation and familiarisation (KAPPA-Citrine and JMP)

• Completion of literature review

Model 
Development 

• Evaluation and Sensitivity Analysis of Decline Curve Models

• Developing new models from evaluation outcomes or findings 

Model 
Simulations 

• Gathering of estimated production data  

• Choosing the number of orders (ARIMA)

• Determining the best algorithm for the model i.e. hidden nodes (ANN)

• Simulation of the data using KAPPA-Citrine and JMP software 

Model 
Evaluation

• Model Forecasting  

• Model Accuracy and Validation

• Economic Analysis of Model 

• Comparison of the results and contrasting of findings   

Conclusions

• Summary of the findings with recommendations 
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models (Chapter 2). The understanding of production and decline behaviour enables 

the development of models’ framework and their evaluations, which assist in reviewing 

the model assumptions and conditions. The evaluation and sensitivity analysis of the 

decline curve models (Chapter 4) outcome provided guidance for the model’s 

development. The proposed models process also involved investigating suitable 

software to be used in the research. There have been a number of different types of 

software identified or used for decline curve analysis e.g., Harmony, Serafim, TIBCO 

Spotfire and KAPPA- Citrine. After evaluating the pros and cons of the various 

software types, KAPPA-Citrine was chosen for this study.  

The reasons are as follows: 

 It provides two workflow methods for analysing the performance of a field. 

 The entire common empirical decline models are available for fitting a decline 

curve to the well data. 

 The regression tools can be quickly applied to the decline curves to all the wells 

in the field, and  

 Lastly, these methods are simple to use and provide quick forecasts. 

The second software types chosen was JMP software that is used primarily for time 

series analysis. The use of this software was predominantly chosen because JMP is 

simplistic and flexible enough to use, since it allows for quick interchange between 

models and allows one to identify what is happening in the process. Secondly, it was 

chosen due to the effortlessness in obtaining the software for a trial period. 

3.3. Model Development 

The literature evaluation process identified the limitations to the existing decline curve 

models and formed the premise to develop new models. The findings were as follows: 

 Arps hyperbolic decline and Duong’s models provided the best fit with 

production data. 

 However, contrary to the reviewed studies when estimated production data was 

used in the evaluation process for the basis of this paper, using the goodness-

of-fit technique, the PLE and Duong’s decline models aligned the best with the 

production data, compared to the other models. 
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Based on the above findings from the evaluation process the concept of “hybrid”, 

which is the approach of combining models. It has been found that the hybrid model 

provides higher levels of accuracy compared to individual models since it combines 

the strengths of the different models. Therefore, the following models were developed 

from the hybrid model concept (Chapter 5): 

 Arps-Duong’s-PLE hybrid decline model. 

 Arps-Duong’s hybrid decline model. 

 Arps-PLE hybrid decline model, and lastly 

 Duong’s-PLE hybrid decline model. 

3.4. Model Simulations  

3.4.1. Shale Gas Production Data and Shale Play Parameters 

A secondary data collection method was used for this study. The rationale behind the 

use of the secondary approach was that no shale gas production data is available 

because of no exploration taking place in South Africa. The secondary data would also 

provide for easy forecasting. However, When using this approach, one must be careful  

not to choose unsuitable or inadequate data in the context of the problem, for this 

study (Kothari, 2004).  

The data was extracted from the studies of Paryani et al. (2018), Adekoya (2009) and 

Tan et al. (2018). They obtained the data from the Canon Shale Well (Eagle Ford), 

Marcellus Shale Well and Barnett Shale Well, respectively8. Table 3.1 summarises 

the parameters for the different shale plays (Elsaig, 2016; Dong et al., 2013). The data 

from the table was used in the KAPPA-Citrine software to model the different decline 

curve models. 

 

 

                                                      
8 Raw data can be found in Appendix A – A.1. Secondary Production Data 
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Table 3.1: Summary of shale play parameters 

Reservoir   Area Estimated Basin 
Area, square 

miles 

Lateral length, 
ft 

Net reservoir 
thickness, ft 

Gas Content, scf/ton 

Eagle Ford (Canon Shale Well) South Texas 12000 4000 250 7-120 

Marcellus Shale Well Pennsylvania 95000 7000 50-200 60-100 

Barnett Shale Well Fort Worth Basin 5000 4800 100-600 300-350 
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3.4.2. KAPPA-Citrine and JMP Software  

Figures 3.2 and 3.3 provides a summary of the steps followed during the simulation 

process using KAPPA-Citrine and JMP software. 

 

Figure 3.2: Steps for the simulation in KAPPA-Citrine9 

Figure 3.3: Steps for the simulation in JMP 

3.5. Model Evaluation  

3.5.1. Model Forecasting, Accuracy and Validation 

The modelling forecasting (Chapter 7) involved three types of analysis i.e., time series, 

multiple regression and neural network analysis. The analysis was conducted within 

the JMP software. Table 3.2 distinguishes which analysis was used for the different 

models. 

                                                      
9 Results obtained from KAPPA-Citrine can be found in Appendix A – A.2. KAPPA-Citrine 

Load well data from 
excel 

Well properties and 
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Data transfer into 
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plots

Analysis and creation 
of DCA for various 

models

Comparison and summary 
of DCA results for the 
models i.e. qi, EUR

Load well data from 
excel in JMP

Analyse the data

Generation of time 
series and regression 

plots i.e ARIMA, ANN or 
linear/non linear fitting 

curves

Forecasting and 
validation of data 

generation i.e. R2, MSE, 
RMSE

Exporting of results into 
excel and pdf format
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Table 3.2: Analysis used for the different models 

Multiple Regression  Time Series  Neural Network  

Arps Model ARIMA ANN 

Duong’s Model                        ANN-ARIMA Hybrid Model 

PLE Model   

Arps-Duong’s-PLE Hybrid 
Model 

  

Arps-Duong’s Hybrid Model   

Arps-PLE Hybrid Model   

Duong’s-PLE Hybrid Model   

During the analysis of the data, three critical parameters such as the R2, MSE and 

RMSE values were used for the accuracy assessment and validation of the models. 

The detailed evaluation is presented in Chapter 7.  

3.5.2. Economic Analysis  

The approach to the financial or economic analysis was as follows (Chapter 8): 

 The data from the prediction, accuracy and validation of the forecasting model,  

was done in Chapter 7 to identify the model to be used in the evaluation. 

 The second step was to model the EUR from the simulated or predicted data 

obtained from the model, which produced the results closest to the actual 

values, and in this study; i.e., the ANN model, this also followed a multiple 

regression analysis method. 

 Thirdly, the results obtained from step two were used to calculate the cumulative 

production for the respective shale plays i.e., EUR and, 

 Lastly, the EUR was used for the financial calculation.  

3.6. Conclusion 

The chapter covered the research methodology followed during this study. A 

secondary data collection method was employed to obtain production data for the 

Canon Shale Well, Marcellus and Barnett Shale Well. Investigation into suitable 

software to be used for the simulation process identified KAPPA-Citrine and JMP due 
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to their flexibility in operation and ease of use for the operator. The steps for the 

software were also highlighted. The forecasting, accuracy and validation process 

involved a multiple regression, time series and neural network analysis. The R2, MSE 

and RMSE formed critical parameters in identifying the most suitable model. The 

economic analysis also followed a multiple regression analysis to determine the EUR, 

which is a crucial parameter in the financial modelling process. All chapters provide a 

detailed explanation of the findings that is summarised last, with recommendations in 

the final chapter of the thesis.  
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Chapter 4 

The Evaluation and Sensitivity of Decline Curve Models 

4.1. Introduction 

Consistently forecasting the long-term production performance of shale 

(unconventional) reservoirs has been a challenge (Zhang et al., 2016). The petroleum 

industry requires simple, useful, and speedy means of predicting production and 

assessing reserves. Hence, DCA has been an attractive alternative in contrast to other 

methods (Zhang et al., 2016). Due to the relative ease of DCA, it is considered the 

most used method in the industry (Zhang et al., 2016). The current DCA models will 

be evaluated based on their characteristics, strengths, weaknesses, and sensitivity to 

production data. The estimated production data was extracted from the work of Ali and 

Sheng (2015); Brantson et al., 2019; Paryani et al. (2018) and Tan et al. (2018). 

4.2. Evaluation in the Sensitivity to Production Data10 

4.2.1. Arps Decline Curve and the Modified Hyperbolic Decline Model  

To test the behavior of the Arps hyperbolic model and the modified version shown in 

Figure 4.1, a semi log plot (log q versus t) illustrates the sensitivity of the models to 

various estimated field data. 

Figure 4.1: Data sensitivity using the Arps hyperbolic mode 

                                                      
10 Raw data can be found in Appendix A  



50 
 

The R2 values denote the goodness of fit or the degree of linear correlation, which is 

a measure of the level of association of a group of actual observations to the model’s 

forecasts (Hu et al., 2018). As observed from the regression lines for the various data, 

the resulting fit appears to capture the trend in the data well. Arps fits Data 1 and 2 

fairly, similarly for the MHD. However, the methods match the other cases poorly 

because they cannot model multiple flow regimes. In the case of the MHD model, there 

is a shift in the curves downward, which results in a change in the R2 value.  

Upon closer inspection of the EUR values for both models, which are shown in Table 

4.1, it is evident that the MHD model corrects for the overestimation of the Arps model. 

Table 4.1: Summary of the Estimated Ultimate Recovery (EUR) for Arps and the 

Modified Hyperbolic Decline model (MHD)11 

EUR (bcf) Data 1  Data 2  Data 3  Data 4  
Arps Model 0.31 20.52 18.13 5.21 

MHD 0.18 4.13 13.18 4.18 

4.2.2. Power Law Exponential Model  

The PLE model (Figure 4.2) uses a log–log plot (log q versus log t) to test the 

sensitivity of the data. The resulting fit appears to capture the trend in the data better, 

compared to the Arps Hyperbolic Model.  

Figure 4.2: Data sensitivity using the Power Law Exponential model 

                                                      
11 Results obtained from KAPPA-Citrine 

Data 1 - Paryani et al., 2018 
Data 2 - Ali et al., 2015 
Data 3 - Brantson et al., 2019 
Data 4 - Tan et al., 2018 
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This model fits Data 1, 2, 3, and 4 accurately. This can be attributed to the PLE 

model, matching production data in both transient and boundary-dominated regions. 

4.2.3. Stretched Exponential Decline Model (SEDM) 

Testing the behavior of the SEDM, Figure 4.3, which is a plot of production rate versus 

the cumulative production (q versus Q) to test the sensitivity of the data, the resulting 

fit appears to capture the trend in the data poorly. The SEDM method fits all cases 

inaccurately (lower R2 values). This is due to the SEDM model’s transient flow rather 

than boundary-dominated flow and requirement for a sufficiently long production time 

(usually >36 months), to accurately estimate the parameters τ and n (Can and Kabir, 

2011). 

 

Figure 4.2: Data sensitivity using the Stretched Exponential Decline model 

4.2.4. The Extended Exponential Model (EEDM) 

Using the EEDM (Figure 4.4), which is a plot of −𝑙𝑛
𝑞

𝑞𝑜
/𝑡 versus t to test the sensitivity 

of the data and the resulting fit appears to also capture the trend in the data poorly. 

The method fits all cases inaccurately (lower R2 values). This type of method is the 

best way to forecast short-term trends in the absence of recurring variations. Hence, 

the EEDM would only be accurate when a realistic amount of stability between the 

past and future is assumed. 
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Figure 4.3: Data sensitivity using the Extended Exponential model 

4.2.5. Duong’s Decline Model 

With the Duong’s model (Figure 4.5), which uses a log–log linear plot (log q versus 

log t) to test the sensitivity of the data, the resulting fit appears to capture the trend in 

the data well. The method fits Data 1, 2, and 4 fairly accurately. For Case 3, the method 

fits the data poorly with a lower R2 value of 0.8371. The model probably provides a 

good fit because it was specifically developed for unconventional reservoirs with very 

low permeability. 

 
Figure 4.4: Data sensitivity using Duong's Decline model 
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4.2.6. Logistic Growth Model (LGM) 

Figure 4.6, a plot of production rate versus time (q versus t), illustrates the sensitivity 

of the model to various estimated field data. As observed from the regression lines for 

the various data, the resulting fit appears to capture the trend in the data well. The 

LGM fits Data 1 and 2 fairly. However, the method matches the other cases poorly, as 

indicated by the lower R2 values. This could be attributed to the data size, which is too 

small to yield an accurate fit, since the underlying principle of this model is population 

growth, which stipulates that growth is only possible up to a certain size. 

 
Figure 4.5: Data sensitivity using the Logistic Growth model 

4.3. Accuracy of Current Decline Curve Models with Field Data 

Yuhu et al. (2016) discussed comparisons of EURs with five types of decline models 

from single-well production data. They explained that according to the prediction 

results, the highest predicted EUR was gained by the hyperbolic decline model, 

followed by the MHD, Duong’s Model, PLE and, lastly, the EEDM. Hu et al. (2018) 

conferred production data for wells with a production time greater than 10 years, for 

which the PLE decline model was recommended for multiple flows. It was also pointed 

out that the hyperbolic decline model predicted higher estimates of reserves than the 

PLE decline model. Another study that they reviewed recommended the MHD rather 

than the PLE decline model, which in their view was complicated. 
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It is noted that the differences in EURs with different decline models decreases with 

an increase in production time (Wachtmeister et al., 2017). On the other hand, 

prediction consistency increases with an increase in production time. Based on the 

distinctive production data, the order of predicted EURs from high to low was through 

the hyperbolic decline model, the MHD, the PLE decline model, and the EEDM, 

respectively (Wachtmeister et al., 2017). The predicted EURs decreased with an 

increase of production time for the hyperbolic decline and the modified hyperbolic 

decline model. The predicted EURs increase with an increase of production time for 

the PLE decline and the EEDM model (Wachtmeister et al., 2017). Currently, the 

applicability of these different decline models is uncertain. The general trend found in 

their paper was that the hyperbolic decline model overestimates the production and  

the other decline models will still have to be investigated for reliability and accuracy 

(Wachtmeister et al., 2017). 

In their study, Guo et al. (2017) investigated shale gas wells in the Barnett Shale Well 

play, where they found that from the results of goodness of fit, the hyperbolic curve fits 

well for both the aggregate and individual shale gas wells. On the other hand, 

Kenomore et al. (2018) in their production decline study of the Barnett Shale Well 

found that either the Arps hyperbolic or Duong’s model can be used only if the 

historical data exceeds 10 months. They used root mean square error (RMSE) 

analysis and the results indicated that the Arps hyperbolic model showed better 

forecasting compared to the Duong’s model for the top three longest production 

histories. Zhang et al. (2017) concurred with the findings of the Duong’s model in their 

paper, noting that it is more accurate for linear flow and bilinear flow. However, if the 

production history is shorter than 18 months, this model provides unreliable results for 

EUR. In most circumstances, the Duong’s model overestimates the total EUR. Harris 

(2013), in his research study of the Elm Coulee field production data, found that the 

Duong’s method would produce the most optimistic forecasts, followed by the Arps 

model with a 5% minimum decline, and then the SEPD model. Shah (2013) developed 

new methods of combining the SEPD and Arps hyperbolic equation. The Duong’s with 

the Arps hyperbolic equation, and the Arps super hyperbolic, combined with the Arps 

hyperbolic decline equation. The author found that the SEPD and Arps hyperbolic 

equation gave the most conservative results of all the methods in this study, even if 
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there was insufficient data available. This equation can also work without enough BDF 

data being available. 

Hu et al. (2018) studied DCA techniques for the Eagle Ford and Austin Chalk 

reservoirs. They found that in the case of the Eagle Ford reservoir, the MHD and the 

Duong’s model provided the highest EUR estimations and the two lowest matching 

errors, while the PLE decline model with 𝐷∞ ≠ 0 produced the lowest EUR estimates 

with the highest matching errors in all cases. In another study, according to the results 

of goodness of fit (R2 and N-RMSE), the hyperbolic model fits well with aggregated 

well data and with individual wells (Zhang et al., 2017). Furthermore, in their study, Hu 

et al. (2018) explained that the LGM and PLE model with 𝐷∞ = 0 gave production 

projections that were neither too positive nor too traditional, with modest matching 

errors. Therefore, they recommend both the MHD and Duong’s model for this 

reservoir. However, Zhang et al. (2016) developed the EEDM and verified their model 

using field data from the Eagle Ford. They found this model to be more rigorous in that 

it included the effects of interference among adjacent fractures, variable permeability, 

and discontinuous pressure distribution, all of which are difficult to capture and model 

with other DCA methods (Zhang et al., 2016). In the case of the Austin Chalk 

reservoirs, all DCA methods resulted in similar EUR forecasts and matching errors. 

Hence, any method can be used (Vanorsdale, 2013).  

Figure 4.7, which uses estimated production data versus time values, indicates that 

when using the R2 values as a goodness of fit to determine the accuracy of the different 

decline models, the SEDM, followed by the LGM, EEDM, PLE, Duong’s decline model 

and, lastly, the hyperbolic decline model, would predict the EUR accurately. 

During their case study analysis, Paryani et al. (2018) found that the LGM, PLE, and 

Duong’s models overcame Arps limitations to a certain degree. The PLE model always 

predicted the lowest forecasts of all the models with the most conservative production 

forecasting and reserve estimation. Duong’s model performed the best when less 

noisy production data was available. However, erratic EUR was observed, which 

indicates that this model required further improvements (Paryani et al., 2018). The 

LGM gave reasonable EUR estimates when compared to the Arps model. There was 

an 81% fit of the wells’ past production rate and cumulative production. The LGM also 

appears most effective at historically matching past production and predicting finite 
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reasonable EUR. However, Tan et al. (2018) found that due to the constraints of K 

and the vanishing production rate at infinity time, the LGM provides a finite estimate 

of EUR. They also concluded by using normalized and logarithmic rate-time residuals 

that the limitations of the Arps model can be overcome and accuracy can be improved 

in cases of unconventional reservoirs. 

         (a)                                                                                         (b)                                                       

 

 

  

 

 

 

 

 

 

                                                 

                                                (c) 

Figure 4.7: Estimated production data to determine goodness of fit for the 

accuracy of the different decline models (a) Duong’s model vs. EEDM, (b) LGM 

vs. Arps Hyperbolic Model and (c) SEDM vs. PLE 

4.4. Conclusion 

Shale gas reservoirs have become an essential source for providing natural gas 

globally; and the process of hydraulic fracking has been used in the extraction of shale 

gas. During the fracking process, there are different flow regimes, which occur during 

the life cycle of SGRs being fracture linear flow, fracture boundary flow, matrix linear 
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flow, and matrix boundary flow. They are significant because they impact both the 

production and declining behavior of SGRs. 

Based on previous studies, it was found that the Arps hyperbolic decline, the MHD 

and Duong’s models provided the best fit with production data. However, contrary to 

the reviewed studies when estimated production data was used in the evaluation 

process for the basis of this paper, using the goodness-of-fit technique, the PLE and 

Duong’s decline models aligned with the production data, compared to the other 

models. 

It is evident from the accuracy assessment that decline curve modelling impacts the 

EUR of SGRs, and it was observed that all decline models yield a different EUR result, 

which is either over or under-estimated. Studies have revealed that the production 

time significantly impacts the EUR, depending on which decline model is being used. 

When each model was assessed for accuracy; once again using the goodness-of-fit 

technique, the results indicated that the SEDM, followed by the LGM, EEDM, PLE, 

Duong’s decline model and, lastly, the hyperbolic decline model, align with the 

production data. 

It is evident from the decline curve evaluation that there are advantages to using the 

current DCA models. However, they also have limitations associated with them, which 

have to be addressed. 
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Chapter 5  

Model Development 

5.1.  Introduction 

It is evident from the Evaluation and Sensitivity of Decline Curve Models (Chapter 4) 

that there are advantages associated with using the current DCA models. However, 

they do come with limitations, which need to be addressed. The Arps model is 

inaccurate within the TFR, and the Duong’s model is inaccurate within the BDF. 

Although the PLE model incorporates both these flow regimes and was specifically 

developed for SGRs, the model has its own shortcomings. Hence, there is scope to 

develop a new decline model or a new method to predict the recovery of SGRs more 

accurately. The new method proposed is to combine the above-mentioned methods 

i.e., to evaluate hybrid models. As the PLE and Duong models the transient flow well 

and Arps is widely used for BDF, the new method combines the methods to achieve 

the required objectives and eliminates the shortcomings of the stand-alone models.  

For the Arps model where the values are within 0 ≤ b ≤ 1 represents a hyperbolic 

decline. The Arps approach usually limits the value of b to (0 ≤ b ≤ 1) (Shah, 2013). 

Lee and Sidle (2010) showed that b > 1 gives physically impossible results when Arps 

cumulative production equation is evaluated at infinite time. Ilk et al. (2008) introduced 

the PLE decline method to better fit and forecast tight gas and shale production. The 

PLE models the loss-ratio uniquely by assuming that the loss-ratio follows a power law 

function at early time and becomes constant at late time. The Duong equation models 

transient flow, so it assumes prolonged production within this flow regime (Shah, 

2013). Typical ranges for the Duong’s parameters are 1 < m < 2 and 1 < a < 2 (Paryani, 

et al., 2017). 

Thus, there are four new hybrid models being proposed for this study: - 

 Arps-Duong’s-PLE hybrid decline model. 

 Arps-Duong hybrid decline model. 

 Arps-PLE hybrid decline model and lastly, and 

 Duong’s-PLE hybrid decline model. 
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5.2.  The Arps-Duong’s-PLE Hybrid Decline Model  

The first proposed method incorporates the three models Arps, Duong’s and PLE 

decline models. The Arps model only considers BDF while Duong’s and PLE models 

consider TFR. The PLE model also considers BDF and has been specifically 

developed for SGRs. Hence, by combining the three models, the limitations from each 

are presumed to be minimised or eliminated.  

5.2.1.  Assumptions and Conditions 

Table 5.1 summarises the different model behaviours, assumptions and conditions 

taken into consideration for the combined models. 

 
Table 5.1: Summary of the behaviour, assumptions, conditions and parameters 

for the Arps-Duong’s-PLE hybrid decline model 

 Model Equation Production 
Behaviour 

Assumptions Condition 

1 Arps 
Hyperbolic 
Model 

𝑞𝑡 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)−1/𝑏 BDF Decline 
parameter, b, 
defines the 
decline behaviour 

0 ≤ b ≤ 1 

D is 
changing 

2 Duong’s 
Model 

𝑞𝑡 = 𝑞𝑖𝑡(𝑎. 𝑚) + 𝑞𝑚 TFR Very low 
permeability and 
long periods of 
transient flow 

 

 

1 < m < 2 

3 Power Law 
Model 

𝑞𝑡 = 𝑞𝑖𝑒
[−𝐷∞𝑡−𝐷𝑖𝑡𝑛] BDF and TFR Approximates the 

rate of decline 
with a power law 
decline 

D∞ is 
constant at 
late time 

5.2.2.  Model Derivation  

STEP 1: Simplifying Duong’s Formulae 

𝑞𝑡 = 𝑞𝑖𝑡(𝑎. 𝑚) + 𝑞𝑚 

𝑞𝑡

𝑞𝑖
= 𝑡(𝑎. 𝑚) +

𝑞𝑚

𝑞𝑖
 

𝑡(𝑎. 𝑚) =
𝑞𝑚

𝑞𝑖
−

𝑞𝑡

𝑞𝑖
 

                                                     𝑡(𝑎. 𝑚) =
𝑞𝑚−𝑞𝑡

𝑞𝑖
                                                  (5.1)                                                                          

Where 𝑡(𝑎. 𝑚) =  𝑡−𝑚𝑒𝑥𝑝 (
𝑎

1−𝑚
(𝑡1−𝑚 − 1) 
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STEP 2: Using Eq. (5.1) substitute into Eq. (1) from Table 5.1 and assuming qm 

= 0 

𝑞𝑡 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)−1/𝑏 

𝑞𝑡 = 𝑞𝑖[1 + 𝑏𝐷𝑖[
𝑞𝑡

𝑞𝑖
]]−𝑏

1
 

𝑞𝑡 = 𝑞𝑖 [
𝑞𝑖 + 𝑏𝐷𝑖(𝑞𝑡)

𝑞𝑖
]−𝑏

1
 

𝑞𝑡 = 𝑞𝑖
(1−(−𝑏

1))[𝑞𝑖 + 𝑏𝐷𝑖(𝑞𝑡)] 

𝑞𝑡 = 𝑞𝑖
(
𝑏+1

𝑏
)[𝑞𝑖 + 𝑏𝐷𝑖(𝑞𝑡)] 

                                               𝑞𝑡 =  [𝑞𝑖

𝑏+1

𝑏 × 𝑞𝑖] + 𝑞𝑡                                              (5.2)       

 

STEP 3: Combining Eq. (3) from Table 5.1 and Eq. (5.2) 

𝑞𝑖𝑒[−𝐷𝑖𝑡−𝐷𝑖𝑡𝑛] = [𝑞𝑖

𝑏+1
𝑏 × 𝑞𝑖] + 𝑞𝑡 

𝑒[−𝐷∞𝑡−𝐷𝑖𝑡𝑛] =
𝑏 + 1

𝑏𝑞𝑖

𝑞𝑖

+
𝑞𝑡

𝑞𝑖
 

𝐼𝑛 𝑒[−𝐷∞𝑡−𝐷𝑖𝑡𝑛] = ln
𝑏 + 1

𝑏
+ 

𝑞𝑡

𝑞𝑖
 

−𝐷∞𝑡 − 𝐷𝑖𝑡𝑛 = 𝐼𝑛 
𝑏 + 1

𝑏
 +  

𝑞𝑡

𝑞𝑖
 

𝑡 (−𝐷∞ − 𝐷𝑖𝑛) = 𝐼𝑛
𝑏 + 1

𝑏
+  

𝑞𝑡

𝑞𝑖
 

                                                    
𝒒𝒕

𝒒𝒊
= 𝒕 (−𝑫∞ − 𝑫𝒊𝒏) − 𝑰𝒏

𝒃+𝟏

𝒃
                                        (5.3) 

where qi is the initial flow rate in STB/day or Mscf/day, D∞ is the decline rate at long-

term periods while Di is the initial decline constant, which are both measured in days 

− 1, 𝑛 is the time exponent and b is the decline exponent.  

When the three models, Arps, Duong’s and PLE were combined, the results indicated 

that the conditions from the Arp’s and PLE models were dominant. Therefore, the Arps 

condition of 0 ≤ b ≤ 1 for a hyperbolic decline was satisfied, According to Shah (2013), 

the decline exponent must be within this range to apply the Arps curves correctly. Also, 

with the PLE model, the “loss rate” is assumed to follow a power law function initially 

and then it becomes constant during the later time period. Hence, it can be presumed 
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that during the decline process there will be a switching point from a hyperbolic to an 

exponential decline.  

5.3.  The Arps-Duong Hybrid Decline Model  

The second proposed model incorporates the two developed models. Arps only 

considers BDF while Duong’s considers TFR, hence, both flow regimes will be taken 

into account when combining these two models. 

5.3.1.  Assumptions and Conditions 

Table 5.2 summarises the different model behaviours, assumptions and conditions 

taken into consideration for the combined models. 

 
Table 5.2: Summary of the behaviour, assumptions, conditions and parameters 

for the Arps-Duong hybrid decline model 

 Model Equation Production 
Behaviour 

Assumptions Condition 

1 Arps 
Hyperbolic 
Model 

𝑞𝑡 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)−1/𝑏 BDF Decline 
parameter, b, 
defines the 
decline 
behaviour 

0 ≤ b ≤ 1 

D is 
changing 

2 Duong’s 
Model 

𝑞𝑡 = 𝑞𝑖𝑡(𝑎. 𝑚) + 𝑞𝑚 TFR Very low 
permeability and 
long periods of 
transient flow 

1 < m < 2 

5.3.2. Model Derivation 

STEP 1: Simplifying Duong’s Formulae 

          𝑞𝑡 = 𝑞𝑖𝑡(𝑎. 𝑚) + 𝑞𝑚 

                                                                       𝑞𝑖 =  
𝑞𝑚−𝑞𝑡

𝑡 (𝑎.𝑚)
                                                      (5.4) 

STEP 2: Using Eq. (5.4) substitute into Eq. (1) from Table 5.2  

𝑞𝑡 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)−1/𝑏 

                                                     𝒒𝒕 = ⌈
𝒒𝒎−𝒒𝒕

𝒕
⌉ [𝟏 + 𝒃𝑫𝒊𝒕]−

𝟏

𝒃                                    (5.5)   

where qt is the flow rate at time, t in STB/day or Mscf/day, Di is the initial decline 

constant, in days – 1 and b is the decline exponent.  
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When the two models, Arps and Duong’s were combined, the result indicated that the 

conditions from the Arps model were prevalent. Therefore, the Arps condition of 0 ≤ b 

≤ 1 for a hyperbolic decline will be observed with a changing Di value. 

5.4.  The Arps-PLE Hybrid Decline Model  

The third proposed model incorporates the Arps and PLE Models. These models 

consider BDF and TFR flows. Since the PLE model was developed specifically for 

SGRs it would be advantageous to evaluate these two models as combined due to 

both being simple equations to use. 

5.4.1.  Assumptions and Conditions 

Table 5.3 summarises the different model behaviours, assumptions and conditions 

taken into consideration for the combined models. 

Table 5.3: Summary of the behaviour, assumptions, conditions and parameters 

for the Arps-PLE hybrid decline model 

 Model Equation Production 
Behaviour 

Assumptions Condition 

1 Arps 
Hyperbolic 
Model 

𝑞𝑡 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)−1/𝑏 BDF Decline 
parameter, b, 
defines the 
decline 
behaviour 

0 ≤ b ≤ 1 

D is 
changing 

2 Power Law 
Model 

𝑞𝑡 = 𝑞𝑖𝑒[−𝐷∞𝑡−𝐷𝑖𝑡𝑛] BDF and TFR Approximates 
the rate of 
decline with a 
power law 
decline 

D∞ is 
constant at 
late time 

5.4.2. Model Derivation 

STEP 1: Equating Eq. (1) and (2) from Table 5.4 

𝑞𝑖𝑒
−𝐷∞𝑡−𝐷𝑖𝑡𝑛 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)

−1
𝑏⁄  

𝑞𝑖[−𝐷∞𝑡 − 𝐷𝑖𝑡𝑛] = −
1

𝑏
 𝐼𝑛 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡) 

𝑞𝑖𝑡[−𝐷∞ − 𝐷𝑖𝑛] = −
1

𝑏
 𝐼𝑛 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡) 

                                        𝒕[−𝑫∞ − 𝑫𝒊𝒏] =
−

𝟏

𝒃

𝒒𝒕
𝑰𝒏(𝟏 + 𝒃𝑫𝒊)                                    (5.6)   
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where qt is the flow rate at time, t in STB/day or Mscf/day, D∞ is the decline rate at 

long-term period while Di is the initial decline constant, which are both measured in 

days − 1, 𝑛 is the time exponent and b is the decline exponent.  

The combined Arps-PLE hybrid decline model, the parameters of the PLE model are 

observant. This model introduces the 𝑛 and D∞ Arps model. The major advantage of 

this model is that the extra variables enable the model to account for the transient flow. 

Hence, the “loss rate” would assume a power law function initially and then become 

constant during the later time period. However, with this hybrid model the number of 

variables to solve is reduced to three from four, which was evident in the PLE model.  

This according to Hu et al. (2018) results in several degrees of freedom and may be 

clumsy to use or solve. Hence, with combining the models the number of degrees of 

freedom is minimised.  

5.5.  The Combined Duong’s and PLE Models  

The fourth proposed model incorporates the Duong’s and PLE Models. These models 

both consider TFR. 

5.5.1.  Assumptions and Conditions 

Table 5.4 summarises the different model behaviours, assumptions and conditions 

taken into consideration for the combined models. 

 
Table 5.4: Summary of the behaviour, assumptions, conditions and parameters 

for the Duong’s-PLE hybrid decline model 

 Model Equation Production 
Behaviour 

Assumptions Condition 

1 Duong’s 
Model 

𝑞𝑡 = 𝑞𝑖𝑡(𝑎. 𝑚) + 𝑞𝑚 TFR Very low 
permeability and 
long periods of 
transient flow 

m > 1 

2 Power 
Law Model 

𝑞𝑡 = 𝑞𝑖𝑒[−𝐷∞𝑡−𝐷𝑖𝑡𝑛] BDF and TFR Approximates 
the rate of 
decline with a 
power law 
decline 

D∞ is constant 
at late time 
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5.5.2. Model Derivation 

STEP 1: Using Eq. (5.4) and substituting into Eq. (2) from Table 5.4 

𝑞𝑡 =
𝑞𝑡 − 𝑞𝑚

𝑡(𝑎. 𝑚)
𝑒[−𝐷∞𝑡−𝐷𝑖𝑡𝑛] 

ln 𝑞𝑡 =
𝑞𝑡 − 𝑞𝑚

𝑡(𝑎. 𝑚)
[−𝐷∞𝑡 − 𝐷𝑖𝑡𝑛] 

ln 𝑞𝑡 =
𝑞𝑡 − 𝑞𝑚

1

1

𝑡(𝑎. 𝑚)
 𝑡 [−𝐷∞𝑡 − 𝐷𝑖𝑡𝑛] 

ln 𝑞𝑡 =
𝑞𝑡 − 𝑞𝑚

1

1

𝑡(𝑎. 𝑚)
 𝑡 [−𝐷∞𝑡 − 𝐷𝑖𝑡𝑛] 

                                                
𝑰𝒏 𝒒𝒕

𝒒𝒎
= 𝒕(−𝑫∞ − 𝑫𝒊𝒏)                                             (5.7) 

 

where qt is the flow rate at time, t in STB/day or Mscf/day, qm is the intercept of the 

plot of qt vs. t, D∞ is the decline rate at long-term period while Di is the initial decline 

constant, which are both measured in days − 1, 𝑛 is the time exponent.  

In the Duong’s-PLE hybrid decline model, parameters from both models contribute to 

the decline process. Duong’s method was developed on the basis that production rate 

and time have a power law relation or form a straight line when plotted on a log-log 

scale (Duong, 2011). The production trend will deviate from a log-log straight line when 

BDF is reached (Kanfar and Wattenbarger, 2012). The PLE model also follows an 

exponential decline. The “loss rate” assumes that it will follow a power law function 

initially and then becomes constant during later periods. 

5.6.  Conclusion 

During the model development, four hybrid models were developed, Arps-Duong’s-

PLE hybrid decline model, Arps-Duong hybrid decline model, Arps-PLE hybrid decline 

model and Duong’s-PLE hybrid decline model. The primary objective of the new 

models is to eliminate the shortcomings of the stand-alone models. 

In the Arps-Duong’s-PLE hybrid decline model, the result indicates that the conditions 

from the Arp’s and PLE models are dominant. Therefore, the Arps condition of 0 ≤ b ≤ 

1 for a hyperbolic decline is noted. Also with the PLE model, the “loss rate” assumes 

to follow a power law function initially, and then becomes constant during the later time 
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period. Therefore, there will be a switching point from a hyperbolic to an exponential 

decline.  

When the two models, Arps and Duong’s are combined, the result indicates that the 

conditions from the Arps model is prevalent. Therefore, the Arps condition of 0 ≤ b ≤ 1 

for a hyperbolic decline will be observed with a changing Di value. 

In the combined Arps-PLE hybrid decline model, the parameters of the PLE model are 

observed. This model introduces the 𝑛 and D∞ the Arps model. The major advantage 

of this model is the extra variables that enable the model to account for the transient 

flow. The “loss rate” would assume a power law function initially and then become 

constant during the later time period. Nevertheless, with this hybrid model, the number 

of variables to solve is reduced from three to four, which was evident in the PLE model. 

Henceforth, with combining the models the number of degrees of freedom is 

minimised.  

Lastly, with the Duong’s-PLE hybrid decline model, parameters from both models  

contribute to the decline process. The PLE model also follows an exponential decline. 

The “loss rate” assumes following a power law function initially and then becomes 

constant during later periods. The next chapter will focus on the simulations of the 

developed hybrid decline models. 
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Chapter 6  

Simulation Models 

6.1.  Introduction 

Chapter 5 covered the development of the simulation models. In this section, the 

simulations of the models will be examined. The variable used in this investigation is 

flow rate, q(t) in STB/day, monitored over a period of time (T) in days. The estimated 

data was extracted from the research conducted by Paryani et al. (2018) and Adekoya 

(2009).  

Paryani et al. (2018) sourced the data from the Cannon Shale Well located in Karnes 

County while Adekoya’s (2009) data was from the Marcellus Shale Well located in the 

Appalachian region of the United States of America. KAPPA-Citrine and JMP software 

was used for the simulation of the models.  

6.2.  Production Behaviour12  

6.2.1.  Arps Decline Curve Model 

Arps decline curve analysis is the most commonly used method of estimating ultimate 

recoverable reserves and future performance (Qu and Lin, 2017). The model process 

is based on the following vital assumptions: that past operating conditions will remain 

unaffected; that a well is produced at or near capacity; and that the well’s drainage 

remains constant and is produced at a constant bottom-hole pressure (Robertson, 1988). 

Notably, the Arps model is only applicable in pseudo-steady flows when the flow regime 

transfers from linear flows to BDF (Hu et al., 2018).  

This indicates that the Arps Equations are not applicable to the production forecasting of 

the entire decline process of horizontal wells in low-permeability reservoirs (Bagozzi and 

Yi, 1988). The most commonly employed hyperbolic form of Arps decline Equation 

(2.2) is used for shale reservoirs.  

                                                      
12 Raw data can be found in Appendix A 
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The hyperbolic decline equation is suitable to use due to the “best fit” that it provides 

for the long transient linear-flow regime observed in shale gas wells with b values 

greater than unity (Brantson et al., 2019). 

 

                                                                      (a) 

                                                                      (b)  

Based on Figure 6.1, the rate of decline is assumed to follow a logistic growth. The 

production data points do not all appear to fall on the fitting curve (Refer to Table A1 

and A2 in Appendix A for data). This can be seen from a log qt vs. t plot, the R2 values 

of 0.9717 (Canon Well) and 0.9692 (Marcellus Well) were observed. The summary of 

the Arps model simulation can be seen in Table 6.1. 

Figure 6.1: KAPPA-Citrine and JMP graphs for an Arps plot for (a) Canon Shale 
Well and (b) Marcellus Shale Well using estimated production data 



68 
 

Table 6.1: Summary of the Arps decline model behaviour, assumptions, 

conditions and parameters 

 Production 
Behaviour 

Assumptions Conditions Parameters 

Canon Shale Well Boundary 
Dominated Flow 
(BDF) 

 

 

 

 

Boundary 
Dominated Flow 
(BDF) 

 

 

 

Decline 
parameter, b, 
defines the 
decline 
behaviour 

The rate of 
decline 
approximated 
using a logistic 
growth decline 

0 ≤ b ≤ 1 

 

 

 

 

 

 

0 ≤ b ≤ 1 

 

b = 0.383 

Di = 3.53 

qi = 2183 

EUR = 0.100 

R2 = 0.9717 

RMSE = 0.0725 

 

Marcellus Shale Well b = 0.00 

Di = 0.042 

qi = 3864 

EUR = 9.24 

R2 = 0.9692 

RMSE = 0.1279 

6.2.2. Duong’s Decline Curve Model 

Duong (2011) presented an unconventional rate decline method to evaluate the 

performance of shale gas wells that does not depend on the fracture types. The model 

assumes linear or near-linear flow, as indicated by a log–log plot of rate over 

cumulative production versus time, which yielded a straight-line tendency (Duong, 

2011). The rate is calculated in the model using Equation (2.16). 

From Figure 6.2, the rate of decline is assumed to follow a linear decline. As in the 

case of the Arps decline model, the production data points do not appear to fall on the 

fitting curve (Refer to Table A1 and A2 in Appendix A for data). The R2 values for a 

plot of log qt vs. log t were 0.9402 (Canon Well) and 0.8999 (Marcellus Well), 

respectively. The summary of the Duong’s model simulation can be seen in Table 6.2. 
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(a)                                                                           

     

 

 

 

 

 

(b) 

Table 6.2: Summary of the Duong’s decline model behaviour, assumptions, 

conditions and parameters 

 Production 
Behaviour 

Assumptions Conditions Parameters 

Canon Shale Well Transient Flow 
Regime (TFR 

 

 

 

 

 

 

 

 

 

Transient Flow 
Regime (TFR) 

Very low 
permeability and 
long periods of 
transient flow 

The rate of 
decline 
approximated 
using a linear 
decline 

in the case of 

water 
breakthrough a 
and m increases 

1 < m < 2 

 

 

 

 

 

 

 

1 < m < 2 

 

a = 2.74 

m = 1.53 

qi = 2492 

EUR = 0.152 

R2 = 0.9402 

RMSE = 0.0627 

Marcellus Shale Well a = 3.03 

m = 1.29 

qi = 2529 

EUR = 16.14 

R2 = 0.8999 

RMSE = 0.2261 

Figure 6.2: KAPPA-Citrine and JMP graphs representing the Duong’s plot for (a) 

Canon Shale Well and (b) Marcellus Shale Well using estimated production data 
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6.2.3.  Power Law Exponential Decline Model (PLE) 
 

Ilk et al. (2008) presented the PLE, which is an extension of the exponential Arps 

formula for the decline degree in shale reservoirs. This model was developed precisely 

for SGR and approximates the rate of decline with a power law decline. The PLE model 

matches production data in both the transient and boundary-dominated regions 

without being hypersensitive to remaining reserve estimates (Kanfar et al., 2012). 

Seshadri and Mattar (2010) presented that the PLE model can model transient radial 

and linear flows, while Kanfar and Wattenbarger (2012) proved that the model is 

reliable for linear flow, bilinear flow followed by linear flow, and linear flow followed by 

BDF, or bilinear flow, followed by linear flow and finished with BDF flow. Vanorsdale 

(2013) deduced that when the flow regime changes throughout the initial 10 years of 

the well, the PLE model will yield a very optimistic recovery. The model characterizes 

the decline rate by infinite time, D∞ which is defined as a “loss ratio” (which is assumed 

to be constant from Arps (1945). The production rate is derived as per Equations (2.6; 

2.7 and 2.8). 

            (a) 

            (b)          

Figure 6.3: KAPPA-Citrine and JMP graphs representing the PLE plot for (a) 
Canon Shale Well and (b) Marcellus Shale Well, using estimated production data 
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Based on Figure 6.3, the rate of decline is assumed to follow a power law decline. As 

in the other two cases, the production data points do not appear to fall on the fitting 

curve (Refer to Table A1 and A2 in Appendix A for data). A log qt vs. log t yielded R2 

values were 0.9724 (Canon Well) and 0.9586 (Marcellus Shale), respectively. The 

summary of the PLE model simulation can be seen in Table 6.3. 

Table 6.3: Summary of the PLE decline model behaviour, assumptions, 

conditions and parameters 

 Production 
Behaviour 

Assumptions Conditions Parameters 

Canon Shale Well BDF and TFR 

 

 

 

 

 

 

BDF and TFR 

 

 

 

 

Approximates 
the rate of 
decline with a 
power law 
decline 

 

 

 

 

 

Di changes at 
early stages 
while 

D∞ is constant 
at late time 

n = 0.524 

Di = 0.0000681 

qi = 4018 

EUR = 0.101 

R2 = 0.9724 

RMSE = 0.0716 

Marcellus Shale Well n = 0.005 

Di = 0.0000431 

qi = 10812 

EUR = 9.09 

R2 = 0.9586 

RMSE = 0.1483 

 
6.2.4. The Arps-Duong’s-Power Law Hybrid Decline Model 

The first proposed method incorporates the three DCA models, namely Arps, Duong’s 

and PLE models. The Arps model only considers BDF while Duong’s and PLE models 

consider TFR. The PLE model also considers BDF and has been specifically 

developed for SGRs. Hence, by combining the three models the limitations from each 

are presumed to be minimised or eliminated. Please refer to equation (5.3). 

A plot of  
𝑞𝑡

𝑞𝑖
 vs. 𝑡 Figure 6.4 provides the best fit for the model. 
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                                          (a)                                                           (b) 

Figure 6.4 shows that the rate of decline initially follows a hyperbolic decline and then 

switches to an exponential decline. In this instance, it appears more of the data points 

fall on the fitting curve (Refer to Table A1 and A2 in Appendix A for data). The R2 

values obtained for the plot ( 
𝑞𝑡

𝑞𝑖
 vs.𝑡) were 0.9686 (Canon Well) and 0.9864 (Marcellus 

Well), respectively. The summary of the Arps-Duong-Power Law hybrid decline model 

simulation can be seen in Table 6.4. 

 
Table 6.4: Summary of the Arps-Duong-Power Law hybrid decline model 

behaviour, assumptions, conditions and parameters 

 Production 
Behaviour 

Assumptions Conditions Parameters 

Canon Shale Well BDF and TFR 

 

 

 

 

 

 

 

 

 

 

 

BDF and TFR 

 

 

 

 

Decline rate 
undergoes a 
switch point 
from a 
hyperbolic 
decline to an 
exponential 
decline  

 

 

 

 

0 ≤ b ≤ 1 

Di changes at 
early stages 
and D∞ 

becomes 

constant at late 
time 

n = 0.755 

Di = 1.22 

qi = 1860 

b = 0.188 

EUR = 0.101 

R2 = 0.9686 

RMSE = 0.4464 

Marcellus Shale Well n = 0.005 

Di = 0.0430 

qi = 7408 

b = 0.00 

EUR = 10.90 

R2 = 0.9864 

RMSE = 0.0169 

Figure 6.4: A plot of  
𝒒𝒕

𝒒𝒊
 vs. t for (a) Canon Shale Well and (b) Marcellus Shale 

Well using estimated production data 
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6.2.5.  The Arps-Duong’s Hybrid Decline Model 

The second proposed model incorporates the two developed DCA models. Arps only 

considers BDF while Duong’s considers TFR. Hence, both these flow regimes will be 

taken into account when combining these two models. The equation is given in (5.5). 

A plot of  
𝑞𝑡

𝑡
 vs. 𝑡 Figure 6.5 provides the best fit for the model.  

                         (a) (b) 

Based on Figure 6.5, the rate of decline follows a mechanistic growth decline. It 

appears that most of the data points fall on the fitting curve (Refer to Tables A1 and 

A2 in Appendix A for data). The R2 values were 0.9846 (Canon Well) and 0.9958 

(Marcellus Well) for the plot of 
𝑞𝑡

𝑡
 vs. 𝑡. The summary of the Arps-Duong hybrid decline 

model simulation can be seen in Table 6.5 

Table 6.5: Summary of the Arps-Duong hybrid decline model behaviour, 

assumptions, conditions and parameters 

 Production Behaviour Assumptions Conditions Parameters 

Canon Shale Well BDF and TFR 

 
 
 
 
 
 
 
BDF and TFR 

 

 

 

 

Approximates the 

rate of decline 

with a 

mechanistic 

growth decline 

0 ≤ b ≤ 1 

 

 

 

 

 

 

0 ≤ b ≤ 1 

Di = 12.90 

qi = 6535 

b = 0.690 

EUR = 0.161 

R2 = 0.9846 

RMSE = 

0.8154 

Marcellus Shale 

Well 

Di = 0.045 

qi = 2249 

b = 0.00 

EUR = 12.28 

R2 = 0.9958 

Figure 6.5: A plot of  
𝒒𝒕

𝒕
 vs. t for (a) Canon Shale Well and (b) Marcellus 

Shale Well using estimated production data 
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RMSE = 

0.3933 

6.2.6.  The Arps-Power Law Exponential Hybrid Decline Model 

The third proposed model incorporates the Arps and PLE Models. These models 

consider BDF and TFR flows. Since the PLE model was developed specifically for 

SGRs, it would be advantageous to evaluate these two models combined, due to both 

being simple Equations to use. The equation is given in (5.6). 

A plot of  
1

𝑏

𝑞𝑡
 vs. 𝑡 Figure 6.6 provides the best fit for the model.  

 

 (a) (b)                                 

From Figure 6.6, the rate of decline follows a logistic growth decline. It appears the 

data points fall within the fitting curve. However, there are a few outliers observed for 

this model.  

Figure 6.6: A plot of 
𝟏

𝒃

𝒒𝒕
 vs. t for (a) Canon Shale Well and (b) Marcellus Shale 

Well using estimated production data 
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The plot from Figure 6.6 yielded R2 values were 0.9157 (Canon Well) and 0.9747 

(Marcellus Shale). The summary of the Arps-Power Law hybrid decline model 

simulation can be seen in Table 6.6. 

Table 6.6: Summary of the Arps-PLE hybrid decline model behaviour, 

assumptions, conditions and parameters 

 Production 
Behaviour 

Assumptions Conditions Parameters 

Canon Shale Well BDF and TFR 

 

 

 

 

 

 

 

BDF and TFR 

 

 

 

 

 

Approximates 
the rate of 
decline with a 
logistic growth 
decline 

 

 

 

 

 

0 ≤ b ≤ 1 

Di changes at 
early stages 
and D∞ 

becomes 

constant at late 
time 

n = 1.00 

Di = 0.798 

qi = 1429 

b = 0.000 

EUR = 0.0904 

R2 = 0.9157 

RMSE = 0.0081 

Marcellus Shale Well n = 0.005 

Di = 0.0139 

qi = 359 

b = 0.0087 

EUR = 1.44 

R2 = 0.9747 

RMSE = 0.0036 

6.2.7. The Duong-Power Law Exponential Hybrid Decline Model 

The fourth proposed model incorporates the Duong’s and PLE Models. These models 

both consider TFR. The equation is in (5.7). 

A plot of  
𝐼𝑛 𝑞𝑡

𝑞𝑚
 vs. 𝑡 Figure 6.7 provides the best fit for the model. 

                                                    (a)           (b) 
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  (c)  (d) 

  

Based on Figure 6.7, the rate of decline follows a mechanistic growth decline. It 

appears that the data points do not all fall within the fitting curve. The R2 values for the 

plot of 
𝐼𝑛 𝑞𝑡

𝑞𝑚
 vs. 𝑡 were 0.9718 and 0.9709, respectively. The summary of the Duong-

Power Law hybrid decline model simulation can be seen in Table 6.7.    

Table 6.7: Summary of the Duong’s-PLE hybrid decline model behaviour, 

assumptions, conditions and parameters 

 Production 
Behaviour 

Assumptions Conditions Parameters 

Canon Shale Well BDF and TFR 

 

 

 

 

 

 

 

 

BDF and TFR 

 

 

 

 

 

 

Approximates 
the rate of 
decline with a 
mechanistic 
growth decline 

 

 

 

 

 

 

 

 

m > 1 and D∞ 

becomes 

constant at late 
time 

n = 0.781 

Di = 0.0000564 

m = 1.59 

qi = 1020 

qm = 688 

EUR = 0.106 

R2 = 0.9718 

RMSE = 0.1669 

Marcellus Shale Well n = 0.207 

Di = 0.0000430 

m = 1.41 

qi = 29181 

qm = 1643 

EUR = 20.84 

R2 = 0.9709 

RMSE = 0.2865 

y = -0.1424x + 1642.6
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Figure 6.7: A plot of  
𝑰𝒏 𝒒𝒕

𝒒𝒎
 vs. t for (a) Canon Shale Well and (b) Marcellus Shale 

Well using estimated production data with (c) and (d) being the excel plots used 

to determine 𝒒𝒎 



77 
 

 
6.2.8. Autoregressive Integrated Moving Average (ARIMA) Model 

In order to evaluate the best fit for the ARIMA model a number of node scenarios were 

evaluated and the (3,1,3)  and the (2,1,2) were selected to give the best forecast 

values because they were the lowest MSE and highest adjusted R2 for the Canon 

Shale Well and Marcellus Shale Well, respectively. Table 6.8 indicates the best results 

for the ARIMA model, which is highlighted in bold.  

Table 6.8: Statistical results for the varying p,d,q for the ARIMA model obtained 

using JMP software 

The graphical representation of the ARIMA models for the Canon Shale Well (3,1,3) 

and Marcellus Shale Well (2,1,2) can be seen in Figure 6.8.  

                       (a)                                                       (b)        

ARIMA MSE  

(Canon Shale 
Well) 

Adjusted R2 

(Canon Shale 
Well) 

MSE 

 (Marcellus Shale 
Well) 

Adjusted R2  

(Marcellus Shale 
Well) 

(0,0,0) 19.8 0.0000 66.7 0.0000 

(1,1,1) 1.8 0.9880 2.4 0.9960 

(1,2,1) 2.5 0.9780 2.7 0.9950 

(1,3,1) 2.9 0.9670 3.8 0.9890 

(2,1,1) 1.8 0.9880 2.5 0.9960 

(2,1,2) 1.6 0.9910 2.3 0.9960 

(3,1,3) 1.2 0.9940 3.6 0.9950 

Figure 6.8: An ARIMA lag plot of 𝒒𝒕 vs. t for (a) Canon Shale Well and (b) 

Marcellus Shale Well 
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6.2.9.  Artificial Neutral Network (ANN) Model 

To choose the best algorithm for the model, a number of hidden nodes and layers 

were changed. In this study, the number of neurons was varied between 1 and 15. It 

has been highlighted in the literature that accuracy can be increased by increasing the 

number of nodes and layers (Khashei et al., 2009). The accuracy of the ANN-based 

estimation model was evaluated by various criteria, including mean percentage error 

(MPE), mean absolute percent error (MAPE) and correlation coefficient (R2) between 

the actual and predicted values. The MPE, MAPE and R2 are defined as follows: 

                                     𝑀𝑃𝐸 = ∑
𝐴𝑡−𝑃𝑟𝑒𝑑𝑡 

𝐴𝑡

𝑛
𝑡=1                                            (6.14)             

                                 𝑅2 = (
∑ (𝑃𝑟𝑒𝑑𝑡−𝑃𝑟𝑒𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝐴𝑡−𝐴𝑡̅̅ ̅𝑛

𝑡=1 )

∑ (𝑃𝑟𝑒𝑑𝑡−𝑃𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅𝑡)2𝑛
𝑡=1 ∑ (𝐴𝑡−𝐴𝑡̅̅ ̅)2𝑛

𝑡=1
 )                                     (6.15)  

where Predt is the predicted value obtained from the neural network model and At is 

the actual value. �̅�𝑡  and 𝑃𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅
𝑡 are the average of the actual and predicted values, 

respectively. Table 6.9 summaries the performance output for the different number of 

neurons in the hidden layer for the Canon Shale Well and Marcellus Shale Well. 

Table 6.9: Summary of the performance output for the different number of 

neurons in the hidden layer for the Canon Shale Well and Marcellus Shale Well 

 Canon Shale Well Marcellus Shale Well 

No. of Neurons MPE R2 MPE R2 

1 -3.85 0.9727 -3.33 0.9908 

2 -3.25 0.9726 14.25 0.9954 

3 -1.87 0.9730 12.48 0.9916 

4 -1.06 0.9743 0.44 0.9965 

5 -5.10 0.9855 21.14 0.9964 

6 -10.26 0.9667 20.35 0.9999 

7 -2.26 0.9864 5.04 0.9999 

8 -2.85 0.9886 -3.72 1.0000 

9 -8.67 0.9930 -5.42 1.0000 

10 -4.37 0.9961 -1.71 1.0000 

11 -7.26 0.9958 -17.96 0.9995 

12 -3.49 0.9982 -5.11 1.000 

13 -4.63 0.9972 -7.93 1.000 

14 -4.06 0.9978 -6.39 1.000 

15 -6.43 0.9912 2.89 1.000 
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In this study, for both the Canon Shale Well and Marcellus Shale Well a univariant  

input layer (a single input was used because of the data used in the study) and four 

nodes (1-4-1) highlighted in bold in Table 6.9 (lowest MPE) gave the best model which  

is shown in Figure 6.9.  

Hidden Layer 

 

 

                        Input                                                                      Output 

 

 

 

 

 

 

 

 

 
 

6.2.10. ANN-ARIMA Hybrid Model 

Zhang investigated the concept of the hybrid ANN-ARIMA model to obtain precise 

results as compared to using both models separately (Zhang, 2003). Numerous 

techniques, which explored the hybrid approach, have been used for many years to 

take advantage of the unique strengths of each type of models. The objective of 

merging the models is the notion that a single model cannot define all the specifics of 

time series (Tan et al., 2018).  

Nt  (Refer to equation 2.26) is obtained from the predicted values of the ANN model 

while �̂�𝑡 is the forecasted value from ARIMA based on the residual values. Regarding 

the hybrid model, the parameters used for the ARIMA, and ANN were used i.e., (2,1,2), 

(3,1,3) and a univariant ANN model, respectively.  In the first step, ANN is used to 

predict the production rate, then the residuals 𝑒𝑡 being produced are provided to 

ARIMA to predict the error. In the second step, the predicted production data by ANN 

is summed with the error produced by ARIMA to give the final predicted values. The 

Time Q(t) 

Figure 6.9: Univariant ANN model for both sets of production data 

applied in this study 
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error obtained from the ARIMA model was 22.1% (Canon Shale Well) and 39.7% 

(Marcellus Shale Well). 

6.3. Conclusion 

The section covered the simulation of the production data from the Canon and 

Marcellus Shale Well, using KAPPA-Citrine and JMP software. The simulation results  

indicated for the Arps, Duong and Power Law decline models showed that not all the 

production data points fall within the fitting curve, which was confirmed by the R2 

values. Conversely, for the hybrid models (order of rank based on the R2 values), the 

Arps-Duong, Arps-Duong’s-Power Law, Duong-Power Law and Arps-Power Law, the 

data appears to fall on the fitting curve better than the single models. The R2 values 

obtained for the models showed higher values (Refer to Table 6.10 for the summary 

of R2 values for all models discussed).  

In order to evaluate the best fit for the ARIMA model, a number of scenarios were 

evaluated and the ARIMA scenario (2,1,2) was selected to give the best forecast value 

for the Marcellus Well; due to having the lowest MSE of 4.82, a low BIC of 168.23 and 

highest adjusted R2 of 0.9790. For the Canon, ARIMA scenario (3,1,3) was selected 

to give the best forecast value, due to having the lowest MSE of 6.31, a low BIC of 

226.0 and the highest adjusted R2 of 0.9937.  

To choose the best algorithm for the ANN model, a number of hidden nodes and layers 

are changed. In this study, the number of neurons were varied between 1 to 15. The 

accuracy of the ANN-based estimation model was evaluated using the MPE and R2 

between the actual and predicted values. In this study, for both the Canon Shale Well 

and the Marcellus Shale Well, a univariant input layer and four nodes (1-4-1) gave the 

best model. 

The ten models evaluated during the simulation process is summarised in Table 6.10. 

The next chapter will use the information obtained in the simulation process to 

evaluate the accuracy and validate the models. 
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Table 6.10: Summary of the data for each of the models during the simulation process 

Model Equation  Production Behaviour Parameter Results  

   Canon Shale 
Well 

Marcellus Shale 
Well 

Arps Decline 
Model 

𝑞𝑡 =
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 BDF b = 0.383 

Di = 3.53 

qi = 2183 

EUR = 0.100 

R2 = 0.9717 

RMSE = 0.0725 

b = 0.00 

Di = 0.042 

qi = 3864 

EUR = 9.24 

R2 = 0.9692 

RMSE = 0.1279 

Duong’s 
Decline Model 

𝑞(𝑡) = 𝑞𝑖𝑡(𝑎, 𝑚) + 𝑞∞ TFR a = 2.74 

m = 1.53 

qi = 2492 

EUR = 0.152 

R2 = 0.9402 

RMSE = 0.0627 

a = 3.03 

m = 1.29 

qi = 2529 

EUR = 16.14 

R2 = 0.8999 

RMSE = 0.2261 

PLE Decline 
Model 

𝑞(𝑡) = �̂�𝑖𝑒
[−𝐷∞𝑡−�̂�𝑖𝑡�̂�] BDF and TFR n = 0.524 

Di = 0.0000681 

qi = 4018 

EUR = 0.101 

R2 = 0.9724 

RMSE = 0.0716 

n = 0.005 

Di = 0.0000431 

qi = 10812 

EUR = 9.09 

R2 = 0.9586 

RMSE = 0.1483 

Arps-Duong’s-
PLE Hybrid 
Model 

𝑞𝑡

𝑞𝑖
= 𝑡 (−𝐷∞ − 𝐷𝑖�̂�) − 𝐼𝑛

𝑏+1

𝑏
                                            BDF and TFR n = 0.755 

Di = 1.22 

qi = 1860 

b = 0.188 

EUR = 0.101 

R2 = 0.9686 

RMSE = 0.4464 

n = 0.005 

Di = 0.0430 

qi = 7408 

b = 0.00 

EUR = 10.90 

R2 = 0.9864 

RMSE = 0.0169 
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Arps-Duong 
Hybrid Model 

 𝑞𝑡 = [
𝑞𝑡

𝑡
][1 + 𝑏𝐷𝑖]

−𝑏
1
                                                 BDF and TFR Di = 12.90 

qi = 6535 

b = 0.690 

EUR = 0.161 

R2 = 0.9846 

RMSE = 0.8154 

Di = 0.045 

qi = 2249 

b = 0.00 

EUR = 12.28 

R2 = 0.9958 

RMSE = 0.3933 

Arps-PLE 
Hybrid Model  𝑡[−𝐷∞ − 𝐷𝑖�̂�] =

−
1

𝑏

𝑞𝑡
𝐼𝑛(1 + 𝑏𝐷𝑖)                                    

BDF and TFR n = 1.00 

Di = 0.798 

qi = 1429 

b = 0.000 

EUR = 0.0904 

R2 = 0.9157 

RMSE = 0.0081 

n = 0.005 

Di = 0.0139 

qi = 359 

b = 0.0087 

EUR = 1.44 

R2 = 0.9747 

RMSE = 0.0036 

Duong-PLE 
Hybrid Models 

 
𝐼𝑛 𝑞𝑡

𝑞𝑚
=  𝑡 [−𝐷∞ − 𝐷𝑖�̂�]                                                 BDF and TFR n = 0.781 

Di = 0.0000564 

m = 1.59 

qi = 1020 

qm = 688 

EUR = 0.106 

R2 = 0.9718 

RMSE = 0.1669 

n = 0.207 

Di = 0.0000430 

m = 1.41 

qi = 29181 

qm = 1643 

EUR = 20.84 

R2 = 0.9709 

RMSE = 0.2865 

ARIMA Model  𝑌𝑡 =∝1 𝑌𝑡−1 + 𝜀𝑡 

𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 

𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 

Linear (2,1,2) 

RMSE = 0.00304 

(3,1,3) 

RMSE = 0.0472 

ANN Model  𝑌𝑡 =∝0+ ∑ ∝𝑗
𝑞
𝑗−1 𝑔 (𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡

𝑝
𝐼=1 − 𝑖) +  𝜀𝑡                                        Non-linear (1-4-1) 

RMSE = 0.0148 

(1-4-1) 

RMSE = 0.0165 

ANN-ARIMA 
Hybrid Model  

�̂�𝑡 = �̂�𝑡  + �̂�𝑡. Linear and Non-linear (1-4-1) 

(2,1,2) 

RMSE = 0.2384 

(1-4-1) 

(3,1,3) 

RMSE = 0.2049 
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Chapter 7 

The Forecasting, Accuracy and Validation of Models 

7.1.  Introduction 

This chapter will discuss the accuracy and validate each of the models, based on the 

data obtained during simulation. In order to validate the result of each forecasting 

model, which was discussed in the previous section, model validation is required, 

based on the different error analysis method.  

The MSE; RMSE and R2 between the actual and predicted data were calculated using 

JMP software for each model. The aim of the model validation is to find the best model 

which gives the least error and the best fit of the data. The best model is then selected 

to predict future shale gas demand.  

7.2.  Production Forecasting13 

7.2.1.  The Arps Decline Model 

KAPPA-Citrine software was initially used for determining the parameters for the Arps 

decline model. The b values were found to be 0.383 and 0.00, while the Di values were 

3.53 and 0.042, respectively, for Cannon Well and Marcellus Shale Wells.  

Subsequently, JMP software was used to construct the prediction model. The second 

step was to graph a semi log plot (log q vs. t) to determine the model forecasting 

Equation (7.1) and parameters.  

The forecasting equation is given as follows: 

𝑦 =  
𝑐

1 + 𝑒(−𝑎𝑥2−𝑏)
  (7.1) 

where c is the asymptote, a the growth rate, while b is the inflection point and x is time. 

The actual and forecasted flow rate values are shown graphically in Figure 7.1.  

                                                      
13 Raw data can be found in Appendix A – Section A.3.  Actual vs. Predicted Data 
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(a) 

(b) 

The results for the model appear in some instances to over-and in other instances to 

under-estimate the data. The results concur with the literature, which suggests that 

the weakness of the Arps decline model is overestimation of results. Tan et al. (2018) 

highlighted that although the Arps decline model is simple and fast, it often fails to 

accurately fit the decline curve of unconventional reservoirs. They further explained 
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Figure 7.1: Graphical representation of actual flow rate vs. forecasted 

flow rate for shale gas production using the Arps decline model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 
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that the model often tends to overestimate the EUR for shale gas wells because it 

assumes that a BDF regime is evident. Paryani et al. (2018) concurred with these 

findings, explaining that the drainage area is not constant because the pressure pulse 

continues to spread from the fracture to other areas of the reservoir volume.  

7.2.2.  The Duong’s Decline Model 

The parameters for the Duong decline model were qi = 2492, a = 2.74 and m = 1.53 

for Canon Shale Well and were qi = 2529, a = 3.03 and m = 1.29 for the Marcellus 

Shale Well. In this instance, a log–log linear plot (log q vs. log t) was used. The 

forecasting equation is given as: 

𝑦 =  𝑏𝑥 + 𝑐 (7.2) 

where b is the slope, x is time and c is the intercept. The actual and forecasted flow 

rate values can been seen in Figure 7.2. 

 

 

 (a) (b)  

The results for the Duong decline model indicate an under and over-estimate of the 

data. Meyet et al. (2013) mentioned in their work that the Duong decline model tends 

to provide the most conservative results. This could also be attributed to the fact that 

the Duong decline model tends to be more accurate for linear flows and bilinear–linear 

flows (Kanfar et al., 2012). Paryani et al. (2018) found that the well fitted with 51% of 

the historical production data, and that the Duong decline model fits better with longer 

and less noisy historical production data. 
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Figure 7.2: Graphical representation of actual flow rate vs. forecasted flow 

rate for shale gas production, using the Duong’s decline model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 
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7.2.3.  The PLE Decline Model 

The parameters used in the model for n and Di are 0.524 and 0.0000681 for Canon 

Shale Well and n and Di used were 0.005 and 0.0000431 for the Marcellus Shale Well. 

A log-log plot (log q vs. log t) was used in the model forecasting. The forecasting 

equation is given as: 

𝑦 =  𝑎 + 𝑏𝑒𝑐𝑥 (7.3) 

where a is the asymptote, b is the scale, c is the growth rate and x is time. The actual 

and forecasted values can be seen in Figure 7.3. 

 (a) (b) 

The results for the PLE decline model appear to underestimate the data overall, 

although the model considers BDF and TFR, which is an advantage of the model. 

Furthermore, the model was specifically developed for SGRs, hence it was assumed 

that the results would be better. This is comparative to the findings by Paryani et al. 

(2018); as based on their results the PLE consistently gave the lowest forecasts for all 

the models. It is therefore the most conservative method for production forecasting 

and reserves estimation (Paryani et al., 2018). Seshadri and Mattar (2010) concluded 

that for tight gas wells, the PLE decline model is complex and non-intuitive. The power 

law model can result in a non-unique solution due to four degrees of freedom, resulting 

from the four unknown parameters (Ali and Sheng, 2015). 
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Figure 7.3: Graphical representation of actual flow rate vs. forecasted flow rate 

for shale gas production, using the PLE decline model for (a) Canon Shale Well 

and (b) Marcellus Shale Well 
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7.2.4.  The Arps-Duong-PLE Hybrid Decline Model 

A plot of  
𝑞𝑡

𝑞𝑖
 vs. t was used in the model forecasting. The parameter qi used was 1860 

and 7408 for the Canon Shale Well and Marcellus Shale Well, respectively. The 

forecasting equation is given as: 

𝑦 =  𝑎 + 𝑏𝑒𝑐𝑥 (7.4) 

where a is the asymptote, b is the scale, c is the growth rate and x is time. The actual 

and forecasted rates are graphically represented in Figure 7.4.  

                                          (a)                                                                                                (b) 

Figure 7.4: Graphical representation of actual flow rate vs. forecasted flow rate 

for shale gas production, using the Arps-Duong-PLE hybrid decline model for 

(a) Canon Shale Well and (b) Marcellus Shale Well 

Based on the results, the model appears to over-and underestimate the data. 

However, the gap between the actual and predicted results is minimised. This could 

be attributed to both BDF and TFR being considered. In addition, the conservative 

approach of Duong’s and the PLE models, along with the inaccurate fitting of the Arps 

decline curve of unconventional reservoirs could be a contributing factor. 

7.2.5.  The Arps-Duong Hybrid Decline Model 

A plot of  
𝑞𝑡

𝑡
 vs. t was used in the model forecasting. The forecasting equation is given 

as: 

𝑦 =  𝑎(1 − 𝑒−𝑐𝑥) (7.5) 

where a is the asymptote, b is the scale, c is the growth rate and x is time. The actual 

and forecasted values can be seen in Figure 7.5.  
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  (a)  (b) 

Figure 7.5: Graphical representation of actual flow rate vs. forecasted flow rate 

for shale gas production using the Arps-Duong hybrid decline model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 

The predicted results for the model appear to be severely overestimated from the 

actual results in the latter stage of production. This would be the result of combining 

the drawbacks of the two models, which causes the elevated results observed. In line 

with this; firstly, most shale gas wells rarely reach the boundary-dominated flow 

regime, hence the Arps decline model cannot be applied directly to SGRs without 

significant modifications (Tan et al., 2018). Secondly, in the findings of Paryani et al. 

(2018), extremely high reserves estimates were occasionally observed with the Duong 

decline model. The results of Hu et al. (2018) concurred with these results, for the 

Austin Chalk wells, whereby the Duong decline model gave the highest weighted 

residual of production rate. 

7.2.5.  The Arps-PLE Hybrid Decline Model 

A plot of  
1

𝑏

𝑞𝑡
 vs. t  was used in the model forecasting. The forecasting equation is given 

as:  

where c is the asymptote, b is the inflection point,  x is time and a is the growth rate. 

The actual and forecasted values can be seen in Figure 7.6. 

𝑦 =  
𝑐

1 + 𝑒(−𝑎𝑥−𝑏)
 (7.6) 
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                                   (a)       (b) 

Figure 7.6: Graphical representation of actual flow rate vs. forecasted flow rate 

for shale gas production using the Arps-PLE hybrid decline model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 

The results from the model initially appear to over-and underestimate the data 

prediction; however, the results tend to move closer to the actual values over time. 

This would be attributed to the reliability in the Arps decline model and the fact that 

the PLE decline model was developed precisely for SGR. Moreover, both flow regimes 

are considered and since most shale gas wells rarely reach the boundary-dominated 

flow regime, the results appear to move closer to the actuals when reaching the TFR. 

Hence, by combining the models, the overestimation of the predicted results is 

minimised over time. 

7.2.5.  The Duong-PLE Hybrid Decline Model 

A plot of  
𝐼𝑛 𝑞𝑡

𝑞𝑚
 vs. t was used in the model forecasting. The forecasting equation is 

given as: 

𝑦 =  𝑎(1 − 𝑏𝑒−𝑐𝑥) (7.7) 

where a is the asymptote, b is the scale, x is time and c is the growth rate. The actual 

and forecasted values can be seen in Figure 7.7.  
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 (a) (b) 

Figure 7.7: Graphical representation of actual flow rate vs. forecasted flow rate 

for shale gas production using the Duong’s-PLE hybrid decline model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 

   

The trend of the results indicate an over-and underestimation. As mentioned by 

Vanorsdale (2013), the PLE and Duong’s decline models will yield an optimistic 

recovery when the flow regime changes. This trend is evident in the results when 

combining the models. 

7.2.6.  The ARIMA Model 

As mentioned earlier under the simulation section, the best fit for the ARIMA model 

was a (3,1,3) for the Canon Shale Well and (2,1,2) for the Marcellus Shale Well. These 

parameters gave the best forecast values, since having the lowest MSE and highest 

adjusted R2.  

The best model is shown as follows: 

                                                   𝑌𝑡 = 𝜃2𝑌𝑡−2 + 𝜑1𝜀𝑡−1 + 𝜑2𝜀𝑡−2 + 𝜀𝑡                                (7.8)                     

The actual and forecasted values can be seen in Figure 7.8.  
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 (a)  (b) 

Figure 7.8: Graphical representation of actual flow rate vs. forecasted flow rate 

for shale gas production, using the ARIMA model for (a) Canon Shale Well and 

(b) Marcellus Shale Well 

The predicted results from the model appear to follow a close trend to the actual 

values. Raymond (2007) suggested that ARIMA models have proved to be excellent 

short-term forecasting models for a wide variety of time series because short-term 

factors are expected to change slowly. This can explain the reason why the ARIMA 

fared well compared to the other models discussed so far. 

7.2.7.  The ANN Model 

In the case of this study, a univariate input layer and four nodes gave the best model 

fit i.e. (1-4-1) for the production flow rate, over a period of time. The actual and 

forecasted values are graphically represented in Figure 7.9. 
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 (b) 

Figure 7.9: Graphical representation of actual flow rate vs. forecasted flow rate 

for shale gas production using the ANN model for (a) Canon Shale Well and (b) 

Marcellus Shale Well 

The predicted results from the model appear to follow a very close trend to the actual 

values. Zhang (2003) indicated that neural networks are useful for modelling and 

predicting the properties of time series data.  

Cybenko (1989) described neural networks as having a universal non-linear function 

and a relatively good degree of forecasting accuracy. In addition, according to Hill et 

al. (1996), neural network forecasting provides better results than traditional 

forecasting methods over monthly as well as quarterly periods. 

7.2.8.  ANN-ARIMA Hybrid Model 

The steps employed by Ayub and Jafri (2020) was used to construct the ARIMA-ANN 

hybrid model. This involved a two-step process as follows: 

In the first step, ANN is used to predict qt and residuals et is produced and provided to 

ARIMA to predict the error. In the second step, the predicted qt by ANN is summed 

with the error produced by the ARIMA model, to give the final predicted values. The 

equation (2.26) is given in Chapter 2.  

The actual and forecasted values can be seen in Figure 7.10. 
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 (a) (b) 

 

Figure 7.10: Graphical representation of actual flow rate vs. forecasted flow 

rate for shale gas production using the ANN-ARIMA hybrid model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 

The predicted results from the model appear to be overestimated compared to the 

actual values. The primary reason for the overestimation can be attributed to the error 

value obtained from ARIMA model. The higher the error value, the higher would be 

the predicted value. This finding appears to contradict what has been indicated in the 

literature. According to Faruk (2010), hybrid methods have a higher degree of 

accuracy than neural networks. Cybenko (1989) indicated in his work that hybrid 

models combine the advantages of ARIMA with respect to linear modelling and neural 

networks in terms of non-linear edge modelling (Cybenko, 1989). However, Taskaya-

Temizel and Ahmad (2005) made reference in their work that in some circumstances, 

the single model approach can outperform hybrid models. This was observed during 

this study.  

7.3.  The Evaluation of the Hybrid Models 

This study investigated the hybrid model approach to determine if this approach 

provides a higher accuracy than the single model. Table 7.1 summarises the 

evaluation of the hybrid models. From the findings, it was observed that with the hybrid 

models there is over, under or both estimations of the predicted data vs. the actuals. 

Nevertheless, with the Arps-Duong-PLE hybrid decline model and the Arps-PLE hybrid 

decline model, the gap between the actual and predicted values is reduced. It appears 

from the evaluation the Arps-PLE hybrid decline model from all the models provides a 

moderate to low degree of over and under-estimation of the data to the actuals. The 

findings will be validated later in this chapter. 
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Table 7.1: Summary of the hybrid decline models 

Model Forecasting Equation Forecasting Evaluation Degree of over and underestimation 

Arps-Duong-PLE 
hybrid decline model 

𝑦 =  𝑎 + 𝑏𝑒𝑐𝑥 
Resultant is over-and underestimated, the 
difference between the actual and 
predicted is reduced 

High (over and under) 

Arps-Duong hybrid 
decline model 

𝑦 =  𝑎(1 − 𝑒−𝑐𝑥) Resultant is overestimated High (over) 

Arps-PLE hybrid 
decline model 

𝑦 =  
𝑐

1 + 𝑒(−𝑎𝑥−𝑏)
 Resultant is over- and underestimated 

however results move closer to the actuals 
moderate (over), low (under) 

Duong-PLE hybrid 
decline model 

𝑦 =  𝑎(1 − 𝑏𝑒−𝑐𝑥) Resultant is over- and underestimated High to moderate (over), low (under) 

ANN-ARIMA hybrid 
decline model 

�̂�𝑡 = �̂�𝑡  + �̂�𝑡 Data is overestimated Moderate to high (over) 



95 
 

7.4.  The Evaluation of Model Accuracy 

In order to assess the accuracy of the models, two sets of different production data 

were used to perform the evaluation. The estimated data was extracted from the work 

of Brantson et al. (2019) (Source Well #A in Chang-2 segment of Eastern Sichuan) 

and Tan et al. (2018) (sourced the data from the Barnett Shale Well gas well in Fort 

Worth Basin in Northeast Texas). Based on the forecasting evaluation, it was observed 

that the Arps-PLE hybrid decline model, ARIMA and ANN models provided the best 

forecasting accuracy. Figure 7.11 illustrates the actual data vs. the predicted data for 

the ARIMA, ANN and Arps-PLE hybrid decline models.  
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Figure 7.11: Estimated production data to determine accuracy for (a) ARIMA vs. 

ANN vs. Arps-PLE hybrid decline model for well #A and (b) ARIMA vs. ANN vs. 

Arps-PLE hybrid decline model for Barnett Shale Well 
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The results from graphs a and b indicate the consistence in the three models i.e., 

ARIMA, ANN and Arps-PLE hybrid decline models to predict the production data for 

the Well #A and Barnett Shale Wells, respectively. The predicted values in both cases 

were close to the actual values, as indicated in Figure 7.11. 

7.5.  The Validation of Models  

In order to determine the accuracy and validate the results obtained for the forecasting 

models, the RMSE, MAPE and R2 between the actual and predicted were calculated, 

the formulas of which have been presented in Chapter 6. The data used for the model 

validation were from Canon Shale Well and Marcellus Shale Well, respectively. 

7.5.1.  The Arps Decline Model 

Figure 7.12 illustrates the scatter plot of the predicted q(t) values by the Arps decline 

model compared to the experimental q(t) values. The RMSE, MAPE and R2 values 

are illustrated in Figure 7.12. As can be seen from the figure R2 values of 0.9695 and 

0.9447 were obtained for the data sets, while the MAPE of 0.5136 and 0.9230% were 

calculated from the data. 
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 (b) 

Figure 7.12: Predicted q(t) vs. actual q(t) for the Arps decline model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 

7.5.2.  The Duong’s Decline Model 

Figure 7.13 illustrates the scatter plot of the predicted q(t) values by the Duong’s 

decline model against the experimental q(t) values. The figure shows R2 values of 

0.9388 and 0.7355 that were obtained for the data sets while the MAPE of 0.7737 and 

1.8079% was calculated from the data. 
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(b) 

7.5.3.  The PLE Decline Model 

Figure 7.14 illustrates the scatter plot of the predicted q(t) values by the PLE decline 

model against the experimental q(t) values. R2 values of 0.9710 and 0.9089 were 

obtained for the data sets while the MAPE of 0.5097 and 1.1102% was calculated from 

the data. 
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Figure 7.13: Predicted q(t) vs. actual q(t) for the Duong’s decline model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 
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 (b) 

Figure 7.14: Predicted q(t) vs. actual q(t) for the PLE decline model for (a) 

Canon Shale Well and (b) Marcellus Shale Well 

7.5.4.  The Arps-Duong-PLE Hybrid Decline Model 

Figure 7.15 illustrates the scatter plot of the predicted q(t) values by the Arps-Duong-

PLE hybrid decline model against the experimental q(t) values. R2 values of 0.9689 

and 0.9864 were obtained for the data sets,  while the MAPE of 0.5721 and 3.0407% 

respectively, was calculated from the data. 
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 (b) 

Figure 7.15: Predicted q(t) vs. actual q(t) for the Arps-Duong-PLE hybrid 

decline model for (a) Canon Shale Well and (b) Marcellus Shale Well 

7.5.5.  The Arps-Duong Hybrid Decline Model 

Figure 7.16 illustrates the scatter plot of the predicted q(t) values by the Arps-Duong 

hybrid decline model, against the experimental q(t) values. R2 values of 0.9024 and 

0.9589 were obtained for the data sets while the MAPE of 2.8455 and 11.8540% was 

calculated from the data. 
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 (b) 

Figure 7.16: Predicted q(t) vs. actual q(t) for the Arps-Duong hybrid decline 

model for (a) Canon Shale Well and (b) Marcellus Shale Well 

7.5.6.  The Arps-PLE Hybrid Decline Model 

Figure 7.17 illustrates the scatter plot of the predicted q(t) values by the Arps-PLE 

hybrid decline model against the experimental q(t) values. R2 values of 0.9629 and 

0.9409 were obtained for the data sets while the MAPE of 0.8156 and 2.0634% was 

calculated from the data. 
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  (b) 

Figure 7.17: Predicted q(t) vs. actual q(t) for the Arps-PLE hybrid decline model 

for (a) Canon Shale Well and (b) Marcellus Shale Well 

7.5.7.  The Duong-PLE Hybrid Decline Model 

Figure 7.18 illustrates the scatter plot of the predicted q(t) values by the Duong-PLE 

hybrid model against the experimental q(t) values. R2 values of 0.9694 and 0.9292 

were obtained for the data sets while the MAPE of 1.5714 and 0.8993% was calculated 

from the data. 
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(b) 

Figure 7.18: Predicted q(t) vs. actual q(t) for the Duong-PLE hybrid decline 

model for (a) Canon Shale Well and (b) Marcellus Shale Well 

7.5.8.  The ARIMA Model 

Figure 7.19 illustrates the scatter plot of the predicted q(t) values by the ARIMA model 

against the experimental q(t) values. f R2 values of 0.9969 and 0.9970 were obtained 

for the data sets, while the MAPE of 0.5466 and 0.8829% was calculated from the 

data. 
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  (b) 

 

7.5.9.  The ANN Model 

Figure 7.20 illustrates the scatter plot of the predicted q(t) values by the ANN model 

against the experimental q(t) values for the Canon Shale Well and Marcellus Shale 

Well. R2 values of 0.9644 and 0.9993 were obtained for the data sets while the MAPE 

of 0.4936 and 0.7493% was calculated from the data. 
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Figure 7.19: Predicted q(t) vs. actual q(t) for the ARIMA model for (a) Canon 

Shale Well and (b) Marcellus Shale Well 
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 (b) 

Figure 7.20: Predicted q(t) vs. actual q(t) for the ANN model for (a) Canon Shale 

Well and (b) Marcellus Shale Well 

7.5.10.  The ANN-ARIMA Hybrid Model 

Figure 7.21 illustrates the scatter plot of the predicted q(t) values by the ANN-ARIMA 

hybrid model against the experimental q(t) values. R2 values of 0.9644 and 0.9993 

were obtained for the data sets while the MAPE of 0.7265 and 1.8837% was calculated 

from the data. 

 

(a) 

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

q
 (

t)
 (

P
re

d
ic

te
d

) 
 M

SC
F 

/d
ay

q(t) (Actual) MSCF/day

RMSE = 0.0185
MAPE = 0.7493 %
R2 = 0.9993

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800

q
 (

t)
 (

P
re

d
ic

te
d

) 
 M

SC
F 

/d
ay

q(t) (Actual) MSCF/day

RMSE = 0.2384
MAPE = 0.7265%
R2 = 0.9644



106 
 

 
 (b) 

Figure 7.21: Predicted q(t) vs. actual q(t) for the ANN-ARIMA hybrid model for 

(a) Canon Shale Well and (b) Marcellus Shale Well 

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

q
 (

t)
 (

P
re

d
ic

te
d

) 
 M

SC
F 

/d
ay

q(t) (Actual) MSCF/day

RMSE = 0.2049
MAPE = 1.8837%
R2 = 0.9993



107 
 

Table 7.2: Summary of the accuracy and validation results for each model using the RMSE, MAPE and R2 

  Canon Shale Well Marcellus Shale Well 

  RMSE MAPE (%) R2 RMSE MAPE (%) R2 

Arps-PLE Hybrid Model  0.0081 0.8156 0.9629 0.0036 2.0634 0.9409 

ANN Model  0.0148 0.4936 0.9644 0.0185 0.7493 0.9993 

ARIMA Model  0.0304 0.5466 0.9969 0.0472 0.8829 0.9970 

Duong’s Decline Model 0.0627 0.7737 0.9388 0.2261 1.8079 0.7355 

PLE Decline Model 0.0716 0.5097 0.9710 0.1483 1.1102 0.9089 

Arps Decline Model 0.0725 0.5136 0.9695 0.1279 0.923 0.9447 

Duong-PLE Hybrid 
Models 

0.1669 1.5714 0.9694 0.2865 0.8993 0.9292 

ANN-ARIMA Hybrid 
Model  

0.2304 0.7265 0.9644 0.2049 1.8837 0.9993 

Arps-Duong’s-PLE 
Hybrid Model 

0.4464 0.5721 0.9689 0.0169 3.0407 0.9864 

Arps-Duong Hybrid 
Model 

0.8154 2.8455 0.9024 0.3933 11.854 0.9589 
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Based on the summary results presented in Table 7.2, which ranks the models based 

on the RMSE value from smallest to highest, it was seen that the smaller 

the RMSE value, the better the model. The RMSE value was used because it is more 

accurate than the MAPE value. The only difference between the RMSE and MAPE 

values, is that the MAPE measures the deviation from the actual data in terms of 

percentage.  

It is evident that the Arps-PLE hybrid decline model is a better model than the other 

models, followed by the ANN and ARIMA models, based on the RMSE value. It is 

apparent by combining the Arps and PLE decline models that the limitations of the 

models are reduced.  

There is a significant reduction in RMSE values from 0.0716 and 0.0725 for the PLE 

and Arps models, respectively to 0.0081 for the Arps-PLE hybrid decline model for the 

Canon Shale Well; while for the Marcellus Shale Well, 0.1483 and 0.1279 to 0.0036. 

The contributing factor that was highlighted earlier is the dominance of the PLE 

parameters in the model i.e., Di and D∞ which considers the TFR flows not catered for 

in the Arps decline model. In addition, the PLE model was specifically developed for 

SGRs and by combining the models, the number of variables are reduced from four to 

three. This reduces the number of variables to solve, which was identified as a 

limitation of the model and hence the degrees of freedom is reduced.  

When all the validation parameters RMSE, MAPE and R2 were considered, the results 

showed that the neural network method managed to outperform the other methods. 

The finding concurs with this study conducted by Dhini et al. (2015). They attributed 

the accuracy to the non-linearity. However, contrary to their assumption, the ARIMA 

model proved to be the second most accurate model. As mentioned by Khashei and 

Bijari (2011), traditional methods such as Box–Jenkins model and ARIMA require the 

assumption that the time series data used in forecasting are linear, therefore they are 

not suitable for predicting data is non-linear. 

The reasoning for the ARIMA working well for predicting the decline behaviour may be 

attributed to different flow regimes that can occur in a hydraulically fractured reservoir. 

The different flow regimes do follow a linear trend. It can be assumed that the weak 

performance of the other decline curve hybrid models is due to the changes in flow 
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regimes; an effect of which is not considered. In addition, one would have to consider 

extending the data range over a longer period, to determine whether the hybrid models 

would yield results that are more positive. 

The results also highlighted that the ANN model had an advantage over the ANN-

ARIMA hybrid model, contrary to this study conducted by Zhang (2001). The ANN-

ARIMA model did not fare well which contradicts the literature which may be the result 

of using one input. The model had a high RMSE value.  

As mentioned earlier in Chapter 7, this concurs with the work conducted by Taskaya-

Temizel and Ahmad (2005). According to Taskaya-Temizel and Ahmad (2005), two 

factors prevent the ANN-ARIMA hybrid model from delivering better results.  

These are:  

1. The assumption of the existence of a relationship between the components of 

the linear and non-linear components in the data can cause performance 

degradation as other model relationships (e.g., multiplicative) may exist within 

the data instead of linear/non-linear relationships and, 

2. Secondly, there is no guarantee that the residual of the linear components will 

have valid non-linear patterns. 

Therefore, the results show that the Arps-PLE hybrid model gave predicted values 

closest to the actuals. The accuracy evaluation indicated that the model is consistent 

in predicting production rates. Lastly, the validation process concurred with the 

accuracy evaluation since the model yielded a low RMSE compared to the ANN and 

ARIMA models. 

7.6.  Evaluation of the Confidence Intervals for Arps-PLE Hybrid Decline and ANN  

After the validation of the models, it was found the Arps-PLE hybrid decline and ANN 

models to be the best models in predicting shale gas production. A step was taken 

further and 95% confidence intervals were assessed. Figures 7.22 and 7.23, illustrate 

the findings14. 

                                                      
14 Raw data in the Appendices – A.4. Confidence Intervals 
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Figure 7.22: Scatter plot of the predicted shale production data by the Arps-

PLE hybrid decline and ANN models vs. actual data for the Canon Shale Well 

evaluating the 95% confidence level

 
Figure 7.23: Figure 7: Scatter plot of the predicted shale production data by the 

Arps-PLE hybrid decline and ANN models vs. actual data for Marcellus Shale 

Well evaluating the 95% confidence level 

Evaluating the confidence intervals is one way to help assess what the values might 

be in the wider population (Fethney, 2010). Confidence intervals provide the possible 

range of values, bracketed by lower and upper limits that encompass the unknown 

population or ‘true’ value estimated by that sample mean, correlation coefficient or 
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odds ratio (Fethney, 2010). It is usual to report either the 90%, 95% or 99% confidence 

interval (CI); the 95% CI tends to be commonly used (Fethney, 2010). From Figures 

7.22 and 7.23, it is evident that for the Arps-PLE hybrid decline and ANN model there 

is a confidence that 95% of the data lies within the ±5% error band. The results 

demonstrate very good fitting between the actual and predicted values for the models.  

7.7. Conclusion 

The objective of this chapter was to evaluate the forecasting performance of decline 

curve hybrid models and ANN-ARIMA hybrid model with Arps; Duong’s; PLE decline 

models; ARIMA and ANN models, respectively. The experimental results were 

obtained using the different prediction models i.e., Arps, Duong’s, PLE, Arps-Duong’s-

PLE hybrid decline, Arps-Duong’s hybrid decline, Arps-PLE hybrid decline, Duong’s-

PLE hybrid decline, ARIMA, ANN and lastly the hybrid ANN-ARIMA model.  

The following can be concluded: 

 The current DCA models, Arps, Duong’s and PLE decline models appear to 

over and underestimate the data. 

 The DCA hybrid models, Arps-Duong’s-PLE hybrid decline, Arps-Duong’s 

hybrid decline, Duong’s-PLE hybrid decline did not give the best outcome as 

assumed it would, in comparison to the individual DCA models. However, the 

Arps-PLE Hybrid decline model gave the closest predicted results. 

 Both the ARIMA and ANN models gave good, predicted results. However, when 

both models were combined into the ANN-ARIMA hybrid model the strengths 

of both models referenced in literature did not provide accurate predictive data, 

which can be attributed to the use of a single input. The resultant was an 

overestimation in the production flow rate.  

 Overall, the models, which gave predicted values closest to the actuals was the 

ARIMA, ANN and the Arps- PLE hybrid decline models. The ANN-ARIMA 

maybe included if the input for the ANN is increased. 

 In the model accuracy evaluation, the Arps-PLE hybrid decline, ARIMA and 

ANN gave consistent prediction results between the two sets of data evaluated 

(Well #A and Barnett Shale Well).  
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 The validation of the models indicated that the Arps-PLE hybrid decline model 

gave the lowest RMSE value with a good R2 value for both the Canon Shale 

Well and Marcellus Shale Well, followed by the ANN and ARIMA models. 

 The weak performance of the other decline curve hybrid models is caused by; 

either changes in flow regimes that are not considered or the shorter period 

within which the data is used. 

 Lastly, the confidence interval evaluation found that the Arps-PLE hybrid 

decline, and ANN model fell within the 95% confidence limit, i.e., the data lies 

within the ±5% error band. The results demonstrate very good fit between the 

actual and predicted values for the models. This corresponds with the findings 

from the validation process. 

In conclusion, the findings have provided a significant contribution to the prediction of 

shale gas production. The results indicate that the Arps-PLE hybrid decline model is 

a good model predictor for shale gas production. A contributing factor is the dominance 

of the PLE parameters i.e., Di changes at early stages and D∞ becomes constant at a 

later time in the model. This caters for the TFR which the Arps decline model did not 

consider. Lastly, with the PLE model, the limitation identified during the sensitivity 

analysis was the number of variables. Therefore, by combining the models the number 

of variables is reduced and the degrees of freedom is reduced from four to three.  
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Chapter 8 

Financial Model Analysis of Shale Gas  
 

8.1. Introduction 

Shale gas production is a profitable business for oil and gas operators, provided there 

is assurance that gas can be produced commercially and in a sustainable way 

(Guarnone et al., 2012). The present practice of shale gas economic valuation 

commonly uses a mean EUR and a single production decline model for the whole 

lease or play (Penner, 2013). Nevertheless, shale gas production remains 

economically risky because the EUR remains poorly constrained during the early 

stages of field development (Weijermars, 2013). 

Gas well revenues are a function of two key variables (Lake et al., 2013):  

 The price per thousand cubic feet (Mcf ) of natural gas sold, the volume of gas 

produced, and 

 The volume of gas it will produce. 

Guarnone et al. (2012) pointed out that cost estimate plays a key role because 

it supports the economic evaluation and support process for buying an exploration 

permit or not. The cost structure of a shale gas project differs from conventional 

production, which makes cost estimation problematic. Guarnone et al. (2012) also 

mentioned that appraising noteworthy OPEX-like investments involves an accurate 

prediction of the time when they will be required, which in turn depends on the 

prediction of DCA to model single wells and overall field performance.  

Since EUR calculated from DCA models plays a significant role in the economic 

analysis of shale gas development, the accuracy thereof is crucial for exploration. In 

this chapter, the ANN and Arps-PLE hybrid models discussed in the preceding 

chapters will be used to evaluate the economic viability of shale gas reservoirs.  

The ANN and Arps-PLE hybrid decline models, which were found to predict values 

closest to the actuals, were used to calculate the EUR, compared with other DCA 

models. The philosophy and methodology by Lake et al. (2013) in their study will be 
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used. Their study indicated that the production estimates are based on a combination 

of two types of production decline curves i.e., initially a hyperbolic decline and then 

switching to an exponential decline.  

8.2.  Well Productivity using Estimated Ultimate Recovery (EUR) 

According to Weijermars (2013), understanding well productivity of shale gas plays 

provides important guidance for the economic development of shale gas wells 

(Weijermars, 2013). In chapter 7, the ANN and Arps-PLE hybrid decline models were 

evaluated and validated and it was found that the two models delivered good 

forecasting results. Hence, the predicted data from the models will be used to estimate 

the EUR and ultimately evaluate the economic analysis.  

Assuming the philosophy by Lake et al. (2013), Figure 8.1 (a), (b) and (c) shows the 

hyperbolic decline for the predicted data from ANN while Table 8.1 summarizes the qi 

and Di values. 
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Figure 8.1: Predicted q(t) vs. time for the ANN model for (a) Canon Shale Well, 

(b) Marcellus Shale Well and Barnett Shale Well 
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Table 8.1: Summaries the qi and Di values for each of the data sets from the 

various shale plays for the ANN model 

 qi Di 

Cannon Well 1203 -0.015 

Marcellus Shale Well 3028 -0.0004 

Barnett Shale Well 6279 -0.002 

 

Figure 8.2 (a), (b) and (c) shows the hyperbolic decline for the predicted data from 

the Arps-PLE hybrid decline model, while Table 8.2 summarizes the qi and Di values. 
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Figure 8.2: Predicted q(t) vs. time for the Arps-PLE hybrid decline model for (a) 

Canon Shale Well, (b) Marcellus Shale Well and Barnett Shale Well 
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Table 8.2: Summaries the qi and Di values for each of the data sets from the 

various shale plays for the Arps-PLE hybrid decline model 

 qi Di 

Cannon Well 1429 -0.016 

Marcellus Shale Well 698 -0.0004 

Barnett Shale Well 6099 -0.002 

 

The production estimates for the Cannon Well, the Marcellus Shale Well and Barnett 

Shale Well was based on a combination of two types of production decline curves. 

Initial production declines are based on a hyperbolic decline curve, as shown in 

Figures 8.1 and 8.2, respectively.  

The production decline curve switches to an exponential decline when the rate of 

decline is 1.5 and 1.6% for the Cannon Well, 0.04% for Marcellus Shale Well and 0.2% 

for the Barnett Shale Well, respectively. This production decline function used to model 

is a hybrid model approach, containing a mixture of hyperbolic and exponential 

functions.  

According to Lake et al. (2013), given the relatively brief time that horizontal, 

hydraulically fractured gas wells have been producing, the production life of these 

wells is relatively still unknown. They went on to explain that although conventional 

wells have been producing for 30 years and longer.  

The initial evidence from Barnett Shale Well and Marcellus Shale Well indicate short 

lifespans i.e., for the Barnett Shale Well the average life of a well is 7.5 years (Lake et 

al., 2013).  

The short lifespan does not in any way mean that the wells are not economic. 

However, to be profitable; the volume of the initial production has to be lucrative to 

fund the investment.  

The switch from the hyperbolic to the exponential decline function occurs between 

days (indicated by when the graphs appear to become flatter): 
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 200 - 250 days (Cannon Well) 

 10000 - 12000 days (Marcellus Shale Well) 

 800 – 1000 days  (Barnett Shale Well) 

The switching between the two is important because it provides the EUR for the well. 

Figures 8.1 and 8.2 shows the estimated production volumes. The figures show the 

initial steep decline in the production rate.  

Using the estimated production data, the cumulated production (Np) was calculated 

using Equation (8.2).  

Figure 8.3 shows the Np over the period for the (a) Canon Shale Well, (b) Marcellus 

Shale Well and (c) Barnett Shale Well for the ANN model. 

  

 (a) (b) 

 
 

 
 

 
 

 

 (c) 

Figure 8.3: Cumulative production (Np) vs. time for (a) Canon Shale Well, (b) 

Marcellus Shale Well and (c) Barnett Shale Well for the ANN model 
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Figure 8.4 shows the Np over the period for the (a) Canon Shale Well, (b) Marcellus 

Shale Well and (c) Barnett Shale Well for the Arps-PLE hybrid decline model. 

 

 (a) (b) 

 

 

 

 

 

 

                                            (c) 

Figure 8.4: Cumulative production (Np) vs. time for (a) Canon Shale Well, (b) 

Marcellus Shale Well and (c) Barnett Shale Well for the Arps-PLE hybrid 

decline model 

Cumulative production is used to determine the economic limit of the wells potential 

i.e., the EUR. As previously done, a comparison was done between the use of a 

hyperbolic-exponential model to predict the depletion of the natural producing well. 

According to Makinde et al. (2012), the issue with this approach in most cases is that 

the hyperbolic over-estimates while the exponential model under-estimates. However, 

the predicted results have satisfactorily validated the reasoning for using this approach 

in this study.  

The EUR estimated for the period under review obtained from Figures 8.3 and 8.4 
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 0.079 and 0.087 bcf (Canon Shale Well) 

 7.4 and 3.5 bcf (Marcellus Shale Well)  

 2.8 and 2.6 bcf (Barnett Shale Well) 

As mentioned, to understand the well productivity that representative US shale gas 

plays provides, important guidance for the economic development of shale gas wells 

in emergent shale plays elsewhere in the world needs to be provided (Weijermars, 

2013). A review of the US well productivities, using 46,506 shale gas wells, gives a 40 

year mean EUR of 1.14 bcf (Weijermars, 2013). A study conducted by Swindell (2018) 

which investigated the EUR of over 5000 wells in the Marcellus Shale Well, stated that 

their results indicated that each well had a mean of 5.0 bcf. However, the results varied 

between 7.2 to 12 bcf per county (Swindell, 2018). Moeller and Murphy, 2016 found 

that the range for the EUR for the range of Marcellus wells was between 0.23 and 6.0 

bcf with an average of 3.2 bcf.  

While Weijermars (2013) mentioned that for the Barnett Shale Well, the best areas 

have a mean EUR of 2.1 bcf/well and the worst areas have a mean of 0.59 bcf/well. 

Contrary to Weijermars (2013), Patzek et al. (2013), found that the lower bounds of 

the Barnett had a EUR average of 1.0 bcf while the upper bounds were found to have 

an average of 7.0 bcf. Browning and Tinker (2013) obtained EUR ranging from 0.4 to 

4.3 bcf for the Barnett. Canon Shale Well and indicated a low EUR of 0.079 and 0.087 

bcf, respectively, The literature showed an average value of 0.0013 bcf (226 000 bbl)  

among the 975 wells (Oils and Gas Journal, 2020).  

As detailed in Chapter 6, It is important to highlight the Evaluation and Sensitivity of 

Decline Curve Models. The accuracy assessment indicated that decline curve 

modelling impacts the EUR of SGRs, and it was observed that all decline models yield 

a different EUR result, which is either is over or under-estimated. Studies have 

revealed that the production time significantly impacts the EUR, depending on which 

decline model is being used (Manda and Nkazi, 2020). However, in Chapter 7, The 

Forecasting, Accuracy and Validation of Hybrid Models; it was found that the ANN 

Model aligned very well with the actual production data.  Table 8.3 compares the EUR 

values between the ANN, Arps-PLE hybrid decline models and other decline models.  

The table shows the different EUR values obtained from the different models. During 

the evaluation of the models, it was found that the Arps, Duong’s and PLE models 
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over and under-estimated production data, which would ultimately result in either an 

over or under-estimation of the EUR. 

Table 8.3: Comparison of EUR values from the different models 

 Arps 
Decline 
Model  

Duong’s 
Decline 
Model 

PLE Model 
Decline 
Model 

ANN Model Arps-PLE 
hybrid decline 

Model 

Canon Shale Well 
(bcf) 

0.100 0.152 0.101 0.079 0.087 

Marcellus Shale Well 
(bcf) 

9.24 16.14 9.09 7.40 3.50 

Barnett Shale Well 
(bcf) 

5.11 5.03 2.04 3.20 2.60 

8.3.  Well Economics  

Tables 8.4, 8.5, 8.6, 8.7, 8.8 and 8.9 provides a summary of the financial estimates 

for the Canon Shale Well, Marcellus Shale Well, and lastly, the Barnett Shale Well for 

two models, respectively. The estimated gross gas revenue can be calculated by 

multiplying the annual production volumes by the price/Mcf for natural gas. The 

adjustment of these estimates for the working interest of the investor produces a net 

gas revenue. The annual cash flows are calculated using the equation (2.27).
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Table 8.4: Financial estimates for the Canon Shale Well, using the ANN model 

Time (day) Estimated Gross Gas (Mcf) Estimated Net Gas (15.75% of Gross Gas) (Mcf) Price of Natural Gas /Mcf ($) Estimated Total Net 
Revenue ($)15 

36 30787.68 4849.06 2.77 13,431.89 

40 33702.56 5308.15 2.77 14,703.59 

42 35114.63 5530.55 2.77 15,319.64 

45 38513.94 6065.95 2.77 16,802.67 

47 37176.53 5855.30 2.77 16,219.19 

49 39821.83 6271.94 2.77 17,373.27 

50 40464.77 6373.20 2.77 17,653.77 

51 41100.41 6473.32 2.77 17,931.08 

52 41728.78 6572.28 2.77 18,205.22 

53 42349.91 6670.11 2.77 18,476.21 

55 43570.55 6862.36 2.77 19,008.74 

60 46497.44 7323.35 2.77 20,285.67 

70 51830.38 8163.28 2.77 22,612.30 

80 56497.95 8898.43 2.77 24,648.65 

90 60538.46 9534.81 2.77 26,411.42 

100 63993.51 10078.98 2.77 27,918.77 

101 64308.50 10128.59 2.77 28,056.19 

105 65515.26 10318.65 2.77 28,582.67 

108 66365.74 10452.60 2.77 28,953.72 

110 66907.44 10537.92 2.77 29,190.05 

140 72873.90 11477.64 2.77 31,793.06 

160 75027.98 11816.91 2.77 32,732.83 

200 76727.16 12084.53 2.77 33,474.14 

240 77430.75 12195.34 2.77 33,781.10 

260 78258.43 12325.70 2.77 34,142.20 

                                                      
15 excludes depletion allowance, total net operating expenses and lastly the severance and ad valorem expenses 
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Table 8.5: Financial estimates for the Barnett Shale Well using the ANN model 

Time (day) Estimated Gross Gas (Mcf) Estimated Net Gas (15.75% of 
Gross Gas) (Mcf) 

Price of Natural Gas 
/Mcf ($) 

Estimated Total Net Revenue ($) 

50 54019.05 8508.00 2.77 23,567.16 

60 259914.03 40936.46 2.77 113,394.00 

80 626945.12 98743.86 2.77 273,520.48 

90 789435.39 124336.07 2.77 344,410.92 

100 938800.27 147861.04 2.77 409,575.09 

200 1850359.98 291431.70 2.77 807,265.80 

350 2115901.95 333254.56 2.77 923,115.12 

450 2125893.21 334828.18 2.77 927,474.06 

600 2304156.93 362904.72 2.77 1,005,246.07 

700 2519207.51 396775.18 2.77 1,099,067.26 

800 2715598.01 427706.69 2.77 1,184,747.52 

900 2817458.64 443749.74 2.77 1,229,186.77 

1000 2803435.33 441541.06 2.77 1,223,068.75 

1100 2722007.80 428716.23 2.77 1,187,543.95 

1200 2681572.93 422347.74 2.77 1,169,903.23 

1300 2824253.08 444819.86 2.77 1,232,151.01 
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Table 8.6: Financial estimates for the Canon Shale Well using the Arps-PLE hybrid decline model 

Time (day) Estimated Gross Gas (Mcf) Estimated Net Gas (15.75% of 
Gross Gas) (Mcf) 

Price of Natural Gas 
/Mcf ($) 

Estimated Total Net Revenue ($) 

36 38757.85 6104.36 2.77 16,909.08 

40 41855.60 6592.26 2.77 18,260.55 

42 43332.55 6824.88 2.77 18,904.91 

45 45462.23 7160.30 2.77 19,834.04 

47 46826.94 7375.24 2.77 20,429.42 

49 48149.17 7583.49 2.77 21,006.28 

50 48794.77 7685.18 2.77 21,287.94 

51 49430.25 7785.26 2.77 21,565.18 

52 50055.76 7883.78 2.77 21,838.08 

53 50671.46 7980.76 2.77 22,106.69 

55 51874.04 8170.16 2.77 22,631.35 

60 54719.29 8618.29 2.77 23,872.66 

70 59777.53 9414.96 2.77 26,079.44 

80 64096.15 10095.14 2.77 27,963.55 

90 67783.29 10675.87 2.77 29,572.16 

100 70931.30 11171.68 2.77 30,945.55 

101 71219.59 11217.09 2.77 31,071.33 

105 72328.24 11391.70 2.77 31,555.00 

108 73114.91 11515.60 2.77 31,898.21 

110 73619.01 11594.99 2.77 32,118.13 

140 79545.59 12528.43 2.77 34,703.75 

160 82193.00 12945.40 2.77 35,858.75 

200 85529.52 13470.90 2.77 37,314.39 

240 87302.39 13750.13 2.77 38,087.85 

260 87847.24 13835.94 2.77 38,325.55 
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Table 8.7: Financial estimates for the Marcellus Shale Well using the Arps-PLE hybrid decline model 

Time (day) Estimated Gross Gas 
(Mcf) 

Estimated Net Gas 
(15.75% of Gross Gas) 

(Mcf) 

Price of Natural Gas /Mcf ($) Estimated Total Net Revenue ($) 

1000 718691 113194 2.77 313,547 

1100 787294 123999 2.77 343,477 

1200 854195 134536 2.77 372,664 

1500 1045097 164603 2.77 455,949 

1900 1278239 201323 2.77 557,664 

2200 1438340 226539 2.77 627,512 

2400 1538560 242323 2.77 671,235 

2600 1633867 257334 2.77 712,815 

2800 1724500 271609 2.77 752,356 

3000 1810690 285184 2.77 789,959 

3200 1892654 298093 2.77 825,718 

3400 1970599 310369 2.77 859,723 

3600 2044723 322044 2.77 892,062 

3800 2115213 333146 2.77 922,814 

4000 2182246 343704 2.77 952,059 

4200 2245993 353744 2.77 979,871 

4400 2306614 363292 2.77 1,006,318 

4600 2364263 372371 2.77 1,031,469 

4800 2419086 381006 2.77 1,055,387 

5000 2471221 389217 2.77 1,078,132 

6000 2695968 424615 2.77 1,176,184 

7000 2870764 452145 2.77 1,252,443 

7500 2943003 463523 2.77 1,283,958 

10000 3194671 503161 2.77 1,393,755 

12500 3328922 524305 2.77 1,452,326 

15000 3400538 535585 2.77 1,483,570 

17500 3438740 541602 2.77 1,500,237 
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Table 8.8: Financial estimates for the Barnett Shale Well using the Arps-PLE hybrid decline model 

Time (day) Estimated Gross Gas (Mcf) Estimated Net Gas (15.75% of 
Gross Gas) (Mcf) 

Price of Natural Gas /Mcf ($) Estimated Total Net Revenue 
($) 

50 23356.36 3678.63 2.77 10,189.79 

60 130572.75 20565.21 2.77 56,965.63 

80 332308.80 52338.64 2.77 144,978.02 

90 427164.80 67278.46 2.77 186,361.32 

100 518225.87 81620.57 2.77 226,088.99 

200 1250693.47 196984.22 2.77 545,646.29 

350 1915939.32 301760.44 2.77 835,876.43 

450 2179867.39 343329.11 2.77 951,021.65 

600 2419573.63 381082.85 2.77 1,055,599.49 

700 2514674.12 396061.17 2.77 1,097,089.45 

800 2577895.16 406018.49 2.77 1,124,671.21 

900 2619923.33 412637.92 2.77 1,143,007.05 

1000 2647862.88 417038.40 2.77 1,155,196.38 

1100 2666436.57 419963.76 2.77 1,163,299.61 

1200 2678784.01 421908.48 2.77 1,168,686.50 

1300 2686992.37 423201.30 2.77 1,172,267.59 
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Due to the limited information available regarding the equity investment, depletion 

allowance, total net operating expenses and lastly severance and ad valorem 

expenses, these parameters will be excluded from the scope and the financial model 

will only consider the estimated total net revenue. Using the current natural gas price 

of $2.77/Mcf (https://oilprice.com) and a working interest rate of 15.75%, extracted 

from the work of Lake et al. (2013), the financial estimates for Canon Shale Well, 

Marcellus Shale Well and Barnett Shale Well were generated.  

From the financial analysis, it can be presumed that the production forecast and 

resulting EUR are sensitive to natural gas prices. That finding concurs with the study 

conducted by Browning et al. (2013). Their study examined detailed well economics 

and reserve forecasting. The results also indicated that the extraction of shale gas is 

a lucrative venture evident in the high estimated total net revenue for all three shale 

plays. The degree of influence on the economy depends upon the difference between 

the benefits and costs. As mentioned, the depletion allowance, total net operating 

expenses and lastly the severance and ad valorem expenses did not form part of the 

analysis.  

8.4.  Conclusion  

The chapter focused on the financial modelling analysis. As mentioned, shale gas, 

production is an attractive business. There needs to be an accurate means of 

predicting or forecasting the production volumes to provide to investors to determine 

whether exploration within a shale play is a lucrative investment. It has been outlined 

that the EUR, which is obtained from DCA models, plays a major role in the economic 

or financial analysis of shale gas developments or projects.  

During the evaluation process of this study, it was found that, different EUR values are 

obtained from the various models. The EUR either is over or under-estimated. The 

ANN and Arps-PLE hybrid decline models, which were found to predict values closest 

to the actuals, was used to calculate the EUR and compare with other DCA models. 

The results clearly show the overestimation of the EUR values for the various shale 

plays, using the Arps, Duong’s and PLE decline models, compared to the ANN and 

Arps-PLE models. The EUR values obtained from this study were also compared with 
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results from previous studies. The comparison showed an agreement in the results. 

This would confirm the effectiveness of the models to evaluate the EUR for a shale 

play. 

Evaluating the EUR accurately would then allow for the accurate estimation in the total 

net revenue generated from a shale play. It is this information, which would attract  

investors to the development or project. The results from the well economics indicate 

the lucrative investment shale gas exploration contributes to the economy. However, 

it has to be highlighted that the total revenue generated would be sensitive to the 

natural gas price. The higher prices would extend the lifespan of a shale play that 

would translate to higher generated cash flows for the investor. It is evident that 

investment in shale gas exploration is precarious, and that one would have to consider 

the risks associated with the development and their governance, which is excluded 

from the scope of this research.
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Chapter 9 

Conclusions and Recommendations 

9.1.  Introduction 

The chapter will summarise the key findings from this study with some 

recommendations. Initially in this study, an evaluation and sensitivity analysis was 

conducted on the different decline models. The evaluation process indicated that 

although there are advantages among the models i.e., the Arps method is simplistic 

with regard to data fitting, which makes it appealing compared to other decline curve 

models. However, there are other associated limitations i.e., either there are 

optimistic or adverse solutions for unconventional reservoirs. During the assessment 

of the models, the ANN and ARIMA models were also investigated, along with the 

ANN-ARIMA hybrid model.  

The literature has indicated that hybrid models provide a higher degree of accuracy 

compared to single or individual models (Faruk, 2010). Therefore, due to the 

strengths and weaknesses associated with the various decline models, trying the 

hybrid approach was recommended. This would allow for combining the strengths of 

the individual models while improving their accuracy.   

Secondly, this study involved the development of hybrid decline models. The models 

were chosen according to the sensitivity analysis conducted. Due to the limitation in 

obtaining shale gas production data, a secondary data collection process was 

employed. The proposed methodology would assist in obtaining data for large shale 

plays across the US and provide a comparative basis with this study. Thirdly, the 

research involved using the data to forecast, determine the accuracy and validate 

the various models, using the software identified in the research. Lastly, based on 

the results from the validation process, the model which provided the most accurate 

predicted values, was used for the economic analysis. 
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9.2.  Conclusions 

In this section the five objectives set out for the study will be discussed and reviewed.  

Objective 1: Analyse the accuracy and sensitivity of Decline Curve Models 

Based on an analysis of previous studies conducted; it was found that the Arps 

hyperbolic decline, the MHD and Duong’s models provided the best fit with 

production data (Manda and Nkazi, 2020). However, contrary to the reviewed studies 

it was found that when estimated production data was used in the evaluation process 

for the purpose of this paper, using the goodness-of-fit technique, the PLE and 

Duong’s decline models aligned the best with the production data, compared to the 

other models (Manda and Nkazi, 2020). 

Studies revealed that the production time significantly affects the EUR, depending 

on which decline model is used (Manda and Nkazi, 2020).  When each model was 

assessed for accuracy, once again using the goodness-of-fit technique, the results 

indicated that the SEDM, followed by the LGM, EEDM, PLE, Duong’s decline model 

and, lastly, the hyperbolic decline model align with the production data (Manda and 

Nkazi, 2020). Based on the goodness-of-fit assessment, the Arps, PLE and Duong’s 

decline models were chosen to evaluate the hybrid model approach, due to the 

simplicity of the Arps model, while PLE and Duong’s model aligned best with the 

production data.  

Objective 2: Develop hybrid decline curve models 

During the model development process, the following hybrid decline models were 

developed for this study: 

 Arps-Duong’s-PLE Hybrid Decline Model, 

 Arps-Duong’s Hybrid Decline Model, 

 Arps-PLE Hybrid Decline Model and lastly, 

 Duong’s-PLE Hybrid Decline Model. 

http://www.revistaespacios.com/a17v38n49/a17v38n49p33.pdf
http://www.revistaespacios.com/a17v38n49/a17v38n49p33.pdf
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Objective 3: Validate the developed model against other DCA models i.e. the 

three models that have been identified for this study. 

The DCA hybrid models, Arps-Duong’s-PLE, Arps-Duong’s and Duong’s-PLE did 

not give the best outcome as it had been assumed it would, in comparison with the 

individual DCA models. However, the Arps-PLE hybrid decline model gave the 

closest predicted results. Both the ARIMA and ANN models gave good, predicted 

results compared to the DCA models evaluated in this study. However, when both 

models were combined into the ANN-ARIMA hybrid model, the strengths of both 

models referenced in the literature did not provide accurate predictive data. The 

resultant was an overestimation of the production flow rate. This may be attributed 

to using one input in the ANN model. 

Objective 4: Determine which of the decline models accurately forecasts the 

production decline of shale gas reservoirs  

Based on the accuracy and validation results for each model, which ranks the models 

based on the RMSE value from smallest to highest, the smaller the RMSE value, the 

better the model. The Arps-PLE hybrid decline model proved the best model i.e., the 

lowest RMSE value followed by the ANN and ARIMA models.  

It is apparent that by combining the Arps and PLE decline models, the limitations in 

the models are minimised. There is a significant reduction in RMSE values for the 

individual PLE and Arps models when the models are combined into a hybrid decline 

model.  

The contributing factor that was highlighted earlier is the dominance of the PLE 

parameters in the model i.e., Di and D∞ which considers the TFR flows not catered 

for in the Arps decline model. In addition, the PLE model was specifically developed 

for SGRs and by combining the models, the number of variables are reduced from 

four to three. This reduces the number of variables to solve, which was identified as 

a limitation of the model and hence the degrees of freedom is reduced. 
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When considering the validation parameters RMSE, MAPE and R2 the results 

indicated that, the overall, ANN outperforms all the other methods. The finding 

concurs with Dhini et al. (2015). They attributed the accuracy due to the non-linearity, 

however, contrary to their assumption, the ARIMA model proved to be the second 

most accurate model.  

As mentioned by Khashei and Bijari (2010), traditional methods such as the Box–

Jenkins model and ARIMA require the assumption that the time series data used in 

forecasting is linear, and  therefore they are not suitable for predicting data that is 

non-linear. 

The reasoning for the ARIMA working well for predicting decline behaviour may be 

attributed to various flow regimes that can occur in a hydraulically fractured reservoir. 

The various flow regimes do follow a linear trend. It can be assumed that the weak 

performance of the other decline curve hybrid models is due to the changes in flow 

regimes; an effect which is not considered. In addition, one would have to consider 

extending the data range over a longer period, to determine whether the hybrid 

models would yield results that are more positive. 

Objective 5: Evaluate the economic analysis  

Lastly, the economic or financial analysis of this study found that, different EUR 

values are obtained from the various models. The ANN model, which was found to 

be the best model in predicting values closest to the actuals, was used to calculate 

the EUR and compared with other DCA models. The comparison showed  

agreement in the results. This confirms the effectiveness of the Arps-PLE hybrid 

decline and ANN models that are used to evaluate the EUR for a shale play. 

Evaluating the EUR accurately would then allow for an accurate estimation of the 

total net revenue generated from a shale play. It is this information, which would 

attract investors to a development or project. However, it has to be highlighted that 
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the total revenue generated would be sensitive to the natural gas price. The higher 

prices will extend the lifespan of the shale play that, in turn, would translate to higher 

generated cash flows for the investor.  

In conclusion, the findings have provided a significant contribution to the prediction 

of shale gas production. The results indicate that the Arps-PLE hybrid decline model 

is a good model predictor for shale gas production and ultimately the EUR.  

9.3.  Recommendations 

To improve the accuracy of model prediction, the following is recommended for 

future research: 

 The project focus was to establish the accuracy of the hybrid univariant model. 

Future work will assess the hybrid multi-variant model. Such work will address 

the problem highlighted in the study, where the ARIMA-ANN model did not 

provide accurate predictive results which was contrary to the work done by 

Dhini et al. (2015). 

 Researchers should Investigate LSTM as an alternative method to ANN. The 

model tends to study long-term dependencies and solve the vanishing gradient 

problems; an issue observed with the ANN model (Tadjer et al., 2021). This 

would address a factor which contributed to the ANN model not providing good 

accuracy. 

 Researchers should also explore hybrid methods to predict flow regime 

changes. Kuila et al. (2013) showed that gas flow in SGRs is defined by a 

combination of mechanisms acting at different scales. According to Huang et 

al. (2015) gas flow regimes can be classified into four groups, depending on 

the Knudsen number. Future research should investigate accounting for and 

incorporating the Knudsen diffusion into the Arps−PLE hybrid decline model 

in shale gas reservoir modelling. 
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Table 9.1: Summary of major conclusions and recommendations from the 

research 

 Conclusions Recommendations 

1 The Arps-PLE hybrid decline model 
gave the closest predicted results. 

Assess multivariant hybrid models.  

2 The Arps’-PLE hybrid decline 
model proved to be the best model 
i.e., lowest RMSE value, followed 
by the ANN and ARIMA models. 

Investigate LSTM an alternative 
method to ANN. 

3 The Arps-PLE hybrid decline model 
is a good predictor for shale gas 
production and ultimately the EUR. 

Explore hybrid methods to predict 
flow regime changes, incorporating 
the Knudsen diffusion into the 
Arps−PLE hybrid decline model. 
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Appendices 

 

Appendix A: Raw Data  

 

A.1. Secondary Production Data  

 

Table A1: Estimated raw data and calculated values for the Canon Shale Well within Eagle 

Ford shale play (Paryani et al., 2018) 

Production 
date (days) 

Gas rate, 
Mscf/d 

log qt log t qt/qi qt/t (1/b)/qt In 
qt/qm 

260 20 1.30 2.41 0.007 0.08 0.131 -3.538 

240 50 1.70 2.38 0.017 0.21 0.052 -2.622 

200 70 1.85 2.30 0.024 0.35 0.037 -2.285 

160 90 1.95 2.20 0.031 0.56 0.029 -2.034 

140 100 2.00 2.15 0.035 0.71 0.026 -1.929 

110 150 2.18 2.04 0.052 1.36 0.017 -1.523 

108 200 2.30 2.03 0.069 1.85 0.013 -1.235 

105 250 2.40 2.02 0.086 2.38 0.010 -1.012 

101 260 2.41 2.00 0.090 2.57 0.010 -0.9731 

100 270 2.43 2.00 0.093 2.70 0.010 -0.9358 

90 300 2.48 1.95 0.104 3.33 0.009 -0.830 

80 370 2.57 1.90 0.128 4.63 0.007 -0.620 

70 400 2.60 1.85 0.138 5.71 0.007 -0.542 

60 430 2.63 1.78 0.148 7.17 0.006 -0.470 

55 450 2.65 1.74 0.155 8.18 0.006 -0.425 

53 470 2.67 1.72 0.162 8.87 0.006 -0.381 

52 480 2.68 1.72 0.166 9.23 0.005 -0.3603 

51 500 2.70 1.71 0.173 9.80 0.005 -0.319 

50 600 2.78 1.70 0.207 12.00 0.004 -0.137 

49 620 2.79 1.69 0.214 12.65 0.004 -0.104 

45 650 2.81 1.65 0.224 14.44 0.004 -0.0568 

47 680 2.83 1.67 0.235 14.47 0.004 -0.0117 

42 700 2.85 1.62 0.242 16.67 0.004 0.0173 

40 720 2.86 1.60 0.248 18.00 0.004 0.0455 

36 750 2.88 1.56 0.259 20.83 0.003 0.0863 
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Production 
date (days) 

Gas rate, 
Mscf/d 

log qt log t qt/qi qt/t (1/b)/qt In qt/qm 

1000 2500 3.40 3.00 0.436 2.50 0.0004 0.420 

1100 2400 3.38 3.04 0.418 2.18 0.0004 0.379 

1200 2300 3.36 3.08 0.401 1.92 0.0004 0.336 

1500 2000 3.30 3.18 0.349 1.33 0.0005 0.197 

1900 1800 3.26 3.28 0.314 0.95 0.0006 0.091 

2200 1600 3.20 3.34 0.279 0.73 0.0006 -0.027 

2400 1500 3.18 3.38 0.262 0.63 0.0007 -0.091 

2600 1400 3.15 3.41 0.244 0.54 0.0007 -0.160 

2800 1300 3.11 3.45 0.227 0.46 0.0008 -0.234 

3000 1200 3.08 3.48 0.209 0.40 0.0008 -0.314 

3200 1100 3.04 3.51 0.192 0.34 0.0009 -0.401 

3400 1000 3.00 3.53 0.174 0.29 0.0010 -0.497 

3600 900 2.95 3.56 0.157 0.25 0.0011 -0.602 

3800 800 2.90 3.58 0.139 0.21 0.0013 -0.720 

4000 700 2.85 3.60 0.122 0.18 0.0014 -0.853 

4200 600 2.78 3.62 0.105 0.14 0.0017 -1.007 

4400 500 2.70 3.64 0.087 0.11 0.0020 -1.190 

4600 400 2.60 3.66 0.070 0.09 0.0025 -1.413 

4800 300 2.48 3.68 0.052 0.06 0.0033 -1.700 

5000 250 2.40 3.70 0.044 0.05 0.0040 -1.883 

6000 150 2.18 3.78 0.026 0.03 0.0067 -2.394 

7000 100 2.00 3.85 0.017 0.01 0.0100 -2.799 

7500 50 1.70 3.88 0.009 0.01 0.0200 -3.492 

10000 40 1.60 4.00 0.007 0.00 0.0250 -3.715 

12500 30 1.48 4.10 0.005 0.00 0.0333 -4.003 

15000 20 1.30 4.18 0.003 0.00 0.0500 -4.409 

17500 10 1.00 4.24 0.002 0.00 0.1000 -5.102 

Table A2: Estimated raw data and calculated values for the Marcellus Shale Well 

(Adekoya, 2009) 
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Table A3: Estimated raw data and calculated values for the Barnett Shale Well 

(Tan et al., 2018) 

 

Production 
date (days) 

Gas rate, 
Mscf/d 

log qt log t qt/qi qt/t (1/b)/qt In qt/qm 

5 9000 3.95 0.70 1.060 1800.00 0.000090 0.371 

8 8000 3.90 0.90 0.942 1000.00 0.000101 0.254 

9.7 8500 3.93 0.99 1.001 876.29 0.000095 0.314 

9.9 8200 3.91 1.00 0.966 828.28 0.000098 0.278 

20 7500 3.88 1.30 0.883 375.00 0.000107 0.189 

50 6500 3.81 1.70 0.766 130.00 0.000124 0.046 

60 6000 3.78 1.78 0.707 100.00 0.000134 -0.034 

80 4000 3.60 1.90 0.471 50.00 0.000202 -0.440 

90 3800 3.58 1.95 0.448 42.22 0.000212 -0.491 

100 3500 3.54 2.00 0.412 35.00 0.000230 -0.573 

200 3000 3.48 2.30 0.353 15.00 0.000269 -0.727 

350 2500 3.40 2.54 0.294 7.14 0.000322 -0.910 

450 2000 3.30 2.65 0.236 4.44 0.000403 -1.133 

600 1500 3.18 2.78 0.177 2.50 0.000537 -1.420 

700 1000 3.00 2.85 0.118 1.43 0.000806 -1.826 

800 900 2.95 2.90 0.106 1.13 0.000896 -1.931 

900 800 2.90 2.95 0.094 0.89 0.001008 -2.049 

1000 790 2.90 3.00 0.093 0.79 0.001020 -2.062 

1100 780 2.89 3.04 0.092 0.71 0.001033 -2.074 

1200 760 2.88 3.08 0.090 0.63 0.001061 -2.100 

1300 740 2.87 3.11 0.087 0.57 0.001089 -2.127 
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Table A4: Estimated raw data and calculated values for Well #A (Brantson et 

al., 2019) 

 

Production 
date (days) 

Gas 
rate, 

Mscf/d 

log qt log t qt/qi qt/t (1/b)/qt In qt/qm 

5 6500 3.813 0.699 0.881 1300.000 5.09E-05 0.121 

7 6400 3.806 0.845 0.867 914.286 5.17E-05 0.105 

9 6300 3.799 0.954 0.853 700.000 5.25E-05 0.090 

11 6100 3.785 1.041 0.826 554.545 5.43E-05 0.057 

20 6500 3.813 1.301 0.881 325.000 5.09E-05 0.121 

25 6300 3.799 1.398 0.853 252.000 5.25E-05 0.090 

27 6100 3.785 1.431 0.826 225.926 5.43E-05 0.057 

28 6100 3.785 1.447 0.826 217.857 5.43E-05 0.057 

35 4800 3.681 1.544 0.650 137.143 6.9E-05 -0.182 

37 4750 3.677 1.568 0.643 128.378 6.97E-05 -0.193 

50 4000 3.602 1.699 0.542 80.000 8.28E-05 -0.365 

52 3800 3.580 1.716 0.515 73.077 8.71E-05 -0.416 

55 4300 3.633 1.740 0.582 78.182 7.7E-05 -0.292 

57 4350 3.638 1.756 0.589 76.316 7.61E-05 -0.281 

59 4320 3.635 1.771 0.585 73.220 7.66E-05 -0.288 

80 4310 3.634 1.903 0.584 53.875 7.68E-05 -0.290 

85 4305 3.634 1.929 0.583 50.647 7.69E-05 -0.291 

90 4200 3.623 1.954 0.569 46.667 7.88E-05 -0.316 

100 4100 3.613 2.000 0.555 41.000 8.07E-05 -0.340 

120 4000 3.602 2.079 0.542 33.333 8.28E-05 -0.365 

140 3500 3.544 2.146 0.474 25.000 9.46E-05 -0.498 

150 3700 3.568 2.176 0.501 24.667 8.95E-05 -0.443 

170 3600 3.556 2.230 0.488 21.176 9.19E-05 -0.470 

190 3500 3.544 2.279 0.474 18.421 9.46E-05 -0.498 

240 4100 3.613 2.380 0.555 17.083 8.07E-05 -0.340 
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A.2. KAPPA-Citrine  

 

 

 

Figure A1: Arps model generated graph from KAPPA-Citrine for the Canon 

Shale Well (Paryani et al., 2018) 

Table A5: Arps model parameters generated by KAPPA-Citrine for the Canon Shale 

Well 
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Figure A2: PLE model graph generated by KAPPA-Citrine for the Canon 

Shale Well (Paryani et al., 2018) 

 

 

 

 

 

 

 

 

Table A6: PLE model parameters generated by KAPPA-Citrine for the Canon Shale Well 
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Figure A3: Duong’s model graph generated by KAPPA-Citrine for the Canon 

Shale Well (Paryani et al., 2018) 

 

 

 

 

 

 

 

 

 

 

 

Table A7:  Duong’s model parameters generated by KAPPA-Citrine for the Canon Shale Well 
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Figure A4: Arps model generated graph from KAPPA-Citrine for the 

Marcellus Shale Well (Adekoya, 2009) 

 

 

 

 

 

 

 

 

 

 

Table A8: Arp’s model parameters generated by KAPPA-Citrine for the Marcellus Shale Well 
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Figure A5: PLE model generated graph from KAPPA-Citrine for the Marcellus 

Shale Well (Adekoya, 2009) 

 

 

 

 

 

 

 

 

Table A9: PLE model parameters generated by KAPPA-Citrine for the Marcellus Shale Well 
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Figure A6: Duong’s model generated graph from KAPPA-Citrine for the 

Marcellus Shale Well (Adekoya, 2009) 

 

 

 

 

 

 

 

 

Table A10: PLE model parameters generated by KAPPA-Citrine for the Marcellus Shale Well 
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Figure A7: Arps model generated graph from KAPPA-Citrine for the Barnett 

Shale Well (Tan et al., 2018) 

 

 

 

 

 

 

Table A11: Arps model parameters generated by KAPPA-Citrine for the Marcellus Shale Well 
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Figure A8: PLE model generated graph from KAPPA-Citrine for the Barnett 

Shale Well (Tan et al., 2018) 

 

 

 

 

 

 

 

 

 

 

Table A12: PLE model parameters generated by KAPPA-Citrine for the Marcellus Shale 

Well 
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Figure A9: Duong’s model generated graph from KAPPA-Citrine for the 

Barnett Shale Well (Tan et al., 2018) 

 

 

 

 

 

 

Table A13: Duong’s model parameters generated by KAPPA-Citrine for the Marcellus Shale 

Well 
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A.3. Actual vs. Predicted Data  

Table A14: Actual vs. predicted results for the Arps model – Canon Shale 

Well (Paryani et al., 2018) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 206 

50 240 205 

70 200 199 

90 160 189 

100 140 182 

150 110 144 

200 108 115 

250 105 94 

260 101 90 

270 100 88 

300 90 80 

370 80 67 

400 70 63 

430 60 60 

450 55 58 

470 53 56 

480 52 56 

500 51 54 

600 50 49 

620 49 47 

650 45 45 

680 47 45 

700 42 44 

720 40 44 

750 36 42 
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Table A15: Actual vs. predicted results for the Duong’s model – Canon Shale 

Well (Paryani et al., 2018) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 376 

50 240 219 

70 200 180 

90 160 155 

100 140 146 

150 110 115 

200 108 97 

250 105 85 

260 101 83 

270 100 81 

300 90 76 

370 80 67 

400 70 64 

430 60 62 

450 55 60 

470 53 58 

480 52 58 

500 51 56 

600 50 51 

620 49 50 

650 45 48 

680 47 47 

700 42 46 

720 40 45 

750 36 44 
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Table A16: Actual vs. predicted results for the PLE model – Canon Shale Well 

(Paryani et al., 2018) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 274 

50 240 210 

70 200 185 

90 160 166 

100 140 159 

150 110 130 

200 108 110 

250 105 95 

260 101 93 

270 100 91 

300 90 84 

370 80 72 

400 70 68 

430 60 64 

450 55 62 

470 53 59 

480 52 58 

500 51 56 

600 50 48 

620 49 46 

650 45 44 

680 47 42 

700 42 41 

720 40 40 

750 36 38 
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Table A17: Actual vs. predicted results for the Arps-Duong-PLE hybrid model 

– Canon Shale Well (Paryani et al., 2018) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 254 

50 240 217 

70 200 196 

90 160 178 

100 140 169 

150 110 135 

200 108 110 

250 105 92 

260 101 89 

270 100 86 

300 90 78 

370 80 66 

400 70 62 

430 60 59 

450 55 57 

470 53 56 

480 52 55 

500 51 54 

600 50 49 

620 49 49 

650 45 48 

680 47 47 

700 42 47 

720 40 47 

750 36 46 
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Table A18: Actual vs. predicted results for the Arps-Duong hybrid model – 

Canon Shale Well (Paryani et al., 2018) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 258 

50 240 257 

70 200 198 

90 160 144 

100 140 122 

150 110 62 

200 108 49 

250 105 53 

260 101 55 

270 100 56 

300 90 62 

370 80 75 

400 70 81 

430 60 87 

450 55 91 

470 53 96 

480 52 98 

500 51 102 

600 50 122 

620 49 126 

650 45 132 

680 47 138 

700 42 142 

720 40 146 

750 36 152 
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Table A19: Actual vs. predicted results for the Arps-PLE hybrid model – 

Canon Shale Well (Paryani et al., 2018) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 218 

50 240 195 

70 200 181 

90 160 168 

100 140 162 

150 110 136 

200 108 115 

250 105 99 

260 101 96 

270 100 93 

300 90 85 

370 80 71 

400 70 66 

430 60 62 

450 55 60 

470 53 57 

480 52 56 

500 51 54 

600 50 47 

620 49 45 

650 45 44 

680 47 42 

700 42 42 

720 40 41 

750 36 40 
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Table A20: Actual vs. predicted results for the Duong-PLE hybrid model – 

Canon Shale Well (Paryani et al., 2018) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 207 

50 240 199 

70 200 193 

90 160 188 

100 140 179 

150 110 171 

200 108 166 

250 105 138 

260 101 132 

270 100 130 

300 90 124 

370 80 119 

400 70 110 

430 60 102 

450 55 83 

470 53 75 

480 52 72 

500 51 69 

600 50 55 

620 49 41 

650 45 28 

680 47 25 

700 42 19 

720 40 14 

750 36 6 
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Table A21: Actual vs. predicted results for the ARIMA model – Canon Shale 

Well (Paryani et al., 2018) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 270 

50 240 250 

70 200 223 

90 160 174 

100 140 121 

150 110 111 

200 108 100 

250 105 100 

260 101 105 

270 100 99 

300 90 93 

370 80 81 

400 70 68 

430 60 59 

450 55 52 

470 53 49 

480 52 50 

500 51 51 

600 50 48 

620 49 45 

650 45 46 

680 47 43 

700 42 43 

720 40 40 

750 36 34 
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Table A22: Actual vs. predicted results for the ANN model – Canon Shale 

Well (Paryani et al., 2018) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 280 

50 240 214 

70 200 181 

90 160 155 

100 140 145 

150 110 113 

200 108 104 

250 105 102 

260 101 101 

270 100 100 

300 90 96 

370 80 78 

400 70 69 

430 60 61 

450 55 56 

470 53 53 

480 52 51 

500 51 49 

600 50 48 

620 49 48 

650 45 48 

680 47 46 

700 42 43 

720 40 39 

750 36 30 
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Table A23: Actual vs. predicted results for the ANN-ARIMA hybrid model – 

Canon Shale Well (Paryani et al., 2018) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

20 260 286 

50 240 221 

70 200 188 

90 160 162 

100 140 151 

150 110 120 

200 108 111 

250 105 108 

260 101 108 

270 100 107 

300 90 102 

370 80 84 

400 70 75 

430 60 67 

450 55 63 

470 53 59 

480 52 58 

500 51 56 

600 50 55 

620 49 55 

650 45 54 

680 47 52 

700 42 49 

720 40 45 

750 36 37 
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Table A24: Actual vs. predicted results for the Arps model – Marcellus Shale 

Well (Adekoya, 2009) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 3170 

1100 2400 2970 

1200 2300 2784 

1500 2000 2301 

1900 1800 1797 

2200 1600 1501 

2400 1500 1334 

2600 1400 1188 

2800 1300 1060 

3000 1200 948 

3200 1100 849 

3400 1000 761 

3600 900 684 

3800 800 616 

4000 700 555 

4200 600 502 

4400 500 454 

4600 400 411 

4800 300 373 

5000 250 339 

6000 150 215 

7000 100 142 

7500 50 116 

10000 40 49 

12500 30 24 

15000 20 13 

17500 10 8 
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Table A25: Actual vs. predicted results for the Duong’s model – Marcellus 

Shale Well (Adekoya, 2009) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 6787 

1100 2400 5588 

1200 2300 4680 

1500 2000 2969 

1900 1800 1834 

2200 1600 1360 

2400 1500 1139 

2600 1400 967 

2800 1300 832 

3000 1200 722 

3200 1100 633 

3400 1000 560 

3600 900 498 

3800 800 446 

4000 700 402 

4200 600 364 

4400 500 331 

4600 400 302 

4800 300 277 

5000 250 255 

6000 150 176 

7000 100 128 

7500 50 112 

10000 40 62 

12500 30 39 

15000 20 27 

17500 10 20 
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Table A26: Actual vs. predicted results for the PLE model – Marcellus Shale 

Well (Adekoya, 2009) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 3525 

1100 2400 3218 

1200 2300 2949 

1500 2000 2314 

1900 1800 1733 

2200 1600 1422 

2400 1500 1255 

2600 1400 1114 

2800 1300 992 

3000 1200 888 

3200 1100 797 

3400 1000 718 

3600 900 648 

3800 800 587 

4000 700 533 

4200 600 485 

4400 500 442 

4600 400 404 

4800 300 370 

5000 250 339 

6000 150 225 

7000 100 154 

7500 50 129 

10000 40 57 

12500 30 28 

15000 20 14 

17500 10 8 
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Table A27: Actual vs. predicted results for the Arps-Duong-PLE hybrid model 

– Marcellus Shale Well (Adekoya, 2009) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 2558 

1100 2400 2453 

1200 2300 2352 

1500 2000 2073 

1900 1800 1750 

2200 1600 1541 

2400 1500 1414 

2600 1400 1298 

2800 1300 1191 

3000 1200 1092 

3200 1100 1000 

3400 1000 916 

3600 900 839 

3800 800 767 

4000 700 701 

4200 600 640 

4400 500 584 

4600 400 533 

4800 300 485 

5000 250 441 

6000 150 268 

7000 100 152 

7500 50 110 

10000 40 -10 

12500 30 -53 

15000 20 -69 

17500 10 -75 
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Table A28: Actual vs. predicted results for the Arps-Duong hybrid model – 

Marcellus Shale Well (Adekoya, 2009) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 2394 

1100 2400 2388 

1200 2300 2362 

1500 2000 2205 

1900 1800 1896 

2200 1600 1646 

2400 1500 1485 

2600 1400 1332 

2800 1300 1190 

3000 1200 1060 

3200 1100 943 

3400 1000 838 

3600 900 745 

3800 800 663 

4000 700 591 

4200 600 529 

4400 500 475 

4600 400 429 

4800 300 390 

5000 250 357 

6000 150 257 

7000 100 226 

7500 50 224 

10000 40 264 

12500 30 326 

15000 20 391 

17500 10 456 
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Table A29: Actual vs. predicted results for the Arps-PLE hybrid model – 

Marcellus Shale Well (Adekoya, 2009) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 1940 

1100 2400 1892 

1200 2300 1845 

1500 2000 1711 

1900 1800 1548 

2200 1600 1436 

2400 1500 1366 

2600 1400 1299 

2800 1300 1235 

3000 1200 1175 

3200 1100 1118 

3400 1000 1063 

3600 900 1011 

3800 800 962 

4000 700 915 

4200 600 870 

4400 500 828 

4600 400 788 

4800 300 749 

5000 250 713 

6000 150 555 

7000 100 433 

7500 50 383 

10000 40 206 

12500 30 112 

15000 20 62 

17500 10 36 
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Table A30: Actual vs. predicted results for the Duong-PLE hybrid model – 

Marcellus Shale Well (Adekoya, 2009) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 3430 

1100 2400 3194 

1200 2300 2977 

1500 2000 2419 

1900 1800 1851 

2200 1600 1525 

2400 1500 1345 

2600 1400 1189 

2800 1300 1053 

3000 1200 935 

3200 1100 832 

3400 1000 743 

3600 900 664 

3800 800 595 

4000 700 534 

4200 600 481 

4400 500 434 

4600 400 392 

4800 300 355 

5000 250 322 

6000 150 203 

7000 100 134 

7500 50 111 

10000 40 48 

12500 30 25 

15000 20 15 

17500 10 10 
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Table A31: Actual vs. predicted results for the ARIMA model – Marcellus 

Shale Well (Adekoya, 2009) 

  Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500  2509 

1100 2400 2414 

1200 2300 2305 

1500 2000 2204 

1900 1800 1787 

2200 1600 1565 

2400 1500 1521 

2600 1400 1399 

2800 1300 1297 

3000 1200 1214 

3200 1100 1103 

3400 1000 997 

3600 900 911 

3800 800 806 

4000 700 698 

4200 600 608 

4400 500 507 

4600 400 399 

4800 300 306 

5000 250 208 

6000 150 188 

7000 100 81 

7500 50 -9 

10000 40 35 

12500 30 20 

15000 20 -27 

17500 10 -4 
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Table A32: Actual vs. predicted results for the ANN model – Marcellus Shale 

Well (Adekoya, 2009) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 2478 

1100 2400 2387 

1200 2300 2299 

1500 2000 2055 

1900 1800 1774 

2200 1600 1595 

2400 1500 1488 

2600 1400 1388 

2800 1300 1293 

3000 1200 1201 

3200 1100 1108 

3400 1000 1011 

3600 900 910 

3800 800 805 

4000 700 697 

4200 600 592 

4400 500 494 

4600 400 406 

4800 300 332 

5000 250 273 

6000 150 138 

10000 40 91 

12500 30 51 

15000 20 5 

17500 10 13 
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Table A33: Actual vs. predicted results for the ANN-ARIMA hybrid model – 

Marcellus Shale Well (Adekoya, 2009) 

 

Actual Values Predicted Values 

Time (days) q(t) MSCF/day q(t) MSCF/day 

1000 2500 2518 

1100 2400 2426 

1200 2300 2339 

1500 2000 2094 

1900 1800 1814 

2200 1600 1634 

2400 1500 1527 

2600 1400 1428 

2800 1300 1333 

3000 1200 1241 

3200 1100 1147 

3400 1000 1051 

3600 900 950 

3800 800 844 

4000 700 737 

4200 600 632 

4400 500 533 

4600 400 446 

4800 300 372 

5000 250 313 

6000 150 178 

7000 100 155 

7500 50 150 

10000 40 131 

12500 30 91 

15000 20 45 

17500 10 52 
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A.4. Confidence Intervals  

 

Table A34: Raw data for the 95% confidence interval for the Canon Shale Well 

  Actual 
Values 

Predicted 
Values 

Predicted Values     

Time 
(day) 

Q(t) ANN Arps PLE hybrid 
decline model 

LCL UCL 

260 20 29 23 72 119 

240 50 42 32 64 128 

200 70 52 61 35 156 

160 90 78 114 18 210 

140 100 110 156 60 252 

110 150 200 251 155 347 

108 200 208 259 163 355 

105 250 221 272 176 368 

101 260 239 289 194 385 

100 270 243 294 198 390 

90 300 295 344 249 440 

80 370 356 403 308 499 

70 400 426 473 377 568 

60 430 506 553 458 649 

55 450 550 599 503 695 

53 470 568 618 522 714 

52 480 577 628 532 724 

51 500 587 638 542 734 

50 600 596 648 552 744 

49 620 606 659 563 755 

45 650 626 702 606 798 

47 680 646 680 584 776 

42 700 677 736 640 832 

40 720 698 759 663 855 

36 750 741 809 713 905 
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Table A35: Raw data for the 95% confidence interval for the Marcellus Shale 

Well 

 

Actual 
Values 

Predicted 
Values 

Predicted Values 

  

Time 
(day) 

Q(t) ANN Arps PLE hybrid decline 
model 

LCL UCL 

1000 2500 2478 1940 2163 2793 

1100 2400 2387 1892 2072 2702 

1200 2300 2299 1845 1984 2614 

1500 2000 2055 1711 1740 2370 

1900 1800 1774 1548 1459 2089 

2200 1600 1595 1436 1280 1910 

2400 1500 1488 1366 1172 1803 

2600 1400 1388 1299 1073 1703 

2800 1300 1293 1235 978 1609 

3000 1200 1201 1175 886 1516 

3200 1100 1108 1118 793 1423 

3400 1000 1011 1063 696 1326 

3600 900 910 1011 595 1225 

3800 800 805 962 489 1120 

4000 700 697 915 382 1012 

4200 600 592 870 277 907 

4400 500 494 828 178 809 

4600 400 406 788 91 721 

4800 300 332 749 17 647 

5000 250 273 713 42 588 

6000 150 138 555 177 454 

10000 40 91 206 224 407 

12500 30 51 112 264 367 

15000 20 5 62 310 320 

17500 10 13 36 302 328 
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Abstract: The development of prediction tools for production performance and the lifespan of shale 

gas reservoirs has been a focus for petroleum engineers. Several decline curve models have been 

developed and compared with data from shale gas production. To accurately forecast the estimated 

ultimate recovery for shale gas reservoirs, consistent and accurate decline curve modelling is 

required. In this paper, the current decline curve models are evaluated using the goodness of fit as 

a measure of accuracy with field data. The evaluation found that there are advantages to using the 

current DCA models. However, they also have limitations associated with them that have to be 

addressed. Based on the accuracy assessment conducted on the different models, it appears that the 

Stretched Exponential Decline Model (SEDM) and the Logistic Growth Model (LGM), followed by 

the Extended Exponential Decline Model (EEDM), the Power Law Exponential Model (PLE), the 

Duong’s Model, and lastly, the Arps Hyperbolic Decline Model, provide the best fit with production 

data. 

Keywords: valuation; shale gas reservoirs (SGR); decline curve models; decline curve analysis 

(DCA); estimated ultimate recovery (EUR) 

 

1. Introduction 

In recent years, shale gas reservoirs (SGR) or unconventional reservoirs have steadily become 

the main bases of natural gas production around the world [1]. Wang [2] notes that shales and 

sediments are the richest sedimentary rocks in the Earth’s crust and, according to recent activities, 

shale gas will constitute the largest component in gas production globally, as conventional reservoirs 

continue to decrease. It is further mentioned by Wang [2] that SGR, unlike conventional reservoirs, 

tend to be more costly to develop and require special tools to enable the gas to be produced at a cost-

effective rate, due to their extremely low matrix permeability and porosity [3]. Accordingly, the 

modelling of shale gas production and its decline is essential to predict how fast the gas can be 

produced and turned into revenue from each well, as well as modelling of the feasibility of producing 

natural gas from operated shale plays from a cost perspective [2]. 

Currently, the oldest and most commonly used tool for the modelling of shale gas production is 

the rate versus time decline curve estimation, due to its ease. Current efforts in decline curve analysis 

(DCA) have been concentrating on a computer statistical approach, the basic objective being to arrive 

at a distinctive “unbiased” interpretation [2]. In recent years, several DCA models have been 

suggested and compared with previous shale gas production figures, prior to being used on more 

reservoirs [4]. This paper focuses on the evaluation and sensitivity of the current DCA models and 

proposes a new hybrid model to be investigated in SGR decline analysis. The main ideas are (a) to 
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characterise and evaluate the current decline curve models used to explain shale gas reservoir 

forecasting and (b) to use the goodness-of-fit regression test to assess the sensitivity of the decline 

curve models in (a). 

2. Overview of Shale Gas Production 

Yuan et al. [5] specified that due to the rise in energy demand and the decrease in conventional 

oil and gas production, shale gas has received increasing attention worldwide. Shale gas presently 

makes up more than 20% of the drilled gas production in the United States (US) [6]. The manipulation 

of shale gas is land-based and generally requires a sizeable quantity of wells to achieve beneficial 

recovery rates [6]. Nwaobi and Anandarajah [7] explained that shale gas reservoir production and 

viability have been investigated globally, but that progress has been slow due to a number of 

concerns, one of which is a precise production forecast. Nwaobi and Anandarajah [7] went on to 

define that the quantity of shale gas reserve that can be recovered is the estimated ultimate recovery 

(EUR) for the petroleum industry. The EUR is a key factor for stakeholders and policymakers in 

evaluating petroleum resources [7]. 

Shale gas production has been vital in providing the US, which was formerly a natural gas 

importer, with the ability to export natural gas [5]. This development aided the US to effectively 

ensure its energy security and decrease its carbon emissions considerably. Canada has become the 

second nation to attain viable exploitation of its shale gas reserves. The positive development of shale 

gas in Canada has resuscitated the nation’s natural gas production, which had formerly experienced 

a rapid decrease [5]. 

3. Characteristics and Production Behavior of Shale Gas 

Shale gas reservoirs possess the characteristics such as ultra-low permeability, no trap 

mechanism, and the gas is tightly absorbed to the rock particle, which is the opposite of a 

conventional reservoir [8]. Hydraulic fracturing is often used in reservoirs with low permeability that 

are not able to reach economic production rates [8]. This is very different in character to the naturally 

fractured reservoirs that are classified as having dual porosity [8]. There are four different flow 

regimes that can occur in a hydraulically fractured reservoir and several flow periods can exist during 

the life cycle of a shale gas well [8,9]. These consist of fracture linear flow, fracture boundary flow, 

matrix linear flow, and lastly matrix boundary flow [10]. Joshi [10] explained the different flow 

regimes for shale gas reservoirs as follows: 

 Fracture/Early Linear Flow: A transient flow regime that occurs when the production flow is 

linear to the single fractures. This flow regime governs the known life of most shale wells. A 

negative half slope on a log–log plot of rate versus time can be used to differentiate this linear 

flow. 

 Fracture Boundary Flow: Follows after a certain period of production when an interference 

occurs i.e., from linear to simulated reservoir volume (SRV). Many of the existing horizontal 

shale wells have not experienced this regime, but some of the newer wells with huge fracture 

treatments have been observing this regime early. This can be observed on a log–log plot by 

deviation from a –1/2 slope line on a log–log plot of rate versus time. 

 Matrix Linear Flow: When production from the matrix, beyond the SRV starts to govern the 

production, a linear type of flow will be seen. This regime will probably not be observed in the 

economic life of the well. Comparable to fracture linear flow, this regime can be observed using 

a negative half slope line on a log–log plot of rate versus time. 

 Matrix Boundary Flow: After the outer matrix transient has reached the drainage boundaries of 

the well, a deviation from the negative half slope, corresponding to matrix linear flow, will be 

observed. This deviation is equivalent to matrix boundary flow. Similarly to the matrix, linear 

flow will probably not be observed.  
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4. Overview of Decline Curve Models 

Consistently forecasting the long-term production performance of shale (unconventional) 

reservoirs has been a challenge [11]. The petroleum industry requires simple, useful, and speedy 

means of predicting production and assessing reserves. Hence, DCA has been an attractive 

alternative in contrast to other methods [11]. Due to the relative ease of DCA, it is considered the 

most used method in the industry [11]. The current DCA models will be evaluated based on their 

characteristics, strengths, weaknesses, and sensitivity to production data. 

4.1. Arps Decline Curve and the Modified Hyperbolic Decline Model (MHD) 

Arps decline curve analysis is the most commonly used method of estimating ultimate 

recoverable reserves and future performance [12]. Paryani et al. [13] recommended this to be a reliable 

history match (even with b > 1); also due to its simplicity. The model process is based on vital 

assumptions: that past operating conditions will remain unaffected, a well is produced at or near capacity, 

and that the well’s drainage remains constant and is produced at a constant bottom-hole pressure [14]. 

Notably, the Arps model is only applicable in pseudo-steady flows when the flow regime transfers from 

linear flows to boundary-dominated flows (BDF) [15]. This indicates that the Arps equations are not 

applicable to the production forecasting of the entire decline process of horizontal wells in low-

permeability reservoirs [16]. The Arps decline curve analysis can be summarised into three types: 

exponential Equation (1), hyperbolic Equation (2), and harmonic Equation (3) [17,18]. 

𝑞 = 𝑞𝑖𝑒−𝐷𝑡 (1) 

𝑞 =
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 (2) 

𝑞 =
𝑞𝑖

1 + 𝐷𝑖

 (3) 

where q is the flow rate in STB/day or Mscf/day, qi is the initial flow rate in STB/day or Mscf/day, D 

is the decline constant while Di is the initial decline constant, which are both measured in days-1, 

and b is the decline exponent. 

The most commonly employed hyperbolic form of Arps decline Equation (2) is used for shale 

reservoirs. The hyperbolic decline equation is suitable to use due to the “best fit” it provides for the 

long transient linear-flow regime observed in shale gas wells with b values greater than unity [18]. 

The model results in post-production overestimation, due to the decrease in the decline rate with 

production time. Due to the overestimation, Robertson et al. [19] suggested a revised version of the 

hyperbolic decline model for shale gas production decline. The equation is given as: 

𝑞 =
𝑞𝑖

(1 + 𝑛𝐷𝑖𝑡)1/𝑛 
  (𝐷 > 𝐷𝑙𝑖𝑚) (4) 

𝑞 = 𝑞𝑖  𝑒𝑥𝑝(−𝐷𝑙𝑖𝑚𝑡)  (𝐷 ≤ 𝐷𝑙𝑖𝑚) (5) 

where q is the production rate in m3/d or STB/day, 𝐷𝑙𝑖𝑚  is the decline rate in d−1, and n is the time 

exponent. They suggested that the hyperbolic decline model sometimes yields unrealistically high 

reserve estimates. They made an assumption that the rate of decline starts at 30% of flow and usually 

declines in a hyperbolic way [19]. This modified model considers when the hyperbolic decline in the 

early life of a well transfers to exponential decline in the late life [19]. The switching process can be 

determined by applying computer programs. The switching point is when the decline rate is smaller 

than a certain limit (usually 5%) [19]. The MHD model addresses the overestimation limitation of 

EUR; however, it is still unable to determine 𝐷𝑙𝑖𝑚  for production data [15]. 
To test the behavior of the Arps hyperbolic model and the modified version shown in Figure 1, 

a semi log plot (log q versus t) illustrates the sensitivity of the models to various estimated field data. 

The R2 values denote the goodness of fit or the degree of linear correlation, which is a measure of the 

level of association of a group of actual observations to the model’s forecasts [20]. As observed from 
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the regression lines for the various data, the resulting fit appears to capture the trend in the data well. 

Arps fits Data 1 and 2 fairly, similarly for the MHD. However, the method matches the other cases 

poorly because it cannot model multiple flow regimes. In the case of the MHD model, there is a shift 

in the curves downward, which results in a change in the R2 value. Upon closer inspection of the EUR 

values for both models, which are shown in Table 1, it is evident that the MHD model corrects for the 

overestimation of the Arps model. 

 

Figure 1. Data sensitivity using the Arps Hyperbolic Decline Model [4,13,14,21]. 

Table 1. Summary of estimated ultimate recovery (EUR). MHD: Modified Hyperbolic Decline 

Model. 

EUR (bscf) Data 1 Data 2 Data 3 Data 4 

Arps Model 0.31 20.52 18.13 5.21 

MHD 0.18 4.13 13.18 4.18 

4.2. Power Law Exponential Model (PLE) 

Ilk et al. [22] presented the PLE, which is an extension of the exponential Arps formula for the 

decline degree in shale reservoirs. This model was developed precisely for SGR and approximates 

the rate of decline with a power law decline. The PLE model matches production data in both the 

transient and boundary-dominated regions, without being hypersensitive to remaining reserve 

estimates [23]. Seshadri and Mattar [24] presented that the PLE model can model transient radial and 

linear flows, while Kanfar and Wattenbarger [25] proved that the model is reliable for linear flow, 

bilinear flow followed by linear flow, and linear flow followed by BDF, or bilinear flow followed by 

linear flow and finished with BDF flow. Vanorsdale [26] deduced that when the flow regime changes 

throughout the initial 10 years of the well, the PLE model will yield a very optimistic recovery. The 

model characterizes the decline rate by infinite time, D∞ which is defined as a “loss ratio” (which is 

assumed to be constant from Arp) [16]. The production rate is derived as follows: 

𝑞

  𝑑𝑞/𝑑𝑡
= −𝑏 (6) 

𝑏 = 𝐷∞ + 𝐷𝑖𝑡
−(1−�̂�) (7) 

where 𝑑𝑞/𝑑𝑡 is the slope, D∞ is the decline rate over a long-term period, and �̂� is the time exponent. 

By substituting the above equations, the production rate is obtained: 

𝑞(𝑡) = �̂�𝑖𝑒
[−𝐷∞𝑡−�̂�𝑖𝑡�̂�]. (8) 
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In this model, there are four unknown variables: �̂�𝑖 , �̂�𝑖, 𝐷∞ 𝑎𝑛𝑑 �̂�, which result in several degrees 

of freedom and may be clumsy to use or solve [27]. According to Johnson et al. [28], the D∞ parameter 

is difficult to determine. However, there are advantages to this model in that the extra variables 

permit for both transient and boundary flow, and the equation for production rate seems comparable 

to the Arps exponential equation [13]. With the PLE model (Figure 2), which uses a log–log plot (log 

q versus log t) to test the sensitivity of the data, the resulting fit appears to capture the trend in the 

data better, compared to the Arps Hyperbolic Model. This model fits Data 1, 2, 3, and 4 fairly 

accurately. This can be attributed to the PLE model, matching production data in both transient and 

boundary-dominated regions. 

 

Figure 2. Data sensitivity using the Power Law Exponential Model [4,13,14,21]. 

4.3. Stretched Exponential Decline Model (SEDM) 

Valkó, Valkó, and Lee [29,30] applied the SEDM in shale wells, which is an empirical method 

different from Arps equations, as it describes the decline trend of production data obtained from 

unconventional reservoirs. It was developed to fit transient flow regimes [10,25]. The significant 

advantages of the model are the bounded nature of estimated ultimate recovery (EUR) without limits 

on time or rate, and the straight-line behavior of a recovery potential expression [30]. The model 

differs from other models since it does have a basis in physics and is directed by a major differential 

equation [14]. It is used to model aftershock decay rates [31]. The production rate declines with time, 

according to the following equations: 

𝑑𝑞

𝑑𝑡
=  −𝑛 (

𝑡

τ

𝑛

)
𝑞

𝑡
 (9) 

𝑞 = 𝑞𝑖 ex p [− (
𝑡

τ
)

𝑛

] (10) 

Ǫ =
𝑞𝑖

𝑛

𝑛

{ɼ [
1

𝑛
] − ɼ [

1

𝑛
. (

𝑡

τ
)

𝑛

]} (11) 

EUR =
𝑞𝑖

 𝑛

τ
τ [

1

𝑛
]. (12) 

This method defines a characteristic number of periods, τ, and a dimensionless exponent, n, of 

the ratio of time, t. It also uses observed cumulative production along with theoretical cumulative 

production, derived from the integral of the rate-time equation to estimate remaining technically 
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recoverable volumes. Equation (10) appears similar to the PLE model; however, it differs, as it does 

not rely on a single interpretation of parameters. Instead, it uses two-parameter gamma functions 

[29]. In addition, there is no single τ and n parameters, but instead, a sum of multiple exponential 

declines, which follows the fat tail distribution [30]. Stretched Exponential Decline Model (SEDM) 

requires an iterative process to determine the value of the parameter, n. The model can only estimate 

the recoverable volumes with an abandonment rate of zero, as opposed to commercial volumes with 

economic cut-off rates and has not been widely used [32]. However, Can et al. [32] showed that in 

tight formations where transient flow period is extremely long, SEDM has been successful in 

modeling rate-time behavior and provides more realistic reserve estimates compared to Arps decline 

relations. 

Testing the behavior of the SEDM, Figure 3, which is a plot of production rate versus the 

cumulative production (q versus Q) to test the sensitivity of the data, the resulting fit appears to 

capture the trend in the data poorly. The SEDM method fits all cases inaccurately (lower R2 values). 

This is due to the SEDM model’s transient flow rather than boundary-dominated flow and 

requirement for a sufficiently long production time (usually >36 months) to accurately estimate the 

parameters τ and n [33]. 

 

Figure 3. Data sensitivity using the Stretched Exponential Decline Model [4,13,14,21]. 

4.4. The Extended Exponential Model (EEDM) 

Zang et al. [11] presented a renewed experimental method, the EEDM, as a simple formula to 

forecast shale oil and gas well performance. They proposed a mechanism of “growing drainage 

volume” to conceptualize and model the performance of shale wells. This model combines the 

exponential decline equation proposed by Fetkovich et al. [34] Equation (13) with the derived 

empirical Equation (14). The EEDM includes both transient and BDF flow in a single equation, and it 

can match the historical data with a smooth curve throughout the transition period from transient to 

BDF flow regimes. Furthermore, the model is simple and can easily be applied [11]. It is also able to 

project future production by fitting all of the historical production data from the beginning of the 

production decline. 

Paryani et al. [13] stated that the model contains two decline constants and a decline exponent. 

particularly noteworthy, is that the production data fits using a smooth curve through the whole flow 

systems [16]. The advantage of the model is that both early and late production profiles can be 
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captured once 𝛽𝑒 𝑎𝑛𝑑 𝛽𝑙  have been calibrated using the production data [11]. However, as parameter 

𝛽𝑙  has an incomplete influence on the curve fitting, it is therefore fixed. 

𝑞 = 𝑞𝑖𝑒
−𝑎𝑡 (13) 

𝑎 = 𝛽l + 𝛽𝑒  (14) 

where a is the nominal decline rate, βl is the late-life period constant, and βe is the early period 

constant. Combining Equations (13) and (14) and taking the logarithm of each side, the equation 

below (the exponential decline equation) is obtained. 

𝐼𝑛
𝑞
𝑞𝑜

𝑡
= 𝛽𝑙 + 𝛽𝑒𝑒−𝑡𝑛

 (15) 

where qo is the initial production rate in m3/s. Using the EEDM (Figure 4), which is a plot of −𝑙𝑛
𝑞

𝑞𝑜
/𝑡 

versus t to test the sensitivity of the data, the resulting fit appears to also capture the trend in the data 

poorly. The method fits all cases inaccurately (lower R2 values). This type of method is best for 

forecasting short-term trends in the absence of recurring variations. Hence, the EEDM would only be 

accurate when a realistic amount of stability between the past and future is assumed. 

 

Figure 4. Data sensitivity using the Extended Exponential Model [4,13,14,21]. 

4.5. Doung’s Decline Model 

Duong [35] presented an unconventional rate decline method to evaluate the performance of 

shale gas wells that does not depend on fracture types. The model assumes linear or near-linear flow, 

as indicated by a log–log plot of rate over cumulative production versus time, which yielded a 

straight-line tendency [36]. The rate is calculated in the model using the following equation [27]: 

𝑞(𝑡) = 𝑞𝑖𝑡(𝑎, 𝑚) + 𝑞∞ (16) 

where t (a,m) is the time constant in 1/s, and q∞ is the production rate at infinite time in m3/s. The 

cumulative production and time constant is calculated as: 

𝐺𝑝 =
𝑞𝑡(𝑎, 𝑚)

𝑎𝑡−𝑚
 (17) 

𝑡(𝑎, 𝑚) = 𝑡−𝑚exp(
𝑎

1 − 𝑚
(𝑡1−𝑚 − 1)) (18) 
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where Gp is the cumulative gas production in Bcf and m is the slope. 

 

Paryani et al. [13] indicated the key restrictions of the model: if the well is closed for extended 

periods, a proper rate initialization against pressure is required to obtain precise values of parameters 

a and m and, secondly; that in the event of water breakthrough, there is a sudden decrease in the 

decline rate, this causes an increase in the values of the a and m parameters. Vanorsdale [26], similar 

to the case of the PLE model, also indicated that the Duong model will yield a very optimistic 

recovery when the flow regime changes throughout the initial 10 years. He went on to indicate that 

the model may provide a conservative recovery estimate in vertical, non-hydraulic fractured classical 

shale wells [26]. However, Lee et al. [36] indicated that the Duong’s model appears to fit field data 

from various shale plays quite well and provides an effective alternative to the Arps hyperbolic 

model. With the Duong’s model (Figure 5), which uses a log–log linear plot (log q versus log t) to test 

the sensitivity of the data, the resulting fit appears to capture the trend in the data well. The method 

fits Data 1, 2, and 4 fairly accurately. For Case 3, the method fits the data poorly with a lower R2 value 

of 0.8371. The model probably provides a good fit because it was specifically developed for 

unconventional reservoirs with very low permeability. 

 

Figure 5. Data sensitivity using Duong’s Decline Model [4,13,14,21]. 

4.6. Logistic Growth Model (LGM) 

Logistic Growth Models developed belong to a group of mathematical models used to forecast 

growth in numerous applications [36] and were previously used to model population growth [37,38]. 

It was developed to forecast reservoirs with extremely low permeability [27]. LGM is very flexible 

and confident in modelling long transient boundary-dominated performances of unconventional 

reservoirs [16]. The model incorporates known physical volumetric quantities of oil and gas into the 

forecast, to constrain the reserve estimate to a reasonable quantity. LGM is capable of trending 

existing production data and providing reasonable forecasts of future production. The logistic 

growth model does not extrapolate to non-physical values [38]. Tsoularis and Wallace [39] discussed 

a development in this regard by Verhulst [40], who considered that for the population model, a steady 

population would consequently possess a saturation level characteristic, typically called the carrying 

capacity, K, which forms a numerical upper bound on the growth size. In order to include this 

limiting characteristic, they introduced the logistic growth equation as an extension to the 
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exponential model [39]. Zhang et al. [1] adopted this model for SGR with very low permeability and 

developed the LGM as an empirical method to forecast gas production. The LGM can be represented 

as follows: 

𝑞(𝑡) =
𝑑𝑄

𝑑𝑡
=

𝐾𝑛𝑏𝑡𝑛−1

(𝑎 + 𝑡𝑛 )2
 (19) 

where K is the carrying capacity. 

The main benefit of the LGM is that the reserve estimate is inhibited by the parameter K as well 

as the production rate, which terminates at infinite time [1]. The main assumption in this model is 

that the whole reservoir can be drained by a single well over a suitably long period and requires the 

approximation of at least two parameters, or parameters as per the available well information [4,7]. 

Figure 6, a plot of production rate versus time (q versus t), illustrates the sensitivity of the model to 

various estimated field data. As observed from the regression lines for the various data, the resulting 

fit appears to capture the trend in the data well. The LGM fits Data 1 and 2 fairly. However, the 

method matches the other cases poorly, as indicated by the lower R2 values. This could be attributed 

to the data size, which is too small to yield an accurate fit, since the underlying principle of this model 

is population growth, which stipulates that growth is only possible up to a certain size. 

 

 

Figure 6. Data sensitivity using the Logistic Growth Model [4,13,14,21]. 

4.7. Autoregressive Intergrated Moving Average (ARIMA) and Neutral Network Models (NNM) (Hybrid 

Model) 

The accuracy of time series forecasting is challenging for scientists [41]. Time series data often 

comprises linear as well as non-linear components [42]. In some cases, linear-based approaches might 

be more suitable than non-linear ones due to the data characteristics. The hybrid method is a 

combination of ARIMA and the neural network method. According to Faruk [42], hybrid methods 

have a higher degree of accuracy than neural networks. ARIMA can recognize time-series patterns 

well but not non-linear data patterns. On the other hand, neural networks only handle non-linear 

data. Therefore, hybrid models combine the advantages of ARIMA with respect to linear modelling 

and neural networks in terms of non-linear edge modelling [43]. Notwithstanding, in some 

circumstances, the single model approach can outperform hybrid models [41] 

Mathematically, time-series data can be expressed as a combination of linear and non-linear 

components [44]: 
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𝑌𝑡 = 𝐿𝑡 + 𝑁𝑡 (20) 

where Yt shows the time-series data, Lt indicates the linear components, and the non-linear 

components are represented by Nt. 

Mathematically, the neural network model for residual of n input nodes can be expressed as the 

following: 

𝑒𝑡 = 𝑓(𝑒𝑡−1 + 𝑒𝑡−2, … , 𝑒𝑡−𝑛) (21) 

where f is a non-linear function that is specified by the neural network. With regard to the results of 

the prediction error of Nt, the combination forecast using the hybrid method can be expressed as: 

�̂�𝑡 = �̂�𝑡  + �̂�𝑡. (22) 

There has been limited work conducted using this model for shale gas reservoirs. Hence, the 

next step would be to investigate this model for shale gas reservoirs. 

To summarize all eight DCA models for an easy reference of readers, Table 2 lists the name of 

each model, its DCA equation, the characteristic, strength, weakness, and lastly the related references. 
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Table 2. Summary of decline curve analysis (DCA) models. BDF: boundary-dominated flows, SGR: shale gas reservoirs. 

No Model Equation Production Behaviour Strength Weakness Reference 

1 
Arps Hyperbolic 

Decline 
𝑞 =

𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 linear to BDF flow reliable and simple to use 
post-production 

overestimation 
[12–18] 

2 

Modified 

Hyperbolic 

Curve 

𝑞 =
𝑞𝑖

(1 + 𝑛𝐷𝑖𝑡)1/𝑛 
  (𝐷

> 𝐷𝑙𝑖𝑚) 
𝑞 = 𝑞𝑖  𝑒𝑥𝑝(−𝐷𝑙𝑖𝑚𝑡)  (𝐷

≤ 𝐷𝑙𝑖𝑚) 

transient and BDF flow 
addresses the overestimation 

limitation of EUR 

still unable to determine 

𝐷𝑙𝑖𝑚 for production data 
[15,19] 

3 

Power Law 

Exponential 

Decline 
𝑞(𝑡) = �̂�𝑖𝑒[−𝐷∞𝑡−�̂�𝑖𝑡�̂�] transient and BDF flow developed precisely for SGR 

four unknown variables to 

solve 
[13,16,20,23–27] 

4 

Stretched 

Exponential 

Decline 

𝑞 = 𝑞𝑖 𝑒𝑥 𝑝 [− (
𝑡

𝜏
)

𝑛

] transient flow 

bounded nature of EUR and 

straight-line behaviour of recovery 

potential expression 

requires sufficiently long 

production times 
[10,14,26,28–32] 

5 

The Extended 

Exponential 

Model 

In
𝑞
𝑞𝑜

𝑡
= 𝛽l + 𝛽𝑒𝑒−𝑡𝑛

 transient and BDF flow 
both early and late production 

profiles can be captured 

parameter 𝛽𝑙 has an incomplete 

influence on the curve fitting 

and is therefore fixed 

[11,13,16,33] 

6 Duong’s Decline 

𝑡(𝑎, 𝑚)

= 𝑡−𝑚𝑒𝑥𝑝(
𝑎

1 − 𝑚
(𝑡1−𝑚

− 1)) 

linear or near-linear flow 
appears to fit field data from 

various shale plays  

extended periods, a proper rate 

initialization against pressure 

is required, and 

in the event of water 

breakthrough, a and m 

increases 

[13,20,27,34,35] 

7 Logistic Growth 𝑞(𝑡) =
𝑑𝑄

𝑑𝑡
=

𝐾𝑛𝑏𝑡𝑛−1

(𝑎 + 𝑡𝑛 )2 
long transient boundary-

dominated 

reserve estimate is inhibited by K 

as well as the production rate, 

which terminates at infinite time 

growth is only possible up to a 

certain size 
[1,16,20,35–39] 

8 Hybrid Model ∅ (𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡 linear and non-linear high degree of accuracy 
approach can be found to not 

be fit all types of data 
[40–43] 
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5. Accuracy of Current Decline Curve Models with Field Data 

Yuhu et al. [15] discussed comparisons of EURs with five types of decline models from single-well 

production data. They explained that according to the prediction results, the highest predicted EUR 

was gained by the hyperbolic decline model, followed by the Modified Hyperbolic Model (MHD), 

Duong’s Model, PLE and, lastly, the EDM. Hu et al. [27] conferred production data for wells with a 

production time greater than 10 years. Therefore, the PLE decline model was recommended for 

multiple flows. It was also pointed out that the hyperbolic decline model predicted higher estimates of 

reserves than the PLE decline model. Another study that they reviewed recommended the MHD rather 

than the PLE decline model, which in their view was complicated. 

It is noted that the differences in EURs with different decline models decrease with an increase in 

production time [45]. On the other hand, prediction consistency increases with an increase in 

production time. Based on this distinctive production data, the order of predicted EURs from high to 

low was through the hyperbolic decline model, the MHD, the PLE decline model, and the EDM 

respectively [45]. The predicted EURs decreased with an increase of production time for the hyperbolic 

decline and the modified hyperbolic decline model. The predicted EURs increase with an increase of 

production time for the PLE decline and the EDM model [45]. Currently, the applicability of these 

different decline models is uncertain. The general trend found in Yuhu et al’s paper was that the 

hyperbolic decline model overestimates the production and that the other decline models will still have 

to be investigated for reliability and accuracy [45]. 

Guo et al. [46] investigated shale gas wells in the Barnett shale play, where they found that from 

the results of goodness of fit, the hyperbolic curve fits well for both the aggregate and individual shale 

gas wells. On the other hand, Kenomore et al. [47] in their production decline study of the Barnett shale 

found that either the Arps hyperbolic or Duong’s model can be used only if the historical data exceeds 

10 months. They used root mean square error (RMSE) analysis and the results indicated that the Arps 

hyperbolic model showed better forecasting compared to the Duong’s model for the top three longest 

production histories. Zhang et al. [1] concurred with the findings of the Duong’s model, noting that it 

is more accurate for linear flow and bilinear flow; however, if the production history is shorter than 18 

months, this model provides unreliable results for EUR. In most circumstances, the Duong’s model 

overestimates the total EUR. Harris [48], in his research study of the Elm Coulee field production data, 

found that the Duong method produces the most optimistic forecasts followed by the Arps model with 

5% minimum decline, and then the SEPD model. Shah [49] in his research developed new methods of 

combining the SEPD and Arps hyperbolic equation, the Duong’s with the Arps hyperbolic equation, 

and the Arps super hyperbolic combined with the Arps hyperbolic decline equation. He found that the 

SEPD and Arps hyperbolic equation gave the most conservative results of all the methods in the study, 

even if there was insufficient data available. This equation can also work without enough boundary-

dominated flow (BDF) data being available. 

Hu et al. [27] studied DCA techniques for the Eagle Ford and Austin Chalk reservoirs. They found 

that in the case of the Eagle Ford reservoir, the MHD and the Duong’s model provided the highest EUR 

estimations and the two lowest matching errors, while the PLE decline model with 𝐷∞ ≠ 0 produced 

the lowest EUR estimates with the highest matching errors in all cases. In another study, according to 

the results of goodness of fit (R2 and N-RMSE), the hyperbolic model fits well with aggregated well 

data and with individual wells [1]. Furthermore, Hu et al. [27] explained that the LGM and PLE model 

with 𝐷∞ = 0 gave production projections that were neither too positive nor too traditional with modest 

matching errors. Therefore, they recommend both the MHD and Duong’s model for this reservoir. 

However, Zhang et al. [11] developed the EEDM and verified their model using field data from Eagle 

Ford. They found this model to be more rigorous in that it included the effects of interference among 

adjacent fractures, variable permeability, and discontinuous pressure distribution, which are difficult 

to capture and model with other DCA methods [11]. In the case of the Austin Chalk reservoirs, all DCA 

methods resulted in fairly similar EUR forecasts and matching errors; hence, any method can be used 

[27]. Figure 7, which uses estimated production data versus time values, indicates that using the R2 
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values as a goodness of fit to determine the accuracy of the different decline models, the SEDM, 

followed by the LGM, EEDM, PLE, Duong’s decline model and, lastly, the hyperbolic decline model 

would predict the EUR accurately. 
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Figure 7. Estimated production data to determine goodness of fit for accuracy of the different decline 

models (a) Duong’s Model vs EEDM; (b) LGM vs Arps Hyperbolic Model and (c) SEDM vs PLE [4]. 

During their case study analysis, Paryani et al. [13] found that the LGM, PLE, and Duong’s models 

overcame Arps limitations to a certain degree. The PLE model always predicted the lowest forecasts of 

all the models, with the most conservative production forecasting and reserve estimation. Duong’s 

model performed the best for longer when less noisy production data was available; however, erratic 

EUR was observed, which indicates that this model requires further improvements [13]. The LGM gave 

reasonable EUR estimates when compared to the Arps model. There was an 81% fit of the wells’ past 

production rate and cumulative production. The LGM also appears most effective at historically 

matching past production and predicting finite reasonable EUR. However, Tan et al. [4] found that due 

to the constraints of K and the vanishing production rate at infinity time, the LGM provides a finite 

estimate of EUR. They also determined by using normalized and logarithmic rate-time residuals that 

the limitations of the Arps model are overcome and accuracy improves in cases of unconventional 

reservoirs. 

6. Conclusions 

Shale gas reservoirs have become an essential source for providing natural gas globally and the 

process of hydraulic fracking has been used in the extraction of shale gas. During the fracking process, 

there are different flow regimes, which occur during the life cycle of SGRs; these being fracture linear 

flow, fracture boundary flow, matrix linear flow, and matrix boundary flow. They are significant 

because they impact both the production and decline behavior of SGRs. 

Based on previous studies, it was found that the Arps hyperbolic decline, the MHD and Duong’s 

models provided the best fit with production data. However, contrary to the reviewed studies when 

estimated production data was used in the evaluation process for the basis of this paper, using the 

goodness-of-fit technique, the PLE and Duong’s decline models aligned best with the production data, 

compared to the other models. 

It is evident from the accuracy assessment that decline curve modelling impacts the EUR of SGRs, 

and it was observed that all decline models yield a different EUR result, which is either over or under-

estimated. Studies have revealed that the production time significantly impacts the EUR, depending on 

which decline model is being used. When each model was assessed for accuracy, once again using the 

goodness-of-fit technique, the results indicated that the SEDM, followed by the LGM, EEDM, PLE, 

Duong’s decline model and, lastly, the hyperbolic decline model aligns with the production data. 

It is evident from the decline curve evaluation that there are advantages in using the current DCA 

models; however, they also have limitations associated with them, which have to be addressed. 

Therefore, the next step will be to evaluate the use of the hybrid model in evaluating the decline of SGR. 
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Production Decline Prediction of Shale Gas using Hybrid 

Models 

 
P. Manda and D.B. Nkazi 

Abstract 

Hybrid models have frequently been used for shale gas production decline prediction by 

manipulating the unique strength of each of the known decline models. The use of a 

combination of models provides a more precise predicting model for forecasting time series 

data as compared to an individual model. In this study, the forecasting performance of decline 

curve hybrid models and ANN-ARIMA hybrid models are evaluated and compared with Arps’, 

Duong’s, the Power Law Exponential Decline, Autoregressive Integrated Moving Average 

(ARIMA) and Artificial Neutral Network (ANN) models, respectively. The variable used to 

assess the models was the respective flow rate, q(t) monitored over a period of time (T). The 

results have shown that the single model approach can outperform hybrid models. The average 

deviation of the two best models indicates a central tendency of the production data around the 

mean. Subsequently, the spread in the data between the actual and predicted values is found to 

be less. It can thus be concluded that the ARIMA and ANN models have the best forecasting 

accuracy for production decline in shale gas compared to the other models. 

Keywords  

Shale gas decline forecasting, Arps’ decline model, Duong’s decline model, PLE decline 

model; ARIMA, ANN and hybrid models 

1. Introduction 

 

Rate-time decline curve extrapolation is one of the oldest and most commonly used tools by a 

petroleum engineer. Results obtained for a well are subject to a wide range of alternate 

interpretations, mostly as a function of the experience and objectives of the evaluator. Recent 

efforts in the area of decline curve analysis (DCA) have been directed towards a purely 

computerised statistical approach, its basic objective being to arrive at a unique “unbiased” 

interpretation [1]. In the past few decades, several DCA models have been proposed and 

benchmarked with commercial reservoir simulators or shale gas production data before being 

applied to more shale gas reservoirs (SGRs) [2]. 



 

200 
 

 

Numerous studies have highlighted the importance of DCA models, however, there are 

limitations with these models. Analysis conducted using these techniques for the prediction 

and estimation of reservoirs in shale well production have highlighted shortcomings in the 

models [3]. These shortcomings include underestimation, finite and overestimation of the 

estimated ultimate recovery (EUR) of reserves. Taking these facts into consideration, the scope 

exists for developing improved models which address these shortcomings. 

1.1 Production Decline Models 
 

The Arps decline model is inaccurate within the transient flow regime (TFR) and the Duong 

model is inaccurate within the boundary dominated flow (BDF). Although the Power Law 

Exponential (PLE) model incorporates both these flow regimes and was specifically developed 

for SGRs, the model has its own shortcomings. Hence, the scope to develop a new decline 

model or a new method to predict more accurately the recovery of SGRs. Accordingly, the 

approach would be to combine the above-mentioned methods i.e. to evaluate the hybrid decline 

curve models. As the PLE and Duong’s models model the transient flow well and because the 

Arps model is widely used for BDF, the new approach combines the methods to achieve the 

objectives and eliminate the shortcomings of the stand-alone models. In this paper, the 

combination of different models, or hybrid models as they are commonly known, will be 

investigated. 

Hybrid models have frequently been used for prediction by manipulating the unique strength 

of each of the models [4]. The use of a combination of models provides a more precise 

predicting model for forecasting time series data as compared to an individual model [5]. The 

results from studies have indicated that hybrid models have higher prediction accuracy for one-

step and multi-step forward forecasts and various hybrid models have been used for obtaining 

accurate prediction [5; 6].  

The evaluation of the forecasting performance of decline curve hybrid models and ARIMA-

ANN hybrid models is essential, and these models should be compared with Arps’, Duong’s, 

the Power Law Exponential Decline, Autoregressive Integrated Moving Average (ARIMA) 

and Artificial Neutral Network (ANN) models for accurate prediction of production decline in 

shale gas.  
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1.2 Hybrid Models and ANN-ARIMA Hybrid Models 
 

In the literature, hybrid methods are considered to yield better results [7]. The accuracy of time 

series forecasting is challenging for scientists [7]. Time series data often comprise linear as 

well as non-linear components [8]. In some cases, linear-based approaches might be more 

suitable than non-linear approaches due to the data characteristics. The use of hybrid models, 

which combine DCA models, is a new approach and there is minimal literature covering this 

aspect. However, as mentioned, the known approach to the hybrid method is a combination of 

the ARIMA and ANN method.  

According to Faruk [8], hybrid methods have a higher degree of accuracy than neural networks. 

ARIMA is able to recognise time-series patterns well except non-linear data patterns. On the 

other hand, neural networks only handle non-linear data. Therefore, hybrid models combine 

the advantages of ARIMA with respect to linear modelling and neural networks in terms of 

non-linear edge modelling [9]. Ayub and Jafri (2020) [10] in their paper highlighted that the 

combined model has improved forecasting accuracy as compared to when the models are used 

individually. Notwithstanding this, in some circumstances the single model approach can 

outperform hybrid models [8]. Babu et al. (2014) [5] explored ARIMA and ANN as a new 

hybrid model for better prediction of time series. Their results preferred the use of the hybrid 

model compared to the individual ARIMA and ANN models.  

The ARIMA processes follow a stochastic behaviour used to analyse time series [11] and is 

mostly used to predict demand. The application of the ARIMA methodology for the study of 

time series analysis was developed by Box and Jenkins [11]. The Box–Jenkins methodology 

includes three iterative steps of model identification, parameter estimation and diagnostic 

checking [12]. This three-step model building process is typically repeated several times until 

a satisfactory model is finally selected and can then be used for prediction purposes [12]. In an 

ARIMA model, the future value of a variable is assumed to be a linear function of several past 

observations and random errors [11]. During the past decades, researchers have been focusing 

more on linear models due to their simplicity in comprehension and application (Fattah et al. 

2018). A disadvantage of the classical ARIMA methodology is that it requires a large number 

of observations to determine the best fit model for a data series [13]. 

The ANN model, on the other hand, has found increasing consideration in forecasting theory, 

leading to successful applications in various forecasting domains including economics, 
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business, financial and many more [14]. One advantage of neural networks compared to other 

non-linear models is their universal model, which is capable of predicting fairly extensive 

functions with a high degree of accuracy. No assumptions are required for neural networks, 

thus neural networks conform to the characteristics of the data [15]. However, there are 

disadvantages associated with this model such as constructing the forecasting model, the 

selection of the network architecture and the data pre-processing techniques which apply to the 

time series data [16;17].  

This investigation uses different hybrid models in forecasting production decline and 

evaluating the hybrid models for improved forecasting accuracy of time series by using the 

unique strengths of the models. The experimental results used are based on the study of shale 

gas production data obtained from a previous study done by Paryani et al. [3]. 

2. Methodology 

 
 

2.1 Collection of Data 

The variable used in this investigation is flow rate, q(t) in STB/day, monitored over a period 

of time (T) in days. The estimated data was extracted from the research conducted by Paryani 

et al. (2018), who obtained the data from the Cannon Well located in Karnes County evaluated 

over a two-year period. Kappa Citrine and JMP software are used for simulation of the DCA, 

hybrid DCA, ARIMA, ANN and ANN-ARIMA hybrid models respectively.  

Collection of 
Data

and 
Production 
variables

Decline 
Models 

Assumptions

Models’ 
Assessment
(Production 
and Hybrid 

Models)

Model 
Accuracy 
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2.2 Production Behaviour 

2.2.1. Arps’ Decline Curve Model 
 

Arps’ decline curve analysis is the most commonly used method of estimating ultimate 

recoverable reserves and future performance [18]. Paryani et al. [3] attribute this to reliable 

history match (even with b > 1) and its simplicity. The model process is based on the following 

vital assumptions: that past operating conditions will remain unaffected; that a well is produced at 

or near capacity; and that the well’s drainage remains constant and is produced at a constant bottom-

hole pressure [19]. Notably, the Arps model is only applicable in pseudo-steady flows when the 

flow regime transfers from linear flows to boundary-dominated flows (BDF) [20]. This indicates 

that the Arps equations are not applicable to the production forecasting of the entire decline process 

of horizontal wells in low-permeability reservoirs [21]. The most commonly employed 

hyperbolic form of Arps’ decline equation [1] is used for shale reservoirs. The hyperbolic 

decline equation is suitable to use due to the “best fit” that it provides for the long transient 

linear-flow regime observed in shale gas wells with b values greater than unity [22]. 

𝑞 =
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 (1) 

where q is the flow rate in STB/day or Mscf/day, qi is the initial flow rate in STB/day or 

Mscf/day, Di is the initial decline constant, which is measured in days-1, and b is the decline 

exponent.  

Table 1: Summary of the Arps model behaviour, assumptions, condition and parameters 

Production 

Behaviour 

Assumptions Condition Parameters 

Boundary 

Dominated Flow 

(BDF) 

Decline parameter, b, 

defines the decline 

behaviour 

0 < b <1 b = 1.10 

Di = 0.12 

 

2.2.2. Duong’s Decline Curve Model 
 

Duong [23] presented an unconventional rate decline method to evaluate the performance of 

shale gas wells that does not depend on the fracture types. The model assumes linear or near-

linear flow, as indicated by a log–log plot of rate over cumulative production versus time, 
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which yielded a straight-line tendency [24]. The rate is calculated in the model using the 

following equation [2]: 

𝑞(𝑡) = 𝑞𝑖𝑡(𝑎, 𝑚) + 𝑞∞ (2) 

where t (a,m) is the time constant in 1/s, and q∞ is the production rate at infinite time in m3/s.  

 

Table 2: Summary of the Duong model’s behaviour, assumptions, condition and parameters 

Production 

Behaviour 

Assumptions Condition Parameters 

Transient Flow 

Regime (TFR) 

Very low permeability 

and long periods of 

transient flow 

b > 1 qi = 361.24 

a = 1.07 

m = 1.10 

 

2.2.3. Power Law Exponential Decline Model (PLE) 
 

Ilk et al. [25] presented the PLE, which is an extension of the exponential Arps formula for the 

decline degree in shale reservoirs. This model was developed precisely for SGR and 

approximates the rate of decline with a power law decline. The PLE model matches production 

data in both the transient and boundary-dominated regions without being hypersensitive to 

remaining reserve estimates [26]. Seshadri and Mattar [27] presented that the PLE model can 

model transient radial and linear flows, while Kanfar and Wattenbarger [28] proved that the 

model is reliable for linear flow, bilinear flow followed by linear flow, and linear flow followed 

by BDF, or bilinear flow followed by linear flow and finished with BDF flow. Vanorsdale [29] 

deduced that when the flow regime changes throughout the initial 10 years of the well, the PLE 

model will yield a very optimistic recovery. The model characterises the decline rate by infinite 

time, D∞ which is defined as a “loss ratio” (which is assumed to be constant from Arp) [30]. 

The production rate is derived as follows: 

𝑞

  𝑑𝑞/𝑑𝑡
= −𝑏 (3) 

𝑏 = 𝐷∞ + 𝐷𝑖𝑡
−(1−�̂�) (4) 

where 𝑑𝑞/𝑑𝑡 is the slope, D∞ is the decline rate over a long-term period, and �̂� is the time 

exponent. By substituting the above equations, the production rate is obtained: 

𝑞(𝑡) = �̂�𝑖𝑒
[−𝐷∞𝑡−�̂�𝑖𝑡�̂�]. (5) 
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Table 3: Summary of the PLE model behaviour, assumptions, condition and parameters. 

Production 

Behaviour 

Assumptions Condition Parameters 

BDF and TFR Approximates the rate of 

decline with a power law 

decline 

b changes with time n = 0.182 

Di = 0.268 

 

 

2.2.4. The Arps’-Duong’s-Power Law Models Hybrid Model 
 

The first proposed method incorporates the three DCA models, namely Arps’, Duong’s and 

PLE models. The Arps model only considers BDF while Duong’s and PLE models consider 

TFR. The PLE model also considers BDF and has been specifically developed for SGRs. 

Hence, by combining the three models the limitations from each is presumed to be minimised 

or eliminated. The equation is given as: 

 

                                                      
𝑞𝑡

𝑞𝑖
= 𝑡 (−𝐷∞ − 𝐷𝑖�̂�) − 𝐼𝑛

𝑏+1

𝑏
                                                 (6) 

where qt is the flow rate in STB/day or Mscf/day, qi is the initial flow rate in STB/day or 

Mscf/day, t is the time in days, D∞ the decline rate over a long-term period, while Di is the 

initial decline constant, which are both measured in days − 1, �̂� is the time exponent and b is the 

decline exponent. 

Table 4: Summary of the Arps-Duong-Power Law hybrid model behaviour, assumptions, 

condition and parameters. 

Production 

Behaviour 

Assumptions Condition Parameters 

BDF and TFR Approximates the rate of 

decline with an 

exponential decline 

0 > b >1 n = 0.182 

Di = 0.194 

b = 1.10 

 

2.2.5. The Arps-Duong Hybrid Model 
 

The second proposed model incorporates the two developed DCA models. Arps’ model only 

considers BDF while Duong’s considers TFR, hence both these flow regimes will be taken into 

account when combining these two models. The equation is given as: 

                                                                𝑞𝑡 = [
𝑞𝑡

𝑡
][1 + 𝑏𝐷𝑖]

−𝑏
1
                                             (7) 
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where qt is the flow rate in STB/day or Mscf/day, t is the time in days, Di is the initial decline 

constant, which is measured in days – 1 and b is the decline exponent.  

Table 5: Summary of the Arps-Duong hybrid model behaviour, assumptions, condition and 

parameters. 

Production 

Behaviour 

Assumptions Condition Parameters 

BDF and TFR Approximates the rate of 

decline with a 

mechanistic growth 

decline 

0 > b >1 Di = 0.194 

b = 1.10 

 

 

2.2.6. The Arps-Power Law Exponential Hybrid Model 
 

The third proposed model incorporates the Arps and PLE models. These models consider BDF 

and TFR flows. Since the PLE model was developed specifically for SGRs, it would be 

advantageous to evaluate these two models combined due to both being simple equations to 

use. The equation is given as: 

                                                        𝑡[−𝐷∞ − 𝐷𝑖�̂�] =
−

1

𝑏

𝑞𝑡
𝐼𝑛(1 + 𝑏𝐷𝑖)                                   (8) 

where qt is the flow rate in STB/day or Mscf/day, t is the time in days, D∞ the decline rate over 

a long-term period and Di the initial decline constant, which are both measured in days− 1, �̂� is 

the time exponent and b is the decline exponent.  

Table 6: Summary of the Arps-Power Law Exponential hybrid model behaviour, assumptions, 

condition and parameters. 

Production 

Behaviour 

Assumptions Condition Parameters 

BDF and TFR Approximates the rate of 

decline with a logistic 

decline 

0 > b >1 n = 0.182 

Di = 0.194 

b = 1.10 

 

2.2.7. The Duong-Power Law Exponential Hybrid Models 
 

The fourth proposed model incorporates the Duong and PLE models. These models both 

consider TFR. The equation is given as: 
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𝐼𝑛 𝑞𝑡

𝑞𝑚
=  𝑡 [−𝐷∞ − 𝐷𝑖�̂�]                                              (9) 

where qt is the flow rate in STB/day or Mscf/day, t is the time in days, D∞ the decline rate over 

a long-term period and Di the initial decline constant, which are both measured in days-1 and 

�̂� is the time exponent. qm is the flow rate at slope m in m3/s. 

Table 7: Summary of the Duong-Power Law Exponential hybrid model behaviour, 

assumptions, condition and parameters. 

Production 

Behaviour 

Assumptions Condition Parameters 

BDF and TFR Approximates the rate of 

decline with a 

mechanistic growth 

decline 

0 > b >1 n = 0.182 

Di = 0.194 

qm = 7.12 

 

2.2.8. Autoregressive integrated Moving Average (ARIMA) Model 
 

As mentioned earlier in the paper, the ARIMA processes follow a stochastic behaviour used to 

analyse time series [11] and are mostly used to predict production demand. The model is 

labelled as an ARIMA model (p, d, q), where: - 

4. p is the number of autoregressive terms;  

5. d is the number of differences; and  

6. q is the number of moving averages. 

According to Ayub and Jafri (2020) [10], the best ARIMA model is determined according to 

criteria as follows: 

 Relatively small BIC 

 Maximum adjusted R2 

 

2.2.8.1. The Autoregressive Process 
 

This process assumes that 𝑌𝑡 is a linear function of the preceding values and is given by 

equation (5). 

                                                                  𝑌𝑡 =∝1 𝑌𝑡−1 + 𝜀𝑡                                                  (10) 
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Generally, each observation consists of a random component i.e. a random shock, ε and a linear 

combination of the previous observations. ∝1 in the equation is the self-regression coefficient.  

2.2.8.2. The Integrated Process 
 

The integrated process is the archetype of non-stationary series. A differentiation of order 1 

assumes that the difference between two successive values of Y is constant. An integrated 

process is defined by equation (6). 

                                                                  𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡                                                       (11) 

where the random perturbation 𝜀𝑡 is a white noise.  

2.2.8.3. The Moving Average Process  
 

The moving average process is a linear combination of the current disturbance with one or 

more previous perturbations. The moving average order indicates the number of previous 

periods embedded in the current value. Thus, a moving average is defined by equation (7). 

 

                                                                  𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1                                                   (12) 

 

In order to evaluate the best fit for the ARIMA model, a number of scenarios were evaluated 

and the ARIMA scenario (2,1,2) was selected to give the best forecast values, due to having 

the lowest MSE of 4.82, a low BIC of 168,23 and highest adjusted R2 of 0,979. Table 2 

indicates the best results for the ARIMA model, which are highlighted in bold.  

Table 2: Statistical results for the different p,d,q for the ARIMA model 

ARIMA BIC MSE Adjusted R2 

(0,0,0) 8,63 46.91 0.000 

(1,1,1) 6,19 5.86 0.974 

(1,2,1) 9.42 5.84 0.958 

(1,3,1) 6,69 6.35 0.899 

(2,1,1) 8,25 5.08 0.974 
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(2,1,2) 8,23 4.82 0.979 

 

 
2.9. Artificial Neutral Network (ANN) Model  
 

The model consists of three interconnected layers: the input layer, the hidden layer, and the 

output layer. The basic unit of any ANN is the neuron or node (processor). Each node is able 

to sum many inputs x1, x2,..., x3 whether these inputs are from a database or from other nodes, 

with each input modified by an adjustable connection weight [14]. The relationship that occurs 

in the output and input layers follows equation (8).  

                  𝑌𝑡 = ∝0+ ∑ ∝𝑗
𝑞
𝑗−1 𝑔 (𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡

𝑝
𝐼=1 − 𝑖) +  𝜀𝑡                                       (13) 

where ∝𝑗 (j = 1,2,3, ..., q) and 𝛽𝑖𝑗 (i = 1,2,3, ..., p; j = 1,2,3, ..., q) are the parameters of the 

model (often called the weights), p is the number of input points (input nodes), and q is the 

number of hidden nodes. The activation function used in the hidden layer is the logistic sigmoid 

function and the linear function is the output layer.  

To choose the best algorithm for the model, the number of hidden nodes and layers are changed. 

The accuracy can also be increased by increasing the number of nodes and layers [31]. In the 

case of this study, a univariate input layer and four nodes as shown in Figure 1 gave the best 

model. 

 

Figure 1: Univariate Artificial Neutral Network obtained from JMP 
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2.10. ANN-ARIMA Hybrid Model 
 

Zhang investigated the concept of the hybrid ANN-ARIMA model to obtain precise results as 

compared to using both models separately [12]. Numerous techniques, which explored the 

hybrid approach have been used for many years to take advantage of the unique strengths of 

each of the various types of models. The objective of merging the models is due to the notion 

that a single model is able to define all the specifics of time series [32]. Mathematically, time-

series data can be expressed as a combination of linear and non-linear components [15]: 

𝑌𝑡 = 𝐿𝑡 + 𝑁𝑡 (14) 

 

where Yt shows the time-series data, Lt indicates the linear components, and the non-linear 

components are represented by Nt. 

 

Mathematically, the neural network model for residual of n input nodes can be expressed as 

follows: 

 

𝑒𝑡 = 𝑓(𝑒𝑡−1 + 𝑒𝑡−2, … , 𝑒𝑡−𝑛) (15) 

 

where f is a non-linear function that is specified by the neural network. With regard to the 

results of the prediction error of Nt, the combination forecast using the hybrid method can be 

expressed as: 

�̂�𝑡 = �̂�𝑡  + �̂�𝑡. (16) 

Nt  is obtained from the predicted values of the ANN model while �̂�𝑡 is the forecasted value 

from ARIMA based on the residual values. 

3. Results and Discussion 

Kappa Citrine and JMP software were used for the simulation of the models. The experimental 

results obtained are explained below. 
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3.1. Results for the Arps Model  

Kappa Citrine software was initially used for determining the parameters for the Arps model. 

The b and Di values were found to be 1.10 and 0.12 respectively. Subsequently, JMP software 

was used to construct the prediction model. The second step was to graph a semi-log plot (log 

q vs. t) to determine the model forecasting equation and parameters. The forecasting equation 

is given as follows: 

𝑦 =  
𝑐

1 + 𝑒(−𝑎𝑥2−𝑏)
 (17) 

 

where c is the asymptote, a the growth rate while b is the inflection point. The actual and 

forecasted flow rate values are shown graphically in Figure 2.  

 

Figure 2: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the Arps model 

 

The results for the model appear in some instances to over- and in other instances to 

underestimate the data. The results concur with literature, which suggests that the weakness of 

the Arps model is overestimation of results. Tan et al. (2018) [32] in their study highlighted 

that although the Arps model is simple and fast, it often fails to accurately fit the decline curve 

of unconventional reservoirs. They further explained that the model often tends to overestimate 

the EUR for shale gas wells because it assumes that a BDF regime is evident. Paryani et al. 
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(2018) [3] concurred with these findings, explaining that the drainage area is not constant 

because the pressure pulse continues to spread from the fracture to other areas of the reservoir 

volume. Under these conditions, the b value predicted by the Arps model for the actual 

production data will be greater than 1 as in this case b = 1.10. This in turn leads to inaccurate 

estimates of reserves. 

3.2. Results for the Duong Model  

The parameters for the Duong model were qi = 361.2, a = 1.07 and m = 1.10 respectively. In 

this instance a log–log linear plot (log q vs. log t) was used. The forecasting equation is given 

as: 

𝑦 =  𝑏𝑥 + 𝑐 (18) 

 

where b is the slope and c is the intercept. The actual and forecasted flow rate values can be 

seen in Figure 3. 

 

 

Figure 3: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using Duong’s model 

 

The results for the Duong model indicate an overall underestimate of the data. Meyet et al. 

(2013) [33] mentioned in their work that the Duong model tends to provide the most 
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conservative results. This could also be attributed to the fact that the Duong model tends to be 

more accurate for linear flows and bilinear–linear flows [28]. Paryani et al. (2018) [3] in their 

work found that the well fitted with 51% of the historical production data, and that the Duong 

model fits better with longer and less noisy historical production data. 

 

3.3. Results for the Power Law Exponential (PLE) Model  

 

The parameters used in the model for n and Di are 0.182 and 0.268 respectively. A log–log plot 

(log q vs. log t) was used in the model forecasting. The forecasting equation is given as: 

𝑦 =  𝑎 + 𝑏𝑒𝑐𝑥 (19) 

where a is the asymptote, b is the scale and c is the growth rate. The actual and forecasted 

values can be seen in Figure 4.  

 

Figure 4: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the PLE model 

 

The results for the PLE model appear to underestimate the data although the PLE considers 

BDF and TFR, which is an advantage of the model. Furthermore, the model was specifically 

developed for SGRs, hence it was assumed that the results would be better. This is comparative 

to the findings by Paryani et al. (2018) [3], as based on their results the PLE consistently gave 

the lowest forecasts for all the models. It is therefore the most conservative method for 
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production forecasting and reserves estimation. Seshadri and Mattar (2010) [27] concluded that 

for tight gas wells, the PLE model is complex and non-intuitive. The power law model can 

result in a non-unique solution due to four degrees of freedom resulting from the four unknown 

parameters [34]. 

3.4. Result for the Arps-Duong-PLE Hybrid Model 

A plot of  
𝑞𝑡

𝑞𝑖
 vs. t was used in the model forecasting. The parameter qi used was 361.2 which 

was noted earlier in Duong’s model. The forecasting equation is given as: 

𝑦 =  𝑎 + 𝑏𝑒𝑐𝑥 (20) 

where a is the asymptote, b is the scale and c is the growth rate. The actual and forecasted 

values are graphically represented in Figure 5.  

 

 
 

Figure 5: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the Arps-Duong-PLE hybrid model 

 

Based on the results, the model appears to over- and underestimate the data. However, the gap 

between the actual and predicted results is minimised. This could be attributed to both BDF 

and TFR being considered. In addition, the conservative approach of Duong’s and the PLE 
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models along with the inaccurate fitting of the Arps decline curve of unconventional reservoirs 

could be a contributing factor. 

 

3.5. Result for the Arps-Duong Hybrid Model 

A plot of  
𝑞𝑡

𝑡
 vs. t was used in the model forecasting. The forecasting equation is given as: 

𝑦 =  𝑎(1 − 𝑒−𝑐𝑥) (21) 

where a is the asymptote, b is the scale and c is the growth rate. The actual and forecasted 

values can be seen in Figure 6.  

 

 
 

Figure 6: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the Arps-Duong hybrid model 

 

The predicted results for the model appear to be severely overestimated from the actual results 

in the latter stage of production. This would be the result of combining the drawbacks of the 

two models, which causes the elevated results observed. In line with this, firstly, most shale 

gas wells rarely reach the boundary-dominated flow regime, hence the Arps model cannot be 

applied directly to SGRs without significant modifications [32]. Secondly, in the findings of 

Paryani et al. (2018) [3], extremely high reserves estimates were occasionally observed with 

the Duong model. The results of Hu et al. (2018) [35] concurred with these results, for the 
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Austin Chalk wells, whereby the Duong model gave the highest weighted residual of 

production rate. 

3.6. Result for the Arps-Power Law Exponential Hybrid Model 

A plot of  

1

𝑏

𝑞𝑡
 vs. t was used in the model forecasting. The forecasting equation is given as: 

𝑦 =  
𝑐

1 + 𝑒(−𝑎𝑥−𝑏)
 (22) 

where c is the asymptote, b is the inflection point and a is the growth rate. The actual and 

forecasted values can be seen in Figure 7.  

 

 

Figure 7: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the Arps-PLE hybrid model 

 

The results from the model initially appear to over- and underestimate the data prediction; 

however, the results tend to move closer to the actual values over time. This would be attributed 

to the reliability in the Arps model and the fact that the PLE model was developed precisely 

for SGR. Moreover, both flow regimes are considered and since most shale gas wells rarely 

reach the boundary-dominated flow regime, the results appear to move closer to the actuals 

when reaching the TFR. Hence, by combining the models the overestimation of the predicted 

results is minimised over time. 
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3.7. The Duong-PLE Hybrid Model 

A plot of  
𝐼𝑛 𝑞𝑡

𝑞𝑚
 vs. t was used in the model forecasting. The forecasting equation is given as: 

𝑦 =  𝑎(1 − 𝑏𝑒−𝑐𝑥) (23) 

where a is the asymptote, b is the scale and c is the growth rate. The actual and forecasted 

values can be seen in Figure 8.  

 

Figure 8: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the Duong-PLE hybrid model 

 

The trend of the results indicate an over- and underestimation. As mentioned by Vanorsdale 

[36], the PLE and Duong’s model will yield an optimistic recovery when the flow regime 

changes. This trend is clearly evident in the results when combining the models. 

3.8. Result for the ARIMA Model 

As mentioned earlier under the Research Methodology section, the best fit for the ARIMA 

model was a (2,1,2), which gave the best forecast values due to having the lowest MSE of 4.82, 

a low BIC of 8.23 and highest adjusted R2 of 0,979. The best model is reflected as follows: 

 

                                                   𝑌𝑡 = 𝜃2𝑌𝑡−2 + 𝜑1𝜀𝑡−1 + 𝜑2𝜀𝑡−2 + 𝜀𝑡                                                    (24) 
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The actual and forecasted values can be seen in Figure 9.  

 

Figure 9: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the ARIMA model 

 

The predicted results from the model appear to follow a close trend to the actual values. 

Raymond (2007) [37] suggested that ARIMA models have proved to be excellent short-term 

forecasting models for a wide variety of time series because short-term factors are expected to 

change slowly. This can explain the reason as to why the ARIMA fared well compared to the 

other models discussed so far. 

3.9. Results for the ANN Model 

In the case of this study, a univariate input layer and four nodes gave the best model fit i.e. (1-

4-1) for the production flow rate over a period of time. The actual and forecasted values are 

graphically represented in Figure 10.  
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Figure 10: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the ANN model 

 

The predicted results from the model appear to follow a very close trend to the actual values. 

Zhang (2003) [12] indicated that neural networks are useful for modelling and predicting the 

properties of time series data. Cybenko (1989) [38] described neural networks as having a 

universal non-linear function and a relatively good degree of forecasting accuracy. In addition, 

according to Hill et al. (1996) [39], neural network forecasting provides better results than 

traditional forecasting methods over monthly as well as quarterly periods. 

3.10. Results for the ANN-ARIMA Hybrid Model 

The steps employed by Ayub and Jafri (2020) [10] were used to construct the ARIMA-ANN 

hybrid model. This entailed a two-step process, which involved the following: 

 

In the first step, the ANN is used to predict qt and residual et is produced and provided to the 

ARIMA to predict the error. In the second step, the predicted qt by ANN is summed with the 

error produced by the ARIMA model to give the final predicted values. The equation is as 

follows: 

                                                                                𝑒𝑡 =  𝑌𝑡 − 𝑁𝑡                                                   (25) 
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Yt is time series while Nt is the nonlinear component. ARIMA is used to reproduce et to 

generate the forecast series of qt. The actual and forecasted values can be seen in Figure 11. 

 

Figure 11: Graphical representation of actual flow rate vs. forecasted flow rate for shale gas 

production using the hybrid model 

 

The predicted results from the model appear to be overestimated compared to the actual values. 

This result appears to contradict what has been indicated through the literature. According to 

Faruk (2010) [40], hybrid methods have a higher degree of accuracy than neural networks. 

Cybenko (1989) [38] indicated in his work that hybrid models combine the advantages of 

ARIMA with respect to linear modelling and neural networks in terms of non-linear edge 

modelling. However, Taskaya-Temizel and Ahmad (2005) [41] made reference in their work 

that in some circumstances, the single model approach can outperform hybrid models. This has 

been observed during this study. 

3.11. Model Accuracy Evaluation  

In order to assess the accuracy of the models, three sets of different production data were used 

to perform the evaluation. The estimated data was extracted from the work of Adekoya et al. 

(2009), Brantson et al. (2019) and Tan et al. (2018) [32;42;43]. Figure 12 illustrates the actual 

data vs. the predicted data for the ARIMA, ANN and Arps-PLE hybrid models.  
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(a) 

 

 

(b) 

 

 

(c) 

Figure 12: Estimated production data to determine accuracy of the different hybrid models 

(a), (b) and (c) ARIMA vs. ANN vs. Arps-PLE hybrid model [32;42;43] 
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The results from graphs a, b and c indicate that the ARIMA and ANN models appear to predict 

the production data very close to the actual values in all three production data; however, this is 

not the same trend observed for the Arps-PLE hybrid model. The model appears in one instance 

to underestimate the data and in the other two instances to overestimate the data. Hence, the 

results prove that with the Arps-PLE hybrid model there is no consistency or accuracy in the 

prediction of results in the three different production data when compared to the ARIMA and 

ANN models.  

4. Conclusions  

The objective of this study was to evaluate the forecasting performance of decline curve hybrid 

models and ANN-ARIMA hybrid models with Arps’, Duong’s, PLE decline models, ARIMA 

and ANN models respectively. The experimental results were obtained using the different 

prediction models i.e. Arps’, Duong’s, PLE, Arps-Duong-PLE hybrid, Arps-Duong hybrid, 

Arps-PLE hybrid, Duong-PLE hybrid, ARIMA, ANN and, lastly, the hybrid ANN-ARIMA 

model. The following can be concluded from the study: 

 The current DCA models, Arps’, Duong’s and PLE models appear to over- and 

underestimate the data. 

 The DCA hybrid models also did not give the best outcome, which it was assumed they 

would, in comparison to the individual DCA models. However, the Arps-PLE hybrid 

model gave the closest predicted results compared to the other DCA hybrid models and 

the individual models. 

 Both the ARIMA and ANN models gave the best predicted results compared to all the 

models evaluated in this study. However, when both models were combined into the 

ANN-ARIMA hybrid model the strengths of both models referenced in literature did 

not provide accurate predictive data. The result was an overestimation in the production 

flow rate.  

 Overall, the models which gave predicted values closest to the actuals in order of rank 

were the ARIMA, ANN and the Arps-PLE hybrid model. 

 In the model accuracy evaluation, the Arps-PLE hybrid model did not provide a 

consistent prediction. The model under- and overestimated the production data 

compared to the ARIMA and ANN models.  
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In conclusion, this study contradicted the findings from literature which indicated that hybrid 

models have a higher degree of accuracy. However, the study concurred with Taskaya-Temizel 

and Ahmad (2005) [41], whereby in certain circumstances the single model approach can 

outperform the hybrid models. Future investigation should therefore validate the ARIMA and 

ANN models for SGR decline forecasting using the factors R2, MSE and RMSE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

224 
 

References 

1. Fetkovich, M. J. 1980. Decline curve analysis using type curves. J. Pet. Technol. 32, 

1065–1077. 

2. Tan, L., Zuo, L. and Wang, B. 2018. Methods of decline curve analysis for shale gas 

reservoirs. Energies 11, 552. 

3. Paryani, M., Ahmadi, M., Awoleke, O. and Hanks, C. 2018. Decline Curve Analysis: 

A Comparative Study of Proposed Models Using Improved Residual Functions. J. Pet. 

Environ. Biotechnol. 9, 362. 

4. Ariyo, A. A., Adewumi, A. O. and Ayo, C. K. 2014. Stock price prediction using the 

ARIMA model. In 2014 UKSim-AMSS 16th International Conference on Computer 

Modelling and Simulation. IEEE March, 106–112. 

5. Babu, C. N. and Reddy, B. E. 2014. A moving-average filter based hybrid ARIMA–

ANN model for forecasting time series data. Applied Soft Computing 23, 27–38. 

6. Guresen, E., Kayakutlu, G. and Daim, T. U. 2011. Using artificial neural network 

models in stock market index prediction. Expert Systems with Applications 38(8), 

10389–10397. 

7. Bacaër, N. 2011. Verhulst and the logistic equation (1838). In A Short History of 

Mathematical Population Dynamics; Springer: London, UK, 35–39. 

8. Taskaya-Temizel, T. and Ahmad, K. 2005. Are ARIMA neural network hybrids better 

than single models? In Proceedings of the International Joint Conference on Neural 

Networks (IJCNN 2005), Montr’eal, QC, Canada, 31 July–4 August 2005. 

9. Faruk, D. Ö. 2010. A Hybrid Neural Network and ARIMA Model for Water Quality 

Time Series Prediction. Eng. Appl. Artif. Intell. 23, 586–594. 

10. Ayub, S. and Jafri, Y. Z. 2020. Comparative Study of an ANN-ARIMA Hybrid Model 

for Predicting Karachi Stock Price. American Journal of Mathematics and Statistics 

10(1), 1–9. 

11. Contreras, J., Espinola, R., Nogales, F. J. and Conejo, A. J. 2003. ARIMA models to 

predict next-day electricity prices. IEEE transactions on power systems 18(3), 1014–

1020. 

12. Zhang, G. P. 2003. Time series forecasting using a hybrid ARIMA and neural network 

model. Neurocomputing 50, 159–175. 



 

225 
 

13. Fattah, J., Ezzine, L., Aman, Z., El Moussami, H. and Lachhab, A. 2018. Forecasting 

of demand using ARIMA model. International Journal of Engineering Business 

Management 10, 1–9. 

14. Shamsuddin, S. M., Sallehuddin, R. and Yusof, N. M. 2008. Artificial neural network 

time series modelling for revenue forecasting. Chiang Mai J. Sci. 35(3), 411–426. 

15. Kaastra, I. and Boyd, M. 1996. Designing a neural network for forecasting 

financial. Neurocomputing 10, 215–236. 

16. Dhini, A., Riefqi, M. and Puspasari, M. A. 2015. Forecasting analysis of consumer 

goods demand using neural networks and ARIMA. International. Journal of 

Technology 6, 872–880. 

17. Bacha, H. and Meyer, W. 1992. A neural network architecture for load forecasting, 

IEEE/INNS International Joint Conference on Neural Networks 2, 442–447.  
18. Boah, E. A., Borsah, A. A. and Brantson, E. T. 2018. Decline Curve Analysis and 

Production Forecast Studies for Oil Well Performance Prediction: A Case Study of 

Reservoir X. Int. J. Eng. Sci. (IJES) 7, 56–67. 

19. Ali, T. A. and Sheng, J. J. 2015. Production decline models: A comparison study. In 

Proceedings of the SPE Eastern Regional Meeting, Morgantown, WV, USA, 13–15 

October 2015. 

20. Yuhu, B., Guihua, C., Bingxiang, X., Ruyong, F. and Ling, C. 2016. Comparison of 

typical curve models for shale gas production decline prediction. China Pet. Explor. 

21, 96–102. 

21. Li, P., Hao, M., Hu, J., Ru, Z. and Li, Z. 2018. A new production decline model for 

horizontal wells in low-permeability reservoirs. J. Pet. Sci. Eng. 171, 340–352. 

22. Qu, Z. and Lin, J. E. (Eds.) 2018. Proceedings of the International Field Exploration 

and Development Conference 2017, Springer: Singapore. 

23. Duong, A. N. 2011. Rate-decline analysis for fracture-dominated shale reservoirs. SPE 

Reserv. Eval. Eng. 14, 377–387. 

24. Lee, K. S. and Kim, T. H. 2016. Integrative Understanding of Shale Gas Reservoirs, 

Springer: Heidelberg, Germany. 

25. Ilk, D., Rushing, J. A., Perego, A. D. and Blasingame, T. A. 2008. Exponential vs 

hyperbolic decline in tight gas sands: Understanding the origin and implications for 

reserve estimates using Arps decline curves. In Proceedings of the SPE Annual 

Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008. 



 

226 
 

26. McNeil, R., Jeje, O. and Renaud, A. 2009. Application of the power law loss-ratio 

method of decline analysis. In Proceedings of the Canadian International Petroleum 

Conference, Calgary, AB, Canada, 16–18 June 2009. 

27. Seshadri, J. N. and Mattar, L. 2010. Comparison of power law and modified hyperbolic 

decline methods. In Proceedings of the Canadian Unconventional Resources and 

International Petroleum Conference, Calgary, AB, Canada, 19–21 October 2010. 

28. Kanfar, M. S. and Wattenbarger, R. A. 2012. Comparison of Empirical Decline Curve 

Methods for Shale Wells. In Proceedings of the SPE Canadian Unconventional 

Resources Conferences, Calgary, AB, Canada, 30 October–1 November 2012. 

29. Li, P., Hao, M., Hu, J., Ru, Z. and Li, Z. 2018. A new production decline model for 

horizontal wells in low-permeability reservoirs. J. Pet. Sci. Eng. 171, 340–352. 

30. Büyükşahin, Ü. Ç. and Ertekin, Ş. 2019. Improving forecasting accuracy of time series 

data using a new ARIMA-ANN hybrid method and empirical mode 

decomposition. Neurocomputing 361, 151–163. 

31. Khashei, M., Bijari, M. and Ardali, G. A. R. 2009. Improvement of auto-regressive 

integrated moving average models using fuzzy logic and artificial neural networks 

(ANNs). Neurocomputing, 72(4–6), 956–967. 

32. Tan, L., Zuo, L. and Wang, B. 2018. Methods of decline curve analysis for shale gas 

reservoirs. Energies, 11(3), 552. 

33. Meyet Me Ndong, M.P., Dutta, R. and Burns, C. 2013. Comparison of decline curve 

analysis methods with analytical models in unconventional plays. In Proceedings of the 

SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 

September–2 October 2013. 

34. Ali, T. A. and Sheng, J. J. 2015. Production decline models: A comparison study. In 

Proceedings of the SPE Eastern Regional Meeting, Morgantown, WV, USA, 13–15 

October 2015. 

35. Hu, Y., Weijermars, R., Zuo, L. and Yu, W. 2018. Benchmarking EUR estimates for 

hydraulically fractured wells with and without fracture hits using various DCA 

methods. J. Pet. Sci. Eng. 162, 617–632. 

36. Vanorsdale, C. R. 2013. Production decline analysis lessons from classic shale gas 

wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, New 

Orleans, LA, USA, 30 September–2 October 2013. 

37. Raymond, Y. C. 1997. An application of the ARIMA model to real‐estate prices in 

Hong Kong. Journal of Property Finance 8(2), 152–163. 



 

227 
 

38. Cybenko, G. 1989. Approximation by Superposition’s of a Sigmoidal Function. 

Mathematics of Control, Signals and Systems, 2(4), 303–314. 

39. Hill, T., O'Connor, M. and Remus, W. 1996. Neural Network Models for Time Series 

Forecasts. Management Science, 42(7), 1082–1092. 

40. Faruk, D. Ö. 2010. A Hybrid Neural Network and ARIMA Model for Water Quality 

Time Series Prediction. Engineering Applications of Artificial Intelligence, 23(4), 586–

594. 

41. Taskaya-Temizel, T. and Ahmad, K. 2005. Are ARIMA Neural Network Hybrids 

Better than Single Models? In: Proceedings of the IEEE International Joint Conference 

on Neural Networks 5, 3192–3197. 

42. Adekoya, F. 2009. Production Decline Analysis of Horizontal Well in Gas Shale 

Reservoirs. Master’s Thesis, West Virginia University, Morgantown, WV, USA. 

43. Brantson, E. T., Ju, B., Ziggah, Y. Y., Akwensi, P. H., Sun, Y., Wu, D. and Addo, B. J. 

2019. Forecasting of Horizontal Gas Well Production Decline in Unconventional 

Reservoirs using Productivity, Soft Computing and Swarm Intelligence Models. Nat. 

Resour. Res. 28, 717–756. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

228 
 

Accuracy Assessment of Single and Hybrid Models for Predicting 

Shale Gas Production 

Prinisha Manda*ϯ and Diakanua Nkaziϯ 

Ϯ Oil and Gas Production and Processing Research Unit, School of Chemical and Metallurgical Engineering, 

University of the Witwatersrand, Johannesburg 2000; South Africa  

 

 

Abstract 

The accuracy of a predictive tool determines the levels of trust in the model and its 

attraction for commercial usage. The study examined the single and hybrid model 

approach for shale gas production. Multilayer perception ANN, ARIMA and Arps-

Power Law Exponential hybrid decline models were developed to predict shale gas 

production and were compared with the already developed Arps Decline and Power 

Law Exponential Decline (PLE) models. Using a trial and error approach, a MLP 

network with 4 neurons in the hidden layer was attained in the ANN structure to predict 

shale gas production; Whereas for the ARIMA model, the number of nodes which 

showed the best performance indicated a (2,1,2) for the two sets of data, respectively. 

Evaluation of the RMSE values for the models showed that the Arps-Power Law 

Exponential hybrid decline model had the lower percentage error in conjunction with 

good accuracy. The study found the Arps-Power Law Exponential hybrid decline 

model to be a good forecaster of shale gas production and that hybrid models deliver 

better accuracy over single models. Future revision of model assumptions may 

improve its accuracy, and make the Arps-Power Law Exponential hybrid decline model 

an attractive predictive tool.  
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1. Introduction  
 
Shale gas reservoirs (SGRs) have developed into a vital source for providing natural 

gas with; hydraulic fracking being the process used in the extraction of the shale gas. 

 

1 However, consistently forecasting the reserves of shale basins over a long period 

has been a challenge. 

2 The gas industry hence wants simple, beneficial and quick means of forecasting and 

assessing production data from reserves. Therefore, Decline Curve Analysis (DCA) 

has been a smart alternative to other methods.2 

An accuracy assessment showed that decline curve modelling influences the 

estimated ultimate recovery (EUR) of SGRs and that the different decline curve 

models approximately differ from  EUR results which are either over or under 

estimated. 

3 Previous research has shown that production time considerably influences the EUR 

which is dependent on the decline curve model being used. 

4 It is apparent from the assessment that there are benefits in using existing DCA 

models. However, they also have constraints associated with them, which have to be 

addressed.3 

 

A proposed hybrid model approach was examined since some studies proved it to 

produce higher accuracy. However, based on the findings from the study on 

production decline prediction using hybrid models, the results showed  that ANN, 

ARIMA and Arps-Power Law Exponential (Arps-PLE) hybrid rate decline models 

showed better accuracy. 

5 The finding concurred with Taskaya-Temizel et al. 6 who showed that under certain 

conditions, single model methodology can outperform hybrid models. This paper will 

focus on the accuracy and validation of the single models: Arps decline, PLE decline, 

ANN, ARIMA, and the hybrid models: Arps-PLE hybrid decline and ANN-ARIMA hybrid 

for shale gas production. The main ideas are that a researcher should; a) use the 

goodness-of-fit statistical assessment to evaluate the accuracy of the models, b) 

validate the models using the MAPE values and c) summarise findings from the 

research study. 
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2. Models Overview  

2.1. Arps Decline Curve Model 

The Arps decline curve model analysis is the most repeatedly used technique of 

estimating ultimate recoverable reserves and future performance. 

7 Paryani et al. details this to show a consistent history match (even with b > 1) as well 

as its straightforwardness. The model development was founded on certain focal 

assumptions: that historical operating conditions will stay unaffected, a well is 

produced at or near capacity, and that the well’s drainage remains constant and is 

produced at a constant bottom-hole pressure.9 Particularly, the Arps model is only valid 

in pseudo-steady flows when the flow regime moves from linear flows to boundary-

dominated flows (BDF).10 This shows that Arps Equations are not applicable to the 

production forecasting of the total decline process of horizontal wells in low-

permeability reservoirs.11 The Arps decline curve analysis can be categorised into 

three types: exponential Equation (1), hyperbolic Equation (2), and harmonic Equation 

(3).12,13 

 

𝑞 = 𝑞𝑖𝑒−𝐷𝑡 (1) 

𝑞 =
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)
1
𝑏

 (2) 

𝑞 =
𝑞𝑖

1 + 𝐷𝑖
 (3) 

where 𝑞 is the flow rate in STB/day or Mscf/day, 𝑞𝑖 is the initial flow rate in STB/day or 

Mscf/day, 𝐷 is the decline constant, 𝐷𝑖 is the initial decline constant (both measured 

in days – 1), and 𝑏 is the decline exponent.12,13 

2.2. Power Law Exponential Model (PLE) 

Ilk et al.14 introduced the PLE model, which is an addition of the exponential Arps 

equation for the decline degree in SGRs. The PLE model was developed specifically 

for SGRs and estimates the degree of decline with a power law decline. It considers 

production data in both transient and boundary-dominated regions, without being 

oversensitive to the remaining reserve estimates.15 Tan et al.15 highlighted that this 

model can model transient radial and linear flows, while Kanfar et al.16 showed that 

the PLE model is reliable for linear flow and bilinear flow, followed by linear flow, and 
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linear flow, followed by BDF, or bilinear flow, followed by linear flow and finished with 

BDF flow. Vanorsdale17 inferred that when the flow regime changes throughout the 

initial ten years of the well, the model would yield a very optimistic recovery. The model 

characterizes the decline rate by infinite time, 𝐷∞ which is defined as a “loss ratio” 

(which is assumed to be constant from Arp).11 The production rate is derived as 

follows: 

𝑞

  𝑑𝑞/𝑑𝑡
= −𝑏 (4) 

𝑏 = 𝐷∞𝐷𝑖𝑡−(1−�̂�) (5) 

 

where 𝑑𝑞/𝑑𝑡 is the slope, 𝐷𝑖 is the decline rate over a long-term period, and �̂� is the 

time exponent. By substituting the above equations, the production rate is attained: 

 

𝑞(𝑡) = �̂�𝑖𝑒
[−𝐷∞𝑡−�̂�𝑖𝑡�̂�] (6) 

 

In the above equation, there are four unknown variables: �̂�𝑖 , �̂�𝑖, 𝐷∞ 𝑎𝑛𝑑 �̂�, which adds 

to the number of degrees of freedom and possibly will be difficult to use or solve.18 

Johnson et al.19 referenced in their work that the 𝐷𝑖 parameter is hard to solve. 

However, there are benefits to using this model; in that the additional variables allow 

for both transient and boundary flow, and the equation for production rate seems 

comparable to the Arps exponential equation.8 

 

2.3. The ARIMA Model 

The Autoregressive Integrated Moving Average (ARIMA) methodology for the study of 

time series analysis was developed by Box and Jenkins.20 The Box–Jenkins method 

encompasses three repetitive steps; being; model identification, parameter estimation 

and diagnostic checking.21 The three-step model construction process is usually 

repeated several times until an acceptable model is finally selected and can then be 

used for forecasting purposes.21 

For the ARIMA model, the future value of a variable is presumed to be a linear function 

of several past observations and random errors.21 During past years, academics have 



 

232 
 

been focused more on linear models, due to their ease of comprehension and 

application.22 An ARIMA model is labelled using three terms (p, d, q), where:22  

7. p, number of autoregressive terms  

8. d, number of differences, and,  

9. q, number of moving averages. 

2.3.1. The Autoregressive Process 

This process assumes 𝑌𝑡 is a linear function of the previous values and is given by the 

Equation (7).22 

                                                                𝑌𝑡 =∝1 𝑌𝑡−1 + 𝜀𝑡                                                  (7) 

Generally, each observation comprises a random component i.e. a random shock, ε 

and a linear combination of the previous observations. ∝1 in the equation is the self- 

regression coefficient.22  

2.3.2. The Integrated Process 

The integrated processes are the model of non-stationary series. A distinction of order 

1 assumes that the difference between two succeeding values of Y is constant. An 

integrated process is defined by Equation (8).22 

 

                                                                  𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡                                                      (8)                                            

 

where 𝜀𝑡 is a white noise.22  

 

2.3.3. The Moving Average Process 

The moving averaging method is a linear grouping of the current disturbance with one 

or more previous perturbations. The moving average order designates the number of 

previous periods embedded in the existing value. Consequently, the moving average 

is defined by Equation (9).22 

 

                                                                  𝑌𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1                                                  (9)                                    
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2.4. ANN Model 

ANN was initially developed to simulate the basic biological neural system i.e. the 

human brain that comprises a number of interconnected neutrons or nodes.23 Each 

node accepts an input signal, which is the total “information” from other nodes, 

processes it locally through an activation or transfer function and produces a 

transformed output signal to other nodes.23 According to Lari23, while each single 

neuron implements its function rather slowly and imperfectly, jointly, a network can 

complete an amazing number of tasks efficiently.23 This processing function makes 

ANN a dominant computational tool that is capable of learning from examples and is 

then able to simplify it with patterns encountered previously.23 

2.4.1. ANN Architecture 

There have been many different ANN models recommended from the 1980s. 

However, the most used models are the multilayer perceptions (MLP), the Hopfield 

networks and Kohonen’s self-organising networks.24 For this study, the MPL will be 

used because it can be used in a wide range of situations, particularly in forecasting, 

because of its essential ability in random input-output mapping.24 The MLP model 

comprises three interconnected layers, the input layer, the hidden layer, and the output 

layer.24 The pattern of the recommended network with Z neurons in the hidden layer 

is presented in Figure 1. 

Z Neurons 

 

 

                        Input                                                                      Output 

 

 

 

 

 

 

 

Hidden Layer 

Figure 1: Graphic illustration of the ANN (1- Z -1) model applied in this study 

Time Q(t) 
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The fundamental unit of any ANN is the neuron or node, which is the processor. Each 

neuron/node is capable of summing many inputs x1, x2 ... x3 whether these inputs are 

from a database or from other nodes, with each input adjusted by an adjustable 

connection weight.25  

The connection that occurs in the output and input layers follow Equation (10).25  

                  𝑌𝑡 =∝0+ ∑ ∝𝑗
𝑞
𝑗−1 𝑔 (𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡

𝑝
𝐼=1 − 𝑖) +  𝜀𝑡                                        (10)  

where ∝𝑗 (j = 1,2,3, ..., q) and 𝛽𝑖𝑗 (i = 1,2,3, ..., p; j = 1,2,3, ..., q) are the parameters of 

the model, p is the number of input nodes, and 𝑞 is the number of hidden nodes.25  

2.4.2. Selection of the Best ANN Network Architecture 

The best selection should produce small errors for training and tested data. Therefore, 

the selection of the amount of input and hidden neurons/nodes becomes critical.25 The 

topology of an MLP network related with the number of neurons/nodes in the hidden 

layer has a substantial effect on prediction accuracy and the generalization ability of 

the network, and therefore should be improved.26 However, there is no common rule 

for the determination of the optimal topology of an MLP network and it is usually 

determined through the trial-and-error method.27 

 

2.5. Hybrid Models 

As mentioned earlier, the hybrid model philosophy is a new method in predicting a 

decline in shale gas production. There is minimal literature explaining the hybrid model 

method in combining decline curve models used in the prediction process. In this 

article a proposed hybrid decline model which incorporates the Arps and PLE models 

is evaluated. The Arps model considers linear to BDF, while the PLE model considers 

TFR flows. As mentioned by Kuila et al.28 gas flow in SGRs is defined by a combination 

of mechanisms acting at different scales. These are: 28 

  

 Desorption from kerogen and clay surfaces, and subsequent surface diffusion 

of the adsorbed gas molecules under a pressure gradient. 

 Knudsen diffusion and slip flow in micropores, and 

 Darcy flow in larger meso-and macropores. 
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According to Huang et al.29 principal analysis shows that the permeability of shale is 

in a range of 1 × 10−9–1 × 10−3 𝜇m2 and flow in extremely low permeability shales 

undergoes a transition of flow regimes owing to the significant effect of collisions 

between molecules and pore walls on gas transport.29 

Gas flow regimes can be classified into four groups, depending on the Knudsen 

number (Table 1).29 

 

Table 1: Gas flow regime classification founded on the Knudsen number 

Knudsen 

Number 

Kn ≤ 0.001 0.001 < Kn ≤ 0.1 0.1 < Kn ≤ 10 Kn > 10 

Flow regime  Continuum flow Slip Flow Transition flow Free-molecule 

flow 

 

In continuum flow regime, no-slip boundary condition is effective and gas flow is linear. 

As Kn increases, the rarefaction effects become more distinct and the continuum 

assumption breaks down eventually.29 As the Knudsen number increases, either by 

increasing the mean free path of gas (i.e., gas flowing at very low pressure) or by 

decreasing the pore size, the contribution of the Knudsen layer increases. It goes to a 

transition flow and then finally to pure Knudsen or free molecule flow.28 Considering 

the different flow regime changes which occur during the shale extraction process, the 

hybrid decline Arps-PLE model considers flows in the linear, transition and free 

molecule regions. The proposed hybrid decline model equation is given as: 

 

                                                        𝑡[−𝐷∞ − 𝐷𝑖�̂�] =
−

1

𝑏

𝑞𝑡
𝐼𝑛(1 + 𝑏𝐷𝑖)                                   (11) 

where 𝑞𝑖 is the flow rate in STB/day or Mscf/day, 𝑡 is the time in days, 𝐷∞ the decline 

rate over a long-term period, 𝐷𝑖 the initial decline constant (both measured in days− 1), 

�̂� is the time exponent and b is the decline exponent.  

The hybrid model concept has commonly been used in the finance sector, specifically 

for stock price forecasting, which involves combining the ANN and ARIMA models. 

According to Faruk30 hybrid methodologies tend to have a greater degree of accuracy 

than neural networks. The ARIMA model can distinguish patterns of time-series well; 
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but not data patterns which are non-linear; whereas ANN can only handle non-linear 

data. Therefore, hybrid models link benefits of ARIMA with respect to linear modelling 

and ANN, in terms of non-linear edge modelling.3 Under certain conditions, the single 

model approach can outperform hybrid models.6  

The equation for time-series data can be expressed as a combination of linear and 

non-linear components, as follows:31 

𝑌𝑡 = 𝐿𝑡 + 𝑁𝑡 (12) 

 

where 𝑌𝑡 shows the time-series data, 𝐿𝑡 designates the linear aspects, and the non-

linear aspects are denoted by 𝑁𝑡.
31 

The neural network (NN) model for residual of n input nodes can be expressed as  

follows:31 

𝑒𝑡 = 𝑓(𝑒𝑡−1 + 𝑒𝑡−2, … , 𝑒𝑡−𝑛) (13) 

 

where 𝑓 is a non-linear function that is identified by the NN. With regard to the results 

of the prediction error of 𝑁𝑡, the combination forecast using the hybrid method can be 

expressed as:31 

�̂�𝑡 = �̂�𝑡  + �̂�𝑡. (14) 

 

According to Taskaya-Temizel et al.6 two factors prevent the hybrid ANN-ARIMA 

method from providing good results. Firstly, the assumption of the existence of a 

relationship between the components of the linear and non-linear components in the 

data can cause performance degradation, as other model relationships (e.g., 

multiplicative) may exist within the data instead of linear/non-linear relationships. 

Secondly, no one can assure that the residual of the linear components will have 

effective non-linear patterns. Their findings showed that hybrids are not always 

superior and therefore the model selection process remains a vital step despite the 

popularity of hybrid models.6  

 

Dhini et al.32 concurred that the hybrid method does not always give better results than 

the single methods, as the neural network method often outperformed the hybrid 

method. Some of the possible causes for this are the basic assumptions used in the 
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method, as well as the possibility that the residual from the linear components may not 

be non-linear.33 Chao et al.33 found that the hybrid model is capable of outperforming 

each component model used in isolation. Granger34 highlighted that for a hybrid model 

to produce higher forecasts, the component model should be suboptimal.  

 

3. Methodology 

The methodology for the research study followed a three step process, Figure 2 

summarises the steps and key findings. The initial stage involved an evaluation and 

sensitivity analysis of current decline curve models used to predict the decline of shale 

gas production. The assessment found benefits in using the existing decline curve 

analysis (DCA) models. However, they too have restrictions linked with them which 

have to be addressed. A new proposed hybrid model approach was examined and 

from previous studies conducted has proved to provide higher accuracy, but this 

approach has not been evaluated for SGR. 

 

The second step was to develop and evaluate the hybrid model approach for decline 

curve models. The development process involved combining the Arps, Power Law 

Exponential and Duong’s decline models (hybrid models) which were chosen based 

on the evaluation process in the initial stage. The models was then compared to ANN-

ARIMA hybrid model. The findings indicated that DCA hybrid models do not give the 

best outcome, which it was assumed they would. However, the Arps-PLE hybrid 

decline model gave the closest predicted results compared to the other DCA hybrid 

models. Also from the study, the ANN and ARIMA models gave the best predicted 

results compared to all the models evaluated. However, when both models were 

combined into the ANN-ARIMA hybrid model, the strengths of both models referenced 

in the literature did not provide accurate predictive data. 

 

The third stage of the study will involve confirming the findings from the second step 

of the study by assessing the accuracy and validity of the ANN, ARIMA, Arp’s,  PLE, 

Arps-PLE hybrid decline and ANN-ARIMA hybrid models. This will involve using the 

R2, RMSE and MAPE parameters. 
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Figure 2: Methodology for optimal model validation 

 

4. Results and Discussion 

In order to determine the accuracy and validate the results obtained for the forecasting 

models, Root Mean Square Error (RMSE), Mean Standard Error (MSE), Mean 

Absolute Percentage Error (MAPE) and Correlation Coefficient (R2) between the 

actual and predicted values. The RMSE, MSE and MAPE and R2 are defined as 

follows: 

                    𝑅𝑆𝑀𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑡−𝐴𝑡)𝑛

𝑡=1

𝑛
                                                                        (15) 

                        𝑀𝑆𝐸 =
1

𝑛
∑ (𝐴𝑡 − 𝑃𝑟𝑒𝑑𝑡)2𝑛

𝑡=1                                                                   (16) 

                  𝑀𝐴𝑃𝐸 =
1

𝑛
∑

𝐴𝑡−𝑃𝑟𝑒𝑑𝑡 

𝐴𝑡

𝑛
𝑡=1                                                                          (17) 

                     𝑅2 = (
∑ (𝑃𝑟𝑒𝑑𝑡−𝑃𝑟𝑒𝑑𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝐴𝑡−𝐴𝑡̅̅ ̅𝑛

𝑡=1 )

∑ (𝑃𝑟𝑒𝑑𝑡−𝑃𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅𝑡)2𝑛
𝑡=1 ∑ (𝐴𝑡−𝐴𝑡̅̅ ̅)2𝑛

𝑡=1
 )                                                       (18) 

Evaluation and 
Sensitivity 
Analysis

• Current DCA models do have their advantages, however there are 
limitations too.

• The goodness of fit method highlighted that the PLE and Duong's models 
aligned well with production data, compared to the other DCA models.

• A hybrid model method was examined. Studies have highlighted the 
higher accuracy of the model. This method has not been investigated for 
SGR.

• The next step would evaluate this method for SGRs.

Prediction of 
Shale Gas 

Production 
using Hybrid 

Models

• The hybrid models evaluated did not give the best result as presumed i.e. 
Arps-Duong-PLE hybrid decline, Arps-Duong hybrid decline, Duong-PLE 
hybrid decline and ANN-ARIMA hybrid.

• From the study the ANN, ARIMA and Arps'-PLE hybrid models indicated 
good accuracy 

• Overall, the models which gave predicted values closest to the actuals in 
order of rank were the ARIMA, ANN and the Arps-PLE hybrid rate decline 
models

Accuracy and 
Validation 

Assessment

• The next step is the accuracy and validation of the ARIMA, ANN and 
Arps'-PLE hybrid rate decline models.
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where 𝑃𝑟𝑒𝑑𝑡 is the predicted value and 𝐴𝑡 is the actual value. �̅�𝑡 and 𝑃𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅
𝑡 are the 

average of the actual and predicted values respectively.  

In the study, different networks (ANN) and number of orders (ARIMA) were formulated 

and applied to shale gas production. The number of neurons/nodes in the hidden layer  

varied from 1 to 15 and each network was repeatedly run 20 times. In the case of the 

ARIMA model, the number of nodes were varied and the best fit evaluated.  

Table 1 summaries the performance results for the ANN model for the different 

numbers of neurons/nodes in the hidden layer for the Canon Shale Well and Marcellus 

Shale Well and Table 2 summarises the results for the ARIMA model. The developed 

Arps-PLE rate decline hybrid model parameters are summarised in Table 3. 

According to Temür et al.35 the MSE and MAPE are used for ANN testing performance 

when considering simulated and real series. Hence, based on these performance 

parameters, the network model having 4 neurons/nodes in the hidden layer (1-4-1) 

was found to be the network with good performance (refer to Table 1 and the results 

highlighted in bold). The R2 values for this network were 0.9743 and 0.9965 

respectively, for the two sets of data.  

Table 2: Summary for the ANN performance output for various numbers of 

neurons/nodes in the hidden layer for Canon Shale Well and Marcellus Shale 

Wells using JMP software 

Canon Well Marcellus Shale 

Number of Neurons MAPE MSE R2 MAPE MSE R2 

1 13.52 65.47 0.9727 13.18 182.07 0.9908 

2 13.03 67.09 0.9726 42.92 116.11 0.9954 

3 11.77 66.11 0.9730 54.11 141.94 0.9916 

4 7.96 10.49 0.9743 3.34 8.43 0.9965 

5 13.76 48.67 0.9855 26.95 86.96 0.9964 

6 20.21 81.56 0.9667 27.94 7.08 0.9999 

7 8.74 89.70 0.9864 13.28 15.00 0.9999 

8 9.68 34.22 0.9886 4.82 4.68 1.0000 

9 13.00 26.45 0.9930 7.89 6.91 1.0000 

10 10.31 12.48 0.9961 3.30 3.06 1.0000 

11 11.02 21.29 0.9958 21.25 31.36 0,9995 

12 6.72 7.07 0.9982 9.78 6.17 1.000 

13 6.82 9.26 0.9972 15.15 20.29 1.000 

14 6.75 8.01 0.9978 14.73 26.02 1.000 

15 11.06 28.48 0.9912 3.58 4.25 1.000 
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The ARIMA model of (3,1,3) showed good performance for the Canon Shale Well but 

failed to predict accurately for the Marcellus Shale Well i.e., MSE values of 1.2 and 

3.6 respectively. The reason for the difference is that the model needs a large amount 

of production data to decide the best fitting model for a data series. Therefore the 

ARIMA model of (2,1,2) is recommended since it gave a good MSE and R2 value for 

both wells (refer to Table 2 and the results highlighted in bold). 

 

Table 3: The ARIMA model best fit and order determination for the Canon 

Shale Well and Marcellus Shale Well using JMP software 

 
Table 3, summarises the behaviour, assumptions, condition and parameters for the 

single and hybrid decline models. The parameters were obtained using KAPPA-

Citrine software. 

 
 

ARIMA MSE  

(Canon Shale 
Well) 

R2 (Canon 
Shale Well) 

MSE 

 (Marcellus 
Shale Well) 

R2  

(Marcellus Shale 
Well) 

(0,0,0) 19.8 0.0000 66.7 0.0000 

(1,1,1) 1.8 0.9880 2.4 0.9960 

(1,2,1) 2.5 0.9780 2.7 0.9950 

(1,3,1) 2.9 0.9670 3.8 0.9890 

(2,1,1) 1.8 0.9880 2.5 0.9960 

(2,1,2) 1.6 0.9910 2.3 0.9960 

(3,1,3) 1.2 0.9940 3.6 0.9950 



 

241 
 

Table 4: Summary of the behaviour, assumptions, condition and parameters for the decline models 

  Canon Shale Well Marcellus Shale Well 

Model Production 
Behaviour 

Assumptions Condition Parameters Production 
Behaviour 

Assumptions Condition Parameters 

Arps Linear to BDF Decline parameter, 
b, defines the 
decline behaviour. 
The rate of decline 
approximated using 
a logistic growth 
decline 

0 ≤ b ≤ 1 
D is 

changing 

b = 0.383 
Di = 3.53 
qi = 2183 

 

BDF Decline 
parameter, b, 
defines the 
decline 
behaviour. The 
rate of decline 
approximated 
using a logistic 
growth decline 

0 ≤ b ≤ 1 
D is 

changing 

b = 0.00 
Di = 0.042 
qi = 3864 

 

PLE BDF and TFR Estimates the rate of 
decline with a power 
law decline 
 

Di 

changes 
at early 
stages 
while 
D∞ is 

constant 
at late 
time 

n = 0.524 
Di = 0.0000681 

qi = 4018 
 

BDF and 
TFR 

Estimates the 
rate of decline 
with a power law 
decline 
 

Di 

changes 
at early 
stages 
while 
D∞ is 

constant 
at late 
time 

n = 0.005 
Di = 0.0000431 

qi = 10812 
 

Arps-
PLE 
hybrid 
decline 
model  

BDF and TFR Estimates the rate 
of decline with a 
logistic growth 
decline 

0 ≤ b ≤ 1 
Di 

changes 
at initial 
stages 

and then 
becomes 
constant 
at late 
time 

n = 1.00 
Di = 0.798 
qi = 1429 
b = 0.000 

 

BDF and 
TFR 

Estimates the 
rate of decline 
with a logistic 
growth decline 

0 ≤ b ≤ 1 
Di 

changes 
at initial 
stages 

and then 
becomes 
constant 
at late 
time 

n = 0.005 
Di = 0.0139 

qi = 359 
b = 0.0087 
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Figure 3 and 4 displays the scatter graph of the forecasted shale gas production data 

by the Arps decline model compared with the actual data for the Canon Shale Well 

and Marcellus Shale Well, respectively. 

 

 

Figure 3: Scatter graph of the forecasted shale production data by the Arps decline 

model vs. actual data for Canon Shale Well 

 

Figure 4: Scatter graph of the forecasted shale production data by the Arps decline 

model vs. actual data for Marcellus Shale Well 

Figures 3 and 4 illustrations the R2 figures of 0.9695 and 0.9447 obtained for the 

Canon and Marcellus Shale Wells respectively. While a MAPE of 0.5136 and 0.9230% 
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were obtained for the two sets of production data. The RMSE figures were 0.0725 and 

0.1279 respectively. The results for the model appear in some instances to over-and 

in other instances to under-estimate the data. The results concur with the literature, 

which suggests that the weakness of the Arps model is over-estimation of results. Tan 

et al.15 in their study highlighted that while the Arps decline is simplistic and fast, it 

regularly fails to precisely fit the decline curve of SGRs. They further explained that 

the model frequently inclines to overestimate the EUR as it assumes that a BDF is 

evident. Paryani et al.8 concurred with these findings, explaining that the drainage area 

is not constant because the pressure pulse continues to spread from the fracture to 

other areas of the reservoir volume. Under these conditions, the b value predicted by 

the Arps model for the actual production data will be larger than 1. This in turn leads 

to inaccurate estimations of reserves i.e. the underestimation of results. 

 

Figure 5 and 6 displays the scatter plot of the predicted shale gas production data by 

the PLE decline model compared to the actual data for the Canon Shale Well and 

Marcellus Shale Well, respectively. 

 

 

Figure 5: Scatter graph of the forecasted shale production data by the PLE decline 

model vs. actual data for Canon Shale Well 
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Figure 6: Scatter graph of the forecasted shale production data by the PLE decline 

model vs. actual data for Marcellus Shale Well 

 
Figures 5 and 6 shows the R2 values of 0.9710 and 0.9089 were obtained for the 

Canon and Marcellus Shale Wells, respectively. While a MAPE of 0.6097 and 0.1.11% 

was obtained for the two sets of production data. The RMSE figures were 0.0716 and 

0.1483, respectively. The results for the PLE model appear to underestimate the data 

although the PLE considers BDF and TFR, which is an advantage of the model. 

Furthermore, the model was specifically developed for SGRs; hence it was assumed 

that the results would be better. The underestimation in the results concurred with the 

findings by Paryani et al.8 as, based on their results, the PLE frequently offered the 

lowest forecasts. The model is thus the most conservative method for production 

forecasting and reserves estimation.8 Seshadri et al.36 determined that for tight gas 

wells, the PLE model is complex and non-intuitive. The PLE model can result in a non-

unique solution due to four degrees of freedom, resulting from the four unknown 

parameters, this may contribute to the underestimation of the results. 

 

Figure 7 and 8 displays the scatter plot of the predicted shale gas production data by 

the established ARIMA model compared to the actual data for the Canon Shale Well 

and Marcellus Shale Well, respectively. 
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Figure 7: Scatter graph of the forecasted shale production data by the ARIMA model 

vs. actual data for Canon Shale Well 

 

Figure 8: Scatter graph of the forecasted shale production data by the ARIMA model 

vs. actual data for Marcellus Shale Well 
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From Figure 7 and 8, R2 values of 0.9969 and 0.9970 were obtained for the Canon 

and Marcellus Shale Wells, respectively. While a MAPE of 0.5466 and 0.8829% were 

obtained for the two sets of production data. The RMSE numbers were 0.0304 and 

0.0472, respectively. The expected outcomes from the model appear to follow a close 

trend to the actual values according to the R2. However, the model gave higher MAPE 

values when compared to the ANN model. Reikard et al.37 suggested that ARIMA 

models have shown to be outstanding interim forecasting models for a wide variety of 

time series because interim factors are anticipated to change slowly.  

 

Figure 9 and 10 displays the scatter plot of the predicted shale gas production data 

by the established ANN model when compared to the actual data for the Canon Shale 

Well and Marcellus Shale Well, respectively. 

 

 

Figure 9: Scatter graph of the forecasted shale production data by the ANN model 

vs. actual data for Canon Shale Well 
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Figure 10: Scatter graph of the forecasted shale production data by the ANN model 

vs. actual data for Marcellus Shale Well 

 

As can be seen from Figure 9 and 10, R2 values of 0.9644 and 0.9993 were obtained 

for the Canon and Marcellus Shale Wells respectively. While a MAPE of 0.4946 and 

0.7493% was obtained for the two sets of production data, the RMSE values were 

0.0148 and 0.0185, respectively. Lai et al.38 indicated that neural networks are useful 

for modelling and predicting the properties of time series data. Dhini et al.32 described 

neural networks as having a universal non-linear function and a relatively high degree 

of forecasting accuracy. In addition, neural network forecasting provides better results 

than traditional forecasting methods, over monthly as well as quarterly periods.32 

 

Figure 11 and 12 displays the scatter plot of the predicted shale gas production data 

by the ANN-ARIMA hybrid model compared to the actual data for the Canon Shale 

Well and Marcellus Shale Well, respectively. 
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Figure 11: Scatter graph of the forecasted shale production data by the ANN-ARIMA 

hybrid model vs. actual data for Canon Shale Well 

 

Figure 12: Scatter graph of the forecasted shale production data by the ANN-ARIMA 

hybrid vs. actual data for Marcellus Shale Well 
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was obtained for the two sets of production data. The RMSE values were 0.2384 and 

0.2049 respectively. This result appears to have a higher error than ANN and ARIMA, 
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approaches have a higher degree of accuracy than neural networks. Dhini et al.32 

indicated that hybrid models bring together the benefits of ARIMA and ANN. However, 

Taskaya-Temizel et al.6 stated that under certain conditions, the single model 

approach can outdo hybrid models. This was observed during this study. 

 

Figure 13 and 14 displays the scatter plot of the predicted shale gas production data 

by the established Arps-PLE hybrid decline model compared to the actual data for the 

Canon Shale Well and Marcellus Shale Well, respectively. 

 

Figure 13: Scatter plot of the predicted shale production data by the Arps-PLE 
hybrid decline model vs. actual data for Canon Shale Well 

 

 

Figure 14: Scatter plot of the predicted shale production data by the Arps-PLE 

hybrid decline model vs. actual data for Marcellus Shale Well 
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From Figure 13 and 14, R2 values of 0.9629 and 0.9409 were obtained for the Canon 

and Marcellus Shale Wells, respectively. While a MAPE of 0.8156 and 2.06% were 

obtained for the two sets of production data. The RMSE figures were 0.0081 and 

0.0036, respectively. The results from the model initially appear to over-and under-

estimate the data prediction. However, the results tended to move closer to the actual 

values over time. This would be attributed to the reliability of the Arps model and the 

fact that the PLE model was developed precisely for SGR. Moreover, both flow 

regimes are considered and subsequently most shale gas wells seldom reach BDF. 

The results appear to move closer to the actuals when approaching the TFR. Hence, 

by combining the models, the overestimation of the predicted results is minimised over 

time. 

Table 5, summaries the RSME, MAPE and R2 for the models which are ranked in 

order of most to least accurate, based on the RSME number. The lower 

the RMSE value is, the better the model. Also, the RMSE is more accurate than the 

MAPE value. 

 

Table 5: Summary of the accuracy and validation in ranking order, from most to 

least for the different models  

 Canon Shale Well Marcellus Shale Well 

 RMSE MAPE (%) R 2 RMSE MAPE (%) R 2 

Arps-PLE 

Hybrid 

Model  

0.0081 0.8156 0,9629 0.0036 2.0634 0,9409 

ANN 

Model  

0.0148 0.4936 0,9644 0.0185 0.7493 0,9993 

ARIMA 

Model  

0.0304 0.5466 0.9969 0.0472 0.8829 0.9970 

PLE 

Decline 

Model 

0.0716 0.5097 0,9710 0.1483 1.1102 0,9089 

Arps 

Decline 

Model 

0.0725 0.5136 0.9695 0.1279 0.923 0,9447 

ANN-

ARIMA 

Hybrid 

Model 

0.2304 0.7265 0.9644 0.2049 1.8837 0.9993 

 

Based on the summary results presented in Table 5, it is evident the Arps-PLE hybrid 

decline model is a better model than the other models, followed by the ANN and 
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ARIMA models, based on the RMSE value. The ANN-ARIMA model appears to 

accurately predict the results compared to the Arps-PLE hybrid decline model i.e. 

Figure 12 vs. Figure 14, if the R2 value is considered. However, one needs to keep in 

mind, that the R2 denotes relative degree of fit, while RMSE indicates absolute degree 

of fit and should be used as a determining factor when considering a model i.e. the 

RMSE value.  

 

It is apparent that by combining the Arps and PLE decline models, the limitations of 

the models is reduced. There is a significant reduction in the RMSE values from 0.0716 

and 0.0725 for the PLE and Arps models, respectively; to 0.0081 for the Arps-PLE 

hybrid decline model, for the Canon Shale Well; while for the Marcellus Shale Well, 

0.1483 and 0.1279 to 0.0036. The contributing factor that was highlighted earlier is the 

dominance of the PLE parameters in the model i.e. Di and D∞ which considers the TFR 

flows not catered for in the Arps decline model. In addition, the PLE model was 

specifically developed for SGRs and by combining the models, the number of variables 

are reduced from four to three. This reduces the number of variables to solve which 

was identified as a limitation of the model and hence the degrees of freedom is 

reduced. After the validation of the models, a step was taken further, and the 95% 

confidence intervals were assessed. Figures 15 and 16, illustrates the findings for 

analysis.  

 

Figure 15: Scatter graph of the forecasted shale production data by the ANN and 
ARIMA models vs. actual data for Canon Shale Well; evaluating the 95% confidence 

level 
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Figure 16: Scatter graph of the forecasted shale production data by the ANN and 

ARIMA models vs. actual data for Marcellus Shale Well evaluating the 95% 

confidence level 
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ANN model, while with the ARIMA model, the number of nodes which showed the best 

performance indicated a (3,1,3) and (2,1,2) for the Canon Well Shale and Marcellus 

Shale, respectively. A MAPE of 7.96 and 3.34% was identified to be the network with 

the best performance while the R2 values for this network were 0.9743 and 0.9965, 

respectively for the two sets of data. The ARIMA performance evaluation of (3,1,3) 

and (2,1,2) was found to have the lowest MSE of 1.20 and 2.30, while the adjusted R2 

was 0.9940 and 0.9960 for the Canon Shale Well and Marcellus Shale Well 

respectively. Also, a hybrid decline model was developed by combining the Arps and 

PLE decline models. The developed hybrid model was then evaluated and compared 

with the Arps, PLE, ANN, ARIMA and ANN-ARIMA hybrid models. The following can 

be concluded: 

 

 The current DCA models, Arps and PLE decline models appear to over and 

under-estimate the data. 

 The Arps-PLE hybrid decline model gave the closest predicted production 

data, compared to the ANN-ARIMA hybrid model. 

 Both the ARIMA and ANN models gave good predicted results. However, when 

both models were combined into the ANN-ARIMA hybrid model, the strengths 

of both models referenced in literature did not provide accurate predictive data. 

The result was an overestimation in the production flow rate.  

 The validation of the models indicated that the Arps-PLE hybrid decline model 

gave the lowest RMSE value with a good R2 value for both the Canon Shale 

Well and Marcellus Shale Well; followed by the ANN and ARIMA models. 

 Lastly, the confidence interval evaluation found that the ANN, ARIMA, ANN-

ARIMA hybrid and Arp’s-PLE hybrid decline models fell within the 95% 

confidence limit, i.e. the data lies within the ±5% error band. The results proved 

that there was a very good fit between the actual and forecasted values for the 

models.  

 

In conclusion, the findings have provided a significant contribution to the forecasting 

of shale gas production. The results indicated that the Arps-PLE hybrid decline model 

is a good model predictor for shale gas production. The contributing factor is the 

dominance of the PLE parameters i.e. Di changes in the early stages and D∞ becomes 
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constant at later times in the model. This caters for the TFR which the Arps decline 

model did not consider. Lastly, with the PLE the limitation identified during the 

sensitivity analysis was the number of variables, so, by combining the models the 

variables is reduced and hence the degrees of freedom is reduced from four to three. 

 

Future research will investigate incorporating and accounting for the Knudsen diffusion 

into the Arps-PLE hybrid decline model in shale gas reservoir modelling.  
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